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ABSTRACT
In Multi-label (ML) classification, each instance is associated with

more than one class label. Incorporating the label correlations into

the model is one of the increasingly studied areas in the last decade,

mostly due to its potential in training more accurate predictive mod-

els and dealing with noisy/missing labels. Previously, multi-label

learning classifier systems have been proposed that incorporate

the high-order label correlations into the model through the label

powerset (LP) technique. However, such a strategy cannot take

advantage of the valuable statistical information in the label space

to make more accurate inferences. Such information becomes even

more crucial in ML image classification problems where the number

of labels can be very large. In this paper, we propose a multi-label

learning classifier system that leverages a structured representa-

tion for the labels through undirected graphs to utilize the label

similarities when evolving rules. More specifically, we propose a

novel scheme for covering classifier actions, as well as a method to

calculate ML prediction arrays. The effectiveness of this method is

demonstrated by experimenting on multiple benchmark datasets

and comparing the results with multiple well-known ML classifica-

tion algorithms.

CCS CONCEPTS
•Computingmethodologies→Rule learning; Structured out-
puts; • Mathematics of computing→ Graph theory.
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1 INTRODUCTION
In multi-label (ML) classification problems, each problem instance

is annotated with more than one label at the same time. ML prob-

lems appear in various domains, such as image annotation [7], text
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categorization [26], and gene function analysis [11]. The objective

of a ML classification algorithm is to predict a set of relevant labels

for a given problem instance. One of the challenges with ML prob-

lems is that the size of the label space grows exponentially with the

number of labels and exploiting the label correlation information

is an effective strategy to address this challenge [44]. Over the past

decade, the research on multi-label classification methods has been

focused on utilizing dependencies among the labels using various

techniques such as probabilistic networks, graph structures, and

recurrent neural networks.

Learning classifier systems (LCSs) are adaptive rule-based ma-

chine learning algorithms that utilize evolutionary computation

strategies such as mutation and crossover to explore the problem

space. LCSs evolve a population of local sub-models that collec-

tively explain the target problem and offer human-readable rules.

Due to their minimal assumptions about the underlying regularities

in the problem, LCSs have been successfully applied to problems in

various domains, such as epidemiological data sets [35, 38], senti-

ment analysis of short texts [1], analyzing human decision making

in agent-based social simulations [19], and multi-label classification

problems [23]. Moreover, the flexible structure of the rules in LCSs

allows for the condition and the action of rules to be adapted to

the assumptions of a specific problem. For instance, the action of a

rule in LCS can be adapted to support various abstraction methods,

such as neural networks, tree representations, or graph structures.

The multi-label classifier system proposed in [22, 23], namely the

classifier system with ML rules (MLR), employs the label powerset

(LP) approach for covering new classifiers to capture the high-

order label relations. More specifically, covering treats each distinct

combination of observed labels in the training data as a unique label

to be assigned to the action of a covered classifier. Nonetheless,

covering the actions using the LP method makes minimal use of the

label dependency information and ignores other potentially useful

local or global information. To calculate the prediction array, MLR

combines the predicted labelsets in the match set of an instance and

calculates a score using the classifier fitness for each label, where

fitness is a function of the Hamming loss of the classifier’s action.

Yet, in most of the multi-label classification problems, classifier

actions have many labels and a scalar fitness value does not reflect

the true predictive ability of the classifiers.

In this paper, we leverage the flexible design and generalization

capabilities of the LCS algorithms in solving ML classification tasks

and effectively training multi-label classifier models. We propose

a novel similarity-guided covering scheme for the classifier action
using label similarity graphs. Weighted undirected graphs are used

to model the pair-wise label relations locally and extract highly

correlated label subsets. The proposed covering scheme leverages
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label dependency information to assign accurate labels to the classi-

fier action. Moreover, we employ a label-specific precision measure

to assess the classifier’s confidence in predicting each class label.

We integrate this measure into the prediction array calculation

and implement an error correction scheme to establish an implicit

stratification between the relevant and irrelevant classes to the

instances.

2 BACKGROUND
2.1 Learning classifier systems
LCSs are a family of machine learning algorithms that employ

genetic algorithms (GAs) to train a rule-based model that describes

the target problem through human interpretable rules [40] [36].

Accuracy-based LCS is the most popular LCS formulation which

includes UCS [4] and XCS [40]. UCSs function under a supervised

learning framework and use an accuracy-based fitness evaluation

to guide the exploring process [21]. XCSs are reinforcement-based:

they employ a Q-learning like algorithm to explore and exploit

problem instances. These algorithms can address both single-step

and multiple-step problems, including sequence labeling, sequential

decisionmaking, regression, and classification.More recent variants

of the supervised learning classifier systems, namely ExSTraCSs,

take advantage of heuristic components such as the EK-UCS [37],

the UCS-AT, and UCS-AF [33] mechanisms. The EK-UCS is an

expert-knowledge guided covering and mutation mechanism, while

UCS-AT and UCS-AF are developed to explore complex attribute

interactions within ExSTraCS.

LCSs have been adopted to both classification and regression

problems by utilizing various action specifications. To model con-

tinuous end-point problems, LCSs using fuzzy logic were the first

variant to produce a continuous output [6]. Later, XCS algorithm

was extended to XCSF [41][42], which was able to perform a func-

tion approximation task through reward prediction. The XCS al-

gorithm is also extended to learn code fragments as the action of

the classifiers in [18]. Code fragments are tree expressions that are

similar to the trees generated in genetic programming. In [34], the

ExSTraCS algorithm was extended to develop the first supervised

learning classifier to handle continuous end-point problems that

incorporated interval prediction into the rules. NLCS [8] replaces

the action part of a classifier in UCS with a simple neural network

(NN) to obtain a more compact population and better generaliza-

tion. Furthermore, authors in [20] developed the CN-LCS which

explores various convolutional neural network (CNN) structures in

combination with the UCS algorithm to examine the effectiveness

of the neural-based learning classifier systems with deep feature

maps. Finally, the MLR classifier system has been proposed in [23]

that adapts the UCS algorithm to solve the multi-label classification

problem by adapting the action of a classifier to predict a set of

labels and introducing a fitness evaluation criterion based on the

Hamming loss of a classifier’s prediction.

2.2 LCSs for the multi-label classification
problem

In most real-world multi-label problems, the labels are correlated

and naturally co-occur. For instance, if an image is annotated with

the labels "island" and "ocean," it is very likely that the label "boat"

is also relevant to this image. Current studies focus on exploiting

label correlations with various degrees [44]: the first-order strategy

ignores the label correlations [7, 43], the second-order strategy

handles the pairwise correlation among the labels [13, 17], and the

high-order strategy considers the influence of all other labels on

each label [5, 16, 24, 31]. For a review on ML classification methods,

please refer to [14, 44].

LCSs were first adapted to ML problems in [39] by modifying

the classifier action to learn binary-relevance (BR) vectors of the

labels and evolve default hierarchies within multi-label data using

organization classifier systems. Nonetheless, the BR approach to

ML problems ignores the label correlations and may result in sub-

optimal solutions in real-world settings. The classifier system with

multi-label rules (MLR) [23] adopts the label-powerset approach to

ML problems to handle the high-order label dependencies by ex-

tending the UCS algorithm. To adapt UCS to the ML problems, MLR

replaces the action of a rule (𝑟 ) with a set of labels (ỹ). Through an

LP-based learning, the covering operator assigns the set of ground-

truth labels of the training data to the action of its covered rules.

The fitness of a classifier is calculated using the Hamming loss (ℎ𝑙 )

between the classifier action and the ground-truth labels of the

samples it has matched. Fitness is calculate as follows.

F = (1 −
∑
ℎ𝑙

𝑒𝑥𝑝
)𝜈 . (1)

Here, 𝑒𝑥𝑝 is the classifier experience, and 𝜈 is a user-defined value.

The authors in [23] compared the expected fitness of a classifier

calculated using the Hamming loss metric (
¯Fℎ𝑙

), and also using

the exact-match ratio (𝑒𝑚) of its action (
¯F 𝑒𝑚

), showed that the

inequality
¯F 𝑒𝑚 ≤ ¯Fℎ𝑙

holds for the average fitness. This inequal-

ity implies that the classifiers that are not accurate (i.e., 𝑒𝑚 ≠ 0)

but partially predict the correct multi-labels, are considered con-

tributing classifiers when fitness is based on Hamming loss. Such

classifiers have a better chance of receiving a reproductive opportu-

nity and remaining in the population and are shown to contribute

to avoiding over-fitting in real-world problems.

One of the drawbacks of LP-based learning is that it cannot

predict unseen label combinations in the test data. MLR addresses

this challenge by employing an action aggregation for the classifiers

in the match set (𝑀). This approach considers the union of the

predicted labels (ȳ) in the match set, as shown in (2), and calculates

the prediction array using the fitness (F ) and numerosity (𝑛𝑢𝑚) of

the classifiers in𝑀 . Therefore, the prediction value for the 𝑖𝑡ℎ label,

𝑓𝑖 , is calculated as in (3).

ȳ =
⋃
𝑟 ∈𝑀

ỹ𝑟 , (2)

𝑓𝑖 =
∑
𝑟 ∈𝑀,

𝑖𝑡ℎ𝑙𝑎𝑏𝑒𝑙 ∈ỹ

F 𝑟 × 𝑛𝑢𝑚𝑟 . (3)

The obtained prediction array provides a ranking for the predicted

labels. This strategy is compared to the classical way of selecting the

action provided by the fittest classifier in𝑀 and the experiments

show that employing the aggregated approach leads to a better

average performance on multiple benchmark datasets.
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2.3 Notations
Let X ⊂ R𝑑

denote a feature space and 𝐿 = {𝑙1, . . . , 𝑙𝑚} be a finite
set of class labels. Each instance x𝑖 ∈ X is associated with a label

vector y𝑖 ∈ {0, 1}𝑚×1
, where 𝑦𝑖 𝑗 = 1 means 𝑙 𝑗 is relevant to x𝑖 , and

0 otherwise. Thus, 𝐷 = {(x1, y1), (x2, y2), . . . , (x𝑛, y𝑛)} is a finite
set of instances that are assumed to be randomly drawn from an

unknown distribution and 𝑌 = [y1, y2, . . . , y𝑛]𝑇 is the label matrix

for 𝐷 . Moreover, 𝐹 : R𝑑 → R𝑚
is the multi-label predictor where,

the predicted values can be regarded as the confidence of the model

in the relevance of the predicted label. Here, 𝑓 (x𝑖 , 𝑙 𝑗 ) is the predicted
confidence of 𝑙 𝑗 for the 𝑖𝑡ℎ instance. Then, ℎ : R𝑑 → {0, 1}𝑚
is the multi-label classifier which can be induced from 𝐹 via a

threshold function. In other words, ℎ𝑖 𝑗 = ⟦𝑓 (x𝑖 , 𝑙 𝑗 ) > 𝑡 (x𝑖 , 𝑙 𝑗 )⟧
uses a threshold function 𝑡 and outputs 1 if the prediction is higher

than 𝑡 . We use the notation 𝑌𝑖 = {𝑙 𝑗 |y𝑖 𝑗 = 1} to denote the set of

the relevant labels, and 𝑌𝑖 = {𝑙 𝑗 |y𝑖 𝑗 = 0} to denote the set of the

irrelevant labels to x𝑖 . Finally, we use | · | to denote the cardinality

of a set and ⟦𝜔⟧ returns 1 if the predicate 𝜔 holds, and 0 otherwise.

3 PROPOSED METHOD
In this section, we first explain the main learning framework of the

multi-label LCS (MLCS) algorithm and then introduce an effective

mechanism to incorporate label correlations into the classifier cov-

ering operator (discussed in section 3.1). Furthermore, we propose

a new method to calculate the ML prediction array that integrates

the label-specific classifier precision into the prediction array to

reduce uncertainty in predicted labels, as discussed in section 3.2.

Like other LCS algorithms, MLCS starts with an empty popula-

tion of rules and creates initial rules through covering, while GA is

applied to 𝑃 to search the prob space to maximize the fitness of the

population. The ability of the covering operator to build the initial

population of accurate rules is critical for implementing an efficient

algorithm. The label similarities can be used to guide the covering

operator to initialize the classifier action with highly correlated

labelsets. Graph structures are able to capture pair-wise relations

among the labels and can be used to decompose the labels of the

training instances into highly correlated subsets. To focus on the

locally shared correlations, the training data is decomposed into

multiple disjoint clusters, and a distinct similarity graph is con-

structed for the labels in each cluster. This approach is consistent

with the LCS’s rule-based design that evolves local sub-models.

Subsequently, MLCS evolves a separate population of rules for each

cluster of the data. In the following, we provide basic definitions

and then explain how the label graphs in MLCS are constructed.

Definition 3.1. Graph 𝑔 = (𝑉 , 𝐸,𝑊 ) is an undirected weighted

graph, with the vertex set 𝑉 = {𝑣1, . . . , 𝑣𝑞} and𝑊 = [𝑤𝑖, 𝑗 ]𝑞×𝑞 ,
which is the positive weighted adjacency matrix of 𝑔. An edge 𝑒𝑖 𝑗
exists between two vertices 𝑣𝑖 and 𝑣 𝑗 , if𝑤𝑖, 𝑗 > 0.

Definition 3.2. A component of an undirected graph is an induced

sub-graph in which any two vertices are connected to each other

by paths, and which is connected to no additional vertices in the

rest of the graph [25].

In this paper, the label space structure is represented with an

undirected weighted graph 𝑔, where the vertices are a subset of

labels (𝑉 ⊆ 𝐿), the edges 𝐸 represents the co-occurrence of the labels

observed in 𝐷 , and the weight matrix𝑊 indicates the correlation

between the pairs of labels. To build graphs that capture the local

label similarities, the input space X is decomposed into 𝑐 clusters

as 𝐷𝑘 = (X𝑘 , 𝑌𝑘 ) for 1 ≤ 𝑘 ≤ 𝑐 , such that

𝐷𝑘 = {(x𝑖 , y𝑖 ) |x𝑖 ∈ X𝑘 , 1 ≤ 𝑖 ≤ 𝑛𝑘 }, (4)

𝑌𝑘 = [y1, y2, . . . , y𝑛𝑘 ]
𝑇 .

For the 𝑘𝑡ℎ cluster of the data, MLCS calculates a distinct label

graph𝑔𝑘 . The edge weight matrix𝑊 𝑘
is calculated using the Cosine

similarity between the label vectors. Assume𝑌𝑖 . and𝑌𝑗 . to be the 𝑖
𝑡ℎ

and 𝑗𝑡ℎ columns of 𝑌𝑘
, respectively. 𝑔𝑘 is constructed as follows.

𝑉𝑘 = {𝑙 𝑗 |∃𝑦𝑖 𝑗 = 1, 1 ≤ 𝑖 ≤ 𝑛𝑘 }, (5)

𝑊 𝑘 =

{
𝑤𝑖 𝑗 𝑤𝑖 𝑗 ≥ 𝛿

0 𝑜.𝑤 .
𝑤𝑖 𝑗 =

< 𝑌𝑖 ., 𝑌𝑗 . >

∥𝑌𝑖 .∥∥𝑌𝑗 .∥
, 1 ≤ 𝑖, 𝑗 ≤ |𝑉𝑘 |, (6)

𝐸𝑘 = {𝑒𝑖 𝑗 |∀𝑤𝑖 𝑗 ≠ 0}. (7)

Here, < ·, · > denotes the inner product of two vectors, and ∥ · ∥
denotes the 𝑙2 norm of the vector. Applying the minimum similarity

threshold 𝛿 in (6) leads to a sparse graph that contains only the

label pairs whose correlation is larger than 𝛿 . A sparse graph repre-

sentation can remove the semantically unrelated links to avoid the

propagation of incorrect information [29]. The connected compo-

nents (CC) of 𝑔𝑘 comprises of the groups of labels that are highly

correlated and are used by the proposed ML covering scheme to

initialize the classifier’s action. The induced sub-graphs of 𝑔𝑘 with

respect to the minimum similarity threshold 𝛿 is defined as follows.

𝑔𝑘(𝑐𝑐,𝛿) = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (𝑔𝑘 , 𝛿) (8)

The connected components of a graph can be extracted by analyz-

ing the matrix properties of the graph, such as the graph Laplacian,

and using algorithms such as the Reverse Cuthill-McKee algorithm

[2]. This structure is directly impacted by the threshold 𝛿 and de-

termines the number of the classifiers which are covered for each

training instance. Therefore, it impacts the rate at which the pop-

ulation size increases and should be tuned accordingly and with

respect to the similarity information calculated for a given problem.

To demonstrate how MLCS extracts the local dependency graphs

of a dataset, the similarity graphs for the PASCAL-VOC6 dataset

[12] are presented in Figure 1. Considering the similarity matrix of

the dataset in Figure 1-(a), 𝛿 = 0.1 is assumed to ensure that highly

correlated label pairs will be preserved while covering the classi-

fier’s action. The dataset is clustered into 𝑐 = 5 clusters, and label

similarities are calculated for each cluster as shown in Figure 1- (b,

c). The sparse structure of the similarity graphs in the clustered data

shows how some labels are weakly related at the local level, e.g., bus
and car labels in Figure 1 - (b), and some labels are strongly related,

e.g., person and bus in Figure 1 - (c). Utilizing this information to

guide the classifier covering can facilitate the training of the LCS

by creating rules that are initialized with accurate actions.

Algorithm 1 summarizes the major steps of the training in the

MLCS algorithm. During the training of MLCS, covering is activated

under two conditions: (a) when the set of the matching classifiers

is empty, i.e.,𝑀 = ∅, (b) when the target labels are not completely

covered by the matching classifiers, i.e., y ⊈
⋃

𝑟 ∈𝑀 ỹ. The second
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Figure 1: Visualization of the global and local label similarity graphs for the labels in PASCAL-VOC6 dataset.

condition increases the prediction capability of the model by cre-

ating new classifiers to cover the labels that are not present in𝑀 .

The correct set (𝐶) in MLCS comprises of classifiers whose predic-

tions are a subset of the target labelset. This set is then used by the

GA to randomly select parent classifiers, apply genetic operators

on the classifier condition and create new off-springs. To evaluate

the predictive performance of a trained population of rules, the

ML-Predict algorithm is used (see section 3.2).

Algorithm 1 The pseudocode of the training algorithm of MLCS.

1: procedure Training(𝐷𝑡𝑟𝑎𝑖𝑛, 𝛿 )

2: (𝐷1, . . . , 𝐷𝑐
)← cluster(𝐷𝑡𝑟𝑎𝑖𝑛 ) (4);

3: for 1 ≤ 𝑘 ≤ 𝑐 do:
4: Calculate 𝑔𝑘(𝑐𝑐,𝛿 ) according to (5) and (8);

5: end for
6: for 1 ≤ 𝑘 ≤ 𝑐 do:
7: 𝑖𝑡 ← 0;

8: while 𝑖𝑡 ≤ 𝑖𝑡𝑚𝑎𝑥 do
9: Read (x, y) ∈ 𝐷𝑘

;

10: Scan 𝑃𝑘
and form match set𝑀𝑘

;

11: if (𝑀𝑘 = ∅) | (y ⊈ ⋃
𝑟∈𝑀𝑘 ỹ) then:

12: ML-Cover(𝑔𝑘(𝑐𝑐,𝛿 ) , (x, y)) ;
13: end if
14: Update rule parameters in𝑀 according to (1);

15: Form correct set𝐶𝑘
and apply genetic algorithm;

16: 𝑖𝑡 ← 𝑖𝑡 + 1;

17: end while
18: end for
19: return {𝑃1, . . . , 𝑃𝑘 };
20: end procedure

3.1 Multi-label action covering
In this section, we discuss the proposed ML covering strategy for

the classifiers’ action. The objective is to find label subsets that

are highly correlated to create classifiers with maximally accurate

actions. Given a training instance (x, y) that belongs to 𝐷𝑘
, the

covering operator obtains a partitioning of the labelset 𝑌 according

to the label graph 𝑔𝑘(𝑐𝑐,𝛿) , as follows.

{𝑌1, 𝑌2, . . . , 𝑌𝑞′} = 𝑔𝑘(𝑐𝑐,𝛿) (𝑌 ) . (9)

The labels that appear in each subset (𝑌𝑗 ) are assumed to be more

similar than those in 𝑌 and will provide the initial population of

rules withmore accurate classifiers. For each labelset in (9), covering

generates a new classifier and assigns the labelset to the classifier’s

action. To encourage variance in the initial classifiers inserted into

the population, a unique condition is generated for each subset

of labels that matches x. Subsequently, covering creates at least

one new classifier every time it is activated. For example, assume

𝑌 = {𝑝𝑒𝑟𝑠𝑜𝑛, 𝑏𝑢𝑠, 𝑐𝑎𝑟 } to be the labelset of a sample that belongs

to 𝐷1
of the PASCAL-VOC6 dataset. Covering decomposes 𝑌 into

𝑌1 = {𝑏𝑢𝑠} and 𝑌2 = {𝑝𝑒𝑟𝑠𝑜𝑛, 𝑐𝑎𝑟 }, according to the label graph of

this cluster (Figure 1 - (b)). Therefore, two classifiers are added to the

population with distinct actions and random conditions. Algorithm

2 outlines the proposed covering scheme.

Algorithm 2 The pseudocode of the proposed multi-label covering.

1: procedure ML-Cover(𝑔𝑘(𝑐𝑐,𝛿 ) , (x, y))
2: 𝑉 , 𝐸,𝑊 ← 𝑔𝑘(𝑐𝑐,𝛿 ) ;

3: 𝑌 ← relevant labels according to y;
4: 𝑌1, 𝑌2, . . . , 𝑌𝑞′ ← 𝑌 partitioned according to𝑉 ;

5: for 1 ≤ 𝑖 ≤ 𝑞′ do
6: x̃← random condition matching x;
7: ỹ← 𝑌𝑖 ;

8: Insert 𝑟 = (x̃, ỹ) into 𝑃𝑘
;

9: end for
10: end procedure
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Figure 2: Sample outputs of a trained MLCS model on test
images selected from the PASCAL-VOC6 dataset.

3.2 Multi-label prediction array
This section discusses the proposed strategy for calculating the

multi-label prediction array, that address the drawback with using

the fitness values in MLR. We introduce a label-specific precision

measure (𝛼) for a classifier that evaluates its confidence in predicting

each label in its action and is calculated with respect to the ground-

truth labels of the training instances it matches. For 𝑙 𝑗 ∈ ỹ, the 𝛼 𝑗
is derived as follows.

𝛼 𝑗 =

∑ |𝑀𝑟 |
𝑖=1

𝑦𝑖 𝑗

|𝑀𝑟 |
. (10)

Here, 𝑀𝑟 is the set of the training instances that 𝑟 matches. The

value of 𝛼 𝑗 also indicates the probability of observing a sample

within the sub-space covered by x̃ that belongs to the 𝑗𝑡ℎ class.

To calculate the multi-label prediction array for a given instance

x, the instance is first assigned to its closest cluster 𝐷𝑘
and the

set of its matching classifiers are identified from 𝑃𝑘 . Similar to

MLR, we first obtain the union of all the predicted labels (ȳ) in the

match set to increase the generalization of the model to unseen

label combinations.

ȳ =
⋃
𝑟 ∈𝑀

ỹ. (11)

For each label in ȳ, a prediction value is calculated using the preci-

sion of the classifier that is scaled with respect to the number of

classifiers predicting the same label. Let 𝛼𝑖 𝑗 to be the precision of

𝑟𝑖 in predicting 𝑙 𝑗 , and 𝑛 𝑗 to be the ratio of the number of the rules

in𝑀 that has 𝑙 𝑗 in their action. The prediction value for this label

is calculated using a sigmoid function as follows.

𝑓 (x, 𝑙 𝑗 ) =
1

1 + 𝑒−(𝑛 𝑗−𝜀)
max

𝑟𝑖 ∈𝑀
𝛼𝑖 𝑗 . (12)

The prediction array calculated by (12), focuses on the labels that are

most frequently predicted and belong to the most certain classifiers.

Once all the scores are obtained for the samples in 𝐷𝑘
, we obtain

the ML binary classification vector ℎ for each sample by applying a

label-specific threshold value to the prediction array such that, for

x and label 𝑙 𝑗 , this value is calculated as

ℎ 𝑗 = ⟦𝑓 (x, 𝑙 𝑗 ) > 𝑡 (x, 𝑙 𝑗 )⟧. (13)

Here, 𝑡 (x, 𝑙 𝑗 ) is a label-specific threshold that is calculated by maxi-

mizing the area under the precision-recall curve (𝑃𝑅 −𝐴𝑈𝐶 (𝑓 )) of
the predicted scores for the instances within a cluster, as follows.

𝑡 (x, 𝑙 𝑗 ) = arg max

𝑡 ∈[0,1]
𝑃𝑅 −𝐴𝑈𝐶 (𝑓 (x, 𝑙 𝑗 ), 𝑡) . (14)

Algorithm 3 The pseudocode of the proposed multi-label covering.

1: procedure ML-Predict(X𝑡𝑒𝑠𝑡 )

2: for x𝑡 ∈ X𝑡𝑒𝑠𝑡 do
3: Identify 𝐷𝑘

and 𝑃𝑘
;

4: 𝑀 ← match set of x𝑡 from 𝑃𝑘
;

5: Calculate ȳ using (11);

6: for 𝑙 𝑗 ∈ ȳ do
7: Calculate 𝑓 (x𝑡 , 𝑙 𝑗 ) using (12);
8: end for
9: end for
10: Calculate thresholds 𝑡𝑘

𝑗
, 1 ≤ 𝑗 ≤𝑚, 1 ≤ 𝑘 ≤ 𝑐 using (14);

11: for x𝑡 ∈ X𝑡𝑒𝑠𝑡 do
12: Obtain ML prediction ℎ using (13);

13: end for
14: end procedure

4 RESULTS AND DISCUSSION
In this section, the benchmark datasets and several classification

algorithms that are used in the comparison experiments are de-

scribed. Then, multi-label evaluation measures are explained, and

the strategies employed for parameter instantiation are reported.

Finally, results are presented and discussed.

4.1 Benchmark Datasets
For comparison, five popular real-world datasets are used includ-

ing, PASCAL-VOC6, Scene [7], Mediamill [28], Corel5k [10], and

Corel16k [3]. Table 1 shows the information about the number of

instances, features, and classes for each dataset. The raw images for

the PASCAL-VOC6 dataset are available at PASCAL Visual Object
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Dataset Sample count Feature count Label count 𝐶𝑎𝑟𝑑 𝐷𝑒𝑛𝑠

PASCAL-VOC6 3,500 256 10 1.309 0.131

Scene 2,407 294 6 1.074 0.179

Mediamill 43,907 120 101 4.555 0.045

Corel5k 5,000 499 374 3.522 0.009

Corel16k 13,770 500 153 2.859 0.019

Table 1: ML datasets used in the comparative experiments.

Classes 1 home page. We have utilized a pre-trained convolutional

neural network, VGG16 model [27], to extract a 256-dimensional

feature map for each image and used a 70-30 percent split of the data

to train and test the algorithms. For other datasets, the train-test

splits are available at the MULAN 2
library. For each dataset, the

label cardinality (𝐶𝑎𝑟𝑑) is the average number of labels per sample,

and label density (𝐷𝑒𝑛𝑠) is the cardinality divided by the number

of labels [44].

4.2 Experimental setup
To demonstrate the improvement obtained from the proposed ML

covering and prediction strategies, the MLR algorithm [23] is in-

cluded in the comparative experiments. To compare the overall

predictive performance of MLCS, the multi-label 𝑘-nearest neigh-

bors (ML-𝑘NN) [43] is selected that ignores the label correlation

information. Calibrated label ranking (CLR) [13] exploits the pair-

wise label correlations. The ensemble of classifier chaining (ECC)

[24] and RA𝑘EL [31] both utilize the high-order label correlations.

Finally, hierarchy of multi-label classifiers (HOMER) [30] with a LP-

based classifier trained at each node, leverages the high-order label

correlations. In the experiments, whenever necessary, the decision

tree classifier is opted for as the base learner. The experiments are

performed using the implementations of the above multi-label clas-

sification algorithms inMULAN library under the machine learning

frameworkWEKA [15]. The implementation of MLR in Python is

available on GitHub
3
. MLCS is also implemented in Python and

in available on GitHub
4
. All experiments are carried out on a 2.70

GHz Windows 10 machine with a 16.0 GB RAM.

4.3 Evaluation metrics
The performance of the compared ML classification methods are

reported and compared in terms of the following ML classification

evaluation metrics [21]. The Average accuracy metric is an example-

based metric, while 𝐹𝑚𝑎𝑐𝑟𝑜 is a label-based measure and 𝑅𝑎𝑛𝑘 −
𝑏𝑎𝑠𝑒𝑑𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 evaluates the performance based on the ranking of

the predicted labels.

• Average Accuracy is the average relative number of classes pre-

dicted correctly to the set of all predicted classes over all examples.

𝐴𝑐𝑐𝑒𝑥𝑎𝑚𝑝𝑙𝑒 (ℎ) =
1

𝑛

𝑛∑
𝑖=1

∑𝑚
𝑗=1

𝑦𝑖 𝑗ℎ𝑖 𝑗∑𝑚
𝑗=1

𝑦𝑖 𝑗 +
∑𝑚

𝑗=1
ℎ𝑖 𝑗

1
http://host.robots.ox.ac.uk/pascal/VOC/databases.html

2
http://mulan.sourceforge.net/

3
https://github.com/ConflictedPhilosopher/MLR.git

4
https://github.com/ConflictedPhilosopher/RELoC-GP.git

Algorithms Parameters Values

MLR and MLCS

𝑖𝑡𝑚𝑎𝑥 100,000

𝜃𝐺𝐴 15

𝑝𝜒 0.8

𝑝𝜇 0.05

𝜈 1

MLCS

𝑐 5

𝜀 0.5

Table 2: The LCS algorithm parameter settings.

• Macro-averaged 𝐹 -score is the harmonic mean between the

macro-averaged precision and recall averaged over all labels.

𝐹𝑚𝑎𝑐𝑟𝑜 =
1

𝑚

𝑚∑
𝑗=1

2

∑𝑛
𝑖=1

𝑦𝑖 𝑗ℎ𝑖 𝑗∑𝑛
𝑖=1

𝑦𝑖 𝑗 +
∑𝑛
𝑖=1

ℎ𝑖 𝑗

• Rank-based precision is the average fraction of relevant labels

ranked higher than one other relevant label.

𝑅𝑎𝑛𝑘 − 𝑃𝑟 (𝐹 ) = 1

𝑛

𝑛∑
𝑖=1

1

|𝑌𝑖 |
∑
𝜆∈𝐿𝑗

|𝑆𝑖 𝑗
𝑃𝑟
|

𝑓 (x𝑖 , 𝑙 𝑗 )
,

where,

𝑆
𝑖 𝑗

𝑃𝑟
= {𝑘 ∈ 𝑌𝑖 |𝑓 (x𝑖 , 𝑙𝑘 ) ≤ 𝑓 (x𝑖 , 𝑙 𝑗 )}.

4.4 Hyper-parameter tuning
The hyper-parameters of the methods used in the for comparison

are decided following the recommendations from the literature. In

cases where a parameter is to be determined from a set of values, the

value that corresponds to the maximum 𝐹𝑚𝑎𝑐𝑟𝑜 measure on each

dataset is considered in the experiments. The number of models in

RA𝑘EL is set to𝑚𝑖𝑛(2𝑚, 100) for all datasets [32]. The size of the
labelsets for RA𝑘EL is set to𝑚/2 as it provides a balance between

computational complexity and performance [24, 32]. On datasets

with large number of labels this value is set to 3 to avoid memory

error. The number of neighbors in the ML-𝑘NN method for each

dataset is selected from the set (6, 20) with a step size of 2. The

number of models in ECC is also set to 10 to be consistent with

other ensemble methods. HOMER requires the number of clusters

to be determined which is selected from (2, 6) [30]. For the MLCS

algorithm, as well as the MLR algorithm, the maximum number

of classifiers, is selected between (1000, 10000) by 1000 steps, and

𝑃# is selected from [0.1, 0.9], with a step size of 0.05. In MLCS, the

𝛿 values of the label similarities for the edge weights are selected

from the [0, 1] range. The remaining of the training parameters

concerning the LCS algorithms are set as listed in Table 2.

4.5 Results and discussion
The performance of the proposed MLCS algorithm is investigated

and reported from two aspects. The first set of results analyzes

the impact of including each one of the proposed improvements

in the MLCS algorithm and compares them with that of the MLR

algorithm. These results are presented in Table 3 in terms of three

evaluation metrics described in section 4.3. The values correspond-

ing to each dataset and each method, are averaged over ten runs of

the LCS algorithm and the mean values are reported. The entries
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that are referred to as MLCS-I, demonstrate the impact of including

the proposed covering method, while those referred to as MLCS-II

present the impact of including both the covering and the new

prediction array methods.

Comparing the results ofMLR andMLCS-I in terms of the average
accuracy shows that on four datasets the mean performance values

have improved. This means that on average more of the relevant

labels are recovered and fewer irrelevant labels are predicted. This

can be explained by the way that the initial classifiers are covered.

Initializing rules with the LP method in MLR leads to classifiers

having more labels in their action on average compared to MLCS-I.

Some of these labels may not co-occur on all of the instances that a

rule matches. In MLCS-I, the covering operator breaks down the

labelsets of the ground-truth data into more correlated label subsets.

Therefore, a classifier’s action is more likely to be correct on the

samples it matches and have a smaller Hamming loss and a larger

fitness value. Therefore, initializing the population with potentially

more useful classifiers improves the overall predictive performance

of the algorithm. A similar improvement is observed in terms of

the 𝐹𝑚𝑎𝑐𝑟𝑜 measure, which evaluates the average performance of

the model on individual classes. Creating separate classifiers to

cover the labels that do not co-occur often enough, provides an

opportunity for the classifiers to appear in the correct set more

often. These accurate classifiers will have a better reproductive

opportunity and remain in the population. Since in both of these

experiments the prediction array is calculated using the fitness

values, the performance of the algorithms in terms of the rank
precision metric is directly affected by the classifier fitness. The

better performance of the MLCS-I algorithm in terms of this metric

shows that the algorithm was able to populate the rule base with

better classifiers than MLR.

Comparing the results of MLCS-I and MLCS-II in terms of the

three evaluation metrics, as presented in Table 3, shows that the

average performance of the algorithm has improved on all datasets.

Unlike using the Hamming loss to form the prediction array, the

proposed variant in equation (12) uses the label-specific precision

values and provides a more rigorous insight into the predictive

capability of the model. This approach takes into account the prob-

ability of each class being observed as reported by the classifiers

and focuses on the maximum probability in order to reduce the un-

certainty caused by less certain classifiers. Then, the probability is

scaled with the number of classifiers predicting a label non-linearly

to prioritize the labels that are predicted by more classifiers and

enforce an implicit stratification between the ranking of the rel-

evant and irrelevant labels. The Wilcoxon signed-rank test [9] is

employed to assess the statistical significance of the observed im-

provement (reported in Table 3). With a significance value of 0.05,

the improvement gained from each new component is significant in

terms of all metrics, excluding the rank precision in the experiments

on MLCS-II.

The second set of results compares the performance of MLCS

with the well-known ML classification approaches from the litera-

ture. The experiments are performed on five benchmark datasets

and the mean value of the performance metrics are reported in Ta-

bles 4-6. For each method, their relative rank on a dataset is shown

next to their metric values within the parentheses, and their average

relative rank can be found under Avg. rank column. Finally, for each

Figure 3: Comparison of the rank precision of MLCS al-
gorithm against other ML classification methods with the
Bonferroni-Dunn test and 𝛼 = 0.05.

evaluation metric, the average rank of the method corresponding

to the highest rank is printed in boldface. According to Tables 4-6,

the proposed MLCS algorithm has the highest average relative rank

in terms of all three evaluation measures, while it presents slightly

worse performance than other methods in a number of scenarios.

To assess the statistical significance of the observed differences in

the performances, the Friedman statistic [9] is calculated for the

average relative ranks of each method, as presented in Table 7. The

test is performed for six methods experimented on five datasets

and the significance level is set to be 0.05. According to the test re-

sults, the performance of the compared methods is not significantly

different in terms of their average accuracy and 𝐹𝑚𝑎𝑐𝑟𝑜 measures,

while their difference is significant in terms of the rank precision.
Figure 3 presents the result of the Bonferroni-Dunn test to eval-

uate the critical distance between the average ranks for the rank
precision metric, which shows that the performance of the MLCS is

significantly better than that of the HOMER and RA𝑘EL.

To demonstrate the output of a trained MLCS model for a given

sample, we have displayed three images from the PASCAL-VOC6

dataset in Figure 2, alongwith their true labels. For each image, their

top five ranked labels are presented with their respective prediction

values. The label similarity graph, constructed from the classifier

actions in the match set of the sample, is shown to the right of each

image. The edge weights express the Cosine similarity between

labels, and the lack of an edge denotes a lower than 𝛿 similarity

between labels. With the knowledge of the cluster that a sample

belongs, the similarity graph for each image in Figure 2 is a subset

of the similarity graph for their corresponding cluster in Figure 1.

5 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we proposed novel strategies for covering the action

of a multi-label classification rule and to form a multi-label predic-

tion array for ML learning classifier systems. The covering scheme

exploits the label correlation information to initialize classifiers

with subsets of correlated labels using locally induced undirected

weighted graphs. The prediction array utilizes label-specific preci-

sion values of the classifiers and incorporates the size of the pre-

dicting classifiers into the function to calculate confidence values

for each predicted label. The effectiveness of the proposed com-

ponents are first investigated in an incremental manner and are

compared to a base-line multi-label LCS. Furthermore, the perfor-

mance of the proposed learning algorithm is compared to multiple

well-known multi-label classification methods on multiple datasets
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Datasets PASCAL-VOC6 Scene Mediamill Corel5k Corel16k Wilcoxon test (𝑤, 𝑝)

Average accuracy

MLR 0.5725 0.5621 0.1074 0.0114 0.0147

MLCS-I 0.5914 0.5576 0.1388 0.0224 0.0192 (256.0, 0.001)

MLCS-II 0.6949 0.6638 0.1887 0.0503 0.0314 (413.0, 0.030)

𝐹𝑚𝑎𝑐𝑟𝑜

MLR 0.6682 0.6499 0.1251 0.2556 0.0085

MLCS-I 0.7419 0.7114 0.1389 0.2776 0.0208 (267.0, 0.001)

MLCS-II 0.7463 0.7331 0.1566 0.3072 0.0294 (124.0, 0.0)

Rank precision

MLR 0.7542 0.7588 0.6276 0.2035 0.2407

MLCS-I 0.7991 0.8006 0.6857 0.2634 0.2819 (330.0, 0.043)

MLCS-II 0.8337 0.8419 0.7119 0.2864 0.3087 (381.0, 0.051)

Table 3: Performance comparison of MLCS and MLR algorithms. MLCS-I indicates the case where only𝑀𝐿 −𝐶𝑜𝑣𝑒𝑟 is utilized,
and MLCS-II is when both𝑀𝐿 −𝐶𝑜𝑣𝑒𝑟 and𝑀𝐿 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 are used.𝑤 is the calculated test statistic and 𝑝 is the probability value.

Datasets PASCAL-VOC6 Scene Mediamill Corel5k Corel16k Avg. rank

RA𝑘EL 0.6159(4) 0.5810(4) 0.3109(5) 0.0446(4) 0.0328(3) 4

ML-𝑘NN 0.6945(2) 0.6614(2) 0.4219(2) 0.0140(6) 0.0106(6) 6

HOMER 0.5985(5) 0.5701(5) 0.3377(4) 0.1042(1) 0.0766(1) 3.2

ECC 0.6891(3) 0.6501(3) 0.4342(1) 0.0475(3) 0.0230(5) 3

CLR 0.5335(6) 0.5033(6) 0.4164(3) 0.0313(5) 0.0331(2) 4.4

MLCS 0.6949(1) 0.6638(1) 0.1887(6) 0.0503(2) 0.0314(4) 2.8

Table 4: The performance of the ML algorithms in terms of Average Accuracy ↑.

Datasets PASCAL-VOC6 Scene Mediamill Corel5k Corel16k Avg. rank

RA𝑘EL 0.7287(4) 0.6692(4) 0.1481(2) 0.3092(2) 0.0303(2) 2.8

ML-𝑘NN 0.8220(1) 0.7189(2) 0.1081(5) 0.3066(4) 0.0148(5) 3.4

HOMER 0.7398(3) 0.5884(6) 0.1286(3) 0.2577(6) 0.0646(1) 3.8

ECC 0.6606(5) 0.7181(3) 0.1099(4) 0.3121(1) 0.0218(4) 3.4

CLR 0.6342(6) 0.6228(5) 0.0974(6) 0.3004(5) 0.0136(6) 5.6

MLCS 0.7463(2) 0.7331(1) 0.1566(1) 0.3072(3) 0.0294(3) 2

Table 5: The performance of the ML algorithms in terms of 𝐹𝑚𝑎𝑐𝑟𝑜 ↑.

Datasets PASCAL-VOC6 Scene Mediamill Corel5k Corel16k Avg. rank

RA𝑘EL 0.6908(4) 0.8162(4) 0.4847(5) 0.0586(6) 0.1011(6) 5

ML-𝑘NN 0.8439(1) 0.8513(1) 0.7030(3) 0.2656(3) 0.2667(3) 2.2

HOMER 0.8101(3) 0.7139(6) 0.4158(6) 0.1197(5) 0.1135(5) 5

ECC 0.6473(5) 0.8389(3) 0.6864(4) 0.1729(4) 0.1764(4) 4

CLR 0.6214(6) 0.8128(5) 0.7230(1) 0.2743(2) 0.2997(2) 3.2

MLCS 0.8337(2) 0.8419(2) 0.7119(2) 0.2864(1) 0.3087(1) 1.6

Table 6: The performance of the ML algorithms in terms of rank precision ↑.

Evaluation metric F𝐹 𝑝𝑣𝑎𝑙𝑢𝑒 Critical value

Average Accuracy 2.714 0.744

10.49𝐹𝑚𝑎𝑐𝑟𝑜 10.371 0.065

Rank-precision 14.486 0.013

Table 7: Summary of the Friedman rank test for F𝐹 (𝑘 =

6, 𝑁 = 5) and 𝛼 = 0.05.

and the results are reported in terms of three evaluation metrics.

The experiments and the accompanied statistical tests demonstrate

the efficacy of the proposed components for the MLCS algorithm

as well as its competing performance compared to the other classi-

fication methods.

In the future, authors will investigate the impact of the minimum

label similarity threshold on the performance of the classifier system

and the population size. In the current work, this threshold is treated

as a hyper-parameter which is tuned along with the population

size. Further research may analyze the sensitivity of the algorithm

to this parameter.
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