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ABSTRACT

In the area of evolutionary computation the calculation of diverse

sets of high-quality solutions to a given optimization problem has

gained momentum in recent years under the term evolutionary

diversity optimization. Theoretical insights into the working princi-

ples of baseline evolutionary algorithms for diversity optimization

are still rare. In this paper we study the well-known Minimum

Spanning Tree problem (MST) in the context of diversity optimiza-

tion where population diversity is measured by the sum of pairwise

edge overlaps. Theoretical results provide insights into the fitness

landscape of the MST diversity optimization problem pointing out

that even for a population of µ = 2 fitness plateaus (of constant

length) can be reached, but nevertheless diverse sets can be calcu-

lated in polynomial time. We supplement our theoretical results

with a series of experiments for the unconstrained and constraint

case where all solutions need to fulfill a minimal quality threshold.

Our results show that a simple (µ + 1)-EA can effectively compute

a diversified population of spanning trees of high quality.
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1 INTRODUCTION

Evolutionary algorithms and other bio-inspired algorithms have

successfully been applied to a wide range of challenging design and

optimization problems. Evolutionary algorithms use a population

of search points in order to solve a given problem. In the area of
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single-objective optimization the classical goal is to produce a single

solution that maximizes or minimizes a given function f . Diversity

plays a crucial role in the design of evolutionary algorithms as it

prevents the algorithm from getting stuck in a single local optima. It

also enables the use of crossover which assumes that two good and

different solutions can be combined to a new even better solution.

Evolutionary diversity optimization aims to produce for a given

optimization problem a set of high quality and diverse solutions [20,

21, 32]. A similar approach is taken in the context of quality diver-

sity [19, 25] where high quality designs with different properties

are sought. Evolutionary diversity optimization has been applied

in the context of creating diverse images with respect to various

features [1] as well as to the task of evolving instances for the Trav-

eling Salesperson Problem (TSP) that show performance differences

for algorithms solving the TSP [4, 11]. Such instances are important

for automated algorithm selection and configuration [16]. Recently,

evolutionary diversity optimization has also been applied to create

a diverse set of high quality tours for the TSP [8].

In terms of theoretical foundations of evolutionary computing

techniques, the area of runtime analysis has played a crucial role

over the last 25 years. We refer to [9, 15, 23] for comprehensive

presentations on this research area. So far, the effect of popula-

tions has been analyzed with respect to benefits or detrimental

effects for solving single-objective optimization problems [7, 31].

Furthermore, populations play a crucial role in providing benefits to

multi-objective approaches. Recent studies in the context of Pareto

optimization have shown that populations are highly beneficial for

optimizing monotone submodular functions with different types

of constraints [10, 22, 26, 27, 30]. In the context of evolutionary

diversity optimization, initial results have been obtained for the

classical functions OneMax and LeadingOnes [12]. Furthermore,

special instances of the vertex cover has been investigated and run-

time results have been achieved [13]. Still, time complexity results

in the context of evolutionary diversity optimization are rare. This

is due to the fact that the interactions of individuals in a popula-

tion together with a measure of diversity is very hard to analyse.

However, theoretical foundations on well-studied combinatorial

optimization problem are of utmost importance in order to get

a deeper understanding of the fitness landscapes posed by these

kind of problems and implied challenges for randomized search

heuristics such as evolutionary algorithms.

1.1 Our contribution

We contribute to the theoretical analysis of evolutionary diversity

optimization and contribute to the highly challenging task of under-

standing the interactions among individuals in a population when
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carrying out evolutionary diversity optimization. In this paper,

we consider evolutionary diversity optimization for the minimum

spanning tree problem. This classical problem can be solved with

polynomial-time algorithms, e.g. Kruskal [17] or Prim [24]. The

MST problem has received significant attention in the area of run-

time analysis over the years. Furthermore, different variants of the

minimum spanning tree problem such as the multi-objective mini-

mum spanning tree problem and degree or diameter constrained

versions are NP-hard.

In the evolutionary diversity optimization process we minimise

pairwise edge overlap in the setting where 1 ≤ µ ≤ ⌊ n2 ⌋ which

allows for a decomposition into a set of µ edge-disjoint ś and hence

maximally diverse ś spanning trees. We are interested in obtain-

ing a diverse set of spanning trees in this context and start our

investigations for the case where all edges have the same cost. This

implies that we are only interested in a diverse population without

imposing a quality criterion. Our theoretical investigations point

out structural properties when optimising the diversity of spanning

trees using evolutionary algorithms and we give a first runtime

analysis for the case of a population size of 2 (Theorem 3.2). After-

wards, we carry out experimental investigations for mutation-based

evolutionary diversity optimization approaches to see whether sim-

ple operators are able to achieve maximal diversity when all edge

weights are equal. We show that a (µ + 1)-EA using single edge

exchanges is efficient in finding a µ-size population if no quality

requirements are required. The process can be made more efficient

if the number of edge exchanges is drawn from a Poisson distribu-

tion which enables several edge exchanges in one mutation step.

Furthermore, we observe that with µ → ⌊ n2 ⌋ maximum overlap

diversity goes hand in hand with reduced diversity with respect to

interesting tree properties like the maximum degree or the diame-

ter. Having gained insights into the behavior for the unconstrained

case, we turn to the constrained case where we require that each

solution in the population can have weight at most (1 + α)·OPT.

Here OPT is the weight of a MST and α > 0 is a parameter that de-

termines the maximum cost of a spanning tree to be deemed of high

quality. We observe that the choice of α is crucial for the amount of

diversity that can be achieved as small values of α determine that

only a small number of (often very similar) spanning trees meet

the quality criterion.

The paper is structured as follows. We introduce the minimum

spanning tree problem and the evolutionary diversity optimization

approach that we use in this article in Section 2.We investigate some

structural properties for diversity optimization of spanning trees

and present some runtime results subsequently in Section 3. Af-

terwards, we carry out experimental investigations in terms of the

diversity optimization process for the unweighted case (Section 4)

as well as evolutionary diversity optimization for the weighted case

under quality restrictions (Section 5). We finish in Section 6 with

some concluding remarks and directions for future work.

2 PROBLEM FORMULATION

Let G = (V , E) be a undirected, connected graph with node set

V , edge set E and cost function c : E → R
+ which assigns pos-

itive real-valued costs to each edge. In the following we denote

by n = |V |,m = |E | the size of the node and edge set respectively.

Algorithm 1: Diversity maximising (µ + 1)-EA

1 Initialise the population P with µ spanning trees such that

c(T ) ≤ (1 + α) · OPT for all T ∈ P .

2 Choose T ∈ P uniformly at random and produce an

offspring T ′ of T by applying a single one-edge-exchange

mutation.

3 If c(T ′) ≤ (1 + α) · OPT, add T ′ to P .

4 If |P | = µ + 1, remove exactly one individual T , where

T = argminS ∈P D(P \ {S}), from P .

5 Repeat steps 2 to 4 until a termination criterion is reached.

6 Return P

Furthermore, we frequently use the notation E(G) to refer to the

edge set of graph G. We also frequently identify a graph simply by

his edge set E for convenience. The Minimum Spanning Tree (MST)

problem is a fundamental combinatorial optimization problem on

graphs with countless applications [6]. Each connected acyclic sub-

graph T = (V , E ′) with E ′ ⊂ E is a spanning-tree (ST). A ST T ∗ is a

minimum spanning tree if its sum of weights is minimal across the

set of all possible spanning trees T , i.e.

T ∗
= argminT ∈T

∑

e ∈E(T )

c(e).

The MST problem is solvable in polynomial time, e.g. by Prim’s

algorithm [24].

2.1 Evolutionary Diversity Optimization for
the MST

In this paper we investigate evolutionary diversity optimization for

the MST, i.e. the goal is ś given an input graph G ś to find a µ-size

population P of spanning trees which is maximal with respect to

some diversity measure. In the context of minimum spanning trees

all solutions need to fulfill a minimum-quality criterion. To this

end we adopt the notion of approximation quality: a solution T is

within the quality threshold if c(T ) ≤ (1+α) ·OPT where parameter

α > 0 steers the quality requirement and OPT is the value of an

MST calculated beforehand.

Our study is based on a simple (µ + 1)-EA which has been stud-

ied extensively in the context of diversity optimization [1, 12, 21].

The algorithmic steps are outlined in Algorithm 1. The (µ + 1)-EA

requires a population P of µ = |P | spanning trees which all meet

a given quality criterion, i.e. c(T ) ≤ (1 + α) · OPT for some α > 0

and all T ∈ P . This may result from the application of a classic

MST-algorithm such as Prim [24]. Next, a solution is sampled from

P uniformly at random. This solution is subject to a One-Edge-

Exchange (1-EX) mutation to produce a single offspring T ′. 1-EX

has been subject of various studies in the context of (multi-objective)

minimum spanning trees [3, 29]. It has the pleasing characteris-

tic of maintaining the spanning tree property. One step includes

adding a random edge to the solution at hand; this step closes ex-

actly one cycle. Finally, a random edge is deleted from this cycle to

re-establish the spanning tree property. This implies that mutants

are guaranteed to be STs again. The algorithm verifies the mutants

quality and, if met, adds T ′ to the population. Eventually a single

solution is required to be dropped to maintain a population size of
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µ STs. Here, the algorithm removes the individual with the least

contribution to the diversity measure. These steps are repeated

until a a termination condition is met, e.g. a population with known

maximum diversity is found (if known) or the function evaluation

limit is reached.

2.2 Diversity Measure

Our diversity measure is based on the edge overlap of STs and has

been recently used in a study on evolutionary diversity optimization

for the Traveling Salesperson Problem [8]. For two trees T1,T2
the (edge) overlap is defined as the number of shared edges, i.e.

o(T1,T2) := |E(T1)∩E(T2)|. In our definition two trees are maximally

diverse if they are edge-disjoint, i.e. o(T1,T2) = 0 or equivalently ś as

diversity is naturally to be maximised ś (n − 1) −o(T1,T2) = (n − 1).

We generalize this notion to a population P = {T1, . . . ,Tµ } of µ STs

by maximising the pairwise overlap

Do (P) := µ(µ − 1)(n − 1) −

µ∑

i=1

µ∑

j=1
j,i

o(Ti ,Tj ). (1)

Note that for fixed n and µ the term µ(µ − 1)(n − 1) is constant

and maximising Eq. (1) is equivalent to minimising the pairwise

overlap.

We next give a set of theoretical results pointing out that there

exist populations which equalize the frequency of the edges. In

particular, under the restriction 1 ≤ µ ≤ ⌊ n2 ⌋, a population with

maximum Do -diversity, termed Do -maximal in the following, is

achievable. Given a population P we denote by n(e, P) = |{T ∈

P | e ∈ T }| the number of STs the edge e is part of. The goal is to

equalize n(e, P) for all e ∈ E.

Theorem 2.1. For every complete graph G = (V , E) with n ≥ 4

nodes and every µ ≥ 1 there is a population P of µ spanning trees

with

max
e ∈E

n(e, P) −min
e ∈E

n(e, P) ∈ {0, 1}.

Proof. We provide a constructive proof. The basic idea is to first

generate a set H of spanning trees and to fill P with elements of H .

We consider two cases: n even and n odd. First let n be even. Then

there is a decomposition of G into h = n
2 edge-disjoint n-vertex

paths [5]. Let H be the set of those paths. Let µ = kh + r with

r ∈ [0,h). We put each k copies of eachT ∈ H into P . Subsequently,

we put an arbitrary subset H ′ ⊂ H with |H ′ | = r into P . Let E(H ′)

be the set of edges used by H ′. Then we have n(e, P) = k + 1 for all

e ∈ E(H ′) and n(e, P) = k for all e < E(H ′) yielding the claim. This

completes the proof for even n.

Now let n be odd. According to a well-known paper by Alspach

et al. [2] there is a decomposition ofG into ⌊ n2 ⌋ =
n−1
2 edge-disjoint

Hamiltonian cycles C = {C1, . . . ,C(n−1)/2}. Note that removing a

single edge from a Hamiltonian cycle yields a Hamiltonian path

which is a spanning tree. Since the cycles are edge-disjoint, so are

the resulting spanning trees. Note further that each node in G has

degree 2 in each Hamiltonian cycle Ci . Let v ∈ V be an arbitrary

node and letT be the star graph1 with center nodev ;T is a spanning

tree. We denote by e1i and e2i the two adjacent edges of v for every

1A star graph is a spanning tree with a center node of degree (n − 1) and (n − 1) leaf
nodes.

cycleCi . We now define a setH = {H1, . . . ,Hn } of n spanning trees

as follows:

• Hi = Ci \ {e
1
i } for i = 1, . . . , n−12

• H(n−1)/2+1 = T and

• H(n−1)/2+1+i = Ci \ {e
2
i } for i = 1, . . . , n−12 .

T is constructed in a way such that it shares each one edge with

every spanning tree in H \ {T }. Likewise, the spanning trees Hi

andH(n−1)/2+1+i , i = 1, . . . , n−12 share eachn−2 edges. Note further

thatH1, . . . ,H(n−1)/2 are edge-disjoint and so areH(n−1)/2+2, . . . ,Hn

(see Figure 1 for an illustration). As a consequence n(e,H ) = 2 for

all e ∈ E. It follows by construction of H that for each 1 ≤ µ ≤ n

the set Pµ = {H1, . . . ,Hµ } ⊂ H satisfies

α(Pµ ) := max
e ∈E

n(e, Pµ ) −min
e ∈E

n(e, Pµ ) ∈ {0, 1}.

with α(Pn ) = 0.

Now consider µ ≥ 1. We construct a µ-size population P by

setting Pi = H((i−1) mod n)+1for i = 1, . . . , µ. The theorem follows

from iterated application of the claim for the case 1 ≤ µ ≤ n. □

Following the proof of Theorem 2.1 we can derive.

Corollary 2.2. For every complete graphG = (V , E)with |V | = n

and every k ≥ 1 there is a population of size µ = kn such that each

edge is used exactly 2k times.

Moreover, for the case of 1 ≤ µ ≤ ⌊ n2 ⌋ it follows that a set of µ

edge-disjoint STs is possible. From now on this will be the case of

interest unless told otherwise.

Corollary 2.3. For every complete graphG = (V , E)with |V | = n

and every 1 ≤ µ ≤ ⌊ n2 ⌋ there is a population P of µ edge-disjoint

spanning trees with maximum diversity Do (P) = µ(µ − 1)(n − 1).

3 STRUCTURAL PROPERTIES AND
RUNTIME RESULTS

We consider the easiest non-trivial case: µ = 2. We study the per-

formance of (2 + 1)-EA (see Algorithm 1) on complete graphs with

n ≥ 4 nodes where all edges have the same cost. We are interested

in the expected number of function evaluations until a Do -maximal

population is found for the first time; the most common measure in

the the time complexity analysis of randomized search heuristics [9].

The fitness function for the EA is the edge overlap which we aim

to minimise (cf. Eq 1); recall that this is equivalent to maximising

the overlap diversity.

Clearly, given two STs T1,T2 the fitness can be improved by

replacing an overlap edge, i.e. and edge e ∈ E(T1) ∩ E(T2) with a

free edge which is not used by neither T1 and T2. It turns out that

even for µ = 2 a single one-edge exchange mutation may not be

sufficient to reduce the overlap. Consider the case where T1 and T2
are star graphs and there is just a single overlap edge {u,v} which

links the center nodesu ofT1 andv ofT2 (see Fig. 2). In this case any

alternative edge for {u,v} inT1 andT2 is also inT2 andT1. Hence, in

this special constellation a fitness plateau is reached which cannot

be surpassed by a single 1-EX move. However, two consecutive

1-EX moves are sufficient to surpass this fitness plateau: w.l.o.g.

replace {u,v} in T1 with one of the other suitable edges. Now T1 is

no star graph anymore and an improving step for T2 exists.
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H1 H2 H3 = T H4 H5

Figure 1: Illustration of set H = {H1, . . . ,Hn } for n = 5 constructed in Theorem 2.1.

v

u

v

u

Figure 2: Two spanning trees of star graph type with center

nodes v for T1 (left) and u for T2 (right).

In the following we show that in case of overlap o(T1,T2) ≥ 2

there always exists a 1-EX step that strictly improves the diversity.

Lemma 3.1. On every complete graph with n nodes and population

P = {T1,T2}, if o(T1,T2) ≥ 2 then each edge e ∈ E(T1) ∩ E(T2) can

be replaced with k − 1 other edges in either tree, such that the overlap

reduces by one.

Proof. Let k = o(T1,T2) ∈ {2, . . . ,n − 1}. Choose an arbitrary

overlap edge e ∈ (E(T1) ∩ E(T2)). W. l. o. g. set T ′
1 = T1 \ {e}.

Since T1 is a spanning tree, removing e destroys connectivity and

decomposes T ′
1 into a cut, i.e. two disjoint node sets C1 and C2. It

should be noted that 1-EX works differently: first insert an edge

and remove an edge from the unique introduced cycle. However,

for the sake of intuition we might think the other way around. In

order to re-establish the spanning tree property in T ′ a cut-edge

(an edge that has one end node in C1 and the other in C2) needs

to be added. There are |C1 | · |C2 | such edges since G is complete.

Now |C1 | · |C2 | ≥ (n − 1). This happens if one node set has a single

isolated node. Since e is a cut-edge there are (n − 2) alternative

cut-edges left. The overlap is k . In consequence at most (n − 1) − k

of those (n − 2) alternatives are used by T2. Hence, the number of

non-used cut edges is at least (n−2)− ((n−1)−k) = k −1 ≥ 1 since

k ≥ 2. Hence, we can always include one of those edges intoT1 and

remove e which leads to a reduction of the overlap by one. □

Theorem 3.2. On every complete graph with n nodes (2 + 1)-EA

with one-edge-exchange mutation, starting with two clones of an

arbitrary spanning tree, needs expected time O(mn logn) to find a

Do -maximal population.

Proof. LetT1 andT2 be the two spanning trees. Letk = o(T1,T2) ∈

{0, . . . ,n − 1} with k = n − 1 after initialization. We define natural

disjoint fitness-levels [9]

Ak = {P = {T1,T2} | o(T1,T2) = k},

i. e., the k-th fitness level contains all populations with overlap k

and A0 contains all populations of maximum Do -diversity. In order

to leave Ak and transition into Ak−1 or lower (note that we are

minimizing overlap here), we need to reduce the overlap by at least

one. For k ≥ 2 by Lemma 3.1 we know that we can include at least

(k − 1) different edges into eitherT1 orT2 to produce a cycle with a

cut edge on it. The probability for this event is at least (k − 1)/m.

The resulting cycle has length at most n. Thus, the probability to

select the overlap edge is at least 1/n. By folklore waiting time

arguments the expected waiting time for such an improving step is

at most (mn)/(k − 1). Summing up we obtain the following upper

bound until we reach A1:

n−1∑

k=2

mn

k − 1
=mn

n−2∑

k=1

1

k
=mn · Hn−2 = O(mn logn).

Here, Hn =
∑n
i=1(1/i) = log(n) + Θ(1) is the Harmonic sum. The

last step is to reachA0 fromA1. This may be possible in a single step,

but there might be a problem ifT1 andT2 are star graphs where the

overlap edge links the center nodes. This situation can be resolved

by two consecutive mutations with an escape-state when one of the

trees is no star graph anymore. In this situation a single one-edge

exchange in the other tree can get rid of the last overlap. There is a

fair random walk on the states of the fitness plateau which ends in

the escape state in expected time O(mn) as each step happens with

probability at least 1/(mn). Eventually, eliminating the last overlap

requires anotherO(mn) steps in expectation since the overlap edge

and an adequate replacement edge have to be selected; again, both

events happen with probability at least 1/(mn). In sum the expected

time to reach A0 remains O(mn logn). □

Theorem 3.2 states that (µ + 1)-EA is capable of finding a pop-

ulation of maximum diversity in polynomial time for µ = 2; a

satisfying result. However, the probabilities derived in Lemma 3.1

are rather pessimistic. The number of cut-edges which link the

two connected components C1 and C2 when an edge is dropped

from one tree is at least (n − 1). However, if |C1 | = |C2 | = (n/2)

(n even), there are n2/4 = Θ(n2) many cut edges. In consequence

the probability to reduce the overlap is much higher. This could

indicate that on average the running time is lower. We now turn

the focus to experimental investigations with a broader range of

µ-values in the following sections.

4 EXPERIMENTAL STUDY

We presented theoretical insights into the expected runtime of

(µ + 1)-EA for the case µ = 2. In this section we perform a series

of experiments for general 2 ≤ µ ≤ ⌊ n2 ⌋. We start with the un-

constrained case, i.e., spanning trees are not required to meet a
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Table 1: Comparison in terms of diversity (Do ), the mean number of iterations (mean) until the algorithm terminated, the

standard deviation of iterations (std) and results of Wilcoxon-Mann-Whitney tests (stat). The data is split by the sampling

strategy (Uniform or Poisson). Here,X+means that the number of iterations is significantly better, i.e. lower, for the respective

strategy. Lowest mean values per row are highlighted .

Uniform[1] (1) Uniform[2] (2) Uniform[3] (3) Poisson (4)

n µ Do mean std stat Do mean std stat Do mean std stat Do mean std stat

2 100.00 488.70 164.8 100.00 333.97 144.0 1+ 100.00 243.93 104.5 1+ , 2+ 100.00 198.67 85.2 1+ , 2+ , 3+

10 100.00 7153.43 2389.4 100.00 5289.17 1469.0 1+ 100.00 4660.60 1514.0 1+ , 2+ 100.00 3741.43 1185.4 1+ , 2+ , 3+50

25 99.80 62500.00 0.0 99.79 62500.00 0.0 99.77 62500.00 0.0 99.74 62500.00 0.0

2 100.00 1624.93 510.2 100.00 1072.43 429.8 1+ 100.00 642.27 283.8 1+ , 2+ 100.00 578.70 255.8 1+ , 2+

10 100.00 16836.80 3096.7 100.00 11373.37 3580.1 1+ 100.00 8120.70 2252.3 1+ , 2+ 100.00 7603.67 2459.1 1+ , 2+

25 100.00 73498.87 18139.3 100.00 59131.93 15166.8 1+ 100.00 58792.83 19515.9 1+ 100.00 52915.17 18007.0 1+ , 2+
100

50 99.93 500000.00 0.0 99.92 500000.00 0.0 99.91 500000.00 0.0 99.89 500000.00 0.0

2 100.00 4366.17 1200.9 100.00 2757.70 999.9 1+ 100.00 1981.87 809.1 1+ , 2+ 100.00 1523.53 645.6 1+ , 2+ , 3+

10 100.00 45564.87 11035.6 100.00 30632.00 5848.0 1+ 100.00 19364.20 3210.8 1+ , 2+ 100.00 16428.40 3630.1 1+ , 2+ , 3+

25 100.00 153040.03 30063.4 100.00 114716.33 24364.6 1+ 100.00 86105.70 25137.5 1+ , 2+ 100.00 74420.97 19746.9 1+ , 2+ , 3+

50 100.00 448873.77 56975.2 100.00 422085.90 97636.7 1+ 100.00 396190.57 60480.1 1+ 100.00 360588.67 92265.0 1+ , 2+ , 3+

200

100 99.98 4000000.00 0.0 99.97 4000000.00 0.0 99.96 4000000.00 0.0 99.95 4000000.00 0.0

2 100.00 15081.70 4080.7 100.00 9765.10 3337.4 1+ 100.00 5980.50 1873.9 1+ , 2+ 100.00 5139.60 1834.1 1+ , 2+ , 3+

10 100.00 126942.27 29267.6 100.00 80306.63 17046.5 1+ 100.00 56559.83 10089.8 1+ , 2+ 100.00 42918.23 8707.2 1+ , 2+ , 3+

25 100.00 361950.37 43469.4 100.00 261919.33 46744.9 1+ 100.00 189700.70 31737.1 1+ , 2+ 100.00 152788.93 27460.6 1+ , 2+ , 3+

50 100.00 1017406.93 216403.9 100.00 731349.90 96224.3 1+ 100.00 588732.20 83189.7 1+ , 2+ 100.00 543359.37 112333.1 1+ , 2+ , 3+

400

100 100.00 3344395.80 377191.7 100.00 3019514.87 550293.3 1+ 100.00 2827195.20 454872.3 1+ 100.00 2541803.50 495036.2 1+ , 2+ , 3+

minimum quality. After that we consider the constrained case with

different quality thresholds.

4.1 Reproducibility

All experiments have been conducted on a HPC cluster with In-

tel Xeon Gold 6140 18C 2.30GHz (Skylake) CPUs and 16GB RAM.

Algorithm 1 was implemented in the statistical programming lan-

guage R [28] in version 3.6.0 for rapid prototyping interfacing C++

for performance. Parallel job distribution/management was accom-

plished with the R package batchtools [18]. We also relied on the

random number generator adopted by batchtools. Code and data

are available in a public GitHub repository.2

4.2 Unconstrained Diversity Optimization

In the unconstrained setting we consider complete graphs G =

(V , E)withn ∈ {50, 100, 200, 400},m = n(n−1)/2 and µ in the range

between 2 and ⌊ n2 ⌋. As our focus in on the algorithms ability to cope

with the diversity part the considered setting adopts c(e) = 1∀e ∈ E.

This way the check in line 4 of Algorithm 1 is always true. Note

that for this setup the statement from Theorem 2.3 holds.

We are interested in the number of function evaluations required

by (µ+1)-EA to reach a population of maximum diversity. Therefore,

we adopt two stopping criteria: (1) stop when a maximum diversity

2Code and data: https://github.com/jakobbossek/GECCO2021-mst-diversity.

population is reached or (2) stop if the budget of µn2 function eval-

uations (FE) is depleted. In addition, we study the effect of a single

1-EX, i.e. performing a single one-edge-exchange per mutation as

stated in Algorithm 1 in comparison to possibly multiple subse-

quent 1-EX moves. Here, we consider the case where the number of

swaps is sampled from {1, . . . , l} for l = 1, 2, 3 uniformly at random

(this is denoted by Uniform[l] in the following and includes the case

of a single 1-EX move). In addition we consider the number of 1-EX

moves being sampled from a Poisson distribution with rate λ = 1.

Here, there is a strictly positive probability to exchange multiple

edges which may be advantageous and necessary to leave local

optima. For each (n, µ, sampling)-combination we run (µ + 1)-EA

30 times for statistical soundness.

Table 1 shows a comparison in terms of population diversity Do

in percent as well as summary statistics for the number of iterations

required. The results indicate that (µ + 1)-EA manages to find a

µ-size population of maximum diversity for almost all considered

scenarios within the limit of µn2 function evaluations. Solely the

case where µ = ⌊ n2 ⌋ seems tricky. Here, (µ + 1)-EA apparently

gets trapped in local optima and is unable to escape (within the

given FE-limit): all 30 runs consistently hit the imposed FE-limit. In

addition we observe a near-constant advantage for multiple 1-EX

moves per mutation. For relative low µ (µ+1)-EA with Poisson sam-

pling is up to three times as fast as its competitor and also shows

lower standard deviation. The results are statistically significant as
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Figure 3: Distribution of the share of maximum function

evaluations (µn2) in the unconstrained case split by instance

size n and population size µ.

indicated by the 1+ values in the stat column; a plus symbol shows

that the zero hypothesis of lower number of FEs for the competitor

algorithm was rejected by the Wilcoxon-Mann-Whitney test at a

significance level of 5%. This effect becomes weaker when µ ap-

proaches ⌊ n2 ⌋. In this region it apparently becomes more beneficial

ś in the end of the optimization process ś to produce mutants by

single 1-EX moves. Figure 3 gives a visual impression of the num-

ber of function evaluations required as a share of the maximum

FE-limit µn2. The box-plots confirm our observations from Table 2.

In conclusion, this series of experiments verifies empirically that

(µ + 1)-EA is able to efficiently evolve sets of edge-disjoint STs.

The focus of this paper is on the overlap-based diversity mea-

sure. However, in real-world applications, e.g. telecommunication

networks, diversity with respect to additional structural features is

desirable. To reduce the workload of single nodes in said networks,

constraints on the maximum degree of the MST pose real-world

requirements. In this context also MSTs with many leafs are advan-

tageous. Furthermore, low-diameter3 MSTs enable fast communica-

tion since the number of hops is kept relatively low [14]. For MSTs

on complete graphs the number of leafs, the maximum degree and

the diameter can take n−2 different values in {2, 3, . . . ,n−1} where

in all three cases n-vertex paths and star graphs pose the extreme

cases; i.e. a star graph has (n− 1) leafs, maximum degree (n− 1) and

diameter 2 while a path has diameter n − 1 with maximum degree 2

and 2 leafs. Table 2 shows mean and standard deviation of diversity

(as percentage values) with respect to the maximum degree, the

number of leafs and the diameter in the unconstrained case. Due to

space limitations we show the statistics for the Poisson-sampling

only. For these features diversity is measured as the fraction of

distinct values in the final populations. E.g. maximum max-degree

diversity is obtained if all trees have different maximum degree.4

The values in the table indicate a clear trend: with increasing µ the

mean diversity values decrease. This trend is particularly strong

for the maximum degree. Note that this is in line with Corollary 2.3

where the proof was constructive and the resulting population was

a set of edge-disjoint paths all with maximum degree 2. The data

3The diameter of a graph is the length of its longest simple path.
4Note that in our setup µ ≤ ⌊ n2 ⌋ < n − 2 and hence maximum diversity could be

possible. However, for µ close to the maximum value we actually do not know if this

is achievable in theory.

Table 2: Diversity (in percent of the maximally achievable

value) with respect to overlap diversity Do , maximum de-

gree (Max. degree), number of leafs (Leaf) and the diameter

(Diameter) in the unconstrained setting.

Do Max. degree Leaf Diameter

n µ mean std mean std mean std mean std

2 100.00 0.00 83.33 23.97 88.33 21.51 95.00 15.26

10 100.00 0.00 30.67 6.40 61.67 11.17 65.67 11.6550

25 99.80 0.02 14.67 2.43 33.33 4.25 41.07 5.03

2 100.00 0.00 85.00 23.30 96.67 12.69 95.00 15.26

10 100.00 0.00 30.67 7.40 66.33 9.64 76.33 9.99

25 100.00 0.00 16.27 3.14 43.07 5.82 50.40 4.99
100

50 99.93 0.00 8.87 1.14 26.07 3.34 32.07 3.46

2 100.00 0.00 75.00 25.43 95.00 15.26 96.67 12.69

10 100.00 0.00 35.00 5.72 78.33 8.34 81.33 7.76

25 100.00 0.00 15.20 2.44 53.73 5.91 60.13 6.52

50 100.00 0.00 8.33 1.06 33.00 2.45 40.53 3.52

200

100 99.98 0.00 4.53 0.63 20.70 1.49 24.37 1.79

2 100.00 0.00 83.33 23.97 95.00 15.26 95.00 15.26

10 100.00 0.00 30.33 7.65 81.33 9.37 81.67 13.15

25 100.00 0.00 16.13 2.46 61.47 6.68 66.67 6.83

50 100.00 0.00 8.87 1.14 43.13 3.43 47.47 4.81

400

100 100.00 0.00 5.03 0.61 26.53 2.08 30.63 2.65

suggests, that in order to obtain higher diversity with respect to,

e.g. maximum degree, one likely has to sacrifice overlap diversity.

This is clearly a multi-objective problem and will be part of our

future agenda.

5 CONSTRAINED DIVERSITY OPTIMIZATION

We now turn our focus to constrained diversity optimization on

random Euclidean graphs where nodes are associated with point

coordinates in the Euclidean plane. To this end we consider n ∈

{50, 100, 200, 400}, µ ∈ {2, 10, 25, 50, 100, 200} such that µ ≤ ⌊ n2 ⌋

and α ∈ {0.05, 0.10, 0.5, 1}. Consistent with the setup in the uncon-

strained case (µ + 1)-EA is run 30 times on each generated instance

for at most µn2 iterations. Table 3 shows the results following the

format of Table 1. We show a subset of the results for Uniform[1]

and Poisson sampling for n ∈ {50, 100}; the omitted data shows

the same picture. As expected diversity in most cases increases

with increasing α as there is more flexibility in choosing alternative

edges (see Figure 4 for a superimposed visualisation of solutions).

In addition, a distinctive pattern with respect to the sampling

strategies can be observed. For lowα , performing single 1-EXmoves

seems advantageous. In contrast, performing multiple 1-EX moves

mutation leads to better results in terms of overlap diversity for

increasing α . This seems plausible and in par with our observations

in Section 4: as α increases, so does the size of the feasible search

space. Hence, stronger mutation may explore this space more thor-

oughly as multiple subsequent edge exchanges might be necessary

in order to come up with a solution that in fact adheres to the qual-

ity constraint. However, this effect diminishes with µ approaching
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Figure 4: Visualised edge usage for an Euclidean instance with n = 50 nodes, µ = 10 and α ∈ {0.05, 0.10, 0.50, 1.00} (from left

to right). In the plots all µ spanning trees are superimposed. The darker an edge, the higher the overlap in the population.

Omitted edges are not part of any solution. MST-edges are shown in blue.

Table 3: Comparison in terms of mean overlap diversity

(mean), its standard deviation (std) and results of Wilcoxon-

Mann-Whitney tests (stat). The data is split by the sampling

strategy (Single or Poisson).

Uniform[1] (1) Poisson (2)

n µ α mean std stat mean std stat

0.05 21.97 6.17 2+ 19.12 3.96

0.10 26.73 4.49 2+ 24.56 4.59

0.50 47.14 4.92 66.80 5.44 1+
2

1.00 62.86 5.98 91.29 4.55 1+

0.05 28.47 1.41 2+ 22.35 1.29

0.10 36.69 1.41 2+ 29.97 1.61

0.50 63.60 1.97 64.57 1.06 1+
10

1.00 75.34 2.48 83.56 0.64 1+

0.05 29.15 1.02 2+ 26.07 1.25

0.10 38.28 0.71 2+ 35.13 1.04

0.50 68.23 0.81 2+ 67.43 0.56

50

25

1.00 81.56 0.66 83.28 0.38 1+

0.05 11.41 2.85 11.68 2.58

0.10 15.89 4.48 19.46 3.59 1+

0.50 31.14 4.96 58.86 3.44 1+
2

1.00 47.30 4.26 85.79 2.69 1+

0.05 24.68 1.06 2+ 15.92 1.47

0.10 33.87 1.33 2+ 24.37 1.50

0.50 59.10 2.51 59.07 1.05
10

1.00 70.94 3.33 80.41 0.72 1+

0.05 26.24 0.61 2+ 20.53 0.92

0.10 35.98 0.71 2+ 29.57 0.96

0.50 66.55 0.68 2+ 63.75 0.57
25

1.00 79.78 0.69 81.13 0.45 1+

0.05 26.69 0.44 2+ 22.90 0.77

0.10 36.64 0.40 2+ 32.16 0.64

0.50 67.86 0.35 2+ 66.30 0.43

100

50

1.00 81.74 0.46 82.17 0.20 1+

Table 4: Diversity (in percent of the maximally achievable

value) with respect to overlap diversity Do , maximum de-

gree (Max. degree), number of leafs (Leaf) and the diameter

(Diameter) in the constrained setting.

Do Max. degree Leaf Diameter

n µ α mean std mean std mean std mean std

0.05 19.12 3.96 75.00 25.43 88.33 21.51 95.00 15.26

0.10 24.56 4.59 75.00 25.43 95.00 15.26 96.67 12.69

0.50 66.80 5.44 75.00 25.43 93.33 17.29 96.67 12.69
2

1.00 91.29 4.55 80.00 24.91 88.33 21.51 88.33 21.51

0.05 22.35 1.29 18.33 5.92 42.00 9.97 43.00 11.49

0.10 29.97 1.61 22.67 7.85 44.00 9.32 55.67 11.35

0.50 64.57 1.06 27.33 6.40 57.67 8.98 66.67 10.93
10

1.00 83.56 0.64 29.67 6.69 56.67 9.22 66.33 9.28

0.05 26.07 1.25 9.60 1.99 20.13 4.26 23.47 5.22

0.10 35.13 1.04 10.93 2.08 23.60 4.74 26.53 4.87

0.50 67.43 0.56 12.93 3.10 32.93 4.89 36.67 3.65

50

25

1.00 83.28 0.38 14.27 2.50 34.80 5.37 39.87 5.51

0.05 11.68 2.58 65.00 23.30 90.00 20.34 96.67 12.69

0.10 19.46 3.59 65.00 23.30 96.67 12.69 91.67 18.95

0.50 58.86 3.44 81.67 24.51 96.67 12.69 98.33 9.13
2

1.00 85.79 2.69 83.33 23.97 91.67 18.95 91.67 18.95

0.05 15.92 1.47 17.00 5.96 44.33 10.40 46.00 11.02

0.10 24.37 1.50 20.33 6.15 56.00 8.14 62.33 10.40

0.50 59.07 1.05 26.00 5.63 61.00 11.25 80.00 7.88
10

1.00 80.41 0.72 32.00 6.64 67.00 11.19 75.33 10.08

0.05 20.53 0.92 7.73 3.14 23.87 4.52 27.73 4.32

0.10 29.57 0.96 9.07 2.33 27.47 5.82 33.60 6.36

0.50 63.75 0.57 12.80 1.63 40.27 5.94 53.20 5.96
25

1.00 81.13 0.45 14.67 2.64 41.87 4.67 52.00 6.73

0.05 22.90 0.77 4.13 1.48 14.47 2.91 16.40 2.99

0.10 32.16 0.64 4.47 1.01 17.33 3.08 21.20 3.81

0.50 66.30 0.43 6.53 0.90 24.40 3.17 31.47 2.83

100

50

1.00 82.17 0.20 7.60 1.33 26.20 3.17 33.67 2.41
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⌊ n2 ⌋. We see that single mutation steps become more effective and

the gap between single step and multi step mutation decreases even

in the case where multi-step mutation is still stronger.

Table 4 explores diversity with respect to the maximum degree,

the number of leafs and the diameter for the constrained setting. For

fixed α diversity with respect to all three features decreases with

increasing µ showing an inverse trend in comparison with overlap

diversity. In line with the unconstrained case the maximum degree

diversity is consistently lowest reaching below 15% for µ = ⌊ n2 ⌋.

Keeping µ fixed we see a trend towards higher diversity values for

increasing α . This seems plausible as for low α the final population

differs in only few edges (high overlap) and hence the STs are also

more likely to be structurally similar.

6 CONCLUSION

We studied the minimum spanning tree problem in the context of

evolutionary diversity optimization for the first time. Here, the goal

is to evolve a population of high quality solutions which all satisfy

minimum quality requirements. We studied a baseline (µ + 1) evolu-

tionary algorithm with a diversity measure based on pairwise edge

overlap of solutions. Runtime complexity results show that a (2+1)-

EA is able to find two maximally diverse spanning trees in expected

timeO(n3 logn) in the unconstrained setting where n is the number

of nodes; one of the first runtime results for evolutionary diversity

optimization on well-known combinatorial optimization problems.

Complementary experiments suggest that (µ + 1)-EA with µ up

to ⌊ n2 ⌋ can efficiently evolve diverse populations of edge-disjoint

spanning trees in the unconstrained and the constrained case where

in the latter a relaxation of the quality constrained allows for higher

diversity. However, increasing population size leads to less diversity

with of solutions with respect to other desired tree features: the

maximum degree, the number of leafs and the diameter.

Future research endeavors will focus on improving and gen-

eralizing the theoretical runtime bounds to strengthen the still

rare theoretical foundations of evolutionary diversity optimiza-

tion on combinatorial optimization problems. Here, in particular

an extension towards the constrained case seems interesting and

challenging. In addition, multi-objective approaches which aim to

simultaneously maximise several diversity measures appear promis-

ing.
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