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ABSTRACT
In the field of 3D Human Performance Capture, a high-quality 3D
scan of the performer is rigged and skinned to an animatable 3D
template mesh that is subsequently fitted to the captured perfor-
mance’s RGB-D data. Template fitting is accomplished via solving
for the template’s pose parameters that better explain the perfor-
mance data at each recorded frame. In this paper, we challenge
open implementations of zeroth-order optimizers to solve the tem-
plate fitting problem in a human performance capture dataset. The
objective function that we employ approximates, the otherwise
costly to evaluate, 3D RMS hausdorff distance between the ani-
mated template and the 3D mesh reconstructed from the depth data
(target mesh) at an individual recorded frame. We distinguish and
benchmark the optimizers, in three different real-world scenarios,
two of which are based on the geometric proximity of the template
to the target in individual frames, while in the third one we fit
the template sequentially to all target frames of the recorded se-
quence. Conclusions of this work can serve as a reference for future
optimizer implementations and our findings can server as a base-
line for future multi-objective optimization approaches. We make
part of our benchmark and experiment setup publicly available
(https://github.com/VCL3D/nevergrad, https://github.com/VCL3D/
PerformanceCapture/releases/).

CCS CONCEPTS
• Theory of computation→ Optimization with randomized
search heuristics.
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1 INTRODUCTION
Performance capture refers to the technology that enables the digi-
tization of human performances with the goal of re-using them in
various contexts like films and video games. For capturing the hu-
man performance, lower cost marker-less multi-view performance
capture systems, approach this challenge with minimal restrictions
(i.e. no markers) often employing color and/or depth (RGB+D) com-
modity sensors at sparse placement configurations. In a special-case
of performance capture systems, a pre-digitized articulated (ani-
matable) template 3𝐷 mesh of the performer is fit into processed
data coming from the sensing devices, acquired during the human
performance capture.

While any performance may be naively digitized by constructing
separately a 3𝐷 mesh per each-frame of the captured performance,
fitting a template mesh to the captured data has two major bene-
fits: a) the quality of the template 3𝐷 mesh which is acquired by
capturing a human in a T or A-like pose is free of self-occlusions
and thus more faithful to the overall human’s geometry. Contrari-
wise, constructing a mesh of a human standing an arbitrary pose
may lack proper details due to self-occlusions. b) Exporting the
digitized performance as an asset that can be natively integrated to
3𝐷 authoring tools like Blender, Maya, 3D Studio Max and Game
Engines like Unity or Unreal becomes a lot easier, due to leveraging
the skinning/articulation properties of the template mesh.

Template fitting is typically achieved by solving for the pose
parameters of the template mesh which better explain the captured
performance data. The quality of the fit is directly or indirectly
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related to the quality of the template mesh geometry, the errors
introduced in its articulation process and the depth quality of the
sensors used to capture the performance. In the case when the tem-
plate mesh is acquired by a low-cost capturing setup, one more chal-
lenge arises, due to the noise inherently found in the depth-maps
provided by the depth sensors, manifesting in both the template
mesh (noisy template) and the captured performance data (noisy
data). Furthermore, despite proper pre-processing, the automatic ar-
ticulation process of a template mesh captured by a low-cost setup
is typically prone to introducing additional errors in the location of
the joints and consequently to the mesh’s skinning weights. This
is because common articulation (i.e. skinning) algorithms like [4]
are usually designed to work on 3𝐷 meshes authored by artists in
specialized mesh authoring tools (i.e. noise-free) and not on 3𝐷
meshes coming from sensing devices (i.e. noisy).

Most existing approaches [8, 12, 28] solving the template fitting
problem in 3D performance capture, rely on gradient-based solvers
and objective functions formulated by landmark correspondence
establishment between the articulated template and pre-processed
sensor data. Further, template fitting is either processed frame-by-
frame, where the solution to the last frame becomes the initial point
of the next frame’s optimization, or (post-)processed globally in the
temporal domain, by almost always relying on a small-motion prior
assumption. Despite its general success, landmark correspondence
establishment often fails in the case of fast subject motion, directly
affecting the quality of the solution obtained by the gradient-based
solvers. Apart from this potential failure, the previously mentioned
strategy of utilizing gradient-based solvers on par with landmark
correspondence establishment algorithms, cannot be used in the
case where the template mesh, at its initial pose, is geometrically
distant from the first frame of the captured performance, again due
to the violation of the small motion assumption prior.

Solving the problem of template mesh fitting to performance
captured data in its generic case (i.e. dropping the small motion
assumption prior) requires excluding any strategy relying on non-
robust landmark correspondence-establishment. The most straight-
forward approach is to employ an objective function which mea-
sures the geometric distance between the template at any arbitrary
pose and the data of the performance. However, depending on the
case, such an objective function may be either non differentiable or
highly non-linear (i.e. suffer from multiple local minima), with re-
spect to the template’s pose parameters. Thus, in theory, solving for
such an objective should be suitable for zeroth-order optimization
algorithms.

In this paper, we challenge popular, publicly available, imple-
mentations [22] of zeroth-order optimizers to solve the real-world
problem of noisy template mesh fitting to noisy performance cap-
ture data in three different settings. Fitting the template mesh to
performance capture data with: a) a small geometric distance, es-
sentially covering the small to medium subject motion case (local
fitting), b) a larger geometric distance, covering the case of larger
movements or initial template fit to the first frame of the captured
performance (global fitting) and c) fitting the template mesh sequen-
tially to all frames of a captured performance (sequence fitting). The
performance capture system that we used captures a noisy point
cloud of the performance at each time-frame by spatially fusing

[25] temporally synchronized multi-view depth maps [26] 1. The
template mesh is reconstructed at an initial frame of the sequence,
using Screen Poisson Surface Reconstruction [18]. The objective
function that we use consists of a weighted combination of 3𝐷 ,
projective 2𝐷 and pose prior terms. Quantitative evaluation of the
template fit is done using RMS Hausdorff distance between the
template mesh at the converged pose and a mesh that is created
from the performance capture data at the given frame.

Apart from the study and the analysis of the benchmarked al-
gorithms in the three previously mentioned settings, we release
a public version of our performance capture benchmark server 2

(serving objective function evaluations at any arbitrary pose of the
template mesh), the dataset 3 that we used in this paper and an
open source performance capture benchmark Python client, with
the latter integrated to the Nevergrad [22] platform 4.

2 ALGORITHMS
In this benchmark we choose to assess 9 open-source, widely used
optimization algorithms available in the Nevergrad toolbox. The
algorithm selection was based on their popularity (i.e. their es-
tablished position in the literature) and their performance on the
template fitting task during some preliminary empirical evaluation,
with the most popular and successful optimizers finally included in
the study. Additionally, in the local fitting case of our experimen-
tation, which covers the small to medium subject motion, we’ve
chosen to include the Random Search (RS) [6] algorithm to serve
as an additional baseline. In detail, our benchmark comprises the
following algorithms:

(1) Differential Evolution (DE) [27], which generates new candi-
date solutions by combining existing ones over a maintained popu-
lation of candidates. (2) Real-Space Particle Swarm Optimization
(RS-PSO) [29], which mimics the well-informed swarming behavior
of social species. (3) Discrete One Plus One (Disc 1+1) Evolution
Strategy [23] , which constitutes an improvement over the Random
Search algorithm with adaptive step size. At each iteration, One
Plus One, in its Discrete version, mutates only one variable on av-
erage. (4) Covariance Matrix Adaptation (CMA) Evolution Strategy
[13], which adapts the mutation distribution of each generation
based on the evaluation of the previous one. (5) Test-Based Pop-
ulation-Size Adaptation (TBPSA) [14], an algorithm designed for
noisy optimization applications which increases the population size
when noise related behaviour is detected. (6) Powell [21], which
minimizes the objective function by tweaking one parameter at
a time. We also include a chain combination of CMA and Powell
algorithms, (7) (CMA+Powel) and two Competence-Map optimizers,
(8) NGO [22] and (9) Shiwa [19]

3 OBJECTIVE FUNCTION
Fitting the template mesh to a specific frame of the performance
is done via optimizing its pose parameters and is driven by an
objective function that measures alignment between the animatable
template and the performance data.

1https://github.com/VCL3D/VolumetricCapture
2https://github.com/VCL3D/PerformanceCapture/releases/tag/1.0
3https://github.com/VCL3D/PerformanceCapture/releases/tag/dataset_1.0
4https://github.com/VCL3D/nevergrad
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We optimize for the template’s pose parameters p := {t ∈
R3, 𝜽 ∈ R𝐽 ×3}, with t the translation of the root joint, and 𝜽 the ro-
tation parameters of all 𝐽 joints, including root. These are expressed
using the exponential map rotation parameterization [11] and used
to animate the template model through dual quaternion skinning
[16], after estimating the per vertex skinning weights using [4].

When fitting the template to a target frame of the performance,
an implicit surface of the captured performance’s point cloud data
is estimated using a parallel GPU implementation [2] of [17] and
3𝐷 reconstructed into a watertight 3𝐷 mesh using the Marching
Cubes algorithm [20]. Apart from the watertight trait that reduces
the subsequent calculation complexity (as the number of vertices is
greatly reduced compared to the point cloud size), the process also
helps to filter out noise as it implicitly acts as a spatial low-pass
filter.

LetM𝑇 denote the animatable template mesh at its neutral pose
andM𝑃 denote the mesh created from the performance’s point
cloud data. Let alsoAp denote the animated template mesh at pose
p (i.eM𝑇 with all its vertices and normals transformed based on
pose parameters p). In order to capture the user’s performance, we
seek to solve for p that minimizes the geometric distance between
Ap and M𝑃 at each frame. Let 𝑑𝑖𝑠𝑡 (M𝐴,M𝐵) denote the Root
Mean Squared Error (RMSE) distance from meshM𝐴 to meshM𝐵 .
Similar to [10], we define:

𝑑𝑖𝑠𝑡 (M𝐴,M𝐵) =
√

1
𝑁

∑
v∈M𝐴

min
u∈M𝐵

| |v − u| |22 (1)

with 𝑁 denoting the number of vertices inM𝐴 and v, u denoting
the vertices ofM𝐴 andM𝐵 , respectively. Strictly speaking, fitting
Ap toM𝑃 , requires minimizing the Hausdorff-like RMSE distance
between Ap andM𝑃 which is defined as

𝐻 (Ap,M𝑃 ) = max(𝑑𝑖𝑠𝑡 (Ap,M𝑃 ), 𝑑𝑖𝑠𝑡 (M𝑃 ,Ap)) (2)

Computing 𝑑𝑖𝑠𝑡 (Ap,M𝑃 ) for an arbitrary p can be accelerated
by building the Squared Euclidean Distance Transform (DT) of
M𝑃 once and then use the pre-computed distance field to quickly
evaluate distances betweenAp andM𝑃 for any p. While construct-
ing the DT forM𝑃 once can serve all subsequent 𝑑𝑖𝑠𝑡 (Ap,M𝑃 )
queries for any p, adopting the same strategy for Ap is computa-
tionally expensive [3] as querying the DT of Ap at the points of
M𝑃 requires re-computing the DT of the Ap for each p. To over-
come this complexity, in the objective function that we employ, we
approximate 𝑑𝑖𝑠𝑡 (M𝑃 ,Ap) via a 2𝐷 projective error term based
on a rendering operation, as in [3].

In more detail, the objective function we use comprises 5 error
terms and is given below:

𝐸 (p) =

2D 3D prior︷   ︸︸   ︷︷                                           ︸︸                                           ︷︷    ︸︸    ︷
𝜆𝐽 𝐸 𝐽 (p) + 𝜆𝐷𝐸𝐷 (p) + 𝜆𝑆𝐸𝑆 (p) + 𝜆𝑃𝐸𝑃 (p) + 𝜆𝐴𝐸𝐴 (p)︸                                      ︷︷                                      ︸ ︸                    ︷︷                    ︸

data fitting constraints

(3)

In (3), 𝐸𝐷 is a direct computation of 𝑑𝑖𝑠𝑡 (Ap,M𝑃 ), 𝐸 𝐽 a proxy
for 𝑑𝑖𝑠𝑡 (M𝑃 ,Ap) through 2𝐷 rendered projections, 𝐸𝑆 a surface
alignment term based on surface normals that has been found
to help overcome local minima, while 𝐸𝑃 and 𝐸𝐴 are prior terms
penalizing template self intersections and irregular human poses.

The error terms of our objective function are chosen such that,
under proper conditions, minimizing (2) also minimizes (3).

Following our previous discussion, computation of 𝐸𝐷 relies on
the Squared Euclidean Distance Transform (DT) SP (u) ∈ R ofM𝑃

with u ∈ R3 a sampling position within the voxel grid that S is
defined in. Its domain’s spatial extent is dictated by a slightly scaled
up bounding box of the performance’s point cloud. The same bound-
ing box is used to 3𝐷 reconstructM𝑃 . For the implementation of
DT, we use a custom parallel-friendly GPU algorithm based on the
separable algorithm of [7]. The 3𝐷 distance error is thus defined as:

𝐸𝐷 (p) =
√√ 1
𝑉𝐴

∑
v∈Ap

SP (⌊v⌋) + | | v − ⌊v⌋ | |22 (4)

with ⌊·⌋ being a clamping function bounding the spatial vertex
coordinates to the bounding box and𝑉𝐴 the total number of vertices
of the animated mesh. The sampling locations v are the animated
vertex positions of the template’s vertices as articulated by the
optimized pose parameters p. Apart from averaging the samples
of the squared distance transform, we also add an approximate
extrapolation term | |v − ⌊v⌋ | |22 to extend the domain of 𝐸𝐷 outside
the domain of S. A constant or clamped error at out of boundary
cases would hinder the convergence of zeroth order optimizers.

As alreadymentioned previously, in order to aid the optimizers to
converge towards the global optimum, we additionally use a surface
alignment error term 𝐸𝑆 that measures the surface orientation
distance between Ap andM𝑃 and is an adaptation of a similar
term found in [24]:

𝐸𝑆 (p) =
1
𝑉𝐴

∑
(v,n) ∈Ap

1 − ⟨∇SP (⌊v⌋), n⟩2, (5)

where n is the normal of v ∈ Ap which is also rotated based on p.
This error term is similarly constrained in the voxel grid that S is
defined in, with out-of-bounds sampling returning the maximum
error value (1.0).

These 3𝐷 error terms suffer frommany local minima and smooth
error landscape valleys due to the closest surface distance formula-
tion and the high degrees of freedom that the articulation entails. A
common issue is fitting limbs ofAp close to the torso, whereas the
actual limb location ofM𝑃 may be far away (i.e. raised arms). This
mainly stems from the fact that minimizing 𝑑𝑖𝑠𝑡 (Ap,M𝑃 ), which
is represented by 𝐸𝐷 , does not necessarily minimize 𝑑𝑖𝑠𝑡 (M𝑃 ,Ap).

To overcome the previous limitation, the use of a symmetric
Hausdorff-like metric would be ideal. To avoid the otherwise costly
function evaluations of the Hausdorff-like metric, we utilize a pro-
jective 2𝐷 silhouette error to account for the distance fromM𝑃 to
Ap. This is done by picking 𝑘 virtual viewpoints which we align in
position and orientation with the 𝑘 viewpoints of the multi-view
performance capture system and extracting the silhouette masks for
each one of theM𝑃 andAp via a rendering function R𝑘 , producing
M𝑃
𝑘
,M𝐴

𝑘
∈ Ω, 𝑘 ∈ [1, 𝐾], with 𝐾 being the number of viewpoints,

Ω ∈ R𝑊 ×𝐻 the image domain of width𝑊 and height 𝐻 , and the
superscripts denoting correspondence with the meshesM𝑃 and the
animated template Ap. As the geometry of the animated mesh is a
function of the pose parameters p, so are the masksM𝐴

𝑘
= R𝑘 (Ap).

The 2𝐷 error term relies on the Jaccard index [15] (or otherwise
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intersection-over-union) and is formulated as:

𝐸 𝐽 (p) =
1
𝐾

𝐾∑
𝑘

1 −
M𝑃
𝑘
∩M𝐴

𝑘

M𝑃
𝑘
∪M𝐴

𝑘

, (6)

defined on the image domain Ω. While this error term implicitly
captures 𝑑𝑖𝑠𝑡 (M𝑃 ,Ap), its landscape lacks adequate granularity
and 3𝐷 accuracy due to being projective. This is partly addressed
by the averaging across the 𝐾 viewpoints, but with sparse con-
figurations (small 𝐾) this countering effect can be unreliable and
camera-pose dependent.

In addition to the data-fitting terms, a set of constraints are
added to respect our prior knowledge about human articulation
and posing. These comprise a prior 𝐸𝐴 for the set of plausible
human poses and a self-penetration term 𝐸𝑃 in order to prevent the
interpenetration of different body parts of the animated template.
The former is defined based on the anthropomorphic constraints
of the human body with respect to semantic inter-joint angles
(i.e. flexion, abduction, etc.):

𝐸𝐴 (p) =
∑
𝑗 ∈J

𝛼 𝑗 (𝜽 𝑗 ), (7)

where J is a subset of the joints that will be considered, and 𝛼 𝑗 is a
per joint binary function that tests the swing and twist components
of each joint’s rotation parameters 𝜽 𝑗 for lying inside the valid
semantic angle ranges.

Finally, 𝐸𝑃 is based on a coarse proxy template constructed by
fitting 3𝐷 ellipsoids on each body segment of the template mesh,
as segmented by the most significant skinning coefficient. Then,
each animated vertex is tested for intersection with the remaining
segments, providing the penetration error term:

𝐸𝑃 (p) =
∑
v∈Ap

∑
𝑗 ∈J

𝜌 𝑗 (v), (8)

where 𝜌 𝑗 is the intersecting function between a vertex v and the
3𝐷 ellipsoid of joint (i.e. bone) 𝑗 . This error term prevents articu-
lations that result in non-plausible meshes, acting as the second
prior constraint of our objective function. Varying the error term
weights 𝜆 ∈ R+ yields a plethora of complex error landscapes. In
our experiments though, we have fixed all 𝜆 coefficients to specific
values based on empirical evaluation, while a short ablation on 𝜆𝐽
is given in supplementary material.

4 EXPERIMENTAL SETUP
Software. To conduct this benchmark we developed two software
components. The first one, the Performance Capture Application
(PCA), is the core component able to load RGB+Dmulti-view record-
ings, captured using the volumetric capture platform of [26], and
integrates workflows for the construction, skinning and animation
ofM𝑇 , as well as per-frame creation ofM𝑃 . For template fitting,
PCA incorporates its own optimization engine pipeline based on
optimizer “ask”-“tell” interface. Given a specific optimizer instance,
the optimization engine first “asks” the optimizer for the next func-
tion evaluation query point p, animatesM𝑇 to produce Ap (based
on p), evaluates the objective function (3) and “tells” the result
back to the optimizer, before starting the next “ask-tell“ iteration
cycle. PCA is written in C++, utilizes NVIDIA CUDA for accel-
erating the evaluation of the error terms of (3) and OpenGL to

accelerated the renderings ofM𝑃
𝑘
andM𝐴

𝑘
. To utilize the implemen-

tation of the zero-th order optimizers found in Nevergrad [22] a
second component was written in Python, namely the “Nevergrad
Optimization Service” (NGOService) which basically constitutes a
wrapper around Nevegrad’s Application Programming Interface
(API), exposed with a messaging interface over RabbitMQ [1] for
inter-process communication with PCA.

Dataset: The data sequences used in this study consist of 12
distinct in-lab captured performances of volunteers in a variety
of poses and scenarios (athletic, narration, performance) that are
turned into point clouds in a way described in Section 1. The se-
quences are acquired using a camera setup of 4-6 commodity RGB-D
sensors. All performances start with the subject standing in an A-
like pose. The 3D animatable template mesh is reconstructed at
a selected frame, typically the initial one, using Poisson Surface
Reconstruction [18] and rigged and skinned using [5]. The result
of the animatable template creation process is the embedding of
a skeleton with 18 joints to the mesh’s 3D geometry, accompa-
nied with per vertex skinning weights associating vertices with
the respective skeleton joints. The names of all skeleton joints are:
Root, Middle Torso, Lower Torso, Head, R.Hip, R. Knee, R. Ankle, R.
Foot, R. Shoulder, R. Elbow, R. Hand, L.Hip, L. Knee, L. Ankle, L. Foot,
L. Shoulder, L. Elbow, L. Hand, with R and L denoting right and
left, respectively. See Fig. 1c for a visualization of template mesh
articulation.

(a) (b) (c)

Figure 1: Experimental Setup of the local fitting case (a), and
the global fitting case (b). The initial pose of the template
mesh is depicted in red, while the target pose of the live
mesh is depicted in green. The parameterization of the ar-
ticulation is also presented (c).

Experiment definition. As an experiment we define the prob-
lem of fitting the subject’s template 3D mesh to a specific target
frame of a captured performance (for local and global fitting), or
to a sequence of target frames in sequence fitting. Each experiment
instance is associated with a subset of the sensed 3D data (either a
single frame or a sequence of frames) captured during the perfor-
mance recording of a single human and a constructed animatable
template of the performer (M𝑇 ). Furthermore, an experiment is
bound to a specific objective function parameterization and to a
specific optimizer under a pre-defined budget. Objective function
parameterization consists of defining a subset of template’s an-
imation variables to optimize against and specifying weights of
individual error terms (i.e 𝜆𝐽 , 𝜆𝐷 , 𝜆𝑆 , 𝜆𝑃 , 𝜆𝐴). Further, each exper-
iment has a predefined variable mutation variance configuration

958



3𝐷 performance capture 0th-order optimization analysis GECCO ’21, July 10–14, 2021, Lille, France

(which – the mutation variance – is also mutable itself), depending
on whether it is a local fitting, global fitting, or sequential fitting
experiment, with local and sequential fitting sharing lower muta-
tion variance values compared to global fitting. Moreover, each
experiment’s variable is given specific bounds, effectively reducing
the search space for local fitting and sequential fitting, while keep-
ing it more wide for global fitting. Finally, any optimizer-specific
parameter values were left to the Nevergrad’s defaults.

Optimization parameters. Based on the exponential map pa-
rameterization for the joint rotation parameters (i.e variables),
which consists of 3 degrees of freedom (DOFs), and accounting
3 extra DOFs for the global translation of the mesh, the dimension-
ality of the template fitting problem is 57 (i.e 3 · 18 + 3). However,
to slightly simplify the problem without loosing any important
accuracy we exclude all 3 DOFs of R.Foot and L.Foot and 2 DOFs
from each one of L.Ankle, R.Ankle, R.Hand, and L.Hand, leading to
a problem dimensionality of 43. All joints’ rotation parameters are
expressed with respect to their parent joint.

Experiment cases In our benchmark we consider 3 distinctive
experiment cases: Local fitting deals with small geometric distance
between the template meshM𝑇 and the mesh reconstructed at the
target frameM𝑃 (see Fig. 1a). This case corresponds to small inter-
frame motion, for example slow movements or near by frames. In
this scenario, the template mesh is created from a past frame near
the target frame. Local fitting is considered the least challenging
task in the study, as the parameter search space is narrowed down,
to better exploit the small geometric distance betweenM𝑇 and
M𝑃 .

Global fitting, deals with larger geometric distances between
M𝑇 andM𝑃 (see Fig. 1b), corresponding to faster/more dynamic
subject movements or frames with larger temporal difference. In
Global fitting, the template mesh is created from a frame near the
start of the captured performance where the subject stands in a 𝐴-
like pose, while the target frame is several seconds apart. This case is
considered the most demanding one, as the parameter search space
is significantly larger, and it has proven to be especially challenging
for the optimization algorithms to escape local minima, explore
efficiently, and locate the optimal solution.

Finally, Sequence fitting refers to sequentially fitting the tem-
plate mesh to all frames, or a selected frame span, of a captured per-
formance. This case has the same dimensionality and constrained
parameter search space as the local fitting case. In this setting, the
solution to frame at time 𝑡 , 𝑓𝑡 , becomes the starting point for fitting
the template to frame 𝑓𝑡+1. Ideally, in case the fitted solution for
frame 𝑓𝑡 is optimal, the geometric distance between the template
M𝑇 at 𝑓𝑡 and the target meshM𝑃 at 𝑓𝑡+1 is kept small with more
chances for fitting to succeed in the subsequent frames. However, in
case the the optimizer fails to fit the template for frame 𝑓𝑡 due to not
escaping a local minima, or a bad exploration strategy, it becomes
very challenging to escape the local minimum and re-converge at
later frames. As a result, the error might end up cumulative.

4.1 Local fitting
In the local fitting setting, we benchmark the 10 optimization al-
gorithms mentioned in Section 2, using 3 different function evalu-
ation budgets: 2000, 4000 and 7000, on 10 captured performances.

All variable mutation variances were set to 0.1 meters for the root
translation and 3°angle for the root and joints’ rotations. The search
space is bounded in a range of 0.8 meters for the root translation
and 30°angle for the root and joints’s rotations, to account for
the small motion assumption in near-by frames. For the objective
function term weights, we used the following empirical values:
𝜆𝐽 = 0.1, 𝜆𝐷 = 1.0, 𝜆𝑆 = 0.01, 𝜆𝑃 = 1.0, 𝜆𝐴 = 1.0. Finally, the total
number of repetitions for each experiment was 5.

Algorithm 1:Global fitting Group Optimization Algorithm
Input: Optimization budgets 𝑏𝐺𝑖

, Objective function 𝐸
// initialize parameter group variables to zero

𝜃𝑝𝐺𝑖
← 0,∀𝑖 ∈ {0, .., 𝑁𝐺 − 1};

𝜃 ← ⋃
𝑖∈{0,1,...,𝑁𝐺−1}{𝜃𝑝𝐺𝑖

};
for Group 𝐺𝑖 = 0, 1, ..., 𝑁𝐺 − 1 do

// optimize for parameter group 𝜃 ′𝑝𝐺𝑖
keeping

other variables constant

𝜃 ′𝑝𝐺𝑖
← optimize𝜃𝑝𝐺𝑖

𝐸 (𝜃𝑝𝐺𝑖
;𝜃 − 𝜃𝑝𝐺𝑖

);

// update 𝜃 with the converged values
𝜃 ← (𝜃 − 𝜃𝑝𝐺𝑖

)⋃𝜃 ′𝑝𝐺𝑖

end
return 𝜃

Table 1: Global fitting: Variable bounds for each joint’s rota-
tion (in degrees). N/A values indicate removed DOF.

Joint Swing #1 (X) Swing #2 (Y) Twist (Z)
Min Max Min Max Min Max

Root Rotation -50.0 50.0 -30.0 100.0 -50.0 50.0
Middle Torso -50.0 50.0 N/A N/A N/A N/A
Down Torso -50.0 50.0 -25.0 25.0 -50.0 50.0
Head -25.0 25.0 -25.0 25.0 -25.0 25.0
L/R Hip -45.0 45.0 -60.0 60.0 -100.0 100.0
L/R Knee -45.0 45.0 -100.0 100.0 -20.0 20.0
L/R Ankle -100.0 10.0 N/A N/A N/A N/A
L/R Shoulder -60.0 60.0 -60.0 60.0 -60.0 60.0
L/R Elbow -90.0 90.0 -90.0 90.0 -90.0 90.0
L/R Hand -90.0 90.0 N/A N/A N/A N/A

4.2 Global fitting
In the global fitting setting, we used 8 captured performances to
test the 9 optimization algorithms discussed in Section 2.

In order to facilitate the challenging global fitting task, instead
of optimizing all parameters at once, which was empirically proven
to fail by a far margin under considerable budget numbers, we
separated the variables into 𝑁𝐺 = 5 groups and optimized for the
variables of each group jointly, while each group was processed se-
quentially. Parameter groups were chosen based on their functional
proximity, mimicking the hierarchical structure of the human body.
Specifically, the optimization parameters of Group 0 denoted as 𝑝𝐺0
include rotation variables for all Root, Middle Torso, Lower Torso and
Head joints, as well as the variables for Root translation. The rest
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four groups consist of the extremities’ parameters. 𝑝𝐺1 contains
the variables corresponding to the joints of the left leg (i.e. L.Hip, L.
Knee, L. Ankle), 𝑝𝐺2 the variables related the joints of the right leg,
𝑝𝐺3 the variables corresponding to the joints of the left arm (i.e. L.
Shoulder, L. Elbow, L. Hand) and 𝑝𝐺4 the variables corresponding to
the joints of the right arm.

The optimization process begins with the Group 0 and ends with
the Group 4. We should note that, due to the hierarchical nature
of the limbs’ connectivity and the sequential proceeding of the
groups, the 𝑝𝐺0 optimization sub-problem is the most crucial since
it’s failure makes it almost impossible for the rest to converge.

As in the local fitting case, we used 3 different function evalua-
tion budgets, namely: 2000, 4000 and 7000. The total optimization
budget 𝐵, is distributed across the parameter groups. Since the first
group 𝐺0 is the most prominent and contains a larger number of
parameters to tune, it is assigned a budget 𝑏𝐺0 equal to the 3/11 of
the total budget 𝐵, with the rest of the groups assigned 2/11 each
(𝑏𝐺𝑖

, 𝑖 = {1, 2, 3, 4}). Pseudo-code of the group optimization strategy
is provided in Algorithm 1. Further, to ease, the otherwise chal-
lenging task, we additionally removed 2 DOFs from Middle Torso,
effectively reducing the problem dimensionality to 41. Preliminary
empirical experimentation showcased that the modular group strat-
egy along with the reduction of the problem’s dimensionality to 41,
as described previously, is essential to tackle the vast global search
space effectively and results to better optimization outcomes. In
global fitting, we set all term weights 𝜆 equal to the same values
as in the local fitting case. Each experiment was repeated 5 times,
as in local fitting, while variable bounds for translation were set to
[−1.25, 1.25] for all X,Y,Z axis and for rotation were fine tuned per
joint as depicted in Table 1.

4.3 Sequence fitting
In the sequence fitting setting we conducted experiments on 6 cap-
tured performances. Since the captured performances can be quite
long (in the context of frame by frame optimization) and exceed
1000 frames in length, we decided to limit the optimization frame
span in most of the cases to up to 450 frames; although in some
cases we conducted the sequence fitting experiments for up to 800
sequential frames. Experiments in this setting take a considerable
amount of time and to accommodate that, we’ve chosen to bench-
mark the 5 top performing optimizers in the global and local fitting
settings: RS-PSO, Disc 1+1, CMA, NGO and Shiwa in a fixed budget
configuration of 4000 function evaluations and for a single repe-
tition. The dimensionality of the problem, the parameter search
space and the objective function term weights are all kept the same
as in the local fitting case.

5 RESULTS AND ANALYSIS
5.1 Local fitting
The local fitting scenario corresponds to a case where the meshes
M𝑇 andM𝑃 are expected to have a small geometric difference.
This is attributed to the small temporal difference between the
two examined frames in the recorded sequence. As a consequence,
optimizers that behave well in local exploration should have an edge
over innately exploratory ones, especially under lower budgets.

Table 2: Local fitting: Average Loss for experiments with the
same budget and optimizer, aggregating across experiment
repetitions and performances. Optimizers are sortedwith re-
spect to the average achieved loss. The relative performance
(RP) column indicates relative performance with respect to
the best performing optimizer for each budget.

B=2000 B=4000 B=7000
Optimizer RP Loss Optimizer RP Loss Optimizer RP Loss
RS - PSO +0.00% 0.03540 RS - PSO +0.00% 0.02916 CMA +0.00% 0.02818
Disc 1+1 +3.99% 0.03681 Disc 1+1 +17.54% 0.03428 RS - PSO +0.51% 0.02833
NGO +35.07% 0.04781 CMA +19.24% 0.03477 NGO +9.65% 0.03090
Shiwa +38.08% 0.04888 Shiwa +20.41% 0.03512 CMA+Powell +12.07% 0.03158
CMA +40.57% 0.04976 NGO +22.12% 0.03561 Shiwa +13.32% 0.03194
Powell +40.97% 0.04990 Powell +22.87% 0.03583 Disc 1+1 +13.41% 0.03196
CMA+Powell +43.12% 0.05067 CMA+Powell +34.38% 0.03919 Powell +14.93% 0.03239
DE +56.98% 0.05557 DE +72.39% 0.05028 DE +64.55% 0.04638
TBPSA +86.71% 0.06610 TBPSA +105.06% 0.05980 TBPSA +87.89% 0.05295
RS +123.95% 0.07928 RS +159.60% 0.07571 RS +161.56% 0.07372

Table 3: Wilcoxon test for the Local fitting case, at a confi-
dence level of 0.05. When the optimizer at cell’s row per-
forms better (worse/equal) than the optimizer at cell’s col-
umn, the cell is marked with ’+’ (’-’/’/𝑎𝑝𝑝𝑟𝑜𝑥 ’).

B = 2000
CMA+Powell CMA DE Disc 1+1 NGO Powell RS RS-PSO Shiwa TBPSA

CMA+Powell N/A ≈ + - - ≈ + - ≈ +
CMA ≈ N/A + - ≈ ≈ + - ≈ +
DE - - N/A - - - + - - +

Disc 1+1 + + + N/A + + + ≈ + +
NGO + ≈ + - N/A ≈ + - ≈ +
Powell ≈ ≈ + - ≈ N/A + - ≈ +
RS - - - - - - N/A - - -

RS-PSO + + + ≈ + + + N/A + +
Shiwa ≈ ≈ + - ≈ ≈ + - N/A +
TBPSA - - - - - - + - - N/A

B = 4000
CMA+Powell CMA DE Disc 1+1 NGO Powell RS RS-PSO Shiwa TBPSA

CMA+Powell N/A - + - - ≈ + - - +
CMA + N/A + ≈ ≈ ≈ + - ≈ +
DE - - N/A - - - + - - +

Disc 1+1 + ≈ + N/A ≈ ≈ + - ≈ +
NGO + ≈ + ≈ N/A ≈ + - ≈ +
Powell ≈ ≈ + ≈ ≈ N/A + - ≈ +
RS - - - - - - N/A - - -

RS-PSO + + + + + + + N/A + +
Shiwa + ≈ + ≈ ≈ ≈ + - N/A +
TBPSA - - - - - - + - - N/A

B = 7000
CMA+Powell CMA DE Disc 1+1 NGO Powell RS RS-PSO Shiwa TBPSA

CMA+Powell N/A - + ≈ ≈ ≈ + - ≈ +
CMA + N/A + + + + + ≈ + +
DE - - N/A - - - + - - +

Disc 1+1 ≈ - + N/A ≈ ≈ + - ≈ +
NGO ≈ - + ≈ N/A ≈ + - ≈ +
Powell ≈ - + ≈ ≈ N/A + - ≈ +
RS - - - - - - N/A - - -

RS-PSO + ≈ + + + + + N/A + +
Shiwa ≈ - + ≈ ≈ ≈ + - N/A +
TBPSA - - - - - - + - - N/A

Table 2 depicts the average loss values achieved, aggregated
across different performances and experiment repetitions, catego-
rized per budget and optimizer. Additionally, following the guide-
lines from [9], for each recorded sequence out of the total 10 (i.e.
for each problem instance), we compute the average loss value
achieved by each optimizer across the 5 repetitions and use this
value as a representative value for the performance of the opti-
mizer to the specific problem instance. We use these representative
values to conduct a Wilcoxon signed rank test among all pairs of
optimizers, at a confidence level of 0.05, evaluating whether there
is a significant statistical difference on the optimizer performances.
The results are depicted in Table 3.

According to Table 2, for budgets 2000 and 4000, RS-PSO achieves
top performance while for budget 7000 it comes second, performing
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Table 4: Local fitting:RMSHausdorff distance, w.r.t themesh
bounding box, for experimentswith the same budget and op-
timizer, aggregating across experiment repetitions and per-
formances. Optimizers are sorted w.r.t the RMS hausdorff
distance. The relative performance (RP) column indicates
relative performancew.r.t the best performing optimizer for
each budget.

B=2000 B=4000 B=7000
Optimizer RP Haus Optimizer RP Haus Optimizer RP Haus
RS - PSO +0.00% 0.00833 RS - PSO +0.00% 0.00706 CMA +0.00% 0.00610
Disc 1+1 +7.86% 0.00898 Disc 1+1 +16.67% 0.00824 RS - PSO +3.56% 0.00631
NGO +48.07% 0.01233 Shiwa +17.61% 0.00831 NGO +16.39% 0.00709
Shiwa +48.61% 0.01238 CMA +18.65% 0.00838 Disc 1+1 +23.01% 0.00750
CMA+Powell +56.51% 0.01304 NGO +21.52% 0.00858 Powell +28.69% 0.00784
Powell +60.06% 0.01333 Powell +27.11% 0.00898 CMA+Powell +30.53% 0.00796
CMA +61.79% 0.01348 CMA+Powell +53.61% 0.01085 Shiwa +39.64% 0.00851
DE +69.95% 0.01416 DE +77.33% 0.01252 DE +85.35% 0.01130
TBPSA +116.29% 0.01802 TBPSA +123.14% 0.01576 TBPSA +125.82% 0.01377
RS +170.79% 0.02256 RS +201.43% 0.02129 RS +233.29% 0.02032

on-par with the top performing algorithm CMA. Wilcoxon signed
rank test (Table 3) also testifies to the same conclusion. In the lower
budget case 𝐵 = 2000, Disc 1+1 performs close to RS-PSO which
according to the Wilcoxon test, there is no significant statistical
difference on the performance of the two optimizers under this
budget. However, for 𝐵 = 4000, while Disc 1+1 is the second best
performing algorithm, the margin between its performance and RS-
PSO’s is significantly increased with RS-PSO outperforming Disc
1+1 significantly, as corroborated by the Wilcoxon test. As budget
increases, the performance difference between NGO, CMA+Powell,
Shiwa, Disc 1+1 and Powell is consistently decreasing, with the
Wilcoxon test further supporting this result. We should note that
the CMA algorithm is known in bibliography to perform on-par
with the state-of-the-art for local optimization and large budgets,
something apparent in our experiments aswell, where it managed to
reach top for the 𝐵 = 7000 scenario and practically tie with RS-PSO.
Finally, DE and TBPSA are ranked among the worst performing
optimizers as they are consistently ranked 8th and 9th under all
budgets, while, with no surprise, RS performs worst, regardless the
budget.

Table 5: Global fitting: Average Loss for experiments with
the same budget and optimizer, aggregating across experi-
ment repetitions and performances. Optimizers are sorted
with respect to the average achieved loss. The relative per-
formance (RP) column indicates incremental relative per-
formance with respect to the best performing optimizer for
each budget. Results in this table are for 𝜆𝐽 = 0.1.

B=2000 B=4000 B=7000
Optimizer RP Loss Optimizer RP Loss Optimizer RP Loss
Shiwa +0.00% 0.06763 NGO +0.00% 0.05565 NGO +0.00% 0.04882
NGO +1.46% 0.06861 CMA +2.27% 0.05691 Shiwa +3.54% 0.05055
Disc 1+1 +6.68% 0.07214 Shiwa +2.40% 0.05699 CMA+Powell +5.52% 0.05151
CMA +8.46% 0.07335 CMA+Powell +10.26% 0.06136 CMA +6.84% 0.05216
RS - PSO +14.55% 0.07747 Disc 1+1 +16.30% 0.06472 RS - PSO +13.41% 0.05537
TBPSA +23.56% 0.08356 RS - PSO +18.52% 0.06596 Disc 1+1 +26.51% 0.06176
CMA+Powell +26.59% 0.08561 TBPSA +28.41% 0.07146 TBPSA +33.91% 0.06537
DE +32.08% 0.08932 DE +36.31% 0.07586 DE +35.92% 0.06635
Powell +97.87% 0.13381 Powell +64.57% 0.09158 Powell +56.20% 0.07625

As a post optimization process we calculated the average, across
all experiments, RMSHaussdorf distance between the performance’s
point cloud dataM𝑃 and the animated template mesh Ap at the
converged pose. The results are depicted in Table 4. In general, the

optimizers’ performance in the RMS Hausdorff results is consistent
with the performance in the achieved loss values (especially for
𝐵 = 2000 and 𝐵 = 4000) (Table 2) indicating that the proxy objec-
tive function (3) is a good approximation of the Hausdorff metric.
However, since our objective function is an approximation to the
Hausdorff metric, the ranking of the optimizers with respect to
the RMS Hausdorff distance does not strictly follow the ranking
with respect to loss in all cases. Despite that, across all budgets, the
top 2 and worst 2 performing optimizers are the same in the two
tables. For 𝐵 = 2000 the 3rd and 4th ranked positions are taken
by the same optimizers, regardless the metric (i.e loss/hausdorff).
Further, for 𝐵 = 4000, apart from loss, CMA and Shiwa perform
on-par in RMS hausdorff terms, as well. However, for 𝐵 = 7000,
while in loss terms NGO, CMA+Powell, Shiwa, Disc 1+1 and Powell
are considered to perform on-par, their difference in performance
in RMS Hausdorff terms is more prominent.

Table 6: Global fitting: Average Hausdorff-RMS for exper-
iments with the same budget and optimizer, aggregated
across experiment repetitions and performances. Optimiz-
ers are sorted w.r.t the average Hausdorff-RMS achieved.
The relative performance (RP) column indicates relative per-
formance w.r.t the best performing optimizer for each bud-
get.

B=2000 B=4000 B=7000
Optimizer RP Haus Optimizer RP Haus Optimizer RP Haus
Shiwa +0.00% 0.02629 NGO +0.00% 0.02185 Shiwa +0.00% 0.02087
NGO +5.79% 0.02781 CMA +2.93% 0.02249 NGO +1.14% 0.02111
CMA +14.22% 0.03002 Shiwa +6.44% 0.02326 CMA+Powell +4.55% 0.02182
Disc 1+1 +14.51% 0.03010 CMA+Powell +14.27% 0.02497 CMA +5.19% 0.02196
RS - PSO +15.56% 0.03038 TBPSA +18.39% 0.02587 RS - PSO +5.90% 0.02211
TBPSA +18.13% 0.03105 RS - PSO +19.51% 0.02611 TBPSA +16.48% 0.02431
CMA+Powell +22.91% 0.03230 Disc 1+1 +27.94% 0.02796 DE +21.14% 0.02529
DE +35.72% 0.03568 DE +28.52% 0.02808 Disc 1+1 +22.18% 0.02550
Powell +122.05% 0.05837 Powell +100.68% 0.04385 Powell +92.38% 0.04016

Overall, RS-PSO can be seen as a good candidate for solving the
local fitting case, as it is always ranked first except for the higher
budget case in which, however, it is ranked second with a very
small performance difference (+0.51% in loss terms and +3.56%
in Hausdorff distance terms) with respect to the best performing
optimizer (CMA). This finding, may also apply to other real-world
problems as well, where the optimal solution is known to lie in
the local neighborhood of a known initial point. Last, as budget
increases, CMA is the only algorithm that consistently improves
its ranked position in the benchmark, with no other optimizer
exhibiting the same behaviour.

5.2 Global fitting
In contrast to local fitting, in the global fitting scenario, the opti-
mizers expected to perform best are the ones which better explore
the search space beyond the locality of the initial point. Similar to
the local fitting case, Table 5 illustrates the average achieved loss
values aggregated across different performances and experiment
repetitions, categorized per budget and optimizer.Further, we per-
form the Wilcoxon signed rank test exactly the same way as it was
described for the local fitting scenario (Table 7).

In loss terms, regardless the budget, Powell is consistently ranked
in the last position of the benchmark, Shiwa is always ranked among
the first 3 places and TBPSA and DE perform on-par with Powell for
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Table 7: Wilcoxon test for the Global fitting case, at a con-
fidence level of 0.05. When the optimizer at cell’s row per-
forms better (worse/equal) than the optimizer at cell’s col-
umn, the cell is marked with ’+’ (’-’/’≈’).

B = 2000
CMA+Powell CMA DE Disc 1+1 NGO Powell RS-PSO Shiwa TBPSA

CMA+Powell N/A - ≈ - - + - - ≈
CMA + N/A + ≈ ≈ + ≈ ≈ +
DE ≈ - N/A - - ≈ - - ≈

Disc 1+1 + ≈ + N/A ≈ + ≈ ≈ +
NGO + ≈ + ≈ N/A + + ≈ +
Powell - - ≈ - - N/A - - -
RS-PSO + ≈ + ≈ - + N/A - ≈
Shiwa + ≈ + ≈ ≈ + + N/A +
TBPSA ≈ - ≈ - - + ≈ - N/A

B = 4000
CMA+Powell CMA DE Disc 1+1 NGO Powell RS-PSO Shiwa TBPSA

CMA+Powell N/A ≈ + ≈ ≈ + + ≈ +
CMA ≈ N/A + ≈ ≈ + + ≈ +
DE - - N/A - - + - - ≈

Disc 1+1 ≈ ≈ + N/A - + ≈ ≈ +
NGO ≈ ≈ + + N/A + + ≈ +
Powell - - - - - N/A - - -
RS-PSO - - + ≈ - + N/A - ≈
Shiwa ≈ ≈ + ≈ ≈ + + N/A +
TBPSA - - ≈ - - + ≈ - N/A

B = 7000
CMA+Powell CMA DE Disc 1+1 NGO Powell RS-PSO Shiwa TBPSA

CMA+Powell N/A ≈ + + ≈ + ≈ ≈ +
CMA ≈ N/A + + ≈ + ≈ ≈ +
DE - - N/A ≈ - ≈ - - ≈

Disc 1+1 - - ≈ N/A - + ≈ - ≈
NGO ≈ ≈ + + N/A + + ≈ +
Powell - - ≈ - - N/A - - ≈
RS-PSO ≈ ≈ + ≈ - + N/A ≈ ≈
Shiwa ≈ ≈ + + ≈ + ≈ N/A ≈
TBPSA - - ≈ ≈ - ≈ ≈ ≈ N/A

𝐵 = 7000. For 𝐵 = 2000 Shiwa performs best, on-par with NGO, Disc
1+1 and CMA, as testified by the Wilcoxon test. In the fourth place
comes RS-PSO, followed by TBPSA, CMA+Powell and DE which
perform similarly. For 𝐵 = 4000 and 𝐵 = 7000, the top performing
optimizer is NGO, with CMA, Shiwa and CMA+Powell exhibiting
similar performance. Disc 1+1 performs on-par with RS-PSO for
𝐵 = 4000. Finally, TBPSA and DE perform similarly and are ranked
7th and 8th respectively. Last, regarding 𝐵 = 7000, RS-PSO and Disc
1+1 perform on-par and are ranked 5th and 6th.

Regarding the geometric error measured by RMS hausdorff dis-
tance between the performance’s point cloud data M𝑃 and the
animated template meshAp at the converged pose, the ranking on
the performance of the optimizers mostly follows the same patterns,
as depicted in Table 6.

Overall, regardless budget, NGO, is the best candidate to solve the
Global fitting problem, followed by Shiwa. As budget increases, the
only optimizers that are able to consistently improve their ranked
position are NGO (in loss terms) and CMA+Powell (in loss and
RMS Hausdorff terms), while Disc 1+1 is consistently outperformed
by more optimizers as budget increases (i.e its ranked position is
worsened across budgets). RS-PSOwhich was found to perform best
in the local fitting case, in this scenario is outperformed by other
optimizers by a considerable margin, especially at lower budgets.

5.3 Sequence fitting
The sequence fitting scenario can be considered as an extension
to the local fitting case, essentially evaluating the optimizers in
aggregated like local fitting experiments, expanding the local fitting
dataset to a large number of frames. As errors tend to accumulate in
this setting, optimizers with more aggressive exploration strategies

Table 8: Sequence fitting: Average loss and RMS Hausdorff
for 𝐵 = 4000, aggregated across frames and sequences. The
relative performance (RP) column indicates relative perfor-
mance with respect to the best performing optimizer.

Optimizer RP Loss Optimizer RP Hauss
RS-PSO +0.00% 0.03092 RS-PSO +0.00% 0.012379
Disc 1+1 +21.54% 0.03758 NGO +24.03% 0.015354
NGO +28.72% 0.03980 Shiwa +28.73% 0.015936
Shiwa +30.69% 0.04041 Disc 1+1 +29.52% 0.016034
CMA +31.24% 0.04058 CMA +32.12% 0.016356

may be able to overcome error accumulation. Numerical results
regarding loss and RMS hausdorff distance betweenM𝑃 and Ap
are given in Table 8. Interestingly, RS-PSO is ranked first both in
loss and RMS Hausdorff terms, just like in local fitting, outperform-
ing other optimizers considerably. While Disc 1+1 is ranked 2nd
in loss terms, under the RMS Hausdorff metric is ranked 4th. NGO
and Shiwa are ranked second and third in RMS Hausdorff terms,
even though they are ranked 3rd and 4th, respectively, under the
loss criterion. Similar to local fitting, both NGO and Shiwa perform
similarly in sequence fitting, as well. Finally CMA is the worse per-
forming optimizer with respect to both loss and RMS Hausdorff
metrics. Overall, compared to the corresponding local fitting case
with 𝐵 = 4000, apart from RS-PSO performing top, which is com-
mon in both cases, the rankings of the other optimizers slightly
vary. This can be explained by the Wilcoxon signed rank test which
for the local fitting case indicated that all optimizers apart from
RS-PSO perform on-par.

5.4 Supplementary material
Additional qualitative figures depicting the animated template at
the converged poses along with animatable exploration strategy
visualizations for all optimizers for some experiments are given
in supplementary material (https://github.com/VCL3D/nevergrad/
blob/pb-material/supplementary1.pdf).

6 CONCLUSION
In this paper, we thoroughly benchmarked public open implemen-
tations of zeroth-order optimizers to the real-word problem of
template mesh fitting to 3D captured performances. Three different
fitting cases were considered, essentially covering three different
real-world scenarios. Overall, RS-PSO was found to perform best
in the local and sequence fitting cases, while for the global fitting
scenario the best performing optimizer was NGO. Individual ex-
periment result plots and tables, as well as an ablation study for
different objective function error term weightings and qualitative
samples are given in supplementary material. We hope that this
work can become a future reference for practitioners in 3D perfor-
mance capture and additionally serve as a baseline for future works
approaching the same problem from the scope of multi-objective
optimization.
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