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ABSTRACT
Computerized-adaptive testing (CAT) is a form of assessment in
which items/questions are administered based upon a test taker’s
ability (i.e., their estimated proficiency, such as a knowledge, skill,
or personality characteristic). CAT is regularly used in psycho-
logical studies, medical exams, and standardized testing to reduce
test length and improve measurement accuracy and precision. A
key challenge in CAT is item selection. Past algorithms have been
designed based on criteria such as item difficulty and maximum
Fisher information. However, these only consider a fixed-length
test, which may result in it being longer or less precise. To address
this problem, we formulate a new multi-objective optimization
problem to model the trade-off between test length and precision.
A binary population-based genetic algorithm, NSGA-II, is used to
obtain the set of Pareto-optimal solutions by maximizing precision
and minimizing the number of questions. We evaluate our approach
with a simulated study using four standard personality assessments.
We also investigate the influence of test response types (e.g., bi-
nary versus categorical response) and number of variables (i.e., the
number of possible items) on performance. The results obtained
show multi-objective optimization can be used in CAT to minimize
overall test length and improve measurement precision and overall
accuracy.
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1 INTRODUCTION
1.1 Motivation and Background
Computerized-adaptive testing (CAT) is a form of electronic assess-
ment in which items/questions are administered based upon a test
taker’s ability. The responses to these questions are used to esti-
mate proficiency with respect to a latent trait dimension, denoted
by 𝜃 , that is not directly observable (such as general intelligence,
knowledge, skill, ability, or personality characteristic) [21]. CAT
seeks to address many of the challenges faced by survey researchers
administering assessments [21]. CAT is able to provide a higher
level of precision while reducing test length in comparison to static
assessments (in which all test questions are included to achieve the
highest level of precision) and static-reduced assessments (in which
only a pre-selected subset of questions are included). This is be-
cause CAT efficiently customizes each assessment’s set of questions
to a test taker’s ability, excluding excessively difficult questions
that may force the test taker to guess and so provide little addi-
tional information about their ability [21, 37]. Moreover, reducing
test length often reduces cost for survey researchers, since study
participants take less time to complete the assessment. In addi-
tion, finding participants will be easier for study administrators
since past studies have shown that individuals are more likely to
complete tests that are shorter in length or less time-consuming
[15]. Overall, CAT is a crucial tool for survey researchers because
assessments are a widely-used research method in psychological
studies, medical exams, and other areas, and are currently used in
many standardized tests such as the Graduate Record Examination
and the U.S. Department of Defense’s Armed Services Vocational
Aptitude Battery [21]. CAT can greatly improve exams for students.

The structure of a standard CAT is shown in Figure 1. First, an
initial set of items (i.e., questions) is established to measure one or
more latent traits [21, 37]. Then, an item selection algorithm is used
to select an item to serve the test taker in each iteration. If the test
taker answers the item correctly, the estimated ability is seemingly
higher, whereas if they answer incorrectly, the estimated ability is
lower. The ability is estimated using different psychometric models,
and more recently machine learning and deep learning models have
been used. The new ability is used by the selection algorithm to
choose the next best item to serve the test taker, until a termination
criterion is met (e.g., the maximum number of items have been
served or the estimated error is lower than a threshold).

An important challenge in CAT is item selection. Past algorithms
have been designed based on criteria such as item difficulty, maxi-
mum Fisher information, Kullback-Leibler information, and others.
However, these only consider a fixed-length test, which may result
in a longer or less precise test [16]. Furthermore, selecting only the
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Figure 1: Overview of steps in adaptive testing. Here, 𝜃 refers to the ability of the test taker, 𝑖 is an item, and 𝑃𝑖 (𝜃 ) is the
probability of a correct/contributing response, a commonly used factor in item selection.

single-most optimum next item to serve in CAT can be resource-
intensive. Item selection also heavily relies on item response theory
(IRT), which models the probability of a correct response to an item
as a function of person parameters (such as math ability) and item
parameters (such as difficulty) [38] to choose the next best item
to serve the test taker [8, 38]. IRT and other design parameters
(assessment length, selection method, etc.) create a higher barrier
to entry for survey researchers wanting to use CAT due to the long
implementation time and need for psychometricians familiar with
statistical models to validate the final CAT parameters [7, 17].

1.2 Key Contributions
To address these problems, we formulate a new multi-objective
optimization problem to model the trade-off between test length
and precision. The optimization and evolutionary-algorithms (EA)
community has looked at problems in sociology, economics, and
other areas of the social sciences. However, there has not been any
work on EAs for CAT or psychometrics. Furthermore, past works
in psychometrics and CAT have studied item selection approaches,
but not with EAs or multi-objective optimization, and instead use a
single-objective and greedy strategy for selection in each iteration.
To our knowledge, this is the first work that applies EAs for CAT
and item selection.

The main contributions of this paper relative to previous work
are fourfold: (1) formulation of a new multi-objective optimization
problem to assist survey researchers by supporting decision-making
in CAT design, allowing for trade-off between test length and preci-
sion, (2) use of multi-objective evolutionary algorithms (MOEA) to
obtain the set of Pareto-optimal solutions by maximizing precision
and minimizing the number of questions, (3) an analysis of the
effect of different assessment characteristics on the evolutionary
solution approach, and (4) evaluation of the new multi-objective
optimization approach using simulated CAT studies with four stan-
dardized personality assessments, different IRTmodels, and varying
number of questions. By modeling both test length and precision
at each iteration, a more resource-efficient approach and accurate
measurement can be achieved for the overall test.

The remainder of this paper is organized as follows. In Section
2, we provide a literature review of item selection approaches, and
use of artificial intelligence (AI) in all stages of CAT. Next, Section
3 presents our problem formulation and Section 4 details the meth-
ods and data used in our approach. Then, Section 5 describes the

experiments, evaluation, and results obtained from our approach.
Last, Section 6 provides conclusions and highlights future work.

2 RELATEDWORK
CAT research, starting in the 1970s, has expanded over the past
few decades [21]. However, only recently has AI, such as natural
language processing and machine learning, been included and stud-
ied. In this section, we provide a literature review of item selection
methods, and aspects of CAT where AI has been introduced.

2.1 Item Selection Methods
Many item selection criteria have been proposed in the past for
CAT design [16]. Selection algorithms heavily rely on IRT models
and the estimated ability of the test taker [21, 34, 38]. These models
take the form [20]:

P(𝑈 = 𝑢 |𝜃 ) = 𝑓 (𝜃, 𝜂,𝑢), (1)

where P is the conditional probability that a test taker character-
ized by a vector of latent trait parameters 𝜃 will respond to the
test item with value 𝑢 (e.g., 𝑢 ∈ {0, 1} or {𝑢 ∈ Z : 1 ≤ 𝑢 ≤ 5}). P is
defined by a function 𝑓 that relates 𝜃 and a vector 𝜂 of parameters
characterizing the item [20]. The test taker’s probable response is
used by item selection algorithms to select the next item to serve
the test taker. Two commonly used approaches are maximum in-
formation and Bayesian item selection, or the minimum expected
posterior variance [16, 21]. Other selection criteria include: diffi-
culty matching in which items are selected based on the distance
between 𝜃 and item pool difficulty parameters, a-stratification in
which items are grouped based on their parameters prior to selec-
tion, and Kullback-Leibler information in which a moving average
for any 𝜃 is used. There are also many other contributing factors
in item selection, such as content balancing, the criteria used to
select items, and item exposure control. A comprehensive review
of traditional item selection algorithms and strategies is further
described in the survey by Han et. al [16].

2.2 AI in Computerized Adaptive Testing
AI has been incorporated to provide more efficient and accurate
results in each stage of CAT, and can be categorized into three
types: automatic item generation, item selection, and scoring al-
gorithms. First, automatic item generation (AIG) seeks to generate
question prompts similar to those found in other assessments, and
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has relied on natural language processing to provide state-of-the-
art results [4, 5, 25, 30, 32, 36, 37]. However, this is still an emerging
area and there are many challenges faced by researchers such as
generating text with the correct syntax and semantics, capturing
domain-specific questions for each test, generating according to
the reading comprehension and ability of the test taker, and IRT
modeling for AI-generated questions [10]. Next, in item selection,
recommendation methods such as collaborative-filtering [39] and
contextual-bandits [19] have been used. Furthermore, the approach
by Li et al. uses deep Q-learning to estimate test taker latent ability
and recommend exercises for online learning and coursework [20].
Last, many scoring algorithms have used deep learning and natural
language processing to learn from large datasets and improve accu-
racy [4, 9, 18, 29, 33, 40, 41]. The model DIRT (deep item response
theory) estimates student latent trait ability using a proficiency
vector of knowledge areas and a deep neural network to predict the
latent trait, discrimination factor, and difficulty for IRT [9]. Another
model, Deep-IRT, also uses deep learning to predict student latent
ability [41]. Most work in ability estimation has focused on student
learning, which is also known as knowledge tracing. A review of
knowledge tracing and ability estimation models can be found in
the survey by Khajah et al. [18].

AI can be a powerful method for CAT to produce flexible tests.
However, this field is relatively new and has not been adopted
in psychological practice because of its high barrier to entry for
design and implementation [7, 17]. Our approach seeks to assist
survey researchers in CAT design and reduce implementation costs
by providing a new multi-objective optimization strategy with
MOEAs to improve item selection, the core component of CAT.
Our approach uncovers the Pareto-efficient front to visualize the
trade-off between test length and precision.

3 PROBLEM FORMULATION
We formulate the optimization problem with past IRT models to
capture the ability of each individual test taker. We minimize the
length of the test (i.e., the number of questions) and maximize
the precision, or minimize the standard error of measurement, as
further described next.

Number of questions: Each question in the full assessment, or
item bank, is denoted by binary variable 𝑥 , where 𝑥 = 1 if a question
is present, and 𝑥 = 0 is a question is not present for the test taker.
The total number of questions in the item bank, or variables in
the optimization problem, is determined by the four assessment
datasets used in our simulated CAT study. To evaluate different
scenarios, we use tests with varying lengths and characteristics, as
described in Section 4.1.

For each solution, the length of the test in one CAT iteration is
given as:

𝑓1 (𝑥) =
𝑁∑
𝑖=1

𝑥𝑖 , (2)

where 𝑁 is the total number of questions in the item bank.

Standard error of measurement: The precision, or standard
error of measurement (SEM), is the confidence in an estimate from
a test. As test length decreases, the SEM generally increases. We
use SEM as the second objective over other item selection criteria

because of its wide use as the termination criteria for CAT-based
studies that have also been validated [21, 23]. SEM is given by:

𝑓2 (𝜃, 𝑥) =
√

1∑𝑁
𝑖=1 𝐼𝑖 (𝜃, 𝑏𝑖 , 𝑎𝑖 )𝑥𝑖

, (3)

where the function 𝐼 represents the information for an item 𝑖 for
a test taker with ability 𝜃 in the test, 𝑏𝑖 is a question difficulty
parameter in which 𝑏𝑖 = 1 indicates high difficulty and 𝑏𝑖 = 0
indicates low difficulty, and 𝑎𝑖 is a discrimination parameter in
which a higher value means the question can easily differentiate
abilities of test takers. Item information is given by:

𝐼𝑖 (𝜃, 𝑏𝑖 , 𝑎𝑖 ) = 𝑎2𝑖 P𝑖 (𝜃, 𝑏𝑖 , 𝑎𝑖 )𝑄𝑖 (𝜃, 𝑏𝑖 , 𝑎𝑖 ), (4)

where𝑄𝑖 (𝜃, 𝑏𝑖 , 𝑎𝑖 ) = 1−P𝑖 (𝜃, 𝑏𝑖 , 𝑎𝑖 ) and P𝑖 (𝜃, 𝑏𝑖 , 𝑎𝑖 ) is an IRTmodel
defining the probability of the test taker answering question 𝑖 cor-
rectly [16, 35]. This model depends on the test and the type of
question (e.g., multiple choice or Likert scale), as further described
next.

Item response theory models: There are two types of items
among the datasets used for evaluation: dichotomous items, in which
a binary response is given, such as True/False, and polytomous items
in which a categorical response is given, such as a one to five scale.
For dichotomous items, the first model was described in 1960, called
the Rasch model, or the 1PL (one-parameter logistic) model. This
defines the simplest model to summarize a person’s ability and is
given by [20, 26, 38, 38]:

P(𝑈𝑖, 𝑗 = 1|𝜃, 𝑏𝑖 ) =
1

1 + 𝑒−(𝜃−𝑏𝑖 )
, (5)

where𝑈𝑖, 𝑗 is the response of the 𝑖𝑡ℎ item by the 𝑗𝑡ℎ test taker. This
model has also been extended to include additional parameters. The
2PL (2-parameter-logistic) model [31] for binary response items is
given by:

P𝑖 (𝑈 = 1|𝜃, 𝑏𝑖 , 𝑎𝑖 ) =
1

1 + 𝑒−𝑎𝑖 (𝜃−𝑏𝑖 )
(6)

where 𝑈 is the response of the test taker and 𝑈 = 1 indicates a
correct response. Other models like the 3PL and 4PL model have
also been defined. However, depending on the assessment and
the dataset size, a model will need to be chosen accordingly (e.g.,
for a smaller dataset, the 3PL model would not be used because it
requires more data to accurately infer ability with more parameters)
[38]. Moreover, the 2PL model has been used extensively in past
studies and validated over time [24, 26, 34]. Therefore, we use the
2PL model for the dichotomous item datasets. An example of the
resulting SEM, item information, and the 2PL model for a sample
question from the datasets used is given in Figure 2.

In contrast, polytomous item models represent items with cate-
gorical responses, such as a Likert question with a scale of 1 to 5
[24]. The advantage of a categorical response over binary is more
precise trait estimates that can be obtained from the test taker [24].
Many models were developed to evaluate responses such as the
graded response model, nominal response model, and the partial
credit model [24, 34, 42]. We use the graded response model (GRM)
[24, 42], which builds upon the dichotomous item model. GRM
expands upon the 2PL model by considering the probability P𝑖𝑧 (𝜃 )
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Figure 2: Item characteristic curve (ICC) showing the prob-
ability of a correct response, item information curve (IIC),
and the SEM for dichotomous items [27].

of the test taker’s response for item 𝑖 beginning above or below 𝜃

for a category 𝑧 as given by [24, 42]:

P𝑖𝑧 (𝜃 ) =
𝑒𝑎𝑖 (𝜃−𝑡𝑖𝑧 )

1 + 𝑒𝑎𝑖 (𝜃−𝑡𝑖𝑧 )
, (7)

where 𝑡𝑖𝑧 is the threshold parameter for the latent trait level where
the probability of the test taker responding at or above category
𝑧 is 50%. An example of the GRM model from a sample question
from the datasets used is given in Figure 3.

All models have been used extensively in other work and their
reliability and validity studied with both simulated psychological
and real-world studies [24, 26, 34]. The parameters 𝑎 and 𝑏 for
every item will be calibrated using data from other studies and
their assessments, further described in Section 4.1.

Ability estimate: Initially, 𝜃 is set to 0, and is estimated after
each question the user answers. We use the expected a posteriori
(EAP) estimate to calculate the test taker’s position on the latent
scale. EAP is the most commonly used estimate in adaptive testing
[22, 23]. This is given by:

𝜃 (𝐸𝐴𝑃 ) ≡ 𝐸 (𝜃 |𝑈𝑘−1) =
∫
𝜃𝜋 (𝜃 )𝐿(𝜃 |𝑈𝑘−1)𝑑𝜃∫
𝜋 (𝜃 )𝐿(𝜃 |𝑈𝑘−1)𝑑𝜃

, (8)

where a prior distribution for 𝜃 is given by 𝜋 (𝜃 ) ∼ 𝑁 (𝜇𝜃 , 1
𝜏𝜃
), and

𝜏𝜃 denotes the precision of the distribution and both 𝜏𝜃 and 𝜇𝜃 are
defined based on the assessment datasets used [22, 23]. 𝐿 is the
likelihood function for the questions answered 𝑘 − 1. This is given
by:

𝐿(𝜃 |𝑈𝑘−1 = 𝑢) =
𝑘−1∏
𝑖=1
P𝑖 (𝜃 )𝑢𝑖𝑄𝑖 (𝜃 )1−𝑢𝑖 , (9)

for dichotomous items, where P𝑖 (𝜃 ) and𝑄𝑖 (𝜃 ) refer to the IRT mod-
els described earlier. For polytomous items, the likelihood function
is given by:

𝐿(𝜃 |𝑈𝑘−1 = 𝑢) =
𝑘−1∏
𝑖=1

𝐶𝑖∏
𝑡=1
P𝑖𝑡 (𝜃 )𝐼 (𝑢𝑖=𝑡 ) , (10)

where 𝐶 are all possible categories for a response and 𝐼 (·) is an
indicator function [23].

An example plot of the estimated ability over each iteration of
a question is shown in Figure 4 for a dichotomous item type, and
Figure 5 for a polytomous item type. The estimated ability 𝜃 is
shown on the y-axis, and the question given to the test taker is
shown on the x-axis. The difficulty parameter for each question is
also shown in red. A green background indicates the question was
answered correctly, and red indicates it was answered incorrectly.
We observe that when the test taker answers the question correctly,
the estimated ability increases, and when answering incorrectly the
ability decreases. Towards the end of the assessment it converges
to the individual’s real ability.

Optimization problem: At each iteration of the CAT, the over-
all optimization problem solved to obtain the Pareto-optimal set of
solutions is given by:

min
𝑖=0,...,𝑁

[𝑓1 (𝑥𝑖 ), 𝑓2 (𝑥𝑖 , 𝜃 )], (11)

subject to the constraint −∑𝑁
𝑖=1 𝑥𝑖 + 2 ≤ 0, which states that there

must be at least two questions given to the user in the test, allowing
for a more accurate estimate of a person’s ability (i.e., there cannot
be a one question survey).

The number of variables 𝑁 is equal to the number of questions
in the full assessment, and decreases as questions are given to the
test taker. At each step of the CAT, a solution defining the items to
serve the test taker, is selected from the Pareto-optimal set. Once
items are served, they are removed from the item bank, meaning 𝑁
will decrease each time the optimization problem is solved in the
CAT. Therefore, we add another constraint, or a stopping condition
for the test, that the CAT will terminate once the item bank is
exhausted, or when the standard error of measurement indicates
95% confidence or higher.

4 MATERIALS AND METHODOLOGY
CAT results depend upon several characteristics of the assessment,
such as the length, number of traits being measured, distribution of
abilities, and other factors. In this section, we explore the datasets
used to calibrate the IRT models and evaluate the MOEA used to
solve the optimization problem, and the decision-making strategy.

4.1 Data & Model Calibration
To calibrate the IRT models and compute SEM, we use data from
previous psychological studies where individuals have already com-
pleted a full version of an assessment. We use four standardized
assessments as training data: the Narcissistic Personality Inventory
(NPI) [27], the Machiavellianism Personality Test (MACH) [11], the

Table 1: Datasets used and characteristics.

Dataset 𝑁 IRT
model

Response
categories

Records

NPI 40 2PL 2 11,200
MACH 20 GRM 5 58,700
EQSQ 60 GRM 4 13,200
POL 65 2PL 2 860
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Figure 3: Item characteristic curves for each type of response category in polytomous items [11].

Figure 4: Estimated ability and question difficulty over an
entire dichotomous 40-question test. The estimated ability
increases when the test taker answers correctly (shown in
green), and decreases when answering incorrectly (shown
in red). Over many responses, the ability converges to the
actual value (indicated by the red line).

Figure 5: Estimated ability for a polytomous test, where re-
sponses range from 1 (“strongly disagree”) to 5 (“strongly
agree”). The color scale from red indicates 1 to green indi-
cating 5. Yellow indicates a neutral response, 3.

Empathy and Systemizing Quotient [2], and a political psycholo-
gy/sophistication assessment (POL) [22]. All datasets used are from
the Open-Source Psychometrics Project, found in [1], and in [22]
for POL. The Open-Source Psychometrics Project collects data from
online surveys, and POL data was collected through Mechanical
Turk; both have been shown to provide similarly valid and reliable
results to in-person studies [3].

Example questions from the POL and MACH tests are shown
in Figure 6. The R library ltm was used to calibrate the model pa-
rameters, such as difficulty and discrimination, as well as find the

Figure 6: Example of a question from the POL dataset and
one from the MACH personality dataset.

distribution of scores in the dataset [28]. We use 80% of the dataset
for calibration and 20% for the remaining results and evaluation.
The IRT parameters, score distribution, and questions in each as-
sessment are further described in the Supplementary Documents.
Dataset characteristics are given in Table 1.

4.2 Multi-Objective Evolutionary Algorithm
MOEAs are used to find the set of Pareto-optimum solutions for
multi-objective optimization problems, and can model the trade-off
between different objectives [12]. MOEAs are also ideal for find-
ing a diverse solution set to represent the entire Pareto-optimal
front. One of the most popular implementations is the fast Elit-
ist Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [13].
NSGA-II is a fast approach with a diversity preserving mechanism
to find solutions closest to the Pareto-optimal front [13]. After
population initialization and selection, crossover, and mutation,
a non-dominated sorting operation is performed, which groups
the population into fronts. Then, a crowding distance operation is
performed, which assigns a crowding distance value to population
individuals in each front as the perimeter of the cuboid, or objective
space around the individual unoccupied by any other solution in
the population. The next generation population is formed by se-
lecting individuals from the first fronts and solutions with a higher
crowding distance value. NSGA-II is further described in [12, 13].

We use NSGA-II and the implementation in the Python library
pymoo [6] to find the Pareto-optimal set of solutions. Each solution
is represented as a binary vector𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑖 , . . . , 𝑥𝑁 } where
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𝑥𝑖 ∈ {0, 1} and 𝑁 is the total number of questions in the item bank.
A two-point crossover operator and a bit flip mutation operator
is used [14]. We use a binary representation and crossover and
mutation operators because of its computationally cost-efficient
implementation. Duplicate solutions are also removed from the pop-
ulation in each generation. Each iteration of the CAT also removes
any questions from the item bank that were given to the test taker,
therefore reducing 𝑁 over time; this does not affect the number
of solutions in each generation, which relies on the pre-defined
population size parameter. The mutation rate, crossover rate, and
other parameters for the MOEA are given in Section 5.

4.3 Decision-Making
Next, we use the pseudo-weight method to select a solution of
questions from the Pareto-optimal set [12]. Pseudo-weight vectors
are assigned to each solution to capture the context of the solution
in multi-objective optimization. The pseudo-weight vector imple-
mentation used is from the Python library pymoo [6]. The pseudo
weight for the 𝑖𝑡ℎ objective is given by the following:

𝑤𝑖 =
(𝑓𝑚𝑎𝑥
𝑖

− 𝑓𝑖 (𝑥))/(𝑓𝑚𝑎𝑥
𝑖

− 𝑓𝑚𝑖𝑛
𝑖

)∑𝑀
𝑚=1 (𝑓𝑚𝑎𝑥

𝑚 − 𝑓𝑚 (𝑥))/(𝑓𝑚𝑎𝑥
𝑚 − 𝑓𝑚𝑖𝑛

𝑚 )
, (12)

where𝑀 is all solutions in the Pareto-optimal set and 𝑓𝑖 is the 𝑖𝑡ℎ
objective function [6]. The advantage this method provides is the
simplicity in selecting a solution (e.g., giving 80% weightage for 𝑓1
and 20% for 𝑓2, meaning the number of questions is given higher
priority than precision, and will therefore result in a shorter test).

This is beneficial for a real study, where the survey researcher
running the study would decide the length of the test, or the trade-
off between the SEM and number of questions. Moreover, a pseudo-
weight method supports the survey researcher to select a solution
for each iteration of the adaptive test, with the context of the entire
Pareto-optimal front. A selection alternative could also allow the
test taker to decide the length of the test they take, while under-
standing the trade-off of precision (e.g., in hiring tests). However,
to evaluate the results in this project, we observe three different
solutions with different weights:𝑊1 = (0.25, 0.75),𝑊2 = (0.5, 0.5),
and𝑊3 = (0.75, 0.25). This will allow us to analyze the trade-off
between precision and test length.

5 RESULTS AND DISCUSSION
Our results consist of three parts. First, we calibrate IRT models for
computing SEM and estimated 𝜃 ; final IRT parameters are given in
the Supplementary Documents to reproduce results. This is used
to obtain the Pareto-optimal fronts, covered in Section 5.1, and
evaluated with single-objective optimization for each objective.
Then, we use a pseudo-weight method with three different weight
combinations to find different solutions on the front, and discuss
the decision-making strategy when using the adaptive test in a
real study in Section 5.2. Last, the final item selection algorithm is
evaluated in Section 5.3.

For each optimization run, we set population size to twice the size
of the assessment item bank and run for 200 generations. Therefore,
for an assessment with 60 questions, such as EQSQ, a total of 1,200
solutions are simulated and evaluated. The GA mutation rate is set
at 5%, crossover at 100%, and starting 𝜃 for IRT is set to 0. These

parameters were selected based upon convergence of the GA with
different parameters and experiments.

5.1 Non-Dominated Set of Solutions
NSGA-II is used to obtain Pareto-optimal solutions. This is shown
in Figure 7 for all traits in each dataset. We are minimizing both
the SEM, given by F2, and the number of questions, given by F1.
For each front, we perform 10 independent runs and combine the
non-dominated solutions from all runs to obtain the final front.

We verify the results obtained by optimizing/minimizing each
objective at a time. The results are shown as the green and diamond
points in Figure 7. For SEM, the minimum value found was 0, where
all the questions in the assessment were included. For the number
of questions, the minimum number was 2 (due to the constraint set).
However, in the Pareto front we notice the solutions containing
few questions are very sparse. This is due to the question dataset
and parameters. Questions have different IRT models, and will
therefore lead to different SEM. Looking at the ability estimate plot
with question difficulty in Figure 4, we notice a select few questions
with a large difficulty parameter, meaning the test taker will likely
respond incorrectly or guess. Since these questions were included
in the objective space, they had a much higher SEM, setting it apart
from other solutions as a dominated solution.

5.2 Preference-Based Decision-Making
Next, we use the pseudo-weight method to select different solutions
from the Pareto-optimal set. The selected solutions are shown in red
in Figure 7 on the Pareto-fronts, and detailed in Table 2. We observe
that the Pareto-front for EQSQ and NPI reflect a steep increase in
questions when using different pseudo-weights. However, a survey
researcher may use this to their advantage, by understanding the
trade-off between test length and SEM, fewer questions can be
included while still achieving a low SEM. For the pseudo-weights
𝑊1, a larger assessment was selected, such as one with 36 questions
for both EQSQ and 14 for MACH. However, the opposite was for
pseudo-weights𝑊3, where only 2 questions were given to the test
taker in all datasets. Moreover, we observe that the SEM for dataset
MACH and EQSQ had much lower SEM values than the POL or NPI
datasets. This is due to the question parameters and the polytomous
IRT model, since MACH and EQSQ had categorical responses. We
use the selected solutions for evaluation of each dataset, as further
described next.

Table 2: Final selected solutions from the Pareto-optimal
sets with different weight vectors. 𝑓1 (𝑥) is the number of
questions and 𝑓2 (𝑥) is the SEM.

Selected Solution
𝑊1 : (0.25, 0.75) 𝑊2 : (0.5, 0.5) 𝑊3 : (0.75, 0.25)

Trait 𝑓1 (𝑥) 𝑓2 (𝑥) 𝑓1 (𝑥) 𝑓2 (𝑥) 𝑓1 (𝑥) 𝑓2 (𝑥)
NPI 27 0.0019 11 0.0132 2 0.0441
MACH 14 0.0028 6 0.0027 2 0.0085
EQSQ-E 36 0.0002 11 0.0041 2 0.0165
EQSQ-S 36 0.0002 11 0.0042 2 0.0165
POL 38 0.0009 12 0.0113 2 0.0421
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Figure 7: The final Pareto-optimal fronts obtained. We run ten independent simulations with different seeds and select the
non-dominated solutions. Both objectives have also been normalized. We note that the EQSQ has two separate Pareto-optimal
fronts because the assessment is multidimensional and measures two different traits, each with 60 questions.

5.3 Simulated Evaluation
To evaluate the adaptive version of the assessment, selected so-
lutions, overall optimization problem, and compare performance
across datasets and experiments, we use the root mean squared
error (RMSE) metric, which compares the estimated responses from
the full assessment to the adaptive version. This metric is a stan-
dard used in CAT to compare the adaptive assessment to the static
assessment [23]. RMSE is given by:

𝑅𝑀𝑆𝐸 =

√∑𝑛
𝑖=1 (𝜃𝑖 − 𝜃𝑖 )2

𝑛
(13)

where for 𝑛 is the total number of predictions and 𝜃𝑖 is the ob-
served ability and 𝜃𝑖 is the estimated ability. For all 𝑛 records in
the evaluation datasets, we simulate the test taker completing the
adaptive version of the assessment using their recorded response to
questions from the full assessment. The item selection optimization
problem is solved at each iteration of the adaptive test, which we
evaluate for all three solutions selected from the weight vectors.

The final results for each assessment dataset are presented in
Table 3, which shows the average total number of questions (i.e.,∑𝑛
𝑖=1 𝑓1𝑖 (𝑥) from every optimization problem solved at each CAT

iteration), the average final SEM (i.e., the cut-off 𝑓2 (𝑥) of the final
selected solution of the CAT iteration), and RMSE. Regardless of
the weight vector used, the termination criteria, or SEM, controls

Table 3: Final results for all datasets and weights.

Trait 𝑊𝑖 Avg. Qs Avg. SEM RMSE
𝑊1 30.3548 0.2417 0.0888

NPI 𝑊2 30.4558 0.2415 0.0886
𝑊3 30.5651 0.2412 0.0925
𝑊1 2.6705 0.1509 1.1325

MACH 𝑊2 2.6705 0.1509 1.1319
𝑊3 2.6705 0.1509 1.1343
𝑊1 2.9204 0.1736 1.8286

EQSQ-E 𝑊2 2.9204 0.1736 1.8291
𝑊3 3.0000 0.1623 1.7873
𝑊1 3.1342 0.1674 1.7099

EQSQ-S 𝑊2 3.1342 0.1674 1.7102
𝑊3 3.0000 0.1646 1.6904
𝑊1 29.1975 0.2115 0.2007

POL 𝑊2 29.2407 0.2120 0.1873
𝑊3 30.2407 0.2091 0.1927

the number of questions, as seen in the results where the total test
length is reduced overall, but is similar across all𝑊𝑖 . However, this
also indicates fewer CAT iterations are needed to reach a similar
termination criteria. We find that the results for the dichotomous
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Figure 8: A sample of the new CAT using the MOEA approach. The black bar on each point indicates the error in ability
estimation at each question. The blue bar in the middle of the plot indicates the actual ability from the full assessment.

assessments, NPI and POL, outperform polytomous assessments,
MACH and EQSQ. This is due to the low SEM found in the poly-
tomous Pareto-optimal solutions, resulting in a smaller adaptive
assessment. This can be changed by updating the termination cri-
teria of the CAT, or using a different weight vector, to increase
assessment size. However, with the POL assessment, our results
show the length of the test was reduced by nearly half the origi-
nal size. Similarly, NPI results show a reduction by 25% of the full
length assessment. Furthermore, the low RMSE values for both
dichotomous assessments indicate highly accurate results, close to
the original ability estimate by the full assessment.

Using𝑊2, we obtain the final sample results for the CAT, as
shown in Figure 8, where each assessment is the reduced version
of the original. The blue bar in the center of the plot indicates the
actual estimated ability (as determined by the full assessment). We
observe an estimated ability close to the actual value is achieved
in fewer questions for NPI and POL, reducing the assessments
by nearly 50%. MACH and EQSQ assessments used a lower CAT
termination criteria while selecting the same solution from the
Pareto-optimal set, and also had a slight reduction in test length. In
addition, we observe that both converge to the correct assessment
value, though only a slight reduction in test length for EQSQ and
MACH. In comparison, the NPI and POL assessments were reduced
by a greater portion of the original length.

6 CONCLUSION
We present a new multi-objective optimization method for item
selection in computerized adaptive testing. The optimization prob-
lem minimizes test length, while also minimizing the standard
error of measurement. An evolutionary multi-criterion optimiza-
tion algorithm, NSGA-II, is used to solve the problem with a binary
representation. Our approach is evaluated using four datasets, two
with dichotomous items, and two with polytomous items. We use
two different IRT models: the 2PL model for the dichotomous items

datasets, and GRM for the polytomous items datasets. These mod-
els were calibrated using large datasets from previous studies, and
evaluated using RMSE. The final Pareto-optimal solutions were
validated by using single-objective optimization, and individual
solutions were selected using pseudo weights. The new adaptive
assessment was able to achieve 95% confidence in the estimated
ability while reducing the size of each assessment. In particular, the
NPI dataset test length was reduced by 25% of the original length,
and the POL assessment results showed a 50% reduction. The results
obtained indicate the MOEA approach is advantageous for item
selection and should be further studied for CAT.

We propose three areas for future research. First, use of MOEAs
for multidimensional CAT item selection, where multiple traits
are measured simultaneously. This is challenging, since evaluation
with large assessment datasets requires computational time and
resources; our approach, focusing on unidimensional assessments,
took approximately two days to run every simulated evaluation
with all datasets. Second, investigating other CAT item selection
methods (discussed in Section 2.1) as a substitute for the second
objective in our MOEA approach may be beneficial to compare
results in other studies. Last, it will be useful to assess our approach
with real individuals. Though the datasets used contain responses
from real individuals and are similarly valid and reliable to in-
person studies [3], a study with the CAT in-person may provide
new insight for survey researchers.

Our work presents the first MOEA for item selection in CAT. We
find MOEAs can be beneficial in item selection with long assess-
ments, capturing the trade-off between precision and test length.
This will help survey researchers to efficiently design their studies
with CAT, and improve assessments in many fields.
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