
Evolutionary Reinforcement Learning for Sparse Rewards
Anonymous

ACM Reference Format:
Anonymous. 2021. Evolutionary Reinforcement Learning for Sparse Re-
wards. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence 2021 (GECCO ’21). ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 EXPERIMENTAL ENVIRONMENT
The environment used for the experiments is the 2D map in the
Fig 1, where the agent is represented by the capital letter A, the
interactive objects within the environments are given as lower case
letter a, b, c, d, e, f, g, h, and the X represents the border of the map.
This map is shown is Fig. 1.

1.1 Action and Observation space
Each agent has a set of actions comprised of all the possible move-
ments within the world A = {Up, Down, Left, Right, Wait}. The illegal
action (i.e. move to the outside of the world) will be interpreted as
wait.

The state space is a discrete grid, where the feature vector is
given as the manhattan distance between the agent and each object
on the map. That is, given an environment with 𝑘 objects, we will
have a state vector of length 𝑘 with each element of it as a distance
measurement between one object𝑦 and the agent𝐴. Mathematically
this distance is given as 𝐷 (𝐴,𝑦) = ∑𝑛−1

𝑖=0 |𝐴𝑖 − 𝑦𝑖 |, where 𝐴 and 𝑦
here are the position vector (e.g., x and y in Cartesian coordinates)
of the agent and the object respectively.

2 SPECIFICATIONS
The experiments consist of 2 set of different specification types:
sequential [1] and interleaving [23]. The former requires the agent
to perform the tasks in a specific order while the second has a more
flexible order. The original sets are proposed in [1, 23], which are
comprised of ten specifications of different length for each cate-
gory. Here, we include 8 additional specifications for the sequential
specifications, and the interleaving specifications remain the same.

The atomic events or properties that the agent can trigger in
the environment are described by set 𝑃 = {𝑔𝑜𝑡_𝑤𝑜𝑜𝑑,𝑔𝑜𝑡_𝑔𝑟𝑎𝑠𝑠,
𝑢𝑠𝑒𝑑_𝑓 𝑎𝑐𝑡𝑜𝑟𝑦,𝑢𝑠𝑒𝑑_𝑡𝑜𝑜𝑙𝑠ℎ𝑒𝑑, 𝑔𝑜𝑡_𝑖𝑟𝑜𝑛,𝑢𝑠𝑒𝑑_𝑤𝑜𝑟𝑘𝑏𝑒𝑛𝑐ℎ,𝑢𝑠𝑒𝑑_𝑎𝑥𝑒
𝑢𝑠𝑒𝑑_𝑏𝑟𝑖𝑑𝑔𝑒}. On top of these, we build specifications in co-safe
LTL. We define different goals for the agent based on the tasks to
perform, where each task is associate with one event. For instance,
the following formula intuitively specifies the construction of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Environment map for the experiment

lever in co-safe LTL with sequential specification:

𝜑𝑙𝑒𝑣𝑒𝑟 = ♦(𝑔𝑜𝑡_𝑤𝑜𝑜𝑑 ∧ (♦(𝑔𝑜𝑡_𝑖𝑟𝑜𝑛 ∧ ♦𝑢𝑠𝑒𝑑_𝑓 𝑎𝑐𝑡𝑜𝑟𝑦)))

Some specifications can be also specified in an interleaving man-
ner. For instance, in formula 𝜑𝑙𝑒𝑣𝑒𝑟 the order of collecting wood
and iron is fixed, but this order can be relaxed to first collecting
either wood or iron:

𝜑𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = ♦(𝑔𝑜𝑡_𝑤𝑜𝑜𝑑) ∧ ♦(𝑔𝑜𝑡_𝑖𝑟𝑜𝑛)

Informally, we say that formula 𝜑𝑙𝑒𝑣𝑒𝑟 has length 3, because
it involves three different tasks, at three different steps. The full
specifications set can be ranged from length two to seven. For each
specification, we train one network except for LPOPL where each
task in the specification requires one network and the final specifi-
cation is solved jointly by the equivalent amount of networks as the
length of the specification. The full details of these specifications
are included in the supplementary material (Sec. 2).

2.1 Sequential specifications
The original set of sequential specifications [1] is comprised by
four specifications of length two (which involve two tasks), one
specification of length three, four specifications of length four and
one specification of length five.

The specification are given in the format of 𝜑 = ♦(𝑎 ∧ (♦𝑏)),
for the simplicity we will list it as 𝑎𝑏. Following by the same logic,
the inital set is: {ab, ac, de, db, fae, abdc, acfb, acfc, faeg, acfbh}. We
include also the set: {acf, defe, fcac, dbca, aefe, acfba, acfca, fbacb}.

2.2 Interleaving specifications
In this setting, we use the interleaving specifications proposed
in [23]. The whole set is comprised by four specifications of length

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

GECCO ’21, July 10–14, 2021, Lille, France Trovato and Tobin, et al.

two, two specifications of length four, two specifications of length
five, one specification of length six, and one specification of seven.

The specification is given in the format of 𝜑 = ♦𝑎𝑏 ∧ ♦𝑏𝑐 , where
the order of performing 𝑎𝑏 and 𝑏𝑐 is not a requirement but rather
flexible. As for the previous case, wewill list it as𝑎𝑏-𝑏𝑐 for simplicity.
Following by the same logic, this set is made of: {ab, ac, de, db, ae-fe,
dc-abc, fb-acb, fc-ac, fbh-acbh, aeg-feg}.

3 HYPER-PARAMETER SETTING
While LPOPL uses one network per task within the specification, all
the other approaches use one network per specification. The imple-
mentation of A2C uses the independent actor and critic networks
with 3 layers and 128 neurons for each network. The hidden layers
have ReLU activation, and we use softmax for the actor-network
and ReLU for the critic. We use an entropy term of 0.01 and a learn-
ing rate of 0.0005. The setting of LPOPL is the same as proposed
in [23], but the reward is given to all the networks only at the end.
As mentioned in the main text, this reward system reduces the
performance, but in practice, this method has lesser restrictions for
real-world application, i.e., we do not need online access a global
oracle. The pure genetic algorithm has the same setting as the EA
part of GEATL which is specified in the Sec. 3 of the main text. For
ERL [12], we use the new discrete action version released by the
authors as the original version is only available for the continuous
action space. All the setting remain the same as proposed by the
author except the number of populations and the size of the batch
are reduced to 10 and 64 respectively. In GEATL, the gradient-based
learner uses the same setting as the standard A2C [?], and at each
generation, we train it using 104 steps. For all the EA-approaches,
we use a population of 10 individuals.

For the specifications that use 300 episodic steps during training,
we train the A2C for 106 steps in total, while for the ones that use
500 episodic steps, we use 108 steps. Same apply for the LPOPL. For
the EA-based approaches, we use instead number of evolutions to
better measure the performance as we discussed in the main text.
For the sequential setting that uses 300 training episodic steps, we
use 500 evolutions, while for the case of 500 training episodic steps,
we use 1000 evolutions. For interleaving set, that we remain 500
evolutions for both 300 and 500 episodic cases.

4 EXPERIMENTAL RESULTS
This section shows the performance of GEATL during the training
phase. In the main document, we show the final result in terms of
median and its corresponding IQR for each group of specifications
(where the same group members have the same length of specifi-
cations). Here, we show the test score using the median, the 25th
percentile and the 75th percentile for each group. These results are
obtained after every generation of training.

4.0.1 Sequential specifications. Under this category, we show the
results of 4 different groups: specifications of length two (Fig. 2),
length three (Fig. 3), length four (Fig. 4) and length five (Fig. 5).

From the graphs, we can observe that the specifications with
a lesser number of tasks in involved have a smaller interquartile
range. This is mainly caused by the fact that the specifications are
easier to solve and the optimal average results (episodic reward) for

Figure 2: Episodic reward for the EA-based population for
sequential specifications of length 2.

Figure 3: Episodic reward for the EA-based population for
sequential specifications of length 3.

Figure 4: Episodic reward for the EA-based population for
sequential specifications of length 4.

the specifications of the same group are often similar which give a
smaller interquartile range value.

4.0.2 Interleaving specifications. Under this category, we show the
results of 5 different groups: specifications of length two (Fig. 6),

Evolutionary Reinforcement Learning for Sparse Rewards GECCO ’21, July 10–14, 2021, Lille, France

Figure 5: Episodic reward for the EA-based population for
sequential specifications of length 5.

length four (Fig. 7), length five (Fig. 8),length six (Fig. 9) and length
seven (Fig. 10). As we are not imposing a strict order to performing
the tasks within the specification, we can observe that the agent
can solver specifications of longer length. As we are giving a lesser
number of generation for harder setting (i.e. 500 episodic steps for
training and 300 training step for testing), the convergence to the
optimal results is slower and the interquartile range is wider than
other groups.

Figure 6: Episodic reward for the EA-based population for
interleaving specifications of length 2.

Figure 7: Episodic reward for the EA-based population for
interleaving specifications of length 4.

Figure 8: Episodic reward for the EA-based population for
interleaving specifications of length 5.

Figure 9: Episodic reward for the EA-based population for
interleaving specifications of length 6.

Figure 10: Episodic reward for the EA-based population for
interleaving specifications of length 7.

GECCO ’21, July 10–14, 2021, Lille, France Trovato and Tobin, et al.

REFERENCES
[1] Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular multitask rein-

forcement learning with policy sketches. In International Conference on Machine
Learning. 166–175.

[2] Thomas Back. 1996. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford university press.

[3] Thomas Bäck and Hans-Paul Schwefel. 1993. An overview of evolutionary
algorithms for parameter optimization. Evolutionary computation 1, 1 (1993),
1–23.

[4] Alberto Camacho, Oscar Chen, Scott Sanner, and Sheila A McIlraith. 2017. Non-
markovian rewards expressed in LTL: guiding search via reward shaping. In
Tenth Annual Symposium on Combinatorial Search.

[5] Alberto Camacho, R Toro Icarte, Toryn Q Klassen, Richard Valenzano, and
Sheila A McIlraith. 2019. LTL and beyond: Formal languages for reward function
specification in reinforcement learning. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI). 6065–6073.

[6] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. 2019. Foun-
dations for restraining bolts: Reinforcement learning with LTLf/LDLf restraining
specifications. In Proceedings of the International Conference on Automated Plan-
ning and Scheduling, Vol. 29. 128–136.

[7] Giuseppe De Giacomo and Moshe Y Vardi. 2013. Linear temporal logic and linear
dynamic logic on finite traces. In Twenty-Third International Joint Conference on
Artificial Intelligence.

[8] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
2019. Go-explore: a new approach for hard-exploration problems. arXiv preprint
arXiv:1901.10995 (2019).

[9] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. 2018.
Using reward machines for high-level task specification and decomposition in
reinforcement learning. In International Conference on Machine Learning. PMLR,
2107–2116.

[10] Sham Kakade and John Langford. 2002. Approximately optimal approximate
reinforcement learning. In ICML, Vol. 2. 267–274.

[11] Thomas Keller and Patrick Eyerich. 2012. PROST: Probabilistic Planning Based
on UCT.. In ICAPS. 119–127.

[12] Shauharda Khadka and Kagan Tumer. 2018. Evolution-guided policy gradient in
reinforcement learning. In Advances in Neural Information Processing Systems.

1188–1200.
[13] Orna Kupferman and Moshe Y Vardi. 2001. Model checking of safety properties.

Formal Methods in System Design 19, 3 (2001), 291–314.
[14] Borja G León and Francesco Belardinelli. 2020. Extended Markov Games to

Learn Multiple Tasks in Multi-Agent Reinforcement Learning. arXiv preprint
arXiv:2002.06000 (2020).

[15] Xiao Li, Cristian-Ioan Vasile, and Calin Belta. 2017. Reinforcement learning with
temporal logic rewards. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 3834–3839.

[16] Brad L Miller, David E Goldberg, et al. 1995. Genetic algorithms, tournament
selection, and the effects of noise. Complex systems 9, 3 (1995), 193–212.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[18] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, 46–57.

[19] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[20] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[21] Felipe Petroski Such, VashishtMadhavan, Edoardo Conti, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. 2017. Deep neuroevolution: Genetic algorithms are a
competitive alternative for training deep neural networks for reinforcement
learning. arXiv preprint arXiv:1712.06567 (2017).

[22] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[23] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith.
2018. Teaching multiple tasks to an RL agent using LTL. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 452–
461.

[24] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575, 7782 (2019), 350–354.

	1 Experimental environment
	1.1 Action and Observation space

	2 Specifications
	2.1 Sequential specifications
	2.2 Interleaving specifications

	3 Hyper-parameter setting
	4 Experimental results
	References

