
Solving the Paintshop Scheduling Problem with Memetic
Algorithms

Wolfgang Weintritt
wolfgang.weintritt@gmail.com

Databases and Artificial Intelligence
Group

TU Wien
Vienna, Austria

Nysret Musliu
musliu@dbai.tuwien.ac.at

Christian Doppler Laboratory for
Artificial Intelligence and

Optimization for Planning and
Scheduling, DBAI

TU Wien
Vienna, Austria

Felix Winter
winter@dbai.tuwien.ac.at

Christian Doppler Laboratory for
Artificial Intelligence and

Optimization for Planning and
Scheduling, DBAI

TU Wien
Vienna, Austria

ABSTRACT
Finding efficient production schedules for automotive paint shops
is a challenging task and several paint shop problem variants have
been investigated in the past. In this work we focus on a recently
introduced real-life paint shop scheduling problem appearing in
the automotive supply industry where car parts, which need to be
painted, are placed upon carrier devices. These carriers are placed
on a conveyor belt and moved into painting cabins, where robots
apply the paint. The aim is to find an optimized production schedule
for the painting of car parts.

In this paper, we propose a memetic algorithm to solve this
problem. An initial population is generated, followed by the con-
stant evolution of generations. Selection, crossover, mutation, and
local improvement operators are applied in each generation. We de-
sign three novel crossover operators that consider problem-specific
knowledge. Finally, we carefully configure our algorithm, including
automated and manual parameter tuning.

Using a set of available real-life benchmark instances from the
literature, we perform an extensive experimental evaluation of
our algorithm. The experimental results show that our memetic
algorithm yields competitive results for small- and medium-sized
instances and is able to set new upper bounds for some of the
problem instances.

CCS CONCEPTS
• Computing methodologies → Search methodologies; Ran-
domized search; Planning and scheduling;

KEYWORDS
Paint shop scheduling, memetic algorithms, production scheduling

ACM Reference Format:
Wolfgang Weintritt, Nysret Musliu, and Felix Winter. 2021. Solving the
Paintshop Scheduling Problem with Memetic Algorithms. In 2021 Genetic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8350-9/21/07. . . $15.00
https://doi.org/10.1145/3449639.3459375

and Evolutionary Computation Conference (GECCO ’21), July 10–14, 2021,
Lille, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3449639.3459375

1 INTRODUCTION
Each day, large amounts of synthetic material pieces need to be
painted in the automotive supply industry’s paint shops. As the
process of painting is costly and time-consuming, the industry’s
paint shops are highly automated. Material pieces are placed on
carrier devices, which in turn are placed on a conveyor belt. The
carrier devices are moved to painting cabins, where several painting
robots paint the materials.

Usually human planners are constructing the production sched-
ules for such problems. However, due to the long planning horizons
and the tight due dates as well as a lot of other constraints, it takes
a lot of time for human planners to create the schedules, and they
are normally not able to find optimal solutions in practice. There-
fore, there is a strong need for automated approaches to generate
effective schedules for this challenging problem.

In the literature this scheduling problem has recently been in-
troduced in [22], and is called the Paint Shop Scheduling Problem
(PSSP). It is a complex combinatorial problem, and the decision
variant of the problem was shown to be NP-complete in [21].

The PSSP imposes a number of constraints in addition to due
dates. Those include a limited amount of carrier devices, forbidden
color and carrier sequences, limited capacities, and minimum and
maximum block sizes for carriers of the same type. The combined
complexity of these constraints separates the PSSP from other au-
tomotive scheduling problems. The PSSP has a cost function that
combines two main objectives - the number of color changes in
the production sequence and the number of carrier device changes
between production cycles should both be minimized.

Recently, approaches to solve the PSSP have been proposed
in [22] and [21]. An exact approach from [21] has shown to work
well for small instances and could provide several optimal solutions.
For large instances optimal solutions are still unknown. However,
heuristics can generate feasible solutions in a reasonable time - [22]
achieved good results with simulated annealing.

In this paper we investigate memetic algorithms [13] for the
PSSP. Memetic algorithms have been successfully applied to other
scheduling problems (e.g. [1, 10, 11, 20]). However, to the best of our
knowledge, the PSSP has not been tackled with memetic algorithms.

The main contributions of this paper are:

1070

https://doi.org/10.1145/3449639.3459375
https://doi.org/10.1145/3449639.3459375
https://doi.org/10.1145/3449639.3459375

GECCO ’21, July 10–14, 2021, Lille, France Wolfgang Weintritt et al.

• We design and implement a memetic algorithm for the PSSP
and propose three novel crossover operators as well as dif-
ferent population construction strategies. The algorithm is
highly parameterizable, which helps in evaluating the perfor-
mance of the different construction strategies and memetic
operators.

• We experimentally evaluate the algorithm’s performance
on problem instances from the literature. Via automated
and manual parameter tuning we optimize our algorithm’s
performance and further analyze the impact of different
algorithm parameters.

• We compare our algorithm’s results with results produced
by state-of-the-art approaches. An experimental evaluation
shows that our method produces competitive results for
many problem instances and can improve upper bounds for
some of the real-life instances.

2 THE PAINT SHOP SCHEDULING PROBLEM
In the automotive supply industry’s paint shops, a large number
of car parts need to be painted each day. As a paint shop usually
supplies different car manufacturers, many different car parts have
to be painted, such as engine covers, bumpers, and wheel rims.
Just-in-time manufacturing [17] is a commonly used concept in the
car industry, which forces suppliers to adhere to tight due-dates.
Therefore, the main goal of the PSSP is the construction of feasible
production sequences which fulfill all due dates.

During production multiple car parts are transported on carry-
ing devices that automatically move through the paint shop on a
circular conveyor belt system. Because of the paint shop’s circular
layout, the schedule is organized in rounds (a round refers to the
processing of a set of carriers on the full conveyor belt cycle). A
carrier may transport well-defined combinations of raw material
parts which are loaded by paint shop employees at the beginning
of each production round. Then, carriers are moved to the painting
cabins, where the raw material parts are painted by several paint-
ing robots. After the carriers return from the painting cabins, the
finished parts are unloaded by paint shop employees. The empty
carrier may then be removed from the conveyor belt system, or can
be reused for the next production round where it is reloaded with
new raw material parts.

A paint shop schedule can be represented in tabular form, where
columns are rounds, and table cells represent carrier type, carrier
configuration, and the proposed color. Figure 1 depicts a simple
example schedule.

The example schedule shown in Figure 1 consists of three consec-
utive rounds (R1, R2, R3). Round R1 schedules 5 carriers of different
type, color, and material configurations. The first and second carrier
in round R1 are carriers of type A that use a light gray color and
material configuration 1. The third carrier uses the same type and
color, but assigns material configuration 2. Finally, the carriers at
positions 4 and 5 in round R1 are of type B, use a dark gray color
and material configurations 1 and 2. Similarly, rounds R2 and R3
also schedule a sequence of 5 carriers, but here different type, color,
and material configurations are used.

The PSSP has a cost function that combines two main objectives
- to minimize the number of color changes in the carrier sequence

R1 R2 R3 . . .

1 a a a . . .

2 a a a . . .

3 a a a . . .

4 a a a . . .

5 a a a . . .

A1

A1

A2

B1

B2

A2

A2

C1

B2

B3

C1

C2

C3

B1

B2

Figure 1: A PSSP schedule in tabular form for three rounds
(see also [22]).

and the number of carrier device changes between two consecutive
rounds. The practical benefit of these objectives is to reduce waste
and save costs. A good schedule should group requests with similar
colors to reduce costs. Besides, it is preferential to keep the number
of carrier changes between rounds as low as possible, since theymay
lead to delays in the schedule. Therefore, as many carrier devices
as possible should be reused, but if necessary carrier devices can
also be inserted and removed between consecutive rounds. The
maximum amount of reusable carriers between consecutive rounds
is determined by the longest common subsequence [6] of the two
associated carrier sequences, as exactly those carrier types which
are appearing in a longest common subsequence can be reused.

2.1 Hard Constraints
Feasible paint shop schedules have to fulfill several hard constraints:

• All demands must be satisfied within time (overproduction
is allowed).

• Carrier availability must be respected in each round.
• The minimum and maximum number of carriers per round
must be fulfilled.

• Minimum and maximum carrier block length restrictions
must be fulfilled (a carrier block refers to a group of consec-
utively scheduled carriers that use the same carrier type).

• Forbidden carrier sequences must not appear in the schedule.
• Forbidden color sequences must not appear in the schedule.

2.2 Objective function
The PSSP’s objective function (Equation 1) combines two minimiza-
tion objectives which aim to minimize the number of color change
costs (𝑐𝑐) and carrier changes (𝑠𝑐). Each round’s color change costs
(𝑐𝑐𝑟) and carrier changes (𝑠𝑐𝑟) are squared, to balance the required
changes over the scheduling horizon. This is done to avoid peaks
of such changes within a single round, which could lead to delays
in the schedule.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑
𝑟 ∈𝑅

𝑠𝑐2𝑟 +
∑
𝑟 ∈𝑅

𝑐𝑐2𝑟

with 𝑅: set of rounds.
(1)

During the search we also consider infeasible solutions. However,
for each violation a cost penalty equal to the upper bound of the
objective value is added.

1071

Solving the Paintshop Scheduling Problem with Memetic Algorithms GECCO ’21, July 10–14, 2021, Lille, France

3 RELATEDWORK
The PSSP was introduced in [22], where the authors additionally
proposed a metaheuristic approach based on local search to solve
the problem. Their approach utilizes a simulated annealing-based
move acceptance function which takes the search progress into
account and additionally uses a tabu list to prevent the selection of
recently performed moves. The authors further proposed a greedy
construction heuristic to generate initial solutions for the meta-
heuristic approach and provided a set of 24 real-life benchmark
instances. Experiments showed that the overall best results were
achieved with the following combination of techniques: The initial
solution was greedily created and passed to simulated annealing,
where the neighborhood was built via a min-conflicts heuristic.
This approach was able to find feasible solutions within a time
limit of one hour even for the largest benchmark instances. An
exact method using constraint programming (CP) for the PSSP was
proposed in [21]. This approach works well for small instances,
and has been able to find optimal solutions for several benchmark
instances. However, the proposed exact methods were not able to
solve any of the larger instances within a runtime limit of 6 hours.

While the PSSP has just recently been introduced in the liter-
ature, many previous publications investigated other production
scheduling problems from the automotive industry. The Car Se-
quencing Problem (CSP) is a related problem, where cars have to
be sequenced along the production line, fulfilling a number of
constraints. This problem also tackles the minimization of color
changes. The CSP is a popular problem in the literature, and has
been tackled with different approaches, like CP (e.g [3]), integer
linear programming (e.g. [14]), ant colony optimization (e.g. [5])
and a follow-up sequencing algorithm (e.g. [2]). An overview of
state-of-the-art methods for this problem is given in [15].

Authors of [16] also deal with the sequential ordering in automo-
tive paint shops. The objective of the presented problem is to maxi-
mize the average color batch size. They present a branch&bound
algorithm to solve the problem. Another work in [18] focuses on
reducing energy consumption in the automotive production pro-
cess by optimizing schedules. The proposed problem aims to reduce
energy consumption over peak demand periods on a group of pro-
duction lines of an automotive factory, while also obeying time
and resource constraints. An evolutionary algorithm is proposed to
solve the problem, which is starting from a population of random
schedules and applies local transformations to create offspring. The
best individuals of the union set of parents and children are then
selected for the next generation.

In [4] the Master Production Scheduling Problem (MPS) is consid-
ered in the context of the automotive industry. The customization
of final products in the automotive industry involves large numbers
of optional parts, which leads to a huge variety of operation times
at the various stations of the assembly line. The authors develop a
mathematical model formulation for the MPS and propose several
heuristic solution procedures to solve this problem, which focus on
minimizing the workload variability.

The PSSP is different from the automotive scheduling problems
discussed above since it does not deal with the manufacturing of
complete cars, but rather with individual car parts which need to be
grouped and placed on carrier devices. Furthermore, it uses a unique

quadratic objective function, which takes the whole scheduling
horizon into consideration and punishes peaks in color and carrier
device changes.

4 A MEMETIC ALGORITHM FOR THE PAINT
SHOP SCHEDULING PROBLEM

In this section we propose a memetic algorithm for the PSSP where
we represent a solution by a sequence of rounds (see Figure 1). A
solution’s chromosome is symbolized by a vector for each round,
with it’s length equal to the number of carriers scheduled this
round. Each element of the vector is an identifier, which represents
a carrier configuration and color code combination.

4.1 Crossover Operators and Memetic
Representations

Crossover operators are an essential part of population-based algo-
rithms andmay have a significant influence on the solution’s quality
(hereinafter called fitness). Finding effective crossover operators
for the PSSP is not a trivial task, since partial solutions (memes)
cannot be evaluated individually because of several reasons:

• Costs caused by a single round or a group of rounds cannot be
calculated without also considering the neighboring rounds.
This is because the costs depend on the differences between
the carrier sequences from two consecutive rounds.

• Demands and due date constraints must be fulfilled as they
are hard constraints. As the carrier devices associated to
a demand may be distributed over the whole schedule, we
cannot evaluate constraint violations for partial solutions.

• All constraints must be evaluated over the boundaries of the
schedule’s rounds. A round could, for example schedule a
carrier of type 𝐴 at its last position and thereby cause that
the next round cannot start with a carrier of type 𝐵 if 𝐴𝐵
is a forbidden carrier sequence. In other words, the rounds
are just a way of dividing the whole schedule, but cannot be
viewed independently.

• Rounds do not have a fixed size; their size only has to be
within a certain range. When evaluating partial solutions,
smaller rounds usually have fewer constraint violations and
lower costs than larger rounds.

These points make it difficult to evaluate and improve memes.
Thus, for the first two crossover operators (vertical and horizontal
crossover), full solutions are evaluated and selected as parents. We
also do not improve the memes during the local search phase, but
instead improve solutions as a whole.

4.1.1 Vertical Crossover. For this crossover operator rounds are
taken from two parent solutions to create a child solution. The
solutions are then cut in vertical direction and a meme is one round
of the solution. Whether a round is taken from parent𝐴 or parent 𝐵
is decided randomly. Figure 2 depicts an example of such a crossover.

This crossover operator’s main idea is to introduce an operator
that - while as simple as possible - still performs well. The operator
uses one of the problem’s natural units - the round - as its memes.
A round is neither too big nor too small to be a meme and carrier-
as well as color sequences are preserved. Furthermore, the round
capacity constraints (too few/too many carriers in a round) or the

1072

GECCO ’21, July 10–14, 2021, Lille, France Wolfgang Weintritt et al.

Figure 2: Vertical crossover.

Figure 3: Horizontal crossover.

carrier device availability constraints (too many carriers of a type
are used in a round) are not violated. Since we are merging rounds
of different solutions together, some of the problems mentioned at
the beginning of Section 4.1 can occur - such as higher costs due to
carrier sequences of successive rounds or hard constraint violations
(demands, carrier device sequences, etc.).

4.1.2 Horizontal Crossover. This crossover operator cuts the solu-
tions in horizontal direction. Two parent solutions are taken, cut,
and a child solution is created by merging the pieces together.

First, the solution is split into round blocks of length 𝑙 : 𝑙 ∈
[log3 𝑅, log2 𝑅], where 𝑅 is the number of rounds in the instance.
We choose a logarithmic block size since the number of rounds
can vary a lot between the instances. If we have an instance with
just a few rounds, we still want to have a few cuts. However, for
a problem instance with ten times as many rounds, the amount
of cuts should not grow by a factor of ten. Instead, we want the
number of blocks - and thus the number of memes - to be more
consistent for different instances.

For each of these round blocks, a horizontal cutting point ℎ is
chosen randomly from the interval ℎ ∈ [𝑟 ∗ 0.25, 𝑟 ∗ 0.75], where 𝑟
is the minimum round length, i.e. the minimum number of carrier
devices allowed per round. A meme is equivalent to one of the
halves of such a block. The cutting point ℎ is chosen from this
interval to obtain blocks of various sizes, while at the same time
avoiding blocks consisting of just a few carrier devices. Figure 3
illustrates a horizontal crossover.

This crossover operator aims to keep carrier change costs be-
tween consecutive rounds low, since those are vital for a solution’s
fitness. The blocks ensure that we have a longer sequence of con-
secutive "half" rounds, thus helping us to achieve this goal. Many
constraints, like the min/max block constraint or the forbidden
color/block sequence constraint, depend on the sequence of blocks.
The color costs also depend on the block sequence. Those con-
straints/costs suffer from switching between solutions, which oc-
curs now twice as often compared to the vertical crossover. Again,
since we are merging different solutions together, some of the prob-
lems mentioned at the start of Section 4.1 may occur.

Figure 4: Cost and demand crossover.

4.1.3 Costs andDemandCrossover. This crossover operator ismore
complex than the two crossover operators described above. The
first difference is that the number of parents is not fixed at two, but
is arbitrary (> 2). The second difference is that we conduct local
search to repair the solution at the merging point.

There is one base parent solution. Blocks of rounds are chosen
from different other parent solutions replacing those rounds in the
base solution - those are the memes. Between the selected blocks
must be a buffer zone. This buffer zone consists of rounds of the
base solution and has a minimum size of one round. The size of the
blocks is randomly chosen from the interval [log3 𝑙, log2 𝑙], where
𝑙 is the instance length. It’s the same block size as in the horizontal
crossover, chosen for the same reasons stated there. The crossover’s
name comes from the fact that those blocks are chosen by their costs
(color + carrier change costs) and by a score of demand fulfillment.

The calculation of a block’s costs is done in two steps. In a first
step a scarcity score is calculated for each material. The scarcity
is calculated by contrasting the demanded material amount with
the estimated amount, which can be held by the available carrier
devices. Eventually, we have a score for each material, which is
then normalized in the interval [0.3, 1]. This score is independent of
the solution and depends only on the problem instance. Therefore
it is only calculated once.

The second step is the calculation of the demand fulfillment and
the final score for the block. The materials’ scarcity calculated in
step 1 is used here. For each of the carrier devices in the block’s
rounds, we look at the demands that this carrier device can fulfill. A
carrier device gets a higher score if it fulfills urgent demands. This
score gets divided by the material scarcity calculated in step 1. The
score for the whole block is the average of all the carrier devices’
scores. The block’s final costs are the block’s costs (color and carrier
device change costs) multiplied with the score from step 2.

After creating the child solution bymerging the base solution and
the other parent solutions’ blocks together, a special local search
operator is conducted. The operator is only allowed to manipulate
the buffer zones. There is a higher chance in these zones than in the
blocks for possible improvement since the blocks have been chosen
for their low cost. Also, when merging parts of different solutions,
constraints can easily be violated. The local search operator is
stopped if no improvement is found for 6 cycles, or if the time limit
of 1 second is passed.

5 OVERALL ALGORITHM
In this section we present all components of our algorithm includ-
ing selection, crossover and mutation, local search as well as the

1073

Solving the Paintshop Scheduling Problem with Memetic Algorithms GECCO ’21, July 10–14, 2021, Lille, France

construction heuristics. Pseudo code and a detailed description of
the algorithm is given in [19].

5.1 Selection
Selection of solutions is done at different stages of the algorithm.

Selection of the elitist. The elitist is selected at the start of each
generation, by choosing the individual with the best fitness. It is
selected to survive the current round. The elitist can still be selected
as a parent for crossover operators or for mutation. Those operators
are immutable, i.e. they do not modify the parents. Thus, the elitist
will never be changed during this phase.

K-tournament selection of the individuals for crossover operators
(see [12]). Crossover operators use memes of parents to create child
individuals. To select the parents, the operator takes 𝑘 < |P | indi-
viduals from the current generation and performs a k-tournament.
The fittest individual out of the 𝑘 competitors wins, and thus is se-
lected. There are different fitness functions for the various crossover
operators - since for the cost and demand crossover blocks are com-
peting to be selected instead of full individuals. The number of
times a k-tournament is run likewise depends on the crossover
operator. For binary crossover operators, two parents are selected,
while more parents are selected for the cost and demand crossover.
The k-tournament operator is also used for the mutation operator -
where it only needs to be executed once.

Selection of the current generation’s survivors (shrinking). This
selection is only performed if the algorithm is configured to exe-
cute more crossover and mutation operators and thus create more
offspring than there are members in the initial population (N >

|P |−1). In our implementation, the population size always stays the
same. So only a certain number of created children can survive the
current generation. The best 𝑝 = |P | − 1, which are non-duplicates,
are selected for survival. If there are too many duplicates in the new
generation (> 10% of the population), we include individuals of the
old generation for survival (i.e. the parents). This is done to prevent
the population from converging towards the elitist, which would
frequently happen before introducing this change. Eventually, the
elitist is added to the new population.

5.2 Crossover and Mutation
Offspring is created by applying memetic operators to the popula-
tion, like crossover and mutation operators. Mutation is done with
probability𝑚, while crossover operators are executed with proba-
bility 1 −𝑚. The parents for the crossover operators, as well as the
individuals to be mutated, are selected via a k-tournament operator.
The value𝑚 and the probabilities for the different crossover opera-
tors are passed as parameters to the algorithm (see the experimental
section for a list of all parameters).

Our mutation operator chooses and executes a random local
search move. The randomness of the move is on purpose - it is
a move the local search algorithm would probably not make - to
promote diversity in the population.

5.3 Local Search
The local search algorithm for improving the selected individuals
is based on the simulated annealing approach proposed in [22].

Local search is conducted on a few selected individuals 𝑙 ≤ |P|
each generation. The number of individuals selected for local search
depends on the parameter 𝑖𝑙 𝑓 (individual learning frequency): 𝑙 =
|P | ∗ 𝑖𝑙 𝑓 . Child solutions are selected randomly for local search -
fitness is not taken into account. The time reserved for local search
is controlled by the parameter 𝑖𝑙𝑖 (individual learning intensity),
which is denoted in seconds.

Local search specific parameters like the simulated annealing
temperature are saved and passed to the next local search call. We
save those local search parameters since the population converges
together. For a population consisting of rather fit individuals, the
temperature thus will already be lower. If no improvements are
found for a certain amount of time, reheating is used to escape
local optima. The local search algorithm eliminates violated hard
constraints first, as for a single hard constraint violation a cost
penalty which is an upper bound to the objective value is added.

There are three neighborhood moves: insertion, deletion, and
swapping of carriers. All these moves can be done as block moves
which simultaneously modify successive carriers. The neighbor-
hood is generated via a min-conflicts heuristic where positions
involved in constraint violations are tracked. Some of those po-
sitions are then randomly selected to generate fitting moves. A
simulated annealing move acceptance function decides whether a
move should be accepted (see [8]). The temperature function also
supports reheating - a technique to escape local maxima in case no
improvements can be found for a certain amount of iterations.

5.4 Initialization
The fitness and diversity of the initial population have a big influ-
ence on genetic and memetic algorithms’ performance. There is
a trade-off between execution time, quality, and diversity when
creating the initial population. We implemented three construction
strategies which differ regarding the focus on these aims.

5.4.1 RandomConstruction. The random construction is the fastest
one of the three construction strategies. This strategy yields com-
pletely random solutions. Due to the fact that carriers and colors
are randomly chosen, population diversity is very high.

5.4.2 Random Greedy Construction. This is another very fast con-
struction strategy. Carriers and colors are again chosen randomly,
but they cannot violate some of the constraints. Carrier block size
constraints are always met, and only permitted color/carrier se-
quences are used. The diversity is again very high since we choose
carriers and colors randomly. The difference to a purely random con-
struction is that we try to avoid violations of minimum/maximum
block size and forbidden color/carrier sequences.

5.4.3 Greedy Construction. The third construction strategy is taken
from the literature ([22]). It is a lot slower than the first two - and
much more sophisticated.

The greedy construction heuristic is a two-phase algorithm. In
the first phase, the round layout is constructed. In this step, carrier
configurations and colors are assigned to the rounds, but not yet put
in sequence, while considering the problem’s hard constraints. In
the second phase, the carrier sequence for each round is determined.
Sequence constraints are taken into consideration while trying to
keep the amount of carrier and color changes low.

1074

GECCO ’21, July 10–14, 2021, Lille, France Wolfgang Weintritt et al.

Once the greedy construction terminates and yields a single
solution, we have to generate a full population from this single
solution because of time constraints - for the largest instances,
the construction can take up to 20 minutes. Therefore, for each
additional population member, we modify the yielded solution
by performing random local search moves on 3% of the carriers.
Afterwards, local search is conducted for 5 seconds to repair some
of the conflicts introduced by the modifications.

5.5 Crossover Delta Evaluation
Evaluating solutions is a task which takes a lot of computation
power. The costliest part of a local search algorithm is often the
evaluation of the new solutions. A technique to speed up solution
evaluation is delta evaluation. We can calculate the fitness of a
child solution 𝑠 by using the fitness of its parent solutions 𝑝1, ..., 𝑝𝑛 ,
some cached data structures, and information about the genetic
differences caused by the crossover or mutation operator.

Suppose we have a solution and its fitness. When applying a
move, we would normally evaluate the modified solution from
scratch. With delta evaluation, we can just evaluate the differences
in the part of the solution that has changed. If our move adds
additional carriers, we just need to consider how those carriers
affect the various constraints - which the PSSP has many of. For
example, for the delta evaluation of the demand constraint, we cache
(among others) the number of scheduled pieces until a round. The
move’s impact on the demand constraint can easily be calculated
by using this cache and information about the performed move,
thus avoiding iterating through all the solution’s rounds.

5.5.1 Full delta evaluation for crossover operators. For the local
search moves (insert/delete/swap blocks), [22] already implemented
delta evaluation. Based on their implementation, we add delta eval-
uation logic for each of our crossover operators.

One problem with this approach is that a lot of large data struc-
tures have to be cached. We also have to create a deep copy of those
data structures for new population members. This is due to the fact
that we cannot just modify one of the parent solutions and create
the child by applying the crossover operator. Parents need to be
immutable since they could be

(1) selected as a parent for another crossover operator.
(2) selected for mutation.
(3) taken over into the next round (if there are too many dupli-

cates).

For each new child solution, all the data structures need to be
copied. Creating offspring is an essential task of a memetic algo-
rithm, making this copy process very costly.

To further improve the performance of the delta evaluation, via
profiling we identified the most time-consuming constraint eval-
uators. The constraint which takes (depending on the instance)
60% to 95% of the evaluation’s runtime is the carrier change con-
straint. This is because, for this constraint, the longest common
sub-sequence between each pair of consecutive rounds has to be cal-
culated. Instead of deep copying the large data structures for each
new child solution, we just cache the costs of carrier changes per
round directly in the solution which simplifies the cost calculation.

6 COMPUTATIONAL RESULTS
In this section, we evaluate our memetic algorithm presented in the
previous section. We used a computing cluster that has 10 nodes,
each having 24 cores, with an Intel Xeon E5-2650 v4 2.20GHz CPU
and 252 GB RAM for all experiments.

6.1 Instances
The problem instances we use for benchmarking our algorithm are
taken from [22]. They provide 24 problem instances based on real
life planning scenarios of the automotive supply industry. These
instances have recently been used as benchmark instances for this
problem and are publicly available for download.1

The instances have six different planning horizons of 7, 20, 50,
70, 100, and 200 rounds. For each of the planning horizons, there
are two instances - only one of them imposes forbidden color and
carrier sequences. There are 12 big instances and 12 small instances.

6.2 Parameter tuning
As memetic algorithms are often highly parameterizable, we con-
figure many parameters for our algorithm, which may have an
influence on the solutions’ fitness. Since our algorithm is non-
deterministic, 10 stochastic runs are executed for each parameter
configuration. The result of those runs is used to calculate the mean,
best, and worst fitness, and the standard deviation for the parameter
configuration.

We applied SMAC (sequential model-based algorithm configura-
tion) ([7, 9]) for configuration of our algorithm. Furthermore, we
use the Wilcoxon signed-rank test as statistical method to assess
whether the means of solution costs of parameter settings provided
by SMAC differ significantly (see [19] for detailed results). The
range of values tested for each parameter is given below (in format
Parameter, Value sequence, Default value):

• Population size 𝑝 , [2, 5, 10, 15, 30], 10
• Crossover population size 𝑐𝑝*, [1.0, 1.2, 1.4, 2], 1.4
• K-tournament competitors 𝑘*, [0.0, 0.15, 0.35, 0.5], 0.15
• Individual learning frequency 𝑖𝑙 𝑓 , [0.0, 0.15, 0.35, 0.5], 0.15
• Individual learning intensity 𝑖𝑙𝑖 , [3, 8, 20, 45], 20
• Mutation frequency𝑚𝑓 , [0.0, 0.1, 0.2, 0.4], 0.2
• Vertical crossover freq. 𝑣𝑐 𝑓 , [0.0, 0.4, 0.5, 1.0], 0.5
• Horizontal crossover freq. ℎ𝑐 𝑓 , [0.0, 0.3, 0.5, 1.0], 0.0
• Costs and demand crossover freq. 𝑐𝑑𝑐 𝑓 , [0.0, 0.4, 0.5, 1.0], 0.5

Those values, as well as the default value, were selected by man-
ual tuning. Note that some parameters (𝑘*, 𝑐𝑝*) had to be modeled
as multipliers for 𝑝 , since no dependencies between parameters can
be modeled in SMAC. Thus: 𝑘 =𝑚𝑎𝑥 (1, 𝑝 ∗ 𝑘*).

As a runtime limit, we defined 30 minutes for each call of our
algorithm. Further, we conducted the tuning process separately for
the small and big instance sets.

6.3 Crossover operators
We evaluated several combinations of the crossover operatorsmixed
with different population sizes. For the small instance set we ob-
served that the horizontal crossover operator performed the worst,
especially for larger populations. The vertical crossover operator

1https://dbai.tuwien.ac.at/staff/winter/ps_instances.zip

1075

https://dbai.tuwien.ac.at/staff/winter/ps_instances.zip

Solving the Paintshop Scheduling Problem with Memetic Algorithms GECCO ’21, July 10–14, 2021, Lille, France

Figure 5: RDI values of parameter configurations with vari-
ous crossover combinations for the small instance set.

Figure 6: RDI values of parameter configurations with vari-
ous crossover combinations for the big instance set.

yields competitive results, while the best results are generated
by the cost and demand crossover operator. Figure 5 shows the
corresponding RDI (𝑅𝐷𝐼𝐼 ,𝑆 =

𝑐𝑜𝑠𝑡𝐼 ,𝑆−𝑏𝑒𝑠𝑡𝐼
𝑤𝑜𝑟𝑠𝑡𝐼−𝑏𝑒𝑠𝑡𝐼) values. Configuration

P10_CDCO has the lowest median of all configurations (configu-
ration identifiers denote the population size and used crossover
operator, i.e. in this case 𝑃10 means population size 10 and 𝐶𝐷𝐶𝑂
means cost and demand crossover). Interestingly, a bigger popula-
tion can lead to improved solution quality for the small instance
set’s larger instances, as can be seen by configuration P45_CDCO
and P100_CDCO.

For the large instance set, all configurations used the greedy
construction strategy - which is needed to achieve feasible solutions
within time constraints. Looking at the RDI values in Figure 6, three
combinations yield the best results: vertical crossover only, cost
and demand crossover only, and a combination of both. We further
observed that a population larger than 45 yields worse results for
this instance set.

We also evaluated our different construction strategies, and the
algorithm without local search, making it a genetic algorithm. Re-
sults showed that the genetic algorithm could find competitive
results for some of instances, but was in general outperformed by
the memetic algorithm. We refer the reader to [19] for detailed a
detailed comparison.

6.4 Comparison to Literature Results
This section compares the results obtained by runs of our algorithm
with the best parameter configurations to literature results. We take
our best result out of 10 runs for each instance for the comparison.
The time limit for each run is set to 1 hour to match the time
limit used in literature. Table 1 depicts parameter values of our
best configurations. The configurations were obtained using SMAC
and further manual tuning. A Wilcoxon signed-rank test showed
that there was no significant difference between the best literature
results and the memetic algorithm results.

Configuration 𝑝 𝑐𝑝 𝑘 𝑚 𝑣𝑐 𝑓 ℎ𝑐 𝑓 𝑐𝑑𝑐 𝑓 𝑖𝑙 𝑓 𝑖𝑙𝑖 𝑐

P100_G 100 1.0 7 0.0 0.5 0 0.5 0.01 3 Greedy
P200_RG 200 1.0 7 0.0 0.5 0 0.5 0.02 3 Random Greedy
P10_WS 10 1.0 5 0.1 0.5 0 0.5 0.15 8 Greedy
P45_G 45 1.0 7 0.0 0.5 0 0.5 0.05 3 Greedy

Table 1: Best parameter configurations.

6.5 Small Instance Set
The results from literature approaches and our best configurations
for the small instance set are shown in Table 2.

Instance LS LS/G LS/G/T CP P100_G P200_RG

7R-small 1028 844 882 775* 781 776
7R-HC-small 868 932 927 842* 842 844
20R-small 990 992 994 961* 995 976
20R-HC-small 1016 975 1050 918* 962 937
50R-small 616 593 599 530* 655 672
50R-HC-small 887 891 895 842* 909 906
70R-small 1084 1088 1137 844* 1272 1353
70R-HC-small 1871 1834 2553 1237* 1683 1657
100R-small 1767 1735 2421 975* 1500 2230
100R-HC-small 1262 1243 1269 964 1137 1113
200R-small 6298 5476 6439 - 2240 2070
200R-HC-small 5723 7916 8274 - 3172 2069

Table 2: Comparison of literature results with results from
our algorithm for the small instance set.

The best result achieved out of 10 runs is shown in columns
P100_G and P200_RG. The literature results shown in columns
LS, LS/G, LS/G/T show the best results from [22] that have been
achieved under a time limit of 1 hour with Simulated Annealing
(LS), Simulated Annealing starting from a greedily created solution
(LS/G), and Simulated Annealing starting from a greedy solution
with incorporation of a tabu list (LS/G/T). The CPU used by the
authors of [22] was an Intel Xeon E5345 2.33GHz with 48GB RAM.
Results shown in column CP show the best results achieved with a

1076

GECCO ’21, July 10–14, 2021, Lille, France Wolfgang Weintritt et al.

constraint programming approach from [21] under a time limit of 6
hours, where results with a * denote proven optimal solutions. Bold
values indicate upper bounds from [22]. Underlined values are im-
proved bounds compared to [22] found by our memetic algorithm.

Our algorithm achieves new upper bounds for the instances
200R-small and 200R-HC-small. When comparing our results to the
simulated annealing approaches, our algorithm achieves similar
results for most instances apart from those two. We suspect that
the large population sizes are beneficial for the small instance set,
especially for those two problem instances.

Figure 7 illustrates RDI values for this comparison. We can see
that the medians of the configurations P200_RG and P100_G are
smaller than the other approaches’ medians.

Figure 7: RDI values of the best configurations and literature
results for the small instance set.

6.6 Big Instance Set
For the big instance set, we compare the results in Table 3.

Instance LS LS/G LS/G/T P10_WS P45_G

7R 2097235 116235 123830 80121 79526
7R-HC 1985513 118628 130552 116504 120946
20R 8159361 180863 172679 162012 178251
20R-HC 8621490 262252 262897 254127 266444
50R 23320626 421777 455321 509188 538880
50R-HC 23947097 581021 606917 535031 546846
70R 34294393 555829 576225 576450 595859
70R-HC 34713814 930564 927822 870889 916365
100R - 917955 957854 1031698 1087649
100R-HC - 1128716 1142530 1450234 1680627
200R - 1889804 1884125 2209354 2711918
200R-HC - 2086450 - 2312213 2822476

Table 3: Comparison of literature results with results from
our algorithm for the big instance set.

The best result achieved out of 10 runs is shown in columns
P10_WS and P45_G. Columns LS, LS/G, LS/G/T show the best results
from [22]. Bold values are upper bounds from [22]. Underlined
values are improved bounds compared to [22].

We are able to improve upper bounds compared to [22] for six
of the instances: 7R, 7R-HC, 20R, 20R-HC, 50R-HC, and 70R-HC.

Analyzing the cost differences between our two best configurations,
P45_G only performs better for the smallest instance. The gap
between the two configurations gets bigger for increasing instance
sizes. For the largest four instances, our algorithm performed worse
than the local search approaches.

RDI values of the various methods for the big instance set are
shown in Figure 8. The median for our configuration P10_WS is
smaller than the literature approaches’ median, which indicates a
good performance of our approach.

Figure 8: RDI values of the best configurations and literature
results for the big instance set.

7 CONCLUSIONS
In this paper, we proposed a memetic algorithm to solve the re-
cently introduced Paint Shop Scheduling Problem. We designed
a memetic representation and proposed different population con-
struction strategies. Further, we introduced memetic operators for
selection, mutation, and three novel crossover operators, which
consider problem-specific knowledge.

We observed that a large population yields good results for the
small instance set, while smaller population sizes are preferred
for the big instance set. A combination of the vertical crossover-
and cost and demand crossover operators is preferential for most
instances. Construction strategies for the initial population have a
massive influence on the result. For the big instance set, sophisti-
cated construction strategies are needed to generate feasible results
within time constraints. We compared the results obtained by the
best parameter configuration to the best literature results using
a set of publicly available real-life instances. Our memetic algo-
rithm’s results are competitive for the small instance set, as well as
for small instances of the big instance set and provides new upper
bounds for some instances.

For future work it would be interesting to investigate other
crossover operators and local search strategies, where a variable
population size that starts with a smaller population and increases
its size once solutions reach a better quality could be beneficial.

ACKNOWLEDGMENTS
The financial support by the Austrian Federal Ministry for Digi-
tal and Economic Affairs, the National Foundation for Research,
Technology and Development and the Christian Doppler Research
Association is gratefully acknowledged.

1077

Solving the Paintshop Scheduling Problem with Memetic Algorithms GECCO ’21, July 10–14, 2021, Lille, France

REFERENCES
[1] Edmund K. Burke, James P. Newall, and Rupert F. Weare. 1995. A Memetic

Algorithm for University Exam Timetabling. In PATAT (Lecture Notes in Computer
Science, Vol. 1153). Springer, Edinburgh, UK, 241–250.

[2] Sara Bysko and Jolanta Krystek. 2019. Follow-Up Sequencing Algorithm for Car
Sequencing Problem 4.0. InAutomation 2019 - Progress in Automation, Robotics and
Measurement Techniques, outcomes of the international conference AUTOMATION
2019, 27-29 March, 2019 (Advances in Intelligent Systems and Computing, Vol. 920),
Roman Szewczyk, Cezary Zielinski, and Malgorzata Kaliczynska (Eds.). Springer,
Warsaw, Poland, 145–154. https://doi.org/10.1007/978-3-030-13273-6_15

[3] Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. 1988. Solving the
Car-Sequencing Problem in Constraint Logic Programming. In ECAI. Pitmann
Publishing, London, Munich, Germany, 290–295.

[4] Jan Dörmer, Hans-Otto Günther, and Rico Gujjula. 2015. Master production
scheduling and sequencing at mixed-model assembly lines in the automotive
industry. Flexible Services and Manufacturing Journal 27, 1 (2015), 1–29.

[5] Caroline Gagné, Marc Gravel, and Wilson L. Price. 2006. Solving real car se-
quencing problems with ant colony optimization. Eur. J. Oper. Res. 174, 3 (2006),
1427–1448.

[6] Daniel S. Hirschberg. 1977. Algorithms for the Longest Common Subsequence
Problem. J. ACM 24, 4 (1977), 664–675.

[7] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-
Based Optimization for General Algorithm Configuration. In LION (Lecture Notes
in Computer Science, Vol. 6683). Springer, Rome, Italy, 507–523.

[8] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. 1983. Optimization by
Simmulated Annealing. Sci. 220, 4598 (1983), 671–680.

[9] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, Stefan Falkner, André
Biedenkapp, and Frank Hutter. 2017. SMAC v3: Algorithm Configuration in
Python. https://github.com/automl/SMAC3.

[10] Bo Liu, Ling Wang, and Yihui Jin. 2007. An Effective PSO-Based Memetic Al-
gorithm for Flow Shop Scheduling. IEEE Trans. Syst. Man Cybern. Part B 37, 1
(2007), 18–27.

[11] Bo Liu, Juan-Juan Xu, Bin Qian, Jian-Rong Wang, and Yan-Bin Chu. 2013. Proba-
bilistic memetic algorithm for flowshop scheduling. In Memetic Computing. IEEE,

Singapore, Singapore, 60–64.
[12] Brad L. Miller and David E. Goldberg. 1996. Genetic Algorithms, Selection

Schemes, and the Varying Effects of Noise. Evol. Comput. 4, 2 (1996), 113–131.
[13] Pablo Moscato. 1989. On evolution, search, optimization, genetic algorithms

and martial arts: Towards memetic algorithms. Caltech concurrent computation
program, C3P Report 826 (1989), 1989.

[14] Matthias Prandtstetter andGünther R. Raidl. 2008. An integer linear programming
approach and a hybrid variable neighborhood search for the car sequencing
problem. Eur. J. Oper. Res. 191, 3 (2008), 1004–1022.

[15] Christine Solnon, Van-Dat Cung, Alain Nguyen, and Christian Artigues. 2008.
The car sequencing problem: Overview of state-of-the-art methods and industrial
case-study of the ROADEF’2005 challenge problem. Eur. J. Oper. Res. 191, 3 (2008),
912–927.

[16] Sven Spieckermann, Kai Gutenschwager, and Stefan Voß. 2004. A sequential
ordering problem in automotive paint shops. International journal of production
research 42, 9 (2004), 1865–1878. Publisher: Taylor & Francis.

[17] Y Sugimori, K Kusunoki, F Cho, and SJTIJOPR UCHIKAWA. 1977. Toyota pro-
duction system and kanban system materialization of just-in-time and respect-
for-human system. The international journal of production research 15, 6 (1977),
553–564.

[18] Junwen Wang, Jingshan Li, and Ningjian Huang. 2011. Optimal vehicle batching
and sequencing to reduce energy consumption and atmospheric emissions in
automotive paint shops. International Journal of Sustainable Manufacturing 2,
2-3 (2011), 141–160.

[19] Wolfgang Weintritt. 2020. Solving the Paintshop Scheduling Problem with Memetic
Algorithms. Thesis. TU Wien. https://repositum.tuwien.at/handle/20.500.12708/
16215

[20] Magdalena Widl and Nysret Musliu. 2014. The break scheduling problem: com-
plexity results and practical algorithms. Memetic Comput. 6, 2 (2014), 97–112.

[21] Felix Winter and Nysret Musliu. 2021. Constraint-Based Scheduling for Paint
Shops in the Automotive Supply Industry. ACM Trans. Intell. Syst. Technol. 12, 2,
Article 17 (Jan. 2021), 25 pages.

[22] Felix Winter, Nysret Musliu, Emir Demirovic, and Christoph Mrkvicka. 2019.
Solution Approaches for an Automotive Paint Shop Scheduling Problem. In ICAPS.
AAAI Press, Berkeley, CA, USA, 573–581.

1078

https://doi.org/10.1007/978-3-030-13273-6_15
https://github.com/automl/SMAC3
https://repositum.tuwien.at/handle/20.500.12708/16215
https://repositum.tuwien.at/handle/20.500.12708/16215

	Abstract
	1 Introduction
	2 The Paint Shop Scheduling Problem
	2.1 Hard Constraints
	2.2 Objective function

	3 Related Work
	4 A Memetic Algorithm for the Paint Shop Scheduling Problem
	4.1 Crossover Operators and Memetic Representations

	5 Overall algorithm
	5.1 Selection
	5.2 Crossover and Mutation
	5.3 Local Search
	5.4 Initialization
	5.5 Crossover Delta Evaluation

	6 Computational Results
	6.1 Instances
	6.2 Parameter tuning
	6.3 Crossover operators
	6.4 Comparison to Literature Results
	6.5 Small Instance Set
	6.6 Big Instance Set

	7 Conclusions
	Acknowledgments
	References

