Supplementary Material

GEORGE DE ATH, University of Exeter, United Kingdom RICHARD M. EVERSON, University of Exeter, United Kingdom JONATHAN E. FIELDSEND, University of Exeter, United Kingdom

ACM Reference Format:

George De Ath, Richard M. Everson, and Jonathan E. Fieldsend. 2021. Fully-Bayesian Bayesian Optimisation: Supplementary Material. In 2021 Genetic and Evolutionary Computation Conference Companion (GECCO '21 Companion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 27 pages. https://doi.org/10.1145/ 3449726.3463164

A INTRODUCTION

In this supplement we include extra results that could not be fit into the main paper due to space constraints. In the following sections, when comparing methods, the best method(s) are determined by whether a method either has the lowest median regret or is statistically indistinguishable from the method with the lowest median regret according to a one-sided, paired Wilcoxon signed-rank test [2] with Holm-bonferroni [1] correction ($p \ge 0.05$).

B INFERENCE SUMMARIES: MAP VS. MCMC

Here we show the inference summary plots with budgets $T \in \{50, 100, 150, 200\}$ function evaluations. Figures 1 and 2 summarise the performance of MAP vs MCMC for each combination of acquisition function and kernel (columns), and test problem (rows).

GECCO '21 Companion, July 10–14, 2021, Lille, France

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8351-6/21/07...\$15.00

https://doi.org/10.1145/3449726.3463164

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(*s*) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

De Ath, Everson, and Fieldsend

Fig. 1. MAP vs. MCMC inference summary after T = 50 (left) and T = 100 (right) function evaluations. The colour of each cell corresponds to whether both inference methods were statistically indistinguishable from one another (white), MAP performed better than MCMC (blue) and MCMC performed better than MAP (red).

Fig. 2. MAP vs. MCMC inference summary after T = 150 (left) and T = 200 (right) function evaluations. The colour of each cell corresponds to whether both inference methods were statistically indistinguishable from one another (white), MAP performed better than MCMC (blue) and MCMC performed better than MAP (red).

C OPTIMISATION SUMMARY FOR DIFFERING LEVELS OF NOISE

Figure 3 summarises the performance of each combination of acquisition function, inference method and kernel type for each of the four noise settings. As can be seen from the plots, as the noise level increases, EI becomes less dominant.

GECCO '21 Companion, July 10-14, 2021, Lille, France

Fig. 3. Optimisation summary for each level of noise. Bar lengths correspond to the number of times each combination of acquisition function, inference method and kernel type was either the best performing or statistically equal to the best performing combination.

D RESULTS TABLES

In this section we show the results tables for each of the experiments. The tables show the median log simple regret as well as the median absolute deviation (MAD) from the median, a robust measure of dispersion. The method with the best (lowest) median regret is shown in dark grey, and those that are statistically indistinguishable from the best method are shown in light grey.

GECCO '21 Companion, July 10-14, 2021, Lille, France

Method	Bran	in (2)	Egghol	der (2)	Goldsteir	Price (2)	SixHump	Camel (2)	Hartma	unn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	1.05×10^{-4}	1.22×10^{-4}	6.51×10^{1}	$4.83 imes 10^1$	$4.27 imes 10^{-1}$	$4.07 imes 10^{-1}$	$3.21 imes 10^{-5}$	$4.00 imes 10^{-5}$	$4.91 imes 10^{-5}$	$4.55 imes 10^{-5}$
MCMC	1.68×10^{-4}	$2.31 imes 10^{-4}$	6.51×10^{1}	1.06×10^1	3.42×10^{-1}	4.31×10^{-1}	$1.30 imes 10^{-4}$	1.50×10^{-4}	8.30×10^{-5}	8.89×10^{-5}
MFVI	6.92×10^{-5}	$8.19 imes 10^{-5}$	6.58×10^{1}	4.98	3.66×10^{-1}	3.84×10^{-1}	7.41×10^{-5}	8.48×10^{-5}	4.23×10^{-5}	3.82×10^{-5}
FRVI	1.74×10^{-4}	$2.20 imes 10^{-4}$	$6.51 imes 10^1$	5.57	$3.78 imes 10^{-1}$	4.51×10^{-1}	$6.75 imes 10^{-5}$	$9.10 imes 10^{-5}$	1.00×10^{-4}	1.17×10^{-4}
Method	Ackle	ey5 (5)	Michale	wicz5 (5)	Styblinski	iTang5 (5)	Hartma	nn6 (6)	Rosenbr	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	1.89	1.51	8.21×10^{-1}	$6.53 imes 10^{-1}$	$5.37 imes 10^{-1}$	$6.21 imes 10^{-1}$	$4.30 imes 10^{-3}$	$5.29 imes 10^{-3}$	2.44×10^2	$1.38 imes 10^2$
MCMC	2.08	$9.03 imes 10^{-1}$	8.31×10^{-1}	$5.64 imes 10^{-1}$	$6.15 imes 10^{-1}$	$7.40 imes 10^{-1}$	4.07×10^{-3}	$5.18 imes 10^{-3}$	2.57×10^{2}	$1.99 imes 10^2$
MFVI	2.68	$5.92 imes 10^{-1}$	1.20	$5.52 imes 10^{-1}$	3.72	4.16	2.24×10^{-3}	2.38×10^{-3}	5.36×10^{2}	3.41×10^2
FRVI	2.71	$5.91 imes 10^{-1}$	1.11	$4.33 imes 10^{-1}$	$6.48 imes 10^{-1}$	$7.13 imes 10^{-1}$	4.98×10^{-3}	$6.67 imes 10^{-3}$	2.54×10^2	$1.74 imes 10^2$
Method	Styblinsk	iTang7 (7)	Ackley	10 (10)	Michalew	ricz10 (10)	Rosenbro	ck10 (10)	Styblinski	Fang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	2.86×10^{1}	$1.29 imes 10^1$	1.24×10^{1}	7.39	5.33	6.25×10^{-1}	8.39×10^2	4.22×10^2	$7.18 imes 10^1$	$2.26 imes 10^1$
MCMC	2.93×10^{1}	$1.79 imes 10^1$	1.40×10^1	5.15	5.26	6.87×10^{-1}	7.52×10^{2}	3.71×10^2	6.62×10^{1}	$2.91 imes 10^1$
MFVI	3.17×10^{1}	$1.27 imes 10^1$	3.11	$5.06 imes 10^{-1}$	4.59	8.53×10^{-1}	2.05×10^{3}	8.47×10^2	7.93×10^{1}	2.70×10^1
FRVI	2.87×10^{1}	$1.76 imes 10^1$	3.51	1.40	4.54	$7.33 imes 10^{-1}$	9.97×10^{2}	$4.73 imes 10^2$	7.24×10^{1}	2.32×10^1

Table 1. Tabulated results for the El acquisition function using an isotropic kernel on the noise-free problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

Method	Bran	in (2)	Egghol	lder (2)	Goldstein	nPrice (2)	SixHump	Camel (2)	Hartma	unn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	1.13×10^{-1}	$1.23 imes 10^{-1}$	$7.00 imes 10^1$	7.18	6.13	6.38	2.89×10^{-2}	$3.08 imes 10^{-2}$	4.99×10^{-3}	$3.36 imes 10^{-3}$
MCMC	1.25×10^{-1}	8.62×10^{-2}	$6.91 imes 10^1$	5.47	5.85	6.12	2.89×10^{-2}	$2.59 imes 10^{-2}$	6.23×10^{-3}	$5.33 imes 10^{-3}$
MFVI	1.60×10^{-1}	$1.18 imes 10^{-1}$	6.88×10^{1}	5.31	2.76	2.68	4.75×10^{-2}	$4.18 imes 10^{-2}$	4.56×10^{-3}	4.72×10^{-3}
FRVI	8.35×10^{-2}	8.30×10^{-2}	6.86×10^{1}	4.62	3.99	4.30	3.02×10^{-2}	2.37×10^{-2}	5.28×10^{-3}	3.99×10^{-3}
Method	Ackle	ey5 (5)	Michale	wicz5 (5)	Styblinsk	iTang5 (5)	Hartma	nn6 (6)	Rosenbr	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	5.28	2.45	1.23	$7.00 imes 10^{-1}$	3.25×10^{1}	1.12×10^1	7.76×10^{-2}	$7.39 imes 10^{-2}$	2.41×10^3	1.21×10^3
MCMC	4.76	1.48	1.06	$6.51 imes 10^{-1}$	$4.70 imes 10^1$	$1.65 imes 10^1$	9.74×10^{-2}	$1.07 imes 10^{-1}$	6.47×10^{2}	4.12×10^2
MFVI	4.34	1.52	1.25	7.30×10^{-1}	4.32×10^{1}	$1.53 imes 10^1$	8.55×10^{-2}	$7.04 imes 10^{-2}$	7.13×10^{2}	$5.01 imes 10^2$
FRVI	3.93	1.05	1.48	$8.85 imes 10^{-1}$	5.18×10^1	1.92×10^1	7.49×10^{-2}	8.28×10^{-2}	7.26×10^{2}	$4.03 imes 10^2$
Method	Styblinsk	iTang7 (7)	Ackley	10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski]	Fang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	6.38×10^{1}	$1.89 imes 10^1$	$1.46 imes 10^1$	2.56	5.32	$6.37 imes 10^{-1}$	$4.70 imes 10^3$	$3.20 imes 10^3$	1.25×10^2	$1.87 imes 10^1$
MCMC	8.14×10^{1}	1.91×10^1	1.66×10^1	3.11	5.35	$6.51 imes 10^{-1}$	1.70×10^{3}	$8.40 imes 10^2$	1.35×10^{2}	2.58×10^1
MFVI	$8.35 imes 10^1$	2.31×10^1	$1.66 imes 10^1$	3.40	5.39	$9.63 imes 10^{-1}$	1.36×10^{3}	$7.91 imes 10^2$	1.30×10^{2}	$2.94 imes 10^1$
FRVI	8.13×10^{1}	$1.76 imes 10^1$	1.73×10^{1}	2.52	5.27	$9.27 imes 10^{-1}$	1.54×10^{3}	$1.05 imes 10^3$	1.38×10^2	$3.00 imes 10^1$

Table 2. Tabulated results for the El acquisition function using an isotropic kernel on the $\sigma_n = 0.05$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

GECCO '21 Companion, July 10-14, 2021, Lille, France

Method	Bran	in (2)	Eggho	lder (2)	Goldstei	nPrice (2)	SixHump	Camel (2)	Hartma	unn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	$6.57 imes 10^{-2}$	$8.76 imes 10^{-2}$	$6.84 imes 10^1$	$2.37 imes 10^1$	8.07	6.88	$5.55 imes 10^{-2}$	5.32×10^{-2}	1.06×10^{-2}	8.24×10^{-3}
MCMC	1.34×10^{-1}	$9.90 imes 10^{-2}$	7.11×10^{1}	7.75	4.64	5.81	5.66×10^{-2}	4.23×10^{-2}	9.60×10^{-3}	$7.81 imes 10^{-3}$
MFVI	9.78×10^{-2}	$9.41 imes 10^{-2}$	7.13×10^{1}	8.22	5.61	5.62	4.22×10^{-2}	4.07×10^{-2}	1.12×10^{-2}	$9.39 imes 10^{-3}$
FRVI	1.19×10^{-1}	$9.89 imes 10^{-2}$	$6.86 imes 10^1$	1.31×10^{1}	6.46	7.15	5.12×10^{-2}	$5.42 imes 10^{-2}$	1.07×10^{-2}	$6.75 imes 10^{-3}$
Method	Ackle	ey5 (5)	Michale	wicz5 (5)	Styblinsk	iTang5 (5)	Hartma	nn6 (6)	Rosenbr	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	8.38	2.74	1.32	$6.33 imes 10^{-1}$	4.49×10^{1}	$1.29 imes 10^1$	2.11×10^{-1}	1.22×10^{-1}	3.10×10^3	2.32×10^3
MCMC	9.67	6.68	1.54	$6.38 imes 10^{-1}$	5.35×10^{1}	$1.08 imes 10^1$	2.20×10^{-1}	8.51×10^{-2}	9.78×10^{2}	9.02×10^2
MFVI	9.12	3.75	1.95	$7.21 imes 10^{-1}$	$5.94 imes 10^1$	$1.73 imes 10^1$	2.13×10^{-1}	1.22×10^{-1}	1.29×10^{3}	1.01×10^3
FRVI	9.46	6.85	1.79	$5.52 imes 10^{-1}$	$5.62 imes 10^1$	$1.63 imes 10^1$	2.01×10^{-1}	$8.47 imes 10^{-2}$	1.13×10^3	$9.01 imes 10^2$
Method	Styblinsk	iTang7 (7)	Ackley	10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski	Fang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	$6.96 imes 10^1$	$1.89 imes 10^1$	1.69×10^{1}	1.56	5.78	2.93×10^{-1}	3.98×10^3	2.53×10^3	1.31×10^2	$1.89 imes 10^1$
MCMC	9.68×10^{1}	2.36×10^1	1.89×10^{1}	1.25	5.78	$5.25 imes 10^{-1}$	2.47×10^{3}	$1.57 imes 10^3$	1.50×10^{2}	3.83×10^1
MFVI	$9.75 imes 10^1$	$2.45 imes 10^1$	$1.96 imes 10^1$	7.46×10^{-1}	5.96	$4.30 imes 10^{-1}$	2.37×10^{3}	$1.81 imes 10^3$	1.45×10^{2}	$2.80 imes 10^1$
FRVI	$9.52 imes 10^1$	1.95×10^{1}	1.94×10^{1}	1.04	5.80	$5.92 imes 10^{-1}$	1.78×10^{3}	$1.39 imes 10^3$	$1.46 imes 10^2$	2.82×10^{1}

Table 3. Tabulated results for the El acquisition function using an isotropic kernel on the $\sigma_n = 0.1$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

Method	Bran	in (2)	Egghol	lder (2)	Goldstein	nPrice (2)	SixHump	Camel (2)	Hartma	nn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	$2.88 imes 10^{-1}$	$3.05 imes 10^{-1}$	7.78×10^{1}	3.45×10^{1}	3.66	4.43	6.64×10^{-2}	$5.79 imes 10^{-2}$	$1.87 imes 10^{-2}$	1.34×10^{-2}
MCMC	1.72×10^{-1}	$1.56 imes 10^{-1}$	7.32×10^{1}	$3.85 imes 10^1$	8.02	7.53	3.36×10^{-2}	$3.62 imes 10^{-2}$	1.36×10^{-2}	1.31×10^{-2}
MFVI	2.05×10^{-1}	$1.78 imes 10^{-1}$	8.05×10^{1}	$3.18 imes 10^1$	9.94	8.95	6.17×10^{-2}	$5.99 imes 10^{-2}$	1.95×10^{-2}	1.59×10^{-2}
FRVI	1.62×10^{-1}	1.76×10^{-1}	7.32×10^{1}	4.33×10^1	5.94	5.95	5.47×10^{-2}	5.31×10^{-2}	2.28×10^{-2}	1.88×10^{-2}
Method	Ackle	ey5 (5)	Michale	wicz5 (5)	Styblinsk	iTang5 (5)	Hartma	nn6 (6)	Rosenbı	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	1.31×10^{1}	5.57	1.88	$5.17 imes 10^{-1}$	4.27×10^{1}	$1.62 imes 10^1$	3.43×10^{-1}	1.74×10^{-1}	$7.68 imes 10^3$	$5.75 imes 10^3$
MCMC	1.86×10^1	2.03	1.90	$5.53 imes 10^{-1}$	$6.88 imes 10^1$	$1.75 imes 10^1$	2.84×10^{-1}	$1.38 imes 10^{-1}$	5.85×10^{3}	4.67×10^3
MFVI	$1.89 imes 10^1$	1.55	2.20	$4.81 imes 10^{-1}$	6.62×10^1	$1.28 imes 10^1$	2.70×10^{-1}	$1.45 imes 10^{-1}$	5.60×10^{3}	$4.73 imes 10^3$
FRVI	1.87×10^{1}	1.89	2.12	$5.03 imes 10^{-1}$	6.62×10^1	$1.35 imes 10^1$	3.14×10^{-1}	1.51×10^{-1}	4.98×10^{3}	4.24×10^3
Method	Styblinsk	iTang7 (7)	Ackley	v 10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski]	Tang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	7.42×10^{1}	$2.07 imes 10^1$	$1.80 imes 10^1$	1.52	6.01	4.62×10^{-1}	$2.09 imes 10^4$	1.27×10^4	1.33×10^2	$1.82 imes 10^1$
MCMC	1.00×10^2	$2.39 imes 10^1$	1.91×10^{1}	$8.98 imes 10^{-1}$	6.15	$3.95 imes 10^{-1}$	9.54×10^{3}	$7.34 imes 10^3$	1.67×10^{2}	2.16×10^1
MFVI	1.01×10^2	2.11×10^1	$1.95 imes 10^1$	$9.06 imes 10^{-1}$	6.10	$4.92 imes 10^{-1}$	6.07×10^{3}	$5.52 imes 10^3$	1.65×10^{2}	$1.86 imes 10^1$
FRVI	9.24×10^{1}	2.42×10^{1}	1.94×10^{1}	$9.59 imes 10^{-1}$	5.86	4.64×10^{-1}	8.90×10^{3}	$8.74 imes 10^3$	1.60×10^2	3.02×10^1

Table 4. Tabulated results for the EI acquisition function using an isotropic kernel on the $\sigma_n = 0.2$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

GECCO '21 Companion, July 10-14, 2021, Lille, France

Method	Bran	in (2)	Egghol	der (2)	Goldstein	Price (2)	SixHump	Camel (2)	Hartma	ann3 (3)
	Median	MAD								
MAP	1.93×10^{-4}	$2.24 imes 10^{-4}$	$6.51 imes 10^1$	$5.22 imes 10^1$	2.17×10^{-1}	$2.29 imes 10^{-1}$	$1.26 imes 10^{-4}$	1.65×10^{-4}	$9.52 imes 10^{-6}$	9.64×10^{-6}
MCMC	1.47×10^{-4}	$1.68 imes 10^{-4}$	3.19×10^{1}	$4.73 imes 10^1$	3.26×10^{-1}	4.32×10^{-1}	$1.64 imes 10^{-4}$	1.91×10^{-4}	9.37×10^{-6}	$1.06 imes 10^{-5}$
MFVI	1.04×10^{-4}	1.14×10^{-4}	$6.57 imes 10^1$	1.09	2.96×10^{-1}	$3.46 imes 10^{-1}$	$1.00 imes 10^{-4}$	$1.05 imes 10^{-4}$	1.41×10^{-5}	$1.67 imes 10^{-5}$
FRVI	8.98×10^{-5}	$1.18 imes 10^{-4}$	6.51×10^{1}	1.37×10^{1}	3.16×10^{-1}	4.15×10^{-1}	$1.85 imes 10^{-4}$	$2.20 imes 10^{-4}$	1.19×10^{-5}	1.35×10^{-5}
Method	Ackle	ey5 (5)	Michale	wicz5 (5)	Styblinski	iTang5 (5)	Hartma	nn6 (6)	Rosenbr	rock7 (7)
	Median	MAD								
MAP	2.33	$7.10 imes 10^{-1}$	$3.62 imes 10^{-1}$	4.04×10^{-1}	6.40	9.40	$2.82 imes 10^{-3}$	$3.20 imes 10^{-3}$	$2.86 imes 10^2$	1.41×10^2
MCMC	1.96	$6.40 imes 10^{-1}$	2.41×10^{-1}	1.74×10^{-1}	1.02	1.35	1.31×10^{-3}	1.57×10^{-3}	2.76×10^{2}	$1.50 imes 10^2$
MFVI	2.53	$3.84 imes 10^{-1}$	5.38×10^{-1}	4.20×10^{-1}	9.44×10^{-1}	1.24	$7.90 imes 10^{-4}$	$9.55 imes 10^{-4}$	3.75×10^{2}	2.21×10^2
FRVI	2.50	4.51×10^{-1}	3.90×10^{-1}	4.42×10^{-1}	5.69×10^{-1}	$5.21 imes 10^{-1}$	2.12×10^{-3}	$2.70 imes 10^{-3}$	2.07×10^{2}	1.22×10^2
Method	Styblinsk	iTang7 (7)	Ackley	10 (10)	Michalew	ricz10 (10)	Rosenbro	ck10 (10)	Styblinski	
	Median	MAD								
MAP	3.16×10^1	1.71×10^1	3.59	1.11	3.57	8.15×10^{-1}	1.31×10^3	$5.56 imes 10^2$	$7.57 imes 10^1$	$2.81 imes 10^1$
MCMC	2.88×10^1	$1.91 imes 10^1$	3.52	1.04	2.76	$7.34 imes 10^{-1}$	1.35×10^{3}	$9.11 imes 10^2$	$8.01 imes 10^1$	2.71×10^1
MFVI	3.34×10^1	8.67	3.13	$3.96 imes 10^{-1}$	3.65	$7.43 imes 10^{-1}$	1.53×10^{3}	$5.76 imes 10^2$	7.49×10^{1}	$2.30 imes 10^1$
FRVI	2.40×10^{1}	1.32×10^1	3.19	7.66×10^{-1}	2.79	$9.08 imes 10^{-1}$	1.14×10^{3}	$4.88 imes 10^2$	6.78×10^{1}	$1.73 imes 10^1$

Table 5. Tabulated results for the EI acquisition function using an ARD kernel on the noise-free problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

Method	Bran	in (2)	Eggho	lder (2)	Goldstein	nPrice (2)	SixHump	Camel (2)	Hartma	unn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	4.20×10^{-2}	$4.24 imes 10^{-2}$	$6.74 imes 10^1$	6.89	4.24	4.59	2.09×10^{-2}	$2.67 imes 10^{-2}$	5.99×10^{-3}	2.74×10^{-3}
MCMC	4.67×10^{-2}	4.87×10^{-2}	6.64×10^{1}	9.27	5.89	5.42	2.09×10^{-2}	2.27×10^{-2}	7.89×10^{-3}	$3.81 imes 10^{-3}$
MFVI	5.43×10^{-2}	$6.16 imes 10^{-2}$	6.67×10^{1}	7.33	6.69	6.16	2.82×10^{-2}	$3.06 imes 10^{-2}$	8.37×10^{-3}	2.14×10^{-3}
FRVI	6.47×10^{-2}	6.07×10^{-2}	6.67×10^{1}	6.67	5.49	5.47	2.76×10^{-2}	2.86×10^{-2}	8.25×10^{-3}	4.69×10^{-3}
Method	Ackle	ey5 (5)	Michale	wicz5 (5)	Styblinsk	iTang5 (5)	Hartma	unn6 (6)	Rosenbr	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	6.40	1.96	1.77	4.55×10^{-1}	3.38×10^1	$1.43 imes 10^1$	8.41×10^{-2}	$7.47 imes 10^{-2}$	$4.74 imes 10^3$	2.78×10^3
MCMC	5.97	2.00	1.29	$3.19 imes 10^{-1}$	4.32×10^{1}	$1.51 imes 10^1$	8.07×10^{-2}	$6.57 imes 10^{-2}$	2.00×10^{3}	1.38×10^3
MFVI	7.57	1.96	1.71	$3.62 imes 10^{-1}$	4.66×10^{1}	1.64×10^{1}	7.83×10^{-2}	$6.71 imes 10^{-2}$	2.19×10^{3}	1.14×10^3
FRVI	6.14	1.93	1.71	$3.97 imes 10^{-1}$	4.36×10^1	1.30×10^1	7.93×10^{-2}	6.31×10^{-2}	2.32×10^{3}	1.38×10^3
Method	Styblinsk	iTang7 (7)	Ackley	10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski]	Fang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	$6.44 imes 10^1$	$1.85 imes 10^1$	1.51×10^1	3.53	5.23	$5.46 imes 10^{-1}$	$9.05 imes 10^3$	$4.82 imes 10^3$	1.18×10^2	$2.15 imes 10^1$
MCMC	6.99×10^{1}	$2.55 imes 10^1$	1.71×10^{1}	2.70	5.09	$8.41 imes 10^{-1}$	5.65×10^{3}	3.55×10^3	1.26×10^{2}	$2.16 imes 10^1$
MFVI	$7.86 imes 10^1$	$1.61 imes 10^1$	1.72×10^{1}	3.16	5.21	$7.65 imes 10^{-1}$	4.77×10^{3}	2.95×10^3	1.21×10^{2}	$2.69 imes 10^1$
FRVI	7.78×10^{1}	1.82×10^{1}	1.53×10^{1}	5.31	5.23	$4.12 imes 10^{-1}$	5.30×10^{3}	$2.56 imes 10^3$	1.24×10^2	$3.18 imes 10^1$

Table 6. Tabulated results for the El acquisition function using an ARD kernel on the $\sigma_n = 0.05$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

GECCO '21 Companion, July 10-14, 2021, Lille, France

Method	Bran	in (2)	Eggho	lder (2)	Goldstei	nPrice (2)	SixHump	Camel (2)	Hartma	unn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	7.02×10^{-2}	$7.25 imes 10^{-2}$	5.80×10^{1}	3.41×10^1	7.92	7.06	5.01×10^{-2}	$4.60 imes 10^{-2}$	1.08×10^{-2}	$5.00 imes 10^{-3}$
MCMC	$9.71 imes 10^{-2}$	$1.13 imes 10^{-1}$	$6.65 imes 10^1$	1.94×10^{1}	6.08	5.83	3.63×10^{-2}	$3.66 imes 10^{-2}$	$1.55 imes 10^{-2}$	$9.23 imes 10^{-3}$
MFVI	$7.99 imes 10^{-2}$	$8.86 imes 10^{-2}$	$6.85 imes 10^1$	$5.04 imes 10^1$	7.19	7.36	4.68×10^{-2}	4.72×10^{-2}	1.06×10^{-2}	$5.45 imes 10^{-3}$
FRVI	1.11×10^{-1}	1.12×10^{-1}	$6.65 imes 10^1$	1.94×10^{1}	7.12	8.27	4.57×10^{-2}	$5.04 imes 10^{-2}$	1.23×10^{-2}	$5.31 imes 10^{-3}$
Method	Ackle	y5 (5)	Michale	wicz5 (5)	Styblinsk	iTang5 (5)	Hartma	nn6 (6)	Rosenbr	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	1.07×10^1	4.29	1.95	$4.00 imes 10^{-1}$	$4.07 imes 10^1$	9.25	1.96×10^{-1}	7.30×10^{-2}	5.35×10^3	3.92×10^3
MCMC	1.00×10^{1}	3.74	1.45	$3.41 imes 10^{-1}$	5.20×10^{1}	1.37×10^{1}	1.96×10^{-1}	$6.28 imes 10^{-2}$	3.06×10^{3}	2.22×10^3
MFVI	1.13×10^{1}	6.27	1.75	$3.71 imes 10^{-1}$	5.50×10^{1}	$1.16 imes 10^1$	2.09×10^{-1}	$8.75 imes 10^{-2}$	3.36×10^{3}	1.98×10^3
FRVI	1.04×10^{1}	6.23	1.80	3.78×10^{-1}	$5.44 imes 10^1$	1.64×10^{1}	2.09×10^{-1}	4.45×10^{-2}	2.47×10^{3}	2.07×10^{3}
Method	Styblinsk	iTang7 (7)	Ackley	v 10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski	Fang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	7.31×10^{1}	$1.09 imes 10^1$	$1.93 imes 10^1$	$8.98 imes 10^{-1}$	5.71	$5.37 imes 10^{-1}$	$1.36 imes 10^4$	8.34×10^3	1.18×10^2	1.83×10^1
MCMC	8.07×10^{1}	2.34×10^1	1.90×10^{1}	1.05	5.20	$3.79 imes 10^{-1}$	6.53×10^{3}	$3.46 imes 10^3$	1.32×10^{2}	2.76×10^{1}
MFVI	$8.75 imes 10^1$	$1.66 imes 10^1$	1.98×10^1	$5.16 imes 10^{-1}$	5.72	$4.82 imes 10^{-1}$	7.76×10^{3}	$3.76 imes 10^3$	1.25×10^{2}	2.27×10^1
FRVI	$8.62 imes 10^1$	1.44×10^1	1.95×10^1	$8.24 imes 10^{-1}$	5.68	$4.39 imes10^{-1}$	7.04×10^3	4.72×10^3	$1.36 imes 10^2$	2.28×10^{1}

Table 7. Tabulated results for the EI acquisition function using an ARD kernel on the $\sigma_n = 0.1$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

Method	Bran	in (2)	Eggho	lder (2)	Goldstein	nPrice (2)	SixHump	Camel (2)	Hartma	nn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	2.71×10^{-1}	$2.46 imes 10^{-1}$	$8.47 imes 10^1$	2.48×10^{1}	8.11	7.32	4.90×10^{-2}	4.46×10^{-2}	2.00×10^{-2}	1.66×10^{-2}
MCMC	1.46×10^{-1}	1.72×10^{-1}	$7.44 imes 10^1$	3.92×10^1	7.33	6.41	7.22×10^{-2}	$5.93 imes 10^{-2}$	1.82×10^{-2}	$1.36 imes 10^{-2}$
MFVI	1.50×10^{-1}	$1.60 imes 10^{-1}$	7.62×10^{1}	$3.94 imes 10^1$	9.91	$1.02 imes 10^1$	5.26×10^{-2}	$5.71 imes 10^{-2}$	2.14×10^{-2}	1.59×10^{-2}
FRVI	1.65×10^{-1}	1.56×10^{-1}	7.15×10^{1}	4.63×10^{1}	6.98	8.20	4.75×10^{-2}	4.08×10^{-2}	1.48×10^{-2}	6.87×10^{-3}
Method	Ackle	ey5 (5)	Michale	wicz5 (5)	Styblinsk	iTang5 (5)	Hartma	nn6 (6)	Rosenbr	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	$1.80 imes 10^1$	2.56	2.31	$4.71 imes 10^{-1}$	4.32×10^{1}	$1.81 imes 10^1$	$2.85 imes 10^{-1}$	1.33×10^{-1}	1.12×10^4	7.99×10^3
MCMC	1.61×10^1	2.91	1.93	$4.56 imes 10^{-1}$	5.57×10^{1}	$1.15 imes 10^1$	2.73×10^{-1}	8.93×10^{-2}	7.69×10^{3}	6.05×10^{3}
MFVI	1.71×10^{1}	3.26	2.08	$3.77 imes 10^{-1}$	5.50×10^{1}	$1.66 imes 10^1$	3.07×10^{-1}	$1.08 imes 10^{-1}$	1.20×10^4	$1.10 imes 10^4$
FRVI	1.81×10^{1}	2.06	2.11	3.18×10^{-1}	5.55×10^{1}	$1.58 imes 10^1$	2.62×10^{-1}	$9.05 imes 10^{-2}$	1.19×10^4	1.14×10^4
Method	Styblinsk	iTang7 (7)	Ackley	v 10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski	Tang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	$7.40 imes 10^1$	$1.85 imes 10^1$	$1.95 imes 10^1$	$8.59 imes 10^{-1}$	6.11	3.79×10^{-1}	2.59×10^4	1.16×10^4	1.27×10^2	2.12×10^1
MCMC	9.05×10^{1}	2.22×10^1	1.92×10^{1}	$6.95 imes 10^{-1}$	5.97	$5.23 imes 10^{-1}$	3.36×10^{4}	$3.07 imes 10^4$	1.33×10^{2}	3.37×10^1
MFVI	$8.12 imes 10^1$	$1.55 imes 10^1$	1.97×10^{1}	7.00×10^{-1}	6.06	$4.34 imes 10^{-1}$	3.18×10^{4}	$2.82 imes 10^4$	1.40×10^{2}	$2.36 imes 10^1$
FRVI	9.23×10^{1}	1.44×10^{1}	1.96×10^{1}	8.20×10^{-1}	6.04	5.06×10^{-1}	3.22×10^{4}	$3.38 imes 10^4$	1.38×10^{2}	2.76×10^1

Table 8. Tabulated results for the EI acquisition function using an ARD kernel on the $\sigma_n = 0.2$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

GECCO '21 Companion, July 10-14, 2021, Lille, France

Method	Bran	in (2)	Eggho	lder (2)	Goldstei	nPrice (2)	SixHump	Camel (2)	Hartma	nn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	1.69×10^{-3}	1.72×10^{-3}	9.50×10^{1}	$2.96 imes 10^1$	1.56	1.42	1.02×10^{-3}	$1.23 imes 10^{-3}$	6.09×10^{-4}	$4.03 imes 10^{-4}$
MCMC	3.90×10^{-3}	$4.75 imes 10^{-3}$	1.06×10^2	3.48×10^{1}	2.60	1.88	$3.93 imes 10^{-3}$	3.84×10^{-3}	$6.81 imes 10^{-4}$	$5.78 imes 10^{-4}$
MFVI	2.68×10^{-3}	2.71×10^{-3}	$1.04 imes 10^2$	5.15×10^{1}	2.76	2.06	$5.36 imes 10^{-3}$	4.83×10^{-3}	1.08×10^{-3}	7.36×10^{-4}
FRVI	4.86×10^{-3}	5.21×10^{-3}	8.55×10^{1}	$6.97 imes 10^1$	1.85	1.96	$4.86 imes 10^{-3}$	3.35×10^{-3}	$7.76 imes 10^{-4}$	$6.42 imes 10^{-4}$
Method	Ackle	y5 (5)	Michale	wicz5 (5)	Styblinsk	iTang5 (5)	Hartma	nn6 (6)	Rosenbr	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	3.74	$5.42 imes 10^{-1}$	1.15	$2.59 imes 10^{-1}$	$2.79 imes 10^1$	8.73	$8.94 imes 10^{-2}$	1.21×10^{-1}	$6.61 imes 10^3$	$4.81 imes 10^3$
MCMC	4.67	1.02	1.40	2.67×10^{-1}	4.36×10^{1}	6.22	2.74×10^{-1}	1.16×10^{-1}	4.30×10^{3}	4.71×10^3
MFVI	5.08	$7.63 imes 10^{-1}$	1.42	$2.67 imes 10^{-1}$	$4.23 imes 10^1$	6.90	$3.05 imes 10^{-1}$	1.19×10^{-1}	5.82×10^{3}	$5.49 imes 10^3$
FRVI	4.86	$9.71 imes 10^{-1}$	1.40	4.06×10^{-1}	$4.28 imes 10^1$	8.43	$2.95 imes 10^{-1}$	1.51×10^{-1}	4.34×10^3	$3.62 imes 10^3$
Method	Styblinsk	iTang7 (7)	Ackley	10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski	Fang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	$5.93 imes 10^1$	$1.01 imes 10^1$	5.94	6.35×10^{-1}	4.68	$4.53 imes 10^{-1}$	2.21×10^4	1.77×10^4	$1.13 imes 10^2$	2.33×10^1
MCMC	1.20×10^2	2.24×10^1	7.72	1.07	4.87	$4.29 imes 10^{-1}$	6.30×10^{4}	$3.00 imes 10^4$	1.44×10^2	3.91×10^1
MFVI	1.24×10^2	$1.68 imes 10^1$	7.25	$9.96 imes 10^{-1}$	4.67	$7.75 imes 10^{-1}$	$6.71 imes 10^4$	1.58×10^4	1.69×10^{2}	$4.60 imes 10^1$
FRVI	1.27×10^2	1.78×10^{1}	7.89	1.01	4.82	$6.42 imes 10^{-1}$	$6.01 imes 10^4$	1.93×10^4	1.96×10^{2}	$2.00 imes 10^1$

Table 9. Tabulated results for the UCB acquisition function using an isotropic kernel on the noise-free problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the left- and right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

Method	Bran	in (2)	Eggho	lder (2)	Goldstein	nPrice (2)	SixHump	Camel (2)	Hartma	nn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	$8.33 imes 10^{-2}$	$9.12 imes 10^{-2}$	$8.36 imes 10^1$	3.62×10^{1}	8.09	8.18	2.95×10^{-2}	2.66×10^{-2}	5.48×10^{-3}	3.29×10^{-3}
MCMC	1.23×10^{-1}	$1.02 imes 10^{-1}$	7.93×10^{1}	$6.09 imes 10^1$	6.20	7.42	4.40×10^{-2}	$3.46 imes 10^{-2}$	1.30×10^{-2}	$8.03 imes 10^{-3}$
MFVI	1.09×10^{-1}	$8.55 imes 10^{-2}$	8.45×10^{1}	$3.46 imes 10^1$	6.67	6.47	4.29×10^{-2}	$5.20 imes 10^{-2}$	1.38×10^{-2}	1.15×10^{-2}
FRVI	1.03×10^{-1}	1.12×10^{-1}	1.01×10^{2}	2.94×10^{1}	6.70	6.44	5.21×10^{-2}	4.26×10^{-2}	1.45×10^{-2}	9.79×10^{-3}
Method	Ackle	y5 (5)	Michale	wicz5 (5)	Styblinsk	iTang5 (5)	Hartma	nn6 (6)	Rosenbr	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	4.23	$8.57 imes 10^{-1}$	1.52	$4.67 imes 10^{-1}$	3.56×10^{1}	$1.28 imes 10^1$	1.03×10^{-1}	$1.01 imes 10^{-1}$	2.62×10^{3}	$1.58 imes 10^3$
MCMC	6.64	1.52	2.35	$3.48 imes 10^{-1}$	8.14×10^{1}	$1.46 imes 10^1$	3.51×10^{-1}	$1.55 imes 10^{-1}$	3.97×10^{3}	1.10×10^3
MFVI	6.73	1.53	2.41	$3.28 imes 10^{-1}$	8.14×10^1	$1.46 imes 10^1$	3.53×10^{-1}	2.08×10^{-1}	3.55×10^{3}	1.11×10^3
FRVI	6.89	1.31	2.23	$3.56 imes 10^{-1}$	8.14×10^{1}	$1.46 imes 10^1$	3.26×10^{-1}	2.02×10^{-1}	4.30×10^{3}	1.30×10^{3}
Method	Styblinski	iTang7 (7)	Ackley	v 10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski	Tang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	6.99×10^{1}	$2.02 imes 10^1$	1.26×10^{1}	5.90	5.32	$6.60 imes 10^{-1}$	$1.03 imes 10^4$	7.02×10^3	1.27×10^2	2.11×10^1
MCMC	1.22×10^2	$1.92 imes 10^1$	1.93×10^{1}	1.68	6.26	$5.45 imes 10^{-1}$	8.93×10^{3}	$8.71 imes 10^3$	1.85×10^{2}	2.28×10^1
MFVI	1.21×10^2	2.00×10^1	$1.86 imes 10^1$	2.71	6.09	$5.46 imes 10^{-1}$	5.13×10^{3}	$3.50 imes 10^3$	1.87×10^{2}	$2.49 imes 10^1$
FRVI	1.21×10^2	2.02×10^1	1.51×10^1	4.98	5.99	3.77×10^{-1}	8.37×10^{3}	7.42×10^3	1.87×10^{2}	$2.57 imes 10^1$

Table 10. Tabulated results for the UCB acquisition function using an isotropic kernel on the $\sigma_n = 0.05$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the left- and right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

GECCO '21 Companion, July 10-14, 2021, Lille, France

Method	Bran	in (2)	Egghol	lder (2)	Goldstei	nPrice (2)	SixHump	Camel (2)	Hartma	nn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	6.99×10^{-2}	7.82×10^{-2}	9.60×10^1	$2.10 imes 10^1$	6.49	7.33	3.39×10^{-2}	$2.84 imes 10^{-2}$	7.29×10^{-3}	$5.50 imes 10^{-3}$
MCMC	$1.03 imes 10^{-1}$	$1.01 imes 10^{-1}$	1.02×10^2	2.74×10^{1}	8.04	8.45	4.27×10^{-2}	2.60×10^{-2}	$1.93 imes 10^{-2}$	1.50×10^{-2}
MFVI	1.24×10^{-1}	$1.30 imes 10^{-1}$	8.84×10^{1}	3.39×10^{1}	8.84	8.22	$5.39 imes 10^{-2}$	4.41×10^{-2}	$1.28 imes 10^{-2}$	$7.39 imes 10^{-3}$
FRVI	1.18×10^{-1}	1.01×10^{-1}	1.01×10^2	3.15×10^{1}	4.91	5.99	3.81×10^{-2}	4.66×10^{-2}	1.43×10^{-2}	7.29×10^{-3}
Method	Ackle	ey5 (5)	Michale	wicz5 (5)	Styblinsk	iTang5 (5)	Hartma	nn6 (6)	Rosenbr	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	7.63	2.57	1.61	$5.03 imes 10^{-1}$	$4.51 imes 10^1$	$1.69 imes 10^1$	1.96×10^{-1}	$1.31 imes 10^{-1}$	2.34×10^3	2.11×10^3
MCMC	1.85×10^{1}	2.51	2.32	$4.83 imes 10^{-1}$	8.01×10^{1}	2.09×10^{1}	4.93×10^{-1}	$1.53 imes 10^{-1}$	4.74×10^{3}	2.77×10^3
MFVI	$1.93 imes 10^1$	1.51	2.27	$3.39 imes 10^{-1}$	$7.80 imes 10^1$	$2.25 imes 10^1$	$4.35 imes 10^{-1}$	2.06×10^{-1}	4.60×10^{3}	$2.30 imes 10^3$
FRVI	$1.85 imes 10^1$	2.46	2.42	$4.38 imes 10^{-1}$	$8.01 imes 10^1$	2.17×10^{1}	$3.55 imes 10^{-1}$	$1.99 imes 10^{-1}$	4.52×10^3	$1.90 imes 10^3$
Method	Styblinsk	iTang7 (7)	Ackley	v 10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski	Fang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	$7.94 imes 10^1$	1.51×10^1	1.81×10^{1}	2.33	5.39	4.79×10^{-1}	$1.01 imes 10^4$	$5.67 imes 10^3$	1.31×10^2	2.64×10^1
MCMC	1.17×10^2	1.94×10^1	2.01×10^1	$4.37 imes 10^{-1}$	6.22	$4.73 imes 10^{-1}$	6.08×10^4	1.12×10^4	1.90×10^{2}	3.31×10^1
MFVI	1.17×10^2	2.13×10^{1}	2.01×10^1	4.36×10^{-1}	6.23	$5.84 imes 10^{-1}$	$6.10 imes 10^4$	1.03×10^4	1.84×10^2	$3.17 imes 10^1$
FRVI	$1.17 imes 10^2$	2.12×10^{1}	2.02×10^1	$3.75 imes 10^{-1}$	6.18	$6.00 imes 10^{-1}$	6.19×10^4	1.39×10^4	$1.90 imes 10^2$	$3.87 imes 10^1$

Table 11. Tabulated results for the UCB acquisition function using an isotropic kernel on the $\sigma_n = 0.1$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the left- and right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

Method	Bran	in (2)	Egghol	lder (2)	Goldstein	nPrice (2)	SixHump	Camel (2)	Hartma	unn3 (3)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	2.48×10^{-1}	$3.04 imes 10^{-1}$	9.33×10^{1}	$3.61 imes 10^1$	5.75	7.43	3.75×10^{-2}	$3.72 imes 10^{-2}$	1.41×10^{-2}	$1.17 imes 10^{-2}$
MCMC	3.07×10^{-1}	$2.65 imes 10^{-1}$	7.92×10^{1}	$5.58 imes 10^1$	3.84	4.42	6.21×10^{-2}	$5.73 imes 10^{-2}$	3.16×10^{-2}	2.02×10^{-2}
MFVI	3.77×10^{-1}	$3.43 imes 10^{-1}$	7.28×10^{1}	$5.10 imes 10^1$	5.73	5.09	4.21×10^{-2}	$4.39 imes 10^{-2}$	2.19×10^{-2}	$1.80 imes 10^{-2}$
FRVI	4.42×10^{-1}	4.44×10^{-1}	8.51×10^{1}	4.13×10^{1}	2.75	2.98	7.65×10^{-2}	7.36×10^{-2}	2.25×10^{-2}	1.74×10^{-2}
Method	Ackle	y5 (5)	Michale	wicz5 (5)	Styblinsk	iTang5 (5)	Hartma	nn6 (6)	Rosenbr	ock7 (7)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	1.08×10^1	6.89	1.89	$4.77 imes 10^{-1}$	$4.54 imes 10^1$	$1.55 imes 10^1$	4.04×10^{-1}	$1.67 imes 10^{-1}$	6.51×10^{3}	$6.57 imes 10^3$
MCMC	1.93×10^{1}	1.02	2.60	4.37×10^{-1}	8.71×10^{1}	$1.96 imes 10^1$	5.76×10^{-1}	2.64×10^{-1}	2.66×10^{4}	3.09×10^4
MFVI	$1.93 imes 10^1$	1.22	2.65	2.64×10^{-1}	$8.67 imes 10^1$	$1.99 imes 10^1$	5.30×10^{-1}	$1.67 imes 10^{-1}$	1.49×10^4	1.62×10^4
FRVI	1.93×10^{1}	1.15	2.74	3.22×10^{-1}	8.67×10^1	1.99×10^1	5.22×10^{-1}	1.43×10^{-1}	3.00×10^{4}	3.37×10^4
Method	Styblinski	iTang7 (7)	Ackley	10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski]	Fang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	7.41×10^{1}	2.02×10^1	1.90×10^1	1.15	5.62	$3.93 imes 10^{-1}$	$4.68 imes 10^4$	$3.88 imes 10^4$	$1.25 imes 10^2$	$3.15 imes 10^1$
MCMC	1.28×10^2	$2.19 imes 10^1$	2.01×10^1	$5.79 imes 10^{-1}$	6.30	$5.92 imes 10^{-1}$	$8.89 imes 10^4$	$5.54 imes10^4$	1.80×10^{2}	2.87×10^1
MFVI	1.26×10^2	$1.99 imes 10^1$	2.01×10^1	$5.77 imes 10^{-1}$	6.39	$5.01 imes 10^{-1}$	$9.25 imes 10^4$	$3.86 imes10^4$	1.79×10^{2}	2.77×10^1
FRVI	$1.26 imes 10^2$	$2.08 imes 10^1$	1.99×10^1	6.47×10^{-1}	6.33	$6.01 imes 10^{-1}$	$9.25 imes 10^4$	$3.73 imes 10^4$	1.81×10^2	$2.29 imes 10^1$

Table 12. Tabulated results for the UCB acquisition function using an isotropic kernel on the $\sigma_n = 0.2$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the left- and right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

GECCO '21 Companion, July 10-14, 2021, Lille, France

Method Branin (2)		Eggholder (2)		GoldsteinPrice (2)		SixHumpCamel (2)		Hartmann3 (3)			
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD	
MAP	2.98×10^{-3}	3.12×10^{-3}	$8.44 imes 10^1$	$2.73 imes 10^1$	1.88	1.26	1.43×10^{-3}	1.29×10^{-3}	$9.75 imes 10^{-4}$	$5.34 imes 10^{-4}$	
MCMC	6.10×10^{-3}	$7.76 imes 10^{-3}$	9.44×10^{1}	4.78×10^{1}	2.66	1.45	2.17×10^{-3}	2.41×10^{-3}	1.75×10^{-3}	4.76×10^{-4}	
MFVI	7.48×10^{-3}	$9.78 imes 10^{-3}$	9.26×10^1	$5.58 imes 10^1$	1.86	1.88	1.33×10^{-3}	$1.32 imes 10^{-3}$	1.92×10^{-3}	2.83×10^{-4}	
FRVI	5.87×10^{-3}	$7.57 imes 10^{-3}$	$1.05 imes 10^2$	4.96×10^{1}	1.93	1.69	2.12×10^{-3}	$1.92 imes 10^{-3}$	1.84×10^{-3}	3.21×10^{-4}	
Method	Ackle	v5 (5) Michale		wicz5 (5) Styblinsk				ann6 (6) Rosent		orock7 (7)	
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD	
MAP	3.73	$4.94 imes 10^{-1}$	1.64	$4.85 imes 10^{-1}$	4.72×10^{1}	1.12×10^1	5.76×10^{-3}	$5.15 imes 10^{-3}$	9.12×10^{3}	$5.98 imes 10^3$	
MCMC	4.86	$7.40 imes 10^{-1}$	2.09	$3.95 imes 10^{-1}$	5.51×10^{1}	1.13×10^1	3.98×10^{-2}	$5.49 imes 10^{-2}$	1.68×10^{4}	1.29×10^4	
MFVI	5.02	$7.67 imes 10^{-1}$	2.12	4.73×10^{-1}	5.42×10^{1}	9.16	1.60×10^{-2}	2.25×10^{-2}	1.79×10^4	1.34×10^4	
FRVI	4.87	$7.62 imes 10^{-1}$	2.11	$3.65 imes 10^{-1}$	5.42×10^{1}	1.32×10^{1}	4.03×10^{-2}	$5.62 imes 10^{-2}$	$1.59 imes 10^4$	$1.16 imes 10^4$	
Method	Styblinsk	iTang7 (7)	Ackley	10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski	Fang10 (10)	
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD	
MAP	7.12×10^{1}	$1.34 imes 10^1$	6.05	$7.66 imes 10^{-1}$	4.94	3.91×10^{-1}	1.32×10^4	1.31×10^4	1.10×10^2	2.37×10^1	
MCMC	1.06×10^{2}	2.09×10^{1}	7.99	1.03	5.41	6.20×10^{-1}	7.13×10^4	1.98×10^4	1.27×10^{2}	2.69×10^{1}	
MFVI	$1.15 imes 10^2$	1.62×10^{1}	8.36	1.23	5.48	$5.30 imes 10^{-1}$	$7.28 imes 10^4$	2.27×10^4	1.56×10^2	$3.00 imes 10^1$	
FRVI	$1.19 imes 10^2$	1.94×10^{1}	8.17	$9.96 imes 10^{-1}$	5.14	$5.31 imes 10^{-1}$	$7.15 imes 10^4$	2.22×10^4	1.17×10^2	$1.88 imes 10^1$	

Table 13. Tabulated results for the UCB acquisition function using an ARD kernel on the noise-free problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

Method	ethod Branin (2)		Eggholder (2)		GoldsteinPrice (2)		SixHumpCamel (2)		Hartmann3 (3)	
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	3.51×10^{-2}	$3.14 imes 10^{-2}$	8.61×10^{1}	$3.75 imes 10^1$	4.74	6.11	2.58×10^{-2}	2.02×10^{-2}	4.68×10^{-3}	$2.85 imes 10^{-3}$
MCMC	$8.47 imes 10^{-2}$	$9.31 imes 10^{-2}$	1.02×10^{2}	$5.17 imes 10^1$	4.07	5.72	$4.84 imes 10^{-2}$	4.47×10^{-2}	9.81×10^{-3}	2.12×10^{-3}
MFVI	9.01×10^{-2}	$9.74 imes 10^{-2}$	9.00×10^{1}	$4.54 imes 10^1$	7.22	6.37	3.64×10^{-2}	2.84×10^{-2}	1.11×10^{-2}	$3.70 imes 10^{-3}$
FRVI	9.60×10^{-2}	1.08×10^{-1}	1.02×10^{2}	4.61×10^{1}	4.71	4.87	2.84×10^{-2}	2.37×10^{-2}	1.04×10^{-2}	3.00×10^{-3}
Method	Ackle	y5 (5)	Michalewicz5 (5)		StyblinskiTang5 (5)		Hartmann6 (6)		Rosenbrock7 (7)	
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	4.36	$6.15 imes 10^{-1}$	1.71	$4.53 imes 10^{-1}$	5.25×10^{1}	$1.67 imes 10^1$	3.40×10^{-2}	2.18×10^{-2}	1.04×10^4	$7.73 imes 10^3$
MCMC	7.05	2.02	2.25	$3.26 imes 10^{-1}$	7.73×10^{1}	$1.36 imes 10^1$	1.97×10^{-1}	$6.65 imes 10^{-2}$	3.46×10^{3}	3.40×10^{3}
MFVI	7.61	1.33	2.15	$2.88 imes 10^{-1}$	7.58×10^{1}	1.32×10^1	2.15×10^{-1}	4.29×10^{-2}	4.97×10^{3}	5.00×10^{3}
FRVI	6.73	1.64	2.25	2.59×10^{-1}	7.15×10^{1}	1.46×10^1	2.17×10^{-1}	4.96×10^{-2}	4.87×10^{3}	5.13×10^{3}
Method StyblinskiTang7 (7)		Ackley10 (10)		Michalewicz10 (10)		Rosenbrock10 (10)		StyblinskiTang10 (10)		
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	7.08×10^{1}	$2.18 imes 10^1$	1.07×10^{1}	3.55	5.14	$5.68 imes 10^{-1}$	2.16×10^4	$1.60 imes 10^4$	1.16×10^2	$1.60 imes 10^1$
MCMC	1.21×10^2	$1.99 imes 10^1$	1.81×10^{1}	2.87	5.49	$4.99 imes 10^{-1}$	5.86×10^{4}	$2.61 imes 10^4$	1.35×10^{2}	3.11×10^1
MFVI	1.19×10^{2}	$1.72 imes 10^1$	1.94×10^{1}	1.47	5.62	$5.55 imes 10^{-1}$	$6.75 imes 10^{4}$	$1.40 imes 10^4$	1.62×10^{2}	$3.33 imes 10^1$
FRVI	1.21×10^2	$1.96 imes 10^1$	1.82×10^1	3.25	5.61	4.02×10^{-1}	6.75×10^{4}	$2.00 imes 10^4$	1.43×10^2	2.09×10^{1}

Table 14. Tabulated results for the UCB acquisition function using an ARD kernel on the $\sigma_n = 0.05$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

GECCO '21 Companion, July 10-14, 2021, Lille, France

Method Branin (2)		in (2)	Eggholder (2)		GoldsteinPrice (2)		SixHumpCamel (2)		Hartmann3 (3)	
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	3.28×10^{-2}	$3.58 imes 10^{-2}$	8.31×10^{1}	3.21×10^1	5.56	5.21	3.07×10^{-2}	3.72×10^{-2}	9.47×10^{-3}	$3.06 imes 10^{-3}$
MCMC	6.85×10^{-2}	$7.48 imes 10^{-2}$	8.35×10^{1}	$4.09 imes 10^1$	5.60	5.91	4.04×10^{-2}	4.53×10^{-2}	1.72×10^{-2}	$7.04 imes 10^{-3}$
MFVI	7.32×10^{-2}	$8.50 imes 10^{-2}$	9.11×10^1	5.66×10^{1}	5.77	4.79	4.08×10^{-2}	4.86×10^{-2}	$1.45 imes 10^{-2}$	$5.84 imes 10^{-3}$
FRVI	7.25×10^{-2}	$7.16 imes 10^{-2}$	1.01×10^2	4.46×10^{1}	5.22	6.22	5.07×10^{-2}	4.34×10^{-2}	1.44×10^{-2}	$7.01 imes 10^{-3}$
Method	Ackle	ey5 (5)	Michalewicz5 (5)		StyblinskiTang5 (5)		Hartmann6 (6)		Rosenbrock7 (7)	
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	7.26	2.26	1.97	$4.00 imes 10^{-1}$	$5.44 imes 10^1$	1.31×10^1	2.08×10^{-1}	$6.69 imes 10^{-2}$	7.24×10^3	$5.46 imes 10^3$
MCMC	1.70×10^{1}	3.59	2.26	3.44×10^{-1}	6.91×10^{1}	1.99×10^{1}	2.78×10^{-1}	$6.03 imes 10^{-2}$	9.33×10^{3}	7.78×10^3
MFVI	$1.66 imes 10^1$	4.48	2.20	$3.13 imes 10^{-1}$	7.12×10^{1}	2.01×10^1	3.00×10^{-1}	$8.37 imes 10^{-2}$	7.22×10^{3}	7.60×10^3
FRVI	1.71×10^{1}	3.42	2.18	3.27×10^{-1}	$7.46 imes 10^1$	1.98×10^{1}	2.72×10^{-1}	3.84×10^{-2}	7.33×10^{3}	$7.13 imes 10^3$
Method	Styblinsk	iTang7 (7)	Ackley	10 (10)	Michalew	vicz10 (10)	Rosenbro	ck10 (10)	Styblinski	Fang10 (10)
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	$7.14 imes 10^1$	$1.63 imes 10^1$	$1.89 imes 10^1$	1.87	5.30	5.98×10^{-1}	$2.86 imes 10^4$	$2.15 imes 10^4$	$1.14 imes 10^2$	2.19×10^1
MCMC	1.11×10^2	$1.30 imes 10^1$	2.01×10^1	$4.59 imes 10^{-1}$	5.66	$4.59 imes 10^{-1}$	7.07×10^4	$3.47 imes 10^4$	1.23×10^{2}	2.68×10^1
MFVI	1.11×10^2	2.62×10^{1}	2.02×10^1	$3.67 imes 10^{-1}$	6.05	$5.43 imes 10^{-1}$	$6.92 imes 10^4$	$3.08 imes 10^4$	1.48×10^2	$2.90 imes 10^1$
FRVI	1.11×10^2	1.69×10^{1}	$2.01 imes 10^1$	4.75×10^{-1}	5.82	$6.18 imes 10^{-1}$	7.25×10^4	2.21×10^4	$1.36 imes 10^2$	$3.00 imes 10^1$

Table 15. Tabulated results for the UCB acquisition function using an ARD kernel on the $\sigma_n = 0.1$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

Method	thod Branin (2)		Eggholder (2)		GoldsteinPrice (2)		SixHumpCamel (2)		Hartmann3 (3)	
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	2.06×10^{-1}	2.63×10^{-1}	1.01×10^2	$3.75 imes 10^1$	6.62	7.14	1.86×10^{-2}	2.22×10^{-2}	1.43×10^{-2}	$7.74 imes 10^{-3}$
MCMC	1.96×10^{-1}	1.88×10^{-1}	8.62×10^{1}	$4.28 imes 10^1$	8.83	7.79	3.54×10^{-2}	3.72×10^{-2}	2.72×10^{-2}	1.70×10^{-2}
MFVI	1.87×10^{-1}	1.94×10^{-1}	1.02×10^{2}	1.77×10^{1}	7.54	6.96	4.77×10^{-2}	4.59×10^{-2}	2.15×10^{-2}	1.46×10^{-2}
FRVI	1.39×10^{-1}	1.67×10^{-1}	1.01×10^{2}	1.91×10^1	7.66	7.30	7.25×10^{-2}	7.45×10^{-2}	2.21×10^{-2}	1.65×10^{-2}
Method	thod Ackley5 (5)		Michalewicz5 (5)		StyblinskiTang5 (5)		Hartmann6 (6)		Rosenbrock7 (7)	
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	1.78×10^{1}	2.29	2.05	4.24×10^{-1}	5.26×10^{1}	$1.54 imes 10^1$	3.34×10^{-1}	$1.73 imes 10^{-1}$	1.32×10^4	1.02×10^4
MCMC	$1.88 imes 10^1$	1.70	2.23	2.89×10^{-1}	$6.87 imes 10^1$	$1.36 imes 10^1$	5.28×10^{-1}	$1.77 imes 10^{-1}$	3.06×10^{4}	2.63×10^4
MFVI	1.80×10^{1}	1.70	2.35	4.20×10^{-1}	$6.86 imes 10^1$	2.22×10^1	5.40×10^{-1}	$1.18 imes 10^{-1}$	2.66×10^{4}	$2.76 imes 10^4$
FRVI	1.86×10^{1}	1.77	2.38	2.72×10^{-1}	6.88×10^1	$2.25 imes 10^1$	4.52×10^{-1}	1.72×10^{-1}	2.71×10^4	2.27×10^4
Method	Styblinski	iTang7 (7)	Ackley10 (10)		Michalewicz10 (10)		Rosenbrock10 (10)		StyblinskiTang10 (10)	
	Median	MAD	Median	MAD	Median	MAD	Median	MAD	Median	MAD
MAP	8.12×10^1	$1.37 imes 10^1$	1.92×10^1	1.48	5.76	$6.10 imes 10^{-1}$	3.99×10^4	$3.54 imes10^4$	1.30×10^2	$1.98 imes 10^1$
MCMC	1.17×10^2	$2.93 imes 10^1$	2.01×10^1	5.44×10^{-1}	5.94	$6.28 imes 10^{-1}$	$8.18 imes 10^4$	4.87×10^4	1.34×10^2	2.84×10^{1}
MFVI	1.17×10^2	$2.67 imes 10^1$	2.02×10^1	$5.70 imes 10^{-1}$	6.32	4.60×10^{-1}	$8.53 imes 10^4$	$5.07 imes10^4$	1.56×10^{2}	2.55×10^1
FRVI	1.17×10^2	2.22×10^{1}	$2.00 imes 10^1$	6.05×10^{-1}	6.24	5.56×10^{-1}	$9.40 imes 10^4$	5.61×10^4	1.28×10^2	2.26×10^1

Table 16. Tabulated results for the UCB acquisition function using an ARD kernel on the $\sigma_n = 0.2$ problems. The median log simple regret and the median absolute deviation from the median (MAD) is shown in the leftand right-hand columns respectively. The method with the lowest median performance is shown in dark grey, with those that are statistically equivalent shown in light grey.

E CONVERGENCE AND DISTANCE PLOTS

The figures in this section show the convergence and distance plots for each combination of acquisition function, kernel type and level of function noise. The convergence plots show the

median log simple regret, with shading representing the interquartile range over 51 runs, and the dashed vertical line indicating the end of the initial LHS phase. The distance plots show the normalised Euclidean distance between consecutively selected locations over the optimisation run. For each *d*-dimensional problem, distances are normalised by the largest possible distance possible, i.e. \sqrt{d} , so that distances reside in [0, 1].

Fig. 4. Convergence (upper) and distance (lower) plots for the EI acquisition function with an isotropic kernel on the noise-free problems.

Fig. 5. Convergence (upper) and distance (lower) plots for the EI acquisition function with an isotropic kernel on the $\sigma_n = 0.05$ problems.

Fig. 6. Convergence (upper) and distance (lower) plots for the EI acquisition function with an isotropic kernel on the $\sigma_n = 0.1$ problems.

Fig. 7. Convergence (upper) and distance (lower) plots for the EI acquisition function with an isotropic kernel on the $\sigma_n = 0.2$ problems.

Fig. 8. Convergence (upper) and distance (lower) plots for the El acquisition function with an ARD kernel on the noise-free problems.

Fig. 9. Convergence (upper) and distance (lower) plots for the El acquisition function with an ARD kernel on the $\sigma_n = 0.05$ problems.

Fig. 10. Convergence (upper) and distance (lower) plots for the EI acquisition function with an ARD kernel on the $\sigma_n = 0.1$ problems.

Fig. 11. Convergence (upper) and distance (lower) plots for the EI acquisition function with an ARD kernel on the $\sigma_n = 0.2$ problems.

Fig. 12. Convergence (upper) and distance (lower) plots for the UCB acquisition function with an isotropic kernel on the noise-free problems.

Fig. 13. Convergence (upper) and distance (lower) plots for the UCB acquisition function with an isotropic kernel on the $\sigma_n = 0.05$ problems.

Fig. 14. Convergence (upper) and distance (lower) plots for the UCB acquisition function with an isotropic kernel on the $\sigma_n = 0.1$ problems.

Fig. 15. Convergence (upper) and distance (lower) plots for the UCB acquisition function with an isotropic kernel on the $\sigma_n = 0.2$ problems.

Fig. 16. Convergence (upper) and distance (lower) plots for the UCB acquisition function with an ARD kernel on the noise-free problems.

Fig. 17. Convergence (upper) and distance (lower) plots for the UCB acquisition function with an ARD kernel on the $\sigma_n = 0.05$ problems.

Fig. 18. Convergence (upper) and distance (lower) plots for the UCB acquisition function with an ARD kernel on the $\sigma_n = 0.1$ problems.

Fig. 19. Convergence (upper) and distance (lower) plots for the UCB acquisition function with an ARD kernel on the $\sigma_n = 0.2$ problems.

REFERENCES

- [1] Sture Holm. 1979. A simple sequentially rejective multiple test procedure. *Scandinavian Journal of Statistics* 6, 2 (1979), 65–70.
- [2] Joshua D. Knowles, Lothar Thiele, and Eckart Zitzler. 2006. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. Technical Report TIK214. Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland.