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ABSTRACT
This work proposes a Bayesian optimisation with Gaussian Process
approach to learn decision maker (DM) preferences in the attribute
search space of a multi-objective optimisation problem (MOP). The
DM is consulted periodically during optimisation of the problem
and asked to provide their preference over a series of pairwise com-
parisons of candidate solutions. After each consultation, the most
preferred solution is used as the reference point in an appropriate
multiobjective optimisation evolutionary algorithm (MOEA). The
rationale for using Bayesian optimisation is to identify the most pre-
ferred location in the decision search space with the least number of
DM queries, thereby minimising DM cognitive burden and fatigue.
This enables non-expert DMs to be involved in the optimisation
process and make more informed decisions. We further reduce the
number of preference queries required, by progressively redefining
the Bayesian search space to reflect the MOEA’s decision bounds as
it converges toward the Pareto Front. We demonstrate how this ap-
proach can locate a reference point close to an unknown preferred
location on the Pareto Front, of both benchmark and real-world
problems with relatively few pairwise comparisons.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making; • Theory of computation→ Interactive com-
putation; Active learning;
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1 INTRODUCTION
Preference-based multi-objective optimisation incorporates a deci-
sion maker’s (DM’s), preference for a certain type of solution, or
objective values, into the optimisation process [9, 17]. In an a-priori
approach, preferences are elicited before optimisation and used to
drive and focus the search for suitable solutions. At the other end
of the scale, a-posteriori methods use preferences acquired after op-
timisation to reduce the solution set to contain fewer yet preferred
solutions. While both techniques have their merits, the progressive
(or interactive) elicitation of preferences during the optimisation
process is considered to have additional benefits [4, 42].

By interleaving elicitation with the optimisation process, the
interactive approach allows the DM to learn about their problem
and potential solutions. This helps to refine their preferences and
helps focus the optimisation algorithm’s search toward a section
(or sections) of the Pareto Front. The latter leads to a lower com-
putational cost as the entire Pareto optimal set need not be found.
At the completion of optimisation, the DM is more informed about
their problem and only has to choose from a preferred subset of
possible solutions rather than a complete optimal set [8, 9, 24]. Fur-
ther, in a real-world setting, the DM’s involvement throughout the
process can facilitate greater ownership of the result and increase
the chance of successful implementation.

Attempts have been made to combine operations research’s elic-
itation strategies with those of evolutionary optimisation [3, 9, 41].
For the expert DM, this has resulted in approaches where they can
use their domain knowledge to express their preferences in the
form of objective trade-offs, desirability thresholds, weights and
outranking measures (amongst others) [3, 9]. Unfortunately for
the non-expert DM with little or no domain knowledge, such tech-
niques can be daunting, require considerable cognitive burden and
are often considered non-intuitive. An alternate intuitive approach
is the reference point (or direction) method in which the DM speci-
fies their aspiration levels for a problem’s objectives [41, 59]. While
successful in finding regions of interest along the Pareto Front, it is
often assumed preferences are given, and the elicitation process is
rarely discussed.

To facilitate the non-expert to express their preferences requires
a different approach. Such a task requires low burden methods that
help the DM explore possible solutions and easily discover and
articulate their preferences. Pairwise comparisons (PWC), where
the user indicates their preference for one option over another,
is considered one of the lowest burden elicitation methods [19,
30]. However, a single PWC yields little information and many
comparisons may be needed to obtain a total order over 𝑛 options.
At best this will be Ω(𝑛 log𝑛) but with randomly selected pairs can
be as high as O(𝑛2).
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However, efficient and effective preference learning with PWCs
can be accomplished in a practical, low burden setting using the
machine learning technique of active learning. Active learning is
a technique whereby training data can be minimised by labelling
data that is selected on the basis of maximising information gain
or minimising uncertainty [48]. Active learning is a sequential
process where the answers to previous queries inform the selection
of subsequent queries. The aim is to learn the maximum amount
of information with a minimal number of queries. This approach
blends well with interactive preference elicitation and learning
techniques where preferences are obtained progressively from aDM
during a multi-objective optimisation session. One type of active
learning is Bayesian optimisation (BO) combined with Gaussian
Processes (GPs), this is the focus of preference learning in this work.

Bayesian optimisation (BO) is a global optimisation method
which uses Bayes Theorem and sequential sampling of a surro-
gate function (often a GP), to learn the maximum (or minimum), of
an unknown, expensive to evaluate blackbox function [12, 29, 49].

BO has been shown to be effective in learning preferences with a
minimum number of queries [11, 16]. In the case presented here, the
unknown blackbox function is a DM’s preferences, considered for
the sake of simplicity as a value, or utility function. Such a function
is expensive because it takes time to elicit responses from queries.
The number of queries that can be presented requires cognitive
effort limited by fatigue (and possibly patience).

It needs to be emphasised that BO has an entirely different role in
this work than which it has traditionally served in multi-objective
optimisation. Rather than being used as the principal means of
problem optimisation with DM preferences incorporated into the
BO method (such as [2, 28, 31]), our approach uses BO to learn a
DM’s preferences outside of a non-BO reference-point based MOEA.

Using BO, the number of queries required to find a blackbox
function optimum can still be more than reasonably expected of
a human DM to answer. In the work of [13] for example, the per-
formance of BO on a four-dimensional search space required more
than 40 queries to reach an acceptable level of accuracy. For a six-
dimensional problem, the authors concluded that the search space
was too large to find the optimum within their 50 query budget.
Given that multi-objective optimisation problems often contain a
high number of variables in the decision search space, the task of
using a BO preference model to reduce DM queries is made more
difficult. Simply combining the two techniques will not achieve
sufficient reduction in DM cognitive burden. The approach taken
in this work progressively reduces the BO search space in tandem
with the convergence of an MOEA’s generated solutions toward
the Pareto Front. This technique allows the BO process to find the
search space’s optimal region with significantly fewer queries.

Therefore, this work aims to demonstrate how a non-expert
DM’s preferences can be learned using BO and interactively in-
corporated into an existing MOEA optimisation process. For this
work, we incorporate the Bayesian learning of preferences with
the reference point based algorithm R-NSGA-III [58]. The result
is a method requiring low cognitive burden from a DM and with
minimal or no domain knowledge. A framework for low burden
preference elicitation from non-expert DMs also has the potential
to expand the use of Multi-objective optimisation (MOO), into areas
where non-experts proliferate, (such as travel itinerary creation;

new dwelling specification, and; consumer product recommenda-
tion), by increasing the ‘accessibility’ of preference information.

Specifically, this work seeks to provide answers to the following
questions:

(1) How can we elicit preferences and learn their structure for a
multi-objective optimisation problem while minimising the
decision maker’s cognitive burden?

(2) How can we design and incorporate an active learning BO
approach into an interactive MOO process and exploit any
synergies that exist?

(3) Does the adopted approach (Bayesian method) help produce
quality solutions with relative light cognitive burden?

1.1 Related Work
Within the field of machine learning, Gaussian Processes have been
successfully applied to preference learning in [16], where a new
likelihood function was proposed to learn preference relations in a
Bayesian framework. The approach in [16] was extended further
in [15] to incorporate instance ranking using PWCs. Both prior
and likelihood models used in [15, 16] are single-user task-based
specifications that correspond to the work in this paper. Using
discrete choice data, [11] proposed an active learning process for
Bayesian learning of individual user preferences. Similar to our
work, they assume a cold-start scenario with PWCs. We adopt a
similar approach to [11] and implement a probit regression model
with Laplace approximation to relate binary preferences to a contin-
uous utility function. This process is central to learning preferences
via PWCs and BO.

The use of BO to solve multiobjective problems with prefer-
ence data has been successfully implemented in [1, 2, 6, 28, 31, 32].
Each of these approaches have used BO as the optimiser of a multi-
objective problem and incorporate DM preferences either interac-
tively or a-priori. The use of BO as the main optimiser differentiates
these works from that presented in this paper. Here, we use BO
solely to discover a DM’s preferences and use the acquired infor-
mation to update a reference point in an interactive MOEA.

Methods developed by [24, 38] use a polynomial value function
and radius basis function network respectively, to learn preferences
in the context of multiobjective optimisation. However, both meth-
ods place a considerable burden on the decision-maker with the
number of queries required. In the case of [24], 70 PWC decisions
were required in the best case and 150 in the worst. For [38], 157
judgements were required of the decision-maker with each query
requiring an absolute numeric score to be given for each option
presented. This work however, seeks to minimise the number of
queries asked of the user to reduce cognitive burden by modelling
preferences using BO and active learning.

A recent paper [56] investigates indirect preference elicitation
techniques for MOO and specifically examines the selection of com-
parison solutions for presentation to a DM. Results from this work
reveal the benefits of selecting comparisons based onmaximising in-
formation gain. While the active learning strategies examined were
incorporated into an interactive decomposition MOEA, Bayesian
methods including BO were not considered.
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2 BACKGROUND
2.1 Multi-objective Optimisation
Multiobjective optimisation involves finding solutions to optimi-
sation problems defined by at least two conflicting objectives. The
general form of a multiobjective optimisation problem (MOP) can
be defined as [18, 23, 61]:

Minimise/Maximise [𝑓1 (𝑥), ..., 𝑓𝑚 (𝑥)]; (1)
subject to 𝑥 ∈ Ω, (2)

where decision space is represented by Ω, the set of all possible so-
lutions and the objective functions 𝑓𝑖 map values from the decision
space to real values 𝑓𝑖 : Ω → 𝑅 where 𝑖 = 1, 2, ...,𝑚, concatena-
tion of the values [𝑓1 (𝑥), ..., 𝑓𝑚 (𝑥)] ∈ 𝑅𝑚 form a m-dimensional
objective space and𝑚 is the number of objective functions.

2.2 Bayesian Optimisation
BO is a global optimisation technique that uses Bayes Theorem
to build a probabilistic model of the object function [12, 33, 49].
That is, given a model, and some evidence in the form of data or
observations, the posterior probability of the model is proportional
to the likelihood of the evidence, multiplied by the model’s prior
probability [12]. Specifically, this is expressed as:

𝑃 (𝑀 |𝐸) ∝ 𝑃 (𝐸 |𝑀)𝑃 (𝑀), (3)

where𝑀 is the model and 𝐸 the evidence.
BO uses a small set of initial function evaluations to initialise

the model. An acquisition function is then used to find the next
most-informative location to query. After evaluating this suggested
location, the model is updated, and a new suggestion is generated.
The process continues until an evaluation budget is exhausted or a
solution acceptable to the DM is found. The acquisition function
constructs a utility function from the model’s posterior distribution.

BO is most often employed where objective functions are com-
plex, noisy, expensive to evaluate or a closed-form expression does
not exist [12, 49]. For this work, BO is used to learn a DM’s pref-
erences over candidate solutions generated by an MOEA. This is
achieved by assuming the existence of a latent value function rep-
resenting the user’s preferences and optimising this function to
find the global maximum representing the DM’s most preferred
options. The objective function in this case is the unknown function
determining the user’s preferences.

2.2.1 Gaussian Processes. As is common with BO, Gaussian
Processes (GPs) are often used as a surrogate for the objective
function. A GP is a non-parametric stochastic process that defines
a Gaussian distribution over functions with a continuous domain.
It is defined as a collection of random variables, any finite number
of which have a joint Gaussian distribution [46]. A GP defines a
prior over possible functions that transforms into a posterior over
functions after incorporating evaluated data [27, 44]. The method
can find functions that approximate a user’s preferences quickly
and accurately [16].

A multivariate Gaussian is defined by some mean 𝜇 (𝑥) and a
covariance matrix Σ(𝑥). A positive definite kernel function 𝜅 deter-
mines the covariance matrix such that Σ𝑖, 𝑗 = 𝜅 (𝑥𝑖 , 𝑥 𝑗 ). The kernel
takes as input two points (usually vectors in Euclidean space), and

returns a scalar representing the similarity between the inputs
[12, 26, 44]:

𝑘 : R𝑛 × R𝑛 → R, Σ = 𝐶𝑜𝑣 (𝑋,𝑋 ′) = 𝑘 (𝑥, 𝑥 ′). (4)

Consequently, a GP is completely specified by its mean and covari-
ance, such that:

𝑓 (x) ∼ 𝐺𝑃 (𝑚(x), 𝜅 (x · x′)), (5)
where,

𝑚(x) = E[𝑓 (x)],

𝜅 (x · x′) = E[(𝑓 (x) −𝑚(x)) (𝑓 (x′) −𝑚(x′))𝑇 ] . (6)

2.2.2 Kernels (covariance functions). The kernel 𝜅, embeds any
existing problem knowledge into the process by defining the shape
of the distribution and characteristics of the function we need to
predict. The kernel and its hyperparameters are an important part
of the BO process as they define the similarity between points and
thus control the magnitude and smoothness of sampled GPs. A
poorly chosen kernel that incorrectly models smoothness for a
given problem will result in poor performance of a BO model that
degrades further with increased dimensionality [47].

Many types of kernel are used in BO, the most popular are sta-
tionary kernels which are invariant to input space transformations
(see [46] for an account of non-stationary and dot-product kernels).
Some of the more common of this type include the Squared Ex-
ponential, Linear, Rational Quadratic, and Matérn. For learning a
preference function this work uses the Matérn kernel as its gener-
ality and flexibility provides a good starting point when learning
functions with an unknown form. Further, the Matérn kernel is
⌈𝑣⌉ − 1 times differentiable enabling its length-scale hyperparame-
ter to be learnt by Maximum Likelihood Estimation during the BO
process. The Matérn kernel can be expressed in the form:

𝜅 (𝑥, 𝑥 ′) = 1
Γ(𝑣)2𝑣−1

(√2𝑣
𝑙
𝑑 (𝑥, 𝑥 ′)

)𝑣
𝐾𝑣

(√2𝑣
𝑙
𝑑 (𝑥, 𝑥 ′)

)
, (7)

where 𝐾𝑣 is a Bessel function, 𝑣 and 𝑙 are positive parameters and
Γ is a gamma function [46].

2.2.3 Acquisition function. When choosing where to suggest the
next evaluation, the acquisition function balances the exploitation
of the discovered optimal location with the need to explore areas
with high uncertainty. This is an important feature to ensure that
the algorithm finds a global optima and does not over-exploit local
optima. Without loss of generality, when maximising an objective
the acquisition function should suggest locations where the pre-
dicted mean is high as well as areas where the variance is high, or
both. Commonly used acquisition functions include Probability of
Improvement (PI) [37], Expected Improvement (EI) [33, 43], Upper
Confidence Bound (UCB) [21, 22, 52], and Thompson Sampling (TS)
[14, 54].

With the exception of TS, the other three functions include a
parameter for adjusting the balance between exploitation and explo-
ration. Nonetheless, PI and EI are both structurally exploitative, and
TS tends toward exploitation as suggested locations are identified
from the maximum of the sampled GPs. UCB however, is optimistic
in uncertain conditions and therefore tends toward exploration,
a trait useful for multi-modal and large search spaces (like those
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encountered during preference learning). UCB also has strong the-
oretical results, proving it will converge to the global optimum
(within the context of multi-armed bandit problems) [52]. For these
two reasons UCB has been chosen as the acquisition function for
this work. UCB is defined as:

𝑈𝐶𝐵(𝑥) = 𝜇 (𝑥) + 𝛽1/2𝜎 (𝑥), (8)

where 𝛽 is a positive parameter that trades off the regions of high
mean 𝜇 (𝑥) (exploitation), and high variance 𝜎 (𝑥) (exploration).

BO works very well with multiple dimensions however the
O(𝑛3) complexity of the technique (due to the need to invert the
covariance matrix for inference), becomes more of an issue as di-
mensionality increases [12, 35].

2.3 Preference elicitation and learning
The task of learning a DM’s preferences first involves the acquisi-
tion, or elicitation of preferences via some form of interaction with,
and information extraction from, the DM. A wide variety of meth-
ods exist and largely focus on allocating importance to attributes of
potential solutions [57]. This is often achieved either directly with
the DM using numerical values to score attributes based on prefer-
ence or by setting trade-off limits or aspiration levels, or indirectly
via ranking objects in order of preference, either as a list or in pairs
(PWCs).

A PWC presents the DM with two options who then express
their preference for one over the other. This method overcomes the
difficulty of specifying preferences as numeric values, which stud-
ies have shown to be more difficult for human DMs than relative
comparison, leading to increased inaccuracies. Unfortunately, the
complete elicitation of preferences requires a considerable num-
ber of PWCs and consequent cognitive burden with each PWC
supplying only a small amount of preference information.

Our preference model is based on multi-attribute utility theory
[36] and the representation of preferences as a value (or utility)
function. This model relies on the assumed existence of a latent
utility function determining the DM’s preferences that can only
be queries indirectly. Formally, a value function is a mapping 𝑓 :
X → R that assigns a degree of value 𝑓 (𝑥) to each item (object)
𝑥 and induces a complete order on X and obtain a ranking for
𝑥 . In the context of preferences, 𝑥 is an option or choice defined
by 𝑑 attributes and the ordered set X defines the transitive set of
preference relations {𝑥1 ≻ 𝑥2, ..., 𝑥𝑛−1 ≻ 𝑥𝑛}.

It is important to note that it is not always the case that such a
function is completely formed a-priori, rather a preference function
may be developed or refined after a DM learnsmore about a problem
and its possible solutions. Preference learning using BO does not
depend on a fully formed preference function existing prior to
querying a DM. As the BO model is rebuilt, and the likelihoods
of solution preferences recalculated after each query, the model
is flexible enough to accommodate preference changes during the
optimisation of a multi-objective problem.

We minimise the number of PWCs used via the partial modelling
of a DM’s value function and the use of active learning to ensure
comparisons are chosen to elicit the greatest amount of information.
We focus on identifying the DM’smost preferred regions of aMOP’s
objective space and construct comparisons combining the currently

Figure 1: The process of learning preferences using BO and
a probit comparison model. The sections illustrate which
parts work on attribute vectors (from the decision space)
and those that work on reference points (from the objective
space).

most preferred option with an alternative selected for its probability
of being a superior choice.

The process of consulting the DM involves generating PWCs
of potential reference points and presenting them to the DM for
evaluation. This could take the form of either (or both), graphical
or numerical representations of objective value differences incorpo-
rated into a user interface. In our work, PWCs are created using the
current most preferred option 𝑠𝑝𝑟𝑒 𝑓 (a solution from the objective
space), and a new unseen option 𝑠 ′ mapped from an attribute vector
𝑎′ (generated in the decision space). For the initial consultation, a
small sample of attribute vectors (𝑛 > 2) is generated randomly.
In the case of a MOP, each attribute is a decision variable and its
value is selected from within the variable’s bounds. For the initial
consultation 𝑠𝑝𝑟𝑒 𝑓 does not yet exist and the first PWC presented
to the DM will contain two unseen options.

The acquisition of preferences occurs using solution vectors
from the objective space, while the BO model learns using attribute
vectors from the decision space. The learning process is illustrated
in Figure 1. The comparison data is then processed using a probit
model to produce solution likelihoods for inclusion into the BO
model. This model is derived from the Thurstone-Mosteller law of
comparative judgment [55] and relates the binary data from PWCs
to a continuous latent function.

Following the work of [12], the preference value functions of
two options 𝑟 and 𝑐 is: 𝑣 (𝑟𝑖 ) = 𝑓 (𝑟𝑖 ) +𝜖 and 𝑣 (𝑐𝑖 ) = 𝑓 (𝑐𝑖 ) +𝜖 where
𝜖 represents noise from a Gaussian distribution. The probability of
an option 𝑟 being preferred to option 𝑐 can be expressed as:

𝑃 (𝑟𝑖 ≻ 𝑐𝑖 |𝑓 (𝑟𝑖 ), 𝑓 (𝑐𝑖 )) = Φ
( 𝑓 (𝑟𝑖 ) − 𝑓 (𝑐𝑖 )√

2𝜎𝑛𝑜𝑖𝑠𝑒

)
, (9)

whereΦ is the Cumulative distribution function of a standard Gauss-
ian distribution.
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To model the DM’s value function, an estimate of the posterior
distribution of the function needs to bemade in order to suggest new
sampling locations. This is achieved using Laplace approximation
with details provided in [10] and [12].

After all consultations have been completed the attribute vector
𝑎𝑝𝑟𝑒 𝑓 is considered the focus of the DM’s preferred region in the
decision space, and 𝑠𝑝𝑟𝑒 𝑓 the focus in the objective space.

The modelling of the user’s entire preference function is not
required as we are only interested in solutions of greatest preference.
The Bayesian model suggests potential comparisons which are
presented to the user periodically. The model is then updated with
the results and identifies a set of objective values to be used as a
reference point in themultiobjective optimisation algorithm solving
the main problem.

3 INTEGRATIONWITH MULTI-OBJECTIVE
OPTIMISATION

Within MOO, preferences elicited with PWCs are often used to
help construct value functions using mathematical programming
techniques, ordinal regression or neural networks [5, 20, 38, 50].
Such approaches use the inferred function to set objective weight-
ings or compliment the dominance principles used in population
generation. This work differs in not using the value function from
the Bayesian preference model in the MOO process. Instead, we use
the DM’s most preferred solution as a reference point in a reference
point based MOEA. At the conclusion of each DM consultation, the
most preferred objective vector is used as the reference point for
the MOEA’s iterations until the next consultation.

While BO can find global optima with a minimal number of
queries, a high dimensional search space may temper its efficiency,
requiring more queries than a DM would prefer to answer. This
problem can be mediated by either increasing the preference in-
formation acquired, or by minimising (or truncating) the search
space. Fortunately, the integration with multi-objective optimisa-
tion presents some synergies that can be exploited to overcome a
large Bayesian search space defined by decision variable bounds.
After each MOEA generation, candidate solutions are generated
closer to the problem’s Pareto Front. Consequently, the correspond-
ing decision variables’ bounds are likely to be reduced (it should be
noted however that such a reduction is problem dependant). This is
further compounded when solutions are increasingly concentrated
within a region of interest (RoI), as is the goal of preference-based
MOEAs (refer to Figure 2 for an illustration of this process). We
harness this reduction in decision variable bounds to truncate the
Bayesian model’s search space, thereby increasing the rate of con-
vergence and minimising DM queries.

Learning preferences using BO is combined with a reference-
point based MOEA by interleaving the learning process within the
MOEA optimisation process. It is important to note that the BO
process is independent of the MOEA and only requires the ability to
pause operation of the MOEA at the beginning of a generation, read
the current results, and update the reference point and its RoI size.
Figure 3 provides an activity diagram outlining the steps involved
in such an integration.

Before beginning the process a decision on the desired DM in-
teraction pattern needs to be made. Such a pattern includes setting

which generation to begin interaction, the interval of subsequent
consultations, the total number of consultations, and the number
of PWCs to present to the DM at each consultation. Each of these
tasks is non-trivial and depends on the problem type and the desires

Figure 2: Illustration of decision variable (x1, x2, x3 and x4)
domain reduction in conjunction with objective space solu-
tion convergence to a RoI.

Figure 3: Activity diagram illustrating a simplified version
of the process integrating Bayesian preference learning
with a reference point based MOEA
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of the DM. [34] provides an outline of several common patterns,
while [40] and [51] (for example), use specific methods to determine
when to interact during optimisation. We adopt a simple approach,
and use consultations evenly spaced throughout the optimisation
run (determined by a fixed number of generations), and the number
of PWCs used for each consultation is limited to a maximum of
four (see Table 1 for experimental details).

Once an interaction pattern has been set, the process proceeds
as follows (step numbers correspond with those in Figure 3):
Step 1 : Initialise the MOEA on the desired MOP with a starting reference

point located in the middle of the objective bounds with a large RoI
(this encourages diverse solutions before the actual consultation
begins). Initialise the Bayesian preferencemodel using the decision
variable bounds of the MOP;

Step 2 : If there are no further consultations proceed to (9);
Step 3 : Present a selection of candidate solutions to the DM. If they are

satisfied, proceed to step (10), otherwise continue;
Step 4 : Run the MOEA and pause its progress when the next consultation

is scheduled;
Step 5 : Using the decision variable bounds of the current set of candidate

solutions define a new set of preference model bounds;
Step 6 : Update the bounds of Bayesian preference model with the bounds

defined in (5) (with a high likelihood of reducing the search space
of the Bayesian model);

Step 7 : Consult with the DM (repeat for the desired number of PWCs per
consultation);
(a) If this is the first consultation, a set of 𝑛 > 2 reference points

are randomly generated, and paired combinations are created.
If this is not the first consultation then the most preferred
reference point thus far is paired with one suggested by the
Bayesian model;

(b) Present the PWCs (created in step 7a), to the DM and gather
preferences;

(c) "Score" suggested reference points using the probit model de-
scribed above;

(d) Update the Bayesian preference model by fitting it with the
newly observed preferences and corresponding suggested ref-
erence points.

Step 8 : Update the MOEA’s reference point to the most preferred sug-
gested reference point from step (7). If step (7) was the first con-
sultation, then set the RoI size of the MOEA to the desired size for
subsequent generations. Proceed to step (2);

Step 9 : Run the MOEA until termination
Step 10 : Present the subset of Pareto optimal solutions to the DM for final

selection

The result of this process is an interleaved combination of prob-
abilistic preference learning, and preference focused multiobjective
problem optimisation. The cognitive burden on the user is min-
imised. Simultaneously, the search for solutions to the overriding
optimisation problem is concentrated on the part of the search
space yielding the most preferred solutions.

4 EXPERIMENTAL SETUP
To assess the effectiveness of learning preferences with BO, and
integrating into a reference point basedMOEAoptimisation process,
we compare our method’s suggested comparison points with those
chosen using a Non-BO approach.

Experiments are performed using the ZDT [62] problem set for
bi-objective optimisation and the DTLZ [25] set for three objective

problems. A selection of two and three objective real-world prob-
lems from the RE [53] problem set are also used (see Table 1 for
details). The chosen RE problems all have continuous variables with
known or approximated Pareto Fronts and include: RE2-4-1 (Four
bar truss design); RE2-2-4 (Hatch cover design); RE3-5-4 (Vehicle
crashworthiness design), and; RE3-4-7 (Rocket injector design).

The MOEA used is R-NSGA-III from the Pymoo multiobjective
optimisation for Python package [7]. R-NSGA-III is a decomposition
reference point based MOEA which can find solutions in multiple
RoIs givenmultiple reference points. In this work only one reference
point has been used to simplify evaluation. Initialisation used the
default values from Pymoo with the number of reference directions
set to 12 for two dimensional problems and 18 for three dimensional.

The BOmodel is initialised with dimensions reflecting theMOP’s
decision space variables. The acquisition function used is Upper
Confidence Bound (UCB), and the exploitation/exploration ratio
parameter is set to 2.5 to encourage a balance between exploration
and exploitation within the search space. A Matérn 5/2 kernel is
implemented with a length-scale set to 1.0 for the prior, which
(along with the scale-factor), will be fitted using the Maximum
Likelihood Estimation method.

4.1 Non-BO baseline method
The Non-BO process operates in a manner very similar to the pref-
erence elicitation procedure outlined above. However, rather than
learning a preference function and using BO to suggest new refer-
ence points for the DM to evaluate, it generates random attribute
vectors within the bounds of the decision search space, which are
then paired with the current most preferred reference point for eval-
uation. The progressive reduction of this search space during the
MOEA’s operation is performed the same as with the BO approach,
as is the mapping of attribute vectors to the objective space.

4.2 Performance metric
The artificial decision maker (DM) uses a ‘golden’ point (G-Pnt),
located on the Pareto Front of a problem to represent their preferred
solution (or RoI). This point fulfils a role similar to the ‘golden’ value
used in [38, 39], that is, it represents a pre-optimisation specified lo-
cation on a problem’s Pareto Front that is the focus of our artificial
DM’s preferences. G-Pnts are solely used to elicit preferences from
an artificial DM, whereby solutions closer to a G-Pnt are preferred.
To evaluate our approach, G-Pnts were randomly selected from
diverse regions of each problem’s Pareto Front, and their locations
keep static throughout the optimisation process. With each PWC
presented to the DM, a preferred solution is identified. This prefer-
ence is determined by the solution in the pair closest to the G-Pnt in
the objective search space (using a normalised Euclidean distance).
Neither the MOEA nor the Bayesian preference model are aware
of the G-Pnt locations or even their existence.

For 50 runs of each method, the distance from the most preferred
reference point is compared to a series of G-Pnts located on the
Pareto Front of benchmark problems from the ZDT, DTLZ and RE
problem sets. G-Pnts represent the DM’s RoI and are unknown to
the preference models and the MOEA. When PWCs are presented
to our artificial DM, preference is expressed for the point closest
to the G-Pnt. In the situation with a human DM, such a G-Pnt
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Table 1: Problem variables, consultations, and pairwise com-
parisons (PWCs). Periodic consultations are distributed us-
ing uniform intervals (specified by a generation number:
First|Last|Increment), and the number of consultations and
PWCs per interaction were varied depending on problem
difficulty.

Problem Obj. Vars Cons. Interval PWCs/
Cons. PWCs Genera-

tions

ZDT* 1 2 7 4 20|80|20 3 12 100
2 2 7 4 20|80|20 3 12 100
3 2 7 4 20|80|20 3 12 100
4 2 7 4 50|200|50 4 16 250

DTLZ** 1 3 7 9 220|380|20 3 27 400
2 3 7 9 10|90|10 3 27 100
3 3 7 9 10|90|10 3 27 100
5 3 7 9 10|90|10 3 27 100
6 3 7 9 10|90|100 3 27 150
7 3 7 9 120|280|20 3 27 300

RE 2-4-1 2 4 4 25|100|25 3 12 150
2-2-4 2 2 5 10|50|10 4 20 100
3-5-4 3 5 9 50|450|50 3 27 500
3-4-7 3 4 9 10|90|10 3 27 100

* ZDT5 was not evaluated as it uses discrete variables, and ZDT6 is not presented as
all but the first decision variable converge to zero when solutions approach the Pareto
Front, thereby invalidating the BO approach.
** DTLZ4 was not included as the non-linear mapping between parametric and
decision variables results in neither the BOS nor baseline NBOS method being able to
locate any preference area other than in the dense set of solutions along the 𝑓𝑀 − 𝑓1
plane [25]

need not exist as preferences will be determined by the unknown
decision-making process of the human DM. For the sake of simplic-
ity, we assume our artificial DM has consistent, non-contradictory
preferences; however, this may not be the case with a real-world
DM. It is important to note that the DM (either real or synthetic),
does not explicitly choose a reference point nor specify preferences
in any other way except by expressing their preference toward one
option over another using PWCs.

For each combination of preference learning method (BO and
Non-BO), multi-objective problem and G-pnt, 50 independent runs
were conducted. At their conclusion, the closest suggested refer-
ence point to the G-pnt was identified for each set of 50 runs and
comparisons made between both the Bayesian and Non-BO prefer-
ence learning approaches. Suggestions located closer to the G-pnt
are considered better than those further away.

5 RESULTS AND DISCUSSION
Overwhelmingly, the Bayesian approach performed better than the
Non-BO method in locating a reference point close to the artificial
DM’s G-Pnts. Of the 66 problem instances evaluated (8 problems
with 3 ‘golden’ points and 6 problems with 7 ‘golden’ points), ap-
proximately 95% reported statistically significant differences be-
tween mean values at the 0.05 significance level using theWilcoxon
signed-rank test, (see Table 2).

While the BO preference model performed extremely well, there
were (predictably), variations in performance between problems,
and differences evaluating the same problem but with various G-Pnt
locations. The three objective DTLZ6 problem had the most number
of BO model wins for each target G-Pnt while the bi-objective

ZDT3 and three objective DTLZ1 problems had the lowest number.
Neither ZDT3 nor DTLZ1 recorded 40 or more wins out of the 50
runs for any G-Pnt location.

DTLZ1 was the only problem from the DTLZ problem set that
recorded a result (G-Pnt location 4), that was not statistically sig-
nificant at 𝛼 = 0.05. Examination of the box plot for this problem
(Figure 4a), illustrates the lower interquartile range for each G-Pnt
and the influence that outliers had on the Non-BO method’s mean
values. The means for all target locations for the Bayesian method
were all within the interquartile range as opposed to the Non-BO
approach, which were not. There is little doubt that for the Non-BO
method, the incidence of outliers was much greater than for the
Bayesian approach, indicating the latter’s superior convergence
toward the target location.

Given that suggested reference points are generated using at-
tribute vectors (decision variables), it is unsurprising that the perfor-
mance is not consistent across all G-Pnt locations in the objective
space. Some locations appear to be easier to find than others even if
in close proximity in the objective space. For example, the ‘golden’
points two and five for DTLZ1 are relatively close together on the
Pareto Front, yet the interquartile ranges of the closest references
points for both Bayesian and Non-BO methods for ‘golden’ point
two are noticeably smaller than those for G-Pnt five.

The overall lower performance of BO on the DTLZ1 problem
may be due to a known weakness of BO: as mentioned earlier
(see 2.2.2), performance is dependent on an appropriately chosen
kernel; further, the method relies on the kernel’s hyperparameters
being learnt correctly after an initial number of data observations.
If the kernel chosen for this work (i.e. a 5/2 Matérn kernel) was
not a good fit for the problem, or the technique used to tune its

Table 2: Wins/Loses of the BO versus Non-BO approaches
over 50 runs of each problem instance. A win is classified
as a smaller distance between the closest suggested refer-
ence point to the decision maker’s G-Pnt. All results were
statistically significant using theWilcoxin Signed Rank test
with 𝛼 = 0.05 except for those underlined. Problems with
a two dimensional Pareto Front were evaluated with three
‘golden’ points (G-Pnts), while those with three dimensions
were evaluated with seven G-Pnts.

‘Golden’ point (G-Pnt) ID
Problem 1 2 3 4 5 6 7

ZDT 1 45/5 44/6 43/7 – – – –
2 42/8 39/11 44/6 – – – –
3 36/14 32/18 32/18 – – – –
4 36/14 37/13 41/9 – – – –

DTLZ 1 38/12 38/12 35/15 29/21 34/16 36/14 38/12
2 45/5 44/6 49/1 47/3 48/2 48/2 46/4
3 43/7 43/7 47/3 42/8 41/9 43/7 44/6
5 32/18 42/8 40/10 – – – –
6 50/0 48/2 50/0 – – – –
7 48/2 41/9 49/1 46/4 35/15 47/3 49/1

RE 2-4-1 41/9 37/13 30/20 – – – –
2-2-4 41/9 36/14 34/16 – – – –
3-5-4 36/14 40/10 42/8 37/13 33/17 32/18 29/21
3-4-7 37/13 48/2 39/11 46/4 41/9 44/6 49/1

’–’ denotes non-applicable ‘golden’ point (G-Pnt) IDs.

472



GECCO ’21, July 10–14, 2021, Lille, France K. Taylor et al.

(a) DTLZ1 (b) RE2-4-1 (c) RE3-5-4 problem

Figure 4: Box plots of the proximity of the final suggested reference point for three selected problems and their target ‘golden’
points (G-Pnts) over 50 runs
* Normalised euclidean distance
† The mean of the Non-BO method for DTLZ1, G-Pnt number two is 1.128 but is not displayed as it falls outside the chart area.

hyperparameters (i.e. Maximum Likelihood Estimation), failed to
find optimal settings, then performance will be degraded.

An evaluation of the four real-world problems from the RE set
of benchmark problems there were two instances where results
between BO and Non-BO selection were not statistically significant.
For the problem RE2-4-1, based on the four bar truss problem, the
BO approach’s ability to find ‘golden’ point three was very similar
to that of Non-BO selection (see Figure 4b). The mean for BO was
0.035 with an interquartile range of 0.01, while Non-BO selection
had 0.047 and 0.018 respectively. The MOEA (R-NSGA-III), used
for this problem found solutions close to the Pareto Front in only a
few generations. This, combined with a tendency to find solutions
more readily to the right of this problem’s Pareto Front results in
the Non-BO method performing very well.

RE3-5-4 is based on the real-world problem vehicle crashworthi-
ness design and has a disjoint Pareto Front with 4 distinct sections
of optimal solutions. While the Bayesian model performed signifi-
cantly better than Non-BO for all but the 7th G-Pnt, the average
distance of the best reference point and its interquartile ranges
varied considerably compared to many of the other problems tested.
This is obviously not an easy problem to solve, and the location of
the G-Pnt in the objective space determined how well both meth-
ods performed. It is important to note that if the MOEA used to
generate solutions to the problem has difficulty in certain areas of
the search space then finding a target location will also be difficult
as the preference search space will not be sufficiently reduced in
the correct region. As can be seen in Figure 4c, the 7th G-Pnt for
this problem is located in a small narrow region of the Pareto Front.
While some of the runs using the BO approach have been able to
locate close to this target location, the vast majority have not.

Although not presented here, experiments with ‘golden’ points
located on the extremities of each problem’s Pareto Front revealed
similar outcomes to those located within the bounds of the Pareto
Front.

While the experiments outlined above focused on problems with
two and three objectives, this approach can be used with problems
comprising more objectives. However, a larger number of objectives
does increase the cognitive demands on a DM when evaluating

potential solutions. Increasing the number of decision variables
on the other hand will result in increased computation cost of
preference learning using BO. This may be mitigated with strategies
specifically designed for high dimensional BO (for example see [45]
and [60]), a topic for further work.

While a full parameter sensitivity analysis and experimentation
with different kernels and acquisition functions may help illuminate
the cause of BO’s sub-optimal performance on the DTLZ1 problem,
such investigation is beyond the scope of this work. The use of
a single kernel and acquisition function, along with no manual
parameter tuning, simplifies the evaluation and allows us to focus
on the merit of using BO to learn preferences for multi-objective
optimisation.

6 CONCLUSIONS
Eliciting preferences from a DM for a MOP while minimising the
DM’s cognitive burden is not a trivial task. While PWCs are an intu-
itive and relatively low burden method used to acquire preferences,
many comparisons may be required to find preferred solutions
to MOPs. The resultant increased fatigue associated with many
queries is undesirable. This work shows that BO can find preferred
locations in the objective space of MOPs with relatively few queries
of the DM, and compared to a Non-BO technique, it has greater
accuracy. The advantages of the BO approach are further enhanced
by a reduced search space facilitated by integration with an MOEA,
who’s convergence toward preferred solutions can reduce the do-
main of decision variables. The BO approach integrated with a
reference point-based MOEA can increase preferred, quality so-
lutions with low DM burden. However, success remains problem
dependant. Further work on ensemble or alternative BO kernels and
acquisition functions has the potential to increase the robustness
and accuracy of BO preference learning for MOO.
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