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ABSTRACT
In this study, we investigated visualization of search behavior in
single-objective optimization function, where the objective func-
tion is composed of distinct components, either explicitly (as terms
in the objective function or as components of a hybrid function) or
implicitly (as constraints). We proposed a visualization method for
constrained single-objective optimization in which the constraint
violations and the term-by-term values of the polynomial objective
function are separately calculated by RadViz and plotted in 3D. The
proposed method is superior to the two-dimensional RadViz visu-
alization in that it shows the time points of decrease of the fitness
and constraint violations in the benchmark problem and can dis-
play them separately. Similarly, for the hybrid function, which is
a benchmark problem consisting of multiple terms with different
forms of objective subfunctions, the difference in the timing of the
decrease in fitness for each term is visualized by RadViz.

CCS CONCEPTS
•Human-centered computing→ Visualization techniques; •
Theory of computation→ Evolutionary algorithms; • Comput-
ing methodologies → Continuous space search.
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1 INTRODUCTION
Understanding the behavior of optimization algorithms in real-
world optimization problems with many constraints and complex
evaluation functions is important but difficult, and various visual-
izationmethods have been proposed. For example, [16] uses heatmaps
to visualize the exploration of real-world problems. In particular,
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there are several studies on visualization of solution sets in multi-
objective optimization, as described in the next section. However,
previous work on search visualization has not focused on the com-
ponents of the objective function. We propose a method for vi-
sualizing constraint violations and fitnesses simultaneously, and
present the results of visualizing the transition of the values of the
fitness function components for each term during the search on the
CEC2020 Real-World Single Objective Constrained Optimization
(CEC20RWSO) [14] Real-World benchmark problems. The proposed
method is able to visualize the decrease of the fitness during the
search of reducing the amount of constraint violation.

We also applied the visualization method to hybrid functions,
which have similarities with the Real-World problem in that the
fitness is based on the sum of several terms of different forms of
objective subfunctions. Hybrid functions are a special setting in
which there are no dependencies between the component func-
tions, but the study of the behavior of search algorithms in this
problem is very limited. We used RadViz to visualized the balance
of the decrease in the three to six different component function
values that make up the hybrid functions. This revealed that in
the problem of CEC2017 Competition on Single Objective Bound
Constrained Real-Parameter Numerical Optimization [1], the com-
ponent function such as Bent Cigar func is solved first.

2 PREVIOUS WORK
The visualization of solutions in multi-objective optimization has
been studied by projecting the Pareto front into two dimensions,
such as [9, 21]. [21] shows a sorted heatmap and visualization. Rad-
Viz [11] is a multidimensional visualization method, where each
dimension is equally spaced on the circumference of a circle, and
points are plotted inside the circle. The closer a point is to the point
that represents a particular dimension of the circumference, the
larger the value of that dimension is compared to the other di-
mensions, and conversely, when the values of each dimension are
almost equal, the point is plotted near the center of the circle. In ad-
dition, Walker et al. [20, 22], visualized the search process to com-
pare the characteristics of the problem, the differences between
algorithms, and the effects of parameter settings. In the visualiza-
tion of the population, visualization that connects the search space
and the objective space is being worked on.[12, 21]
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3 VIZUALIZATION OF SEARCH BEHAVIOR
ON THE CEC2020 REAL-WORLD
BENCHMARKS

The CEC2020 Real-World Single Objective Constrained Optimiza-
tion (CEC20RWSO), is a set of single-objective optimization bench-
mark problemswhich includesmany kinds of real-world problems,
including industrial chemical processes and process synthesis, de-
sign problems andmechanical engineering problems. Inmulti-objective
optimization, individual fitnesses are recorded and Pareto fronts
are often drawn, but in single-objective optimization, the fitnesses
of each component of the objective function are rarely recorded
and visualized. In this study, we analyze the fitness of each term
explored by a single-objective optimization algorithm, and propose
a method for visualizing the search process in constrained single-
objective optimization.

3.1 Experimental Setup
In the original CEC20RWSO benchmark code, each component of
the objective function is added to a single fitness value, and only
the summed value is returned. To analyze the behavior of each
component, we instrumented the code for functions F1 to F33 and
expanded them into multiple terms to the extent possible, except
for F4, F22, F24, F27, F28, and F31, whose expressions could not
be divided into terms, and the values of all terms were recorded
each time the best member in the population is updated. Details
are given in Appendix. This instrumentation does not affect the
behavior of the search algorithm on any of these functions.

COLSHADE[7]and sCMAgES[10], which came in second and
third place, respectively, in the CEC20RWSO competition, were
used in the experiments. COLSHADE is a variant of LSHADE[18]
for constrained optimization, an algorithm that prioritizes the com-
parison of constraint violations over fitness in individual selection
based on the constraints handlingmethod [5]. sCMAgES is a CMA-
ES based algorithm that performs gradient-based repair method
[3]. The parameters are based on the original settings and the max-
imumnumber of evaluations is based on the competition rules. The
source codeswere downloaded fromhttps://github.com/P-N-Suganthan.

3.2 Standard Visualization Approach
The standard approach for visualization search algorithms is a per-
formance plot such as Figure 1: for each term yi in the additive fit-
ness function y = y0 + y1, ..., plot x-axis: numevaluations, y-axis:
normalized value of yi , 1 line per term. First, we look at the results
of COLSHADE. Since there are some problems in Fig. 1, such as
F12, F15, F18 and F23, where the plots are crowded and difficult
to read, we have also included both logarithmic plots in Fig. 2. F8
and F10 were decomposed into two terms, but they were excluded
because one of their terms did not show any variation during the
search. Each point represents an update of the best value in the
population.

The results of sCMAgES are also shown in Figure 3. In Fig-
ure 4, only the y-axis is on a logarithmic scale. sCMAgES has fre-
quent restarts, unlike COLSHADE, so instead of showing a point
each time the best value of the population is updated, we show a
point for the best member for each generation, resulting in a more
crowded plot than the COLSHADE plots.

Figure 1: Visualization of the evolution of the component func-
tion values obtained from the COLSHADE search using the stan-
dard method of showing a time series on the horizontal axis and a
normalized fitness on the vertical axis.

Figure 2: Figure 1 as a both-logarithmic plot.

3.3 Using RadViz to Visualize the Transition of
Component Function fitnesses

Figure 5 and Figure 6 are RadViz plots of same runs as in Figures
1-3. Each point on the circumference represents a component func-
tion value, and the color indicates the time series. The color is blue
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Figure 3: Visualization of the evolution of the component func-
tion values obtained from the sCMAgES search using the standard
method of showing a time series on the horizontal axis and a nor-
malized fitness on the vertical axis.

Figure 4: Logarithmic plot of the y-axis of Figure 3.

at the beginning of the search and becomes red as the search pro-
gresses. The RadViz coordinates were calculated using the Python
library Pandas.plotting.radviz.

Figure 5:Visualization of the samedata as in Figure 1 usingRadViz.

Figure 6:Visualization of the samedata as in Figure 3 usingRadViz.

Looking at Figure 5, RadViz only has information about the rel-
ative size of each term, but it shows the changes that occurred dur-
ing the search in a clear way. The plot of F3 in the figure is a broken
line, and we can see that it corresponds to the trade-off between
f3 and f5 and the increase/decrease of f2 shown in Figure 1. F5 is
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hard to see in the performance plot because of the many colors,
but upon close inspsection, it can be seen that fitness decreases
leaving f2 and f5, then f5, followed by f2, and finally f6 increases.;
RadViz simply shows the plot moving towards f2 and then back
towards f6. F9 in RadViz figure shows the plot moving from f2 to
f3, which is also easy to see from the performance plot. Similarly,
the plot ends at a particular term in F11, F12, F13, and F32, which
can also be seen from the performance plot. In F15 and F29, RadViz
shows that the plot is directed to the middle of two terms, but in
the performance plot of F15, the lines overlap and those colors are
difficult to distinguish. The RadViz figure for F16 is the most dis-
tinctive, with the plot going from f12 to f9 and then reaching f12.
The 2 shows that the green and red lines are floating, but it is dif-
ficult to read the 15-color plot accurately. In general, although the
information available from RadViz is limited, it can be said that the
variation in the timing of the changes in the fitness of each term
is concisely expressed without distinguishing each term by color.

Next, we show the results of CMAgES. The RadViz plot in Figure
6 shows the time series in gray instead of a color map because of
the restart. Also, the plots are more widely distributed than COL-
SHADE, partly due to the large number of points plotted. From
the figure, it can be seen that the restart resulted in several clus-
ters that are slightly different. For example, four lines are visible
near the center of F9 in the figure. There are also a few lines near
the center of F3 and F11, although they are slightly obscured. These
are different from the lines linked to the search phase as seen in
Figure 5. Figure 3 gives a more detailed fitness history, but the Rad-
Viz plot is clearer for F3, F9, and F29, where a few lines can be seen
in the figure.

3.4 Visualization of Constraint Violation and
Component Function Value Trends

To our knowledge, there has been no previous work in visualizing
constraint violations during search by an evolutionary optimiza-
tion algorithm. As ameasure of constraint violation, the CEC20RWSO
Competition uses the feasibility rate, which is the fraction of runs
in which at least one feasible solution is attained. The reasons why
it is difficult to simultaneously visualize the amount of constraint
violation and the fitness is that the amount of constraint viola-
tion becomes zero when a feasible solution is obtained, and the
number of constraint equations and the number of objective func-
tions add up to an overcrowded circumference, which hinders in-
terpretation. A figure of constraint violations and objective func-
tions arranged on a single circumference is shown in 7. The la-
bel f in the figure stands for fitness, g for inequality constraints,
and h for equality constraints. The inclusion of the constraint vi-
olation amount, which approaches zero faster than fitness, makes
Figure F7 more visible than Figure 5, which visualizes only fitness,
because the points have shifted, but the fact that fitness and con-
straint violation are in the same plane makes it difficult to under-
stand them separately. Also, since the amount of constraint viola-
tion has higher priority than fitness in COLSHADE, these should
be separated to understand the behavior of the algorithm.

Figure 7:RadViz plot of constraint violations and component func-
tion values on the circumference. The color gradient indicates the
time series.

3.5 Proposed Method for Simultaneous
Visualization of Constraint Violations and
Objective Function Values

We propose a method to visualize constraint violations and objec-
tive functions by distinguishing them on different axes, calculating
coordinates by RadViz for each component function value and the
amount constraint violation, and visualizing them in four dimen-
sions: 3D space and color. The radian of the polar coordinates of
the constraint violation expressed in RadViz is the third dimension.
The radii of the polar coordinates correspond to the color map. The
feasible solution with zero constraint violation is shown in gray,
which is not in the color map. Constraints with zero constraint vi-
olation from the beginning of the search are not plotted. As with
fitness, the amount of constraint violation was normalized to the
range of 0 to 1 using the minimum and maximum values during
the search.

3.6 Experimental Results
The results of COLSHADE are shown in Figure 8; the problems
from F1 to F33 for which feasible solutions were obtained from the
beginning of the search are not shown. The figure shows a compact
visualization of how constraint violations are resolved and compo-
nent function values are optimized as the search proceeds. For F1,
the plot is located in the plane because the objective function is
decomposed into two terms. The plots are widely distributed, and
we can see that some of them are in the red color, i.e., in an ar-
rangement that is close to the circumference when the amount of
constraint violation is expressed in RadViz. For F2, unlike F1, the
plot is concentrated on f2, which indicates that f1 and f3 were re-
duced first, and the color of the plot indicates that there was a stage
where the first half of the nine constraint equations remained in
violation of the constraints. From the plot of F6, we can read that f1
becomes smaller faster than f2 before the constraint violation be-
comes zero, and the remaining constraint violation is in the process
of being solved in the next stage. For F7, we can see from the color
of the plot that some constraint violations remain toward the end
of the search. This is not readily apparent from Fig. 7, indicating the
superiority of the proposed method. From some of the problems in
the figure, we can also read the transition of fitness after a feasible
solution is obtained. For F3, there was no bias in the decrease of
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Figure 8: Visualization of constraint violations and compo-
nent function values obtained by COLSHADE using the proposed
method. The coordinate axes represent the RadViz coordinates of
the component function values and the radians of the RadViz rep-
resentation of the amount of constraint violations. The colors cor-
respond to the radii from 0 to 1, with red points having larger values
and blue points having smaller values. Feasible solutions are shown
in gray. The earliest and last points in the plot are marked with a
cross and a star, respectively. Note that in some of the figures, the
labels of constraint equations that were overcrowded were omitted
due to paper limitations.

fitness until some constraint equations were solved late, but after
the feasible solution was obtained, we can see that the fitness de-
creased first except for f5. Similarly for F5, there is no significant
change in the RadViz coordinates of fitness until the constraints
are satisfied. On the other hand, in F16, after the constraint was
satisfied, the coordinates of fitness moved from f11 and f9 to f14.
We can see that g7 was the last remaining constraint violation.
Thus, the proposed method allows us to understand which con-
straint violations remain separately from the fitness, while show-
ing the readable timing of the decrease in individual fitness and the
decrease in the amount of constraint violations. However, there is a

Figure 9: Visualization of constraint violations and component
function values obtained by sCMAgES using the proposed method.
The coordinate axes represent the RadViz coordinates of the com-
ponent function values and the radians of the RadViz representa-
tion of the amount of constraint violations. The colors correspond
to the radii from 0 to 1, with red points having larger values and
blue points having smaller values. Feasible solutions are shown in
gray. The earliest and last points in the plot aremarked with a cross
and a star, respectively. Note that in some of the figures, the labels
of constraint equations that were overcrowded were omitted due to
paper limitations.

drawback: by using RadViz radians as the axes of the 3D plot, the
constraint equations that used to be next to each other are now
separated at both ends of the diagram. This is a point that requires
attention when interpreting the figure, and we would like to im-
prove this point by rearranging the constraint equations.

The results of sCMAgES are also shown in Figure 9. In F11, there
was a shift of the plot from f1 to f5 in COLSHADE, and the plot is
distributed from f1 to the center in sCMAgES as well. The clusters
due to restarts seen in RadViz can be seenmore clearly in the figure
with the added dimension of the constraint equation. In F18, we
can see from this figure that three stages are connected: the stage
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where constraint g2 is violated and f4 remains, the stage where
constraint g1 and f2 remain, and the stage where constraint g1 and
f4 remain, which successfully visualizes the relationship between
constraint violation resolution and fitness reduction. Similarly, in
F30, the diagram suggests that there is a relationship between g8
and f1, and g5 and f2. In addition, overall, there are more plots
that are spread out in the gh-theta axis in sCMAgES compared to
COLSHADE. The continuous plots in the gh-theta direction seen
in F12, F16, F17, F18, F19, and F30 represent the movement of plots
such as g1 to g2 in F17 and g1 to g2 in F18 in the RadViz plot of the
amount of constraint violation.

4 BEHAVIOR OF SEARCH IN HYBRID
FUNCTIONS

The hybrid function is an objective function that consists of multi-
ple terms with different shapes similar to the Real-World problems
we have seen so far. In this section, we tackle the visualization of
the search process in which a particular component function value
decreases first, which we also focused on in the previous section
in the optimization of hybrid functions.

A hybrid function is a composite function created by dividing
the problem dimension into multiple sets and assigning a different
objective function to each set. Since each set is assigned variables
in a specified ratio and a rotation matrix is applied to the group
of variables, all the component functions have the property of be-
ing non-separable. However, since there is no dependency between
the objective functions, the hybrid function is partialy separable.
Partial separability is a property that is also present in real prob-
lems, [15], and algorithms have been proposed for this problem
property. [2, 6] In addition, [19], which studied the behavior of
parameter adaptation when an adaptive DE searches for a two-
component hybrid function, experiments showed that, depending
on the proportion of variables assigned to each set, the adaptation
of parameters to one component function at the expense of the
other can lead to failure of search in some cases.

4.1 Visualization of fitness trends using RadViz
The experiments were conducted on four algorithms: EBOwith-
CMAR [13], the first-place algorithm in the Competition on Sin-
gle Objective Bound Constrained Real-Parameter Numerical Opti-
mization [4], and the top three algorithms in the following year’s
competition using the same problem, HS-ES [23] (1st), LSHADE-
RSP [17] (2nd), and ELSHADE-SPACMA [8] (3rd). The source codes
were downloaded fromhttps://github.com/P-N-Suganthan. The ex-
perimental setup was 48 trials each with a maximum number of
evaluations of dimensionality D × 10000.

First, the fitnesses of component function at the end of the search
in 30 dimensions is shown in the histogram 10. The histogram val-
ues for each component function were calculated by subtracting
the average value of the best algorithm from the average value
of each algorithm. The same color was used for identical compo-
nent functions in the drawing. According to the figures, there is no
difference among the algorithms for some of the component func-
tions, suggesting that they are solved early in the search. On the
other hand, Schwefel’s func occupies a large proportion of the F12,

F16, F17, and F20 figures, and is still in the process of minimization
at the end of the search.

We also used RadViz to visualize how the elements of fitness
are solved in order. The value to be displayed is calculated as the
degree to which the ratio of individual component function values
to the total fitness deviates from 1/N (where N is the number of
components). This indicator is eachf itness

sumof f itnesses −
1
N and is the same

as the formula for the mean error.
The results are shown in Figure 11. Each point is an output with

a timing of (0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0)×MaxEFEs to be listed in the CEC18 Competition submission
file. The figure shows that the plot moves to visit some functions
on the circumference. There is a light blue plot near the Bent Cigar
func and Elliptic func on the circumference, and the plot moves
away from them. This indicates that these two functions will be
solved first. In F11, F14, F15, F19, and F20, the plot visits the Rastri-
gin func approximately second. On the other hand, there is no plot
near Ackley’s func in F14, F17, and F20 of the figure. Only for F18,
the plot ends between Ackley’s func and Rastrigin’s func, which
means that it may vary depending on the combination of the con-
stituent functions. Schwefel’s func is visited last in F12, second in
F16 and F17, and first in F20. One of the reasonswhy common func-
tions are solved first in multiple problems is that the component
functions are added together withweight 1. Therefore, for F14, F18,
and F20, we tested multiplying one of the component functions by
a weight. In the experiment, we multiplied the fitness of Schaf-
fer’s func by 1000 for F14, by 1/10 for Ackley’s func for F18, and
by 1/10 for Modified Schwefel’s func for F20. The results after the
modification are shown in Figure 12. Comparing the results before
and after the modification, we can see that there is a change in the
component functions whose weights were adjusted, as well as a
relative change in the other component functions.

In this section, we visualize the search in the hybrid function,
whose behavior has not been analyzed in detail so far, focusing on
each fitness, and show that the emphasis of the search changes de-
pending on the weights applied to the components. We also found
that the same component function is solved first across multiple
problems in the CEC benchmark problem with weights fixed to 1.

5 CONCLUSION
In this study, we investigated visualization of search behavior in
single-objective optimization function, where the objective func-
tion is composed of distinct components, either explicitly (as terms
in the objective function or as components of a hybrid function) or
implicitly (as constraints). We proposed a visualization method for
constrained single-objective optimization in which the constraint
violations and the term-by-term values of the polynomial objective
function are separately calculated by RadViz and plotted in 3D. The
proposed method is superior to the two-dimensional RadViz visu-
alization in that it shows the time points of decrease of the fitness
and constraint violations in the benchmark problem and can dis-
play them separately. Similarly, for the hybrid function, which is
a benchmark problem consisting of multiple terms with different
forms of objective subfunctions, the difference in the timing of the
decrease in fitness for each term is visualized by RadViz. By do-
ing so, we clarified the trend seen in the hybrid function problem
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Figure 10: Stacked histograms of fitness by component function at the end of the search for the hybrid function in 30 dimensions. Bars are
from left to right: HS-ES, EBOwithCMAR, LSHADE-RSP, ELSHADE-SPACMA. The fitness per component function is the average value per
algorithm minus the average value of the best algorithm.

Figure 11: Ratio of component function values in 50 dimensions. The color gradient indicates the time series.

Figure 12: Ratio of component function values in 50 dimensions.
The color gradient indicates the time series. The data before the
modification of fitness is shown in gray for comparison.

of the CEC2017 Competition. In future research, we would like to
improve the proposed method, such as considering an appropriate

ordering of constraints, and apply it to multi-objective optimiza-
tion.
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A MODIFIED CEC2020 RW PROBLEMS
OBJECTIVE FUNCTION

F1 f1 = 35 × x 0.6
1 , f2 = 35 × x 0.6

2
F2 f1 = ( x1

120×x4
)0.6, f2 = ( x2

80×x5
)0.6, f3 = ( x3

40×x6
)0.6

F3 f1 = −1.715 × x1, f2 = −0.035 × x1 × x6,
f3 = −4.0565 × x3, f4 = −10 × x2, f5 = 0.063 × x3 × x5,

F5 f1 = −9 × x1, f2 = −15 × x2, f3 = 6 × x3,
f4 = 16 × x4, f5 = 10 × x5, f6 = 10 × x6

F6 f1 = 0.9979 + 0.00432 × x5, f2 = 0.01517 × x13
F7 f1 = c1,1 + c2,1 × x5, f2 = c3,1 × x24 × x5,

f3 = c4,1 × x28 × x5, f4 = c5,1 × x33 × x5,
f5 = c6,1 × x34 × x5, f6 = c1,2 + c2,2 × x13,
f7 = c3,2 × x26 × x13, f8 = c4,2 × x31 × x13,
f9 = c5,2 × x38 × x13, f10 = c6,2 × x39 × x13

F9 f1 = −x3, f2 = 2 × x1, f3 = x2
F11 f1 = 7.5 × round (x5), f2 = 5.5 × round (x6),

f3 = 7 × x3, f4 = 6 × x4, f5 = 5 × x7
F12 f1 = (round (x4) − 1)2, f2 = (round (x5) − 1)2,

f3 = (round (x6) − 1)2, f4 = −loд(round (x7) + 1),
f5 = (x1 − 1)22, f6 = (x2 − 2)2, f7 = (x3 − 3)2

F13 f1 = −5.357854 × x 2
1 , f2 = −0.835689 × round (x4) × x3,

f3 = −37.29329 × round (x5) + 40792.141
F14 f1 = alp × round (x1) × round (x4)beta ,

f2 = alp × round (x2) × round (x5)beta ,
f3 = alp × round (x3) × rond (x6)beta

F15 f1 = 0.7854 × x1 × x 2
2 × (3.3333 × x 2

3 ),
f2 = 0.7854 × x1 × x 2

2 × (14.9334 × x3 − 43.0934),
f3 = −1.508 × x1 × (x 2

6 ), f4 = −1.508 × x1 × (x 2
7 ),

f5 = 7.477 × (x 3
6 ), f6 = 7.477 × (x 3

7 ),
f7 = 0.7854 × (x4 × x 2

6 ), f8 = 0.7854 × (x5 × x 2
7 )

F16 f1 = 63098.88 × x2 × x4 × x12, f2 = 5441.5 × x 2
2 × x12,

f3 = 115055.5 × x 1.664
2 × x6, f4 = 6172.27 × x 2

2 × x6,
f5 = 63098.88 × x1 × x3 × x11, f6 = 5441.5 × x 2

1 × x11,
f7 = 115055.5 × x 1.664

1 × x5, f8 = 6172.27 × x 2
1 × x5,

f9 = 140.53 × x1 × x11, f10 = 281.29 × x3 × x11,
f11 = 70.26 × x 2

1 , f12 = 281.29 × x1 × x3, f13 = 281.29 × x 2
3 ,

f14 = 14437 × x 1.8812
8 × x 0.3424

12 × x10 × x−1
14 × x 2

1 × x7 × x−1
9 ,

f15 = 20470.2 × x 2.893
7 × x 0.316

11 × x 2
1

F17 f1 = x 2
1 × x2 × x3, f2 = x 2

1 × x2 × 2
F18 f1 = 0.6224 × x1 × x3 × x4, f2 = 1.7781 × x2 × x 2

3 ,
f3 = 3.1661 × x 2

1 × x4, f4 = 19.84 × x 2
1 × x3

F19 f1 = 1.10471 × x 2
1 × x2, f2 = 0.04811 × x3 × x4 × 14,

f3 = 0.04811 × x3 × x4 × x2
F20 f1 = (2 × sqr t (2) × x1) × 100, f2 = (x2) × 100
F21 f1 = pi × (x 2

2 ) × x3 × (x5 + 1) × rho,
f2 = pi × (−x 2

1 ) × x3 × (x5 + 1) × rho
F23 f1 = rho × (x5 × 1e−3) × pi/4 × (x1 × 1e−3)2 × (1 + (N1/N )2),

f2 = rho × (x5 × 1e−3) × pi/4 × (x2 × 1e−3)2 × (1 + (N2/N )2)
f3 = rho × (x5 × 1e−3) × pi/4 × (x3 × 1e−3)2 × (1 + (N3/N )2)
f4 = rho × (x5 × 1e−3) × pi/4 × (x4 × 1e−3)2 × (1 + (N4/N )2)

F25 f1 = (Q × Po/0.7)/12, f2 = Ef /12
F26 f1 = pi/1000 × b1 × c21 × (Np21 )/(Np1 + Nд1)2

f2 = pi/1000 × b1 × c21 × (Nд21 )/(Np1 + Nд1)2
f3 = pi/1000 × b2 × c22 × (Np22 )/(Np2 + Nд2)2
f4 = pi/1000 × b2 × c22 × (Nд22 )/(Np2 + Nд2)2
f5 = pi/1000 × b3 × c23 × (Np23 )/(Np3 + Nд3)2
f6 = pi/1000 × b3 × c23 × (Nд23 )/(Np3 + Nд3)2
f7 = pi/1000 × b4 × c24 × (Np24 )/(Np4 + Nд4)2
f8 = pi/1000 × b4 × c24 × (Nд24 )/(Np4 + Nд4)2

F29 f1 = 8.61 × 1e5 × x 0.5
1 × x2 × x−2/3

3 × x−1/2
4 , f2 = 3.69 × 1e4 × x3,

f3 = 7.72 × 1e8 × x−1
1 × x (

20.219), f4 = −765.43 × 1e6 × x−1
1

F30 f1 = (pi2 × x2 × round (x3)2 × 2)/4
f2 = (pi2 × x2 × round (x3)2 × round (x1))/4

F32 f1 = 5.3578547 × x 2
3 , f2 = 0.8356891 × x1 × x5,

f3 = 37.293239 × x1 − 40792.141
F33 f(i + ni ∗ (j − 1)) = X (j , i)penal ×U e ′ × KE ×U e


