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ABSTRACT
A core challenge of evolutionary search is the need to balance be-
tween exploration of the search space and exploitation of highly fit
regions. Quality-diversity search has explicitlywalked this tightrope
between a population’s diversity and its quality. This paper extends
a popular quality-diversity search algorithm, MAP-Elites, by treat-
ing the selection of parents as a multi-armed bandit problem. Using
variations of the upper-confidence bound to select parents from
under-explored but potentially rewarding areas of the search space
can accelerate the discovery of new regions as well as improve its
archive’s total quality. The paper tests an indirect measure of quality
for parent selection: the survival rate of a parent’s offspring. Results
show that maintaining a balance between exploration and exploita-
tion leads to the most diverse and high-quality set of solutions in
three different testbeds.
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1 INTRODUCTION
Population-based genetic algorithms are powerful when it comes
to global optimization, but have often faced the challenge of prema-
ture convergence towards local optima in the search space [12, 27].
Many approaches across several decades have attempted to address
this challenge, including genetic diversity preservation mechanisms
[25, 30], multimodal optimization [28], multi-objective approaches
[4] and many others. For over a decade, divergent search has also
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been a prominent solution to premature convergence by ignoring
the fitness function and instead aiming to maximize the popula-
tion’s behavioral diversity [21]. Divergent search favors exploration
of the search space exclusively, and has shown to work particularly
well in deceptive fitness landscapes [24]. Somewhere between the
greedy exploitation strategy of objective-driven methods and the
exploration-based divergent search lies the Quality-Diversity (QD)
family of algorithms [3, 29] which attempt to balance exploration
and exploitation by guiding evolution towards behavioral diversity
while also rewarding individuals that are better (in terms of the
objective) in their own behavioral niches. This localized control for
quality is facilitated by ensuring that individuals satisfy some mini-
mal constraints [20, 23], by treating diversity and local competition
as separate objectives [22], or by partitioning the search space in
advance and saving only the best individual per partition [26].

As noted above, evolutionary computation has a long history
in exploring the trade-offs between exploration and exploitation.
Among QD approaches specifically, novelty search with local com-
petition [22] explicitly treats a measure of exploration and a mea-
sure of exploitation as different objectives. On the other hand, the
Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) al-
gorithm ensures exploration through the way the search space is
partitioned; in this vein, alternative ways of partitioning the space
have been explored via clustering [8, 31] or dimensionality reduc-
tion [2]. Most implementations of MAP-Elites select individuals
uniformly among the elites retained in the feature map, and a pres-
sure towards exploitation comes during replacement rather than
during parent selection. While MAP-Elites keeps only the fittest
individual in each cell, variants with more individuals per cell have
been explored [7, 16, 17]. Yet parent selection is an important way to
ensure exploitation that has only been investigated in few studies—
e.g. prioritizing parents that are novel [29] and/or surprising [14]
in MAP-Elites. Cully and Demiris explored the impact of parent
selection on QD search in an extensive study [3].

This paper investigates the traditional exploration-exploitation
dilemma in QD by transferring well-studied node selection ap-
proaches from tree search [18] to parent selection strategies in
quality diversity. In particular, in this study we view the selection
process of MAP-Elites as a multi-armed bandit problem and we
explore how the upper confidence bound (UCB) formula can drive
parent selection, specifically the variant popularized in Monte Carlo
Tree Search [18] (i.e. UCB1 applied to trees). Since the UCB formula
explicitly designates an exploitation and an exploration component,
we also test how these two components impact the performance of
MAP-Elites on their own. Importantly, the exploitation component
is not directly fitness-dependent but instead rewards individuals
that produce offspring that survive, similar to the curiosity score
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of [3]. Finally, we introduce two UCB score variants, where the
formula is calculated on the parent as an individual or on the cell
which is occupied by the parent. The many variants of this selection
mechanism are evaluated comprehensively in two popular testbeds
for QD search and on a simple level generation task. Results on
the two testbeds show that all variants outperform the “vanilla”
uniform selection strategy of the algorithm in terms of all estab-
lished metrics for QD search. Moreover, UCB is shown in all cases
to better balance highly fit and diverse solutions versus e.g. many
diverse solutions found by exploitation-only methods.

2 BACKGROUND
The MAP-Elites algorithm was introduced by Mouret and Clune
[26] as a way to illuminate the search space during optimization.
MAP-Elites maintains a diverse set of high-quality individuals and
is one of the prototypical QD search methods. MAP-Elites uses
a feature map based on 𝐷 feature dimensions that describe the
phenotype or its behavior. This feature map is partitioned into a
number of cells depending on the resolution chosen, and each cell
may contain up to one individual. Each individual on the feature
map is thus guaranteed to have at least one behavioral characteristic
different from every other individual. Each individual is evaluated
across the 𝐷 feature dimensions, and on a problem-specific fitness
function (the quality component of the algorithm). If the individual
is mapped to an unoccupied cell of the feature map, it occupies it; if
it is mapped to a cell already occupied by an individual, it replaces
that individual if its fitness is better (i.e. higher for maximization
problems). This ensures that the feature map contains elites in each
behavioral niche. As a summary of each iteration in MAP-Elites:
(a) the algorithm randomly selects an individual among those in
the feature map, (b) the individual produces an offspring through
mutation, (c) the offspring is evaluated across all feature dimensions
and fitness, (d) the offspring is mapped to a cell of the feature map
and occupies it if the cell is empty or if the individual in that cell
(which could be its parent) has a worse fitness.

As noted in the introduction, the general principle of MAP-Elites
(partitioning the space and storing the fittest individual in each
partition) has inspired a large number of variants. In terms of par-
ent selection pressure, early work explored how a novelty score
could be used to apply selection pressure based on the average
behavioral distance of the individual and its nearest neighbors in
an archive of past solutions [29]. This was expanded in [14] which
biased parent selection according to a novelty score, a surprise score
based on deviations from predicted trends in the population, and
aggregated or multi-objective combinations of the two. Cully and
Demiris [3] explored several selection methods, including score-
based and population-based (where multiple offspring are inserted
simultaneously to the feature map). Criteria for selecting parents
included their fitness, their novelty (which, unlike [14, 21, 29], was
defined as the number of filled cells neighboring the individual)
and a curiosity score. The latter rewarded individuals based on the
number of offspring that survived and penalized them based on the
number of offspring that did not. All of these scores were applied,
individually, in a score-proportionate, stochastic selection process;
a multi-objective variant was also tested with fitness and novelty as
separate objectives. All of these metrics could in principle be used

as the exploitation dimension for a UCB-based selection method.
The curiosity score in particular is very similar to the offspring
survival metric used here (essentially with 0 penalties for offspring
that perish), although there are two important differences in terms
of the broader selection process: (a) the selection bias formula used
here normalizes the offspring to the number of times an individual
is selected, thus applying immense pressure to newly added indi-
viduals (or cells) while the opposite is true with curiosity-based
selection; (b) parent selection in this paper is performed by ranking
individuals, rather than via stochastic selection (random selection is
only used to break ties). Other variant parent selection mechanisms
include cases where multiple feature maps are kept, such as two
feature maps with different feature dimensions [29] or containing
feasible individuals in one and infeasible individuals in the other
[17]; in these cases, an equal amount of parents are chosen from
each feature map. Finally, Go-Explore [6] applies a selection bias
aggregating different versions of selection frequency (including e.g.
the number of times the cell is selected since its offspring discov-
ered a new cell) as well as neighborhood- and domain-dependent
biases. The selection bias of Go-Explore is fairly close in principle
to the UCB formula presented here, as the latter also considers
the survival rate of offspring (although survival also considers an
offspring replacing an existing elite rather than only discovering
new cells). Similar to UCB, the Go-Explore selection formula is also
a weighted sum of components, some of which could be construed
as ‘exploitation’ and ‘exploration’ measures. Notably, the proposed
UCB formula is not dependent on the domain and is tested on
very different problems. It also applies a strict rank-based selection
priority rather than the probabilistic approach of Go-Explore.

To the best of our knowledge, the UCB formula has not been
utilized for parent selection in MAP-Elites and its variations. The
closest application of UCB policies to our work is in surrogate-
assisted illumination (SAIL), which used the UCB formula to select
which individuals should be simulated [10]. The selection was per-
formed on an acquisition map (i.e. a map containing the predictions
of a surrogate model regarding the fitness of the individuals). The
acquisition map was in essence very similar to a feature map in
MAP-Elites, although in SAIL the feature map is produced through
predictions of the model (which is trained via the acquisition map)
and during evolution parent selection is actually uniform. More-
over, the UCB formula in [10] takes into account performance and
variance of performance, rather than traces of the evolutionary
progress as in this paper. In other work [11], UCB1 is applied to
choose which of the genetic operators (re-constructive crossover,
line mutation, or isometric mutation) to apply to the parent. Similar
to this paper, the reward in [11] “is assigned in proportion to the
number of children who earned a place in the archive”.

3 UCB FOR PARENT SELECTION
This paper explores how parent selection driven by the UCB for-
mula [18] can affect the performance of MAP-Elites. To test the
general applicability of our approach, we use the original MAP-
Elites implementation of [26] and we modify only the selection
strategy. Unless specifically stated, parent selection methods de-
scribed here rank all elites in the feature map based on a selection
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score, and choose the individual with the highest score; in case of
ties, selection is random among the tied individuals.

The UCB formula of Eq. (1) is applied to calculate the selection
score, where 𝑛(𝑖) is the times individual 𝑖 was selected, 𝑤 (𝑖) is
the number of offspring of 𝑖 that survive (i.e. replace an existing
individual or occupy an empty cell), 𝜆 is a constant, and 𝑁𝑠 is the
total number of selections for the whole population. We treat the
edge-case of 𝑛(𝑖) = 0 as “infinity”, following a common interpreta-
tion of UCB [1]. In doing so, the algorithm is forced to visit every
individual at least once, by giving equal and absolute priority to
unvisited ones. In experiments presented in this paper, 𝜆 = 1√

2
for

UCB selection strategies, as this value is optimal when the reward
(𝑤 (𝑖)/𝑛(𝑖)) is in the value range of [0, 1] , as explained in [1].

𝑈 (𝑖) =

𝑤 (𝑖)
𝑛(𝑖) + 𝜆 ·

√
𝑙𝑛(𝑁𝑠 )
𝑛(𝑖) if 𝑛(𝑖) > 0,

∞ if 𝑛(𝑖) = 0,
(1)

In Eq. (1), it is equally valid to consider the times the individual
has been selected as parent or the times any individual in that cell
has been selected. We treat the former as individual-based selection,
𝑈𝑖 (𝑖), where 𝑛𝑖 (𝑖) is the number of selections of this individual and
𝑤𝑖 (𝑖) the times that offspring of this individual survived. We treat
the latter as cell-based selection,𝑈𝑐 (𝑖), where 𝑛𝑐 (𝑖) and𝑤𝑐 (𝑖) is the
number of instances that any elite occupying this cell was selected
and produced offspring that survived respectively. Individual-based
selection assumes that some individuals have strong potential to
produce either highly fit (replacing existing elites) or highly diverse
individuals (occupying new cells). Cell-based selection assumes that
there are some inherent properties of that region of the search space
that must be exploited. Importantly, cell-based selection ensures
that each cell is selected at least once but new individuals in already
occupied cells are not guaranteed to be selected.

This paper also explores the impact of each individual component
of the UCB formula. Focusing on the exploitation-only methods,
the 𝐸𝑖 (𝑖) and 𝐸𝑐 (𝑖) selection metrics use the same formula as Eq. (1)
with 𝜆 = 0. For the exploration-only methods, Eq. (2) calculates the
metrics as a simplification of the second component of Eq. (1). Once
again, two variants are calculated, the individual-based 𝑋𝑖 (𝑖), and
the cell-based 𝑋𝑐 (𝑖), by setting 𝑛(𝑖) as 𝑛𝑖 (𝑖) and 𝑛𝑐 (𝑖) respectively.

𝑋 (𝑖) =


1
𝑛(𝑖) if 𝑛(𝑖) > 0,

∞ if 𝑛(𝑖) = 0,
(2)

In sum, six new selection metrics are tested in this paper, using
variants of the UCB formula and measuring exploitation as the
survival rate of the offspring of individuals. Three individual-based
metrics consider the number of selections and times the offspring
survived based on the current elite occupying this cell, while three
cell-based metrics consider the number of selections and times
the offspring survived based on every elite that ever occupied this
cell. Some of these metrics are similar to existing methods: 𝑋𝑐 is
conceptually similar to uniform selection but puts an emphasis
on newly filled cells in the feature map. Later in the evolutionary
process when all cells are filled, this pressure is less pronounced.
𝑈𝑖 selects parents only based on the ratio of surviving offspring of
a specific individual, which is conceptually similar to the curiosity
score of [3]. However, there are two important differences: (a) the

formula of Eq. (1) gives exclusive priority to new individuals (when
𝑛(𝑖) = 0) and (b) this implementation always selects the individual
with the highest offspring survival rate, versus the curiosity score-
proportionate roulette wheel selection of [3]. These two differences
can skew selection substantially as evidenced in this paper’s results.

We test the new selection metrics against three baselines. The
greedy baseline ranks all elites by fitness and selects the fittest
one to produce offspring. The uniform selection selects randomly
any elite as in the original implementation of MAP-Elites [26]. The
curiosity baseline follows the implementation of [3]. Unlike all
other methods (except uniform), the curiosity baseline uses roulette
wheel selection proportionate to a curiosity score that increases
by 1 when an individual’s offspring survives and decreasing by 0.5
when it does not. In summary, the list of selection metrics examined
is as follows:

• 𝑈𝑖 : individual-based UCB, with 𝜆 = 1/
√
2 in Eq. (1).

• 𝑈𝑐 : cell-based UCB, with 𝜆 = 1/
√
2 in Eq. (1).

• 𝐸𝑖 : individual-based exploitation-only, with 𝜆 = 0 in Eq. (1).
• 𝐸𝑐 : cell-based exploitation-only, with 𝜆 = 0 in Eq. (1).
• 𝑋𝑖 : individual-based exploration-only via Eq. (2).
• 𝑋𝑐 : cell-based exploration-only via Eq. (2).
• 𝐺 : greedy baseline selecting the fittest elite.
• 𝑅: “vanilla” MAP-Elites applying uniform (random) selection.
• 𝐶: roulette-wheel selection proportionate to the curiosity
score formula of [3]. As in the original paper, curiosity score
is calculated per individual (not per cell).

4 TESTBEDS
The nine methods of parent selection are applied on three testbeds.
The 6-D Rastrigin (Section 4.1) and the 12-DoF Arm Repertoire (Sec-
tion 4.2) testbeds are two typical benchmarks for QD and evolu-
tionary search more broadly. The maze generation task (Section
4.3) is closer to a real-world application for automated level design.

4.1 6-D Rastrigin
Rastrigin is a classical benchmark for global optimization [15] that
has often served as testbed for QD search [7, 9, 16]. Rastrigin is a
“highly multimodal function with a comparatively regular structure
for the placement of the optima” [15]. This testbed is thus ideal
for examining an algorithm’s ability to detect global optima or to
establish a good diversity overall. Following the practice of [7, 16],
we use the 6-dimensional version of the Rastrigin function.

4.1.1 Experimental Setup. The genotype is a vector of real-valued
variables ®𝑥 = (𝑥1, 𝑥2, . . . , 𝑥6) with ®𝑥 ∈ [−5.12, 5.12]6. A genotype’s
fitness is calculated via the 6-D Rastrigin function in Eq. (3).

𝑓 ( ®𝑥) = 60 +
6∑

𝑖=1
(𝑥2𝑖 − 10 · cos(2𝜋𝑥𝑖 )) (3)

Following [7, 16], the behavioral dimensions for MAP-Elites
are the genes 𝑥1 and 𝑥2. The feature map is subdivided into 100
equal segments along both dimensions, resulting in a grid of 104
discrete cells with a side-length of 10.24 · 10−2. Mutation is applied
uniformly to every gene by adding a random 𝑟 ∈ [−0.256, 0.256]
(5% of the gene’s value range), sampled from a uniform distribution.
Mutated genes are truncated to the [−5.12, 5.12] value range.
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4.2 12-DoF Arm Repertoire
The second testbed follows the Arm Repertoire robotic control task
which has been proposed as a QD benchmark [3]. The algorithm
optimizes the angular positions of the different joints of a robotic
arm, and the “solution descriptor is defined as the final position of
the gripper, which is then normalized according to a square bound-
ing box to have values between 0 and 1” [3]. Based on preliminary
experiments, we use 12 degrees of freedom for the Arm Repertoire
task as the differences between some selection methods are less
pronounced with few degrees of freedom.

4.2.1 Experimental Setup. The genotype is a vector of real-valued
variables ®𝜃 = (𝜃1, 𝜃2, . . . , 𝜃12) with ®𝜃 ∈

[
−𝜋, 𝜋

]12, signifying that
each joint can make a full 360◦ rotation. The goal is to equalize
the joint angles and fitness is calculated by Eq. (4), where 𝜇 is the
mean angle of ®𝜃 .

𝑓 ( ®𝜃 ) = − 1
12

12∑
𝑖=1

(𝜃𝑖 − 𝜇)2 (4)

Following [7], the behavioral dimensions for MAP-Elites are
the 𝑥 and 𝑦 coordinates of the final position of the robotic arm.
These are calculated by Eq. (5), where 𝑙𝑖 is the joint’s length; 𝑙 = 1

12
for all joints, and thus the behavioral space is in the domain of
[−1, 1]2. The feature map is subdivided into 100 equal parts along
both dimensions, resulting in a grid of 104 discrete cells with a
side-length of 2 · 10−2.

𝐵( ®𝜃 ) =
[
𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2) + · · · + 𝑙12 cos(

∑12
𝑖=1 𝜃𝑖 )

𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2) + · · · + 𝑙12 sin(
∑12
𝑖=1 𝜃𝑖 )

]
(5)

Mutation is applied uniformly to every gene by adding a random
𝑟 ∈ [−0.1𝜋, 0.1𝜋], sampled from a uniform distribution. All angles
are wrapped to the [−𝜋, 𝜋] value range.

4.3 Maze Generation
The final testbed is a simple level design task where QD could
be beneficial for the designer [13]. The goal in this testbed is to
generate perfect mazes in 2D orthogonal grids. Unlike previous
testbeds, maze generation has no explicit functional or aesthetic
dimensions. This testbed explores five different characteristics of
mazes which a human designer could find interesting and tests all
possible combinations of two feature dimensions and one fitness
score for these characteristics. The maze generation testbed can
give insights into the algorithms’ performance, but also tests how
the proposed QD variants apply to actual design problems.

The maze is directly represented in the genotype, which is a
2-D matrix of integer IDs in the range of (0. . . 15). Each ID deter-
mines the connectivity of that tile with all adjacent tiles in the
four cardinal directions. The size of the genotype depends on the
size of the maze, i.e. its width and height. A Random Depth-First-
Search (RDFS) process, described in [19], is used to generate the
initial population and to repair individuals. The mutation opera-
tor destroys a number of tiles in the parent (setting every side of
the tile to unconnected) and applies the RDFS process to repair
the maze. Specifically, mutation iterates through every tile and
has a 2% chance of destroying it: “destruction” sets the tile’s ID
to one that is surrounded by walls, and all adjacent tiles change

(a) Initial state & solu-
tion

(b) Mutation: destroyed
cells

(c) Repair step 1: recon-
necting cells with RDFS

(d) Disconnected islands (e) Repair step 2: recon-
necting islands

(f) Final state & solution

Figure 1: Mutation and repair process for a maze of 16 × 16
tiles. Also shown is the shortest path from the top left corner
to the bottom right corner used in the optimal path metric.

their ID accordingly so that their connection with the destroyed
tile is removed. If no tile is mutated in this fashion, one random tile
is chosen and destroyed as presented above. The resulting maze
includes a number of disconnected cells and “islands” (see Fig. 1b);
it must be repaired to become a perfect maze. The repair process
first reconnects disconnected cells via RDFS (as shown in Fig. 1c),
then merges remaining disconnected islands by randomly selecting
an edge that connects all pairs of disconnected islands until all tiles
are connected (as shown in Fig. 1e).

Based on our design sensibilities, a set of five metrics for mazes
are formulated which are used interchangeably as quality or diver-
sity measures. Twometrics assess the visual symmetry of the mazes.
The horizontal symmetry metric (𝑓𝐻 ) reflects the maze along the 𝑌
axis and calculates the number of tiles with the same connections
between the original and the reflection. The bilateral symmetry
metric (𝑓𝐵 ) measures similarity of the maze with both reflections on
the 𝑋 axis and the 𝑌 axis. Two metrics assess patterns of tiles with
two connections (corridors) which are usually common in such
mazes: the corner metric (𝑓𝐿) counts the number of corridors where
the two connections are at a right angle, and the straight metric
(𝑓𝐼 ) counts the number of corridors where the two connections are
at a straight angle. All of the above four metrics are normalized to
the total number of tiles of the maze. The final metric is for optimal
path (𝑓𝑃 ) and assumes that the maze’s start is the top-left corner and
its end is the bottom-right corner (see Fig. 1a), and that the short-
est path between the two corners should ideally cover half of the
maze’s tiles. This ad-hoc assumption allows the maze’s functional
aspects to be evaluated rather than only its visual properties. The
𝑓𝑃 metric is calculated as 1− |2𝑃/𝑇 − 1| where 𝑃 is the shortest path
between the top-left and bottom-right corners; 𝑇 is the number of
tiles of the maze as the product of its height and width.
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4.4 Experimental Protocol
For the Rastrigin and Arm Repertoire experiments we perform 100
independent evolutionary runs. A population of 100 random indi-
viduals is used to populate the initial feature map. In each iteration
an individual is selected according to the current method (see Sec-
tion 3) and produces one offspring which replaces an existing elite,
occupies a previously empty cell, or is discarded. The resolution
of the feature map for these two experiments is 100 × 100 cells.
Evolutionary runs finish after 106 evaluations (i.e. iterations).

For the Maze Generation experiments, all possible combinations
of metrics are tested as either a fitness function or two aesthetic
measures. This results in 30 possible combinations, each of which is
tested in 100 independent evolutionary runs which finish after 105
evaluations for the sake of brevity. The resolution of the feature map
for these maze generation experiments is 50 × 50 cells. Otherwise,
the evolutionary process is identical to the one described above.

The analysis of the results is performed across five performance
metrics typical for the assessment of QD methods. The analysis
implements the metrics of Global Performance, Global Relia-
bility, Precision and Coverage which are described in [26], as
well as the QD-score described in [29] and calculated as the fitness
sum of all the currently populated cells. In addition, a metric is
introduced not to assess performance but rather to observe how
different biases influence which cells are selected: Selection En-
tropy expresses the degree of uniformity of selections on the map.
It is based on Shannon’s entropy applied on the selection map,
calculated as − 1

log𝑁𝑐

∑𝑁𝑐

𝑖=1

(
𝑛𝑐 (𝑖)
𝑁𝑠

log
(
𝑛𝑐 (𝑖)
𝑁𝑠

))
where 𝑁𝑐 is the total

number of cells, 𝑛𝑐 (𝑖) is the times that any individual of cell 𝑖 was
selected, and 𝑁𝑠 is the total number of selections.

Given that we test nine selection methods across five perfor-
mance metrics, reporting all the results becomes cumbersome. We
focus instead on the number of methods that a selection method is
significantly better (higher) than in a performance metric. All tests
are performed on Welch’s 𝑡-test at 𝛼 = 0.05 significance threshold.
Since a selection method is compared against 8 other methods, we
apply the Bonferroni correction [5] to test for significance. To as-
sess overall performance across evaluations, we measure the area
under the curve (AUC) from the start of evolution until the end of
the run—i.e. after 106 evaluations for Rastrigin and Arm Repertoire,
and after 105 for Maze Generation.

5 RESULTS
This section highlights how the proposed selection methods influ-
ence QD search for each of the three testbeds presented in Section
4. Results are averaged across 100 runs. We test for significance
by employing Welch’s 𝑡-tests at a significance threshold 𝛼 = 0.05,
applying the Bonferroni correction for multiple comparisons.

The source code for all experiments, which can be used to repro-
duce or expand on the results, can be found at https://github.com/
konsfik/Monte-Carlo-Elites .

5.1 6-D Rastrigin
Figure 2 shows how each performance metric fluctuates between
103 and 106 evaluations, visualized in logarithmic scale. As ex-
pected, the greedy fitness-based selection performs well in terms
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Figure 2: Rastrigin 6D: progression of performance metrics
between 103 and 106 evaluations. Results are averaged from
100 runs; shaded areas show the 95% confidence interval.

Table 1: Rastrigin 6D: The number under each column in-
dicates the times a selection method yields significantly
higherAUCvalues in the row’smetric, compared to theAUC
values of the remaining 8 selection methods. The best meth-
ods per metric appear in bold.

Method 𝑈𝑖 𝑈𝑐 𝐸𝑖 𝐸𝑐 𝑋𝑖 𝑋𝑐 𝐺 𝑅 𝐶

Glob. Perf. 6 3 6 4 6 1 0 1 0
Glob. Rel. 7 4 7 5 6 3 0 2 1
Precision 7 4 7 5 6 3 0 2 1
Coverage 3 7 3 6 3 7 0 2 1
QD-score 7 4 7 5 6 3 0 2 1

of global performance early on but converges to local optima and
is eventually outperformed by all other methods after 105 and 106
evaluations. Interestingly, all cell-based selection methods (𝐸𝑐 , 𝑋𝑐 ,
𝑈𝑐 ) outperform other methods (but not each other) in terms of
coverage in early stages of evolution but eventually all methods
(except 𝐺) reach 100% coverage. Interestingly, the curiosity base-
line is much slower in covering the entire feature map but also in
finding a global optimum (global performance). Global reliability,
precision and QD-score all share similar patterns, with individual-
based selection methods (𝐸𝑖 , 𝑋𝑖 ,𝑈𝑖 ) outperforming other methods
from 104 evaluations and after. In terms of global reliability, preci-
sion and QD-score, 𝐸𝑖 performs significantly better than all other
methods after 105 evaluations, but after 106 evaluations it is𝑈𝑖 that
outperforms all other methods.

Table 1 shows how each method compares in terms of the AUC
of each performance metric until 106 evaluations. We observe that
both 𝐸𝑖 and 𝑈𝑖 perform well in all performance metrics except
coverage, outperforming all other (7) methods in terms of global
reliability, precision and QD-score. As evidenced from Fig. 2, the
curiosity baseline is outperformed by all other methods in terms of
global performance. On the other hand, both𝑈𝑐 and 𝑋𝑐 outperform
all other (7) methods in terms of coverage. It is evident that for the
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Figure 3: Rastrigin 6D: Fitness and selection heat-maps for
a single run, captured after 103, 104, 105, 106 evaluations.

deceptive, multimodal fitness landscape of Rastrigin the individual-
based selection methods are best at finding a large number of good
solutions; the cell-based selection methods, however, are better at
exploring the landscape.

We observe in Fig. 2 that the selection entropy is higher for all
methods proposed in this paper than the random selection until
104 evaluations, meaning that all cells over the course of evolution
were selected almost equally often. Most methods (including the
𝑅 baseline) reach nigh-uniform selection after 105 evaluations, un-
surprisingly when the coverage metric reaches 100%. Interestingly,
however, when coverage reaches 100% the exploitation-only ap-
proaches 𝐸𝑖 and 𝐸𝑐 start focusing on specific areas of the search
space and show a drop in their selection entropy score. It is even
more interesting that the drops follow a different trend: for 𝐸𝑐 se-
lection entropy drops early but stabilizes, while for 𝐸𝑖 selection
entropy drops later but continues dropping. This is likely because
for 𝐸𝑖 new individuals in previously occupied cells receive absolute
priority (as 𝑛𝑖 = 0 in Eq. 1), while for 𝐸𝑐 there is no distinction.
When coverage reaches 100%, 𝐸𝑖 continues focusing on new individ-
uals while the selection strategy for 𝐸𝑐 reaches equilibrium. Finally,
it is worth noting that the curiosity baseline has a very different
selection entropy than conceptually similar methods (e.g. 𝐸𝑖 ) and its
selection entropy increases far slower than other methods—likely
due to the lower coverage in early stages of evolution for curiosity.

Fig. 3 shows the feature maps of the two UCB variants and the
uniform and curiosity baselines across evaluation thresholds in a
sample run (the first run of the experiment). The higher coverage
of𝑈𝑖 and especially𝑈𝑐 is visible after 103 and 104 evaluations. The
feature map for 𝐶 at 103 generations is especially interesting, as
only a few clusters within the space are explored, and selection has
exclusively focused on those early parents at the center of those
clusters. Moreover, the areas of low fitness are far more pronounced
in the 𝑅 and 𝐶 baselines after 105 evaluations.
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Figure 4: 12-DoF Arm Repertoire: progression of perfor-
mance metrics between 103 and 106 evaluations. Results are
averaged from 100 runs; shaded areas show the 95% confi-
dence interval.

Table 2: 12-DoFArmRepertoire: The number under each col-
umn indicates the times a selection method yields signifi-
cantly higher AUC values in the row’s metric, compared to
the AUC values of the remaining 8 selection methods. The
best methods per metric appear in bold.

Method 𝑈𝑖 𝑈𝑐 𝐸𝑖 𝐸𝑐 𝑋𝑖 𝑋𝑐 𝐺 𝑅 𝐶

Glob. Perf. 6 4 7 3 4 2 8 1 0
Glob. Rel. 6 7 3 3 5 8 0 1 1
Precision 7 4 8 5 6 3 0 1 1
Coverage 6 7 3 4 4 8 0 2 1
QD-score 6 7 3 4 4 7 0 1 1

5.2 12-DoF Arm Repertoire
Figure 4 shows how each performance fluctuates between 103 and
106 evaluations for the Arm Repertoire testbed. As this testbed does
not have the deceptive fitness landscape of Rastrigin, the greedy
baseline consistently outperforms all other methods in terms of
global performance. Besides an early lead in terms of precision,
however, this greedy approach is outperformed in all other metrics.
Unlike the Rastrigin testbed, cell-based approaches seem to perform
better in most metrics. In terms of global reliability, coverage, and
QD-score,𝑈𝑐 outperforms all other methods at 104 evaluations, but
the lead changes at 106 evaluations as 𝑋𝑐 outperforms all other
methods. In terms of precision, exploitation-based approaches (𝐸𝑖 ,
𝐸𝑐 ) and𝑈𝑖 perform significantly better than the other methods from
105 evaluations and after.

Table 2 shows how each method compares in terms of the AUC
of each performance metric until 106 evaluations. As expected, the
greedy approach outperforms all other methods in terms of global
performance. All selection methods introduced in this paper per-
form better than uniform (𝑅) and curiosity (𝐶) baselines in terms

185



Monte Carlo Elites: Quality-Diversity Selection as a Multi-Armed Bandit Problem GECCO ’21, July 10–14, 2021, Lille, France

Figure 5: 12-DoF Arm Repertoire: Fitness heat-maps for one
run captured after 103, 104, 105, 106 evaluations.

of global performance, although individual-based approaches per-
form better in that metric. Interestingly, 𝑋𝑐 outperforms all other
methods in terms of global reliability and coverage, while in terms
of QD-score only 𝑈𝑐 performs comparably to 𝑋𝑐 . 𝑈𝑖 is the only
method to reach fairly high scores in all metrics, although it is
always outperformed by another method in each metric.

It is worth noting that the selection entropy in this testbed (Fig. 4)
has a very similar trend as for Rastrigin, especially the drop in
selection entropy for 𝐸𝑐 and—later and more abruptly—for 𝐸𝑖 when
coverage plateaus. The curiosity baseline follows similar patterns
as in Rastrigin and its selection entropy is low until later stages
of evolution. Figure 5 shows the feature maps of a sample run for
Arm Repertoire. It is immediately obvious that at 104 evaluations
the 𝑅 baseline has found highly fit solutions in the center of the
search space, while𝑈𝑐 has found highly fit solutions at the edges of
the discovered search space but solutions at the center are less fit.
Since𝑈𝑐 tends to select newly discovered cells more often, it is not
surprising that it discovers fit individuals around the edges of the
ever-expanding feature map. The 𝐶 baseline at 104 evaluations has
a similar coverage to 𝑅, but seems to have discovered fit individuals
mainly on the right half of the feature map, likely because it always
selects the same few parents (already visible at 103 evaluations). The
𝑈𝑖 selection method after 104 evaluations is the most homogeneous,
while eventually all approaches cover the entire circle that the arm
can move in and find highly fit solutions in that space.

5.3 Maze Generation
In the maze generation testbed, we test a broad variety of quality
and diversity dimensions, as well as multiple sizes of the genotype
and phenotype. All results reported in this section are aggregated
across 30 combinations of different feature dimensions and fitness
functions (using the fivemetrics of Section 4.3) in two differentmaze
lattices (8×8 tiles and 16×16 tiles). Since a total of 60 treatments (of
100 evolutionary runs each) are being compared, the results can be
more conclusive for the behavior of the selection methods.
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Figure 6: Maze generation: progression of performance met-
rics between 103 and 105 evaluations. Metrics are averaged
from 60 treatments, and shaded areas show the 95% confi-
dence intervals of the average scores per treatment.

Figure 6 shows how each performance fluctuates between 103
and 105 evaluations, averaged from all 60 treatments. It is evident
that both the best fitness and the QD score have not plateaued, and
more generations could shed more light on performance. Unlike in
the other two testbeds, we observe that coverage for the curiosity
baseline in this case is better than the uniform baseline, while its
selection entropy is comparable to that of 𝑅. Moreover, selection
entropy for 𝐸𝑖 , 𝐸𝑐 is surprisingly low throughout evolution.

Table 3 shows how each method compares in terms of the AUC
of each performance metric until 105 evaluations. In terms of global
performance, the greedy fitness-based approach usually outper-
forms the other methods while interestingly 𝐸𝑐 outperforms 𝐶 in
28 treatments and is outperformed in 8. The curiosity baseline in
this testbed performs quite well, and outperforms most methods
including 𝐸𝑖 (which is conceptually similar) and 𝐸𝑐 in terms of
global reliability, coverage and QD score. However, in terms of QD
score the cell-based UCB approach (𝑈𝑐 ) is superior, outperforming
𝐶 in 42 treatments and 𝑋𝑐 in 36 treatments. In terms of coverage,
the exploration-based 𝑋𝑐 outperforms all methods in 58 or more
treatments—except𝑈𝑐 , which it only outperforms in 34 treatments.

As a general takeaway from this analysis, exploitation-onlymeth-
ods seem to perform worse than the UCB or exploration-only meth-
ods, with 𝐸𝑐 performing well in terms of global performance and
precision. Curiosity in this testbed performs comparably to𝑈𝑖 but
both methods are outperformed by others in every metric. Inter-
estingly, cell-based approaches tend to explore the search space
faster and find fairly fit individuals in all cells (as evidenced by high
QD-scores); the focus on exploration, however, does not allow them
to evolve highly performing individuals (especially 𝑋𝑐 ).

6 DISCUSSION
Results in Section 5 have shown that overall any of the selection
methods proposed in this paper outperforms the uniform selec-
tion in the original MAP-Elites across all experiments. Moreover,
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Table 3: Maze Generation: The number under each column
indicates the times a selection method yields significantly
higherAUCvalues in the row’smetric, compared to theAUC
values of the remaining 8 selection methods for a total of
480 comparisons across setups. The best method per metric
is shown in bold.

Method 𝑈𝑖 𝑈𝑐 𝐸𝑖 𝐸𝑐 𝑋𝑖 𝑋𝑐 𝐺 𝑅 𝐶

Glob. Perf. 219 106 145 276 158 8 384 39 233
Glob. Rel. 306 425 82 95 241 364 2 158 309
Precision 325 128 172 359 227 19 286 97 355
Coverage 283 426 84 82 240 451 1 169 272
QD-score 318 420 81 102 249 344 2 155 321

in Rastrigin and Arm Repertoire the curiosity baseline is slower
to discover new cells than other methods, although its coverage
is better than exploitation-only methods in the maze generation
testbed. However, coverage in all three testbeds was higher for
parent selection methods that assess UCB or exploration based on
the cells occupied by each individual, rather than the individual
itself. We hypothesize that this is due to the fact that newly filled
cells always have priority. The ranking-based (versus random or
roulette-wheel) selection applied in all proposed methods in this
paper forces evolution to explore the newly discovered areas of the
search space, until newer areas are discovered or until repeated
selections of such individuals fail to yield good offspring. When
selected parents are newly discovered cells (e.g. via cell-based se-
lection) at the edge of the discovered search space, they are more
likely to discover new cells, which leads to a positive feedback loop.
This by-product of the UCB formula is likely why coverage is so
superior early on, as seen in feature maps in all experiments.

Comparing between methods, moreover, it is not surprising that
exploration-onlymethods lead to higher coveragewhile exploitation-
only methods lead to higher fitness in the fewer individuals dis-
covered (precision). The UCB score, which combines exploration
and exploitation, seems to lead to the best balance and the highest
QD-scores, i.e. a good and diverse archive of elites. The only odd
finding is that choosing parents based on the cell they are in or
based on the individual itself has a strong impact that leads to one
outperforming the other depending on the problem. In the deceptive
landscape of Rastrigin, individual-based approaches work better;
in all other experiments (including 60 variants of maze generation
tasks) the cell-based approach leads to better and more diverse
individuals but a lower maximum fitness. It is worth noting that in
Rastrigin we use part of the genotype as feature dimensions, while
in the other two testbeds the feature dimensions are only indirectly
influenced (in a non-linear fashion) by the genotype. Based on se-
lection heatmaps examined, the individual-based approach forces
evolution to select parents in areas of the search space that were
explored before, when a new individual is inserted there (even if
there were many individuals there before it). This apparently can
lead to breakthroughs in problems with a deceptive landscape (such
as Rastrigin). In spaces that are “easy” to navigate, however, the
way that cell-based selection focuses on new or recently filled cells
(which are often on the edges of the feature map) leads to higher
coverage and thus quick optimization of many elites.

While the focus was on the application of UCB for parent selec-
tion, this paper has also made contributions on the use of offspring
survival as a reward mechanism. As noted in Section 2, offspring
survival has been identified as an important measure [3, 11] and as
a milestone in an individual’s lifetime [6]. This paper contributes
to earlier work by exploring how survival is assessed (based on the
individual or the cell). Comparisons of the proposed rank-based
selection methods with the stochastic selection via an individual-
based curiosity score [3] show that there are important differences
in terms of performance, coverage, and general behavior (as shown
in the feature maps). We hypothesize that an important factor for
these differences is the fact that new cells or individuals receive
absolute priority for selection via Eq. (1)-(2); especially in cell-based
approaches, this priority for new cells leads to a much faster ex-
ploration of the feature space. We also conducted preliminary ex-
periments with variants of offspring survival, such as the times an
offspring replaced an elite, or the times an offspring discovered a
new cell; these experiments yielded performance very close to the
current metric which essentially combines the two. In other exper-
iments that used fitness directly as the 𝑤 of Eq. (1), issues arose
as the fitness in different testbeds had different value ranges and
ad-hoc weights for 𝜆 or normalization processes would be needed
to balance the exploitation and the exploration components. It is
also worth noting that while the selection mechanism introduced
lacks the archive of past individuals of MENOV [29], historical
trends are considered in the way the survival rate and selection
bias is computed across all generations (especially for cell-based
methods). That said, it is likely that there are other ways to assess
both exploitation and exploration in Eq. 1 which can lead to better
behaviors and can be examined in future work.

7 CONCLUSION
This paper framed parent selection in MAP-Elites as a problem
of exploration-exploitation balance, and examined the impact of
selection via upper confidence bound on QD search across three
different testbeds. Moreover, the exploitation component was as-
sessed not directly on quality characteristics (e.g. based on the
fitness score) but indirectly, based on the survival chances of the
offspring of the individual. Several hypotheses are tested in the
experiments, importantly whether the elite to choose should be
based on its own offsprings’ survival rate or based on all elites that
ever existed in this part of the search space. Results indicate that a
higher coverage can be attained by prioritizing exploration, while a
generally better archive of diverse and good individuals is collected
by maintaining a balance between exploration and exploitation.
Regarding cell-based versus individual-based approaches, it seems
that cell-based approaches are more robust and perform better in
more experiments, especially in regards to covering the search
space. Importantly, all methods that prioritize selection of newly
inserted individuals or individuals who have not been selected often
so far lead to improved performance across all metrics compared
to the “vanilla” MAP-Elites that performs uniform selection.
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