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A DETAILS FOR GENERATING MIXED BASIS
FUNCTIONS

In this section we show how to choose 𝑝𝜔 and 𝑝𝑏 from Definition 2

in such a way that the mixed 𝑧-functions are never completely

outside the domain 𝑋𝑐 × 𝑋𝑑 . We recommend to choose 𝑝𝜔 to be

a uniform distribution over [− 1

𝛾𝑐+𝛾𝑑 ,
1

𝛾𝑐+𝛾𝑑 ]
𝛾𝑐+𝛾𝑑

. This way, the

term v𝑇
𝑘
x𝑐 +w𝑇

𝑘
x𝑑 will not take on large values, which might cause

numerical problems.

After sampling 𝜔𝑘 =

[
v𝑘
w𝑘

]
from 𝑝𝜔 , we look for two corner-

points q1, q2 of the space 𝑋𝑐 × 𝑋𝑑 . For every dimension 𝑖 , the 𝑖-th

element of corner points q1, q2 is determined by

𝑞1𝑖 =

{
𝑙𝑖 , 𝜔𝑘𝑖 ≥ 0,

𝑢𝑖 , 𝜔𝑘𝑖 < 0,
(1)

𝑞2𝑖 =

{
𝑢𝑖 , 𝜔𝑘𝑖 ≥ 0,

𝑙𝑖 , 𝜔𝑘𝑖 < 0.
(2)

Here, 𝑙𝑖 and 𝑢𝑖 are the lower and upper bounds of the 𝑖-th variable

respectively, so this gives

𝜔𝑇
𝑘
q1 ≤ v𝑇

𝑘
x𝑐 +w𝑇

𝑘
x𝑑 ≤ 𝜔𝑇

𝑘
q2 ∀ x𝑐 ∈ 𝑋𝑐 , x𝑑 ∈ 𝑋𝑑 . (3)

Nowwe calculate the distance from the hyperplane generated by𝜔𝑘

to these corner points, which can be done with the inner product:

𝛽1 = 𝜔𝑇
𝑘
q1, 𝛽2 = 𝜔𝑇

𝑘
q2 . (4)
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By the way 𝛽1 and 𝛽2 are constructed and because 𝑙𝑖 < 𝑢𝑖 , we now

have 𝛽1 < 𝛽2. We choose 𝑝𝑏 equal to the uniform distribution over

[−𝛽2,−𝛽1].
Next we prove that this choice of 𝑝𝑏 prevents the hyperplane

𝑧𝑘 (x𝑐 , x𝑑 ) = 0 from being completely outside the set 𝑋𝑐 × 𝑋𝑑 .

Theorem 1. Let 𝜔𝑘 =

[
v𝑘
w𝑘

]
be sampled from any continuous

probability distribution 𝑝𝜔 and let 𝑏𝑘 be sampled from the uniform
distribution over [−𝛽2,−𝛽1], with 𝛽1, 𝛽2 as in (4). Let 𝑧𝑘 (x𝑐 , x𝑑 ) =
v𝑇
𝑘
x𝑐 +w𝑇

𝑘
x𝑑 + 𝑏𝑘 . Then, there exists a (x𝑐 , x𝑑 ) ∈ 𝑋𝑐 ×𝑋𝑑 such that

𝑧𝑘 (x𝑐 , x𝑑 ) = 0.

Proof. Suppose that (x𝑐 , x𝑑 ) ∉ 𝑋𝑐×𝑋𝑑 for all (x𝑐 , x𝑑 ) for which
𝑧𝑘 (x𝑐 , x𝑑 ) = 0. Then from (3), at least one of the following inequal-

ities holds:

v𝑇
𝑘
x𝑐 +w𝑇

𝑘
x𝑑 > 𝜔𝑇

𝑘
q2, (5)

v𝑇
𝑘
x𝑐 +w𝑇

𝑘
x𝑑 < 𝜔𝑇

𝑘
q1 . (6)

Because 𝑧𝑘 (x𝑐 , x𝑑 ) = 0, we have 𝑏𝑘 = −v𝑇
𝑘
x𝑐 −w𝑇

𝑘
x𝑑 . Because 𝑏𝑘 is

sampled from 𝑝𝑏 , from (4) we also have−𝜔𝑇
𝑘
q2 ≤ 𝑏𝑘 ≤ −𝜔𝑇

𝑘
q1. This

gives 𝜔𝑇
𝑘
q1 ≤ v𝑇

𝑘
x𝑐 +w𝑇

𝑘
x𝑑 ≤ 𝜔𝑇

𝑘
q2, which is in conflict with (5)-

(6). By contradiction, there has to exist a (x𝑐 , x𝑑 ) ∈ 𝑋𝑐 × 𝑋𝑑 with

𝑧𝑘 (x𝑐 , x𝑑 ) = 0. □

B DETAILS ON THE EXPLORATION STEP FOR
INTEGER VARIABLES

This section gives more details on the last step of the MVRSM

algorithm, the exploration step. For the integer variables x∗
𝑑
, the

exploration step consists of determining a random perturbation

𝛿𝑑 ∈ Z𝛾𝑑 that is added to the solution. Our approach is similar to

the one in [3, Sec. 3.4], except that we allow perturbations that are

larger than 1. We determine 𝛿𝑑 according to Algorithm 1.

For the continuous variables, we use the procedure from [2],

adding a random variable 𝛿𝑐 ∈ R𝛾𝑐 to x∗𝑐 . For each continuous

variable x𝑐 [𝑖], 𝛿𝑐 is zero-mean normally distributed with a stan-

dard deviation of 0.1|𝑋𝑐 [𝑖] |/
√
𝛾𝑐 + 𝛾𝑑 . The exploration step for both

integer and continuous variables is done in such a way that the

solution stays within the bounds 𝑋𝑐 , 𝑋𝑑 .

https://doi.org/10.1145/3449726.3463136
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Algorithm 1 Determining 𝛿𝑑

Input Domain 𝑋𝑑 , current solution x∗
𝑑

Output 𝛿𝑑 ∈ Z𝛾𝑑
for 𝑖 = 1, . . . , 𝛾𝑑 do

𝑟1 ∼ Uniform[0, 1]
𝑟2 ∼ Uniform[0, 1] ⊲ Whether to increase or decrease 𝑥𝑖 , the

𝑖-th element of x∗
𝑑

𝑝 = 1/(𝛾𝑐 + 𝛾𝑑 )
while 𝑟1 < 𝑝 do

if 𝑥𝑖 = 𝑙𝑖 then 𝑥𝑖 ← 𝑥𝑖 + 1
else if 𝑥𝑖 = 𝑢𝑖 then 𝑥𝑖 ← 𝑥𝑖 − 1
else

if 𝑟2 < 0.5 then 𝑥𝑖 ← 𝑥𝑖 + 1
else 𝑥𝑖 ← 𝑥𝑖 − 1

𝑟1 ← 2𝑟1

C DETAILS ON THE INITIALISATION OF
COEFFICIENTS

In this section we would like to provide a short motivation for the

choice of initial weights of the surrogate model used by MVRSM

(Sec. 4.2). By initializing the coefficients corresponding to the in-

teger z-functions as 1, the surrogate model has a convex shape

with a global minimum around the center of the discrete part of

the search space, making it easier for the optimiser. For the mixed

z-functions we cannot guarantee this particular shape due to the

randomness involved, hence we initialise those coefficients as 0.

All of this can also be interpreted as putting a convex prior on the

surrogate model.

D ADDITIONAL EXPERIMENTS ON
SYNTHETIC BENCHMARK FUNCTIONS

In this section we show the results on some additional synthetic

benchmarks, ordered by problem dimension.

Func3C. This benchmark was taken from [5, Sec. 5.1]. It has 3

categorical and 2 continuous variables.

Figure 1 shows the results of 200 iterations averaged over 100

runs. We have managed to reproduce the results from [5, Fig. 6(b)]

for both HO (also called TPE) and CoCaBO. Our result of SMAC is

better here due to not using the default setting. As this benchmark

has categorical variables and was one of CoCaBO’s benchmarks,

we expect CoCaBO to perform best, which it does, though it uses

more computation time than the other methods.

Rosenbrock10. The Rosenbrock function
1
is a standard benchmark

in continuous optimisation that can be scaled to any dimension. For

any dimension, the function has its global minimum in the point

(1, 1, 1, . . . , 1), where it achieves the value 0. This benchmark has

a dimension of 10, but 3 of the variables were adapted to integers

in 𝑋𝑑 = {−2,−1, 0, 1, 2}3. The 7 remaining continuous variables

were limited to𝑋𝑐 = [−2, 2]7. The function was scaled with a factor

1/300, and uniform noise in [0, 10−6] was added to every function

evaluation. This problem is of the same scale as the problem of

gradient boosting hyperparameter tuning [4, Sec. 4(a)].

1
Details available at https://www.sfu.ca/~ssurjano/optimization.html

Figure 2 shows the results of 100 iterations averaged over 100

runs. Surprisingly, BO has the best performance, though it is much

slower than MVRSM. This method is typically used on continuous

problems andwidely assumed to be inadequate for discrete ormixed

problems. Here, we have experimentally shown that this is a false

assumption. MVRSM and CoCaBO get similar results as BO on this

problem, with MVRSM being the most efficient.

MiVaBO synthetic function. We also compare with one of the ran-

domly generated synthetic test functions from [4, Appendix C.1,

Gaussian weights variant] . This problem has 16 variables of which

8 integer and 8 continuous. No bounds were reported so we set them

to𝑋𝑑 = {0, 1, 2, 3}8 for the integer variables and𝑋𝑐 = [0, 3]8 for the
continuous variables. We generated 8 of these random functions

and ran all algorithms 16 times on each of them for 100 iterations.

Figure 3 shows the average over all 128 runs. Again, the stan-

dard BO algorithm performs best, which is a result that was not

concluded in [4]. However, as will be seen in the remainder of this

appendix and as is often mentioned in literature, when the number

of variables becomes larger than 20, the performance of BO quickly

deteriorates.

Cvxnonsep_psig20 synthetic function. We also investigated a pub-

licly available mixed-variable benchmark function, namely cvxnon-

sep_psig20 from the MINLP library
2
. This problem contains 10

integer and 10 continuous variables.

Figure 4 shows the distance to the known global optimum, aver-

aged over 7 runs with 1000 iterations each. Not only does MVRSM

get closest to the global optimum, it does so in a much faster time

than the other surrogate-based methods. BO is the second-best in

terms of accuracy, but has a significantly larger computation time.

Cvxnonsep_psig30 synthetic function. This problem is similar to

the previous example, but contains 15 integer and 15 continuous

variables
3
. Again, MVRSM outperforms the other methods, while

BO’s performance is further decreased.

Rosenbrock238 synthetic function. We scaled the Rosenbrock func-

tion up to a dimension of 239, with the first 119 variables adapted to

integers in 𝑋𝑑 = {−2,−1, 0, 1, 2}119, and 119 continuous variables

limited to 𝑋𝑐 = [−2, 2]119. The function was scaled with a factor

1/50000. This problem is of the same scale as the problem of feed-

forward classification model hyperparameter tuning [1], except

that the ratio between continuous and integer variables is chosen

to be 1 : 1. Uniform noise in [0, 10−6] was added to each function

evaluation.

Figure 6 shows the average over 7 runs with 2000 iterations each.

The BO and CoCaBO methods were not tried due to their prohib-

itively large computation time. MVRSM performs especially well

on this application, possibly due to the structure of this synthetic

benchmark: it contains many interactions between subsequent vari-

ables, just like the discrete basis function of MVRSM’s surrogate

model.

2
https://www.minlplib.org/cvxnonsep_psig20.html

3
https://www.minlplib.org/cvxnonsep_psig30.html

https://www.sfu.ca/~ssurjano/optimization.html
https://www.minlplib.org/cvxnonsep_psig20.html
https://www.minlplib.org/cvxnonsep_psig30.html
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Figure 1: Results on the func3C [5, Sec. 5.1] benchmark (3 categorical, 2 continuous), averaged over 100 runs. The compared
methods are random search (RS), HyperOpt (HO), SMAC, Bayesian optimisation (BO), CoCaBO and MVRSM.
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Figure 2: Results on the Rosenbrock10 benchmark (3 integer, 7 continuous), averaged over 100 runs. This problem is of a
similar scale as gradient boosting hyperparameter tuning [4, Sec. 4(a)].
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Figure 3: Results on 8 randomly generated MiVaBO synthetic benchmarks [4, Appendix C.1, Gaussian weights variant] (8
integer, 8 continuous), averaged over 16 runs and over the 8 different benchmarks.
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Figure 4: Results on the cvxnonsep_psig20 benchmark (10 integer, 10 continuous), averaged over 7 runs. The distance to the
known global optimum is shown on a logarithmic scale.
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Figure 5: Results on the cvxnonsep_psig30 benchmark (15 integer, 15 continuous), averaged over 7 runs. The distance to the
known global optimum is shown on a logarithmic scale.
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Figure 6: Results on the Rosenbrock238 benchmark (119 integer, 119 continuous), averaged over 7 runs. BO and CoCaBO
were not evaluated for this benchmark due to the large computation time. This problem is of a similar scale as feed-forward
classification model hyperparameter tuning [1].
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