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Preface
Two years ago, in 2022, the international conference on Parallel Problem Solving from Nature (PPSN) returned to where it all started in 1990, namely to Dortmund, Germany. It was great to see that the community had overcome the pandemic and gathered with more than 100 participants attending in person.
On the last day of the conference, during the closing ceremony, we got the chance to propose the University of Applied Sciences Upper Austria (FH OÖ) as organizers and the Softwarepark Hagenberg as the location for PPSN 2024. We were convinced that FH OÖ as the (with respect to research and development) strongest university of applied sciences in Austria could be the ideal choice as host for PPSN 2024, especially as we presented the research group Heuristic and Evolutionary Algorithms Laboratory (HEAL), one of the most active groups in evolutionary algorithms in Austria, as the core group of the organization team. After some weeks, we were delighted to hear from the steering committee that we were chosen as organizers and Hagenberg as the location for this year’s edition of PPSN.
We are pleased that a record number of researchers followed our call by submitting their papers for review. We received 294 submissions from which the program chairs selected the top 101 after an extensive peer-review process, which corresponds to an acceptance rate of 34.35%. Not all decisions were easy to make, but we benefited greatly from the careful reviews provided by the international program committee. With an average of 2.86 reviews per paper, most of the submissions received three reviews, while some received two. This led to a total of 840 reviews. Thanks to these reviews, we were able to decide about acceptance on a solid basis.
The papers included in these proceedings were assigned to 12 clusters, entitled Combinatorial Optimization, Genetic Programming, Fitness Landscape Modeling and Analysis, Benchmarking and Performance Measures, Automated Algorithm Selection and Configuration, Numerical Optimization, Bayesian- and Surrogate-Assisted Optimization, Theoretical Aspects of Nature-Inspired Optimization, (Evolutionary) Machine Learning and Neuroevolution, Evolvable Hardware and Evolutionary Robotics, Multi-objective Optimization and Real-World Applications which can hardly reflect, the true variety of research topics presented in the proceedings at hand. Following the tradition and spirit of PPSN, all papers were presented as posters. The eight poster sessions consisting of 12 or 13 papers each were compiled orthogonally to the clusters mentioned above to cover the range of topics as widely as possible. As a consequence, participants with different interests would find some relevant papers in every session and poster presenters were able to discuss related work in sessions different from their own.
As usual, the conference started with two days of workshops and tutorials (Saturday and Sunday), followed by three days of poster sessions and invited plenary talks (Monday to Wednesday). We are delighted that three highly renowned researchers from up-and-coming, related research fields accepted our invitation to give a keynote speech, which was be the first item on the program over the three days of the conference.
Two of our keynote speakers are young professors at excellent academic institutions, namely Oliver Schütze (Cinvestav-IPN, Mexico City) and Richard Küng (JKU Linz, Austria); the third keynoter is a researcher at Google Deepmind, namely Bernardino Romera-Paredes, with an equally impressive scientific record.
Needless to say, the success of such a conference depends on authors, reviewers, and organizers. We are grateful to all authors for submitting their best and latest work, to all the reviewers for the generous way they spent their time and provided their valuable expertise in preparing these reviews, to the workshop organizers and tutorial presenters for their contributions to enhancing the value of the conference, and to the local organizers who helped to make PPSN XVIII happen.
Last but not least, we would like to thank Softwarepark Hagenberg and the University of Applied Sciences Upper Austria for the donations. We are grateful for the long-standing support of Springer to this conference series. Finally, we thank the RISC Software and Software Competence Center Hagenberg for providing financial backing.

Michael Affenzeller
Stephan M. Winkler
Anna V. Kononova
Heike Trautmann
Tea Tušar
Penousal Machado
Thomas Bäck
July 2024

Organization
General Chairs

	Michael Affenzeller
	University of Applied Sciences Upper Austria, Austria

	Stephan Winkler
	University of Applied Sciences Upper Austria, Austria






Honorary Chair

	Hans-Paul Schwefel
	TU Dortmund, Germany






Program Committee Chairs

	Heike Trautmann
	University of Paderborn, Germany

	Tea Tušar
	Jožef Stefan Institute, Slovenia

	Penousal Machado
	University of Coimbra, Portugal

	Thomas Bäck
	Leiden University, Netherlands






Proceedings Chair

	Anna V. Kononova
	Leiden University, Netherlands






Tutorials Chair

	Fabricio Olivetti de França
	Federal University of ABC, Brazil






Workshops Chair

	Roman Kalkreuth
	RWTH Aachen University, Germany






Publicity Chairs

	Jan Zenisek
	University of Applied Sciences Upper Austria, Austria

	Christian Haider
	University of Applied Sciences Upper Austria, Austria

	Louise Buur
	University of Applied Sciences Upper Austria, Austria






Technical Support Chairs

	Oliver Krauss
	University of Applied Sciences Upper Austria, Austria

	Du Nguyen Duy
	Software Competence Center Hagenberg, Austria






Steering Committee

	Thomas Bäck
	Leiden University, Netherlands

	David W. Corne
	Heriot-Watt University, UK

	Carlos Cotta
	University of Malaga, Spain

	Kenneth De Jong
	George Mason University, USA

	Gusz E. Eiben
	Vrije Universiteit Amsterdam, Netherlands

	Bogdan Filipič
	Jožef Stefan Institute, Slovenia

	Emma Hart Edinburgh
	Napier University, UK

	Juan Julián Merelo Guervós
	University of Granada, Spain

	Günter Rudolph
	TU Dortmund, Germany

	Thomas P. Runarsson
	University of Iceland, Iceland

	Robert Schaefer
	University of Krakow, Poland

	Marc Schoenauer
	Inria, France

	Xin Yao
	University of Birmingham, UK and SUSTech, China






Keynote Speakers

	Oliver Schütze
	CINVESTAV-IPN, Mexico

	Bernardino Romera-Paredes
	Google DeepMind London, UK

	Richard Küng
	Johannes Kepler University Linz, Austria






Program Committee

	Michael Affenzeller
	University of Applied Sciences Upper Austria, Austria

	Hernán Aguirre
	Shinshu University, Japan

	Imène Ait Abderrahim
	University of Djilali Bounaama Khemis Miliana, Algeria

	Youhei Akimoto
	University of Tsukuba, Japan

	Richard Allmendinger
	University of Manchester, UK

	Marie Anastacio
	Leiden University, Netherlands

	Claus Aranha
	University of Tsukuba, Japan

	Dirk Arnold
	Dalhousie University, Canada

	Anne Auger
	Inria, France

	Dogan Aydin
	Dumlupinar University, Turkey

	Jaume Bacardit
	Newcastle University, UK

	Heder Bernardino
	Federal University of Juiz de Fora, Brazil

	Hans-Georg Beyer
	Vorarlberg University of Applied Sciences, Austria

	Martin Binder
	Ludwig Maximilian University of Munich, Germany

	Mauro Birattari
	Université libre de Bruxelles, Belgium

	Bernd Bischl
	Ludwig Maximilian University of Munich, Germany

	Julian Blank
	Michigan State University, USA

	Aymeric Blot
	University College London, UK

	Peter Bosman
	Centrum Wiskunde & Informatica, Netherlands

	Jakob Bossek
	University of Paderborn, Germany

	Anton Bouter
	Centrum Wiskunde & Informatica, Netherlands

	Jürgen Branke
	University of Warwick, UK

	Dimo Brockhoff
	Inria, France

	Alexander Brownlee
	University of Stirling, UK

	Larry Bull
	University of the West of England, UK

	Maxim Buzdalov
	Aberystwyth University, UK

	Stefano Cagnoni
	University of Parma, Italy

	Salvatore Calderaro
	Palermo University, Italy

	Pedro Carvalho
	University of Aveiro, Portugal

	Josu Ceberio
	University of the Basque Country, Spain

	Ying-Ping Chen
	National Chiao Tung University, Taiwan

	Francisco Chicano
	University of Malaga, Spain

	Miroslav Chlebik
	University of Sussex, UK

	Sung-Bae Cho
	Yonsei University, South Korea

	Carlos Coello Coello
	CINVESTAV-IPN, Mexico

	Jordan Cork
	Jožef Stefan Institute, Slovenia

	João Correia
	University of Coimbra, Portugal

	Gabriel Cortês
	University of Coimbra, Portugal

	Doğan Çörüş
	Kadir Has University, Turkey

	Ernesto Costa
	University of Coimbra, Portugal

	Carlos Cotta
	University of Malaga, Spain

	António Cunha
	University of Minho, Portugal

	Nguyen Dang
	St Andrews University, UK

	Kenneth De Jong
	George Mason University, USA

	Roy de Winter
	Leiden University, Netherlands

	Kalyanmoy Deb
	Michigan State University, USA

	Antonio Della Cioppa
	University of Salerno, Italy

	Antipov Denis
	University of Adelaide, Australia

	Bilel Derbel
	Université de Lille, France

	André Deutz
	Leiden University, Netherlands

	Konstantin Dietrich
	TU Dresden, Germany

	Benjamin Doerr
	Ecole Polytechnique, France

	Carola Doerr
	Sorbonne University, France

	John Drake
	University of Leicester, UK

	Rafał Dreżewski
	AGH University of Science and Technology, Poland

	Johann Dreo
	Pasteur Institute, France

	Paul Dufossé
	ID Solutions Oncology, France

	Tome Eftimov
	Jožef Stefan Institute, Slovenia

	Theresa Eimer
	Leibniz University Hannover, Germany

	Michael Emmerich
	Leiden University, Netherlands

	Andries Engelbrecht
	University of Stellenbosch, South Africa

	Anton Eremeev
	Dostoevsky Omsk State University, Russia

	Richard Everson
	University of Exeter, UK

	Pedro Ferreira
	University of Lisbon, Portugal

	Antonino Fiannaca
	Italian National Research Council, Italy

	Jonathan Fieldsend
	University of Exeter, UK

	Bogdan Filipič
	Jožef Stefan Institute, Slovenia

	Steffen Finck
	Vorarlberg University of Applied Sciences, Austria

	Marcus Gallagher
	University of Queensland, Australia

	José García-Nieto
	University of Málaga, Spain

	Mario Giacobini
	University of Torino, Italy

	Kyriakos Giannakoglou
	National Technical University of Athens, Greece

	Tobias Glasmachers
	Ruhr-Universität Bochum, Germany

	Christian Grimme
	University of Münster, Germany

	Alexander Hagg
	Bonn-Rhein-Sieg University of Applied Sciences, Germany

	Julia Handl
	University of Manchester, UK

	Nikolaus Hansen
	Inria, France

	Jin-Kao Hao
	University of Angers, France

	Hans Harder
	Paderborn University, Germany

	Emma Hart
	Edinburgh Napier University, UK

	Verena Heidrich-Meisner
	CAU Kiel, Germany

	Jonathan Heins
	TU Dresden, Germany

	Carlos Henggeler Antunes
	University of Coimbra, Portugal

	Carlos Ignacio Hernández Castellanos
	National Autonomous University of Mexico, Mexico

	Ishara Hewa Pathiranage
	University of Adelaide, Australia

	Martin Holeňa
	Czech Academy of Sciences, Czechia

	Andoni Irazusta Garrnendia
	University of the Basque Country, Spain

	Hisao Ishibuchi
	Southern University of Science and Technology, China

	Christian Jacob
	University of Calgary, Canada

	Domagoj Jakobović
	University of Zagreb, Croatia

	Anja Jankovic
	RWTH Aachen University, Germany

	Thomas Jansen
	Aberystwyth University, UK

	Laetitia Jourdan
	Université de Lille, CRIStAL, CNRS, France

	Bryant Julstrom
	St. Cloud State University, USA

	Timo Kötzing
	Hasso Plattner Institute, Germany

	Roman Kalkreuth
	RWTH Aachen University, Germany

	George Karakostas
	McMaster University, Canada

	Florian Karl
	Ludwig Maximilian University of Munich, Germany

	Ed Keedwell
	University of Exeter, UK

	Pascal Kerschke
	TU Dresden, Germany

	Marie-Eléonore Kessaci
	University of Lille, France

	Ahmed Kheiri
	Lancaster University, UK

	Wolfgang Konen
	TH Cologne, Germany

	Lars Kotthoff
	University of Wyoming, USA

	Oswin Krause
	University of Copenhagen, Denmark

	Krzysztof Krawiec
	Poznan University of Technology, Poland

	Martin S. Krejca
	Ecole Polytechnique, France

	William B. Langdon
	University College London, UK

	Manuel López-Ibáñez
	University of Manchester, UK

	William La Cava
	Boston Children’s Hospital, USA

	Algirdas Lancinskas
	Vilnius University, Lithuania

	Yuri Lavinas
	University of Toulouse, France

	Per Kristian Lehre
	University of Birmingham, UK

	Johannes Lengler
	ETH Zurich, Switzerland

	Markus Leyser
	TU Dresden, Germany

	Ke Li
	University of Exeter, UK

	Arnaud Liefooghe
	University of Lille, France

	Giosuè Lo Bosco
	University of Palermo, Italy

	Fernando Lobo
	University of Algarve, Portugal

	Nuno Lourenço
	University of Coimbra, Portugal

	Jose A. Lozano
	University of the Basque Country, Spain

	Rodica Lung
	Babes-Bolyai University, Romania

	Chuan Luo
	Peking University, China

	Evelyne Lutton
	INRAE, France

	Jessica Mégane
	University of Coimbra, Portugal

	João Macedo
	University of Coimbra, Portugal

	Mikel Malagón
	University of the Basque Country, Spain

	Katherine Malan
	University of South Africa, South Africa

	Vittorio Maniezzo
	University of Bologna, Italy

	Valentin Margraf
	Ludwig Maximilian University of Munich, Germany

	Luis Martí
	Center Inria Chile, Chile

	Jörn Mehnen
	University of Strathclyde, UK

	Marjan Mernik
	University of Maribor, Slovenia

	Olaf Mersmann
	Federal University of Applied Administrative Sciences, Germany

	Silja Meyer-Nieberg
	Bundeswehr University Munich, Germany

	Efrén Mezura-Montes
	University of Veracruz, Mexico

	Krzysztof Michalak
	Wroclaw University of Economics, Poland

	Kaisa Miettinen
	University of Jyväskylä, Finland

	Edmondo Minisci
	University of Strathclyde, UK

	Gara Miranda Valladares
	University of La Laguna, Spain

	Mustafa Misir
	Duke Kunshan University, China

	Marco Montes de Oca
	EnFi Inc. and Northeastern University, USA

	Hugo Monzón
	RIKEN, Japan

	Mario Andrés Muñoz
	University of Melbourne, Australia

	Boris Naujoks
	TH Cologne, Germany

	Antonio J. Nebro
	University of Málaga, Spain

	Ferrante Neri
	University of Surrey, UK

	Aneta Neumann
	University of Adelaide, Australia

	Frank Neumann
	University of Adelaide, Australia

	Michael O’Neill
	University College Dublin, Ireland

	Gabriela Ochoa
	University of Stirling, UK

	Pietro S. Oliveto
	University of Sheffield, UK

	Una-May O’Reilly
	Massachusetts Institute of Technology, USA

	José Carlos Ortiz-Bayliss
	Monterrey Institute of Technology and Higher Education, Mexico

	Patryk Orzechowski
	University of Pennsylvania, USA

	Ender Özcan
	University of Nottingham, UK

	Ben Paechter
	Edinburgh Napier University, UK

	Gregor Papa
	Jožef Stefan Institute, Slovenia

	Luís Paquete
	University of Coimbra, Portugal

	Andrew J. Parkes
	University of Nottingham, UK

	Sebastian Peitz
	Paderborn University, Germany

	Kokila Kasuni
	Perera University of Adelaide, Australia

	Stjepan Picek
	Radboud University, Netherlands

	Martin Pilát
	Charles University, Czechia

	Nelishia Pillay
	University of Pretoria, South Africa

	Petr Pošík
	Czech Technical University in Prague, Czechia

	Raphael Patrick Prager
	University of Münster, Germany

	Oliver Preuß
	Paderborn University, Germany

	Mike Preuss
	Leiden University, Netherlands

	Michal Przewozniczek
	Wroclaw University of Science and Technology, Poland

	Chao Qian
	Nanjing University, China

	Günther Raidl
	Vienna University of Technology, Austria

	Elena Raponi
	Leiden University, Netherlands

	Khaled Rasheed
	University of Georgia, USA

	Alma Rahat
	Swansea University, UK

	Piotr Ratuszniak Koszalin
	University of Technology, Poland

	Tapabrata Ray
	University of New South Wales, Australia

	Quentin Renau
	Edinburgh Napier University, UK

	Riccardo Rizzo
	Harvard University, USA

	Angel Rodriguez-Fernandez
	CINVESTAV-IPN, Mexico

	Eduardo Rodriguez-Tello
	CINVESTAV-IPN, Mexico

	Andrea Roli
	University of Bologna, Italy

	Jeroen Rook
	University of Twente, Netherlands

	Jonathan Rowe
	University of Birmingham, UK

	Günter Rudolph
	TU Dortmund, Germany

	Conor Ryan
	University of Limerick, Ireland

	Saba Sadeghi Ahouei
	University of Adelaide, Australia

	Daniela Santos
	Lutheran University of Brazil, Brazil

	Frédéric Saubion
	University of Angers, France

	Lennart Schäpermeier
	TU Dresden, Germany

	Robert Schaefer
	AGH University of Science and Technology, Poland

	Andrea Schaerf
	University of Udine, Italy

	Larissa Schmid
	Karlsruhe Institute of Technology, Germany

	Lennart Schneider
	Ludwig Maximilian University of Munich, Germany

	Marc Schoenauer
	Inria, France

	Renzo Scholman
	Centrum Wiskunde & Informatica, Netherlands

	Oliver Schuetze
	CINVESTAV-IPN, Mexico

	Moritz Seiler
	Paderborn University, Germany

	Bernhard Sendhoff
	Honda Research Institute Europe, Germany

	Roman Senkerik
	Tomas Bata University, Czechia

	Marc Sevaux
	University of South Brittany, France

	Hadar Shavit
	RWTH Aachen University, Germany

	Ofer Shir
	Tel-Hai College, Israel

	Shinichi Shirakawa
	Yokohama National University, Japan

	Moshe Sipper
	Ben-Gurion University of the Negev, Israel

	Jim Smith
	University of the West of England, UK

	Konstantin Sonntag
	Paderborn University, Germany

	Giovanni Squillero
	Politecnico di Torino, Italy

	Sebastian Stich
	CISPA Helmholtz Center for Information Security, Germany

	Catalin Stoean
	University of Craiova, Romania

	Thomas Stützle
	Université libre de Bruxelles, Belgium

	Mihai Suciu
	Babes-Bolyai University, Romania

	Dirk Sudholt
	University of Sheffield, UK

	Andrew Sutton
	University of Minnesota, USA

	Urban Škvorc
	Paderborn University, Germany

	Ricardo Takahashi
	Federal University of Minas Gerais, Brazil

	Sara Tari
	University of the Littoral Opal Coast, France

	Daniel Tauritz
	Auburn University, USA

	Dirk Thierens
	Utrecht University, Netherlands

	Kevin Tierney
	Bielefeld University, Germany

	Renato Tinós
	University of São Paulo, Brazil

	Marco Tomassini
	University of Lausanne, Switzerland

	Alberto Tonda
	INRAE, France

	Jamal Toutouh
	Massachusetts Institute of Technology, USA

	Kento Uchida
	Yokohama National University, Japan

	Ryan J. Urbanowicz
	University of Pennsylvania, USA

	Niki van Stein
	Leiden University, Netherlands

	Nadarajen Veerapen
	University of Lille, France

	Filippo Vella
	National Research Council, Italy

	Sébastien Verel
	University of the Littoral Opal Coast, France

	Diederick Vermetten
	Leiden University, Netherlands

	Anh Viet Do
	University of Adelaide, Australia

	Adriano Vinhas
	University of Coimbra, Portugal

	Markus Wagner
	University of Adelaide, Australia

	Hanyang Wang
	Huawei Technologies, UK

	Hao Wang
	Leiden University, Netherlands

	Elizabeth Wanner
	CEFET, Brazil

	Tobias Weber
	Otto von Guericke University Magdeburg, Germany

	Thomas Weise
	Hefei University, China

	Marcel Wever
	Ludwig Maximilian University of Munich, Germany

	Darrell Whitley
	Colorado State University, USA

	Dennis Wilson
	University of Toulouse, France

	Carsten Witt
	Technical University of Denmark, Denmark

	Man Leung Wong
	Lingnan University, Hong Kong, China

	Kaifeng Yang
	University of Applied Sciences Upper Austria, Austria

	Shengxiang Yang
	De Montfort University, UK

	Furong Ye
	Leiden University, Netherlands

	Martin Zaefferer
	DHBW Ravensburg, Germany

	Aleš Zamuda
	University of Maribor, Slovenia

	Saúl Zapotecas-Martínez
	INAOE, Mexico

	Christine Zarges
	Aberystwyth University, UK

	Mengjie Zhang
	Victoria University of Wellington, New Zealand








Contents – Part I

Combinatorial Optimization

On the Design of Diploid Memetic Algorithms for Solving the Multidimensional​ Multi-way Number Partitioning Problem
3
Adrian Petrovan, Petrică C. Pop and Cosmin Sabo


Sliding Window Bi-objective Evolutionary Algorithms for Optimizing Chance-Constrained Monotone Submodular Functions
20
Xiankun Yan, Aneta Neumann and Frank Neumann


GPGLS:​ Genetic Programming Guided Local Search for Large-Scale Vehicle Routing Problems
36
Saining Liu, Joao Guilherme Cavalcanti Costa, Yi Mei and Mengjie Zhang


Generalizing and Unifying Gray-Box Combinatorial Optimization Operators
52
Francisco Chicano, Darrell Whitley, Gabriela Ochoa and Renato Tinós


Ant Colony Optimization for the Dynamic Electric Vehicle Routing Problem
68
Maria N. Anastasiadou, Michalis Mavrovouniotis and Diofantos Hadjimitsis


Learning a Prior for Monte Carlo Search by Replaying Solutions to Combinatorial Problems
85
Tristan Cazenave


Dancing to the State of the Art?​:​ How Candidate Lists Influence LKH for Solving the Traveling Salesperson Problem
100
Jonathan Heins, Lennart Schäpermeier, Pascal Kerschke and Darrell Whitley


Multi-objective Evolutionary Approaches for the Knapsack Problem with Stochastic Profits
116
Kokila Kasuni Perera, Frank Neumann and Aneta Neumann


Knowledge-Guided Optimization for Complex Vehicle Routing with 3D Loading Constraints
133
Han Zhang, Qing Li and Xin Yao


Genetic Programming

Positional Bias Does Not Influence Cartesian Genetic Programming with Crossover
151
Henning Cui, Michael Heider and Jörg Hähner


Unit-Aware Genetic Programming for the Development of Empirical Equations
168
Julia Reuter, Viktor Martinek, Roland Herzog and Sanaz Mostaghim


Improving the Performance of Relocation Rules for the Container Relocation Problem with the Rollout Algorithm
184
Marko Đurasević, Mateja Đumić, Francisco Javier Gil-Gala, Nikolina Frid and Domagoj Jakobović


P-Mixup:​ Improving Generalization Performance of Evolutionary Feature Construction with Pessimistic Vicinal Risk Minimization
201
Hengzhe Zhang, Qi Chen, Bing Xue, Wolfgang Banzhaf and Mengjie Zhang


Symbol Graph Genetic Programming for Symbolic Regression
221
Jinglu Song, Qiang Lu, Bozhou Tian, Jingwen Zhang, Jake Luo and Zhiguang Wang


Simultaneous Model-Based Evolution of Constants and Expression Structure in GP-GOMEA for Symbolic Regression
238
Johannes Koch, Tanja Alderliesten and Peter A. N. Bosman


Adaptive Sampling of Biomedical Images with Cartesian Genetic Programming
256
Yuri Lavinas, Nathan Haut, William Punch, Wolfgang Banzhaf and Sylvain Cussat-Blanc


The Inefficiency of Genetic Programming for Symbolic Regression
273
Gabriel Kronberger, Fabricio Olivetti de Franca, Harry Desmond, Deaglan J. Bartlett and Lukas Kammerer


Decision Tree Based Wrappers for Hearing Loss
290
Miguel Rabuge and Nuno Lourenço


Multimodal Adaptive Graph Evolution for Program Synthesis
306
Camilo De La Torre, Yuri Lavinas, Kevin Cortacero, Hervé Luga, Dennis G. Wilson and Sylvain Cussat-Blanc


Enhancing the Computational Efficiency of Genetic Programming Through Alternative Floating-Point Primitives
322
Christopher Crary, Bogdan Burlacu and Wolfgang Banzhaf


Fitness Landscape Modeling and Analysis

Funnels in Multi-objective Fitness Landscapes
343
Gabriela Ochoa, Arnaud Liefooghe and Sébastien Verel


Contrasting the Landscapes of Feature Selection Under Different Machine Learning Models
360
Arnaud Liefooghe, Ryoji Tanabe and Sébastien Verel


Entropy, Search Trajectories, and Explainability for Frequency Fitness Assignment
377
Sarah L. Thomson, Gabriela Ochoa, Daan van den Berg, Tianyu Liang and Thomas Weise


Over Sampling Local Optima:​ Selection and Sampling Bias in Hybrid Genetic Algorithms
393
Darrell Whitley, Gabriela Ochoa and Francisco Chicano


Regularized Feature Selection Landscapes:​ An Empirical Study of Multimodality
409
Xavier F. C. Sánchez-Díaz, Corentin Masson and Ole Jakob Mengshoel


Author Index427




Combinatorial Optimization

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (eds.)Parallel Problem Solving from Nature – PPSN XVIIILecture Notes in Computer Science15148https://doi.org/10.1007/978-3-031-70055-2_1

On the Design of Diploid Memetic Algorithms for Solving the Multidimensional Multi-way Number Partitioning Problem

Adrian Petrovan1  , Petrică C. Pop1   and Cosmin Sabo1  
(1)Technical University of Cluj-Napoca, North University Center of Baia Mare, Dr. V. Babes 62A, 430083 Baia Mare, Romania

 

 
Adrian Petrovan (Corresponding author)
Email: adrian.petrovan@ieec.utcluj.ro

 
Petrică C. Pop
Email: petrica.pop@mi.utcluj.ro

 
Cosmin Sabo
Email: cosmin.sabo@mi.utcluj.ro



Abstract
In this paper, we investigate the ability and the performance of a diploid memetic algorithm (DMA) to solve the multidimensional multi-way number partitioning problem (MDMWNPP). Given a multiset consisting of a number of vectors of fixed dimension, the MDMWNPP searches for a partition of the vectors into a given number of subsets with the property that the sums of the elements in each subset are equal or almost equal for all the coordinates of the vectors. We design an enhanced genetic algorithm using diploidy to maintain diversity of the population for solving the MDMWNPP. The resulted diploid genetic algorithm (DGA) is hybridized by incorporating a local search procedure to guide the search towards the most promising search regions of the solution space, obtaining a diploid memetic algorithm. We report preliminary computational results on a set of standard benchmark instances from the literature to assess the performance of our developed DMA. The achieved computational results show that our novel solution approach compares favorably against the existing state-of-the-art algorithms. These findings were confirmed by the performed statistical evaluation. Finally, we conduct ablation studies on key algorithmic components to confirm their novelty and effectiveness.
1 Introduction
Maintaining diversity in the population is crucial for a Genetic Algorithm (GA) to avoid getting stuck in a local optimum. Consequently, various methods have been explored and examined in the specialized literature to ensure the preservation of population diversity in GAs: using high mutation rate or injection of new random individuals [13, 15], decreasing the effect of genetic drift resulting from the selection operator [26], using restricted mating strategies [3, 10], using multiploid individuals and in particular diploid individuals [2, 15], etc.
In our paper, we refer to the standard GAs as haploid genetic algorithms (HGAs) characterized by utilization of a haploid representation linking an individual with a chromosome, while in the case of diploid genetic algorithms (DGAs) individuals consist of two chromosomes representing dominant and recessive genes. While there is a general opinion that DGAs do not offer significant advantages compared to classical HGAs, recent studies reveal that DGAs exhibit robustness, a high degree of consistency, and superior performance [2, 16, 21]. Other practical applications of the DGA were provided by Bhasin et al. [2], emphasizing the performance of DGAs compared to the greedy approach in the case of dynamic traveling salesman problems, Pop et al. that effectively employed DGAs to address the generalized traveling salesman problem [18], the generalized minimum spanning tree problem [19], the family traveling salesman problem [20], Dulebenets [6] that introduced a diploid evolutionary algorithm (DEA) designed to support the optimization of cost-efficient truck schedules for cross-docking operations. Recently, Pop at al. [17] designed a DGA in the case of the multidimensional multi-way number partitioning problem and provided preliminary computational results for 96 benchmark instances from the literature.
The number partitioning problem (NPP) is a classical and central problem in combinatorial optimization. It involves dividing a set S of positive integers into two subsets, [image: $$S_1$$] and [image: $$S_2$$], with the objective of minimizing the difference between the sum of elements in [image: $$S_1$$] and the sum of elements in [image: $$S_2$$]. The Number Partitioning Problem is classified as an NP-hard problem and for more information regarding NPP, we refer to [27]. The extensions of the NPP gained more interest being more challenging. Some of these extensions include:	the multi-way number partitioning problem. In this variant, the goal is to partition set S into k subsets, aiming to minimize the differences in sums among each subset, see for more information [27].

	the multidimensional two-way number partitioning problem, denoted as MDTWNPP, which was introduced by Kojić [11]. In MDTWNPP, instead of a set of numbers, we work with a set of vectors of fixed dimension m (where [image: $$m\ge 2$$]). The objective is to partition this set of vectors into two subsets so that the sums for each coordinate are as nearly equal as possible. For more information on this problem, we refer to [23, 24].

	the multidimensional multi-way number partitioning problem, denoted by MDMWNPP, introduced by Pop and Matei [22], who extended the MDTWNPP by partitioning the set of vectors into more than two subsets.





The purpose of this paper is to investigate the multidimensional multi-way number partitioning problem. The investigated problem has interesting applications in areas such as public key encryption, scheduling of multiprocessors, manipulation of elections, database processing, etc. In most of the research conducted on the MDMWNPP, the problem is solved either by means of metaheurisc algorithms, or by using Mixed Integer Programming (MIP) solvers to solve integer programming formulations of the problem. Pop and Matei [22] designed a genetic algorithm and a memetic algorithm, Kratica et al. [12] developed a Variable Neighborhood Search (VNS) and an Electromagnetism-like metaheuristic, both proposed methods being combined with a local search procedure based on 1-swap improvements. Faria et al. proposed a Variable Neighborhood Descent algorithm [7], a Variable Neighborhood Descent branching [8], and a MIP formulation to model the MDMWNPP [8], Nikolic et al. [14] described a new MIP formulation of the problem and provided extensive computational results that prove that their proposed model is competitive for small number of subsets compared to the model proposed by Faria et al. [9], and outperforms it for larger values of the number of subsets. Recently, Djukanović et al. [5] described a self-adaptive Construct, Merge, Solve, and Adapt (CMSA) algorithm combined with an effective local search procedure.
The contributions of this work are five-fold: i) design of an enhanced genetic algorithm using diploidy to maintain diversity of the population, ii) hybridization of the diploid genetic algorithm by incorporating a local search procedure to guide the search towards the most promising search regions of the solution space, obtaining a diploid memetic algorithm, iii) computational experiments conducted to test the efficiency of our proposed solution approach, iv) a statistical evaluation of the achieved results, v) the ablation studies that confirm the effectiveness of the key algorithmic components of our novel approach.
The remainder of the paper is organized as follows: the second section defines the multidimensional multi-way number partitioning problem, Sect. 3 describes our novel solution approach in which a framework with an enhanced genetic algorithm using diploidy to maintain diversity of the population is combined with an efficient local search procedure to guide the search towards the most promising search regions of the solution space. In Sect. 4, we make a comparative analysis of the performance of our novel diploid memetic algorithm in comparison to the state-of-the-art methods from the literature, a statistical evaluation of the achieved results followed by the ablation studies. Finally, in Sect. 5, we formulate some conclusions and present future research directions.

2 Definition of the Multidimensional Multi-way Number Partitioning Problem
Given a multiset of n vectors of dimension m:[image: $$\begin{aligned} S=\{v_i=(v_{i1},v_{i2},...,v_{im}) \; | \; i\in \{1,...,n\}, m\ge 2\} \end{aligned}$$]



then the multidimensional multi-way number partitioning problem (MDMWNPP) aims at splitting the vectors from S into k subsets, [image: $$S_1, S_2,...,S_k$$] such that the following properties are satisfied: 	1.
[image: $$S_1\cup S_2 \cup ...\cup S_k = S$$]

 

	2.
[image: $$S_p \cap S_q = \emptyset $$], for all [image: $$p,q \in {1,...,n}$$] with [image: $$p\ne q$$]

 



and the sums of the elements in the subsets [image: $$S_1, S_2,...,S_k$$] are equal or almost equal for all the coordinates of the vectors.
For a given partition of the multiset S into the subsets [image: $$S_1, S_2,...,S_k$$], we introduce the variable r(S) that denotes the greatest difference between maximum and minimum subset sums per every coordinate, i.e.[image: $$\begin{aligned} r(S)=\max _{j\in \{1,...,m\}}\Big \{\Big |\max _{i\in \{1,...,k\}}\Big \{\sum _{i\in S_k}v_{ij}\Big \}-\min _{i\in \{1,...,k\}}\Big \{\sum _{i\in S_k}v_{ij}\Big \}\Big |\Big \} \end{aligned}$$]



and then the objective of the MDMWNPP consists in minimizing r(S).
Example. Consider the set of 5 vectors of dimension 2, [image: $$S=\{(1,2); (3,-2); (4,1); (2,0); (-1,3)\}$$] to be partitioned into [image: $$k=3$$] subsets [image: $$S_1, S_2$$] and [image: $$S_3$$]. In the following, we present two possible partitions of the vectors, denoted by [image: $$P_A$$] and [image: $$P_B$$].[image: ]


We notice that both partitions [image: $$P_A$$] and [image: $$P_B$$] are complete because the vectors of the subsets [image: $$S_1, S_2$$] and [image: $$S_3$$] are mutually exclusive and collectively exhaustive of S, and the partition [image: $$P_B$$] provides a better solution to the problem than the partition [image: $$P_A$$].
One may observe that the investigated problem in the case when [image: $$k=2$$] reduces to a multidimensional two-way number partitioning problem and in the case when [image: $$m=1$$] reduces to a multi-way number partitioning problem. As a consequence, it results that MDMWNPP is a [image: $$NP-hard$$] optimization problem.

3 Description of the Novel Solution Approach to Solve the MDMWNPP
The novel solution approach proposed in this paper enhances the performance of the classical GA, by considering diploidy to maintain the diversity of the population, resulting a diploid genetic algorithm (DGA), which is hybridized by incorporating an efficient and fast local search procedure to guide the search towards the most promising search regions of the solution space, resulting an efficient diploid memetic algorithm (DMA) for solving the MDMWNPP.
DGAs have a structure which is quite similar to classical GAs, yet they have two main differences: 	1.
the first one pertains to the manner in which individuals are represented and evaluated;

 

	2.
the second one involves variations in the genetic operators, specifically crossover and mutation.

 





In the following, we give a description of the developed DMA for solving the MDMWNPP, composed by a DGA hybridized with a local search procedure.
Representation. In the context of DGAs each individual is represented by a pair of interlinked chromosomes:[image: $$\begin{aligned} I = (C_1, C_2), \end{aligned}$$]



where [image: $$C_i$$] are the chromosomes, with [image: $$i \in \{1,2\}$$]. For the investigated optimization problem, to minimize the computational effort, every chromosome is represented by a fixed-size ordered structure (an n-dimensional vector) consisting of integer numbers within the range of [1, k]. Through these values, we discern the assigned partition for each vector belonging to the multiset S. This compact representation guarantees the partitioning of the multiset of vectors S into k subsets [image: $$S_1, S_2, ..., S_k$$].
Initial Population. As the effectiveness of any GA heavily relies on a well-organized population, and considering the findings from our preliminary experiments, the initial population was generated in such a way as to ensure that every subset [image: $$S_j$$] for [image: $$j \in {1, ..., k}$$] contains at least one vector. In our algorithm the initial population is generated as follows: the first k positions of an n sized chromosome were filled with a permutation of values ranging from 1 to k, while the remaining [image: $$n-k$$] positions were randomly generated with values between 1 and k.
The Dominance Scheme. In the context of DGA, the dominance scheme dictates how the phenotype of an individual, comprising two interlinked chromosomes, is constructed. Various approaches have been developed in the literature to describe the dominance scheme [28, 30, 31]. Yang [30] emphasized the significance of selecting a suitable dominance scheme for the specific problem domain to achieve optimal outcomes. In DGAs the dominance scheme is an essential aspect since it governs the selection of individuals for reproduction based on their fitness. Most of the research that refers to the use of a dominance principle in the selection of individuals aims at the dominant character of one allele in relation to another, in other words the dominant principle used presupposes the establishment of a dominant principle of alleles for each locus of the individual [25, 29]. This principle is generally valid in the situation where the selection of individuals is carried out on the basis of the phenotype established on the basis of a principle of dominance at the locus level. In this paper, we adopted the dominance scheme introduced by Shabash and Wiese [28], known as best-chromosome-wins scheme. Unlike approaches that assess the dominance of individual loci, this scheme considers the entire chromosome, selecting the superior chromosome as the dominant one. While the principle of dominance may seem relatively straightforward, the power of the DGA lies in its genetic information organization. Each individual carries both dominant and recessive chromosomes, and through genetic operators, it may produce offspring with evolutionary potential across generations.
The Fitness Value. In every epoch, to each individual within the population a fitness value is assigned. This fitness value serves as a criterion in the selection process for both crossover and the identification of elites within the population. In our algorithm, a fitness value is computed for each chromosome of the diploid individual. These values, corresponding to a specific partitioning of vectors into k subsets, are determined by the greatest difference between the maximum and minimum subset sums for each coordinate. In our approach, the fitness of an individual is determined by the selected dominance scheme, namely by the fitness of the dominant chromosome. In our specific problem, [image: $$f_{ind}=\min (f_1, f_2)$$], where [image: $$f_1$$] and [image: $$f_2$$] are the computed fitness values for each chromosome of the individual.
Genetic Operators. The operations executed within the GA rely on genetic operators, that are the basic search mechanism within the GA and aim to generate new solutions based on existing solutions in the population. However, preserving population diversity is crucial in determining the optimal or sub-optimal solutions. Therefore, the correct choice of crossover and mutation operator plays an essential role in the overall performance of the proposed algorithm.
Crossover Operator. During each successive generation, a proportion of the current population is selected to form new offspring. In our algorithm, we opted for the uniform crossover. The principle, especially for diploid individuals, is as follows: upon selecting the two parents for the reproductive process, a binary mapping vector of a length equal to that of the chromosomes is generated. This vector is then used to create two offspring by interleaving the chromosomes of the two parents, as illustrated in Fig. 1. When a 1 bit is present in the mapping vector, the values between the chromosomes of the two parents are altered; otherwise, the values remain unchanged. Following preliminary experiments, we determined, through testing various values, a crossover rate of 90%. This implies that 90% of the new generation will be generated through crossover, while the remaining 10% will consist of elites that are copied to the new generation.[image: ]
Fig. 1.Uniform crossover


[image: ]
Fig. 2.Inversion mutation for a diploid individual



Mutation Operator. After forming the new population by the previously described crossover technique or by copying elites from the old generation, the mutation alters one or more genes from its initial state allowing to obtain better solutions than there were previously obtained. Performing the mutation operator is an important stage of the genetic algorithm as it helps to prevent the population from stagnating into a local optima. In our approach, we employed an inversion mutation technique as follows: for each selected individual undergoing mutation, two integers between 1 and n are generated, and the values corresponding to these positions are inverted for each chromosome of the individual. Figure 2 illustrates an example of the used mutation operator. In this instance, for a diploid individual, two values i and j were generated to represent the positions for which the values will be inverted. Mutation occurs in each individual within the population with a maximum probability of 5%.
Selection. Our implementation employs the tournament selection method, which is a deterministic selection process based on the fitness of the individuals. In our algorithm, we adhere to the principle that the lifespan of each individual is restricted to one generation, except for those selected as elites, who are replicated in the new population. As individuals progress towards optima, the difference between populations in consecutive epochs diminishes.
The Local Search Procedure. The preliminary performed computational experiments showed that in many situations the obtained solutions have been stuck in a local minimum more or less closer to the global optimum. These findings led us to the idea of using a local search technique only for those individuals for which the fitness has lower values, proportional to a chosen factor. The following two local search techniques have been implemented successively to the selected individuals.
	Swap-change neighbour. For each chromosome of the individual, we select randomly two positions and we interchange them, meaning that the two vectors change the subsets where they belong. If a better solution fitness is obtained, then it is accepted and the process is repeated until no improvements are achieved.

	1-change neighbour. By this technique we select randomly, for each chromosome of the individual, an entry from the solution representation is selected and it will be changed by a random value, different from the old one, meaning that we move one vector from a subset partition to another. If the obtained change offers a better quality solution, then it is accepted and the process is repeated until no improvements are achieved.





Our implementation used both presented local search techniques, one after other, for each individual selected for the neighbor local search.
Genetic Parameters. Based on extensive preliminary computational experiments, we set the following values for the genetic parameters used in our developed DGA: the population size was determined by using a multiplication factor [image: $$\mu = 300$$] of the number of vectors in the instance, the mutation probability was set at 5%, the elitism factor was set to 10%, the local search procedure selection factor was set at 20% and the termination strategy was set at 300 epochs without improvement in the objective function.

4 Preliminary Computational Results
This section is devoted to presenting the preliminary experimental results achieved with our proposed diploid genetic algorithm. The objective is to evaluate the effectiveness of the algorithm we have developed. In our computational experiments, we used the instances originally proposed by Kojić [11] and extended by Nikolic et al. [14]. These instances contain five benchmark sets, denoted by A, B, C, D and E, i.e. five different files in which matrices of dimension [image: $$500 \times 200$$] have been generated. Each entry of the matrices is a float number having four decimals, and all the entries are generated randomly. For example, in the case of instance with [image: $$n=40$$], [image: $$m=5$$], [image: $$k=10$$] of type A, we store the upper-left part matrix of dimension [image: $$40\times 5$$], which provides us a set of 40 vectors, each of dimension 5, that must be divided into 10 subsets.
To assess the performance of our developed DMA, we conducted a comparison with a classical haploid memetic algorithm (HMA) obtained by combining HGA with the local search procedure, and the state-of-the-art algorithms from the literature: the adaptive CMSA algorithm enhanced with a local search procedure designed by Djukanović et al. [5] and the results achieved by CPLEX applied to the MIP formulation of the MDMWNPP introduced by Nikolic et al. [14].
The classical HGA uses a representation of the chromosome similar to each of the coupled chromosomes in the DGA, but we selected twice as many individuals in HGA as individuals in DGA, keeping into account that each of the individuals in DGA is composed of two chromosomes and the fact that evaluating a diploid individual necessitates twice the processing time demanded in the case of a haploid individual, while storing a diploid individual necessitates twice the memory needed for storing a haploid individual. All the other genetic operators used in the HGA are similar to those used in DGA. In the next table we present the genetic parameters used in the HGA and DGA (Table 1).
Table 1.The genetic parameters for HGA and DGA


	Genetic parameter
	HGA value
	DGA value

	Population size
	[image: $$n \times 600$$]
	[image: $$n \times 300$$]

	Crossover type
	uniform
	uniform

	Crossover probability
	90%
	90%

	Elitism
	10%
	10%

	Mutation type
	inversion
	inversion

	Mutation probability
	5%
	5%

	Selection Type
	tournament
	tournament

	Number of generations
	300 without improvement
	300 without improvement





Our novel DMA and the HMA resulted from the combination of the DGA, respectively HGA with the local search procedure, were implemented in Python and have been evaluated on a PC with AMD Ryzen 9, 12-Core 3.8 GHz, 64 GB RAM, Windows 11 Education operating system. In our proposed algorithms for every instance we performed 10 independent trials, for which the average and the best solutions have been computed.
In Tables 2, 3, 4, 5 and 6, we displayed for all the five benchmark sets from A to E with [image: $$k\in \{5,10,20\}$$], the achieved results by our DMA in comparison to the results obtained by the classical HMA, and those reported by Djukanović et al. [5] using the self-adaptive Construct, Merge, Solve, and Adapt algorithm combined with an effective local search procedure (Adapt-CMSA+LS) and by Nikolic et al. [14] using CPLEX applied to their introduced MIP formulation. In the same way as Djukanović et al. [5] reported their results, our achieved results were averaged over 4 instances with different values of m, and 10 algorithm runs for each instance.
The structure of the Tables 2, 3, 4, 5 and 6 is as follows: the first two columns provide information concerning the instances: the number of vectors (n) and the number of subsets (k), the third column contains the average solution quality ([image: $$\overline{obj}$$]) over four instances obtained by CPLEX applied to the MIP formulation introduced by Nikolic et al. [14] and the last seven columns display the average solution quality ([image: $$\overline{obj}$$]) over 10 runs and the qualities of the best-found solutions ([image: $${\overline{obj}}_{best}$$]) averaged over four instances, obtained by self-adaptive CMSA algorithm enhanced with a local search algorithms developed by Djukanović et al. [5] and our developed algorithms: diploid memetic algorithm (DMA) and classical haploid memetic algorithm (HMA). In the case of the developed DMA we provided as well the average time value [image: $$t_{avg}$$] calculated as the average of the computing times obtained for each instances. The best achieved averaged solutions are highlighted in bold. At the bottom of each table we provide the average values of each column in the row denotes as avg and the row denoted #best we provide the number of best achieved solutions for each of the four algorithms.Table 2.Comparison results for solving the MDMWNPP for instances of type A


	 	CPLEX [14]
	Adapt-CMSA+LS [5]
	DMA
	HMA

	n
	k
	[image: $$\overline{obj}$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]
	[image: $$t_{avg} [s]$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]

	50
	5
	50448.406
	37975.222
	42676.246
	35150.329
	40353.329
	376.8
	44709.920
	50235.865

	50
	10
	74043.105
	54153.732
	56512.690
	56977.417
	58796.962
	412.8
	59747.116
	66385.684

	50
	20
	88614.674
	73211.438
	74249.381
	65482.251
	73575.563
	450.7
	78223.674
	87891.769

	100
	5
	52656.359
	33547.961
	35386.265
	34994.014
	35518.439
	687.8
	44650.771
	50169.405

	100
	10
	72256.781
	50489.012
	52208.099
	43448.957
	48635.009
	672.1
	61615.030
	69230.371

	100
	20
	94477.742
	61855.092
	63432.350
	55515.450
	56191.913
	702.8
	69436.231
	78904.807

	500
	5
	52751.875
	32456.362
	33897.967
	29700.935
	33371.837
	804.6
	39161.567
	44001.761

	500
	10
	67769.125
	44612.268
	45088.109
	47104.133
	47321.227
	885.7
	64335.576
	67016.225

	500
	20
	95385.938
	55120.698
	56035.951
	49924.054
	51715.728
	954.8
	61987.216
	68117.820

	avg
	 	72044.890
	49269.087
	51054.118
	46477.504
	49497.779
	660.9
	58207.456
	64661.523

	#best
	 	0
	 	3
	 	6
	 	 	0




Table 3.Comparison results for solving the MDMWNPP for instances of type B


	 	CPLEX [14]
	Adapt-CMSA+LS [5]
	DMA
	HMA

	n
	k
	[image: $$\overline{obj}$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]
	[image: $$t_{avg} [s]$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]

	50
	5
	55740.102
	37975.222
	42676.246
	47946.052
	49261.403
	435.8
	48545.553
	54029.038

	50
	10
	80852.105
	54153.732
	56512.690
	57270.678
	62198.261
	497.2
	62593.805
	68784.401

	50
	20
	90294.686
	73211.438
	74249.381
	77128.444
	82874.622
	502.6
	85741.018
	94220.899

	100
	5
	51131.734
	33547.961
	35386.265
	36954.533
	37443.166
	701.8
	47729.385
	54237.938

	100
	10
	72310.289
	50489.012
	52208.099
	51026.759
	52251.955
	723.9
	67900.591
	71474.307

	100
	20
	99085.973
	61855.092
	63432.350
	53618.003
	62346.516
	743.3
	72500.016
	91666.685

	500
	5
	65162.000
	43234.032
	45119.944
	26812.085
	35279.059
	856.8
	43630.192
	49022.687

	500
	10
	97416.750
	59298.372
	59887.725
	44999.371
	58440.742
	870.1
	64138.033
	72065.205

	500
	20
	125619.875
	73054.540
	74262.867
	41449.932
	53140.938
	967.9
	74958.744
	80600.800

	avg
	 	81957.057
	54091.045
	55970.619
	48578.429
	54804.074
	699.9
	63081.926
	70677.995

	#best
	 	0
	 	5
	 	4
	 	 	0




Table 4.Comparison results for solving the MDMWNPP for instances of type C


	 	CPLEX [14]
	Adapt-CMSA+LS [5]
	DMA
	HMA

	n
	k
	[image: $$\overline{obj}$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]
	[image: $$t_{avg} [s]$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]

	50
	5
	55551.820
	41530.095
	43989.046
	44371.497
	51001.720
	423.9
	54887.168
	57174.133

	50
	10
	79257.027
	59818.557
	61084.496
	64553.433
	62727.028
	486.7
	71405.399
	69778.863

	50
	20
	90731.488
	75964.395
	78537.227
	74638.063
	77786.823
	502.2
	80359.619
	87347.412

	100
	5
	51036.766
	36113.237
	38117.936
	28803.660
	34809.948
	631.8
	45219.464
	49151.591

	100
	10
	77978.055
	52152.856
	53583.505
	52932.884
	57243.846
	696.9
	69386.916
	77096.573

	100
	20
	98042.051
	62199.652
	63818.362
	57305.141
	63073.521
	653.8
	82837.920
	89073.032

	500
	5
	51523.500
	34017.742
	34423.387
	29253.549
	34040.421
	775.3
	48659.098
	52890.324

	500
	10
	76269.438
	44770.797
	45887.724
	42344.637
	49792.849
	937.1
	65528.062
	71226.154

	500
	20
	100940.813
	57250.371
	57783.954
	51601.852
	57533.151
	987.2
	76249.613
	83790.783

	avg
	 	75703.440
	51535.300
	53025.071
	49533.857
	54223.256
	677.2
	66059.251
	70836.541

	#best
	 	0
	 	4
	 	5
	 	 	0




Table 5.Comparison results for solving the MDMWNPP for instances of type D


	 	CPLEX [14]
	Adapt-CMSA+LS [5]
	DMA
	HMA

	n
	k
	[image: $$\overline{obj}$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]
	[image: $$t_{avg} [s]$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]

	50
	5
	52511.055
	41723.542
	44115.057
	39164.808
	44005.402
	451.7
	48623.504
	52851.635

	50
	10
	77985.047
	58831.101
	60954.307
	60894.822
	64466.871
	495.9
	60677.337
	68951.520

	50
	20
	95599.543
	78114.774
	79720.242
	75007.075
	79044.836
	402.6
	80120.471
	90023.001

	100
	5
	49089.797
	32487.277
	35013.209
	28440.945
	34684.080
	743.8
	42201.378
	47956.112

	100
	10
	77904.055
	51174.788
	52657.090
	48988.300
	55038.848
	786.8
	69117.835
	75128.082

	100
	20
	91041.836
	61058.894
	63027.354
	54235.096
	62339.191
	802.4
	65805.591
	86142.717

	500
	5
	51141.375
	32317.964
	33496.324
	26990.461
	32518.628
	887.1
	39548.218
	43942.465

	500
	10
	76752.063
	45894.505
	46399.120
	36838.707
	46048.384
	868.8
	51471.573
	66098.465

	500
	20
	93760.844
	57551.793
	57762.289
	59098.465
	64657.347
	1008.9
	71983.515
	87216.505

	avg
	 	73976.179
	51017.182
	52571.666
	47739.853
	53644.843
	716.4
	58838.825
	68701.167

	#best
	 	0
	 	3
	 	6
	 	 	0




Table 6.Comparison results for solving the MDMWNPP for instances of type E


	 	CPLEX [14]
	Adapt-CMSA+LS [5]
	DMA
	HMA

	n
	k
	[image: $$\overline{obj}$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]
	[image: $$t_{avg} [s]$$]
	[image: $${\overline{obj}}_{best}$$]
	[image: $$\overline{obj}$$]

	50
	5
	51808.586
	42139.709
	46207.732
	37190.269
	44913.912
	322.7
	53989.464
	56239.025

	50
	10
	78656.063
	57730.759
	60711.597
	49102.852
	57824.169
	438.8
	64401.303
	70001.416

	50
	20
	93354.359
	80057.100
	81883.903
	73117.087
	79901.294
	427.9
	93728.718
	99711.402

	100
	5
	55958.453
	34147.990
	37063.123
	36740.585
	44395.507
	656.1
	51500.519
	57222.799

	100
	10
	75980.766
	52257.748
	53902.971
	55657.409
	60075.538
	697.6
	69450.759
	77167.510

	100
	20
	98227.203
	63179.153
	65171.232
	48893.734
	58908.113
	705.6
	84298.954
	87811.411

	500
	5
	48451.625
	33670.379
	34001.313
	36145.820
	37366.436
	811.6
	48583.872
	52808.556

	500
	10
	71592.563
	45888.248
	46413.465
	42149.611
	46523.915
	897.7
	56911.616
	63235.129

	500
	20
	102363.563
	55549.680
	58505.280
	51844.082
	53742.213
	984.1
	73487.094
	76549.056

	avg
	 	75154.798
	51624.529
	53762.291
	47871.272
	53739.011
	656.2
	66261.366
	71194.034

	#best
	 	0
	 	4
	 	5
	 	 	0





Summarizing the results presented in Tables 2, 3, 4, 5 and 6, we can notice that the results obtained by our developed DMA are highly competitive against the state-of-the-art results reported by Djukanović et al. [5] and outperforms the results achieved by Nikolic et al. [14] and those obtained by the classical HMA:	Our developed DMA delivered 26 best average results for all the five benchmark instances from A to E, while the remaining 19 were delivered by the Adapt-CMSA+LS [5]. The number of best average results achieved by DMA is higher comparing to Adapt-CMSA+LS for all type of instances, with one exception in the case of instances of type B.

	The overall average values obtained by DMA for instances of types A, B and E are better as compared to the other approaches, and for instances of types C and D, they are worst than the results returned by Adapt-CMSA+LS. The overall average solutions achieved by DMA for all the considered instances are better than those obtained by Adapt-CMSA+LS.

	Concerning the computational times, the average computational time over all the considered instances of our developed DMA was 682.1 s, while Djukanović et al. [5] used in their computational experiments a time limit of 1800 s and Nikolic et al. [14] used a time limit of 1200 s.

	The proposed approach achieved slightly better results as compared to Adapt-CMSA+LS [5] and significantly better results than the other two considered approaches. This is also indicated by the critical difference plots illustrated in Figs. 3 and 4. These figures illustrate the relative differences between the average results of achieved by CPLEX, HMA, DMA and Adapt-CMSA+LS approaches.




[image: ]
Fig. 3.Critical difference plots of statistical differences of the average results displayed in Tables 2, 3, 4, 5 and 6



For the comparison of the analyzed algorithms across multiple datasets, we adhered to the guidelines provided by Demšar [4] and used statistical Friedman test to reject the null hypothesis. Tests were conducted over results grouped on the different numbers of subsets k and showed that the null hypothesis could be rejected, which means that there exists a statistical difference within the classifiers. After these observations, we conducted a Wilcoxon-Holm post-hoc test as recommended in [1]. The outcome of this comparison was illustrated in the form of critical difference (CD) plots for a significance level of 0.05, see Figs. 3 and 4. To interpret the plots, each computed results was positioned horizontally based on its average ranking for each set of instances considered. If the difference between two values was lower than the computed CD, the performance of those algorithms was considered equal, with no significantly differences in terms of accuracy, and this was indicated in the graphics by horizontal bars connecting the respective models.
In Fig. 3, we displayed the CD of the statistical differences of the average results displayed in Tables 2, 3, 4, 5 and 6 in the case of the instances of types A, B, C, D and E, and for the entire set of instances.
We observe that on all types of instances and overall on all the benchmark instances, except the instances of type B, DMA achieves the best average rankings, slightly better than the results obtained by Adapt-CMSA+LS [5] and significantly better than the other approaches, CPLEX [14] and HMA. In the case of the instances of type B, Adapt-CMSA+LS [5] achieves the best average rankings, which is slightly better than the results achieved by our developed DMA.
In Fig. 4, we displayed the CD of the statistical differences of the average results for all the five benchmark sets from A to E with [image: $$k\in \{5,10,20\}$$].[image: ]
Fig. 4.Critical difference plots of statistical differences of the average results displayed in Tables 2, 3, 4, 5 and 6 for k = 5, k = 10 and k = 20



The following conclusions could be drawn from Fig. 4:	For [image: $$k=5$$], DMA achieves the best average ranking, better than the results obtained through the Adapt-CMSA+LS approach, but statistically the methods are equivalent. Also, we could note that the differences between the DMA and HMA are statistically significant, DMA outperforming HMA. Regarding the results obtained by the CPLEX algorithm and published by de Nikolic, they are comparable to those obtained by the HMA algorithm.

	For [image: $$k=10$$], the best performing algorithm in terms of average ranking as well as solution quality is Adapt-CMSA+LS, followed by DMA, HMA and on the last place by Nikolic CPLEX algorithm. We observe that the differences between Adapt-CMSA+LS and the other approaches are statistically significant.

	For [image: $$k=20$$], the results presented in Fig. 4 show that solutions provided by DMA obtain the best average ranking, much better than Adapt-CMSA+LS results, and the HMA and CPLEX perform statistically worse than DMA.





4.1 The Ablation Studies
The purpose of this subsection is to gain a deeper understanding of the key algorithmic components of the proposed DMA. In particular, we conducted experiments to show the impact of the integration of the local search into the search process, and the advantages of diploidy in maintaining the diversity of the population, confirming the effectiveness of DMA. Following the general practice, our ablation experiments were conducted on 6 representative instances randomly selected from different benchmark instances.
In Figs. 5 and 6, we displayed the achieved convergence results for 6 instances of type A, containing 50 or 100 vectors of variable dimensions [image: $$m\in \{2,5,10\}$$] partitioned into 5 subsets. In these two figures, the x-axis presents the number of generations, and y-axis denotes the best solution value obtained so far. The analyzed algorithms were: the haploid genetic algorithm (HGA), the diploid genetic algorithm (DGA), the haploid memetic algorithm (HMA) and the diploid memetic algorithm (DMA).
From Figs. 5 and 6, we observe that the proposed DMA outperforms HGA, DGA and HMA on all 6 instances. DMA achieves better solutions in comparison to HGA, DGA and HMA. These findings confirm the superiority of the DMA and the effectiveness of its key components: diploidy and local search.


5 Conclusions and Further Research Directions
The aim of this paper was to solve the multidimensional multi-way number partitioning problem by means of an enhanced genetic algorithm using diploidy to preserve the diversity of the population and by incorporating a local search procedure to guide the search towards the most promising search regions of the solution space. The resulted diploid memetic algorithm is a powerful and an effective novel solution approach for solving the MDMWNPP.
The preliminary experimental results on a set consisting of 180 benchmark instances averaged over 4 instances with various dimensions of the vectors and [image: $$k\in \{5,10,20\}$$], prove that our developed diploid memetic algorithm is highly competitive against the state-of-the-art results reported by Djukanović et al. [5] using their adaptive CMSA algorithm enhanced with a local search procedure, and outperforms the results achieved by CPLEX applied to the MILP formulation introduced by Nikolic et al. [14] and those obtained by the classical haploid memetic algorithm (HMA). These findings were confirmed by the performed statistical evaluation. Finally, the performed ablation studies show the effectiveness of the local search and diploidy.
[image: ]
Fig. 5.Ablation results for instances of type A with [image: $$n=50$$], [image: $$k=5$$] and [image: $$m\in \{2,5,10\}$$]


[image: ]
Fig. 6.Ablation results for instances of type A with [image: $$n=100$$], [image: $$k=5$$] and [image: $$m\in \{2,5,10\}$$]



Our aim is to continue our research by exploring alternative dominance schemes and local search strategies, with the goal of enhancing the efficiency of the proposed algorithm. Additionally, we plan to assess the generality and scalability of our developed diploid genetic algorithm by testing it on larger instances.
Disclosure of Interests. The authors have no competing interests to declare that are relevant to the content of this article.
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Abstract
Variants of the GSEMO algorithm using multi-objective formulations have been successfully analyzed and applied to optimize chance-constrained submodular functions. However, due to the effect of the increasing population size of the GSEMO algorithm considered in these studies from the algorithms, the approach becomes ineffective if the number of trade-offs obtained grows quickly during the optimization run. In this paper, we apply the sliding-selection approach introduced in [21] to the optimization of chance-constrained monotone submodular functions. We theoretically analyze the resulting SW-GSEMO algorithm which successfully limits the population size as a key factor that impacts the runtime and show that this allows it to obtain better runtime guarantees than the best ones currently known for the GSEMO. In our experimental study, we compare the performance of the SW-GSEMO to the GSEMO and NSGA-II on the maximum coverage problem under the chance constraint and show that the SW-GSEMO outperforms the other two approaches in most cases. In order to get additional insights into the optimization behavior of SW-GSEMO, we visualize the selection behavior of SW-GSEMO during its optimization process and show it beats other algorithms to obtain the highest quality of solution in variable instances.
Keywords
chance constraintssubmodular functionevolutionary algorithmsruntime analysis
1 Introduction
Evolutionary algorithms (EAs) have been successfully applied to solve a wide range of complex combinatorial optimization problems. The algorithms have received both theoretical and empirical studies, showing their ability to obtain good solutions within a reasonably expected runtime for problems with deterministic settings [3, 7, 8, 11, 19, 26, 31]. Additionally, it has been observed that some EAs also perform effectively on stochastic and dynamic optimization problems. Researchers are actively investigating the advantages and limitations of EAs in solving such problems, particularly within the field of evolutionary computation theory. A variety of studies [12, 14, 18, 20, 27, 29, 32] have been conducted, presenting both the challenges and the advanced implications of these algorithms.
In a stochastic environment, completely eliminating the negative and uncertain impact of stochastic components is challenging. Therefore, it is crucial to minimize these negative effects to prevent unpredictable disruptions in most complex systems. Chance constraint  [1, 5, 9, 15, 22–25] is a useful technique for handling the effects of stochastic circumstances. It allows the deterministic bound in the constraint to be violated, but only with a very small probability during optimization. However, directly evaluating chance constraints is complex and time-consuming. A practical approach is to transform the stochastic constraint into its corresponding deterministic equivalent for a given confidence level, rather than statistically calculating the probability of violation when optimizing chance-constrained problems with known distribution elements [30, 32].
Submodular functions [16] represent various problems where the incremental benefit of adding solution elements diminishes with the increasing solution size. The optimization of submodular functions is significantly challenging and has been extensively investigated with different types of constraints in previous work [10, 13, 16, 21, 27, 33, 34]. In the paper, we study a chance-constrained version of the submodular optimization problem subject to a knapsack constraint. The problem seeks to find a subset of stochastic elements that maximizes the submodular function value, while ensuring that the actual weight exceeds a given bound with a very small probability. In the previous research, Doerr et al. [4] analyzed the performance of the greedy algorithms on the problem. They constructed the surrogate functions using the tail inequalities (Chernoff bound and one-sided side Chebyshev’s inequality) to handle the chance constraint. Their findings demonstrated the greedy algorithms can achieve [image: $$(1-o(1))(1-1/e)$$]-approximation and [image: $$(1/2-o(1)(1-1/e)$$]-approximation for the problem with the uniform independent and identically distributed (IID) weights and the uniform weights with the same dispersion respectively. Subsequently, Neumann et al., [17] applied the Global Simple Evolutionary Multi-objective Algorithm (GSEMO) to the same problem. They employed a similar surrogate approach for estimating violation probability as done in [4] and considered both the submodular function value and the probability as objectives in their bi-objective fitness function. Their theoretical analysis demonstrated that the GSEMO can achieve similar approximation results as [17] within an expected runtime related to the max population size that it can generate. Additionally, their experimental results indicated that the GSEMO could obtain better solutions than the greedy algorithm and other evolutionary algorithms, in solving the problem involving uniform IID weights.
However, the runtime analysis presented in [17] indicates that the growing population size significantly impacts the efficiency of the GSEMO. This is particularly evident when dealing with uniform weights of the same dispersion, where the GSEMO can quickly maintain an exponential number of trade-off solutions in the population. To address this inefficiency, the sliding-selection approach has been introduced, leading to the development of an improved version of GSEMO, named the Sliding Window GSEMO (SW-GSEMO). Neumann and Witt [21] firstly presented the SW-GSEMO ’s enhanced performance in solving submodular problems with deterministic weights. In brief, the sliding-selection method involves defining a weight window of size one, which is determined based on the given bound and the ratio of the current time to the total time. A solution is eligible for selection as a parent if its weight falls within the current window; otherwise, the algorithm uniformly selects one individual from the current population.
Within this paper, the SW-GSEMO is slightly updated in terms of the window selection method for optimizing chance-constrained monotone submodular functions. The individuals that are in the window are still potential parents for the mutation, however, when there is no individual in the window area, the algorithm chooses a current solution with the largest function value as the parent for the next mutation unless the current time exceeds the time budget. Following the approach in [17], the fitness function in our algorithm contains two objectives: the evaluated weight and the function value of the solution. We also employ the same surrogate methods based on tail inequalities for weight evaluation. Our study includes settings that include both IID weights, and uniform weights with the same dispersion. Our analysis reveals that the incorporation of the sliding-selection approach reduces the impact of growing population size on the expected runtime. As a result, the expected runtime of the SW-GSEMO to achieve similar expected approximation results shows improvement. Additionally, we empirically assess the performance of the SW-GSEMO on the maximum coverage problem under various settings, bounds, and violation probabilities. We compare its results with those from the original GSEMO and the Non-Dominated Sorting Genetic Algorithm II (NSGA-II ). The initial solutions of all algorithms are empty sets and the NSGA-II uses population sizes of 20 and 100 respectively. Furthermore, we provide a visualization of the sliding window’s operation during optimization. Our investigation also seeks why algorithms using surrogates based on the Chernoff bound perform better than those using the one-sided Chebyshev’s inequality when the probability is smaller.
The paper is structured as follows. Section 2 introduces the chance-constrained monotone submodular problem and the investigated settings. Section 3 describes the adopted multi-objective evolutionary algorithms. Our theoretical runtime analysis and proofs of the SW-GSEMO are presented in Sect. 4. Then we investigate the performance of the different algorithms and visualize the selection behavior in Sect. 5. Finally, we end with some conclusions in Sect. 6.

2 Preliminaries
Given a set [image: $$V = \{v_1,...,v_n\}$$], we consider the optimization of a monotone submodular function [image: $$f: 2^V\rightarrow \mathbb {R}_{+}$$]. A function is called monotone iff for every [image: $$S,T\subseteq V$$] with [image: $$S\subseteq T$$], [image: $$f(S)\le f(T)$$] holds. A function f is called submodular iff for every [image: $$S, T\subseteq V$$] with [image: $$S\subseteq T$$], [image: $$v_i\in V$$] and [image: $$v_i\notin T$$], [image: $$f(S\cup \{v\})-f(S) \ge f(T\cup \{v\})-f(T)$$] holds. We consider the optimization of such a function f subjected to the chance constraint where each element [image: $$v_i$$] takes on a random weight [image: $$W(v_i)$$]. Here, the chance-constrained optimization problem can be formulated as[image: $$\begin{aligned} Maximize &amp; \quad f(S) \\ S.t. &amp; \quad Pr[W(S)&gt;B]\le \alpha , \end{aligned}$$]



where [image: $$W(S) = \sum _{v_i\in S} W(v_i)$$] is the total weight of the subset S, and B is the given deterministic bound. The parameter [image: $$\alpha $$] quantifies the probability of exceeding the bound B that can be tolerated.
Following previous work [4, 17], we consider two different settings, which are (1) Uniform IID Weights: the weight of each element [image: $$v_i\in V$$] is sampled from the uniform distribution with the same expected value [image: $$E_W(v_i)=a$$] and dispersion [image: $$\delta (v_i) = d$$] (i.e., [image: $$W(v_i) \in [a-d,a+d$$]] and [image: $$0&lt;d\le a$$]); and (2) Uniform Weights with the Same Dispersion: the weight of element [image: $$v_i\in V$$] is sampled from the uniform distribution with the different expected value [image: $$E_W(v_i) = a_i$$] but the same dispersion [image: $$\delta (v_i)=d$$] (i.e., [image: $$W(v_i) \in [a_i-d, a_i+d]$$] and [image: $$0&lt;d\le a_i$$]). In both settings, we assume that the expected weight of each element is a positive integer. For further discussion, the subset S is encoded as a decision vector [image: $$x = x_1, x_2,...,x_n$$] with length n, where [image: $$x_i=1$$] means that the element [image: $$v_i \in V$$] is selected into the subset S. Besides, we denote [image: $$|x|_1$$] the number of elements packed into the subset S. Since all the settings are based on the uniform distribution, we have the expected weight and variance of the solution x as[image: $$E[W(x)] = \sum _{i=0}^n E_W(v_i)x_i,$$]



and[image: $$Var[W(x)] = d^2 |x|_1/3.$$]



To handle the chance constraint, we establish the surrogate function based on One Chebyshev’s inequality and Chernoff bound as described in the previous work [4, 17]. The weight calculated by different surrogate functions are respectively formulated as[image: $$W_{cheb}(x,\alpha ) = E[W(x)] + \sqrt{\frac{(1-\alpha )Var[W(x)]}{\alpha }},$$]



and[image: $$W_{chern}(x,\alpha ) = E[W(x)] + \sqrt{3d|x|_1\ln {(1/\alpha )}}.$$]



It had been proved that if the surrogate weight of a solution x is less than the bound B, then x is feasible [4].

3 Multi-objective Evolutionary Algorithm
Within the paper,we primarily investigate multi-objective evolutionary algorithms on the given monotone submodular problem. Each solution is considered to be a two-dimensional search point in the objective space. The bi-objective fitness function of the solution x is expressed as[image: $$\begin{aligned} g_1(x) = \left\{ \begin{array}{ccl} f(x) &amp;  &amp;  {g_2(x,\alpha )\le B} \\ -1 &amp;  &amp;  {g_2(x,\alpha )&gt;B} \end{array}\right. \end{aligned}$$]

 (1)



[image: $$\begin{aligned} g_2(x,\alpha ) = {W_{sg}}(x,\alpha ), \end{aligned}$$]

 (2)


where f(x) denotes the submodular function value of x, [image: $$W_{sg}(x,\alpha )$$] denotes the surrogate weight of x. Let [image: $$y \in \{0,1\}^n$$] be another solution in the search space. We say that x (weakly) dominates [image: $$y (x\succeq y)$$] iff [image: $$g_1(x) \ge g_1(y)$$] and [image: $$g_2(x,\alpha ) \le g_2(y,\alpha )$$]. Note that the infeasible solution is strongly dominated by the feasible one because of the objective function [image: $$g_1$$]. Besides, the objective function [image: $$g_2$$] guides the generated solutions approach to the feasible search space.
[image: ]
Algorithm 1. GSEMO



[image: ]
Algorithm 2. SW-GSEMO



In previous work [17], the GSEMO (see Algorithm 1) is studied on the chance-constrained monotone submodular problem. Here the GSEMO starts with an initial solution represented by a [image: $$0^n$$] bitstring, signifying an empty set. During the optimization, it maintains a set of non-dominated solutions, continually updating this set as new solutions are generated. In each iteration, the GSEMO randomly and uniformly selects an individual x from the population to serve as a parent for creating offspring y via a standard bit-flip operator, which flips each bit of x independently with a probability of 1/n. The offspring y is accepted into the population if it is not strictly dominated by any existing solution. Subsequently, any solution in the population that is weakly dominated by y is removed.
[image: ]
Algorithm 3. sliding-selection



The modified SW-GSEMO algorithm is outlined in Algorithm 2. It also begins with a [image: $$0^n$$] bitstring, maintains a population of non-dominating individuals, and employs the standard mutation to generate offspring. However, it differs from the GSEMO in its parent selection method, which defines a sliding window (see Algorithm 3) to select the potential parents instead of applying the random uniform selection in the whole population directly. Within this method, given the total runtime [image: $$t_{max}$$] and the current time t, a current bound [image: $$\hat{c}$$] is defined as [image: $$\hat{c} = t\cdot B/t_{max}$$]. A window is established as an interval between [image: $$[\lfloor \hat{c}\rfloor ,\lceil \hat{c}\rceil ]$$]. Unlike the deterministic case where it selects solutions based on deterministic weight, the SW-GSEMO chooses some eligible individuals whose surrogate weights fall within this window. The parent is then randomly selected from these eligible solutions. As the current time t increases, the SW-GSEMO would select solutions with larger surrogate weights that are still within the window. When no individual lies within the current window, the SW-GSEMO generates a sub-population [image: $$P'$$] where the solution x from the original population has the surrogate weight [image: $$g_2(x)$$] that is lower than [image: $$\lfloor \hat{c}\rfloor $$]. Then the solution [image: $$x'\in P'$$] with the largest [image: $$g_1$$]-value is assigned for the mutation. Moreover, when [image: $$t\ge t_{max}$$], the SW-GSEMO reverts to selecting parents from the entire population P, similar to the GSEMO.

4 Performance of SW-GSEMO Based on Surrogate
To illustrate that the SW-GSEMO works more efficiently in optimizing the chance-constrained monotone submodular problem than the GSEMO, the expected runtime of SW-GSEMO with the surrogates to reach the same expected result for the problem is analyzed in this section.
4.1 Uniform IID Weights
The previous work [17] illustrates that the classical GSEMO reaches a [image: $$(1-o(1))(1-1/e)$$]-approximation for the chance-constrained problem with uniform IID weights in the expected time [image: $$O(nk(k+\log n))$$], where [image: $$k = min\{n+1,\lfloor (B/a)+1 \rfloor \}$$]. However, with the help of the sliding-selection, the size of the potential parents is bounded, so the time to get a result with the same approximation is optimized.
Theorem 1
Consider SW-GSEMO with [image: $$t_{max} = ekn\ln {(nk)}$$] on a monotone submodular function f under a chance constraint with uniform IID weights. Then with probability [image: $$1-o(1)$$], the time that the algorithm finds a solution is no worse than [image: $$(1-o(1))(1-1/e)$$]-approximation is bounded by [image: $$O(nk\log {n})$$] if [image: $$\lfloor B/a \rfloor = \omega (1)$$].

Proof
Let [image: $$k_{opt} = \lfloor B/a \rfloor $$]. As far as the previous work [17] proved, the initial bitstring [image: $$0^n$$] will stay in the population since it is the best individual with respect to [image: $$g_2(0^n,\alpha ) = 0$$]. Besides, note that [image: $$g_2$$] is a strictly monotonically increasing function with the number of elements, and solutions with the same number of elements have the same [image: $$g_2$$]-value because of the IID weights. From [17], it says that the element [image: $$x_j$$] with the largest marginal gain [image: $$g_1(x\cup \{x_j\})-g_1(x)$$] to the solution x is picked up in the mutation with the probability [image: $$\Omega (1/en)$$], the solution [image: $$x^* =\{x_1,...,x_{k^*}\}$$] that includes the largest [image: $$k^*$$] elements is kept in population and satisfies the chance constraint, and [image: $$x^*$$] holds[image: $$f(x^*)\ge (1-(1-k_{opt})^{k^*})\cdot f(OPT).$$]



Note that [image: $$k^*&lt;k_{opt}\le k$$] because of the chance constraint.
We denote [image: $$x^{*}_j$$] a subset of [image: $$x^*$$] with first j elements (i.e., [image: $$1\le j\le k^*$$] and [image: $$x^{*}_j = \{x_1,...,x_j\}\subseteq x^*$$]). First, we consider how the SW-GSEMO includes the element [image: $$x_{j+1} \in x^{*}$$] when the solution [image: $$x^{*}_j$$] is not dominated by other solutions from the population. Recall that the solution with an empty set is kept in the population already at the beginning. Besides, the surrogate weight of [image: $$x^{*}_j$$] is increasing with respect to j. We assume that the solution [image: $$x^*_j$$] is in the population at time [image: $$t_j := enW_{sg}(x^*_j)\ln {(nk)}$$]. By definition of [image: $$\widehat{P}$$], [image: $$x^*_j$$] is available for the selection up to time[image: $$t_{j+1} - 1 = e(W_{sg}(x^*_j)+1)n\ln {(nk)}-1$$]



since[image: $$\left\lfloor \frac{e(W_{sg}(x^*_j)+1)n\ln {(nk)}-1}{t_{max}}\cdot B\right\rfloor = \lfloor W_{sg}(x^*_j)\rfloor .$$]



Furthermore, since [image: $$0&lt; d\le a$$] and [image: $$\lceil \hat{c}\rceil - \lfloor \hat{c}\rfloor = 1$$], the size of [image: $$\widehat{P}$$] is at most 1 with the effect from the dispersion d. Consequently, the probability of choosing the subset [image: $$x_j^*$$] and mutating the element [image: $$x_{j+1}$$] is at least 1/en between the time [image: $$t_j$$] and [image: $$t_{j+1}-1$$], i.e., for a period of [image: $$en\ln {(nk)}$$] steps, the probability of those events not processing is at most[image: $$(1-1/(en))^{en\ln {(nk)}} \le 1/nk.$$]



Then, we study the case where the solution [image: $$x^{*}_j$$] is dominated by an individual solution y with a larger [image: $$g_1$$]-value from the population. That also means [image: $$x^{*}_j$$] is not in the current window at time [image: $$t_j$$]. We denote [image: $$y'$$] as the solution if it exists in the current window. Regarding the domination scheme of the algorithm, it implies that [image: $$g_1(x^{*}_j)\le g_1(y) &lt; g_1(y')$$] and [image: $$g_2(y,\alpha ) &lt; g_2(x^{*}_j,\alpha ) \le g_2(y',\alpha )$$]. Considering the Line  6 of sliding-selection in Algorithm 3, the SW-GSEMO uses the solution [image: $$y'$$] (or y when no individual is in the current window) for the next mutation. With the probability of at least 1/en, the element [image: $$x_{j+1}$$] can be added to the selected solution within the same time period. Consequently, the failure probability is also at most 1/kn. Besides, the feasible offspring still satisfies [image: $$ f(y' \cup \{x_{j+1}\} ) \ge f(x^*_{j+1}) \ge (1-(1-k_{opt})^{j+1})\cdot f(OPT)$$].
By a union bound over the at most k required successes, the probability of missing including [image: $$x_{j+1}$$] to the solution in the period by time [image: $$t_j$$] is O(1/n). Then following [17], applying the surrogate for bounding the value of [image: $$k^*$$] can get [image: $$(1-o(1))(1-1/e)$$]-approximation.    [image: $$\square $$]


4.2 Uniform Weights with the Same Dispersion
Following the definition from [17], we use the objective function [image: $$\hat{g_2} = E_W(x)$$] instead of [image: $$g_2$$] and the already mentioned objective function [image: $$g_1$$] in the two-dimensional fitness function. Thus, the fitness of a solution x is evaluated by [image: $$\hat{g}(x) = (g_1(x),\hat{g}_2(x))$$]. Consequently, it has another solution y such that y is (weakly) dominated by x iff [image: $$g_1(x)\ge g_1(y)$$] and [image: $$\hat{g_2}(x)\le \hat{g_2}(y)$$]. Note that [image: $$\hat{g}_2(x)$$] will be also used in Algorithm 3.
Additionally, let [image: $$a_{max} = \max _{v_i\in V} a_i$$], [image: $$a_{min} = \min _{v_i\in V}a_i$$], and [image: $$0 &lt; \delta \le a_{min}$$]. Then we show that the SW-GSEMO can get a result with [image: $$(1/2-o(1))(1-1/e)$$]-approximation in an efficient runtime if the solution has at least one element (i.e., [image: $$B/a_{max} = \omega (1)$$]) in the following theorem.
Theorem 2
Let [image: $$P_{max}$$] be the maximal size of the population. Consider SW-GSEMO with [image: $$t_{max} = 2en(B/a_{min})\ln (nB/a_{min})$$] on a monotone submodular function under a chance constraint with uniform weights having the same dispersion. Then with probability [image: $$1-o(1)$$], a solution that is no worse than [image: $$(1-1/2)(1-o(1))$$]-approximation is obtained within time [image: $$O(n((B/a_{min})\log n+P_{max}))$$].

Proof
Following the proof of theorem 2 in [17], we also adopt [image: $$\hat{g}_2^*$$], the maximal [image: $$\hat{g}_2$$]-value for which [image: $$\hat{g}_2\le \hat{g}_2^*$$], to track the progress of the SW-GSEMO. Recall that the bitstring [image: $$0^n$$] exists in the population at the beginning and [image: $$\hat{g}_2^*$$] is non-decreasing. Considering a chosen solution x for mutation, the algorithm flips a 0-bit of x corresponding to the largest ratio between the additional gain in [image: $$g_1$$] and [image: $$\hat{g}_2$$]. After mutation, the generated solution y holds[image: $$g_1(y)\ge \left[ 1-\left( 1-\frac{\hat{g}_2^*+a_{min}}{B(k+1)}\right) ^{k+1}\right] \cdot f(OPT),$$]



where [image: $$k = |y|_1$$] and OPT is the deterministic optimal solution for the problem with the deterministic uniform weight setting. Note that [image: $$\hat{g}_2^*$$] increase by at least [image: $$a_{min}$$].
First, we consider such solution x is not dominated by any solution in the current population. We prove that the solution x is chosen and such mutation in x happens with a high probability in the SW-GSEMO. Note that the [image: $$\hat{g}_2(x)$$] is growing with respect to its size of elements k. By the definition of the subset [image: $$\widehat{P}$$], such mutation happens in the time between [image: $$2en\hat{g}_2(x)\ln {(nB/a_{min})}$$] to [image: $$2en(\hat{g}_2(x)+1)\ln {(nB/a_{min})}-1$$], since[image: $$\left\lfloor \frac{2en(\hat{g}_2(x)+1)\ln {(nB/a_{min})}-1}{t_{max}}\cdot B\right\rfloor = \hat{g}_2(x).$$]



Thus, the available period is [image: $$2en\ln {(nB/a_{min})}$$]. Since [image: $$\lceil \hat{c}\rceil - \lfloor \hat{c}\rfloor = 1$$], the size of [image: $$\widehat{P}$$] consequently is bound by 2 as [image: $$\hat{g}_2(x) = E_w(x)$$] (recall the setting where all the expected weighs are positive integers). Then we have such one bit of flipping that occurs with a probability of at least 1/2en. Furthermore, the probability of the mutation that does not happen in the period is bounded by[image: $$(1-1/(2en))^{2en\ln {(nB/a_{min})}} \le \frac{1}{n(B/a_{min)}}.$$]



Now we investigate the case when there is a solution [image: $$y'$$] dominates the solution x. That means x does not exist in the current window at the time [image: $$2en\hat{g}_2(x)\ln {(nB/a_{min})}$$]. Recall that there are at most two individuals in the current window. We denote them by [image: $$y'_1$$] and [image: $$y'_2$$], which are satisfies [image: $$g_1(x)\le g_1(y')&lt; g_1(y'_1)&lt;g_1(y'_2)$$] and [image: $$\hat{g}_2(y')\le \hat{g}_2(x)= \hat{g}_2(y'_1)&lt;\hat{g}_2(y'_2)$$] (or [image: $$\hat{g}_2(y')\le \hat{g}_2(y'_1)&lt; \hat{g}_2(x)= \hat{g}_2(y'_2)$$]). Regarding the sliding selection, Both solutions [image: $$y'_1$$] and [image: $$y'_2$$] (or [image: $$y'$$] when no individual is in the current window) are good to be selected for the mutation since their function values are larger than the value of solution x. Therefore, such a 1-bit flipping to get a qualified solution y is under the probability 1/en. Within the same period, the probability of failure is bounded by [image: $$o(a_{min}/{nB})$$].
By a union bound over at most [image: $$B/a_{min}$$] required successes, the probability of failing to achieve at least one success is at most 1/n. Therefore, the solution y can be obtained in the SW-GSEMO with the probability of at least [image: $$1-1/n=1-o(1)$$].
Let [image: $$x^*$$] be the feasible solution with [image: $$|x^*|_1=k^*$$] in the population, which has the largest surrogate weights. Here we consider the single element [image: $$v^*$$] having the largest [image: $$g_1$$]-value but not included in [image: $$x^*$$]. Following the work [17], the algorithm can obtain a solution [image: $$x'$$] that only contains [image: $$v^*$$] from the initial solution [image: $$0^n$$] by flipping only one zero bit in the expected time [image: $$O(P_{max}n)$$], where [image: $$P_{max}$$] is the maximal size of population for the algorithm. Then after applying the surrogate for bounding the value of [image: $$k^*$$] as desired in [17], the quality of [image: $$x^*$$] or [image: $$x'$$] is [image: $$(1/2-o(1))(1-1/e)$$]. Finally, the expected time of SW-GSEMO to get the expected result is [image: $$O(n((B/a_{min})\log n+P_{max}))$$].    [image: $$\square $$]

Backing into the special case of uniform IID weights, we note that [image: $$a = a_{max} = a_{min}$$], the size of the population is at most [image: $$k = \min \{n+1,\lfloor B/a\rfloor +1\}$$], and the solution [image: $$x^*$$] already contains the element with the largest [image: $$g_1$$]-value. Besides, as the effect of the uncertainty, the window only includes at most 1 solution. Therefore, [image: $$x^*$$] gives a [image: $$(1-o(1))(1-1/e)$$]- approximation and the expected time to get [image: $$x^*$$] is bounded by [image: $$O(nk\log n)$$], which matches the result proved in Theorem 1.


5 Experiments
The experimental investigations of the SW-GSEMO based on the different surrogate functions are proposed here. The results are compared with those generated from the GSEMO and the NSGA-II in various instances.
5.1 Experimental Setup
The maximum coverage problem (MCP) based on the graph [6, 10] is studied in the experiments, which is one of the famous submodular combinatorial optimization problems. For the MCP, given an undirected graph [image: $$G = \{V,E\}$$] with [image: $$n = |V|$$] nodes, we denote [image: $$N(V')$$] the number of all nodes of [image: $$V'\subseteq V$$] and their neighbors in the graph G. The goal of the problem is to find a subset of nodes [image: $$V'$$] so that the nodes in the subset can cover more to their neighbors and themselves under the chance constraint with a deterministic bound B. Also, each node [image: $$v\in V$$] has a stochastic weight W(v). Therefore, the chance-constrained version of the problem is formulated as[image: $$\begin{aligned} \mathop {\textrm{argmax}}\limits _{V'\subseteq V} N(V')~s.t~Pr[W(V')&gt;B]\le \alpha . \end{aligned}$$]

 (3)


Here some larger sparse graphs from the network data repository [28] are considered to construct the instance of MCP. The previous works [17] studied the performance of GSEMO on the problem based on some small and dense graphs and showed it can easily cover most nodes even given a small bound. Thus, utilizing the larger sparse graphs can help us easily compare the results between the different algorithms. Those graphs ca-CSphd, ca-GrQc, and ca-ConMat are applied, which respectively contain 1, 882, 4, 158, and 21, 363 nodes.
For the experiments under uniform IID weights, each node v is assigned a unit expected weight (i.e., [image: $$a=1$$]) and the dispersion [image: $$d = 0.5.$$] Additionally, for the experiments considering uniform weights with the same dispersion, the expected weight of each node is based on its degree, which is expressed as [image: $$a_i = D(v_i)+1$$] where [image: $$D(v_i)$$] is the degree of [image: $$v_i$$] in graph G. For the dispersion, we set [image: $$d = 1$$] to ensure [image: $$d\le a_i$$]. Besides, we employ [image: $$B \in \{ \sqrt{n},\lfloor n/20\rfloor , \lfloor n/10 \rfloor \}$$] to ensure that the bounds are proportional to the number of nodes in the graphs under study.
For all experiments, the problem is tested with [image: $$\alpha \in [0.001,0.1]$$]. In terms of the GSEMO and the SW-GSEMO, the total iterations (or total time) are considered different as [image: $$t_{max} \in \{500000, 1000000, 1500000\}.$$] Regarding the NSGA-II , the initial solutions are set to the [image: $$0^n$$] strings. Its population sizes are set as 20 and 100 with the numbers of generated children 10 and 50 respectively. Thus, to keep the same fitness evaluation counts as other algorithms, the max iterations for the NSGA-II are [image: $$t_{max}/10$$] and [image: $$t_{max}/50$$] respectively. Moreover, we adopt the Kruskal-Wallis test with 95% confidence in order to assess the statistical validity of our results. The Bonferroni post-hoc statistical procedure is employed for multiple comparisons of a control algorithm [2]. For the given instance, [image: $$X^{(+)}$$] is equivalent to the statement that the algorithm in the column is statistically better than the algorithm X for the tested instance. Conversely, [image: $$X^{(-)}$$] is equivalent to the statement that X outperformed the algorithm, while [image: $$X^{(=)}$$] demonstrates that the algorithm given in the column and X have a comparable performance.Table 1.Results for maximum coverage problem with IID weight


	 	GSEMO with [image: $$W_{cheb}$$] (1)
	SW-GSEMO with [image: $$W_{cheb}$$] (2)
	[image: $$\text {NSGA-II}_{20}$$] with [image: $$W_{cheb}$$](3)
	[image: $$\text {NSGA-II}_{100}$$] with [image: $$W_{cheb}$$](4)

	Graph
	Surrogate
	B
	[image: $$t_{max}$$]
	[image: $$\alpha $$]
	Mean
	std
	stat
	Mean
	std
	stat
	Mean
	std
	stat
	Mean
	std
	stat

	 ca-CondaMat
	Chebyshev
	 146
	 1500000
	0.1
	5588
	47.265
	2(-),3(+),4(-)
	6790.966
	12.335
	1(+),3(+),4(+)
	5187.966
	95.708
	1(-),2(-),4(-)
	6330.3
	36.893
	1(+),2(-),3(+)

	0.001
	4153.733
	43.338
	2(-),3(+),4(-)
	4748.166
	7.585
	1(+),3(+),4(+)
	3802.733
	75.95
	1(-),2(-),4(-)
	4531.83
	33.061
	1(+),2(-),3(+)

	 1000000
	0.1
	5500.73
	47.67
	2(-),3(+),4(-)
	6771.366
	16.3
	1(+),3(+),4(+)
	4945.9
	113.293
	1(-),2(-),4(-)
	6281
	46.322
	1(+),2(-),3(+)

	0.001
	3957.5
	40.782
	2(-),3(+),4(-)
	4736.133
	10.375
	1(+),3(+),4(+)
	3709.06
	96.656
	1(-),2(-),4(-)
	4496.7
	28.765
	1(+),2(-),3(+)

	 500000
	0.1
	4818.53
	47.71
	2(-),3(+),4(-)
	6708.366
	27.316
	1(+),3(+),4(+)
	4685.333
	114.8373
	1(-),2(-),4(-)
	6115.233
	54.393
	1(+),2(-),3(+)

	0.001
	3648.3
	65.33
	2(-),3(+),4(-)
	4581.633
	36.88
	1(+),3(+),4(+)
	3469.766
	73.953
	1(-),2(-),4(-)
	4395.566
	43.076
	1(+),2(-),3(+)

	 1068
	 1500000
	0.1
	11787.533
	57.133
	2(-),3(+),4(-)
	16650.933
	14.163
	1(+),3(+),4(+)
	12284.866
	142.248
	1(-),2(-),4(-)
	13394.133
	75.448
	1(+),2(-),3(+)

	0.001
	10893.9
	61.683
	2(-),3(+),4(-)
	15217.3
	14.45
	1(+),3(+),4(+)
	10950.3
	122.3
	1(-),2(-),4(-)
	12241.966
	72.716
	1(+),2(-),3(+)

	 1000000
	0.1
	11194.23
	72.488
	2(-),3(-),4(-)
	16573.6
	19.608
	1(+),3(+),4(+)
	11623.93
	119.467
	1(+),2(-),4(-)
	13164.2
	60.07
	1(+),2(-),3(+)

	0.001
	10364.53
	58.95
	2(-),3(+),4(-)
	15145.666
	14.485
	1(+),3(+),4(+)
	9987.13
	123.936
	1(-),2(-),4(-)
	12040.166
	99.78
	1(+),2(-),3(+)

	 500000
	0.1
	9474.733
	111.851
	2(-),3(-),4(-)
	16368.6
	27.005
	1(+),3(+),4(+)
	10729.133
	180.573
	1(+),2(-),4(-)
	12708.533
	82.447
	1(+),2(-),3(+)

	0.001
	9344.733
	84.931
	2(-),3(-),4(-)
	14947.6
	22.553
	1(+),3(+),4(+)
	9502.2
	142.003
	1(+),2(-),4(-)
	11581.066
	84.55
	1(+),2(-),3(+)

	 2136
	 1500000
	0.1
	12749.533
	93.378
	2(-),3(-),4(-)
	20078.833
	11.066
	1(+),3(+),4(+)
	16361.766
	67.76
	1(+),2(-),4(-)
	16243.166
	68.601
	1(+),2(-),3(+)

	0.001
	12730.3
	91.025
	2(-),3(-),4(-)
	19327.433
	11.221
	1(+),3(+),4(+)
	15224.733
	66.313
	1(+),2(-),4(-)
	15402.133
	96.35
	1(+),2(-),3(+)

	 1000000
	0.1
	11520.966
	129.843
	2(-),3(-),4(-)
	20016.2
	16.172
	1(+),3(+),4(+)
	15696.5
	116.216
	1(+),2(-),4(-)
	16020.633
	88.739
	1(+),2(-),3(+)

	0.001
	11500.633
	114.875
	2(-),3(-),4(-)
	19245.233
	15.532
	1(+),3(+),4(+)
	14544.63
	98.014
	1(+),2(-),4(-)
	15155.4
	74.248
	1(+),2(-),3(+)

	 500000
	0.1
	9488.333
	90.631
	2(-),3(-),4(-)
	19822.566
	20.619
	1(+),3(+),4(+)
	14592.466
	104.587
	1(+),2(-),4(-)
	14734.2
	230.948
	1(+),2(-),3(+)

	0.001
	9483.6
	88.03
	2(-),3(-),4(-)
	19030.533
	21.451
	1(+),3(+),4(+)
	13456.133
	89.165
	1(+),2(-),4(-)
	14399.233
	152.192
	1(+),2(-),3(+)

	 ca-CondaMat
	 Chernoff
	 146
	1500000
	0.1
	5321.1333
	40.291
	2(-),3(+),4(-)
	6424.2
	10.403
	1(+),3(+),4(+)
	4931.833
	82.145
	1(-),2(-),4(-)
	6018.066
	41.946
	1(+),2(-),3(+)

	0.001
	5027.166
	49.31
	2(-),3(+),4(-)
	5994.833
	10.96
	1(+),3(+),4(+)
	4622.866
	96.07
	1(-),2(-),4(-)
	5652.833
	41.121
	1(+),2(-),3(+)

	1000000
	0.1
	5059.6
	39.678
	2(-),3(+),4(-)
	6397.966
	14.943
	1(+),3(+),4(+)
	4755.133
	73.411
	1(-),2(-),4(-)
	5954.966
	50.251
	1(+),2(-),3(+)

	0.001
	4784.766
	54.93
	2(-),3(+),4(-)
	5979.9
	16.912
	1(+),3(+),4(+)
	4441.5
	126.327
	1(-),2(-),4(-)
	5582.666
	38.694
	1(+),2(-),3(+)

	500000
	0.1
	4625.4
	60.563
	2(-),3(+),4(-)
	6328.2
	31.971
	1(+),3(+),4(+)
	4443.2
	84.517
	1(-),2(-),4(-)
	5787.266
	63.911
	1(+),2(-),3(+)

	0.001
	4344.33
	59.972
	2(-),3(+),4(-)
	5898.133
	22.47
	1(+),3(+),4(+)
	4170
	103.826
	1(-),2(-),4(-)
	5437.7
	43.076
	1(+),2(-),3(+)

	 1068
	1500000
	0.1
	11632.833
	52.573
	2(-),3(-),4(-)
	16650.933
	14.163
	1(+),3(+),4(+)
	12054.233
	126.656
	1(+),2(-),4(-)
	13206.26
	65.605
	1(+),2(-),3(+)

	0.001
	11464.966
	61.738
	2(-),3(-),4(-)
	15217.3
	14.45
	1(+),3(+),4(+)
	11783.9
	95.969
	1(+),2(-),4(-)
	12974.86
	85.587
	1(+),2(-),3(+)

	 1000000
	0.1
	11059.2
	73.482
	2(-),3(-),4(-)
	16343.833
	16.806
	1(+),3(+),4(+)
	11441.2
	145.704
	1(+),2(-),4(-)
	12961.266
	85.324
	1(+),2(-),3(+)

	0.001
	10914.833
	76.11
	2(-),3(-),4(-)
	16052.866
	19.687
	1(+),3(+),4(+)
	11208.1
	91.525
	1(+),2(-),4(-)
	12779.033
	59.812
	1(+),2(-),3(+)

	500000
	0.1
	9482.966
	92.698
	2(-),3(-),4(-)
	16129.133
	27.284
	1(+),3(+),4(+)
	10487.566
	128.411
	1(+),2(-),4(-)
	12489.3
	88.034
	1(+),2(-),3(+)

	0.001
	9466.433
	113.403
	2(-),3(-),4(-)
	15840.433
	26.94
	1(+),3(+),4(+)
	10254.133
	130.19
	1(+),2(-),4(-)
	12309.4
	81.884
	1(+),2(-),3(+)

	 2136
	1500000
	0.1
	12719.533
	106.011
	2(-),3(-),4(-)
	19955.3
	10.312
	1(+),3(+),4(+)
	16187.466
	93.583
	1(+),2(-),4(-)
	16130.1
	80.711
	1(+),2(-),3(+)

	0.001
	12701.7
	90.339
	2(-),3(-),4(-)
	19813.8
	14.041
	1(+),3(+),4(+)
	16006.8
	109.226
	1(+),2(-),4(-)
	15964.933
	75.003
	1(+),2(-),3(+)

	1000000
	0.1
	11481.066
	98.619
	2(-),3(-),4(-)
	19891.466
	13.197
	1(+),3(+),4(+)
	15519.3
	102.403
	1(+),2(-),4(-)
	15812.433
	93.623
	1(+),2(-),3(+)

	0.001
	11458.1
	116.396
	2(-),3(-),4(-)
	19750.366
	12.084
	1(+),3(+),4(+)
	15323.266
	103.988
	1(+),2(-),4(-)
	15684.533
	83.137
	1(+),2(-),3(+)

	500000
	0.1
	9451.033
	105.529
	2(-),3(-),4(-)
	19697.033
	17.995
	1(+),3(+),4(+)
	14435.233
	101.01
	1(+),2(-),4(-)
	14650.033
	289.611
	1(+),2(-),3(+)

	0.001
	9460.666
	116.783
	2(-),3(-),4(-)
	19540.266
	18.77
	1(+),3(+),4(+)
	14218.8
	129.106
	1(+),2(-),4(-)
	14586.566
	214.181
	1(+),2(-),3(+)






5.2 Experimental Results
In the experiments, we first investigate the performance of SW-GSEMO on the problem with different settings. Then, we visualize and demonstrate the behavior of the sliding-selection approach working in the optimization.
Results Comparison.
Table 1 and 2 displays the final function values achieved by the algorithms in the problem with different settings, which vary based on the surrogate functions used, and are tested across different iterations and values of [image: $$\alpha $$]. Additional results are provided in Tables  4, 5, 6 and 7 in Appendix1. Overall, for smaller graphs with a lower bound B, the SW-GSEMO, GSEMO, and NSGA-II with different population sizes perform comparably. However, the NSGA-II can get better results when the expected weights are uniform, which is reflected in Table 2. For larger graph instances with larger bounds, the SW-GSEMO gradually surpasses the other algorithms in performance. The mean and standard deviation of the SW-GSEMO ’s results are also comparable to those of other algorithms across instances with varying [image: $$t_{max}$$]. It is observed that as [image: $$t_{max}$$] increases, the general performance of all algorithms improves. Moreover, while the function value differences for various [image: $$\alpha $$] are not significant in larger graphs with higher bounds, they become substantial in smaller graphs. Interestingly, the performance of the NSGA-II with population sizes of 20 and 100 is superior to that of the GSEMO in larger, sparser graph cases. This observation contrasts with findings from previous work [17], which uses dense graphs. In terms of evaluating the problem with chance constraints by different surrogate methods, the results from Table 1 and 2 suggest that algorithms employing the one-sided Chebyshev’s inequality are better than those using the Chernoff bound when [image: $$\alpha $$] is large. On the other hand, the performance of algorithms based on the Chernoff bound becomes worse with smaller [image: $$\alpha $$] values.Table 2.Results for maximum coverage problem with uniform weights with same dispersion


	 	GSEMO (9)
	SW-GSEMO (10)
	[image: $$\text {NSGA-II}_{20}$$] (11)
	[image: $$\text {NSGA-II}_{100}$$] (12)

	Graph
	Surrogate
	B
	[image: $$t_{max}$$]
	[image: $$\alpha $$]
	Mean
	std
	stat
	Mean
	std
	stat
	Mean
	std
	stat
	Mean
	std
	stat

	ca-CondaMat
	 Chebyshev
	 146
	1500000
	0.1
	141.266
	0.679
	10(=),11(=),12(=)
	141.8
	0.979
	9(=),11(=),12(=)
	141.266
	0.813
	9(=),10(=),12(=)
	141.8
	0.979
	9(=),10(=),11(=)

	0.001
	122.9
	3.014
	10(-),11(-),12(-)
	125.933
	0.249
	9(+),11(=),12(=)
	125.7
	0.458
	9(+),10(=),12(=)
	126
	0
	9(+),10(=),11(=)

	 1000000
	0.1
	141.2
	0.6
	10(=),11(=),12(=)
	141.733
	0.963
	9(=),11(=),12(=)
	141
	0.632
	9(=),10(=),12(=)
	141.533
	0.884
	9(=),10(=),11(=)

	0.001
	122.23
	3.051
	10(-),11(-),12(-)
	125.9
	0.3
	9(+),11(=),12(=)
	125.366
	1.048
	9(+),10(=),12(=)
	126
	0
	9(+),10(=),11(=)

	 500000
	0.1
	141.133
	0.498
	10(=),11(=),12(=)
	141.8
	0.979
	9(=),11(=),12(=)
	140.833
	0.734
	9(=),10(=),12(=)
	141.333
	0.745
	9(=),10(=),11(=)

	0.001
	120.733
	3.172
	10(-),11(-),12(-)
	125.6
	0.663
	9(+),11(=),12(=)
	124.066
	2.657
	9(+),10(=),12(=)
	125.7
	0.458
	9(+),10(=),11(=)

	 1068
	1500000
	0.1
	1037.266
	1.093
	10(-),11(+),12(=)
	1044.833
	0.933
	9(+),11(+),12(+)
	1015.333
	4.706
	9(-),10(-),12(-)
	1037.833
	2.646
	9(=),10(-),12(+)

	0.001
	978.4
	2.751
	10(-),11(+),12(-)
	991.766
	2.347
	9(+),11(+),12(=)
	959.566
	10.892
	9(-),10(-),12(-)
	992.2
	3.664
	9(+),10(=),11(+)

	1000000
	0.1
	1034.933
	1.152
	10(-),11(+),12(=)
	1044.133
	1.231
	9(+),11(+),12(+)
	1012.333
	5.204
	9(-),10(-),12(-)
	1036.833
	2.956
	9(=),10(-),12(+)

	0.001
	975.1
	2.3288
	10(-),11(+),12(-)
	989.5
	2.202
	9(+),11(+),12(=)
	954.866
	10.616
	9(-),10(-),12(-)
	991.3
	3.377
	9(+),10(=),11(+)

	 500000
	0.1
	1030.833
	1.293
	10(-),11(+),12(+)
	1041.633
	1.251
	9(+),11(+),12(+)
	1008.633
	6.441
	9(-),10(-),12(-)
	1035.233
	2.641
	9(+),10(-),12(+)

	0.001
	967.666
	3.418
	10(-),11(+),12(-)
	985.9
	2.748
	9(+),11(+),12(=)
	947.233
	10.932
	9(-),10(-),12(-)
	988.866
	4.145
	9(+),10(=),11(+)

	2136
	 1500000
	0.1
	2035.066
	2.92
	10(-),11(+),12(+)
	2071.066
	1.412
	9(+),11(+),12(+)
	1963.4
	9.844
	9(-),10(-),12(-)
	2025.6
	5.689
	9(+),10(-),11(+)

	0.001
	1925.3
	3.671
	10(-),11(+),12(-)
	1972.433
	3.402
	9(+),11(+),12(+)
	1850.633
	13.345
	9(-),10(-),12(-)
	1942.566
	6.189
	9(+),10(-),11(+)

	1000000
	0.1
	2026.966
	3.341
	10(-),11(+),12(+)
	2068.033
	1.905
	9(+),11(+),12(+)
	1956.3
	9.987
	9(-),10(-),12(-)
	2022.6
	6.58
	9(+),10(-),11(+)

	0.001
	1914.7
	3.831
	10(-),11(+),12(-)
	1969.433
	3.666
	9(+),11(+),12(+)
	1839.766
	13.313
	9(-),10(-),12(-)
	1939.833
	7.55
	9(+),10(-),11(+)

	500000
	0.1
	2009.366
	4.214
	10(-),11(+),12(-)
	2063.166
	2.852
	9(+),11(+),12(+)
	1941.3
	11.346
	9(-),10(-),12(-)
	2016.5
	5.942
	9(+),10(-),11(+)

	0.001
	1893.5
	4.055
	10(-),11(+),12(-)
	1960
	3.705
	9(+),11(+),12(+)
	1821
	14.61
	9(-),10(-),12(-)
	1931.866
	6.443
	9(+),10(-),11(+)

	ca-CondaMat
	 Chernoff
	 146
	 1500000
	0.1
	139
	0
	10(=),11(=),12(=)
	139
	0
	9(=),11(=),12(=)
	139
	0
	9(=),10(=),12(=)
	139
	0
	9(=),10(=),11(=)

	0.001
	137.1
	1.445
	10(=),11(=),12(=)
	138.2
	1.326
	9(=),11(=),12(=)
	136.9
	1.374
	9(=),10(=),12(=)
	138.3
	1.268
	9(=),10(=),11(=)

	 1000000
	0.1
	139
	0
	10(=),11(=),12(=)
	139
	0
	9(=),11(=),12(=)
	139
	0
	9(=),10(=),12(=)
	139
	0
	9(=),10(=),11(=)

	0.001
	136.7
	1.1268
	10(=),11(=),12(=)
	137.8
	1.469
	9(=),11(=),12(=)
	136.5
	1.118
	9(=),10(=),12(=)
	138
	1.414
	9(=),10(=),11(=)

	 500000
	0.1
	139
	0
	10(=),11(+),12(=)
	139
	0
	9(=),11(+),12(=)
	138.966
	0.179
	9(-),10(-),12(-)
	139
	0
	9(=),10(=),11(+)

	0.001
	136.4
	1.019
	10(=),11(=),12(=)
	136.8
	1.326
	9(=),11(=),12(=)
	136.266
	0.928
	9(=),10(=),12(=)
	137.1
	1.445
	9(=),10(=),11(=)

	 1068
	 1500000
	0.1
	1031.266
	1.59
	10(-),11(+),12(=)
	1039.366
	1.139
	9(+),11(+),12(+)
	1008.4
	5.505
	9(-),10(-),12(-)
	1033.966
	2.994
	9(=),10(-),11(+)

	0.001
	1022.533
	1.726
	10(-),11(+),12(-)
	1031.533
	0.956
	9(+),11(+),12(+)
	1001.133
	5.754
	9(-),10(-),12(-)
	1026.966
	2.575
	9(+),10(-),11(+)

	1000000
	0.1
	1029.066
	1.31
	10(-),11(+),12(-)
	1038.166
	1.097
	9(+),11(+),12(+)
	1005.833
	6.044
	9(-),10(-),12(-)
	1033.266
	3.203
	9(+),10(-),11(+)

	0.001
	1019.466
	1.783
	10(-),11(+),12(-)
	1030.366
	1.425
	9(+),11(+),12(=)
	997.466
	6.463
	9(-),10(-),12(-)
	1026.066
	2.249
	9(+),10(=),11(+)

	500000
	0.1
	1024.633
	1.87
	10(-),11(+),12(-)
	1036.133
	0.956
	9(+),11(+),12(+)
	1000.7
	7.299
	9(-),10(-),12(-)
	1031.766
	3.921
	9(+),10(-),11(+)

	0.001
	1014.1
	2.211
	10(-),11(+),12(-)
	1027.833
	1.507
	9(+),11(+),12(=)
	992.5
	7.069
	9(-),10(-),12(-)
	1024.866
	2.459
	9(+),10(=),11(+)

	 2136
	 1500000
	0.1
	2023.533
	2.704
	10(-),11(+),12(+)
	2062.166
	1.881
	9(+),11(+),12(+)
	1949.366
	9.064
	9(-),10(-),12(-)
	2019.5
	6.687
	9(+),10(-),11(+)

	0.001
	2006.533
	2.376
	10(-),11(+),12(+)
	2041.2
	2.072
	9(+),11(+),12(+)
	1932.4
	10.694
	9(-),10(-),12(-)
	2003.3
	5.502
	9(+),10(-),11(+)

	 1000000
	0.1
	2015.366
	3.219
	10(-),11(+),12(=)
	2059.433
	1.994
	9(+),11(+),12(+)
	1942.266
	9.051
	9(-),10(-),12(-)
	2014.9
	5.497
	9(+),10(-),11(+)

	0.001
	1997.5
	3.232
	10(-),11(+),12(-)
	2046.233
	1.977
	9(+),11(+),12(+)
	1924.566
	11.632
	9(-),10(-),12(-)
	2000.533
	6.173
	9(+),10(-),11(+)

	500000
	0.1
	1995.8
	3.187
	10(-),11(+),12(-)
	2052.833
	2.296
	9(+),11(+),12(+)
	1929.9
	10.077
	9(-),10(-),12(-)
	2008.766
	6.897
	9(+),10(-),11(+)

	0.001
	1977.633
	2.857
	10(-),11(+),12(-)
	2037.933
	2.555
	9(+),11(+),12(+)
	1909.133
	12.164
	9(-),10(-),12(-)
	1993.9
	7.449
	9(+),10(-),11(+)





Table 3 shows the average number of trade-off solutions obtained by the GSEMO and SW-GSEMO using different surrogate functions on the problem based on the graph ca-CondaMat with IID weights. Notably, the SW-GSEMO produces a greater number of trade-off solutions in the final population than the GSEMO, particularly as the bound increases. Furthermore, the table reveals that the number of solutions in the population is consistently lower than k (as defined in Sect. 4.1, where [image: $$k = min\{n+1, \lfloor (B/a+1)\rfloor \}$$]). When comparing with the deterministic setting, it is observed that the number of trade-off solutions generated by the algorithms in the IID weight setting decreases by almost 50% when [image: $$\alpha = 0.001$$], particularly when using the surrogate function based on one-sided Chebyshev’s inequality.
Visualization of SW-GSEMO. To focus on the SW-GSEMO ’s performance in optimizing chance-constrained problems, Figs. 1a and 1b offer an illustrative example of the optimization process. The figures illustrate the relationship between the surrogate weight and the function value of the solutions selected for the population, with different colors labeling solutions based on whether their parents were within the defined weight window. Initially, an increase in function value corresponding to an increase in surrogate weight is observed. It’s noteworthy that the same surrogate weight might correspond to multiple distinct function values. According to the algorithm’s domination scheme, among solutions with the same surrogate weight, all except the one with the highest function value are eliminated from the population. Besides, the figures highlight that there are some periods where the SW-GSEMO is unable to include any individuals within the window (particularly when the expected weights are uniform). Despite these periods, the sliding window mechanism remains effective throughout the optimization process, aiding the algorithm in achieving satisfactory results. Additionally, those blue search points are also close to the Pareto front area and do not impact the final results.Table 3.Average number of trade-off solutions obtained by GSEMO and SW-GSEMO in ca-CondaMat with IID weights


	 	B
	[image: $$t_{max}$$]
	[image: $$\alpha $$]
	GSEMO
[image: $$W_{cheb}$$]
	SW-GSEMO
[image: $$W_{cheb}$$]
	GSEMO
[image: $$W_{chern}$$]
	SW-GSEMO
[image: $$W_{chern}$$]

	ca-CondaMat
	 146
	1.5M
	0.1
	136
	136
	122
	122

	0.001
	70
	70
	107
	107

	 1.0M
	0.1
	135
	136
	122
	122

	0.001
	70
	70
	107
	107

	0.5M
	0.1
	136
	136
	122
	122

	0.001
	70
	70
	107
	107

	 1068
	 1.5M
	0.1
	927
	1039
	880
	998

	0.001
	753
	808
	860
	948

	 1.0M
	0.1
	883
	1040
	858
	997

	0.001
	728
	809
	807
	949

	 0.5M
	0.1
	720
	1034
	731
	997

	0.001
	652
	809
	733
	948

	 2136
	 1.5M
	0.1
	1160
	2066
	1174
	2024

	0.001
	1174
	1752
	1217
	1960

	1.0M
	0.1
	968
	2073
	1006
	2022

	0.001
	984
	1747
	989
	1947

	 0.5M
	0.1
	707
	2050
	776
	1726

	0.001
	748
	1735
	731
	1930





[image: ]
Fig. 1.Optimization process of SW-GSEMO for ca-CondaMat



Additionally, Figs. 2a and 2b describe the changes in surrogate weights of solutions across iterations. A noticeable trend is that the sliding windows align the surrogate weights in a linear pattern, where the surrogate weight generally increases with more iterations. Figure 2a indicates that the surrogate weight derived from the one-sided Chebyshev’s inequality is lower than that from the Chernoff bound when [image: $$\alpha = 0.1$$]. Conversely, Fig. 2b shows the opposite trend when [image: $$\alpha = 0.001$$]. Furthermore, due to the influence of the chance constraint, the sliding-selection method, when using the surrogate weight, allows only one individual within the window under the IID wights setting for the instances that are applied to the IID weights setting according to Fig. 2b, aligning with our analysis in Sect. 4.1.[image: ]
Fig. 2.Different surrogate weights obtained during optimization by the SW-GSEMO based on different surrogates in ca-CSphd with IID weights





6 Conclusion
In this paper, we investigated the use of SW-GSEMO on chance-constrained monotone submodular optimization problems with IID weights and uniform weights with the same dispersion. Surrogate functions based on Chebshev’s inequality and Chernoff bound have been applied to evaluate the chance constraint. We showed theoretically that the SW-GSEMO with the surrogate can reach the same approximation result in a more efficient way than the GSEMO that was studied in previous work. Furthermore, the algorithm is applied to the maximum coverage problem in the experiments and its results are compared with other multi-objective algorithms under variable instances constructed by different graphs. The experiments demonstrated that the window defined in SW-GSEMO is sliding in the weight interval during the optimization. Additionally, the obtained results show that the SW-GSEMO with the surrogate based on one-sided Chebyshev’s inequality performs better than the GSEMO and NSGA-II (with population sizes 20 and 100) among most of the instances when [image: $$\alpha $$] is larger, and the SW-GSEMO using the Chernoff bound works best when [image: $$\alpha $$] is smaller. For future work, it would be interesting to consider other generalized settings with different distributions and covariances as part of the chance-constrained formulation.
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Abstract
The Vehicle Routing Problem (VRP) is a classical combinatorial optimization problem. In this paper, we focus on Large-Scale VRP (LSVRP), which contains more than 200 customers. In particular, the Knowledge Guided Local Search (KGLS) has shown highly competitive performance for LSVRP, due to the strength of GLS for jumping out of local optima and improved utility functions of GLS. The newly discovered good or effective utility function used by KGLS suggests that the default utility function used in the traditional GLS is by no means the optimal. However, manually designing better utility function for GLS is very time-consuming and can involve much trial-and-error. To address this issue, we proposed to use Genetic Programming (GP) to automatically design utility functions for GLS. We developed a GP training framework in which an individual stands for a possible utility function for GLS. To evaluate a GP individual, GLS runs on the training instances, where the GP individual is used as the utility function to identify the edges to penalize. We also designed a set of terminals to capture a wide range of possible factors for the utility function. The results on the commonly used X dataset demonstrates that GP successfully evolved significantly better GLS algorithms than the competitive KGLS on a majority of the large-scale X instances. The further analysis also shows the effectiveness of the newly learned GLS utility functions that take into account new factors which are not been considered by GLS and KGLS.
Keywords
Large-scale vehicle routing problemGenetic programmingGuided local searchUtility function
1 Introduction
The Vehicle Routing Problem (VRP) is an important and challenging combinatorial optimization problem with many real-world applications such as logistics and supply chain management. It aims to minimize the costs associated with serving a set of customers using a fleet of vehicles, while adhering to constraints such as vehicle capacity. The customers and the depot are nodes within a complete, undirected graph, wherein the cost of an edge (i, j) represented by the Euclidean distance c(i, j) between the adjacent nodes. Each customer is characterized by a specified demand, and the cumulative demand serviced by each vehicle cannot exceed its capacity. The formal definition can be found in [22].
For these real-world scenarios, such as urban traffic assignment [26] and ambulance dispatch [28], which are of significant scale, we have to focus on addressing these large-scale problems. The Large-Scale VRP (LSVRP) is a special case of the Capacitated VRP (CVRP) when the number of customers is more than 200, as defined by several studies [1, 16, 30]. However, traditional methods such as exact algorithms and conventional heuristic approaches have faced challenges when addressing large-scale application problems [20]. Consequently, recent research efforts have shifted focus towards addressing the LSVRP.
Since LSVRP involves large number of customers and vehicles, solving this problem often encounters challenges associated with a large search space and complex problem structure. Several works have been done in this domain [2, 10, 31, 35]. The Knowledge Guided Local Search (KGLS) [2] achieves state-of-the-art by using Guided Local Search (GLS) to solve LSVRP and got a little range of hybrid genetic algorithm [36]. It has demonstrated that a properly implemented and well-configured local search can generate high-quality solutions for VRPs with up to 1000 customers. Moreover, utilizing problem-specific knowledge can enhance the search process to identify more promising solutions efficiently. Specifically, data mining was performed on instances and their solutions involving 20–100 customers, revealing that penalizing “wide” edges can lead to performance gains [3]. The width w(i, j) is computed as the distance between nodes i and j measured along the axis perpendicular to the line connecting the depot and the route’s center of gravity. The formal definition of the width can be found in [3]. From this discovery, they took the width into consideration and designed three utility functions to determine bad edges. However, this research appears to be somewhat limited. The discovery of the width suggests that the utility of penalizing an edge can depend on a variety of factors in addition to the commonly considered cost and penalty value. Moreover, discovering all such factors and the corresponding utility function (i.e., combination of these factors) is highly challenging.
To address the above issue, in this paper, we propose to automatically design the utility function of penalizing edge during GLS by Genetic Programming (GP). The overall goal is to develop a novel learning algorithm, namely GPGLS, which can evolve more effective GLS algorithms with new utility functions. The specific objectives of this work can be summarised as follows:	Develop a new offline learning process that uses GP to train a utility function for GLS under a VRP training set.

	Design a comprehensive terminal set for the GP training process to capture all possible important factors for the utility of penalizing edges.

	The comparative experimental results and analysis on the commonly used X benchmark dataset [34] show that GPGLS can significantly outperform KGLS on a majority of the instances over 200 customers.





The rest of this paper is organized as follows: we give a more formal definition of the problem and the related work in Sect. 2. Then the proposed GPGLS is detailed in Sect. 3. The experimental design and results analysis are presented in Sect. 4. Finally, we finish the paper with some conclusions and future research in Sect. 5.

2 Background
2.1 (Large-Scale) Vehicle Routing Problem
The VRP [23] is to determine the optimal set of routes that serve a set of customers, performed by a fleet of vehicles. The problem is defined on a graph [image: $$G=(V,E)$$], where [image: $$V=\{0, 1, ..., n\}$$] represents the set of vertices (the node 0 is the depot) and [image: $$E=\{(i, j)\ |\ i,j \in V, i \ne j\}$$] denotes the set of edges that connect these nodes. As for CVRP, a set of homogeneous vehicles with equal capacity Q is used to serve the customers. Each customer i has a demand [image: $$q_i$$] that needs to be served [22], and can be visited exactly once by only one vehicle. All routes start and end at the depot. The goal is to find the routes which respect all these constraints, minimising costs. VRP can be mathematically formulated as follows [24].[image: $$\begin{aligned} \min \;\; &amp; \sum _{(i,j) \in E} c_{ij}x_{ij} , \end{aligned}$$]

 (1)



[image: $$\begin{aligned} s.t.: \;\; &amp; \sum _{j=1}^{n} x_{0j} = 2\,m, \end{aligned}$$]

 (2)



[image: $$\begin{aligned} &amp; \sum _{i&lt;k} x_{ik} + \sum _{j &gt; k} x_{kj} =2, \quad (k\in V \setminus 0), \end{aligned}$$]

 (3)



[image: $$\begin{aligned} &amp; \sum _{i,j\in S} x_{ij} \le |S|-v(S), \quad (S \subseteq V \setminus 0), \end{aligned}$$]

 (4)



[image: $$\begin{aligned} &amp; x_{0j} \in \{0,1,2\}, \quad (j \in V \setminus 0), \end{aligned}$$]

 (5)



[image: $$\begin{aligned} &amp;x_{ij} \in \{0,1\}. \quad (i, j \in V \setminus 0), \end{aligned}$$]

 (6)


The objective function (1) is used to find the minimal-cost routes, respecting the following constraints. Constraints (2) and (3) are degree constraints, with m means the number of vehicles required for serving all the customers. Constraints (4) eliminate routes that are not fully connected and enforce the capacity restrictions, since v(S) is a lower bound on the number of vehicles needed to serve all customers in S (S is a subset of V). The discrete variables [image: $$x_{ij}$$] represent the number of times the arc (i, j) is traversed, being 2 only in the special case where a vehicle serves exactly one customer and returns to the depot. As we have shown before, LSVRP refers to the CVRP instances with more than 200 customers.

2.2 Guided Local Search
GLS [38] adopts a local search process with a penalization scheme to escape from local optima. Before applying GLS, a set of features for the candidate solutions is designed. When the search is trapped in local optima, GLS will use a function to identify which feature of the solution should be penalized to jump out of the local optima.
During the search, GLS augments the objective function with penalties. Given an objective function [image: $$g(\cdot )$$] that maps every candidate solutions s to a numerical value, GLS defines a function [image: $$h(\cdot )$$] that will be used to compare between solutions during the search:[image: $$\begin{aligned} h(s) = g(s) + \lambda \times \sum _{i \, \text {is a feature}} (p_i \times I_i(s)), \end{aligned}$$]

 (7)


where s is a candidate solution, [image: $$\lambda $$] is a parameter of the GLS algorithm, i ranges over all the features defined for solutions, [image: $$p_i$$] is the penalty for the feature i, and [image: $$I_i$$] is a Boolean value to indicate whether the feature i exhibited in the local optima.
Whenever the local search algorithm settles in a local optimum, GLS identifies features of the current local optimum and penalize them. Specifically, it first calculates the utility of penalizing each feature i under a local optimum [image: $$s^*$$], denoted as [image: $$util_i(s^*)$$], which is defined as follows:[image: $$\begin{aligned} util_i(s^*) = I_i(s^*) \times \frac{c_i}{1+p_i}, \end{aligned}$$]

 (8)


where [image: $$c_i$$] is the cost and [image: $$p_i$$] is the current penalty value of feature i. The higher the cost of this feature (the greater [image: $$c_i$$]), the greater the utility of penalizing it. Additionally, the more times a feature i has been penalized (the greater [image: $$p_i$$]), the lower the utility of penalizing it again. Then, for each feature i with the maximal utility value, GLS penalizes it by incrementing [image: $$p_i$$], i.e., [image: $$p_i \leftarrow p_i + 1$$]. This will increase the [image: $$h(\cdot )$$] value of [image: $$s^*$$], making it worse than some of its surrounding solutions, and thus jumping out of the local optimum.

2.3 Related Work
As a classical NP-hard combinatorial optimization problem [25], VRP has been studied for decades, and numerous excellent methods have been proposed. The existing methods can be broadly categorized into exact, heuristic, meta-heuristic, and hyper-heuristic methods. Since exact methods [29, 30] and heuristic methods [8, 17] are not effective enough in handling large-scale problems, this paper only introduce the latter two methods.
Metaheuristics offer strategies to escape local optima and strike a balance between exploration and exploitation [15]. These methods typically iterate through the application of improvement heuristics on an incumbent solution. They can be categorized as individual-based and population-based methods. Individual-based meta-heuristics such as Simulated Annealing [14], Tabu Search [13], GLS, Variable Neighborhood Search [21], and Iterated Local Search [32] have demonstrated effectiveness in VRP. Additionally, numerous population-based meta-heuristics have exhibited remarkable performance in VRP. For instance, the hybrid Genetic Algorithm [35], later extended for other variants in [37], has achieved state-of-the-art results and remains a seminal work in VRP and its variants. Furthermore, Particle Swarm Optimization [7], Ant Colony Optimization [4], and Path-Relinking [19] are notable meta-heuristics widely applied to solve VRP.
Hyper-heuristics [6] represent a class of search methods or learning mechanisms designed to select or generate heuristics for solving computational search problems. Unlike traditional heuristics, hyper-heuristics operate on a search space of heuristics rather than directly on the search space of solutions to the underlying problem being addressed [5, 12]. For instance, MacLachlan et al. [28] explore the feasibility of using genetic programming hyper-heuristics to produce intelligible rules of thumb for selecting vehicles to respond to emergencies. Costa et al. [9] introduce a novel hyper-heuristic that imposes constraints on the neighborhoods of Low-Level Heuristics. This method employs an adaptive chromosome to limit the neighborhood size for each operator, effectively managing the large search space. Additionally, Garrido et al. [11] employ a hill-climbing-based hyper-heuristic to solve VRP, utilizing a simple combination of constructive and perturbative elements to gradually and indirectly construct or improve routes. While hyper-heuristic methods offer broad applicability across various optimization problems without requiring in-depth knowledge of specific problem structures, they often entail higher computational costs.
The aforementioned studies on CVRP and LSVRP sometimes suffer from issues such as manually design functions and incomplete consideration of relevant factors. Therefore, this paper proposes a framework to automatically design functions based on a comprehensive set of factors.


3 Genetic Programming Guided Local Search
The proposed GPGLS is a GP offline learning process of GLS. Its pseudocode is given in Algorithm 1. First, a GP population pop is initialized by ramp-half-and-half, where each individual stands for a utility function (e.g., Eq. (8)) used by GLS to identify the features to be penalized. Then, a standard GP process follows. Specifically, at each generation, each individual is first evaluated by the fitness evaluator [image: $$\texttt{eval}(ind, \mathcal {I}_{\text {train}}, \texttt{GLS}(\cdot ))$$], and the best individual [image: $$ind^*$$] is updated. Then, the offspring population is generated by elitism, crossover, mutation, and reproduction. After the evolutionary process, the GLS that uses the best GP individual as the utility function, denoted as [image: $$\texttt{GLS}(ind^*)$$], is returned.[image: ]
Fig. 1.Illustration of the GPGLS learning process, where the upper part is the GP evolutionary process, while the lower part is the GLS-based fitness evaluator. The fitness evaluator takes GP population and a training set, and runs the GLS with the GP individual as the utility function to identify features to penalize. The fitness is set based on the quality of the solutions obtained by GLS on the training set.



[image: ]
Algorithm 1. The GPGLS learning process.



In the following, the individual representation, including the terminals considered, is first described in Sect. 3.1. Then, the fitness evaluator (line 5 in Algorithm 1), as the key contribution of this work, will be described in Sect. 3.2. Figure 1 illustrates the overall GPGLS process, where the upper part shows the GP evolutionary process, while the lower part shows the GLS-based fitness evaluator.
3.1 Individual Representation
In GPGLS, an individual is a utility function used by GLS to identify the features to be penalized. Each individual is represented as a tree, indicating a combination of terminals (e.g., [image: $$c_i$$] and [image: $$p_i$$] in Eq. (8)) and non-terminals (e.g., [image: $$+$$], −, [image: $$\times $$]). The existing utility function used by the standard GLS in Eq. (8) can be represented as Fig. 2.[image: ]
Fig. 2.The tree-based representation for the utility function in Eq. (8).



In order to learn effective utility functions, a comprehensive terminal set is required to capture a wide range of aspects that might affect the decisions of feature penalization. For this purpose, we consider many terminals, including 8 terminals related to the instance, 12 terminals related to the current solution, and 5 terminals linked to the edge (i.e., feature) being penalized. Table 1 lists all the terminals considered in GPGLS, where I1[image: $$\sim $$]I8 are the instance-related terminals, S1[image: $$\sim $$]S12 are the solution-related terminals, and the final 5 are edge-related terminals.Table 1.The terminals considered in GPGLS.


	Terminal
	Description

	I1
	Number of customers

	I2
	Number of routes

	I3
	Degree of capacity utilization

	I4
	Average distance between each pair of customers

	I5
	Standard deviation of the pairwise distance between customers

	I6
	Average distance from customers to the depot

	I7
	Standard deviation of the distance from customers to the depot

	I8
	Standard deviation of the radians of customers towards the depot

	S1
	Average number of intersections per customer

	S2
	The Longest distance between two connected customers per route

	S3
	Average distance between depot to directly-connected customers

	S4
	Average distance between their centers of gravity

	S5
	Average width per route

	S6
	Average span in radian per route

	S7
	Average compactness per route, measured by width

	S8
	Average compactness per route, measured by radian

	S9
	Average depth per route

	S10
	Standard deviation of the number of customers per route

	S11
	Number of feasible routes in current solution

	S12
	Average cost of the routes in current solution

	[image: $$\texttt{c}$$]
	Euclidean distance of the two end-nodes of the edge

	[image: $$\texttt{p}$$]
	The number of times the edge has been penalized

	[image: $$\texttt{w}$$]
	How far the center of gravity is positioned from the edge with respect to their distances from depot

	[image: $$\theta _h$$]
	The angle between the two end-nodes of the edge at the horizontal axis, ranging within [image: $$[0, 2\pi ]$$]

	[image: $$\theta _c$$]
	The variation in angles between the two end-nodes of the edge with respect to the central point, ranging within [image: $$[0, 2\pi ]$$].





Among the terminals, I1[image: $$\sim $$]I8 and S1[image: $$\sim $$]S10 have been defined and considered in [3]. [image: $$\texttt{c}$$] and [image: $$\texttt{p}$$] have been considered in the traditional GLS utility function. S11, S12, w, [image: $$\theta _h$$] and [image: $$\theta _c$$] are new terminals defined in this work. S11 and S12 are straightforward to calculate, while [image: $$\texttt{w}$$], [image: $$\theta _h$$] and [image: $$\theta _c$$] are calculated as follows.[image: $$\begin{aligned} \texttt{w}(x_1, y_1, x_2, y_2, x_c, y_c, x_d, y_d) = |w_1-w_2|, \end{aligned}$$]

 (9)


where[image: $$\begin{aligned} w_1 &amp; = \frac{(y_c-y_d)\cdot x_1 - (x_c-x_d)\cdot y_1 + x_d\cdot y_c - x_c\cdot y_d}{\sqrt{(y_c-y_d)^2+(x_c-x_d)^2}}, \end{aligned}$$]

 (10)



[image: $$\begin{aligned} w_2 &amp; = \frac{(y_c-y_d)\cdot x_2 - (x_c-x_d)\cdot y_2 + x_d\cdot y_c - x_c\cdot y_d}{\sqrt{(y_c-y_d)^2+(x_c-x_d)^2}}. \end{aligned}$$]

 (11)


[image: $$(x_1,y_1)$$], [image: $$(x_2,y_2)$$], [image: $$(x_c,y_c)$$], and [image: $$(x_d,y_d)$$] are the 2D coordinates of the two end-nodes of the edge, the center of gravity, and the depot, respectively.[image: $$\begin{aligned} \theta _h(x_1,x_2,y_1,y_2) = {\left\{ \begin{array}{ll} \theta , &amp;  \text {if }\theta \ge 0, \\ \theta +2\pi , &amp;  \text {otherwise,} \end{array}\right. } \end{aligned}$$]

 (12)


where[image: $$\begin{aligned} \theta = \arctan 2 \left( \frac{y_2-y_1}{x_2-x_1} \right) . \end{aligned}$$]

 (13)



[image: $$\begin{aligned} \theta _c(x_1,x_2,y_1,y_2,x_c,y_c) = {\left\{ \begin{array}{ll} \phi , &amp;  \text {if }\phi \ge 0, \\ \phi +2\pi , &amp;  \text {otherwise,} \end{array}\right. } \end{aligned}$$]

 (14)


where[image: $$\begin{aligned} \phi = \arctan 2 \left( \frac{y_2-y_c}{x_2-x_c} \right) - \arctan 2 \left( \frac{y_1-y_c}{x_1-x_c} \right) . \end{aligned}$$]

 (15)





3.2 Fitness Evaluation
The GLS-based fitness evaluator is described in Algorithm 2. It takes the individual ind to be evaluated on the training instance [image: $$i \in \mathcal {I}_{\text {train}}$$], and returns the fitness value for ind. Specifically, a GLS with the utility function of ind is applied to the instance i (lines 2–11) to obtain the best solution [image: $$s^*_i$$]. Then, the improvement percentage from the initial solution [image: $$f_i$$] is calculated in line 11. At each generation, all the ind in the population will be evaluated on a randomly selected training instance and get all the individual’s fitness values.
[image: ]
Algorithm 2. The GLS-based fitness evaluator [image: $$\texttt{eval}(ind, \mathcal {I}_{\text {train}})$$].



In the adopted GLS, the initialisation is conducted by the commonly used Clarke-Wright (CW) heuristic [8]. During the local search, the Cross-Exchange (CE) [33], Relocation Chain (RC) [18], and Lin-Kernighan (LK) [27] operators are adopted to modify the solutions. The KGLS study [2] demonstrated the excellent performance of sequential search by using the three operators.


4 Experimental Studies
In the experiments, we verify the effectiveness of GPGLS on a commonly used VRP dataset called the X dataset [34]. The dataset consists of 100 instances, with the number of nodes ranging from 101 to over 1001. From the X dataset, we take the 21 instances with fewer than 200 nodes as the training instances for Algorithm 1. After the training process, we apply the learned [image: $$\texttt{GLS}(ind^*)$$] to the remaining 79 instances with more than or equal 200 nodes for testing, and compare the test performance with GLS, KGLS [2] and the best-known solutions (BKS).
4.1 Parameter Settings
For the GPGLS, the terminal set is listed in Table 1, and the function set is [image: $$\{+, -, \times , /\}$$], where / is the protected division, which returns “1” when divided by zero. For the GP used in Algorithm 1, the population size is set to 100, and the number of generations is set to 50. The maximal tree depth is set to 6. The tournament parent selection has a size of 3. The crossover and mutation probabilities are 0.8 and 0.2, respectively. At each generation, the top 2 individuals are copied into the next generation by elitism.
For the GLS used in the fitness evaluation, the stopping criterion is set to 5 s, to achieve the balance between the computational cost and estimation accuracy. However, after the training, the stopping criterion is extended to 10 min when being applied to each test instance, to ensure the convergence of the algorithm. The compared KGLS was also given 10 min as the computational budget. The [image: $$\lambda $$] parameter is set to 0.1.
Due to the stochasticity of GPGLS, the training process was run 15 times independently, resulting in 15 different GLS algorithms. For each test instance, the 15 GLS algorithms are applied to obtain 15 solutions. Then, we compare the 15 solutions with the existing results based on mean value and statistical significance test.Table 2.The results of the compared algorithms on the 79 large-scale X benchmark instances (mean of the 15 runs for GPGLS; all the other compared algorithms are deterministic): part 1.


	Instances
	BKS
	CW
	GLS
	KGLS
	GPGLS
	Gap(%)
	Sig-Test

	X-n200-k36
	58578
	61167
	58868
	58747
	58778
	0.34
	[image: $$\approx $$]

	X-n204-k19
	19565
	21271
	19611
	19666
	19618
	0.27
	+

	X-n209-k16
	30656
	32635
	30760
	30733
	30698
	0.14
	+

	X-n214-k11
	10856
	11816
	11127
	10919
	10924
	0.63
	[image: $$\approx $$]

	X-n219-k73
	117595
	118364
	117775
	117674
	117753
	0.13
	+

	X-n223-k34
	40437
	42357
	40886
	40675
	40616
	0.44
	+

	X-n228-k23
	25742
	27198
	26497
	25838
	25882
	0.54
	[image: $$\approx $$]

	X-n233-k16
	19230
	20433
	19413
	19333
	19342
	0.58
	–

	X-n237-k14
	27042
	29857
	27311
	27074
	27093
	0.19
	–

	X-n242-k48
	82751
	85521
	83300
	83144
	83040
	0.35
	+

	X-n247-k47
	37274
	40870
	39045
	37681
	37684
	1.10
	[image: $$\approx $$]

	X-n251-k28
	38684
	40576
	39082
	38916
	38859
	0.45
	+

	X-n256-k16
	18839
	20738
	18888
	18890
	18889
	0.27
	+

	X-n261-k13
	26558
	28631
	26686
	26672
	26661
	0.39
	+

	X-n266-k58
	75478
	78982
	76022
	75919
	75757
	0.37
	+

	X-n270-k35
	35291
	37130
	35469
	35451
	35415
	0.35
	+

	X-n275-k28
	21245
	22471
	21245
	21280
	21254
	0.04
	+

	X-n280-k17
	33503
	36313
	33859
	33689
	33675
	0.51
	+

	X-n284-k15
	20215
	22263
	20380
	20388
	20390
	0.86
	[image: $$\approx $$]

	X-n289-k60
	95151
	98346
	95939
	95971
	95691
	0.57
	+

	X-n294-k50
	47161
	48487
	47399
	47360
	47364
	0.43
	[image: $$\approx $$]

	X-n298-k31
	34231
	36317
	34361
	34371
	34349
	0.34
	+

	X-n303-k21
	21736
	23714
	21920
	21877
	21871
	0.62
	[image: $$\approx $$]

	X-n308-k13
	25859
	28555
	26121
	26166
	26081
	0.86
	+

	X-n313-k71
	94043
	97700
	94930
	94919
	94647
	0.64
	+

	X-n317-k53
	78355
	79635
	78400
	78413
	78398
	0.05
	+

	X-n322-k28
	29834
	31862
	30018
	30038
	29974
	0.47
	+

	X-n327-k20
	27532
	29939
	27682
	27667
	27629
	0.35
	+

	X-n331-k15
	31102
	34351
	31138
	31178
	31135
	0.11
	+






4.2 Results and Discussions
Table 3.The results of the compared algorithms on the 79 large-scale X benchmark instances (mean of the 15 runs for GPGLS; all the other compared algorithms are deterministic): part 2.


	Instances
	BKS
	CW
	GLS
	KGLS
	GPGLS
	Gap(%)
	Sig-Test

	X-n336-k84
	139111
	145545
	140532
	140635
	140363
	0.90
	+

	X-n344-k43
	42050
	44562
	42367
	42377
	42227
	0.42
	+

	X-n351-k40
	25896
	27123
	26159
	26146
	26107
	0.82
	+

	X-n359-k29
	51505
	53736
	51964
	51988
	51801
	0.58
	+

	X-n367-k17
	22814
	25343
	22916
	22913
	23169
	1.55
	–

	X-n376-k94
	147713
	149659
	147844
	147843
	147791
	0.05
	+

	X-n384-k52
	65940
	69526
	66408
	66372
	66268
	0.50
	+

	X-n393-k38
	38260
	40609
	38470
	38464
	38393
	0.35
	+

	X-n401-k29
	66163
	69698
	66614
	66575
	66573
	0.62
	+

	X-n411-k19
	19712
	21717
	20124
	19852
	20028
	1.60
	–

	X-n420-k130
	107798
	112604
	108444
	108400
	108237
	0.41
	+

	X-n429-k61
	65449
	68622
	65858
	65784
	65683
	0.36
	+

	X-n439-k37
	36391
	38637
	36517
	36534
	36458
	0.19
	+

	X-n449-k29
	55233
	58614
	55886
	55772
	55714
	0.87
	+

	X-n459-k26
	24139
	26448
	24276
	24237
	24257
	0.49
	[image: $$\approx $$]

	X-n469-k138
	221824
	234994
	223686
	223378
	222669
	0.38
	+

	X-n480-k70
	89449
	92849
	90052
	89871
	89777
	0.37
	+

	X-n491-k59
	66487
	69443
	67173
	67005
	67047
	0.84
	[image: $$\approx $$]

	X-n502-k39
	69226
	72306
	69303
	69327
	69305
	0.11
	+

	X-n513-k21
	24201
	27159
	24304
	24307
	24305
	0.43
	+

	X-n524-k137
	154593
	165573
	157427
	157338
	157130
	1.64
	[image: $$\approx $$]

	X-n536-k96
	94868
	99410
	95906
	95888
	95670
	0.85
	+

	X-n548-k50
	86700
	89820
	86893
	86929
	86820
	0.14
	+

	X-n561-k42
	42717
	45443
	42968
	43024
	42994
	0.65
	[image: $$\approx $$]

	X-n573-k30
	50673
	52541
	51048
	50874
	50960
	0.57
	–

	X-n586-k159
	190316
	199508
	191479
	191473
	191002
	0.36
	+

	X-n599-k92
	108451
	112680
	109245
	109335
	109061
	0.56
	+




Table 4.The results of the compared algorithms on the 79 large-scale X benchmark instances (mean of the 15 runs for GPGLS; all the other compared algorithms are deterministic): part 3.


	Instances
	BKS
	CW
	GLS
	KGLS
	GPGLS
	Gap(%)
	Sig-Test

	X-n613-k62
	59535
	62392
	60280
	60208
	60119
	0.98
	+

	X-n627-k43
	62164
	65975
	62615
	62560
	62525
	0.58
	[image: $$\approx $$]

	X-n641-k35
	63694
	68071
	64138
	64086
	64080
	0.61
	[image: $$\approx $$]

	X-n655-k131
	106780
	108110
	106976
	106950
	106921
	0.13
	+

	X-n670-k126
	146332
	158548
	152925
	151001
	150947
	3.15
	[image: $$\approx $$]

	X-n685-k75
	68205
	71706
	68827
	68787
	69952
	2.56
	+

	X-n701-k44
	81923
	85408
	82608
	82477
	82427
	0.61
	+

	X-n716-k35
	43387
	45480
	43888
	43820
	43778
	0.90
	+

	X-n733-k159
	136190
	139633
	137209
	137194
	136904
	0.52
	+

	X-n749-k98
	77314
	79451
	78382
	78194
	78124
	1.05
	+

	X-n766-k71
	114454
	119581
	115831
	115872
	115720
	1.11
	+

	X-n783-k48
	72394
	76777
	73137
	73109
	72939
	0.75
	+

	X-n801-k40
	73305
	77543
	73774
	73525
	73712
	0.55
	–

	X-n819-k171
	158121
	166119
	159617
	159553
	159279
	0.73
	+

	X-n837-k142
	193737
	201105
	195255
	195117
	194658
	0.48
	+

	X-n856-k95
	88965
	92491
	89264
	89336
	89274
	0.35
	+

	X-n876-k59
	99299
	102620
	100114
	100130
	99975
	0.68
	+

	X-n895-k37
	53860
	59391
	54483
	54280
	54277
	0.77
	[image: $$\approx $$]

	X-n916-k207
	329179
	344818
	331241
	331043
	330514
	0.41
	+

	X-n936-k151
	132725
	145529
	137522
	137027
	138055
	4.02
	–

	X-n957-k87
	85465
	89594
	85827
	85799
	85708
	0.28
	+

	X-n979-k58
	118987
	123936
	119842
	119760
	119554
	0.48
	+

	X-n1001-k43
	72359
	77378
	73244
	73032
	73022
	0.92
	[image: $$\approx $$]





Tables 2, 3 and 4 show the performance of the compared algorithms on the 79 large-scale X benchmark instances with over 200 nodes. The 79 instances are split into 3 tables (part 1 to part 3) to avoid having one excessively long table. The “BKS”, “CW”, ”GLS”, and “KGLS” columns show the total cost of the solutions from the best-known results, the CW heuristic, the GLS, and KGLS, respectively. The “GPGLS” column shows the mean total cost of the 15 solutions obtained by the 15 runs of GPGLS. The “Gap” column shows the gap between GPGLS and BKS in percentage, calculated as [image: $$(\texttt{GPGLS}-\texttt{BKS}) / \texttt{BKS} \times 100$$]. The “Sig-Test” column shows the results of the Wilcoxon rank sum test between GPGLS and KGLS under significance level of 0.05, where “[image: $$+/-/\approx $$]” indicates that GPGLS performed significantly better than KGLS, significantly worse than KGLS, or there is no statistical significance between GPGLS and KGLS.
The tables show that both GPGLS and KGLS obtained much better solutions than the CW heuristic, which demonstrates the effectiveness of the GLS improvement process starting from the initial solution by the CW heuristic. It is also obviously that both KGLS and GPGLS outperformed the standard GLS in lots of instances, which shows the effectiveness of the GLS improvement process by the utility function. When looking at the “Gap” column, we can see that the solutions obtained by GPGLS are very promising, with less than 1% gap from the best-known solutions on 70 out of the 79 instances.
More importantly, GPGLS significantly outperforms KGLS on 56 instances, performs significantly worse than KGLS on only 7 instances, and is statistically comparable to KGLS on the remaining 16 instances. This demonstrates that GPGLS managed to learn significantly more effective GLS heuristics than the state-of-the-art KGLS. Moreover, in the experiments, the GPGLS training was conducted on smaller scale instances, and the learned GLS heuristics are tested on larger scale instances. The promising test performance shows that GPGLS is able to learn from small instances and scale up to large instances.
Figure 3 illustrates the convergence curves of KGLS and the GPGLS with the median performance of the 15 runs on the X-n586-k159 and X-n801-k40 instances. For X-n586-k159, GPGLS performed significantly better than KGLS, while for X-n801-k40, GPGLS performed significantly worse. From the two figures, we see some interesting patterns. First, GPGLS showed similar patterns on both instances. However, KGLS showed quite different behaviours in the two instances. For X-n586-k159, it converged and got stuck into poor local optima at the very early stage of the search. For X-n801-k40, on the other hand, it showed considerable improves stage by stage. Even after 350 s, it managed to find decent improvements to the solution.
The above observations suggest that the convergence behaviour of GLS can vary based on the characteristics of the problem instance. In addition, the stopping criterion of 5 s for GLS during the training process can be misleading, especially when more improvements can be found in the later stage of the search (e.g., KGLS on X-n801-k40). This suggests that using 5 s for GLS during training might not lead to an accurate fitness evaluation. Better strategies will be considered in our future study to achieve better trade-off between the accuracy and efficiency of fitness evaluation.[image: ]
Fig. 3.The convergence curves of KGLS and the GPGLS with the median performance of the 15 runs on the X-n586-k159 and X-n801-k40 instances.


[image: ]
Fig. 4.The number of nodes and gap (%) of the 15 GP-evolved utility functions.




4.3 Further Analysis
Figure 4 shows the number of nodes and average gap (%) cross all the test instances for the 15 GP-evolved utility functions. From the figure, we can see that the gap tends to decrease with the increase of the number of nodes, which is consistent with intuition. Furthermore, GPGLS managed to find a utility function with both small gap and number of nodes. The detailed structure of the utility function (after simplification) is [image: $$\frac{\texttt{S8}}{\texttt{S7}+1+\texttt{p}}$$], where the average compactness per route measured by width and radian are used to penalize the edge. This is quite different from the manual utility function of GLS and KGLS.
Figure 5 shows the number of times each terminal occurs in the 15 utility functions. We can see that [image: $$\texttt{p}$$] occurred most frequently, followed by [image: $$\texttt{S2}$$] and [image: $$\texttt{I3}$$]. An interesting finding is that the [image: $$\texttt{c}$$] and [image: $$\texttt{S5}$$] terminals used in KGLS were not frequently used in the GP-evolved utility functions. This implies the potential of completely new and different patterns from the manually discovered ones.[image: ]
Fig. 5.The frequency of terminals occurred in the 15 GP-evolved utility functions.





5 Conclusions
The goal of this paper is to use GP to automatically design utility function for GLS. The goal has been successfully achieved by designing the new GPGLS framework that trains the GLS utility functions through a GP process, with a comprehensive terminal set and a GLS-based fitness evaluation scheme.
The results show that the GLS with the utility functions evolved by GPGLS can significantly outperform KGLS on most of the LSVRP test instances. In addition, the promising test performance shows that GPGLS is able to learn from small-scale instances and scale up to larger instances. Further analysis demonstrates that GP managed to find completely new and different patterns from the utility functions used by existing GLS and KGLS methods. In general, GPGLS is a promising framework for automatically designing utility functions for GLS.
Some interesting directions can be further investigated in the future. First, surrogate models can be developed to achieve better balance between accuracy and efficiency for fitness evaluation. Second, we can consider feature selection to reduce the search space and improve the search effectiveness and efficiency. Last but not least, it is important to improve the scalability of the learned GLS on very large-scale instances.
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Abstract
Gray-box optimization leverages the information available about the mathematical structure of an optimization problem to design efficient search operators. Efficient hill climbers and crossover operators have been proposed in the domain of pseudo-Boolean optimization and also in some permutation problems. However, there is no general rule on how to design these efficient operators in different representation domains. This paper proposes a general framework that encompasses all known gray-box operators for combinatorial optimization problems. The framework is general enough to shed light on the design of new efficient operators for new problems and representation domains. We also unify the proofs of efficiency for gray-box hill climbers and crossovers and show that the mathematical property explaining the speed-up of gray-box crossover operators, also explains the efficient identification of improving moves in gray-box hill climbers. We illustrate the power of the new framework by proposing an efficient hill climber and crossover for two related permutation problems: the Linear Ordering Problem and the Single Machine Total Weighted Tardiness Problem.
Keywords
Gray-box optimizationhill climbingpartition crossovercombinatorial optimizationgroup theory
1 Introduction
In the context of combinatorial optimization with metaheuristics, it is common to assume that the algorithm does not know anything about the optimization problem except the quality of the solutions. These values guide the search towards better solutions. The objective function f is a black-box that takes a solution x and returns a real value f(x) representing its cost (to minimize) or quality (to maximize). For real-world applications, we often have more information than just a black-box evaluation function. During the last 15 years, several proposals used this additional problem information to design more effective variation operators. This is how operators like Partition Crossover for the Traveling Salesman Problem (TSP) [17] or the constant time hill climber for NK landscapes and MAX-k-SAT [15] appeared. This line of research, known as gray-box optimization [16], has produced very efficient algorithms like DRILS [3] and PRILS [1], and very efficient ways to improve existing algorithms [2]. Many so-called “black-box” optimization methods are not black-box optimizers; every modern inexact MAX-SAT or TSP solver exploits problem structure [6–8, 11].
In the gray-box optimization literature, we can find examples of hill climbers that can identify improving moves in constant time and crossover operators able to explore an exponential number of offspring in linear time. We prove in this paper that the key ingredient behind the efficiency in both cases is the same mathematical identity (decomposition theorem). We propose in Sect. 3 a mathematical framework that unifies the math behind the efficient gray-box crossovers and hill climbers. We also show that the results are general and can be applied to any representation space. To illustrate how to use the framework for designing new gray-box operators, we propose in Sect. 5 a new hill climber and partition crossover based on the same mathematical identity for the Linear Ordering Problem and the Single Machine Total Weighted Tardiness, two NP-hard permutation problems.
The new framework allows us to revisit existing gray-box operators (see Sect. 4) to find opportunities for improvement that were not obvious in the original operator formulation. These opportunities appear after analyzing the framework using the Fourier transform over finite groups. We include in Sect. 2 a short introduction to the concepts of group, group representation, and Fourier transform over finite groups to make the paper as self-contained as possible.

2 Background
A group is a pair [image: $$(G, \cdot )$$], where G is a set of elements and [image: $$\cdot : G \times G \rightarrow G$$] is a binary operator defined over the elements of the group with the following properties:	Associative: [image: $$g_1 \cdot (g_2 \cdot g_3)=(g_1 \cdot g_2) \cdot g_3$$]

	Neutral element: there is an element [image: $$e\in G$$] such that [image: $$e \cdot g = g \cdot e = g$$] for all [image: $$g \in G$$].

	Inverse: for each [image: $$g \in G$$] there is another element [image: $$g^{-1}$$] such that [image: $$g \cdot g^{-1} = g^{-1} \cdot g = e$$].





Two examples of finite groups relevant in this paper are [image: $$(\mathbb {Z}_2^n,+)$$], that is, binary strings with the bitwise exclusive OR (XOR); and the symmetric group (permutations) [image: $$(S_n,\circ )$$] with the composition operator. When the operation is clear from the context, we will omit it and simply write [image: $$\mathbb {Z}_2^n$$] or [image: $$S_n$$]. Observe that while in the binary case, the operation (the sum) is commutative, in the permutation case the composition is not commutative. A group action of a group G over a set X is a homomorphism of the group G into a subgroup of the bijective functions of X to itself. That is, if [image: $$g \in G$$], [image: $$x \in X$$] and [image: $$g x \in X$$] represents the action of g applied to element x, then [image: $$(g \cdot h)x = g (h x)$$].
2.1 Group Representation
A representation of a group G is a mapping [image: $$\rho :G \rightarrow GL(V)$$] between the elements of the group G and the automorphisms of a vector space V such that [image: $$\rho (g_1 \cdot g_2)=\rho (g_1) \circ \rho (g_2)$$]. An automorphism is an invertible linear map from a vector space V to itself. Without loss of generality, we will assume in the following [image: $$V=\mathbb {C}^n$$], where the vectors are n-tuples of complex numbers and the automorphisms are non-singular squared complex matrices of size [image: $$n \times n$$], that is, matrices with a nonzero determinant. A group representation translates the group elements into matrices and the group operation into matrix multiplication.
Not all group representations are equally important. Two representations, [image: $$\rho _1$$] and [image: $$\rho _2$$] are equivalent if there exists a matrix [image: $$P\in \mathbb {C}^{n\times n}$$] such that [image: $$\rho _1(g) = P \rho _2(g) P^{-1}$$] for all [image: $$g \in G$$]. Equivalent representations provide the same information; we will be interested in a set of inequivalent representations. A representation [image: $$\rho $$] is reducible if we can write [image: $$\rho (g)$$] as a block-diagonal matrix[image: $$\begin{aligned} \rho (g) = \left( \begin{array}{c|c} \rho _1(g) &amp;  0 \\ \hline 0 &amp;  \rho _2(g) \end{array}\right) , \end{aligned}$$]

 (1)


for all [image: $$g\in G$$]. Reducible representations do not provide more information than their component representations and we will discard them, focusing on irreducible representations. When the group is finite there is also a finite set of inequivalent irreducible representations, called irreps, and the cardinality of this set is exactly the number of conjugacy classes of the group [5]. When the group is commutative all the irreps are scalar values (matrices of size [image: $$1 \times 1$$]). This is the case in the group [image: $$\mathbb {Z}_2^{n}$$], the one we use for pseudo-Boolean optimization. The irreps of [image: $$\mathbb {Z}_2^{n}$$] are the Walsh functions [14]. However, when the group is not commutative, some irreps need to be expressed with squared matrices of size at least 2, as the next example shows.
Example 1
We will denote the permutations using the cycle notation. A cycle [image: $$(c_1\; c_2\; \ldots \; c_k)$$] represents a permutation that maps [image: $$c_1$$] into [image: $$c_2$$], [image: $$c_2$$] into [image: $$c_3$$] and so on. Element [image: $$c_k$$] is mapped into [image: $$c_1$$]. The elements missing in the cycle are mapped into themselves. For example, [image: $$(1 \; 2)$$] denotes a permutation in which element 1 is mapped into element 2 and element 2 is mapped into element 1. The identity permutation, which maps every element to itself, is commonly denoted with (1). Every arbitrary permutation can be written as the product of disjoint cycles.
Let’s consider the group [image: $$S_3$$] of permutations of three elements. A representation [image: $$\rho $$] for their elements is in Table 1.    [image: $$\square $$]

Table 1.Example of representation of [image: $$S_3$$] using [image: $$2 \times 2$$] matrices. This is the [image: $$\rho _{(2,1)}$$] irreducible representation in the Young Orthogonal Representation.


	[image: $$\pi $$]
	(1)
	(2 3)
	(1 2)
	(1 2 3)
	(1 3 2)
	(1 3)

	[image: $$\rho (\pi )$$]
	[image: $$\left( \begin{array}{rr} 1 &amp;  0 \\ 0 &amp; 1 \end{array}\right) $$]
	[image: $$\left( \begin{array}{rr} -\frac{1}{2}&amp;  \frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2}&amp; \frac{1}{2}\end{array}\right) $$]
	[image: $$\left( \begin{array}{rr} 1 &amp;  0 \\ 0 &amp;  -1 \end{array}\right) $$]
	[image: $$\left( \begin{array}{rr} -\frac{1}{2}&amp;  -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2}&amp;  -\frac{1}{2}\end{array}\right) $$]
	[image: $$\left( \begin{array}{rr} -\frac{1}{2}&amp;  \frac{\sqrt{3}}{2}\\ -\frac{\sqrt{3}}{2}&amp;  -\frac{1}{2}\end{array}\right) $$]
	[image: $$\left( \begin{array}{rr} -\frac{1}{2}&amp;  -\frac{\sqrt{3}}{2}\\ -\frac{\sqrt{3}}{2}&amp; \frac{1}{2}\end{array}\right) $$]






2.2 Fourier Transform over Finite Groups
Let [image: $$f: G \rightarrow \mathbb {C}$$] be a complex-valued function defined on group G and [image: $$\rho $$] a representation of G. The Fourier transform of f at [image: $$\rho $$] is defined as[image: $$\begin{aligned} \hat{f}(\rho ) = \sum _{g \in G} f(g) \rho (g). \end{aligned}$$]

 (2)


Observe that [image: $$\hat{f}(\rho )$$] is, in general, a matrix because [image: $$\rho (g)$$] is a matrix. In general, the Fourier transform of a function f at a particular representation does not provide all the information to reconstruct f, but the Fourier transform at a set of irreps does. The inverse Fourier transform is defined as[image: $$\begin{aligned} f(g) = \frac{1}{|G|} \sum _{\rho \in \text {irreps}} d_\rho \text {Tr} \left( \hat{f}(\rho ) \rho (g)^{-1} \right) , \end{aligned}$$]

 (3)


where [image: $$d_{\rho }$$] is the dimension of the vector space associated to representation [image: $$\rho $$], [image: $$\text {Tr}$$] is the trace of a matrix, and [image: $$\rho (g)^{-1}$$] denotes the inverse of [image: $$\rho (g)$$].


3 The Unifying Framework
In this section, we present a mathematical framework that summarizes in one single theorem the mathematical background behind some efficient hill climbers and crossovers in gray-box optimization. In particular, the framework generalizes the math behind Hamming Ball Hill Climber (HBHC) [4] and Partition Crossover (PX) [12, 13, 17]. Explaining with a formula the math behind hill climbers and crossovers yields a unification in gray-box combinatorial optimization. Moreover, the formula does not assume a concrete representation, but it is valid for any search space. This yields a generalization of all gray-box results known up to date. The new framework should be able to open the door to new efficient gray-box operators in combinatorial optimization problems. We illustrate this generalization by providing two new gray-box operators in Sect. 5.
We assume that our search space is a finite set X. A move in the solution space is a function [image: $$h: X \rightarrow X$$] that maps any solution [image: $$x \in X$$] to another solution h(x) that is generated by that move.
Example 2
One example of a move is a bit flip in the binary representation. If [image: $$1001 \in \mathbb {Z}_2^4$$] is a binary string representing a solution of an optimization problem, we can flip the first bit to get 0001. Here, the move is represented by the function [image: $$h(x)=x + 1000$$] in [image: $$\mathbb {Z}_2^4$$].    [image: $$\square $$]

Example 3
One example of a move in the permutation space is an exchange of two positions in the permutation. The move [image: $$h(\sigma )= \sigma \cdot (3 \; 7)$$] represents an exchange of elements 3 and 7 (we use cycle notation), and the move [image: $$h(\sigma )= (3 \; 7) \cdot \sigma $$] represents an exchange of elements at positions 3 and 7.    [image: $$\square $$]

We now define the delta function for a move h and function [image: $$f: X \rightarrow \mathbb {R}$$] as[image: $$\begin{aligned} &amp; \left( \varDelta _{h} f\right) (x) = f(h(x)) - f(x). \end{aligned}$$]

 (4)


We denote the composition of two moves [image: $$h_1$$] and [image: $$h_2$$] with [image: $$h_2 \circ h_1$$] and we define it as [image: $$(h_2 \circ h_1) (x) = h_2(h_1(x))$$]. This is equivalent to applying move [image: $$h_1$$] first to x and then applying move [image: $$h_2$$]. Composition is not commutative in general, but we will focus on commutative moves in this paper.
Definition 1
Let [image: $$h_1, h_2: X \rightarrow X$$] be two moves that commute under function composition, that is, [image: $$h_1 \circ h_2 = h_2 \circ h_1$$]. We say that the moves are non-interacting for the set of solutions [image: $$Y \subseteq X$$] when[image: $$\begin{aligned} \left( \varDelta _{h_2} f\right) (h_1(x)) = \left( \varDelta _{h_2} f\right) (x) \;\; \forall x \in Y. \end{aligned}$$]

 (5)


If we omit the reference to the set Y, then the moves are non-interacting for the whole search space X.

We can characterize the non-interaction using a different but equivalent expression, which is more common in the literature.
Proposition 1
Let [image: $$h_1, h_2: X \rightarrow X$$] be two moves that commute, then the moves are non-interacting for set [image: $$Y \subseteq X$$] if and only if[image: $$\begin{aligned} \left( \varDelta _{h_1 \circ h_2} f\right) (x) = \left( \varDelta _{h_1} f\right) (x) + \left( \varDelta _{h_2} f\right) (x) \;\; \forall x \in Y. \end{aligned}$$]

 (6)





Proof
Let’s transform the equality (6) into the equality (5) using definitions and algebraic manipulations:[image: $$\begin{aligned} \left( \varDelta _{h_1 \circ h_2} f\right) (x) &amp;= \left( \varDelta _{h_1} f\right) (x) + \left( \varDelta _{h_2} f\right) (x)\\ f(h_1(h_2(x))) - f(x) &amp;= f(h_1(x)) - f(x) + f(h_2(x)) - f(x) \text { (definition of }\varDelta ) \\ f(h_1(h_2(x))) - f(h_2(x)) &amp;= f(h_1(x)) - f(x) \text { (reordering terms)}\\ \left( \varDelta _{h_1} f\right) (h_2(x)) &amp;= \left( \varDelta _{h_1} f\right) (x) \text { (definition of }\varDelta ). \end{aligned}$$]



   [image: $$\square $$]

The efficiency and efficacy of the gray-box operators are based on the separability of the delta function when we decompose a move. We prove here a generalization of this separability that is valid for all representations.
Theorem 1
(Decomposition). Let [image: $$h_i: X \rightarrow X$$] with [image: $$1\le i \le m$$] be a family of pairwise commutative moves and the set [image: $$Y \subseteq X$$]. For each pair of moves [image: $$h_i$$], [image: $$h_j$$] we also require that they are non-interacting in the sets H(Y) for all moves H that are compositions of moves [image: $$h_k$$] with [image: $$1\le k \le m$$] that do not include [image: $$h_i$$] and [image: $$h_j$$]. H can also be the identity function (empty composition of moves). It holds[image: $$\begin{aligned} \left( \varDelta _{\bigcirc _{i=m}^{1} h_i} f\right) (x) = \sum _{i=1}^{m} \left( \varDelta _{h_i} f\right) (x) \;\; \forall x \in Y. \end{aligned}$$]

 (7)





Proof
We can prove Eq. (7) using induction over m. For [image: $$m=1$$] the equality is trivial because we have the same expression on both sides. Let’s assume that the equality holds for m and let’s prove it for [image: $$m+1$$]. We assume [image: $$x \in Y$$] and write[image: $$\begin{aligned} \left( \varDelta _{\bigcirc _{i=m+1}^{1} h_i} f\right) (x) &amp;= f((\bigcirc _{i=m+1}^{1} h_i)(x)) - f(x) \\ &amp;= f((\bigcirc _{i=m+1}^{1} h_i)(x)) - f((\bigcirc _{i=m}^{1} h_i)(x)) \\ &amp; \qquad + f((\bigcirc _{i=m}^{1} h_i)(x))- f(x) \\ &amp;= (\varDelta _{h_{m+1}} f) ((\bigcirc _{i=m}^{1} h_i)(x)) + \left( \varDelta _{\bigcirc _{i=m}^{1} h_i} f\right) (x). \end{aligned}$$]



Since [image: $$h_{m+1}$$] and all the [image: $$h_{i}$$] are commutative and non-interacting in H(Y) for any composition H of the other moves we can apply Eq. (5) iteratively to get [image: $$(\varDelta _{h_{m+1}} f) ((\bigcirc _{i=m}^{1} h_i)(x)) = (\varDelta _{h_{m+1}} f) (x) $$]. If we use the induction hypothesis we can write[image: $$ (\varDelta _{h_{m+1}} f) ((\bigcirc _{i=m}^{1} h_i)(x)) + \left( \varDelta _{\bigcirc _{i=m}^{1} h_i} f\right) (x) = (\varDelta _{h_{m+1}} f) (x) + \sum _{i=1}^{m} \left( \varDelta _{h_i} f\right) (x), $$]



proving the result.    [image: $$\square $$]

Corollary 1
(Lattice linear equation). Let [image: $$W \subseteq \{1,2,\ldots ,m\}$$] be a subset of indices for the moves [image: $$h_i$$]. We denote with [image: $$H_W$$] the move created after the composition of the [image: $$h_i$$] with [image: $$i \in W$$], [image: $$H_W=\bigcirc _{i \in W} h_i$$]. Then,[image: $$\begin{aligned} \left( \varDelta _{H_W} f\right) (x) = \sum _{i \in W} \left( \varDelta _{h_i} f\right) (x) \;\; \forall x \in Y. \end{aligned}$$]

 (8)





Proof
It is a simple application of Theorem 1 to the moves [image: $$h_i$$] with [image: $$i \in W$$].

Let’s now focus on the moves that are bijections. These moves form a group, the symmetric group (permutations) over set X, denoted here with [image: $$\mathcal {S}_X$$]. This group naturally acts on the search space X. That is, we define the action of a bijective move h over an element [image: $$x \in X$$] as h(x). We will be interested in this paper in a subgroup G of [image: $$\mathcal {S}_X$$] that is transitive, that is, for any pair of elements [image: $$x,y \in X$$] we can find a move [image: $$g \in G$$] such that [image: $$g(x)=y$$]. If we work with such a group G, then we can fix one solution in the search space [image: $$x_0\in X$$] as a base solution and define a group function [image: $$f': G \rightarrow \mathbb {R}$$] based on the objective function f as [image: $$f'(g) = f(g(x_0))$$]. Since the group is transitive, any solution x of the search space has at least one move g such that [image: $$g(x_0)=x$$]. Optimizing [image: $$f'$$] is equivalent to optimizing f, and now the domain of [image: $$f'$$] is a group. We can represent both, solutions and moves, with elements of that group.
Example 4
In the context of pseudo-Boolean optimization, where the solutions are elements of [image: $$\mathbb {Z}_2^n$$] (binary strings), we can also use binary strings to represent a move. The element [image: $$w \in \mathbb {Z}_2^n$$] acts on solution x by moving it to [image: $$x + w$$] (bitwise XOR). In the permutation space, a move can also be a permutation [image: $$\sigma $$] that acts on solution [image: $$\pi $$] by left-composition, [image: $$\sigma \circ \pi $$], or right-composition, [image: $$\pi \circ \sigma $$].    [image: $$\square $$]

Based on the decomposition theorem (Theorem 1) we can propose a method to potentially develop an efficient hill climber and a general partition crossover operator.
3.1 Efficient Hill Climber
The idea of the efficient hill climber (Algorithm 1) is to keep in memory the values [image: $$(\varDelta _{h}f)(x)$$] for the current solution x of a set of moves [image: $$h \in N$$]. With a little abuse of notation, we will denote the vector of delta values, also called score vector, with [image: $$\varDelta f$$]. Moves are classified into two classes: improving and non-improving1. Assuming minimization, a move h is improving if and only if [image: $$(\varDelta _{h}f)(x) &lt; 0$$]. At one iteration, the hill climber picks one of the improving moves h and updates the current solution by applying h to x (see Line 4 in Algorithm 1). It also updates the vector [image: $$(\varDelta f)$$] (Line 3).[image: ]


The selection of an improving move can be done in constant time. In many cases, the update of [image: $$\varDelta f$$] can also be done in constant time if the set of moves N is linear in the size of the problem. This makes it possible to run one step of the hill climber in constant time. Now, we claim that there is no need to keep in memory the value [image: $$(\varDelta _{h_2 \circ h_1}f)(x)$$] if [image: $$h_1$$] and [image: $$h_2$$] are commutative and non-interacting. For the move [image: $$h_2 \circ h_1$$] to be improving, we need at least one of [image: $$h_1$$] or [image: $$h_2$$] to be an improving move. Certainly, if [image: $$(\varDelta _{h_2 \circ h_1}f)(x) = (\varDelta _{h_1}f)(x) + (\varDelta _{h_2}f)(x) &lt; 0$$] then the two values [image: $$(\varDelta _{h_1}f)(x)$$] and [image: $$(\varDelta _{h_2}f)(x)$$] cannot be greater or equal to zero at the same time. This result generalizes for any number of moves [image: $$h_i$$] that are commutative and non-interacting. That means that we can explore a large neighborhood N(x) around a solution by analyzing a much smaller number of moves. The key point here is to find the set of moves needed to explore the desired neighborhood. In the context of pseudo-Boolean optimization, it has been proven that for k-bounded pseudo-Boolean functions where each variable can only appear in a number of subfunctions, it is possible to explore a ball of constant size t storing only a linear number of moves in memory [4].

3.2 Partition Crossover
Corollary 1 also makes it possible to define a very effective crossover operator, called partition crossover (PX). Let [image: $$x_1, x_2 \in X$$] be two solutions that are connected by a move g, that is, [image: $$g(x_1)=x_2$$]. Partition crossover is based on the decomposition of [image: $$\varDelta _{g} f$$] for solution [image: $$x_1$$]. Let us write this decomposition as[image: $$\begin{aligned} \left( \varDelta _{g} f\right) (x_1) = \sum _{i=1}^{q} \left( \varDelta _{h_i} f\right) (x_1), \end{aligned}$$]

 (9)


then each [image: $$h_i$$] is called a component in partition crossover. For each component, we decide if it is included or not in the offspring solution. We can write this more explicitly evaluating the delta function in [image: $$x_1$$]:[image: $$\begin{aligned} \left( \varDelta _{g} f\right) (x_1) = f (x_2) - f(x_1) = \sum _{i=1}^{q} \left( f(h_i (x_1)) - f(x_1))\right) . \end{aligned}$$]

 (10)


If [image: $$(\varDelta _{h_i} f)(x_1) &lt; 0$$] then [image: $$h_i$$] is used to form the offspring solution, otherwise it is not included. We can now define the set W of the corollary as follows: [image: $$W=\{i \,|\, 1\le i\le m, (\varDelta _{h_i} f)(x_1) &lt; 0\}$$]. The offspring is the solution [image: $$x^* = H_W(x_1)$$]. According to Corollary 1, this procedure necessarily finds the best solution from the set of [image: $$2^m$$] solutions that can be generated by applying or not each of the m components.

3.3 The Role of Fourier Transforms
Let us consider the case in which the moves are bijections and we can ground the objective function on a group G. We can use the Fourier transform of the objective function to help identify non-interacting moves to apply Theorem 1.
Theorem 2
Let G be a group, [image: $$f: G \rightarrow \mathbb {R}$$] a function and [image: $$h_1, h_2 \in G$$] two moves that commute. Then, the moves are non-interacting if and only if:[image: $$\begin{aligned} \left( \rho _{\lambda }(h_1^{-1})-I\right) \left( \rho _{\lambda }(h_2^{-1})-I\right) \hat{f}(\lambda ) = 0 \;\;\; \forall \lambda \in \text {irreps}, \end{aligned}$$]

 (11)


where [image: $$\rho _{\lambda }$$] is a representation of G labeled with [image: $$\lambda $$] and [image: $$\hat{f}(\lambda )$$] is the Fourier transform of f in that representation.

Proof
Let us apply Eq. (2) (Fourier transform) to [image: $$\varDelta _h f$$]:[image: $$\begin{aligned} \sum _{g \in G} \left( \varDelta _h f \right) (g) \rho _{\lambda }(g) &amp;= \sum _{g \in G} \left( f(h \cdot g) - f(g) \right) \rho _{\lambda } (g)\\ &amp;= \left( \sum _{g \in G} f(h \cdot g) \rho _{\lambda } (g) \right) - \left( \sum _{g \in G} f(g) \rho _{\lambda } (g) \right) \\ \end{aligned}$$]



now using the change [image: $$g'=h \cdot g$$][image: $$\begin{aligned} = \left( \sum _{g' \in G} f(g') \rho _{\lambda } (h^{-1} \cdot g') \right) - \left( \sum _{g \in G} f(g) \rho _{\lambda } (g) \right) \\ \end{aligned}$$]



applying [image: $$\rho _{\lambda }(h^{-1} \cdot g')=\rho _{\lambda }(h^{-1}) \rho _{\lambda }(g')$$][image: $$\begin{aligned} &amp;= \rho _{\lambda } (h^{-1}) \left( \sum _{g' \in G} f(g') \rho _{\lambda } (g') \right) - \left( \sum _{g \in G} f(g) \rho _{\lambda } (g) \right) \nonumber \\ &amp;= \rho _{\lambda } (h^{-1}) \hat{f}(\lambda ) - \hat{f}(\lambda ) = \left( \rho _{\lambda } (h^{-1})-I\right) \hat{f}(\lambda ). \end{aligned}$$]

 (12)


Let us now write Eq. (6) as[image: $$\begin{aligned} \varDelta _{h_2 \cdot h_1} f - \varDelta _{h_2} f - \varDelta _{h_1} f = 0. \end{aligned}$$]



If we apply Eq. (12) to the previous expression we get for all irreps [image: $$\lambda $$][image: $$\begin{aligned} 0 &amp;=\left[ \rho _{\lambda } \left( (h_2\cdot h_1)^{-1}\right) -I\right] \hat{f}(\lambda ) -\left[ \rho _{\lambda } (h_2^{-1})-I\right] \hat{f}(\lambda ) -\left[ \rho _{\lambda } (h_1^{-1})-I\right] \hat{f}(\lambda ) \\ &amp;=\left[ \rho _{\lambda } \left( (h_2\cdot h_1)^{-1}\right) -I - \rho _{\lambda } (h_2^{-1})+I - \rho _{\lambda } (h_1^{-1})+I \right] \hat{f}(\lambda ) \\ &amp;=\left[ \rho _{\lambda } \left( (h_2\cdot h_1)^{-1}\right) - \rho _{\lambda } (h_2^{-1}) - \rho _{\lambda } (h_1^{-1})+I \right] \hat{f}(\lambda ) \\ &amp;=\left[ \rho _{\lambda }(h_1^{-1}) \rho _{\lambda }(h_2^{-1}) - \rho _{\lambda } (h_2^{-1}) - \rho _{\lambda } (h_1^{-1})+I \right] \hat{f}(\lambda ) \\ &amp;=\left( \rho _{\lambda }(h_1^{-1})-I\right) \left( \rho _{\lambda }(h_2^{-1})-I\right) \hat{f}(\lambda ). \end{aligned}$$]



   [image: $$\square $$]

Observe that [image: $$\rho _\lambda $$] is, in general, a matrix, as well as [image: $$\hat{f}(\lambda )$$]. Having the Fourier transform of f it is possible to find pairs of commutative moves [image: $$h_1$$] and [image: $$h_2$$] that are non-interacting and can be used to produce a hill climber or partition crossover tailored to the particular instance of the problem.
Example 5
Since [image: $$\mathbb {Z}_2^{n}$$] is commutative, each solution is a conjugacy class and the irreps are scalar functions labeled with the elements of [image: $$\mathbb {Z}_2^{n}$$]: the well-known Walsh functions, defined as [image: $$\varphi _{\lambda }(x)=\prod _{i=1}^{n}(-1)^{\lambda _i x_i} $$], which take values 1 and [image: $$-1$$]. The moves [image: $$h_1$$] and [image: $$h_2$$] are also elements of [image: $$\mathbb {Z}_2^{n}$$] (binary strings). We have for this case [image: $$h^{-1}=h$$] (each element is its own inverse element) and [image: $$\rho _{\lambda }(x^{-1})=\rho _{\lambda }(x)=\varphi _{\lambda }(x)$$]. In this context, Eq. (11) is satisfied, and two moves [image: $$h_1$$] and [image: $$h_2$$] are non-interacting if for all [image: $$\lambda $$] for which there is a nonzero Walsh coefficient in the Fourier transform of f, [image: $$\hat{f}(\lambda ) \ne 0$$], we have that either [image: $$\varphi _{\lambda }(h_1)=1$$] or [image: $$\varphi _{\lambda }(h_2)=1$$].    [image: $$\square $$]



4 Previous Gray-Box Operators
In this section, we will prove that some gray-box operators previously published in the literature fit in the framework. In the binary case, the new framework provides new opportunities to improve the operators.
4.1 Partition Crossover in the TSP
Let us focus on the Generalized Asymmetric Partition Crossover (GAPX) by Tinós et al. [13], which was defined for the asymmetric TSP. The basic move we will need in this case is an insertion. We will denote with [image: $$h_{i,j}$$] with [image: $$i\ne j$$] the insertion of city i before city j in the solution.
Example 6
In Fig. 1 we can see that city 2 is removed from its position and placed before city 20 when we move from Solution 1 to Solution 2. We represent that move with [image: $$h_{2,20}$$]. Two insertion moves [image: $$h_{i,j}$$] and [image: $$h_{i',j'}$$] are commutative if the sets [image: $$\{i,j\}$$] and [image: $$\{i',j'\}$$] are disjoint. That is, if they “involve” four different cities.    [image: $$\square $$]

Let’s follow the working principles of GAPX using the example in Fig. 1. GAPX creates a combined graph with all the arcs of the two parent solutions. Next, it removes the arcs that are common to both parents (gray in the figure). Then, it finds the connected components in the graph. In one connected component, there are entry nodes and exit nodes. The arcs in the component connect each entry node to one exit node. If the entry-to-exit connections are the same in both parent solutions, then the decision of which parent to use for the arcs of that component can be taken independently of the other components.[image: ]
Fig. 1.Two parent solutions of GAPX in TSP. (Color figure online)



Example 7
In Fig. 1, there are three components and the arcs in the different components are given different colors (red, blue and green). The entry nodes of the red component are 10 and 16. The exit nodes of the red component are 12 and 18. Observe that in both parents, 10 is connected to 12 in the component and 16 is connected to 18. Thus, in Solution 1 we could replace the arcs in red with the arcs in red in Solution 2 and we still have a valid solution (potential offspring). We can do this by applying insertion moves [image: $$h_{17,12}$$] and [image: $$h_{11,18}$$]. These two moves commute but they are interacting. We can easily see this in Table 2, where the arcs (16, 11) and (10, 17) are only added by move [image: $$h_{17,12} \cdot h_{11,18}$$].    [image: $$\square $$]

For two insertion moves to be non-interacting in a solution they must involve cities which are not adjacent. In general, the moves that transform the paths in one component of Solution 1 to the paths in the same component of Solution 2 are non-interacting for Solution 1, even if we also apply the moves that transform the other components. Thus, Corollary 1 is applicable.
Example 8
Moves [image: $$h_{17,12}$$], [image: $$h_{11,18}$$], and [image: $$h_{17,12} \cdot h_{11,18}$$] are non-interacting with move [image: $$h_{2,20}$$], which transforms the blue component from Solution 1 to Solution 2.    [image: $$\square $$]

Table 2.Arcs added and removed after applying different moves to Solution 1.


	Moves
	Removed arcs
	Added arcs

	[image: $$h_{11,18}$$]
	(10, 11), (11, 12), (17, 18)
	(10, 12), (17, 11), (11, 18)

	[image: $$h_{17,12}$$]
	(16, 17), (17, 18), (11, 12)
	(11, 17), (17, 12), (16, 18)

	[image: $$h_{17,12} \cdot h_{11,18}$$]
	(16, 17), (17, 18), (10, 11), (11, 12)
	(16, 11), (11, 18), (10, 17), (17, 12)





The previous argument shows that the way in which GAPX works produces a set of moves that are pairwise non-interacting. Thus, if GAPX finds q components in this way, Corollary 1 can be applied and the best of [image: $$2^q$$] potential offspring is computed.
Example 9
In Fig. 1, the pairwise non-interacting moves are [image: $$h_{17,12} \cdot h_{11,18}$$] (red component), [image: $$h_{2,20}$$] (blue component), and [image: $$h_{14,6}$$] (green component).    [image: $$\square $$]


4.2 Gray-Box Optimization in Pseudo-Boolean Functions
In the context of pseudo-Boolean optimization, we can represent solutions and moves with elements of [image: $$\mathbb {Z}_2^n$$], which form a commutative group under addition. The gray-box operators defined in the literature are based on the concept of Variable Interaction Graph (VIG). A VIG is an undirected graph where the set of nodes is the set of Boolean variables and there is an edge between two variables when they interact. Using the language of our framework, the nodes of the graph are the moves of size one (bit flip) and the edges represent interactions among those moves. Let us define [image: $$ones(g)=\{i \,|\, g_i=1, \text {for } 1 \le i \le n\}$$]. In terms of the Fourier (Walsh) transform, there is an interaction among two order-1 moves [image: $$g,h \in \mathbb {Z}_2^n$$] when there is a nonzero Walsh coefficient [image: $$\hat{f}(\lambda )$$] with [image: $$ones(\lambda ) \cap ones(g) \ne \emptyset $$] and [image: $$ones(\lambda ) \cap ones(h) \ne \emptyset $$]. This means that the [image: $$\lambda $$] vector is 1 in the positions where moves g and h are 1. For higher-order moves [image: $$g, h \in \mathbb {Z}_2^n$$], previous work says that they are non-interacting when the subgraphs induced by the moves in the VIG are not adjacent. That is, two moves [image: $$g,h \in \mathbb {Z}_2^n$$] are non-interacting if for all [image: $$\lambda \in \mathbb {Z}_2^n$$] at least one of the following three conditions is true: 1) [image: $$\hat{f}(\lambda )=0$$], 2) [image: $$ones(\lambda ) \cap ones(g) = \emptyset $$], or 3) [image: $$ones(\lambda ) \cap ones(h) = \emptyset $$]. If we denote with [image: $$\lambda g$$] the dot product of [image: $$\lambda $$] and g in [image: $$(\mathbb {Z}_2^n,+,\cdot )$$], we can observe that [image: $$\lambda g = 0$$] when [image: $$ones(\lambda ) \cap ones(g) = \emptyset $$]; and, thus, if one of the three previous conditions is true for all [image: $$\lambda $$], then Eq. (11) is satisfied. As a consequence, moves h and g are non-interacting, and all the previous results on gray-box operators for pseudo-Boolean optimization (including hill climbers and partition crossover) are explained in the context of our new mathematical framework.
But our framework has more to say. There are cases in which [image: $$ones(\lambda ) \cap ones(g) \ne \emptyset $$] and still [image: $$\lambda g=0$$]. In particular, this happens exactly when [image: $$|ones(\lambda ) \cap ones(g)|$$] is even, because the sum in the dot product is the sum in [image: $$\mathbb {Z}_2$$].
Example 10
Let us assume that we have a function f that depends on three variables: [image: $$x_1$$], [image: $$x_2$$] and [image: $$x_3$$], and let us assume that the Walsh transform provides nonzero values for [image: $$\hat{f}(100)=w_1$$], [image: $$\hat{f}(010)=w_2$$] and [image: $$\hat{f}(001)=w_3$$], [image: $$\hat{f}(110)=w_{1,2}$$] and [image: $$\hat{f}(111)=w_{1,2,3}$$]. Now we wonder if we can decompose move [image: $$h=111$$] (all bits changing). A decomposition based on the VIG would not decompose this move. Thus, a Hamming Ball Hill Climber [4] with radius 3 would need to store the score for move 111 and a partition crossover would only find one component if the two parents differ in the three bits. This is due to the nonzero value for [image: $$\hat{f}(111)$$]. However, a detailed analysis based on the Fourier (Walsh) transform reveals that this move can be decomposed into two moves, [image: $$h_1=110$$] and [image: $$h_2=001$$], as if [image: $$w_{1,2,3}$$] were zero. The reason is that for move [image: $$h_1=110$$] we have [image: $$\varphi _{111}(h_1)=(-1)^{111 \cdot 110}=1$$], [image: $$\varphi _{110}(h_1)=1$$] and [image: $$\varphi _{001}(h_1)=1$$]; and for move [image: $$h_2=001$$] we have [image: $$\varphi _{100}=1$$] and [image: $$\varphi _{010}=1$$]. These are the only nonzero Walsh coefficients and Eq. (11) is satisfied.
We can interpret this decomposition in another way. According to the inverse Fourier transform, Eq. (3), we can write f in terms of the Fourier coefficients as[image: $$\begin{aligned} f(x) = \frac{1}{8} &amp;\left( w_1 \varphi _{100}(x) + w_2 \varphi _{010}(x) + w_3 \varphi _{001}(x) + w_{1,2} \varphi _{110}(x) + w_{1,2,3} \varphi _{111}(x) \right) . \end{aligned}$$]



Move [image: $$h_1=110$$] will only affect the coefficients [image: $$w_1$$] and [image: $$w_2$$] in the Fourier transform (it changes sign of [image: $$\varphi _{100}(x)$$] and [image: $$\varphi _{010}(x)$$]), while move [image: $$h_2=001$$] will only affect the coefficients [image: $$w_{1,2,3}$$] and [image: $$w_{3}$$]. Since the coefficients affected by the moves are different, then there is no interaction between the moves.
However, this decomposition does not mean we can ignore the Fourier coefficient [image: $$w_{1,2,3}$$] for all possible purposes. For example, let us assume the input for partition crossover are the two solutions [image: $$x_1 =011$$] and [image: $$x_2= 000$$]. The move 011 cannot be decomposed in 001 and 010 because these moves both affect the sign of [image: $$w_{1,2,3}$$]. Thus, the decomposition opportunities depend on the concrete parent solutions. Partition crossover can find the decomposition opportunities dynamically or we can also statically pre-compute some opportunities depending on the values of some particular variables to speed up the process.    [image: $$\square $$]



5 New Gray-Box Operators from the Unifying Framework
We finish this work by illustrating how the new mathematical framework for gray-box optimization opens the door to the design of new gray-box operators. In particular, we focus on two NP-hard permutation problems: the Linear Ordering Problem (LOP) [10] and Single Machine Total Weighted Tardiness Problem (SMTWTP) [9]. For LOP the goal is to reorder the columns and rows of a matrix to minimize the sum of the upper diagonal. The objective function is[image: $$\begin{aligned} f_{\textrm{LOP}}(\sigma ) = \sum _{i=1}^n \sum _{j=i+1}^n A_{\sigma (i),\sigma (j)}, \end{aligned}$$]

 (13)


where A is a [image: $$n \times n$$] real matrix. In SMTWTP the goal is to find an order for n jobs minimizing the weighted tardiness. The objective function is[image: $$\begin{aligned} f_{\textrm{SMTWTP}}(\sigma ) = \sum _{i=1}^{n} w_{\sigma (i)} \cdot T_{\sigma (i)}, \end{aligned}$$]

 (14)


where [image: $$w_j$$] and [image: $$T_{j}$$] is the weight and tardiness of the j-th job, respectively. Each job j also has a due time [image: $$d_j$$] and a processing time [image: $$t_j$$]. The tardiness for job j is [image: $$T_j = \max \{0, C_j - d_j\}$$], where [image: $$C_j = \sum _{i=1}^{\sigma ^{-1}(j)} t_{\sigma (i)}$$] is the completion time for job j, which is the sum of the processing time of job j and the preceding jobs.
It is easy to see that in both problems re-arranging sets of consecutive elements in the permutation does not affect the contributions to the fitness function of the elements below or above the set. Given a solution [image: $$\sigma $$] for LOP, if we apply a move that arbitrarily permutes the elements in positions i to j, the term [image: $$A_{\sigma (l), \sigma (k)}$$] for [image: $$i\le l \le j$$] and [image: $$k &gt; j$$] will still be part of the value of the objective function for the perturbed solution. The same happens for the terms [image: $$A_{\sigma (k), \sigma (l)}$$] with [image: $$i\le l \le j$$] and [image: $$k &lt; i$$]. In SMTWTP, it is also easy to see that the tardiness of jobs in positions above j or below i is not affected by an arbitrary permutation of the elements between positions i and j and, thus, their contribution to the weighted tardiness (objective function) is unaffected.
This property allows us to confirm that Eq. (7) is fulfilled when [image: $$h_1$$] and [image: $$h_2$$] are permutations affecting disjoint consecutive elements. More precisely, if [image: $$e(h_1)$$] is the set of elements in the permutation changed by [image: $$h_1$$] and [image: $$e(h_2)$$] is the set of elements changed by [image: $$h_2$$], then we should have [image: $$[\min (e(h_1)),\max (e(h_1))] \cap [\min (e(h_2)),\max (e(h_2))] = \emptyset $$] for Eq. (7) to be true in LOP and SMTWTP.
Based on this decomposition, we can immediately design an efficient hill climber and a partition crossover. Regarding the hill climber, we only need to store the values [image: $$\varDelta _{h} f$$] for moves h that permute adjacent elements in the permutation.
Example 11
We could consider the case in which h are swaps (exchange of adjacent positions). There are [image: $$n-1$$] possible swaps in a permutation. We could also consider the case of any arbitrary permutation for three consecutive elements. There are [image: $$n-2$$] sets of three consecutive elements and five non-trivial permutations of three elements, so we have [image: $$5(n-2)$$] values to store.    [image: $$\square $$]

In general, this approach will require O(n) memory. If a move is taken during the hill climbing, then updating the [image: $$\varDelta _{h} f$$] values has to be done only for overlapping moves, which are a constant number, and can be done in constant time.
Regarding the construction of a partition crossover operator, given two parent solutions [image: $$\sigma _1$$] and [image: $$\sigma _2$$], the idea is to compute the decomposition for [image: $$\sigma _2 \cdot \sigma _1^{-1}$$]. We can find a decomposition by finding permutations of consecutive elements in [image: $$\sigma _2 \cdot \sigma _1^{-1}$$]. The pseudo-code for this is in Algorithm 2. [image: ]


The operators here defined for LOP and SMTWTP can also be applied with a slight variation to the TSP. First, we need to consider that the TSP has a rotational symmetry and, thus, we need to consider that element n is adjacent to element 1. And second, in TSP if [image: $$h_1$$] touches element i and [image: $$h_2$$] touches element [image: $$i+1$$], then [image: $$h_1$$] and [image: $$h_2$$] will interact (they both affect edge [image: $$(\sigma (i),\sigma (i+1))$$]). Thus, we need to ensure that this does not happen. It is not enough that [image: $$e(h_1) \cap e(h_2) = \emptyset $$], we also need that no element in [image: $$e(h_1)$$] is adjacent to an element in [image: $$e(h_2)$$].

6 Conclusions
This paper proposes a mathematical framework that unifies two gray-box operators defined in the literature: Hamming Ball Hill Climber (HBHC) and Partition Crossover (PX). The framework also generalizes the results in the literature and provides a mathematical background to define particular versions of these operators in search spaces different from the ones used in the past, which are permutations and binary strings. With the help of the Fourier transform over finite groups we can identify opportunities to design more effective operators.
This paper opens a new research line in gray-box optimization, allowing faster development of new gray-box operators and a new re-design of the old ones to make them more effective. There are some open questions that can be explored in future work, like the extension of the framework to sets of non-commutative moves or the research for the most appropriate representation of a problem to get profit from the efficient gray-box operators. In practice, it would be interesting to re-design the operators HBHC and PX for pseudo-Boolean optimization taking into account the new opportunities for decomposition revealed by Theorem 2. New gray-box operators can be designed for combinatorial optimization problems for which it was not clear how to apply the existing gray-box operators.
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1Alternatively, it is possible to use multiple classes based on the level of improvement.
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Abstract
Traffic congestion significantly affects the efficiency of electric vehicles (EVs), especially during extended periods of low-speed conditions, which, in this context, will violate battery capacity of the vehicle. This study addresses the dynamic electric vehicle routing problem (DEVRP), focusing on minimizing the impact of traffic congestion. Using the proven adaptation capabilities and behaviors of ant colonies, we applied the ant colony optimization (ACO) approach to improve vehicle performance under dynamic traffic conditions. Specifically, our experimental findings, on a set of benchmark generated test cases, demonstrate the effectiveness of transferring knowledge from previously optimized environments rather than optimizing from ground up. The advantage of ACO in DEVRP highlights the importance of adaptive-learning, knowledge-based, and decision-making in optimizing EV routes, presenting a promising path for future research in intelligent transportation systems.
Keywords
Electric vehicleAnt colony optimizationTraffic congestionDynamic electric vehicle routingDynamic optimization
1 Introduction
Vehicle Routing Problem (VRP) is a fundamental of logistics optimization, focusing on minimizing the total distance traveled by a fleet while serving customers under specific constraints, such as vehicle capacity and customer demand [14]. The introduction of electric vehicles (EVs) into fleet operations brings an interesting component to this classical problem, especially within major logistics companies like TNT, FedEx, and DHL, which are increasingly adopting EVs to reduce their environmental impact [35]. On the other side, the automotive industry is also increasingly moving to electric models to maintain their market dominance, including leaders like Ford and Toyota, and there are companies, such as Tesla, that continue to innovate and maintain their leadership in the EV market [30]. The transition to EVs is bound to position the logistics and transport industry in general to profoundly reduce its carbon footprint, a demand which has been falling on watch for quite some time in the light of high price of fuel and the need for answering environmental accountability [30]. The need is also driven by the desire to comply with the new EU emissions regulations1 for reaching the higher goal of achieving climate neutrality throughout Europe by 2050, in which, currently, transport represents around one-quarter of total greenhouse gas emissions in Europe, which represents about one-sixth of the global total.
The increase popularity of electric vehicles [35] introduces new challenges in optimizing their routing, arising from the unique constraints of EV technology. The Electric Vehicle Routing Problem (EVRP), an extension of the classical VRP, includes additional considerations such as the limited range of EVs, the necessity for frequent charging, the energy consumption variability, the dynamic traffic conditions and the variable availability of charging stations [40]. These factors require innovative routing solutions that not only enhance logistical efficiency but also maximize the environmental benefits of using EVs. By minimizing the carbon emissions of EV operations, such solutions contribute significantly to environmental sustainability, aligning with global efforts to combat climate change and reduce urban air pollution [9, 34].
The EVRP stands as a combinatorial optimization problem, filled with many variables and constraints, pushing the limits of traditional, exact algorithms [6, 20]. Although exact methods, such as Lagrangian relaxation and column generation, offer precise solutions, their application is often limited because of huge computational resource requirements, making them impractical for the dynamic and diverse problems distribution and logistics companies encounter daily [8]. These procedures are deeply rooted in mathematical optimization and provide rigorous results, but often fail to efficiently address the growing complexity and size of real-world EVRP scenarios.
In response, to the complexities of the EVRP, metaheuristic approaches have risen as crucial tools for navigating the intricate landscape [40]. Heuristic approaches, by design, offer a balance between solution quality and computational effort, making them more suitable for addressing the variability and uncertainty inherent in real-life logistics operations [22]. Existing literature reveals a diverse array of efficient meta-heuristic strategies for approximation solutions [39]. Specifically, metaheuristic algorithms that employ population-based search and/or local search methods, further extend this flexibility by introducing mechanisms for exploring and exploiting the solution space in ways that adapt to the evolving constraints and objectives of modern freight transportation [19, 33]. Importantly, genetic algorithms [16] and ant colony optimization (ACO) [27], have emerged as leaders in this research area. Their adaptability and proficiency in managing the combinatorial nature of EVRP distinguish them as particularly effective for addressing the problem’s inherent complexities.
While most of the research on the EVRP has focused on scenarios within stationary environments [38], recent empirical evidence highlights the significant impact of dynamic factors, such as traffic congestion, on EV efficiency [11]. For instance, a study [18] examines how traffic congestion affects battery electric vehicle performance, revealing that traffic conditions can lead to increased energy consumption and reduced operational range. Complementary, another study [5] on optimizing the integration of EVs and charging stations within the energy system further elucidates the critical interplay between transportation planning and energy system optimization, especially in addressing routing and charging decisions for EVs. This finding underscores the importance of incorporating traffic congestion into EV routing optimization to enhance environmental sustainability and improve operational efficiency. Building on this foundation, our paper extends the exploration into dynamic EVRP (DEVRP) by systematically generating test cases using a benchmark generator [28] that reflect real-world traffic congestion. To our knowledge, this represents the first application of ACO algorithms specifically tailored to address and mitigate the challenges posed by dynamic traffic congestion within the DEVRP context. Through this study we aim to devise routing strategies that not only mitigate the adverse effects of traffic congestion but also navigate the complex landscape of DEVRP to propose solutions that optimize for both efficiency and sustainability.
The rest of the paper is organized as follows. Section 2 gives the problem formulation of EVRP and describes the generation of dynamic test cases. Section 3 describes the ACO approaches designed to address the dynamic DEVRP. Experimental results are presented in Sect. 4. Section 5 presents concluding remarks and possible future research directions.

2 Dynamic Electric Vehicle Routing Problem
2.1 Background
The EVRP literature has greatly proved the classification that is highly informative based on different criteria, such as objective function types, energy consumption computations, considered constraints, and fleet types, among others [17, 21, 40]. The component of objective functions has proven to be among the most informative criterion due to its detailed reflection of the possible EVRP challenges. The reviewed literature has identified seven fundamental parts of the objective function, including three common parts as the number of electric vehicle, travel distance, and travel time, and four other parts defined the EVRP specifics as the recharging costs, total consumed energy, and station construction costs, among others [21, 36]. While the first three types of objective functions can undoubtedly be found in any VRP literature [8], the last ones are peculiar to the energy-related VRP studies, marking a shift towards more complex, dynamic models necessary for real-world application.
The dynamic nature of real-world logistics systems regarding variation of customer demands and, most importantly, the extent of congestion’s influence on overall operational success is a major obstacle to EVRP decision-making. While empirical research has only recently started to provide quantification on the importance of such dynamic factors as congestion on the overall EV performance, both characterized the necessity for dynamic decision-making [18, 27]. This highlights the importance of DEVRP, with the specifics such as real-time data implementation, consideration of varying traffic, energy flow, and possible power source integration on the charging stations.
Driven by the growing demand for sustainable transportation networks and the increasing popularity of electric vehicles, DEVRP has been positioned at the core of logistics management in the recent years. Innovative solutions that can account for EVs’ constrained load capacity and restricted driving range while optimizing for energy consumption and route efficiency are needed to address DEVRP problems [26, 27, 29]. The need for flexible and responsive routing strategies in the dynamic logistics landscape is highlighted by recent formulations, particularly those that explicitly take into account recharge scheduling and routing in scenarios with variable traffic conditions [7, 23, 31].
Moreover, the evolving policy and regulatory environment, alongside stakeholder interests from urban planners to energy suppliers and EV owners, influence the development and implementation of DEVRP solutions. Development priorities and limitations of DEVRP can be affected by different things including policies which support electric vehicle use, charges subsidization and a requirement for reducing all carbon emissions. An interesting issue which has not been addressed directly in a number of studies is the time window constraints; this suggests that there is more for further research, especially concerning how dynamic strategies might help optimize both miles travelled and energy usage within an increasingly electrified distribution landscape.

2.2 Problem Formulation
The EVRP is formulated using a complete weighted graph [image: $$G=(N,A)$$], where [image: $$N = \{0\} \cup I \cup F'$$] represents a set of nodes and [image: $$A=\{(i,j)~|~i,j \in N, i \ne j\}$$] represents a set of arcs connecting these nodes [28, 35]. Each arc is assigned a non-negative value [image: $$d_{ij}$$] representing the Euclidean distance between nodes i and j. In this context, node 0 denotes as the central depot. The set [image: $$I \subset N$$] designates customers, with each customer [image: $$i \in I$$] having an associated positive value [image: $$\delta _i$$] indicating their delivery demand. The set [image: $$F'\subset N$$] represents [image: $$\beta _i$$] node copies of each charging station [image: $$i \in F$$] (i.e., [image: $$|F'|=\sum _{i \in F} \beta _i$$]) to accommodate multiple visits, if necessary, for EVs to each charging station [image: $$i \in F'$$] [10]. The upper bound on the number of node copies for each charging station is denoted as [image: $$\beta _i=2|I|$$], reflecting the worst case scenario where one EV is required for each customer [12]. Each EV is characterized by a cargo load capacity, [image: $$u_i$$] ([image: $$0 \le u_i \le C$$]), and a battery charge level [image: $$y_i$$] ([image: $$0 \le y_i \le Q$$]), where C and Q represent the maximal cargo and the maximal battery charge level of the EV, respectively. The values [image: $$u_i$$] and [image: $$y_i$$] signify the cargo load and battery charge level of an EV upon arrival at node i, respectively. Particularly, for each traveled arc (i, j) an EV consumes [image: $$hd_{ij}$$] of the remaining battery charge level, where h is energy consumption rate of the EVs.
The mathematical model for the EVRP is articulated as follows:[image: $$\begin{aligned} \min \sum _{i \in N, j \in N,i \ne j} d_{ij} x_{ij}, \end{aligned}$$]

 (1)


s.t.[image: $$\begin{aligned} \sum _{j \in N,i \ne j} x_{ij} = 1, \forall i \in I, \end{aligned}$$]

 (2)



[image: $$\begin{aligned} \sum _{j \in N,i \ne j} x_{ij} \le 1, \forall i \in F', \end{aligned}$$]

 (3)



[image: $$\begin{aligned} \sum _{j \in N,i \ne j} x_{ij}-\sum _{j \in N, i \ne j} x_{ji}=0, \forall i \in N, \end{aligned}$$]

 (4)



[image: $$\begin{aligned} u_j \le u_i - \delta _j x_{ij} + C(1-x_{ij}), \forall i \in N, \forall j \in N, i \ne j, \end{aligned}$$]

 (5)



[image: $$\begin{aligned} u_j \ge u_i - \delta _j x_{ij} - C(1-x_{ij}), \forall i \in N, \forall j \in N, i \ne j, \end{aligned}$$]

 (6)



[image: $$\begin{aligned} 0 \le u_i \le C, \forall i \in N, \end{aligned}$$]

 (7)



[image: $$\begin{aligned} u_0 = C, \end{aligned}$$]

 (8)



[image: $$\begin{aligned} y_j \le y_i - hd_{ij}x_{ij} + Q(1-x_{ij}), \forall i \in I, \forall j \in N, i \ne j, \end{aligned}$$]

 (9)



[image: $$\begin{aligned} y_j \le Q-hd_{ij}x_{ij}, \forall i \in F', \forall j \in N, i \ne j, \end{aligned}$$]

 (10)



[image: $$\begin{aligned} 0 \le y_i \le Q, \, \forall i \in N, \end{aligned}$$]

 (11)



[image: $$\begin{aligned} y_0 = Q, \end{aligned}$$]

 (12)



[image: $$\begin{aligned} x_{ij} \in \{0,1\}, ~\forall i \in N, ~\forall j \in N, i \ne j, \end{aligned}$$]

 (13)


In this formulation, Eq. (1) minimizes the total distance of the routes, Eq. (2) ensures each customer is visited exactly once, Eq. (3) handles multiple visits to recharging stations, Eq. (4) establishes the flow conservation, Eq. (5), Eq. (6) and Eq. (7) ensure delivery demand fulfillment, Eq. (8) ensures that EVs start with full cargo load, Eq. (9), Eq. (10) and Eq. (11) maintain a non-negative battery charge level, Eq. (12) ensures that EVs start fully charged, and Eq. (13) denotes binary decision variable for arc traversal.

2.3 Generating Dynamic EVRPs
The dynamic benchmark generator is employed to generate dynamic test cases for EVRP incorporating the impact of the traffic congestion on EVs batteries [24]. Each generated DEVRP test case is characterized by the magnitude of change (small, medium, or severe), and the frequency of change (fast or slow)2.
For the DEVRP a factor that increases or decreases the value of arcs connecting nodes i and j is assigned every environmental period T, denoted as [image: $$d_{ij}(T)$$], where [image: $$T=\lceil t/f \rceil $$], f is the frequency of a dynamic change, and t is the algorithmic iteration count. The value of the arc (i, j) changes according to:[image: $$\begin{aligned} d_{ij}(T+1) = {\left\{ \begin{array}{ll} d_{ij}(0) + \mathcal {R}_{ij},~~\text {if arc}(i,j) \in A_{rnd}(T),\\ d_{ij}(T), ~~~~~~~~~~\text {otherwise}, \end{array}\right. } \end{aligned}$$]

 (14)


where [image: $$\mathcal {R}_{ij}$$] is a random number drawn from a normal distribution with a zero mean and standard deviation proportional to the initial value of the arc [image: $$d_{ij}(0)$$], [image: $$A_{rnd}(T) \subset A$$] is a set of randomly selected arcs with size [image: $$\lceil mn(n-1)\rceil $$] in which their values are subject to change at environmental period index T, n is the size of the problem, and [image: $$m \in (0,1)$$] is the magnitude of change.
This dynamic alteration may impact the feasibility of the generated solution. Specifically, an increase in travel time between two nodes due to traffic congestion may violate the energy constraints in Eq. (9), Eq. (10), and Eq. (11). Conversely, a decrease in traffic congestion may affect the solution’s quality, as planned visits to charging stations may become unnecessary.


3 Ant Colony Optimization
3.1 Constructing EVRP Solutions
Each ant k initiates its journey from the central depot, selecting nodes until all nodes from the customer set I are chosen. The decisions are influenced by both the pheromone trails generated by the ants and heuristic information values associated with the arcs (i, j) connecting the nodes.
The probability distribution for ant k selecting node j from node i is defined as follows:[image: $$\begin{aligned} p_{ij}^{k}={\left\{ \begin{array}{ll}\frac{\left[ \tau _{ij}\right] ^{\alpha }\left[ \eta _{ij}\right] ^{\beta }}{\sum _{l\in \text {N}_{i}^{k}}\left[ \tau _{il}\right] ^{\alpha }\left[ \eta _{il}\right] ^{\beta }}, \text { if } j \in \mathcal {N}_{i}^{k},\\ 0, ~~~~~~~~~~~~~~~~~~~~\text {otherwise}, \end{array}\right. } \end{aligned}$$]

 (15)


where [image: $$\tau _{ij}$$] and [image: $$\eta _{ij} = 1/d_{ij}(T)$$] are, respectively, the existing pheromone trail and the heuristic information available a priori associated with arc (i, j). Parameters [image: $$\alpha $$] and [image: $$\beta $$] determine the relative influence of [image: $$\tau _{ij}$$] and [image: $$\eta _{ij}$$], respectively, while [image: $$\mathcal {N}_{i}^{k}$$] is the set of unselected nodes (from customer set I) for the k–th ant adjacent to node i. Note that the depot and charging station nodes are not included in the [image: $$\mathcal {N}_{i}^{k}$$] set but are selected independently (described in the following) to satisfy the constraints of the EVRP.
The EVRP solution construction, as proposed in [28], is utilized to build a feasible solution [image: $$s^k$$] as follows. Each customer [image: $$j \in \mathcal {N}_i^{k}$$] available for selection at any construction step must satisfy the following criteria: (a) the delivery demand of customer j must not violate the capacity constraint, (b) the required energy to travel to customer j from node (either charging station, depot or customer) i must not violate the energy constraint, and (c) customer j must have at least one charging station or the depot within its energy range [27].
If the selected customer j violates the cargo load capacity, the depot node is added to the [image: $$s^k$$] solution to close the EV route, assuming sufficient energy is available to return to the depot. Additionally, when the chosen customer j violates either the energy constraint or the energy range criteria, the closest energy recharging station, say z, between node i and potential next customer j is determined as follows:[image: $$\begin{aligned} z = \arg \min _{l \in F} \{d_{il}+d_{lj}\}, \end{aligned}$$]

 (16)


and then inserted to the [image: $$s^k$$] solution. It is worth noting that the possibility of insufficient energy to travel to any energy recharging station or back to the central depot is eliminated due to the energy range criteria applied in customer selection.

3.2 Updating Pheromone Trails
Two established ACO algorithms, [image: $$\mathcal {MAX}$$]-[image: $$\mathcal {MIN}$$] ant system ([image: $$\mathcal{M}\mathcal{M}$$]AS) [37] and population-based ACO (P-ACO) [15], guide the pheromone updated policies.
[image: $$\boldsymbol{\mathcal{M}\mathcal{M}}$$]AS. This algorithm involves pheromone evaporation using the following formula:[image: $$\begin{aligned} \tau _{ij} \leftarrow (1-\rho )\tau _{ij}, \forall (i,j) \in A, \end{aligned}$$]

 (17)


where [image: $$\rho $$] [image: $$(\rho \in (0,1])$$] is the evaporation rate.
Next, the best ant contributes pheromone to the arcs in its solution:[image: $$\begin{aligned} \tau _{ij} \leftarrow \tau _{ij} + \varDelta \tau _{ij}^{best}, \forall (i,j) \in s^{best}, \end{aligned}$$]

 (18)


where [image: $$\varDelta \tau _{ij}^{best}=1/C^{best}$$] is proportional to the quality of the best solution [image: $$C^{best}$$]. The “best” ant can be either the best-so-far ant [image: $$s^{best} = s^{bs}$$], representing the best solution from all iterations, or the iteration-best ant [image: $$s^{best}=s^{ib}$$]. These two ants alternate in depositing pheromone, with the best-so-far ant depositing every [image: $$g^{bs}$$] iterations, while the iteration-best ant handles the remaining iterations [37].
Explicit constraint are applied to the pheromone trail values:[image: $$\begin{aligned} \tau _{ij} \leftarrow {\left\{ \begin{array}{ll} \tau _{max}, ~~\text {if}~ \tau _{ij} &gt; \tau _{max},\\ \tau _{min}, ~~\text {if}~ \tau _{ij} &lt; \tau _{min},\\ \tau _{ij}, ~~~~\text {otherwise},\\ \end{array}\right. } \forall (i,j) \in A, \end{aligned}$$]

 (19)


where [image: $$\tau _{min}$$] and [image: $$\tau _{max}$$] represent the minimum and maximum pheromone trails, respectively.
P-ACO. An archive, denoted as pop(t), maintains the iteration-best ants. Each iteration t sees the inclusion of the iteration-best ant into pop(t). A positive constant pheromone update is applied to the arcs belonging to its solution:[image: $$\begin{aligned} \tau _{ij} \leftarrow \tau _{ij} + \varDelta \tau , \forall ~(i, j) \in s^{new}. \end{aligned}$$]

 (20)


Here, [image: $$\varDelta \tau =(\tau _{max}-\tau _{0})/K$$] represents the constant pheromone value added, [image: $$s^{new}$$] denotes the solution of the iteration-best ant, K is the size of pop(t), and [image: $$\tau _{max}$$] and [image: $$\tau _{0}$$] are the maximum and initial pheromone trail values, respectively.
When pop(t) reaches full capacity, the current iteration-best ant replaces an existing ant, labeled as old, in pop(t). This replacement involves a negative constant update to its corresponding pheromone trails:[image: $$\begin{aligned} \tau _{ij} \leftarrow \tau _{ij} - \varDelta \tau , \forall ~(i, j) \in s^{old}. \end{aligned}$$]

 (21)


Here, [image: $$\varDelta \tau =(\tau _{max}-\tau _0)/K$$] represents the constant pheromone value deducted (equal to the added value) and [image: $$s^{old}$$] represents the solution of the ant being replaced, typically the oldest entry in the population-list pop(t). It is worth noting that the P-ACO algorithm does not utilize pheromone evaporation.

3.3 Reacting in Dynamic Changes
ACO algorithms, known for their robustness, have demonstrated promising performance in dynamic optimization problems [2]. When a dynamic change occurs, some ACO’s pheromone trails from the previous environment become outdated, as they are associated with the previous optimum, whereas some other ACO’s pheromone trails are common with the newly generate optimum [25]. Additionally, in the case of the described DEVRP, the solution may become infeasible due to increased travel time that may violate energy constraints.
A simple way to address the dynamic changes of DEVRP using [image: $$\mathcal{M}\mathcal{M}$$]AS involves restarting the optimization process upon the detection of changes. Specifically, pheromone trail limit values [image: $$\tau _{max}$$] and [image: $$\tau _{min}$$] are reset to their initial values, and all pheromone trails are re-initialized to the initial [image: $$\tau _0$$] value when a dynamic change is detected. However, restarting ACO erases a portion of the previous pheromone trails that could aid in discovering the new optimum faster [1].
The pheromone trails of the previous environment will be most probably useful when changing environments are correlated (e.g., small to medium changes), some previous pheromones trails are likely to remain useful in the new environment. Therefore, a more efficient approach is to leverage pheromone evaporation defined in Eq. (17) to remove the useless pheromone trails and utilize the useful pheromone trails of the previous environment. Specifically, the useless pheromone trails will gradually reach the [image: $$\tau _{min}$$] value due to the constant deduction of pheromone evaporation, whereas the useful pheromone trails will be gradually reinforced up to the [image: $$\tau _{max}$$] due to the pheromone deposit in Eq. (5). In essence, ACO can adapt to the newly generated environment by distinguishing between useful and useless pheromone trails.[image: ]


A more advanced approach involves leveraging the pheromone update policy of P-ACO, specifically designed for optimization problems in dynamic environments [15]. When a dynamic change occurs, solutions represented by the current ants in the population-list may become invalid, violating the energy constraints. In response, these solutions are repaired to adhere to energy constraints using the repair method presented in Algorithm 1, accompanied by updates to the associated pheromone trails of the affected nodes. P-ACO excels in adapting to changes by directly removing outdated pheromone trails from the population-list.
The repair method in Algorithm 1, initially applies segmentation to separate the routes [3], and then checks which routes in the solution are violating the energy constraint. Then, the infeasible routes are repaired by reconstructing each route individually using the Unstringing and Stringing (US) moves utilized in [3], and the station re-insertion move utilized in [26]. Specifically, the US moves are equivalent to simple removals and insertions of nodes followed by single 3-opt or 4-opt exchanges [13], whereas the station re-insertion move inserts the closest station between two nodes whenever the energy constraint is violated.
It is noteworthly that in both [image: $$\mathcal{M}\mathcal{M}$$]AS and P-ACO algorithms, the solution of the best-so-far ant is repaired to satisfy the energy constraints, and the heuristic information is updated to reflect newly generated distances, as outlined in Eq. (14), whenever a dynamic change occurs.


4 Experimental Study
4.1 Experimental Design
Experiments are conducted to access the effectiveness of our designed ACO algorithms on the DEVRP, and to evaluate their dynamic behaviour.
Dynamic Test Environments. The dynamic benchmark generator, described in Sect. 2, is used to generate the DEVRP test cases. Three stationary EVRP benchmark instances (X-n143-k7-s4, X-n351-k40-s35, and X-n573-k39-s6) are obtained from 2020 Congress on Evolutionary Computation3 competition for the Electric Vehicle Routing Problem [28]. In these instances, the values after n, k, and s in the instance name identify the number of customers, the minimum number of EVs a solution can have, and the number of charging stations, respectively. The magnitude of change m is set to slightly (i.e., [image: $$m=0.05$$] and [image: $$m=0.1$$]), medium (i.e., [image: $$m=0.25$$] and [image: $$m=0.5$$]), and severely (i.e., [image: $$m=0.75$$]) changing environments. The frequency of change f is set to 25n iterations (scalable for each problem instance, i.e., [image: $$f=3575$$] for X-n143-k7-s4, [image: $$f=8775$$] for X-n351-k40-s35, and [image: $$f=14325$$] for X-n573-k39-s6) to allow sufficient time for ACO algorithms react in dynamic changes. Initially, all algorithms are run for 100n iterations without any dynamic change to allow the algorithms to converge before the first dynamic change. Five test cases are generated from each static benchmark instance. Ten environmental changes are allowed for each dynamic test case and 30 independent runs are executed with different random seeds.
Parameter Tuning. The following ACO algorithms are designed and employed in our experiments:	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_{R}$$]: An evaporation-based ACO algorithm in which the pheromone trails reinitialized whenever a dynamic change occurs but in this case the best-so-far solution is repaired.

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_{A}$$]: An evaporation-based ACO algorithm in which the solution of the best-so-far ant in the previous environment is repaired if becomes infeasible. The pheromone trails are not re-initialized.

	P-ACO: A population-based ACO in which the archived solutions are repaired if become infeasible.





For all ACO algorithms the colony size is set to [image: $$\omega =n$$] ants, and the decision rule parameters are fixed at [image: $$\alpha = 1$$] and [image: $$\beta = 5$$]. The parameter settings of all [image: $$\mathcal{M}\mathcal{M}$$]AS algorithms are configured as follows [37]: the initial pheromone trail value is set to [image: $$\tau _0= 1/\rho C^{nn}$$], the maximum pheromone trail limit is set to [image: $$\tau _{max}=1/\rho C^{bs}$$] and the minimum pheromone trail limit is set to [image: $$\tau _{min}=\tau _{max}\left( 1- \root n \of {0.05}\right) /\left( \left( avg-1\right) \root n \of {0.05}\right) $$], where avg is the average number of different choices available to an ant at each solution construction step and n is the size of the problem instance. Note that [image: $$C^{nn}$$] is the solution quality of the solution generated by the nearest-neighbor heuristic. The frequency with which the best-so-far ant is allowed to deposit pheromone is set to [image: $$g^{bs} = 25$$] iterations [37]. The parameter settings of P-ACO are configured as follows [32]: the initial pheromone trail value is set to [image: $$\tau _0 = 1 / (n-1)$$], the population-list size is set to [image: $$K=3$$] and the maximum pheromone trail limit is to [image: $$\tau _{max} = 1$$].Table 1.Mean results for offline performance of ACO algorithms in different DEVRP test cases.


	ACO, [image: $$m \Rightarrow $$]
	0.05
	0.1
	0.25
	0.5
	0.75

	 	X-n143-k7-s4

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_{R}$$]
	17578.87
	16811.52
	16679.34
	16497.43
	16575.14

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$]
	17368.15
	16704.36
	16612.24
	16472.18
	16558.23

	P-ACO
	17461.49
	16666.47
	16588.46
	16403.25
	16445.69

	 	X-n351-k40-s35

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_{R}$$]
	27798.37
	27299.75
	26640.38
	26428.14
	26240.82

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$]
	27557.74
	27201.03
	26595.82
	26412.57
	26269.27

	P-ACO
	27311.42
	26983.35
	26364.73
	26196.84
	26102.27

	 	X-n573-k30-s6

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_{R}$$]
	51439.40
	50238.29
	48620.65
	47849.06
	47477.42

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$]
	51146.51
	50068.54
	48613.46
	47867.22
	47487.52

	P-ACO
	50963.05
	49955.78
	48225.86
	47555.31
	47166.98





Performance Metric. The modified offline performance [4] is adopted as the performance metric, which is defined as follows:[image: $$\begin{aligned} \bar{P}_{offline} = \frac{1}{E}\sum ^E_{t=1} C^*, \end{aligned}$$]

 (22)


where E is the number of observations taken, and [image: $$C^*$$] is the best solution quality value since the last dynamic change.

4.2 Analysis and Discussion
Table 1 presents the mean results of [image: $$\bar{P}_{offline}$$] (averaged over 30 runs) obtained by the [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_R$$], [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$] and P-ACO algorithms for various DEVRP test cases. The corresponding statistical results, depicted in Table 2, employ Kruskal–Wallis tests, followed by posthoc pairwise comparisons using Wilcoxon rank–sum statistical tests. Adjusted p–values via Bonferroni correction accompany these comparisons. In Table 2, results denoted as “[image: $$+$$]”, “−”, and “[image: $$\sim $$]” when the first algorithm is significantly better, worse, or not significantly different compared to the second one, respectively. Figure 1, Fig. 2, and Fig. 3 illustrate plots of [image: $$\bar{P}_{offline}$$] against the environmental changes for X-n143-k7-s4, X-n351-k40-s35, and X-n573-k39-s6. The comparative analysis of the investigated ACO algorithms yields several key observations.
Firstly, [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$] outperforms significantly [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_R$$] in most dynamic test cases with magnitude [image: $$m \le 0.25$$], while demonstrating competitive performance in cases with magnitude [image: $$m \ge 0.5$$]; see Tables 1 and 2. This difference arises from the fact that smaller to medium magnitudes of change correspond to highly correlated environments. Consequently, the pheromone trails of the previous environment retain valuable information to guide the search effectively. Conversely, uniformly re-initializing pheromone trails erases accumulated knowledge. From Figs. 1, 2, and 3 it can be observed that the offline performance of [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_R$$] has a significant increase when a dynamic change occurs, whereas [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$] and P-ACO have a more robust behaviour, especially when [image: $$m=0.05$$].Table 2.Statistical test results of comparing the offline performance of ACO algorithms in different DEVRP test cases.


	Comparisons, [image: $$m \Rightarrow $$]
	0.05
	0.1
	0.25
	0.5
	0.75

	 	X-n143-k7-s4

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_{A}$$] vs [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_R$$]
	[image: $$+$$]
	[image: $$+$$]
	[image: $$+$$]
	[image: $$\sim $$]
	[image: $$\sim $$]

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_R$$] vs P-ACO
	−
	−
	−
	−
	−

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$] vs P-ACO
	[image: $$+$$]
	−
	[image: $$\sim $$]
	−
	−

	 	X-n351-k40-s35

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_{A}$$] vs [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_R$$]
	[image: $$+$$]
	[image: $$+$$]
	[image: $$+$$]
	[image: $$\sim $$]
	[image: $$\sim $$]

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_R$$] vs P-ACO
	−
	−
	−
	−
	−

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$] vs P-ACO
	−
	−
	−
	−
	−

	 	X-n573-k30-s6

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_{A}$$] vs [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_R$$]
	[image: $$+$$]
	[image: $$+$$]
	[image: $$\sim $$]
	[image: $$\sim $$]
	[image: $$\sim $$]

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_R$$] vs P-ACO
	−
	−
	−
	−
	−

	[image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$] vs P-ACO
	[image: $$\sim $$]
	−
	−
	−
	−





[image: ]
Fig. 1.Dynamic offline performance (averaged over 30 runs) of ACO algorithms for each environmental change on dynamic test cases of X-n143-k7-s4 with (a) [image: $$m=0.05$$] and (b) [image: $$m=0.5$$].


[image: ]
Fig. 2.Dynamic offline performance (averaged over 30 runs) of ACO algorithms for each environmental change on dynamic test cases of X-n351-k40-s35 with (a) [image: $$m=0.05$$] and (b) [image: $$m=0.5$$].


[image: ]
Fig. 3.Dynamic offline performance (averaged over 30 runs) of ACO algorithms for each environmental change on dynamic test cases of X-n573-k30-s6 with (a) [image: $$m=0.05$$] and (b) [image: $$m=0.5$$].



Secondly, P-ACO consistently outperforms significantly [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_R$$] in most dynamic test cases; see Tables 1 and 2. Like [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$], P-ACO transfers knowledge from previously optimized environments from the population-list which archives solutions constructed by ants from previously optimized environments contributing to the adaptation during the dynamic changes as it can be observed in Figs. 1, 2, and 3.
Thirdly, P-ACO exhibits significantly better performance than [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$] in most dynamic test cases (except when [image: $$m=0.05$$]). This is because of the different pheromone update policies that the two ACOs are utilizing, whenever a dynamic change affects the feasibility of the solutions [24]. P-ACO repairs the affected solutions stored in the population-list and the pheromone trails associated with these solutions are updated accordingly. Consequently, this will have a direct effect on the solution construction of the next iteration. In contrast, [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$] repairs the best-so-far and restart-best ants but it will have an indirect effect on the solution construction of the next iteration. This is because the pheromone evaporation mechanism requires some iteration to express its effect. Despite [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$] outperforming P-ACO in certain [image: $$m=0.05$$] cases, the risk of knowledge removal from the previous environment is lower with [image: $$\mathcal{M}\mathcal{M}$$]AS[image: $$_A$$]. This is evident in the offline performance results in Table 1, and the comparative statistical analysis in Table 2.


5 Conclusion
In this study, we examine the performance of various ACO algorithms to address the DEVRP by using a dynamic benchmark generator for constructing dynamic test cases. Through our experimental studies, we explore into how these ACO algorithms respond to the challenges encountered in addressing the DEVRP.
Based on our experimental findings, several key observations emerge. Firstly, we found that repairing infeasible routes and adapting to dynamic changes, rather than starting the optimization from scratch, offer clear advantages in addressing the DEVRP. Secondly, our results suggest that adaptation through the population-list, as opposed to pheromone evaporation, yields better performance, primarily due to its direct impact. Thirdly, we noted that the introduction of traffic factors consistently influence the energy constraints of the DEVRP and affects the feasibility of the solutions constructed by ACOs.
For future research, there is a potential to compare the designed ACOs with other state-of-the-art EVRP algorithms and to explore more advanced methods for repairing and addressing the dynamic changes inherent in the DEVRP. This could involve exploring new methods customized to address the unique challenges presented by dynamic environments, ultimately improving the effectiveness of ACO algorithms in real-world logistics applications.
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Abstract
Monte Carlo Search gives excellent results in multiple difficult combinatorial problems. Using a prior to perform non uniform playouts during the search improves a lot the results compared to uniform playouts. Handmade heuristics tailored to the combinatorial problem are often used as priors. We propose a method to automatically compute a prior. It uses statistics on solved problems. It is a simple and general method that incurs no computational cost at playout time and that brings large performance gains. The method is applied to three difficult combinatorial problems: Latin Square Completion, Kakuro, and Inverse RNA Folding.
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Monte Carlo Tree SearchCombinatorial ProblemsLearning Search HeuristicsLatin Square CompletionKakuroInverse RNA Folding
1 Introduction
Monte Carlo Tree Search (MCTS) has been successfully applied to many games and problems [4]. Combined with Deep Reinforcement Learning it has superhuman performances in two player complete information games such as Go and Chess [32].
Nested Monte Carlo Search (NMCS) [6] is an algorithm that works well for puzzles and combinatorial problems. It biases its playouts using lower level playouts. At level zero NMCS adopts a uniform random playout policy. Learning of playout strategies combined with NMCS has given good results on combinatorial problems [28]. Other applications of NMCS include Single Player General Game Playing [24], Cooperative Pathfinding [2], Software testing [26], heuristic Model-Checking [27], the Pancake problem [3], Games [10], the Inverse RNA Folding problem [25] and retrosynthesis [30].
Online learning of a playout policy in the context of nested searches has been further developed for puzzles and combinatorial problems with Nested Rollout Policy Adaptation (NRPA) [29]. NRPA has found new world records in Morpion Solitaire and crosswords puzzles. NRPA has been applied to multiple problems: the Traveling Salesman Problem with Time Windows (TSPTW) [11, 13], 3D Packing with Object Orientation [15], the physical traveling salesman problem [16], the Multiple Sequence Alignment problem [17] or Logistics [14]. The principle of NRPA is to adapt the playout policy so as to reinforce the best sequence of moves found so far at each level.
The use of Gibbs sampling in Monte Carlo Tree Search dates back to the general game player Cadia Player and its MAST playout policy [19].
Monte Carlo Search for combinatorial problems can be much improved using a prior. A prior is a heuristic that is used in playouts to sample in a non uniform way. It favors some moves in the playout according to the heuristic. The use of a bias or the initialization of the weights to produce an initial non uniform policy have been used for multiple difficult problems: the Traveling Salesman Problem with Time Windows [13, 28] with a distance based heuristic, the Vehicle Routing Problems [9, 14] with again a distance based heuristic, the Inverse RNA Folding problem [25] with manually encoded heuristics on pairs of bases, the Pancake problem [3] with manually encoded heuristics, the Virtual Network Embedding problem [18] with a distance based heuristic again. In all these problems the manual prior improves much the performances of Monte Carlo Search.
We propose a method to automatically compute a prior. It uses statistics on solved problems. The method is simple, moreover it does not use computation time during sampling and it is general. It improves much on Monte Carlo Search without a prior for the problems that we tried. It also improves over manually defined priors.
We now give the outline of the paper. The second section describes Monte Carlo Search. The third section explains how to compute the prior. The fourth section gives experimental results for Latin Square Completion (LSC), Kakuro and Inverse RNA Folding.

2 Monte Carlo Search
This section presents the Generalized NRPA (GNRPA) [7] algorithm which is a generalization of the NRPA algorithm to the use of a prior.
The Nested Rollout Policy Adaptation (NRPA) [29] algorithm is an effective combination of NMCS and the online learning of a playout policy. NRPA holds world records for Morpion Solitaire and crosswords puzzles. It is different from learning a prior as GNRPA reinforces the policy for the instance whereas learning a prior is done once for all and is used for all instances.
In NRPA/GNRPA each move is associated to a weight stored in an array called the policy. The goal of these two algorithms is to learn these weights using the best sequences of moves found during the search. The weights are used in the softmax function to produce a playout policy that generates good sequences of moves.
NRPA/GNRPA use nested search. In NRPA/GNRPA, each level takes a policy as input and returns a sequence and its associated score. At any level > 0, the algorithm makes numerous recursive calls to the lower level, adapting the policy each time with the best sequence of moves to date. The changes made to the policy do not affect the policy in higher levels. At level 0, NRPA/GNRPA return the sequence obtained by the playout function as well as its associated score.
The playout function sequentially constructs a random solution biased by the weights of the moves until it reaches a terminal state. At each step, the function performs Gibbs sampling, choosing the actions with a probability given by the softmax function.
Let [image: $$w_{m}$$] be the weight associated to a move m in the policy. In NRPA, the probability of choosing move m is defined by:[image: $$ p_{m} = \frac{e^{w_{m}}}{\sum _k{e^{w_{k}}}} $$]



where k goes through the set of possible moves, including m.
GNRPA [7] generalizes the way the probability is calculated using a bias [image: $$\beta _{m}$$]. The probability of choosing move m becomes:[image: $$ p_{m} = \frac{e^{w_{m}+\beta _{m}}}{\sum _k{e^{w_{k}+\beta _{k}}}} $$]



By taking [image: $$\beta _{m} = \beta _{k} = 0$$], we find the formula for NRPA again wich corresponds to sampling without a prior.
In NRPA it is possible to initialize the weights according to a heuristic relevant to the problem to solve. In GNRPA, the policy initialization is replaced by the bias. It is sometimes more practical to use [image: $$\beta _{k} $$] biases than to initialize the weights as the codes for the moves can be different from the codes of the biases. The method we propose could also be applied without modification to NRPA with initialization of the weights by initializing the weight of move m with [image: $$\beta _{m}$$] the first time the weight is used.
The algorithm to perform playouts in GNRPA is given in Algorithm 1. The main GNRPA algorithm is given in Algorithm 3. GNRPA calls the adapt algorithm to modify the policy weights so as to reinforce the best sequence of the current level. The policy is passed by reference to the adapt algorithm which is given in Algorithm 2.
The principle of the adapt function is to increase the weights of the moves of the best sequence of the level and to decrease the weights of all possible moves by an amount proportional to their probabilities of being played. [image: $$\delta _{bm} = 0$$] when [image: $$b \ne m$$] and [image: $$\delta _{bm} = 1$$] when [image: $$b = m$$].[image: ]

[image: ]

[image: ]



3 Learning a Prior
This section presents the computation of the prior. The principle underlying the prior is to compute the frequency each move has been the move solving a problem. In order to compute it we generate many solved problems associated to their solutions, e.g. the sequence of moves that solves the problem from the starting state. It is usually hard for combinatorial problems to find a solution. However in some problems it is easy to generate problems associated to their solutions. The three problems we experimented with have this property that it is easy to generate problems and their associated solutions.
The principle for learning the prior is to replay the solution and to update the count for each possible move of each possible state of the solution. We also update the count of the moves that are part of the solution. We can then calculate for each move the frequency it has been the solution move, this is the number of times it has been in a solution divided by the number of times it has been a possible move.[image: ]


Algorithm 4 details how to compute the count and nb arrays given an initial state and the solution to the problem given as a sequence of moves. The nb array memorizes the number of times a move has been possible and the count array memorizes how many times it was part of a solution. The Replay function is called for each solved problem of the training dataset.
We then define the bias [image: $$\beta _m$$] as:[image: $$ \beta _m = \tau * log (\frac{count[code(m)]}{nb[code(m)]})$$]



where [image: $$\tau $$] is called the temperature of the bias.
The default sampling policy with a prior plays a move m with probability:[image: $$p_m = \frac{e^{\beta _m}}{\varSigma _{k} e^{\beta _k}}$$]






4 Experimental Results
This section details the computation of the prior for three difficult combinatorial problems: Latin Square Completion, Kakuro and Inverse RNA Folding. It also compares sampling with the computed prior to sampling without a prior. It also compares NRPA to GNRPA with the computed prior.Table 1.Number of LSC problems of size 20 in the transition phase solved by different algorithms out of 100 problems. The number of playouts ranges from 1,024 playouts to 131,072 playouts. The temperature of the Dual prior is set to [image: $$\tau = 4$$] which is the temperature that gave the best results. Sampling with the Dual prior solves more problems than uniform sampling. GNRPA with the Dual prior is better than NRPA and sampling.


	Algorithm
	1,024
	2,048
	4,096
	8,192
	16,384
	32,768
	65,536
	131,072

	Sampling
	2
	5
	10
	16
	26
	36
	49
	61

	Sampling Dual prior
	12
	24
	34
	48
	70
	80
	89
	95

	NRPA
	8
	16
	25
	35
	48
	61
	70
	80

	GNRPA Dual prior
	26
	39
	54
	67
	83
	91
	95
	98





[image: ]
Fig. 1.The distribution of the priors for LSC. The priors associated to codes that have never been seen during replay (e.g. nb [code] = 0) have been removed.



4.1 Latin Square Completion
A Latin Square of order n is a [image: $$n \times n$$] grid filled with numbers from 1 to n such that the same number does not appear more than once in each row and each column. A partial Latin Square is a Latin Square with some empty cells. The Latin Square Completion problem (LSC) consists in completing a partial Latin Square so as to form a complete Latin Square. Latin Square Completion is a NP-complete problem [12].
The LSC problem has a phase transition. When a grid has a lot of empty cells or only few empty cells, the completion is very easy. When the percentage of empty cells is close to 42% the problem becomes hard. Figure 2 gives the median number of random playouts required to solve LSC problems according to their percentage of empty cells. We can observe the peak in number of random playouts at 42% of empty cells.
It can also be observed in Fig. 2 that generating Latin Squares from the empty grid is extremely easy. The first three random playouts usually generate a valid Latin Square. Therefore generating difficult LSC problems and their associated solution is also extremely easy. First generate a valid Latin Square, memorize it as a solution and then randomly remove 42% of the cells so as to have a difficult LSC problem associated to its solution.
Here is an example of a difficult LSC problem of size 20 generated with this method:[image: ]


LSC and related problems appear in a variety of practical applications such as scheduling, optical routing, error correcting codes as well as combinatorial design [20].
We model the LSC problem as a Constraint Satisfaction Problem. We use Forward Checking associated to channeling constraints. If a value appears only once in a column or in a row it is directly assigned. If it is not the case, the variable with the smallest number of possible values is chosen and a possible value is randomly assigned according to the policy. A state is terminal if the Latin Square is complete or if one of the variables is not assigned and has an empty domain. In this case the score of a playout is the opposite of the number of remaining variables.
The code associated to a move contains the number of times the value is present in the same column and the number of times it is present in the same row. We call the prior associated to this code the Dual prior. Note that it is a very simple code and that it could probably be refined. The bias for GNRPA using this code is:[image: $$ \beta _m = \tau * log (\frac{count[code(m)]}{nb[code(m)]})$$]



Figure 1 gives the distribution of the priors for this code and LSC problems of size 20. The priors were computed using 10,000 solved problems generated randomly in the transition phase. We can observe that the priors have varied values.
Table 1 gives the evolution of the number of problems solved by different algorithms with doubling numbers of playouts. Sampling with the Dual prior is much better than sampling without the prior. GNRPA with the Dual prior is much better than NRPA. The computation time of the Dual prior during the playouts is negligible.[image: ]
Fig. 2.The median number of random playouts required to solve LSC instances of size 20 with x% of empty cells. The phase transition happens at 42% of empty cells. All further experiments will use Latin Squares of size 20 with 42% of empty cells. The median for each percentage was calculated solving 1,000 problems.




4.2 Kakuro
A Kakuro puzzle is played on a rectangular grid. The objective is to fill numbers into the blank cells, according to the following rules:	A sum is associated with every horizontal or vertical sequence of blank cells.

	Each horizontal (respectively vertical) sequence has a cell left of (respectively above) its first cell, and that cell contains the sum that is associated with the sequence.

	In each horizontal/vertical sequence of cells, every number may occur at most once.

	The sum of the numbers of a sequence must equal the number that is denoted in the corresponding hint.





Kakuro is hard [31]. The most difficult Kakuro problems are the empty problems with only the sum of the columns and of the rows already given [5].
The generation of a Kakuro problem and its solution is almost as easy as the generation of a LSC problem. First generate a valid square with sampling. A single playout is usually enough. Then calculate the sums for each row and for each column. Then remove all the values and keep the generated valid square as the solution to the problem.
Here is an example of a solved Kakuro problem of size 10 with values ranging from 1 to 11 generated with our method:[image: ]


We model Kakuro as a Constraint Satisfaction Problem. We use Forward Checking but we do not use channeling constraints. In a playout we choose the variable with the least number of possible values and we assign a value according to the policy (which is uniform in the case of sampling and which uses the softmax of the biases in the case of the prior policy). When a variable has an empty domain the playout is stopped and the score is returned. The score is the opposite of the number of remaining unassigned variables when the Kakuro is not complete and the number of rows and columns that sum to the hint when all variables are assigned.[image: ]
Fig. 3.The distribution of the priors for Kakuro. The y-axis gives the number of priors in each range of values. For example there are 15,410 priors that have the value 1.0 and 20,353 priors that have a value between 0.0 and 0.1. The priors associated to codes that have never been seen during replay (e.g. nb [code] = 0) have been removed. We can observe the peak at 0.0 which mainly corresponds to the numbers that are impossible given the row and the column sums. We can also observe the smaller peak at 1.0 which corresponds to the numbers that are forced. Note that apart from these two cases there are many cases where the prior is between 0.0 and 1.0 which does not correspond to a hard constraint.


Table 2.Number of Kakuro problems of size 10, with 11 possible values, solved by different algorithms out of 100 problems and for various numbers of playouts. The temperature of the prior is set to [image: $$\tau = 4$$]. Using the prior usually solves the problem in 1 playout.


	Algorithm
	1,024
	2,048
	4,096
	8,192
	16,384
	32,768
	65,536
	131,072

	Sampling
	0
	0
	0
	0
	0
	0
	0
	0

	Sampling Prior
	100
	100
	100
	100
	100
	100
	100
	100

	NRPA
	0
	0
	0
	23
	35
	65
	86
	98

	GNRPA Prior
	100
	100
	100
	100
	100
	100
	100
	100





The code for a move contains the number of times the value appears in the same row, the number of times it appears in the same column, the remaining sum to reach in the row and the remaining sum to reach in the column.
Figure 3 gives the numbers of appearance of the Kakuro priors. It was calculated using 10,000 solved problems randomly generated. With the priors equal to 0.0 or 1.0, it rediscovers the hard constraints manually programmed in specialized Kakuro solvers [33] that compute the impossible values for a given sum. However our prior is more precise than that since it takes into account the remaining row/column sums as well as the number of appearances of the value in the same row/column. There are many priors different from 0.0 and 1.0 that model something different from the hard constraints and that capture some probabilistic properties of the values to assign.
Table 2 gives the results for Monte Carlo Search with and without the prior. Using the prior both sampling and GNRPA usually find the solution at the first playout whereas without the prior both sampling and NRPA take much more time.

4.3 Inverse RNA Folding
The design of RNA molecules with specific properties is an important topic for health related research. For example, many viruses rely on RNAs to infect and replicate inside a host: this is the case for coronaviruses [23] and Dengue viruses. Understanding viral RNAs is essential for the scientific community to develop novel drugs in response to pandemics like COVID-19 [21].
RNA molecules are long molecules composed of four possible nucleotides. Molecules can be represented as strings composed of the four characters ‘A’, ‘C’, ‘G’, ‘U’. For RNA molecules of length N, the size of the state space of possible strings is exponential in N. It can be very large for long molecules. The molecules of the Eterna100 benchmark we use can have hundreds of nucleotides. The sequence of nucleotides folds back on itself to form its secondary structure. It is possible to find in a polynomial time the folded structure of a given sequence. However, the opposite which is to find a sequence that folds into a predefined structure, that is the Inverse RNA Folding problem, is hard [1].
The state space is the set of all sequences that are consistent with the secondary structure given as input. The secondary structure is a sequence of characters. The possible characters are ‘.’, ‘(’ and ‘)’. For each ‘.’ in the input sequence there are four possible characters in the nucleotide sequence: ‘A’, ‘C’, ‘G’ and ‘U’. Each ‘(’ character is associated to the ‘)’ character that closes the expression it has opened (e.g. when the same number of ‘(’ and ‘)’ are in between the two). Six pairs of characters are possible to replace the ‘(’ and the corresponding ‘)’: ‘CG’, ‘GC’, ‘GU’, ‘UG’, ‘AU’ and ‘UA’. When a nucleotide sequence is complete, the ViennaRNA package [22] is used to fold the sequence and verify if it folds into the target structure.
We evaluate different Monte Carlo Search algorithms on the Eterna100 benchmark which contains 100 RNA secondary structure puzzles of varying degrees of difficulty. A puzzle consists of a given structure under the dot-bracket notation. This notation defines a structure as a sequence of brackets and dots each representing a base. The matching brackets symbolize the paired bases and the dots the unpaired ones. The puzzle is solved when a sequence of the four nucleotides ‘A’, ‘C’, ‘G’ and ‘U’, folds according to the target structure. In some puzzles, the value of certain bases is imposed.
Human experts have solved the 100 problems of the benchmark. No program has solved all problems. The best score so far for a program is 95/100 by NEMO, NEsted MOnte Carlo RNA Puzzle Solver [25] and by GNRPA using the NEMO prior [8].[image: ]
Fig. 4.The distribution of the priors for Inverse RNA Folding. The y-axis gives the number of priors in each range of values. There are 6 possible moves for a ‘(’ and 4 possible moves for a ‘.’ in the target structure. This makes 10 possibilities for the previous move in the NGRAM and again 10 possibilities for the current move. Therefore there are 100 different priors. On the contrary of LSC and Kakuro the distribution of the priors is mainly on small values. The smallest prior is equal to 0.010083 and the greatest prior is equal to 0.437825.


Table 3.Number of Eterna100 problems solved by different algorithms and various search time limits in seconds. GNRPA is much better than NRPA. The NGRAM prior is better than the NEMO prior. The temperature for the NGRAM prior is [image: $$\tau = 6$$]. Sampling with the NGRAM prior is better than sampling with the NEMO prior. Sampling with a prior is much better than uniform sampling.


	Algorithm
	32 s
	64 s
	128 s
	256 s
	512 s
	1,024 s
	2,048 s
	4,096 s

	Sampling
	11
	11
	11
	12
	14
	16
	16
	17

	Sampling NEMO prior
	51
	55
	57
	60
	61
	61
	62
	64

	Sampling NGRAM prior
	57
	65
	68
	69
	69
	69
	69
	69

	NRPA
	28
	33
	41
	48
	57
	59
	61
	65

	GNRPA NEMO prior
	68
	69
	74
	77
	78
	79
	81
	81

	GNRPA NGRAM prior
	70
	75
	78
	79
	80
	81
	82
	85





[image: ]
Fig. 5.The evolution with the logarithm of the search time of the number of Eterna100 problems solved by NRPA and GNRPA NGRAM prior.


[image: ]


To compute the prior we use the Rfam database [21]. Rfam is the database of non-coding RNA families. We use the 85,232 RNA sequences from Rfam associated to their target folding. The NGRAM prior consists in statistics on the occurrence of two following moves.
On the contrary of the hand crafted heuristics of NEMO, the NGRAM prior has been learned on the Rfam database which is separated from the Eterna100 benchmark. The computation of the NGRAM prior on the Rfam database is a more general and simple way to create priors and it is not specific to the Eterna100 benchmark.
Algorithm 5 gives the function used to compute the NGRAM prior, t is the set of target structures and s is the set of RNA sequences that fold in the target structures. The output of the algorithm are the count and nb arrays that are used to calculate the prior of a move.
The code to calculate the statistics computes [image: $$count[code(t_p,m_p,t,k)]$$] the number of times an NGRAM coded as [image: $$code(t_p,m_p,t,k)$$] appears in the solution sequences of the Rfam database. We only compute the NGRAMs of size one, containing m the move to play, [image: $$m_p$$] the previous move, t the target folding character and [image: $$t_p$$] the previous target folding character. Figure 4 gives the distribution of the priors.
We define the bias [image: $$\beta _m$$] as:[image: $$ \beta _m = \tau * log (\frac{count[code(t_p,m_p,t,m)]}{nb[code(t_p,m_p,t,m)]})$$]



The score of a sequence of nucleotide is computed the same way as NEMO [25] using the ViennaRNA package [22].
Table 3 gives the evolution of the number of problems solved with time for different Monte Carlo Search algorithms. GNRPA with the NGRAM prior gives the best results. Note that the NEMO prior we used is a subset of the priors used in NEMO. It uses the heuristic functions on the pairs of bases. The pairs of bases heuristics are the main components of the NEMO prior. The same subset of heuristics were already used with GNRPA [8], equaling the 95/100 score of NEMO. This score was reached using various optimizations of GNRPA when we use a standard GNRPA in our paper. It explains why we only reach 85 solved problems and why the NEMO prior only reaches 81 solved problems.
Figure 5 gives a graphical comparison of NRPA and GNRPA NGRAM prior for the Eterna100 problems. The values for the numbers of solved problems are the same as in the Table 3. The time scale is logarithmic.


5 Conclusion
Calculating statistics about moves in solved combinatorial problems enables to create a prior for Monte Carlo Search. This prior is easy to compute and has a negligible computation time during sampling. It is a large improvement of Monte Carlo search for three difficult combinatorial problems: Latin Square Completion, Kakuro and Inverse RNA Folding. The method is general and can easily be applied to other difficult combinatorial problems.
As future works, the method could be improved for the combinatorial problems we tried simply using more elaborate codes for the moves. We could bias the policy according to other properties of the moves and of the states than the simple ones we used. The method should also be tried on other difficult combinatorial problems in order to evaluate the gains of using it. The problems we tried are decision problems, it would be interesting to also try optimization problems. The generation of the solved problems would be more time consuming for optimization problems but it would only be done once before the use of the prior in Monte Carlo Search. The sampling time with the prior would be similar to the sampling time without the prior but the scores obtained sampling with the prior could be much better than without the prior.
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Abstract
Solving the Traveling Salesperson Problem (TSP) remains a persistent challenge, despite its fundamental role in numerous generalized applications in modern contexts. Heuristic solvers address the demand for finding high-quality solutions efficiently. Among these solvers, the Lin-Kernighan-Helsgaun (LKH) heuristic stands out, as it complements the performance of genetic algorithms across a diverse range of problem instances. However, frequent timeouts on challenging instances hinder the practical applicability of the solver.
Within this work, we investigate a previously overlooked factor contributing to many timeouts: The use of a fixed candidate set based on a tree structure. Our investigations reveal that candidate sets based on Hamiltonian circuits contain more optimal edges. We thus propose to integrate this promising initialization strategy, in the form of POPMUSIC, within an efficient restart version of LKH. As confirmed by our experimental studies, this refined TSP heuristic is much more efficient – causing fewer timeouts and improving the performance (in terms of penalized average runtime) by an order of magnitude – and thereby challenges the state of the art in TSP solving.
Keywords
Traveling Salesperson ProblemHeuristic SearchProblem HardnessAlgorithm ConfigurationBenchmarking
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1 Introduction
The Traveling Salesperson Problem (TSP), also referred to as Traveling Salesman Problem or Traveling Sales-rep Problem, is one of the most well-known combinatorial optimization problems and has thus been studied and researched in various domains for decades. While it often serves as a motivating example in various computer science, transportation science, and logistics courses and textbooks, it is also of practical use in less obvious disciplines such as biology (e.g., in the context of DNA sequencing) or astronomy [1]. Furthermore, it is fundamental to various related, albeit potentially more realistic, variants of routing-based optimization problems such as the Vehicle Routing Problem (VRP) with its numerous extensions or modifications of its own, or capacity-constrained problems such as the Traveling Thief Problem (TTP).
Essentially, the TSP is a graph-based combinatorial optimization problem, which belongs to the class of [image: $$\mathcal{N}\mathcal{P}$$]-hard problems. Given a complete and undirected graph [image: $$G = (V, E)$$] with a set of vertices [image: $$V = \{1, \ldots , n\}$$] (also called cities or nodes), and a set of edges [image: $$E \subseteq V \times V$$] connecting each pair of vertices [image: $$\{i, j\} \in E$$], we seek the optimal round trip along a subset of all available edges E such that each node is visited exactly once. While the previous requirements already suffice to define the TSP, one usually focuses on a particular variant of it, the Euclidean TSP, which is also focused in this work. As an extension to the previous definition of the TSP, the Euclidean TSP fulfills two additional properties: First, the cost [image: $$c: E \rightarrow \mathbb {R}$$] for traveling along an edge is independent of the direction of travel. Secondly, the previously mentioned costs per edge correspond to the Euclidean distance between the two nodes that are connected by the respective edge.
Approaches for solving TSPs are typically divided into two types: exact and inexact methods. The former have the benefit of guaranteeing the optimality of the found solution, once the algorithm terminated successfully. In this class of algorithms, Concorde [1] is regarded as the unanimous state of the art. In contrast, inexact heuristics – such as EAX [15, 16], LKH [9, 10], Mixing GA [21], or MAOS [22] – have the advantage that they are generally much faster at finding high-quality solutions. However, they lack any optimality guarantees for their found solutions. There is no single state-of-the-art heuristic for inexact TSP solving, as indicated by the portfolio listed above. Yet, numerous benchmark and algorithm selection studies [6, 11, 13] have shown a general trend towards the superiority of EAX and LKH. This trend became even more evident since the refinement of both heuristics with external restart mechanisms [4].
Interestingly, for both heuristics, EAX and LKH, the restart mechanism clearly reduced the number of timeouts (i.e., the algorithm runs that did not find the optimal tour within the given time budget), with the effect being considerably more apparent for EAX. A possible reason for the weaker impact of the restart mechanism on LKH could be an insufficient variety among the solutions that are initially generated after each restart. This hypothesis is also supported by two recent studies, which have shown that (a) LKH is very sensitive to its hyperparameter configurations [18], and (b) as long as the number of 2-opt runs (which are an essential component of LKH) is sufficiently large, one can ensure that all edges of the optimal tour have been found [21].
Despite the numerous benchmark studies, too little is known about the strengths and weaknesses of EAX and LKH – in particular, which structures of TSP instances are easy for one and hard for the other. To better understand the effects of certain node alignments on the performance of EAX and LKH, [2] created several sets of artificial TSP instances that are easy for EAX but hard for LKH and vice versa. They proposed several mutation operators that transform a given TSP instance according to topological patterns such as grids, lines, explosions, implosions, or clusters. They then integrated these operators into an evolutionary algorithm to evolve TSP instances that are easy to solve for one heuristic but challenging for the other. It is striking that it was relatively easy to generate EAX-friendly instances that LKH could not solve. In contrast, although EAX solved LKH-friendly instances more slowly than LKH, it could still find solutions quickly. Although several feature-based studies have investigated these effects in recent years [5, 6, 12], one still needs to find an answer for why and when LKH has difficulties with some of these instances.
A likely reason for the occasional timeouts and sub-par performance of LKH could be the approach that produces its candidate sets. If the edges from the candidate sets do not already contain all edges of the optimal tour, LKH appears to have difficulties combining the candidates into the optimal tour. However, the recent integration of the metaheuristic POPMUSIC [17, 19] into LKH [20] could resolve this issue. It shows the potential to generate more diverse initial candidate sets than the classical initialization approach of LKH, thereby increasing the probability that all relevant edges are included among the candidates.
So far, the integration of POPMUSIC in LKH has mainly been demonstrated for large TSP problems with more than 10 000 nodes per instance [20]. However, as we will show in this work, POPMUSIC can also leverage the performance of LKH on small- to medium-sized TSP instances with up to 2 000 nodes. Furthermore, the effectiveness of POPMUSIC has so far only been examined in combination with the classical restart-free implementation of LKH. For this work, we have implemented POPMUSIC in a more effective restart version of LKH. As our results will show, combining the two components leverages the power of both, ultimately resulting in a powerful TSP heuristic that can challenge the state-of-the-art status of the restart-version of EAX in inexact TSP solving.
The remainder of this work is structured as follows. Section 2 describes the key concepts of LKH with a dedicated focus on the strategies for producing its candidate sets. The weaknesses of LKH’s default strategy, the [image: $$\alpha $$]-candidate set, are discussed in Sect. 3. The experimental setup of our study is described in Sect. 4 and its results are analyzed in Sect. 5. At last, Sect. 6 summarizes our work and presents ideas for future research that are enabled by our work.

2 Background
The Lin-Kernighan Heuristic [14] dates back to 1973 and is still a highly competitive algorithm in the form of LKH. The core concept introduced by Lin and Kernighan behind the heuristic has not changed and revolves around the construction of sequential k-opt moves, where k is unrestricted. If k equals the number of cities in a TSP instance, a k-opt move could potentially yield the optimal solution directly from any feasible solution. However, a sequential k-opt move is restricted by allowing only moves that can be constructed through consecutive basic moves, e.g., 2-opt moves. After each such basic move, the resulting edges must form a Hamiltonian circuit. Despite this restriction, it is computationally infeasible to evaluate every possible edge for each basic move. The primary strategy that LKH employs to reduce this computational complexity involves pruning the search space. The following sections will introduce the different pruning strategies.
2.1 [image: $$\alpha $$]-Candidate Set
In its original form, the Lin-Kernighan (LK) algorithm [14] constrained the search by considering only edges connecting each vertex to one of its five closest neighbors. However, Helsgaun [9] identified instances where the optimal edges did not emerge from this restricted set of candidates generated by the five-nearest-neighbor heuristic. Consequently, LKH incorporates a more sophisticated approach, leveraging minimum 1-trees to derive a more accurate approximation of edge proximity to the optimal tour. Additionally, it employs subgradient optimization techniques to further refine these estimations, enhancing the algorithm’s effectiveness in finding high-quality solutions.[image: ]
Fig. 1.A base minimum 1-tree is composed of an MST (gray edges), along with two additional (blue dashed) edges connecting the excluded node with its first and second nearest neighbors. (Color figure online)


[image: ]
Fig. 2.The minimum 1-tree required to include an additional (green dashed-dotted) edge does not have to include the second nearest neighbor edge (red dotted line). Thus, the [image: $$\alpha $$]-nearness value of the new edge is the difference between itself and the red edge. (Color figure online)



A minimum 1-tree is related to, but distinct from, a spanning tree; it is formed by a minimum spanning tree encompassing all nodes except one, which is arbitrarily chosen. This remaining node is linked to the tree via two edges, connecting it with its closest two neighboring nodes, thus introducing a cycle (see Fig. 1). If every vertex in this structure has a degree of two, the minimum 1-tree manifests as a Hamiltonian circuit, effectively resolving the TSP. Helsgaun’s investigation revealed that a typical minimum 1-tree encompasses approximately [image: $$70 \%$$] to [image: $$80 \%$$] of the edges present in the optimal tour. Consequently, he introduced an [image: $$\alpha $$]-nearness metric, which computes the cost associated with incorporating each edge into the minimum 1-tree. This metric quantifies the delta between a base minimum 1-tree (as depicted in Fig. 1) and an adjusted minimum 1-tree required to accommodate the edge under consideration (see Fig. 2).
Adjusting the distance matrix by adding a constant to the distances to and from one node – i.e., updating the corresponding row and column in the distance matrix – can modify the minimum 1-tree while preserving the optimal tour. In the optimal tour, every node has to be connected with two edges, thus there cannot be any benefit in changing node permutation if all distances from or to one node are changed. In the case of a minimum 1-tree a node can be connected with up to six edges, see [5, 6] a more detailed explanation with minimal spanning trees. Increasing the distance from one node to its nearest neighbors will thus lead to fewer connections to this node in a minimum spanning tree. With this, a refinement through subgradient optimization can be applied such that the minimum 1-tree more closely resembles a tour, via weights per node added to the distances of all edges including the node [7–9]. Essentially, the subgradient algorithm iteratively increases the weights, i.e., the distance in the distance matrix, of nodes with a degree of 3 or more and decreases the weights of leaf nodes within the minimum 1-tree. When constructing a new minimum 1-tree with the altered distance matrix, the added or subtracted constants in tendency lead to previously higher degree nodes being connected with fewer other nodes and previous nodes of degree one being connected with more nodes. This optimization process is integrated into LKH and terminates either upon finding the optimal tour or after not finding an improving minimum 1-tree for too many iterations. The resulting minimum 1-tree is reported to yield ranks in terms of smallest [image: $$\alpha $$] values for the optimal edges that are on average 1.7, compared to 2.1 based on the non-transformed minimum 1-tree [9]. Note that a rank of 1.5 would be optimal as every node is part of two optimal edges which should in the optimal case have the two smallest [image: $$\alpha $$] values.

2.2 2-Opt Candidate Set
The use of minimum spanning trees is indeed likely to find edges with low cost that connect one vertex to another. But this strategy does not take into account that the edges must be part of a Hamiltonian circuit. By constructing locally optimal Hamiltonian circuits to sample edges, we improve the probability that the sampled edges can contribute to the globally optimal solution. Also, minimum spanning trees do not guarantee that there are at least two edges that are incident on every vertex. For example, in an asymmetric TSP, one directed edge must “enter” the city, and one directed edge must “leave” the city. This same idea generalizes to symmetric TSP instances. We thus argue that a more obvious and likely more productive way to initialize and populate the candidate set is to use edges that appear in some locally optimal Hamiltonian circuit.
One way to find useful edges is to sample them from local optima. A standard way to both define and discover local optima is to use the 2-opt operators. The 2-opt operator, when applied until no further improvement is possible, is guaranteed to generate locally optimal Hamiltonian circuits without any crossing edges [3]. This guarantee only holds, however, if the TSP instance uses a cost matrix that obeys the triangle inequality. The triangle inequality holds for all Euclidean TSP benchmark problems, which are the focus of this work.
The successful and effective EAX genetic algorithm [16] uses an efficient implementation of 2-opt. It has been shown to generate a set of locally optimal solutions that sample edges found in the global optimum at a very high rate. Usually, the edges found in these local optima are also found in the global optimum at a rate of approximately 70% [21].
Table 1 presents a sample data that was previously presented by Varadarajan et al. [21]. The problems are a mixture of clustered TSP instances, printed circuit board (PCB) problems, and “city problems” based on the coordinates of cities located in various countries. The key information found in this table is the population size necessary to ensure (empirically) that all of the edges found in the global optimum were also present in the population. In almost all cases they examined, a population size of 256 was sufficient. The exceptions are shown in Table 1: C3k.1 and vm1084 required a population of 512, instance fl1577 required a population of 4096, and finally d2103 required a population of 16,384. We should note that some of these problems (att532 and u1817) are known to have multiple global optima. The listed results only checked for edges in one of the global optima (arbitrarily chosen).Table 1.The following sample of problem instances was previously used to show the effectiveness of 2-opt at initializing a population for a genetic algorithm. The table records the smallest population size which contains all of the edges found in the global optimum after performing 2-opt. See [21] for the complete table.


	Cluster Problem
	Pop Size
	PCB Problem
	Pop Size
	City Problem
	Pop Size

	C1k.0
	256
	d657
	256
	att532
	64

	C3k.0
	256
	pcb1173
	256
	pr1002
	128

	C3k.1
	512
	d1291
	128
	vm1084
	512

	dsj1000
	128
	fl1577
	4096
	rl1323
	256

	 	 	d1655
	256
	nrw1379
	128

	 	 	u1817
	128
	vm1748
	128

	 	 	d2103
	16384
	rl1889
	128

	 	 	u2319
	64
	pr2392
	128

	 	 	pcb3038
	128
	fnl4461
	256





The significance of these results is that they suggest that 2-opt might be used to initialize a population of locally optimal solutions, and the edges in those solutions could be used to construct a candidate set where all of the edges are known to occur in a Hamiltonian circuit that is also locally optimal.

2.3 POPMUSIC Candidate Set
Another similar approach that has been directly implemented in LKH (since version 2.0.9) is Partial OPtimization Metaheuristic Under Special Intensification Conditions (POPMUSIC) for TSP [20]. In a nutshell, POPMUSIC optimizes an initial tour by optimizing sub-paths of consecutive cities on the current tour at each iteration. The initial tour is found by starting with an LK-optimized tour on a subsample of the cities. Then, it adds the out-of-tour nodes to the tour, which is/are located closest to the tour. For each of the cities added in this second step, it then optimizes the sub-path around it using 2-opt. Finally, sub-paths of consecutive cities are optimized until no further improvement can be found. For further details, we refer to the original paper [20].
This procedure was originally developed to efficiently generate edge candidate sets for large instances, where the [image: $$\alpha $$]-set generation requires too much time. The authors of [20] note that, while the costs of tours generated by POPMUSIC are not particularly good, multiple runs tend to include (almost) all optimal edges, making it suited for candidate set generation.
In our preliminary experiments, the quality of edges produced by POPMUSIC and 2-opt is similar between both approaches. Due to the better accessibility and scalability in a restart variant, we generally recommend using the built-in POPMUSIC technique rather than using custom 2-opt tours as the basis for Hamiltonian circuit-based candidates.[image: ]
Fig. 3.A minimalistic example of a TSP instance (with five nodes) that is not solvable by LKH. Left: The corresponding [image: $$\alpha $$]-candidate set. Right: The initial tour (solid red lines) with two missing edges from the optimal tour (blue dashed lines). (Color figure online)





3 [image: $$\alpha $$]-Candidate Set Pitfalls
Independent of the pruning strategy, LKH’s ability to generate good solutions is limited when too many edges are removed from the search space. In fact, there are only three scenarios in which an edge, that is not part of the candidate set, can be introduced into the tour: (i) during the construction of the initial tour, (ii) to close a sequential k-opt move, and (iii) when kicking a local optimal tour. Kicking a tour refers to altering parts of a tour to escape local optima after no improving move can be found anymore. Helsgaun’s strategy is to create a new random tour and disallow removing edges which are part of the current best solution [10]. An alternative strategy is a double bridge move, which combines two 2-opt moves that, if applied alone, would result in two separate circles.
The limitation to only three scenarios, which enable introducing edges that are not yet part of the candidate set, can even be seen for very small TSP instances as depicted in Fig. 3. Although this instance consists of only five nodes, LKH cannot solve it, if the following parameters are set: disabling the subgradient procedure (SUBGRADIENT = NO), allowing only one candidate per city (MAX_CANDIDATES = 1), changing the kick-strategy to a double bridge move (KICK_TYPE = 4), and using the initial tour shown in Fig. 3. The tree-based candidate set as visible in Fig. 3 lacks two edges crucial to the optimal tour, preventing their simultaneous introduction with scenario (ii). Additionally, since these edges are absent in the initial tour, and since a double bridge move changes four edges, they cannot be introduced during scenarios (i) and (iii). In this case of a very small search space with only five cities, LKH’s kicking-strategy could by chance result in the optimal solution. This is not the case with the double bridge move employed here. When LKH attempts to replace a suboptimal edge, the only viable replacement is the middle vertical edge, which cannot be part of the optimal tour since it would require breaking either the left or right horizontal edge. Since the candidate set is based on a tree structure and not a Hamiltonian circuit, crucial edges can only be included if the number of candidates per point is increased. However, this increase can be counteracted by clustering many points near the existing ones.[image: ]
Fig. 4.[image: $$\alpha $$]-candidate set (left) and combined edges of [image: $$1,\!000$$] 2-opt runs (right) with the optimal tour for tsplib instance d2103. Gray edges are not in the optimal tour, while black edges are part of it. Red edges are optimal, but missing in the respective candidate set.



Although the subgradient algorithm may mitigate some of these issues, as long as the minimum 1-tree is not the solution to the TSP, it will contain tree-like structures leading to missing edges, as illustrated in Fig. 3. An example of a larger instance where numerous optimal edges are absent in the [image: $$\alpha $$]-candidate set is d2103, which poses a significant challenge for LKH. Figure 4 highlights the distinctions between an [image: $$\alpha $$]- and a 2-opt-based candidate set. Notably, the latter candidate set exhibits increased diversity, especially in long-distance edges.[image: ]
Fig. 5.Share of problem instances with 0 to 18 missing edges in the [image: $$\alpha $$]-candidate list (x-axis) for the different groups and instance sizes.



If missing edges can cause LKH to timeout even on a small five-city instance, it is likely that the frequency of optimal edges in the candidate sets for instances intentionally made challenging for LKH correlates with the algorithm’s performance. Previous studies successfully evolved numerous TSP instances that are difficult to solve for LKH but easy for EAX, and vice versa [2]. However, the authors lacked an explanation for the poor performance. To investigate our hypothesis, we illustrate the proportions of instances belonging to one of the evolved instance groups (grouped by the number of missing edges along the x-axis) in Fig. 5. The evolved instance groups are distinguished into four categories, depending on whether they are easy for EAX and difficult for LKH (eax-lkh-*) or vice versa (lkh-eax-*), and whether they were generated using simple or sophisticated mutation operators. It is evident that instances without missing edges in the candidate set are predominantly the ones classified as LKH-friendly (i.e., lkh-eax-*). Additionally, if the amount of missing edges increases, the more likely it is that an instance belongs to the groups of instances that are challenging for LKH (i.e., eax-lkh-*). Notably, in cases with many missing edges, the sophisticated evolution strategy dominates, indicating the higher flexibility of this approach. This trend remains consistent across all instance sizes, with a roughly linearly scaled increase in the maximal number of missing edges for this small set of sizes. In consequence, these findings highlight a significant factor contributing to LKH’s poor performance on EAX-friendly instances.
The evolution process identified many scenarios particularly challenging for the minimum 1-tree based pruning strategy, rather than for the inner LKH search procedure. This suggests an unfair comparison of LKH in previous algorithm selection studies, based solely on the performance of the [image: $$\alpha $$]-candidate set. Restarting EAX, as proposed by [4], involves reinitializing the evolutionary algorithm with a new population optimized by 2-opt that may introduce many new edges. On the other hand, the construction of the [image: $$\alpha $$]-candidate set is independent of the random seed given to the algorithm, meaning restarting the algorithm will not address the issue of missing edges. Therefore, we explore two new restarting strategies: one based on candidates derived from a 2-opt-based population and the other based on a candidate set produced by POPMUSIC.

4 Experimental Setup
The experiments with new LKH configurations were conducted using Intel Xeon Platinum 8470 CPUs, each being repeated for ten folds using a different starting seed ([image: $$1\,000\,000 \times $$] fold). For each restart, the seed was incremented by one. The cutoff time is set to one hour per run. In accordance with previous studies, we aggregate the run results per instance using the penalized average runtime (PAR10). In case of successful runs, this metric simply computes the average runtime needed to solve the instance. If an instance cannot be solved within the given budget, PAR10 penalizes the corresponding runtime by ten times the maximum runtime, i.e., [image: $$36\,000s$$], prior to aggregating the runtimes.
We maintain the standard settings of LKH except for the seed and the candidate set. In our experiments, we create four distinct restart versions of LKH differentiated by the candidate set construction: [image: $$\textrm{LKH}_{\alpha }$$], [image: $$\textrm{LKH}_{\text {2-opt}}$$], [image: $$\textrm{LKH}_{\text {pop, fixed}}$$], and [image: $$\textrm{LKH}_{\text {pop, restart}}$$]. [image: $$\textrm{LKH}_{\alpha }$$] corresponds to the vanilla restart version as described in [4], utilizing the [image: $$\alpha $$]-candidate set. For [image: $$\textrm{LKH}_{\text {2-opt}}$$], we provide the 2-opt-based candidate set through a candidate set file. This set is generated from [image: $$1\,000$$] 2-opt-optimized tours, from which all unique edges are symmetrically added to the candidate set and then ordered by their frequency. This process results in approximately [image: $$5 \times n$$] unique edges for all instances, where n represents the instance size. Both [image: $$\textrm{LKH}_{\text {pop, fixed}}$$] and [image: $$\textrm{LKH}_{\text {pop, restart}}$$] are POPMUSIC-based variants. In both variants, we restart the algorithm every time a solution was not found within one run. However, for [image: $$\textrm{LKH}_{\text {pop, fixed}}$$], we reuse a prerecorded POPMUSIC candidate set, whereas for [image: $$\textrm{LKH}_{\text {pop, restart}}$$], the candidate set is reinitialized at every restart. Note that when referring to [image: $$\textrm{LKH}_{\alpha }$$] and EAX, we reuse old performance data [5, 6] recorded on other CPUs, which may portray them slightly less favorably. However, our focus is on the structural performance differences, specifically whether the algorithm times out on a given instance or not, hence small differences in runtime are negligible. Further, note that we do not account for the initialization costs for the same reason.
All tests were conducted on the [image: $$10\,000$$] evolved instances from [2]. These instances were chosen to reveal performance variations across different candidate set configurations, as they encompass both highly challenging and easily solvable instances for LKH when using an [image: $$\alpha $$]-candidate set.[image: ]
Fig. 6.Log-scaled average PAR10 score of [image: $$\textrm{LKH}_{\alpha }$$] and [image: $$\textrm{LKH}_{\text {2-opt}}$$] for each group and size of all evolved problem instances. The color corresponds to how many edges are missing in the 2opt-based candidate set.




5 Experimental Results
The candidate sets constructed with the edge frequency information of the 2-opt-optimized Hamiltonian circuits reliably contains all optimal edges. Only 26 of [image: $$10\,000$$] candidate sets have one missing edge, and only one has two missing edges. This leads to a significant performance improvement, with one order of magnitude fewer timeouts observed. Figure 6 shows detailed performance data of both algorithms, where every point corresponds to one TSP instance. Instances along the dashed line are solved approximately equally fast by both algorithms. Instances below this line are solved faster by [image: $$\textrm{LKH}_{\text {2-opt}}$$], while instances above are faster solved with [image: $$\textrm{LKH}_{\alpha }$$]. The most notable improvement of [image: $$\textrm{LKH}_{\text {2-opt}}$$] over [image: $$\textrm{LKH}_{\alpha }$$] is seen in small-sized EAX-friendly instances, where the 2-opt-based variant outperforms the original restart-version on nearly every instance. Interestingly, the performance on instances specifically designed to be easily solvable by LKH does not show bias towards one of the variants being faster, despite the changed candidate set. Furthermore, the data supports the observation that a single missing edge in the candidate set does not significantly impact LKH’s performance, as the missing edge can be introduced when closing a sequential move. However, the instance with two missing edges (see red square in the scatterplot of EAX-friendly instances with [image: $$2\,000$$] cities), is notably more challenging.[image: ]
Fig. 7.Log-scaled average PAR10 score of [image: $$\textrm{LKH}_{\text {pop, restart}}$$] and [image: $$\textrm{LKH}_{\text {pop, fixed}}$$] for each group and size of all evolved problem instances. The color corresponds to how many edges are missing in the candidate set of [image: $$\textrm{LKH}_{\text {pop, fixed}}$$].



Although most candidate sets include all required edges and the search restarts with a new initial tour after an unsuccessful run, the candidate set itself may introduce a search bias due to edge ordering. To investigate this, we examine the two other new restart-variants based on POPMUSIC: [image: $$\textrm{LKH}_{\text {pop, fixed}}$$] and [image: $$\textrm{LKH}_{\text {pop, restart}}$$]. The performance comparison is shown in Fig. 7. The data clearly indicates that the POPMUSIC-based candidate set misses more important edges (here: up to nine edges per instance). Comparing the results across Fig. 6 and Fig. 7, it becomes apparent that the LKH-variant based on the fixed POPMUSIC candidate set times out more often compared to [image: $$\textrm{LKH}_{\text {2-opt}}$$]. However, including the candidate set in the restart process resolves this issue, and all instances with many missing edges are solved within the time limit. Note that most instances leading to timeouts have two or more missing edges. However, there are a few instances with at most one missing edges that produced timeouts but could be solved by [image: $$\textrm{LKH}_{\text {pop, restart}}$$]. This suggests that resetting the candidate set for every restart can mitigate biases beyond missing optimal edges.[image: ]
Fig. 8.Average PAR10-scores of [image: $$\textrm{LKH}_{\alpha }$$], [image: $$\textrm{LKH}_{\text {2-opt}}$$], [image: $$\textrm{LKH}_{\text {pop,fixed}}$$], [image: $$\textrm{LKH}_{\text {pop,restart}}$$] and EAX for each of the four considered TSP sets and instance sizes. On the EAX-friendly instances (upper two panels), [image: $$\textrm{LKH}_{\text {2-opt}}$$] strongly outperforms [image: $$\textrm{LKH}_\alpha $$], while maintaining consistent performance on LKH-friendly instances (lower two panels). Further, [image: $$\textrm{LKH}_{\text {pop,restart}}$$] significantly outperforms [image: $$\textrm{LKH}_{\text {pop,fixed}}$$] and [image: $$\textrm{LKH}_{\text {2-opt}}$$] on all problem categories, highlighting the importance of changing the candidate sets between runs.



Figure 8 provides a summary of the PAR10-performance of all examined LKH-variants across different instance sizes and groups. Although the POPMUSIC candidate set was initially designed for large instances, combining it with a restart mechanism yields a much more competitive algorithm compared to the original restart-variant of LKH, which was based on the [image: $$\alpha $$]-candidate set.

6 Conclusion
In this study, we explored the impact of various options for the candidate edge set of LKH. Our findings reveal that even a small number of missing edges can frequently result in algorithm timeouts. Instances that were evolved to be challenging for [image: $$\textrm{LKH}_{\alpha }$$] were found to be primarily difficult due to the absence of optimal edges in the [image: $$\alpha $$]-candidate set and a lack of changes to the candidate set between restarts. This highlights a significant challenge in algorithm selection for the TSP, a topic not thoroughly addressed in prior works. Choosing the appropriate algorithm for a specific instance necessitates knowledge of whether optimal edges are absent in the candidate set, which, in turn, requires knowledge of the optimal tour. Yet, such information is obviously a priori not available.
A candidate set generated from 2-opt tours typically includes all optimal edges in the vast majority of cases, leading to notably improved runtimes. However, the most optimal performance is achieved with a lightweight restartable candidate set based on Hamiltonian circuits, such as POPMUSIC. Our new restart variant, [image: $$\textrm{LKH}_{\text {pop, restart}}$$], outperforms all other LKH variants and, as shown in Fig. 9, is a true contender to EAX as state-of-the-art TSP solver.[image: ]
Fig. 9.Log-scaled average PAR10 scores of EAX and [image: $$\textrm{LKH}_{\text {pop, restart}}$$].



These findings open up numerous avenues for further research. Algorithm selectors can now benefit from true performance complementarity between EAX and our proposed solver, and thereby leverage the substantial performance improvement without facing the challenge of (avoiding) excessive timeouts for LKH. Also, the candidate set creation with POPMUSIC can be further optimized, and the resulting performance differences can be examined depending on the underlying instance types. New instances can be evolved to gain further insight into the complementary nature of EAX and LKH. Lastly, the impact of initial tours on EAX warrants investigation as well, considering the relatively long initialization time of the 2-opt population and the potential analogous enhancements with a different initial population type.
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Abstract
Uncertainties in real-world problems impose a challenge in finding reliable solutions. If mishandled, they can lead to suboptimal or infeasible solutions. Chance constraints are a natural way to capture uncertain problem parameters. They model probabilistic constraints involving the stochastic parameters and an upper bound of probability that mimics the confidence level of the solution. We focus on the knapsack problem with stochastic profits to guarantee a certain level of confidence in the profit of the solutions. We present a bi-objective fitness formulation that uses expected profit and standard deviation to capture the chance constraints. This formulation enables optimising the problem independent of a specific confidence level. We evaluate the proposed fitness formulation using well-known evolutionary algorithms GSEMO, NSGA-II and MOEA/D. Moreover, we introduce a filtering method that refines the interim populations based on the confidence levels of its solutions. We evaluate this method by applying it along with GSEMO to improve the quality of its population during optimisation. We conduct extensive experiments to show the effectiveness of these approaches using several benchmarks and present a detailed analysis of the results.
Keywords
Evolutionary algorithmsMulti-objective optimisationChance constraints
1 Introduction
Real-world optimisation problems become challenging when they have uncertain problem parameters or uncontrollable environmental changes. In most real-world situations, these uncertainties are inevitable, such as highly dynamic load demands in the power grids [5], uncertain cost estimates in budgeting [4], uncertain weather conditions affecting transportation systems [17], and mine optimisation under uncertainty [31, 36]. It is crucial to capture the effects of uncertain parameters to identify risks and avoid disastrous failures and high recovery costs. For example, weather conditions heavily impact the transportation time schedules of commercial vessels. In this scenario, uncertainties in transportation time impact predetermined deadlines and could result in additional costs for maritime companies [17]. It is important to consider the implications of stochastic problem components to have a more realistic view of the problem conditions and identify safe and reliable solutions.
Chance constraints are a natural way to model uncertainties in problems. A chance constraint defines a small valued upper bound for the probability ([image: $$0&lt;\alpha &lt;1/2$$]) that a particular constraint may be violated [9, 10, 25]. It means a solution is feasible if the likelihood of its constraint violation is equal to or below [image: $$\alpha $$]. Moreover, this probabilistic constraint allows us to attribute a certain confidence level to the solutions of a stochastic optimisation problem. Chance constraints can be used to design practical applications for stochastic optimisation problems in many fields such as mining [31, 40], power systems [5, 13], communication systems [1] and transportation [17, 37].
In this paper, we consider a variation of the classical knapsack problem. The deterministic knapsack problem [16] is a classical NP-hard combinatorial optimisation problem. It has been considered in different settings in the literature, such as with stochastic weights [38, 39], with stochastic profits [24] and other dynamic and stochastic settings [2, 3, 12, 32–34]. This paper focuses on the knapsack variant with deterministic weights and stochastic profits. While the deterministic constraint on the weights remains the same as in the classical knapsack problem, we introduce a chance constraint on the profits to capture the uncertainties in profits [24]. This problem model can be beneficial in many real-world problems, such as modelling complex planning problems like mine design and mining activity scheduling, which will allow discovering plans to achieve the maximum profit with a higher confidence level.
We consider the evolutionary algorithms to address the target problem. Evolutionary approaches perform well in addressing stochastic optimisation problems, including chance-constrained problems [3, 10, 30]. In particular, multi-objective evolutionary approaches optimise the problem by considering multiple objectives simultaneously. They generate a set of solutions that gives a trade-off of optimal solutions concerning the objectives. This final population provide more insights into improving the algorithms and search space than having a single solution as the outcome [6, 7]. Therefore, multi-objective algorithms help one to make informed decisions when selecting a solution to implement.
1.1 Related Work
The early literature on evolutionary computation for chance-constrained problems considers computationally expensive methods like simulations and sampling to cater for chance constraints [2, 9, 11, 15, 18–20, 42]. More recent studies have looked into tail-bound inequalities, which more efficiently deal with chance constraints [3, 22–24, 28, 29, 38, 43].
The chance-constrained knapsack problem with deterministic profits and stochastic weights are considered in several papers [28, 38, 39]. Yue et al. 2019 [38] present how to use well-known deviation inequalities like Chebyshev’s inequality and Chernoff bound to estimate the probability of constraint violation. In [39], where the same knapsack problem variation is considered, they introduce problem-specific operators for EAs with both single- and multi-objective formulations. Assmi et al. [3] study the evolutionary approaches focusing on the dynamic chance-constrained knapsack problem with stochastic weights and a dynamic weight bound. In addition to the objective function on the profit of a given stochastic solution, a second objective is introduced to address the dynamic capacity constraint. It captures the minimal capacity bound for the solution that meets the chance constraints.
Run-time analysis is an essential topic in studying problems with chance constraints. The first paper on run time analysis for chance constraint problems considers the knapsack problem with stochastic weights [26]. This work considers different cases of the problem and studies the run time of (1+1) EA for them. In [41], they perform the run time analysis of simple EAs for chance-constrained knapsack problems with uniform weights. The papers [27] and [35] study the run time of simple EAs for different chance-constrained problems. In [27], the authors consider single- and multi-objective EAs for chance-constrained problems with customarily distributed random problem variables. They also show how to use the proposed evolutionary approaches for chance-constrained minimum spanning tree problems [27]. In [35], they analyse the run time of random local search and (1+1) EA for the chance-constrained makespan problem.
In the study [24], the authors study single objective optimisation of profit chance-constrained knapsack problem with simple evolutionary algorithms. Those algorithms include (1+1) EA with standard bit-flip and heavy-tail mutation operators and population-based ([image: $$\mu $$]+1) EA with a specific crossover operator specific for the knapsack problem. This study evaluates the performance of all these algorithms using the single objective fitness evaluation. The overall results show that (1+1) EA with heavy tail mutation operator significantly improved over other algorithms.

1.2 Our Contribution
We introduce a bi-objective fitness function motivated by the recent study on the evolutionary optimisation of chance-constrained problems by computing the trade-offs concerning the expected value and variance of solutions presented in [27]. The significance of this function is that it evaluates the fitness of a solution independent of a specific confidence level in profit (i.e. a specific value of [image: $$\alpha $$]). Since this generates a set of solutions that gives a trade-off of the objectives, it allows one to make more informed decisions when selecting a solution to implement. For example, to identify the solution that gives the best profit with a particular [image: $$\alpha $$] value, we can calculate the profit of all the solutions for that confidence level and select the solution that gives the best profit among the final population. Also, deciding on the confidence levels before running optimisation algorithms is not required when using the introduced fitness formulation.
This paper introduces a filtering method for chance-constrained optimisation as a key algorithmic contribution. This method improves the effects of the proposed fitness function. We consider this filtering method with the GSEMO as a separate algorithm to solve the chance-constrained problem.
We evaluate the effectiveness of the fitness formulation with the proposed algorithm and three well-known multi-objective evolutionary algorithms. We consider the global simple evolutionary multi-objective optimiser (GSEMO) [14] and state-of-the-art algorithms: non-dominated sorting genetic algorithm (NSGA-II) [8] and multi-objective evolutionary algorithm based on decomposition (MOEA/D) [44]. Each of these algorithms implements a unique evolutionary approach and allows us to see the effectiveness of the proposed fitness function under different evolutionary techniques.
The rest of this paper is structured as follows. Section 2 covers the preliminaries, including the formal introduction of the problem and profit estimates based on concentration bounds. In Sect. 3, we discuss the multi-objective formulation, including the fitness function and how to use the probability bounds to estimate the confidence in the solutions’ profit. Afterwards, we introduce the algorithms and how they address the chance-constrained problem in Sect. 4. Finally, we present the experimental settings and detailed analysis of the results in Sect. 5, followed by the conclusions of this work in Sect. 6.


2 Preliminaries
The classical knapsack problem can be defined as follows. The input is given as n elements [image: $$1, \ldots , n$$] with associated profits [image: $$p_i$$] and weight [image: $$w_i$$], [image: $$1 \le i \le n$$], and weight bound B. A possible solution [image: $$x \in \{0,1\}^n$$] is represented as a bitstring of length n such that [image: $$x_i=1$$] holds iff the element i is selected in x. Given the profit of x as [image: $$p(x) = \sum _{i=1}^n{p_i x_i}$$] and weight [image: $$w(x) = \sum _{i=1}^n{w_i x_i}$$], the goal in the classical knapsack problem is to find the solution [image: $$x^*$$] that maximises p(x) subject to the weight constraint [image: $$w(x) \le B$$], i.e. [image: $$x^* = \arg \max _{x \in \{0,1\}^n} \{p(x) \mid w(x) \le B\}$$] holds.
When the profits [image: $$p_i$$] of the knapsack elements are stochastic, the profit of a solution is uncertain and varies from the expected profit. We use a chance constraint on the profit to capture this stochastic behaviour. This constraint ensures that for each feasible solution x, the probability that the profit will drop below the maximal profit (P) is at most a small probability [image: $$0&lt;\alpha &lt;1/2$$].
We can formally present this problem as follows:[image: $$\begin{aligned} &amp; \max P \end{aligned}$$]

 (1)



[image: $$\begin{aligned} \text {subject~to} &amp; Pr(p(x) &lt; P) \le \alpha \end{aligned}$$]

 (2)



[image: $$\begin{aligned} \text {and}&amp; w(x) \le B \end{aligned}$$]

 (3)


When the profits [image: $$p_i$$] of knapsack elements are stochastic, it is not always possible to calculate the exact maximal profit of a solution for which it meets the chance constraint given by Eq. 2. Such calculations are often only possible for special cases, like where the profits are independent and normally distributed random variables. The most common alternative in literature is to consider the tail-bound inequalities, which apply under different conditions of profit distribution. They can be used to define an upper bound on the probability of constraint violation [21] and to formulate the maximal profit of a solution subject to the chance constraint. In recent literature, Chebyshev inequality and Hoeffding bound have been considered to derive profit estimates for the knapsack problem with stochastic profits [24]. We present below the profit estimates [image: $$\hat{P}_{\text {Cheb}}(x,\alpha )$$] and [image: $$\hat{P}_{\text {Hoef}}(x,\alpha )$$] from the literature [24], that evaluate the maximal profit (P) of a feasible solution x subject to the violation of profit constraint given by Eq. (2) is at most a given [image: $$\alpha $$].
Let [image: $$\mu (x)$$] and v(x) be the expectation and variance of profit of x, then based on Chebyshev inequality [21], [image: $$\hat{P}_{\text {Cheb}}(x,\alpha )$$] gives an estimate for the profit of solution x with [image: $$\alpha $$] as the maximum chance of constraint violation as follows:[image: $$\begin{aligned} \hat{P}_{\text {Cheb}}(x, \alpha ) = \mu (x) - \sqrt{(1-\alpha )/ \alpha } \cdot \sqrt{v(x)}. \end{aligned}$$]

 (4)


The Hoeffding bound [21] can be used to formulate a profit estimate if the profits are independent and distributed uniformly with the same dispersion. Let the profits of elements be uniformly distributed as [image: $$p_i \in [\mu _i-\delta ,\mu _i+\delta ]$$] where [image: $$\mu _i$$] is the expected profit of element i and [image: $$\delta $$] is the dispersion of profits. Then, we can estimate the profit of x holding the chance constraint with a given [image: $$\alpha $$] as follows:[image: $$\begin{aligned} \hat{P}_{\text {Hoef}}(x,\alpha ) = \mu (x) - \delta \cdot \sqrt{\ln (1/\alpha ) \cdot 2 \cdot |x|_1}. \end{aligned}$$]

 (5)





3 Methods
One of the main contributions of this work is the introduction of multi-objective fitness formulations for the profit chance-constrained problem. Here, we introduce the bi-objective fitness function for the problem and how the confidence levels are associated with the solutions in a population optimised using this function.
3.1 Fitness Formulations
Now, we introduce the fitness formulation as [image: $$g(x) = (\mu (x), v(x))$$], which considers the two objectives based on the expected value and variance of the solution’s profit. Given that [image: $$v_{\max } = \sum _{i=1}^n {\sigma ^2_i}$$] denotes the maximal variance of the objectives, the objectives [image: $$\mu (x)$$] and v(x) are defined as,[image: $$\begin{aligned} \mu (x) = \left\{ \begin{array}{lcl} \sum _{i=1}^n {\mu _i x_i} &amp;  &amp;  { w(x)\le B}\\ B - w(x) &amp;  &amp;  \text {otherwise} \end{array} \right. \end{aligned}$$]

 (6)



[image: $$\begin{aligned} v(x) = \left\{ \begin{array}{lcl} \sum _{i=1}^n {\sigma _i^2x_i} &amp;  { w(x)\le B}\\ v_{\max } +(w(x)-B) &amp;  \text {otherwise} \end{array} \right. \end{aligned}$$]

 (7)


These two conflicting objectives reflect the requirement of maximising profit while minimising the chances of uncertainties. Therefore, we maximise the objective corresponding to the expected profit ([image: $$\mu (x)$$]) and minimise the objective corresponding to the variance of profits (v(x)). Given two feasible solutions x and y, we say that solution x dominates y ([image: $$x \succeq y$$]) iff [image: $$\mu (x) \ge \mu (y) \wedge v(x) \le v(y)$$] and we say that x strongly dominates y ([image: $$x \succ y$$]) iff [image: $$x \succeq y \wedge \mu (x) &gt; \mu (y) \wedge v(x) &lt; v(y)$$]. Furthermore, if a solution exceeds the weight bound ([image: $$w(x) &gt; B$$]), the value of each objective is penalised accordingly to capture the deterministic constraint on weights. This ensures that any feasible solution dominates the infeasible solution instances.

3.2 Identifying the Best Solution
The fitness function g allows bi-objective optimisation of the problem independent of a specific confidence level ([image: $$\alpha $$]) in the profit. The outcome of an evolutionary algorithm that uses g to evaluate the fitness of solutions is a set of solutions giving a trade-off of the objectives [image: $$\mu $$] and v. Given a particular confidence level [image: $$\alpha $$], we need to calculate the profits of all solutions in the population for that confidence level and choose the one giving the highest profit value as the best solution in the population for the given [image: $$\alpha $$]. We need to use the profit estimates [image: $$\hat{P}_{\text {Cheb}}$$] and [image: $$\hat{P}_{\text {Hoef}}$$] (given in Eq. 4 and 5) to calculate the profit of each solution for the confidence level [image: $$\alpha $$]. We define the best solution [image: $$x^*$$] that gives the highest profit value for [image: $$\alpha $$], as [image: $$\arg \max _{x \in P} \hat{P}_{\text {Cheb}}(x,\alpha )$$] or [image: $$\arg \max _{x \in P} \hat{P}_{\text {Hoef}}(x,\alpha )$$].

3.3 Level of Confidence in a Solution’s Profit
The fitness function g allows multi-objective optimisers to generate a population, giving different solutions that maximise profit for specific confidence levels. Given a population, we can associate a confidence interval for each solution, such that the solution shows the best profit in the population for any confidence level in the interval. First, we need to calculate the confidence level threshold for a pair of solutions, that one solution gives a better profit than the other. Here, we consider two solutions that do not dominate each other, which means each solution is better concerning at least one objective, [image: $$\mu $$] or v. Therefore, we consider non-dominating solution pairs when introducing Theorem 1 and 2.
We obtain the first theorem concerning [image: $$\hat{P}_{\text {Cheb}}$$] profit estimate (Eq. 4), which allows us to define a minimum confidence level that the profit of one solution becomes better than another given solution.
Theorem 1
Let [image: $$0 &lt; \alpha &lt;1, and $$] x and y be two feasible solutions that satisfy [image: $$\mu (x) &gt; \mu (y)$$] and [image: $$v(x) &gt; v(y)$$]. If [image: $$\alpha \ge \frac{1}{1+(R_{\text {Cheb}}(x,y))^2}$$] holds such that [image: $$R_{\text {Cheb}}(x,y) = \frac{\mu (x)-\mu (y)}{\sqrt{v(x)} - \sqrt{v(y)}}$$] then [image: $$\hat{P}_{\text {Cheb}}(x, \alpha ) \ge \hat{P}_{\text {Cheb}}(y, \alpha )$$].

Proof
We have,[image: $$\begin{aligned} &amp;\,&amp;\alpha &amp; \ge 1/\left( 1+R_{\text {Cheb}}(x,y)^2\right) \\ &amp; \Longleftrightarrow &amp; R_{\text {Cheb}}(x,y)^2 &amp; \ge (1- \alpha )/{\alpha }\\ \end{aligned}$$]



As we assume [image: $$0 &lt; \alpha &lt;1$$], [image: $$\mu (x) &gt; \mu (y)$$] and [image: $$v(x) &gt; v(y)$$], we have [image: $$R_{\text {Cheb}}(x,y)&gt;0$$] and [image: $$\left( 1- \alpha \right) /\alpha &gt;0$$]. This implies,[image: $$\begin{aligned}   &amp;    R_{\text {Cheb}}(x,y) &amp; \ge \sqrt{(1- \alpha )/\alpha }\\ &amp; \Longleftrightarrow &amp; \frac{\mu (x)-\mu (y)}{\sqrt{v(x)} - \sqrt{v(y)}} &amp; \ge \sqrt{(1- \alpha )/\alpha }\\ &amp;\Longleftrightarrow &amp; \mu (x)- \sqrt{(1- \alpha )/\alpha } \cdot \sqrt{v(x)} &amp; \ge \mu (y) - \sqrt{(1- \alpha )/\alpha } \cdot \sqrt{v(y)}\\ &amp;\Longleftrightarrow &amp; \hat{P}_{\text {Cheb}}(x, \alpha ) &amp; \ge \hat{P}_{\text {Cheb}}(y, \alpha ) \end{aligned}$$]



This completes the proof.    [image: $$\square $$]

The above theorem defines a threshold [image: $$\alpha $$] value for the profit between two solutions. Let the two feasible solutions x and y satisfy [image: $$\mu (x) &gt; \mu (y)$$] and [image: $$v(x) &gt; v(y)$$], we define [image: $$\alpha ^*_{\text {Cheb}}(x,y)=1/\left( 1+R_{\text {Cheb}}(x,y)^2\right) $$], that gives[image: $$\begin{aligned} \hat{P}_{\text {Cheb}}(x, \alpha ) &amp; = \hat{P}_{\text {Cheb}}(y, \alpha ) \text { iff } \alpha = \alpha ^*_{\text {Cheb}}(x,y) \\ \hat{P}_{\text {Cheb}}(x, \alpha ) &amp;&gt; \hat{P}_{\text {Cheb}}(y, \alpha ) \text { iff } \alpha &gt; \alpha ^*_{\text {Cheb}}(x,y) \\ \hat{P}_{\text {Cheb}}(x, \alpha ) &amp;&lt; \hat{P}_{\text {Cheb}}(y, \alpha ) \text { iff } \alpha &lt; \alpha ^*_{\text {Cheb}}(x,y) \end{aligned}$$]



Next, we present a theorem based on [image: $$\hat{P}_{\text {Hoef}}$$] (Eq. 5), which defines a minimum confidence level for which one solution in a pair of non-dominated solutions gives a better profit estimate. [image: $$\hat{P}_{\text {Hoef}}$$] is applicable when the profits have the same dispersion, and the variances depend on the number of elements in the solution. Similarly, the conditions in Theorem 2 are defined based on the expected profit and number of items.
Theorem 2
Let [image: $$0 &lt; \alpha &lt;1, and $$] x and y be two feasible solutions such that [image: $$\mu (x) &gt; \mu (y)$$] and [image: $$|x|_1 &gt; |y|_1$$], holds. If [image: $$\alpha \ge e^{-R_{\text {Hoef}}(x,y)^2}$$] holds such that [image: $$R_{\text {Hoef}}(x,y) = \frac{\mu (x) - \mu (y)}{\delta \left( \sqrt{2|x|_1} - \sqrt{2|y|_1}\right) }$$] then [image: $$\hat{P}_{\text {Hoef}}(x, \alpha ) \ge \hat{P}_{\text {Hoef}}(y, \alpha )$$].

Proof
We have,[image: $$\begin{aligned} &amp;\, &amp; \alpha &amp; \ge e^{-R_{\text {Hoef}}(x,y)^2} \\ &amp;\Longleftrightarrow &amp; R_{\text {Hoef}}(x,y)^2 &amp; \ge \ln {(1/\alpha )}\\ \end{aligned}$$]



As we assume [image: $$0&lt;\alpha &lt;1$$], [image: $$\mu (x)&gt;\mu (y)$$], [image: $$|x|_1&gt;|y|_1$$] and [image: $$\delta &gt;0$$], we have [image: $$R_{\text {Hoef}}(x,y)&gt;0$$] and [image: $$\ln \frac{1}{\alpha } &gt; 0$$]. This implies,[image: $$\begin{aligned} &amp;\,&amp;R_{\text {Hoef}}(x,y) &amp; \ge \sqrt{\ln (1/\alpha )} \\ &amp;\Longleftrightarrow &amp; \frac{\mu (x) - \mu (y)}{\delta \left( \sqrt{2|x|_1} - \sqrt{2|y|_1}\right) } &amp; \ge \sqrt{\ln (1/\alpha )} \\ &amp;\Longleftrightarrow &amp; \mu (x) - \delta \sqrt{\ln \left( 1/\alpha \right) \cdot 2|x|_1} &amp; \ge \mu (y) - \delta \sqrt{\ln \left( 1/\alpha \right) \cdot 2|y|_1}\\ &amp;\Longleftrightarrow &amp; \hat{P}_{\text {Hoef}}(x, \alpha ) &amp; \ge \hat{P}_{\text {Hoef}}(y, \alpha ) \end{aligned}$$]



This completes the proof.   [image: $$\square $$]

Given two feasible solutions x and y that satisfy [image: $$\mu (x) &gt; \mu (y)$$] and [image: $$|x|_1 &gt; |y|_1$$], we define a threshold value, [image: $$\alpha ^*_{\text {Hoef}}(x,y)=e^{-R_{\text {Hoef}}(x,y)^2}$$] that gives,[image: $$\begin{aligned} \hat{P}_{\text {Hoef}}(x, \alpha ) &amp; = \hat{P}_{\text {Hoef}}(y, \alpha ) \text { iff } \alpha = \alpha ^*_{\text {Hoef}}(x,y) \\ \hat{P}_{\text {Hoef}}(x, \alpha ) &amp;&gt; \hat{P}_{\text {Hoef}}(y, \alpha ) \text { iff } \alpha &gt; \alpha ^*_{\text {Hoef}}(x,y) \\ \hat{P}_{\text {Hoef}}(x, \alpha ) &amp;&lt; \hat{P}_{\text {Hoef}}(y, \alpha ) \text { iff } \alpha &lt; \alpha ^*_{\text {Hoef}}(x,y)\text {.} \end{aligned}$$]



It is important to note that these thresholds [image: $$\alpha ^*_{\text {Cheb}}(x,y)$$] and [image: $$\alpha ^*_{\text {Hoef}}(x,y)$$] are applicable under the same conditions that apply to the corresponding to the profit estimates.
The thresholds of confidence levels for solution pairs allow us to derive the confidence value interval for which a particular solution gives the best profit value over other solutions in a population. We define this confidence value range for solutions in a population optimised using the fitness function g. First, we define an ordering of the solutions for such a population.
Let the final population has m solutions [image: $$\{x^1, \ldots x^{m}\}$$] sorted by expected profit such that [image: $$\mu (x^1)\ge \mu (x^2) \ge \ldots \ge \mu (x^{m})$$]. Since it uses the fitness function g for optimisation, the above ordering of the solutions satisfies [image: $$v(x^1)\ge v(x^2) \ge \ldots \ge v(x^{m})$$]. Furthermore, if the knapsack elements have the same dispersion, this ordering holds [image: $$|x^1|_1\ge |x^2|_1 \ge \ldots \ge |x^{m}|_1$$].
For all solutions pairs [image: $$x^i,x^j \in \{1,\ldots ,m\}$$], we calculate the confidence level using either [image: $$\alpha ^*_{\text {Cheb}}(x^i,x^j)$$] or [image: $$\alpha ^*_{\text {Hoef}}(x^i,x^j)$$] and for [image: $$i=0$$] and [image: $$j=0$$] we consider the confidence level as 1. Then, the confidence interval for the profit of solution [image: $$x^k$$] is given by the following intervals,[image: $$\begin{aligned} \max _{i=k+1}^{m} \alpha ^*_{\text {Cheb}}(x^i,x^k) \le \alpha \le \min _{i=0}^{k-1} \alpha ^*_{\text {Cheb}}(x^i,x^k) \end{aligned}$$]

 (8)



[image: $$\begin{aligned} \max _{i=k+1}^{m} \alpha ^*_{\text {Hoef}}(x^i,x^k) \le \alpha \le \min _{i=0}^{k-1} \alpha ^*_{\text {Hoef}}(x^i,x^k) \end{aligned}$$]

 (9)


Notably, only some of the solutions in the final population will have a non-empty interval. A solution with an empty [image: $$\alpha $$] interval implies that it does not give the best profit value for any confidence level.


4 Algorithms for the Chance Constrained Knapsack Problem
This study considers three widely used multi-objective evolutionary algorithms: GSEMO, NSGA-II and MOEA/D. GSEMO is the simplest form of a multi-objective evolutionary algorithm. It uses dominance between solutions to select the population for the next generation. The specific steps of GSEMO are given in Algorithm 1. The initial population contains a solution where each bit is randomly chosen. In each iteration, a parent solution x is randomly selected from the population S, and an offspring solution y is generated by flipping each bit in x with a probability of 1/n. If the existing solutions do not dominate y, it is added to S, and all solutions dominated by y are removed from S. These iterations repeat until the given number of fitness evaluations are completed.[image: ]


The final population of GSEMO contains solutions that do not give the best profit value for any probability value for [image: $$\alpha $$]. Such solutions do not add value to the optimisation goal of finding the best solutions with given confidence levels. For instance, Fig. 1 presents final populations from GSEMO using 10 million fitness evaluations on two problem instances that are used in the experiments. Only the solutions marked by a blue star have a valid confidence level interval, and those intervals compose the complete probability range [0,1]. Only these solutions in the final population will be useful at the end of the optimisation.[image: ]


We introduce a filtering method to remove the solutions without a valid [image: $$\alpha $$] interval from the interim populations. It is regularly applied to the interim populations of GSEMO after a certain amount of fitness evaluations. Here, the filtering method uses Eq. 8 or 9 to calculate the [image: $$\alpha $$] intervals of the solutions. As the filtering method keeps only the solutions with valid [image: $$\alpha $$] intervals, it increases the chances that the new solutions are improved upon these solutions and eventually improves the quality of the final population.
The steps of the filtering method are given in Algorithm 2. It takes the population [image: $$P_0$$] as the input, which can be either the final population or an interim population created during the execution of GSEMO. Population [image: $$P_0$$] needs solutions in the decreasing order of the expected profit value. For each solution [image: $$x^k$$], we consider its the confidence interval (Eq. 8 and 9) and add [image: $$x^k$$] to the new population [image: $$P_1$$] iff this interval is non-empty.[image: ]
Fig. 1.Trade-offs of objectives in the final populations from GSEMO.



NSGA-II is a prominent multi-objective evolutionary algorithm focusing on diversity by finding near-optimal solutions [8]. If we consider one iteration of the evolutionary process of NSGA-II, it creates an offspring population with an equal number of solutions as the parent population. NSGA-II generate offspring solutions by selecting two solutions using binary tournament selection and then applying uniform crossover and bit-flip mutation (with a probability of 1/n). Next, parent and offspring populations are considered together and divided into non-dominating solution fronts. The solutions for the new population are selected from the lowest to higher-ranking fronts. If the new population does not have space to fit a front completely, the remainder of the solutions are selected considering the crowding distance. Considering crowding distance allows diverse solutions to be selected for the population. The NSGA-II stops when the required number of fitness evaluations are completed.
MOEA/D optimises a multi-objective problem by decomposing it into multiple single-objective subproblems and solving them collaboratively. We set the population size m equal to the number of knapsack elements ([image: $$m=n$$]). Then, we define a set of even spread weight vectors [image: $$\lambda ^1 \ldots \lambda ^m$$]. Each weight vector is of length two, representing the decomposition of the problem into the two subproblems concerning two objectives. The distance between the weight vectors determines the neighbourhood of a solution. We use the following aggregation function to evaluate solutions against each weight vector [image: $$\lambda ^j$$] and reference point z,[image: $$g^{te}(x|\lambda ^j,z) = \max \{ \lambda ^j_1 |\mu (x)-z_1|,\lambda ^j_2 |v(x)-z_2| \}$$]



The reference point z is determined by the best objective values ([image: $$\mu $$] and v) given by different solutions in the current population. This point helps to guide the optimisation process [44]. We maintain configurations for MOEA/D similar to other algorithms we study in this paper. We initialise the population with randomly generated solutions. To generate offspring solutions, we use uniform crossover and bit-flip mutation (with a probability of 1/n). Furthermore, we run MOEA/D until it completes the given number of fitness evaluations.Table 1.Experimental Results using Chebyshev’s inequality


	[image: $$\alpha $$]
	[image: $$\delta $$]
	GSEMO (1)
	GSEMO+Filtering (2)
	NSGA-II (3)
	MOEA/D (4)

	mean
	std
	stat
	mean
	std
	stat
	mean
	std
	stat
	mean
	std
	stat

	uncorr-100 (B = 2407)

	0.1
	25
	11029.6826
	76.32
	[image: $$ 2^{-} 3^{+} 4^{+}$$]
	11085.6072
	0.00
	[image: $$1^{+} 3^{+} 4^{+}$$]
	11030.2076
	66.36
	[image: $$1^{-} 2^{-} $$]
	10989.8740
	101.49
	[image: $$1^{-} 2^{-} $$]

	50
	10862.4750
	61.41
	[image: $$ 3^{+} 4^{+}$$]
	10907.0000
	0.00
	[image: $$ 3^{+} 4^{+}$$]
	10833.2699
	64.13
	[image: $$1^{-} 2^{-} $$]
	10708.3350
	137.02
	[image: $$1^{-} 2^{-} $$]

	0.01
	25
	10620.5264
	71.04
	[image: $$ 2^{-} 3^{+} 4^{+}$$]
	10672.3379
	0.00
	[image: $$1^{+} 3^{+} 4^{+}$$]
	10621.9585
	60.35
	[image: $$1^{-} 2^{-} $$]
	10583.7093
	94.69
	[image: $$1^{-} 2^{-} $$]

	50
	10044.4941
	49.77
	[image: $$ 3^{+} 4^{+}$$]
	10079.9649
	0.00
	[image: $$ 3^{+} 4^{+}$$]
	10020.0651
	53.33
	[image: $$1^{-} 2^{-} $$]
	9910.1844
	124.55
	[image: $$1^{-} 2^{-} $$]

	0.001
	25
	9345.9245
	55.26
	[image: $$ 2^{-} 3^{+} 4^{+}$$]
	9384.5150
	0.00
	[image: $$1^{+} 3^{+} 4^{+}$$]
	9349.7796
	42.03
	[image: $$1^{-} 2^{-} $$]
	9318.3976
	74.42
	[image: $$1^{-} 2^{-} $$]

	50
	7495.5153
	17.96
	[image: $$ 3^{+} 4^{+}$$]
	7502.7716
	0.00
	[image: $$ 3^{+} 4^{+}$$]
	7488.2131
	23.20
	[image: $$1^{-} 2^{-} $$]
	7429.7797
	83.79
	[image: $$1^{-} 2^{-} $$]

	strong-100 (B = 4187)

	0.1
	25
	8507.0584
	130.14
	[image: $$ 2^{-} 4^{+}$$]
	8606.3413
	87.30
	[image: $$1^{+} 4^{+}$$]
	8582.6920
	85.10
	[image: $$ 4^{+}$$]
	8402.1225
	91.54
	[image: $$1^{-} 2^{-} 3^{-} $$]

	50
	8368.0306
	94.01
	[image: $$ 4^{+}$$]
	8422.6322
	67.23
	[image: $$ 4^{+}$$]
	8379.6138
	85.94
	[image: $$ 4^{+}$$]
	8012.8210
	220.02
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	8083.9678
	106.20
	[image: $$ 2^{-} 4^{+}$$]
	8170.3360
	69.58
	[image: $$1^{+} 4^{+}$$]
	8144.0469
	68.35
	[image: $$ 4^{+}$$]
	7991.9311
	75.75
	[image: $$1^{-} 2^{-} 3^{-} $$]

	50
	7502.9361
	59.85
	[image: $$ 2^{-} 4^{+}$$]
	7549.4937
	41.27
	[image: $$1^{+} 3^{+} 4^{+}$$]
	7510.8080
	54.00
	[image: $$ 2^{-} 4^{+}$$]
	7221.6377
	175.65
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	6770.3193
	41.13
	[image: $$ 2^{-} 4^{+}$$]
	6814.1197
	20.77
	[image: $$1^{+} 3^{+} 4^{+}$$]
	6788.1211
	28.24
	[image: $$ 2^{-} 4^{+}$$]
	6720.6049
	47.05
	[image: $$1^{-} 2^{-} 3^{-} $$]

	50
	4957.5449
	36.78
	[image: $$ 2^{+} 4^{+}$$]
	4894.0039
	60.21
	[image: $$1^{-} 3^{-} $$]
	4945.4605
	47.34
	[image: $$ 2^{+} 4^{+}$$]
	4847.9857
	65.58
	[image: $$1^{-} 3^{-} $$]

	uncorr-300 (B = 6853)

	0.1
	25
	33935.4067
	205.62
	[image: $$ 2^{-} $$]
	34286.1802
	147.53
	[image: $$1^{+} 3^{+} 4^{+}$$]
	33998.1173
	348.47
	[image: $$ 2^{-} $$]
	33804.0944
	354.70
	[image: $$ 2^{-} $$]

	50
	33571.9980
	260.86
	[image: $$ 2^{-} 4^{+}$$]
	33967.3813
	159.24
	[image: $$1^{+} 3^{+} 4^{+}$$]
	33713.5615
	226.47
	[image: $$ 2^{-} 4^{+}$$]
	32117.5366
	642.48
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	33237.8865
	200.46
	[image: $$ 2^{-} $$]
	33577.9421
	141.75
	[image: $$1^{+} 3^{+} 4^{+}$$]
	33295.2934
	339.93
	[image: $$ 2^{-} $$]
	33108.5096
	343.50
	[image: $$ 2^{-} $$]

	50
	32180.0106
	245.88
	[image: $$ 2^{-} 4^{+}$$]
	32551.5342
	144.90
	[image: $$1^{+} 3^{+} 4^{+}$$]
	32311.5529
	213.24
	[image: $$ 2^{-} 4^{+}$$]
	30782.0871
	614.16
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	31066.6084
	186.36
	[image: $$ 2^{-} $$]
	31372.5619
	122.86
	[image: $$1^{+} 3^{+} 4^{+}$$]
	31106.1048
	313.81
	[image: $$ 2^{-} $$]
	30942.2692
	309.35
	[image: $$ 2^{-} $$]

	50
	27843.2948
	203.73
	[image: $$ 2^{-} 4^{+}$$]
	28141.7188
	105.94
	[image: $$1^{+} 3^{+} 4^{+}$$]
	27950.6523
	176.37
	[image: $$ 2^{-} 4^{+}$$]
	26624.6825
	533.58
	[image: $$1^{-} 2^{-} 3^{-} $$]

	strong-300 (B = 13821)

	0.1
	25
	23809.6581
	433.25
	[image: $$ 2^{-} 3^{-} $$]
	24369.6211
	216.96
	[image: $$1^{+} 4^{+}$$]
	24325.6409
	294.11
	[image: $$1^{+} 4^{+}$$]
	23330.6120
	412.53
	[image: $$ 2^{-} 3^{-} $$]

	50
	23594.2993
	335.65
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	24135.2769
	220.45
	[image: $$1^{+} 4^{+}$$]
	24003.0894
	230.30
	[image: $$1^{+} 4^{+}$$]
	22314.8864
	685.49
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	23176.9548
	406.27
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	23703.0401
	197.34
	[image: $$1^{+} 4^{+}$$]
	23648.8178
	262.07
	[image: $$1^{+} 4^{+}$$]
	22734.4253
	387.17
	[image: $$1^{-} 2^{-} 3^{-} $$]

	50
	22322.7651
	282.01
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	22797.4912
	177.42
	[image: $$1^{+} 4^{+}$$]
	22656.7197
	185.32
	[image: $$1^{+} 4^{+}$$]
	21176.4653
	610.85
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	21208.9163
	322.79
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	21626.7053
	138.64
	[image: $$1^{+} 4^{+}$$]
	21539.7126
	166.67
	[image: $$1^{+} 4^{+}$$]
	20879.1124
	311.52
	[image: $$1^{-} 2^{-} 3^{-} $$]

	50
	18388.5805
	159.45
	[image: $$ 2^{-} 4^{+}$$]
	18647.0894
	70.19
	[image: $$1^{+} 3^{+} 4^{+}$$]
	18495.6543
	100.69
	[image: $$ 2^{-} 4^{+}$$]
	17655.0770
	402.61
	[image: $$1^{-} 2^{-} 3^{-} $$]

	uncorr-500 (B = 11243)

	0.1
	25
	57076.8361
	748.93
	[image: $$ 2^{-} 3^{-} $$]
	58431.4168
	311.58
	[image: $$1^{+} 3^{+} 4^{+}$$]
	57912.4733
	648.06
	[image: $$1^{+} 2^{-} 4^{+}$$]
	57004.9636
	781.84
	[image: $$ 2^{-} 3^{-} $$]

	50
	56690.8982
	859.24
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	58120.8249
	314.31
	[image: $$1^{+} 4^{+}$$]
	57547.3013
	565.83
	[image: $$1^{+} 4^{+}$$]
	52794.2727
	1321.93
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	56197.0249
	738.34
	[image: $$ 2^{-} 3^{-} $$]
	57528.4355
	304.43
	[image: $$1^{+} 3^{+} 4^{+}$$]
	57017.0360
	635.76
	[image: $$1^{+} 2^{-} 4^{+}$$]
	56127.1101
	769.25
	[image: $$ 2^{-} 3^{-} $$]

	50
	54931.1821
	829.59
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	56312.8274
	298.86
	[image: $$1^{+} 4^{+}$$]
	55758.1900
	544.95
	[image: $$1^{+} 4^{+}$$]
	51138.2861
	1284.89
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	53456.0312
	705.50
	[image: $$ 2^{-} 3^{-} $$]
	54715.2628
	282.53
	[image: $$1^{+} 3^{+} 4^{+}$$]
	54227.7939
	597.99
	[image: $$1^{+} 2^{-} 4^{+}$$]
	53392.0959
	729.83
	[image: $$ 2^{-} 3^{-} $$]

	50
	49451.2762
	737.56
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	50683.8705
	252.35
	[image: $$1^{+} 3^{+} 4^{+}$$]
	50185.9102
	481.83
	[image: $$1^{+} 2^{-} 4^{+}$$]
	45981.8039
	1169.98
	[image: $$1^{-} 2^{-} 3^{-} $$]

	strong-500 (B = 22223)

	0.1
	25
	38822.1695
	692.12
	[image: $$ 2^{-} 3^{-} $$]
	40391.0362
	449.82
	[image: $$1^{+} 4^{+}$$]
	40108.0207
	492.45
	[image: $$1^{+} 4^{+}$$]
	38258.0920
	779.48
	[image: $$ 2^{-} 3^{-} $$]

	50
	38444.0651
	620.50
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	40078.0983
	348.70
	[image: $$1^{+} 4^{+}$$]
	39749.0757
	424.25
	[image: $$1^{+} 4^{+}$$]
	36447.2634
	645.37
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	38026.4154
	657.36
	[image: $$ 2^{-} 3^{-} $$]
	39525.2027
	425.96
	[image: $$1^{+} 4^{+}$$]
	39240.9035
	453.67
	[image: $$1^{+} 4^{+}$$]
	37489.6489
	742.56
	[image: $$ 2^{-} 3^{-} $$]

	50
	36864.1232
	555.40
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	38332.2087
	312.35
	[image: $$1^{+} 4^{+}$$]
	38000.8944
	358.93
	[image: $$1^{+} 4^{+}$$]
	34915.4010
	565.36
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	35546.6995
	551.64
	[image: $$ 2^{-} 3^{-} $$]
	36827.5418
	352.78
	[image: $$1^{+} 4^{+}$$]
	36538.8560
	340.16
	[image: $$1^{+} 4^{+}$$]
	35095.0390
	629.61
	[image: $$ 2^{-} 3^{-} $$]

	50
	31947.2385
	360.70
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	32899.2694
	206.74
	[image: $$1^{+} 4^{+}$$]
	32593.2603
	203.93
	[image: $$1^{+} 4^{+}$$]
	30253.8147
	356.94
	[image: $$1^{-} 2^{-} 3^{-} $$]




Table 2.Experimental Results using Hoeffding bound


	[image: $$\alpha $$]
	[image: $$\delta $$]
	GSEMO (1)
	GSEMO+Filtering (2)
	NSGA-II (3)
	MOEA/D (4)

	mean
	std
	stat
	mean
	std
	stat
	mean
	std
	stat
	mean
	std
	stat

	uncorr-100 (B = 2407)

	0.1
	25
	10987.3004
	75.77
	[image: $$ 2^{-} $$]
	11042.7989
	0.00
	[image: $$1^{+} 3^{+} 4^{+}$$]
	10988.0942
	65.74
	[image: $$ 2^{-} $$]
	10947.9756
	100.78
	[image: $$ 2^{-} $$]

	50
	10778.0078
	60.20
	[image: $$ 4^{+}$$]
	10821.5978
	0.00
	[image: $$ 3^{+} 4^{+}$$]
	10749.3829
	62.98
	[image: $$ 2^{-} 4^{+}$$]
	10626.0009
	135.69
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	10896.5878
	74.59
	[image: $$ 2^{-} $$]
	10951.1744
	0.00
	[image: $$1^{+} 3^{+} 4^{+}$$]
	10897.6552
	64.40
	[image: $$ 2^{-} $$]
	10857.9983
	99.27
	[image: $$ 2^{-} $$]

	50
	10596.7649
	57.61
	[image: $$ 4^{+}$$]
	10638.3488
	0.00
	[image: $$ 3^{+} 4^{+}$$]
	10569.2343
	60.55
	[image: $$ 2^{-} 4^{+}$$]
	10449.1872
	132.88
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	10826.9815
	73.69
	[image: $$ 2^{-} $$]
	10880.8684
	0.00
	[image: $$1^{+} 3^{+} 4^{+}$$]
	10828.2588
	63.38
	[image: $$ 2^{-} $$]
	10788.9563
	98.11
	[image: $$ 2^{-} $$]

	50
	10457.6924
	55.62
	[image: $$ 4^{+}$$]
	10497.7369
	0.00
	[image: $$ 3^{+} 4^{+}$$]
	10431.0015
	58.70
	[image: $$ 2^{-} 4^{+}$$]
	10313.5134
	130.75
	[image: $$1^{-} 2^{-} 3^{-} $$]

	strong-100 (B = 4187)

	0.1
	25
	8463.1467
	127.62
	[image: $$ 2^{-} 4^{+}$$]
	8561.1573
	85.45
	[image: $$1^{+} 4^{+}$$]
	8537.4284
	83.34
	[image: $$ 4^{+}$$]
	8359.7780
	89.80
	[image: $$1^{-} 2^{-} 3^{-} $$]

	50
	8278.6327
	90.26
	[image: $$ 4^{+}$$]
	8332.4692
	64.48
	[image: $$ 4^{+}$$]
	8289.8107
	82.34
	[image: $$ 4^{+}$$]
	7931.1766
	215.29
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	8369.3409
	122.27
	[image: $$ 2^{-} 4^{+}$$]
	8464.4621
	81.51
	[image: $$1^{+} 4^{+}$$]
	8440.2243
	79.58
	[image: $$ 4^{+}$$]
	8268.8904
	86.13
	[image: $$1^{-} 2^{-} 3^{-} $$]

	50
	8086.8101
	82.32
	[image: $$ 2^{-} 4^{+}$$]
	8139.0049
	58.62
	[image: $$1^{+} 4^{+}$$]
	8097.1159
	74.76
	[image: $$ 4^{+}$$]
	7755.8441
	205.27
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	8297.3868
	118.20
	[image: $$ 2^{-} 4^{+}$$]
	8390.2653
	78.50
	[image: $$1^{+} 4^{+}$$]
	8365.6369
	76.71
	[image: $$ 4^{+}$$]
	8199.1499
	83.37
	[image: $$1^{-} 2^{-} 3^{-} $$]

	50
	7939.6195
	76.38
	[image: $$ 2^{-} 4^{+}$$]
	7990.5545
	54.16
	[image: $$1^{+} 4^{+}$$]
	7949.3455
	69.17
	[image: $$ 4^{+}$$]
	7621.3067
	197.74
	[image: $$1^{-} 2^{-} 3^{-} $$]

	uncorr-300 (B = 6853)

	0.1
	25
	33863.1544
	205.08
	[image: $$ 2^{-} $$]
	34212.8177
	146.92
	[image: $$1^{+} 3^{+} 4^{+}$$]
	33925.6167
	347.58
	[image: $$ 2^{-} $$]
	33732.3132
	353.55
	[image: $$ 2^{-} $$]

	50
	33428.2570
	259.29
	[image: $$ 2^{-} 4^{+}$$]
	33821.1723
	157.73
	[image: $$1^{+} 3^{+} 4^{+}$$]
	33568.9013
	225.09
	[image: $$ 2^{-} 4^{+}$$]
	31979.7768
	639.54
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	33708.5096
	203.93
	[image: $$ 2^{-} $$]
	34055.7967
	145.63
	[image: $$1^{+} 3^{+} 4^{+}$$]
	33769.9207
	345.68
	[image: $$ 2^{-} $$]
	33578.1622
	351.09
	[image: $$ 2^{-} $$]

	50
	33119.8295
	255.94
	[image: $$ 2^{-} 4^{+}$$]
	33507.4493
	154.52
	[image: $$1^{+} 3^{+} 4^{+}$$]
	33258.2607
	222.13
	[image: $$ 2^{-} 4^{+}$$]
	31683.9358
	633.24
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	33589.8465
	203.05
	[image: $$ 2^{-} $$]
	33935.3102
	144.65
	[image: $$1^{+} 3^{+} 4^{+}$$]
	33650.4510
	344.23
	[image: $$ 2^{-} $$]
	33459.8965
	349.19
	[image: $$ 2^{-} $$]

	50
	32883.1649
	253.39
	[image: $$ 2^{-} 4^{+}$$]
	33266.7212
	152.07
	[image: $$1^{+} 3^{+} 4^{+}$$]
	33019.9624
	219.86
	[image: $$ 2^{-} 4^{+}$$]
	31456.9291
	628.42
	[image: $$1^{-} 2^{-} 3^{-} $$]

	strong-300 (B = 13821)

	0.1
	25
	23744.0892
	430.47
	[image: $$ 2^{-} 3^{-} $$]
	24300.5479
	214.96
	[image: $$1^{+} 4^{+}$$]
	24255.8224
	290.79
	[image: $$1^{+} 4^{+}$$]
	23269.1109
	409.90
	[image: $$ 2^{-} 3^{-} $$]

	50
	23462.9510
	329.95
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	23997.1125
	215.94
	[image: $$1^{+} 4^{+}$$]
	23864.2031
	225.53
	[image: $$1^{+} 4^{+}$$]
	22197.4512
	677.59
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	23603.7492
	424.55
	[image: $$ 2^{-} 3^{-} $$]
	24152.7138
	210.67
	[image: $$1^{+} 4^{+}$$]
	24105.8864
	283.66
	[image: $$1^{+} 4^{+}$$]
	23137.0365
	404.26
	[image: $$ 2^{-} 3^{-} $$]

	50
	23181.2241
	317.94
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	23700.6927
	206.31
	[image: $$1^{+} 4^{+}$$]
	23565.9430
	215.36
	[image: $$1^{+} 4^{+}$$]
	21945.2578
	660.78
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	23496.0973
	420.02
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	24039.3181
	207.29
	[image: $$1^{+} 4^{+}$$]
	23990.8364
	278.21
	[image: $$1^{+} 4^{+}$$]
	23035.6923
	399.94
	[image: $$1^{-} 2^{-} 3^{-} $$]

	50
	22965.0474
	308.79
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	23473.2418
	198.96
	[image: $$1^{+} 4^{+}$$]
	23337.0800
	207.65
	[image: $$1^{+} 4^{+}$$]
	21751.7430
	648.02
	[image: $$1^{-} 2^{-} 3^{-} $$]

	uncorr-500 (B = 11243)

	0.1
	25
	56985.6975
	747.83
	[image: $$ 2^{-} 3^{-} $$]
	58337.8820
	310.84
	[image: $$1^{+} 3^{+} 4^{+}$$]
	57820.1034
	646.79
	[image: $$1^{+} 2^{-} 4^{+}$$]
	56914.4076
	780.54
	[image: $$ 2^{-} 3^{-} $$]

	50
	56509.1689
	856.18
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	57934.0703
	312.74
	[image: $$1^{+} 4^{+}$$]
	57362.7101
	563.66
	[image: $$1^{+} 4^{+}$$]
	52623.4475
	1318.10
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	56790.6294
	745.47
	[image: $$ 2^{-} 3^{-} $$]
	58137.6851
	309.25
	[image: $$1^{+} 3^{+} 4^{+}$$]
	57621.7379
	644.06
	[image: $$1^{+} 2^{-} 4^{+}$$]
	56719.9375
	777.75
	[image: $$ 2^{-} 3^{-} $$]

	50
	56119.2292
	849.61
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	57533.3999
	309.31
	[image: $$1^{+} 4^{+}$$]
	56966.3749
	559.02
	[image: $$1^{+} 4^{+}$$]
	52256.5983
	1309.89
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	56640.9485
	743.66
	[image: $$ 2^{-} 3^{-} $$]
	57984.0686
	308.03
	[image: $$1^{+} 3^{+} 4^{+}$$]
	57469.5268
	641.97
	[image: $$1^{+} 2^{-} 4^{+}$$]
	56570.7153
	775.61
	[image: $$ 2^{-} 3^{-} $$]

	50
	55820.0179
	844.58
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	57226.0199
	306.67
	[image: $$1^{+} 4^{+}$$]
	56662.2594
	555.48
	[image: $$1^{+} 4^{+}$$]
	51975.1049
	1303.59
	[image: $$1^{-} 2^{-} 3^{-} $$]

	strong-500 (B = 22223)

	0.1
	25
	38739.7417
	688.50
	[image: $$ 2^{-} 3^{-} $$]
	40301.3374
	447.34
	[image: $$1^{+} 4^{+}$$]
	40018.5580
	488.42
	[image: $$1^{+} 4^{+}$$]
	38178.8224
	775.66
	[image: $$ 2^{-} 3^{-} $$]

	50
	38280.9153
	613.70
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	39897.8123
	344.90
	[image: $$1^{+} 4^{+}$$]
	39568.7401
	417.34
	[image: $$1^{+} 4^{+}$$]
	36288.1082
	636.21
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.01
	25
	38563.3178
	680.78
	[image: $$ 2^{-} 3^{-} $$]
	40109.3511
	442.05
	[image: $$1^{+} 4^{+}$$]
	39826.4698
	479.77
	[image: $$1^{+} 4^{+}$$]
	38008.5898
	767.47
	[image: $$ 2^{-} 3^{-} $$]

	50
	37930.8422
	599.17
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	39510.9695
	336.77
	[image: $$1^{+} 4^{+}$$]
	39181.4670
	402.63
	[image: $$1^{+} 4^{+}$$]
	35947.7389
	616.91
	[image: $$1^{-} 2^{-} 3^{-} $$]

	0.001
	25
	38427.9430
	674.86
	[image: $$ 2^{-} 3^{-} $$]
	39962.0501
	437.99
	[image: $$1^{+} 4^{+}$$]
	39679.0754
	473.17
	[image: $$1^{+} 4^{+}$$]
	37877.9658
	761.19
	[image: $$ 2^{-} 3^{-} $$]

	50
	37662.2216
	588.08
	[image: $$ 2^{-} 3^{-} 4^{+}$$]
	39214.1346
	330.57
	[image: $$1^{+} 4^{+}$$]
	38884.3020
	391.45
	[image: $$1^{+} 4^{+}$$]
	35686.9510
	602.80
	[image: $$1^{-} 2^{-} 3^{-} $$]






5 Experiments
In this work, we evaluate multi-objective evolutionary algorithms with our new fitness function, using extensive experimentation on several benchmarks under different chance constraint settings.
5.1 Experimental Settings
This work uses the six benchmarks in recent literature for the knapsack problem with stochastic profits [24]. These instances have different problem sizes [image: $$n\in \{100, 300, 500\}$$] and types. This includes instances with bounded and strongly correlated profit and weight values (denoted as strong-100, strong-300 and strong-500) and instances with uncorrelated profit and weight values (denoted as uncorr-100, uncorr-300 and uncorr-500). These problem instances are derived from benchmarks for the deterministic knapsack problem. When adapting them to have stochastic profits, we consider that profits are uniformly distributed as [image: $$p_i\in [\mu _i-\delta ,\mu _i+\delta ]$$] where the profit values in the benchmarks give the expected profit [image: $$\mu _i$$]. We consider each benchmark under two uncertainty levels, setting the dispersion of the profits as [image: $$\delta \in \{25,50\}$$].
We evaluate the performance of algorithms with different objective formulations by considering the results they generate for each benchmark setting for several [image: $$\alpha $$] values, [image: $$\alpha \in \{0.1, 0.01, 0.001\}$$]. Each algorithm uses 10 million fitness evaluations in a single execution, which allows them to evaluate the same number of solutions despite the differences in the number of iterations.
Since the fitness function allows the multi-objective optimisation algorithms to run independently of specific [image: $$\alpha $$] values, after one execution, we can get the maximal profit for different [image: $$\alpha $$] values. We present the results considering the summary of 30 independent runs of each algorithm.
We test for the statistical significance validity of the results using the Kruskal-Wallis test with 95% confidence with the Bonferroni post-hoc statistical procedure. Let X be the number given for the methods in the table header; the statistical comparison [image: $$X^{+}$$] or [image: $$X^{-}$$] indicates that the method in the column outperforms X or vice versa. If there is no significant difference between the two methods, respective numbers do not appear. The maximal profits from each method are given as mean, std and stat, representing the mean, standard deviation and statistical comparison with results from other methods, respectively. Furthermore, each row indicates the highest mean maximal profit in bold text, comparing the mean values given by the four methods.

5.2 Experimental Results
First, we consider bi-objective optimisation of the problem instances where profits have the same dispersion. Table 1 presents the [image: $$\hat{P}_{\text {Cheb}}$$] results for [image: $$\delta = 25, 50$$]. When considering the results from the prevailing algorithms: GSEMO, NSGA-II and MOEA/D, we can see different performances based on the problem size. For problem instances with 100 items (i.e.: uncorr-100 and strong-100), GSEMO produces better results over MOEA/D for all settings and some cases of NSGA-II. However, when it comes to instances with 300 or more items, NSGA-II gives the best results compared to GSEMO and MOEA/D for overall settings. However, when considering the results when using the proposed Filtering method with GSEMO, we can see those results are significant across most of the settings. The statistical comparisons also confirm that GSEMO with the Filtering method inevitably produces better results than running the standard GSEMO alone. Moreover, we can see that GSEMO+Filtering results are superior to MOEA/D results in all the settings.
GSEMO+Filtering and NSGA-II can be identified as the two best algorithms according to [image: $$\hat{P}_{\text {Cheb}}$$] results in Table 1. While the mean values of GSEMO+Filtering are higher than the mean values of NSGA-II, the statistical comparison between the two methods gives more insights. We can see that results for the strongly correlated and bounded instances (strong-100, -300 and -500) from both instances do not show significant differences. However, for uncorrelated instances (with 100, 300 and 500 elements), we can see that GSEMO+Filtering is capable of producing better results that show significantly higher than NSGA-II results according to statistical tests.
The experimental results concerning [image: $$\hat{P}_{\text {Hoef}}$$] are given in Table 2. The difference between [image: $$\hat{P}_{\text {Cheb}}$$] and [image: $$\hat{P}_{\text {Hoef}}$$] results is, [image: $$\hat{P}_{\text {Hoef}}$$] gives higher results for [image: $$\alpha =0.001$$] and vice versa for [image: $$\alpha =0.1$$] and 0.01. GSEMO produces better results than NSGA-II and MOEA/D in a lesser number of settings in [image: $$\hat{P}_{\text {Hoef}}$$] results than it does in [image: $$\hat{P}_{\text {Cheb}}$$] results. Statistical significance shows that GSEMO+Filtering results are not inferior to other methods across all settings. NSGA-II produce results that are similar to GSEMO+Filtering results for strong-100, -300 and -500 instances. However, for uncorrelated problem instances, GSEMO+Filtering gives better results over NSGA-II, especially when [image: $$\delta =25$$]. Moreover, similar to results in Table 1, the highest mean value and lowest standard deviation in [image: $$\hat{P}_{\text {Hoef}}$$] results are demonstrated by GSEMO+Filtering.
When Filtering is applied in an interim population, the solutions with valid confidence intervals remain, therefore the population do not lose its quality. Then, the optimisation process improves upon these solutions without the negative impacts of having a larger population with a similar quality. Among the results, both GSEMO+Filtering and NSGA-II show great results. However, considering mean, standard deviation and statistical comparisons, GSEMO+Filtering is the most promising approach to solve the types of problem instances focused in this study.


6 Conclusions
We examined popular multi-objective evolutionary approaches to solve the profit chance-constrained knapsack problem. Thereby, we introduced a bi-objective fitness evaluation for evolutionary algorithms to address this problem. This fitness function evaluates the solutions irrespective of the required confidence level in the profit. Therefore, the outcome of evolutionary methods gives us a population that includes solutions providing the best profit value for different confidence levels. Thus, our approach only requires us to decide on the required confidence levels after running algorithms. It also eliminates the requirement of running algorithms multiple times to obtain results for different confidence levels.
As a key algorithmic component, we introduced a filtering method to GSEMO to filter the population at regular intervals of fitness evaluations. It keeps only the solutions with a valid [image: $$\alpha $$] interval in the interim populations, enabling the new offspring solutions in the next generations to improve upon these solutions. The experimental investigations show that the results from the filtering method integrated with GSEMO are often better than those obtained by standard GSEMO, NSGA-II and MOEA/D. The final population produced by our algorithms allow us to make informed decisions and examine solution quality concerning the expected profit versus the associated risks with their implementation.
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Abstract
The split delivery vehicle routing problem with three-dimensional loading constraints (3L-SDVRP) intertwines complex routing and packing challenges. The current study addresses 3L-SDVRP using intelligent optimization algorithms, which iteratively evolve towards optimal solutions. A pivotal aspect of these algorithms is search operators that determine the search direction and the search step size. Effective operators significantly improve algorithmic performance. Traditional operators like swap, shift, and 2-opt fall short in complex scenarios like 3L-SDVRP, mainly due to their limited capacity to leverage domain knowledge. Additionally, the search step size is crucial: smaller steps enhance fine-grained search (exploitation), while larger steps facilitate exploring new areas (exploration). However, optimally balancing these step sizes remains an unresolved issue in 3L-SDVRP. To address this, we introduce an adaptive knowledge-guided insertion (AKI) operator. This innovative operator uses node distribution characteristics for adaptive node insertion, enhancing search abilities through domain knowledge integration and larger step sizes. Integrating AKI with the local search framework, we develop an adaptive knowledge-guided search (AKS) algorithm, which effectively balances exploitation and exploration by combining traditional neighbourhood operators for detailed searches with the AKI operator for broader exploration. Our experiments demonstrate that the AKS algorithm significantly outperforms the state-of-the-art method in solving various 3L-SDVRP instances.
Keywords
Vehicle routingPackingKnowledge-guided optimization
1 Introduction
This paper explores the split delivery vehicle routing problem with three-dimensional loading constraints (3L-SDVRP) which combines two NP-hard problems: vehicle routing and three-dimensional (3D) loading/packing. In 3L-SDVRP, multiple vehicles depart from a depot, visit various nodes to load boxes, and ultimately return to the depot. The objective is to minimize the number of vehicles required and the total travel distance (ttd) while ensuring all boxes from each node are fully loaded. Compared to the standard VRP, the 3L-SDVRP is characterized by three distinct features: Limited capacity: Each vehicle has a finite capacity. Split delivery: Each node can be visited by different vehicles, allowing boxes from the same node to be split and transported by different vehicles. 3D loading: The vehicles and boxes are considered 3D rectangles, and the final solution must include detailed 3D loading arrangements.
Due to the high complexity of the 3L-SDVRP, exact methods have proven ineffective for solving it. Consequently, intelligent optimization algorithms have become the common approach for tackling such complex problems. These methods are based on a generate-and-test iterative strategy, where each iteration involves the generation of a new set of potential solutions from the existing ones using various search operators, with the hope of finding improved solutions. This process is iteratively repeated to ultimately find an approximate optimal solution. Search operators are crucial in these algorithms as they determine the search direction and step size in the solution space.
Many general search operators have been designed for solving vehicle routing problems (VRPs) and other combinatorial optimization problems (COPs), such as swap operators, shift operators, k-opt operators [6], etc. Traditional search operators, while commonly used, often lack specific domain knowledge crucial for complex or large-scale problems, leading to poor efficiency and solution quality. Some research addresses this by integrating domain knowledge into search operators to enhance efficiency and solution quality in real-world scenarios. Examples include the MS operator for the capacitated arc routing problem (CARP) [19], and the region-focused operator for the multidepot multidisposal-facility multitrip capacitated vehicle routing problem (M3CVRP) [7]. Such domain-specific operators require a tailored approach, designing unique operators for different problems based on their specific characteristics.
Additionally, search step size, defining the extent of solution change by search operator per iteration, is crucial for algorithm performance. Methods for 3L-SDVRP can be categorized into local search-based methods [2–4, 13, 22] with smaller step sizes and global search-based methods [8, 9, 12, 14] with larger ones. Although local search is efficient, it risks falling into local optima, whereas global search tends to converge more slowly. Algorithms such as LNS [18], VNS [10, 21], ALNS [16], and MA [11] effectively balance step sizes and are applied across various COPs. However, they lack domain knowledge guidance which is important for effectively solving the complex 3L-SDVRP. Thus, achieving a balanced trade-off between large and small step sizes in this context remains a significant challenge. Motivated by the above analysis, the contributions of this paper are as follows:	This paper extracts heuristics from domain knowledge. Specifically, based on the ‘giant tour’ representation, we develop a hypothesis about ‘what constitutes a good giant tour’ through observation. We use a node insertion approach to change the order of nodes in the current giant tour to improve its quality and propose two node insertion rules.

	An adaptive knowledge-guided insertion (AKI) operator is developed which can adaptively select suitable node insertion rules based on node distribution. The proposed AKI operator utilizes domain knowledge and has a large search step size.

	The AKI operator is integrated into a local search framework to form the adaptive knowledge-guided search (AKS) algorithm. This algorithm combines small step search (exploitation) with the AKI operator’s larger step (exploration), improving search capabilities.





The remainder of this paper is organized as follows: Sect. 2 provides a problem description and reviews related work. Section 3 details the extraction of heuristics from domain knowledge and introduces our proposed AKI operator and AKS algorithm. Section 4 details our experiments, comparing our method with the state-of-the-art algorithm and further analyzing its effectiveness. Finally, Sect. 5 summarizes the key findings and contributions of the paper and outlines potential directions for future work.

2 Background
2.1 Problem Description
3L-SDVRP is to optimize vehicle routes for box transportation, minimizing the number of vehicles utilized and the total travel distance (ttd) while ensuring feasible 3D loading in each vehicle. In practice, reducing the number of vehicles is prioritized over minimizing total travel distance, given the significantly higher costs associated with acquiring and maintaining additional vehicles and hiring extra drivers compared to the costs incurred from increased travel distances. Thus, the problem primarily aims to minimize the number of vehicles and, secondarily (with lower priority), to minimize ttd [2, 15].
There are some complicated constraints that can be categorized into two main aspects: vehicle routing and 3D loading. Vehicle Routing Constraints: Validity: Each route starts and ends at the depot. Flow Conservation: The number of vehicles entering and exiting a node must be equal. Single-Visiting: Each node is visited by the same vehicle only once. 3D Loading Constraints: Non-Overlapping: Boxes within the same vehicle must not overlap in any dimension. Non-Splitting: Each box can be loaded into only one vehicle. Supporting Stability: Each box must be fully supported by the box beneath it. Size: Boxes must be contained within the vehicle’s container without exceeding the wall or door. Last-In-First-Out (LIFO): Boxes loaded later must be unloaded first.
Due to space limitations, complete notations and mathematical formulations are in Section 1 of the supplementary material [24].

2.2 Related Work
Commonly Used Search Operators for 3L-SDVRP. Intelligent optimization algorithms use a generate-and-test strategy to iteratively generate, evaluate, and improve solutions until meeting stopping criteria. Search operators, the key to these algorithms, guide the exploration of solutions, influencing search direction and step size. The design of operators depends on both the problem and its representation.
The search operators commonly used in existing literature for solving VRPs with 3D loading constraints are as follows. Swap: Exchange the positions of two nodes [2]. Shift: Move a node to another position [4]. 2-opt: Breaks two edges in a node sequence and reconnects two new edges to alter the node order [2]. 3-opt: Breaks three edges in a node sequence and reconnects three new edges [2]. Move & Rotate Block: This operator groups identical boxes into blocks for a block sequence representation. It selects and inserts blocks between sequences [3]. Split: Divides a node sequence into two non-empty sequences [25]. Best Cost Route Crossover: Selects two node sequences, inserts two consecutive nodes from each into the other [12]. 1-point Crossover: Randomly divides two node sequences at a selected position and recombines them [4]. 2-point Crossover: Randomly selects two points in two node sequences and exchanges the segments [17].
Traditional operators, while easy to understand and implement across various COPs, fall short in complex VRPs like the 3L-SDVRP due to their lack of domain knowledge. Some research focuses on integrating knowledge to improve search efficiency and solution quality. The Merge-Split (MS) operator for CARP [19] and the region-focused operators for M3CVRP [7] exemplify this trend, employing domain knowledge for enhanced route optimization. Domain knowledge-integrated search operators are often customized for specific problems. This necessitates designing unique operators through a case-by-case analysis, tailored to each problem’s characteristics.
Search Step Size. In intelligent optimization algorithms, the search step size denotes the magnitude of changes applied to solutions in each iteration, influencing the algorithm’s capacity for effective exploration and exploitation of the solution space. Larger step sizes enable extensive exploration, while smaller ones exploit specific regions. In tackling 3L-SDVRP, local search methods like classic local search [2, 13], tabu search [4, 22], and simulated annealing [3] offer efficiency with smaller step sizes, but may get stuck in local optimal solutions. In contrast, global search methods like genetic algorithms [12, 14] and estimation of distribution algorithms [8], using larger step sizes, explore more broadly but with higher computational costs and slower convergence.
Researchers have explored balancing small and large search step sizes in optimization. [20] showed larger neighborhood sizes in simulated annealing improve effectiveness. Large neighborhood search (LNS) [18] and adaptive large neighborhood search (ALNS) [16] algorithms are effective and adaptable to different VRPs. The memetic algorithm (MA) [11], blending local and global searches, has been applied to diverse problems but needs more computational resources. However, directly applying these methods to 3L-SDVRP is ineffective as they do not incorporate domain knowledge which is crucial for addressing such a complex problem. Thus, achieving a balanced trade-off between large and small step sizes remains a significant challenge.


3 Knowledge-Guided Optimization Algorithm for 3L-SDVRP
This section starts with heuristics extracted from domain knowledge, discusses the features of an effective ‘giant tour’, and introduces two node insertion rules. It then details the proposed AKI operator and AKS algorithm. Our approach incorporates domain knowledge and balances search step size to improve solution quality.
3.1 Extracting Heuristics from Domain Knowledge
This research uses a ‘giant tour’ representation, which is a sequence of all nodes. A key question is what defines an effective giant tour. Our aim is to identify high-quality giant tour characteristics, leveraging domain knowledge for targeted heuristic search in the algorithm to enhance solution quality.
Our study hypothesizes that in an effective giant tour, adjacent or nearby nodes in the sequence should be physically close on the actual map, as illustrated in Fig. 1. For example, routes derived from giant tour 1 are less efficient intuitively due to vehicles traveling between distant nodes, bypassing nearer ones, whereas routes from giant tour 2 avoid such inefficiencies, indicating higher quality solutions. This underscores the importance of logical node sequencing in route planning to improve solution quality.
Transitioning from a general to an optimized giant tour, like giant tour 1 to 2 in Fig. 1, is inefficient with traditional operators due to their small step sizes and lack of domain knowledge. For instance, evolving from route 2 to route [image: $$2'$$] needs multiple steps even under ideal conditions (e.g., four/five consecutive steps by Swap/Shift operator). This highlights the need for search operators that have large step sizes for efficiency and leverage domain knowledge for strategic direction in giant tour optimization.[image: ]
Fig. 1.Illustration of giant tours and routes. In (a), routes 1–2 are obtained from giant tour 1. In (b), routes 3–6 are obtained from giant tour 2.



To align with our hypothesis, we employ a node insertion strategy, inserting a node between each pair of consecutive nodes i and j in a giant tour to optimize node sequence. We propose two rules, as shown in Fig. 2: the Proximity rule, ensuring inserted nodes are near node i, and the Connectivity rule, making the inserted node a ‘bridge’ for a better route. These rules aim to reorganize the giant tour into a sequence that better matches our hypothesis for an optimal layout.[image: ]
Fig. 2.Two node insertion rules. Proximity rule: The inserted node k is as close as possible to node i. Connectivity rule: The inserted node k acts as a bridge between nodes i and j.



Experiments evaluating two node insertion rules, detailed in Sect. 4.3, demonstrated their effectiveness. However, significant performance differences were observed between the two rules. This raised questions about what affect rule performance and the possibility of developing a flexible search operator. Analysis in Sect. 4.3 highlighted the importance of node distribution, leading to the development of an adaptive knowledge-guided insertion (AKI) operator based on these findings.

3.2 Adaptive Knowledge-Guided Insertion (AKI) Operator
Algorithm 1 illustrates the AKI operator. It traverses giant tour [image: $$g$$], inserting nodes between consecutive nodes [image: $$i$$] and [image: $$j$$] based on node densities [image: $$\rho _i$$] and [image: $$\rho _j$$]. If the ratio of [image: $$max(\rho _i, \rho _j)$$] to [image: $$min(\rho _i, \rho _j)$$] exceeds threshold [image: $$\theta _{dens}$$], the Proximity rule (Steps 8–9) or Connectivity rule (Steps 10–11) is applied, depending on density. If densities are similar, rules are chosen based on nodes’ positions relative to the depot [image: $$o$$] and node density [image: $$\rho _{ij}$$] between [image: $$i$$] and [image: $$j$$] (Steps 15–16 or 19–22). The g updates after each node insertion.[image: ]


To demonstrate its larger step size, the AKI operator was empirically tested on 100 random giant tours. We applied AKI once per giant tour and compared its effect to traditional Swap and Shift operators, calculating the average operations needed for similar results. Due to page limitations, the detailed method for calculating the number of swaps and shifts equivalent to one AKI operation is provided in the Section 2 of the supplementary material [24]. Results in Table 1 show Swap needed 30.2 operations and Shift 9.06 for 50-node instances, increasing to 125.32 and 70.82 for 200 nodes. This demonstrates AKI’s significantly larger step size, especially for larger problems.Table 1.Average number of continuous steps required by Swap and Shift operators to achieve equivalent change as one step by the AKI operator in giant tours. n is #nodes of giant tour.


	Operator
	n = 31
	n = 50
	n = 75
	n = 100
	n = 200

	Swap
	18.38
	30.2
	46.4
	61.82
	125.32

	Shift
	9.06
	15.84
	24.92
	34.04
	70.82





Calculating Node Density in AKI Operator. Our proposed AKI operator adaptively selects the most suitable node insertion rule by analyzing node distribution characteristics. We quantify these characteristics using ‘node distribution density’. Algorithm 2 details how we calculate this density around a given node [image: $$i$$]. [image: $$\vartheta $$] represents the index of node [image: $$i$$] in the giant tour [image: $$g$$] (Step 2), and [image: $$D_i$$] is used to store the distances between node [image: $$i$$] and other nodes (node [image: $$g[\vartheta ']$$] and subsequent nodes in the giant tour) (Steps 3–5). [image: $$D_i$$] is sorted in ascending order, and the average of the first [image: $$\lfloor \frac{n-\vartheta -2}{2} \rfloor $$] distances is computed to represent the node distribution density around node [image: $$i$$].[image: ]


Algorithm 3 demonstrates the process for calculating the node distribution density between two nodes [image: $$i$$] and [image: $$j$$], which are adjacent in a giant tour. During the calculation, for each node [image: $$k$$] in the giant tour [image: $$g$$] that is positioned after node [image: $$j$$] (Step 4), the algorithm determines the relative position of node [image: $$k$$] in relation to nodes [image: $$i$$] and [image: $$j$$] based on the distances between each pair of nodes [image: $$i$$], [image: $$j$$], and [image: $$k$$]. If [image: $$d_{ik} &lt; d_{ij}$$] and [image: $$d_{jk} &lt; d_{ij}$$] (Step 6), it is considered that node [image: $$k$$] is approximately between [image: $$i$$] and [image: $$j$$]. The node distribution density [image: $$\rho _k$$] around node [image: $$k$$] is then calculated using Algorithm 2 and stored in [image: $$P$$] (Steps 7–8). Finally, the average value of all elements in [image: $$P$$] is used to represent the node distribution density between nodes [image: $$i$$] and [image: $$j$$] (Step 11).[image: ]



3.3 Adaptive Knowledge-Guided Search (AKS) Algorithm
The AKS algorithm (Algorithm 4) combines the AKI operator with local search framework, starting with a random giant tour. It employs both Swap and 2-opt operators to generate neighborhoods (Steps 6–12), applying AKI based on probability [image: $$p$$] for potential improvements. The best solution of each iteration, [image: $$s_{iter_best}$$], is utilized to update both [image: $$s_{best}$$] and [image: $$s_{curr}$$]. (Steps 13–14). Iterations stop after [image: $$n_{no\_imp}$$] non-improvements, followed by a restart (Step 15). In the AKS algorithm, traditional operators conduct detailed searches with small step sizes, while the AKI operator enables expansive exploration through its larger step size. Furthermore, incorporating domain knowledge into the AKI operator significantly enhances the overall performance of the AKS algorithm.
In summary, the AKS algorithm extends the hill-climbing approach by conducting exhaustive local searches using diverse local moves and exploring new areas through our AKI operator from the current best solution, [image: $$s_{best}$$]. When reaching a local optimum, it revisits [image: $$s_{best}$$] to recommence search. Our proposed AKS algorithm is at risk of premature convergence to local optima. Potential future improvements may involve considering worsening solutions under some conditions, similar to strategies employed in simulated annealing or late acceptance algorithms.
Additionally, within the AKS algorithm, the quality of two solutions [image: $$s_1$$] and [image: $$s_2$$] is compared based on the number of vehicles and the ttd (with lower priority) of each solution. For instance, the algorithm considers [image: $$s_1$$] to be better than [image: $$s_2$$] if the number of vehicles in [image: $$s_1$$] is less than in [image: $$s_2$$], or if the number of vehicles is equal but [image: $$s_1$$] has a lower ttd than [image: $$s_2$$]. For packing in the AKS algorithm, we use heuristics from [1, 2, 5, 23] and utilize the packing plan that minimizes space occupation. Besides, a giant tour, including all nodes, requires decoding to become a feasible 3L-SDVRP solution [2]. Due to space constraints, details on the packing approach and the giant tour decoding process are available in Sections 3 and 4 of the supplementary material [24].[image: ]




4 Computational Studies
This section assesses the performance of our AKS algorithm against the state-of-the-art method for 3L-SDVRP. We also evaluate two node insertion rules we proposed, observing notable performance differences and pinpointing node distribution as a key factor. Additional experiments on newly created problem instances with varied node distributions validate the effectiveness of our AKI operator. Due to page constraints, the paper’s main text includes only comparative data between methods. Detailed experimental results are available in Section 45 of the supplementary material [24].
4.1 Experimental Setting
Experiments were conducted using three widely recognized datasets for 3L-SDVRP: the B-Y [2], Shanghai [2], and SD instances [3]. Problem instances with fewer than 100 nodes were classified as small-scale, while those with 100 to 200 nodes were considered larger-scale. In our experiments, we adjusted [image: $$\theta _{dens}$$] in Algorithm 1 according to the node count: 1.2 for under 75 nodes, and 1.5 for 75 or more. Hyperparameters in Algorithm 4 were set as [image: $$n_{out} = 4$$], [image: $$n_{iter} = 100$$], [image: $$n_{no\_imp} = 2$$], and [image: $$p = 0.1$$]. It is worth noting that we did not fine-tune the parameters to demonstrate that the strong performance of our algorithm arise from its innovative design rather than from careful parameter tuning. In real-world scenarios, the reduction of vehicle numbers is more important than decreasing total travel distance, due to the substantially greater expenses involved in purchasing, maintaining more vehicles, and employing additional drivers compared to the costs associated with longer travel distances. Thus, following the SDVRLH2 method [2], we prioritized vehicle number as the primary objective, with ttd as the secondary objective. When comparing two solutions [image: $$s_1$$] and [image: $$s_2$$], [image: $$s_1$$] is considered superior to [image: $$s_2$$] if it uses fewer vehicles, or if both have the same number of vehicles but [image: $$s_1$$] has a shorter total travel distance ([image: $$ttd$$]) than [image: $$s_2$$]. Experiments were run 30 times on a server with 4x Intel Xeon Platinum 9242 CPUs, 256G RAM, Python 3.7, and Ubuntu 20.04.

4.2 Comparing to State-of-the-Art
In this study, we evaluated our AKS algorithm against the state-of-the-art SDVRLH2 method [2]. The detailed comparative results are included in Table 2 (AKS VS SD).
Small-Scale Instances. Overall Average Results: In the majority of cases (25 out of 32), the AKS algorithm demonstrated superior performance compared to SDVRLH2. It achieved significantly better results in both vehicle count and ttd on 19 instances, while on four instances, there was no significant difference. Average Vehicle Count: The AKS algorithm was significantly better on 21 instances, reducing two or more vehicles on seven instances, and up to 12.1 vehicles. No significant difference in vehicle count was observed on ten instances. In total, AKS reduced 52.23 vehicles across all instances, averaging a reduction of 1.63 vehicles per instance. Average ttd: AKS was significantly better on 23 instances, with no significant difference on six instances. ttd reduction exceeded 5% on 12 instances and 10% on seven instances, with the highest reduction being 40.34%, averaging a decrease of 12.78% per instance.
Large-Scale Instances. Overall Average Results: The AKS algorithm was significantly better on 15 out of 16 larger-scale instances, with both vehicle count and ttd being significantly better than SDVRLH2 on 14 instances. Average Vehicle Count: Our method had significantly fewer vehicles on 15 instances. Compared to SDVRLH2, the reduction in vehicles exceeded three on seven instances and five on five instances, with a maximum reduction of about ten vehicles. Overall, our method reduced a total of 58.53 vehicles, averaging a reduction of 3.66 vehicles per instance. Average ttd: AKS was significantly better on 14 instances, with no significant difference on two instances. ttd reduction exceeded 5% on eight instances and 10% on three instances, with the highest reduction being 12.53%, averaging a decrease of 7.74% per instance.
These findings demonstrate the AKS algorithm’s superior performance over SDVRLH2 in reducing both the number of vehicles required and ttd, across both small-scale and larger-scale problem instances.Table 2.Comparison results. LS and AKS differ because LS does not use the AKI operator. The LSP or LSC algorithms respectively use the Proximity or Connectivity rules for node insertion. #v = the number of vehicles; ttd = total travel distance; #FE = the number of fitness evaluations. The data in bold signifies that our method produces better results than the contrasted method numerically. The Mann-Whitney U test was employed, and the data with underlined values indicate a significant difference at the significance level [image: $$\alpha =0.05$$].


	Instances
(small)
	AKS VS SDVRLH2 (SD)
	LSP VS LS
	LSC VS LS
	LSP VS LSC

	AKS-SD
	(AKS-SD)/SD
	AKS/SD
	LSP-LS
	(LSP-LS)/LS
	LSP/LS
	LSC-LS
	(LSC-LS)/LS
	LSC/LS
	LSP-LSC
	(LSP-LSC)/LSC
	LSP/LSC

	B-Y1
	[image: $${\underline{-{\textbf {1}}}}$$]
	[image: $${\underline{-{\textbf {0.0263}}}}$$]
	0.0533
	0
	[image: $${\underline{-{\textbf {0.0482}}}}$$]
	0.6198
	0
	[image: $${\underline{-{\textbf {0.0463}}}}$$]
	0.7499
	0
	−0.0019
	0.8265

	B-Y2
	[image: $${\underline{-{\textbf {1.5}}}}$$]
	[image: $${\underline{-{\textbf {0.0220}}}}$$]
	0.0666
	0
	[image: $${\underline{-{\textbf {0.0680}}}}$$]
	0.7107
	0
	[image: $${\underline{-{\textbf {0.0650}}}}$$]
	0.8091
	0
	−0.0032
	0.8783

	B-Y3
	[image: $${\underline{-{\textbf {1}}}}$$]
	[image: $${\underline{-{\textbf {0.0309}}}}$$]
	0.0479
	0
	[image: $${\underline{-{\textbf {0.0432}}}}$$]
	0.5454
	0
	[image: $${\underline{-{\textbf {0.0421}}}}$$]
	0.7029
	0
	−0.0011
	0.7759

	B-Y4
	−0.1
	[image: $${\underline{-{\textbf {0.0233}}}}$$]
	0.0575
	0.2
	[image: $${\underline{-{\textbf {0.0568}}}}$$]
	0.4623
	0.1
	[image: $${\underline{-{\textbf {0.0460}}}}$$]
	0.5921
	0.1
	−0.0114
	0.7807

	B-Y5
	[image: $${\underline{-{\textbf {1}}}}$$]
	−0.0148
	0.0602
	0.1
	[image: $${\underline{-{\textbf {0.0473}}}}$$]
	0.4738
	0
	[image: $${\underline{-{\textbf {0.0377}}}}$$]
	0.6550
	0.1
	−0.0100
	0.7233

	B-Y6
	[image: $${\underline{-{\textbf {1.2}}}}$$]
	[image: $${\underline{-{\textbf {0.0243}}}}$$]
	0.0592
	−0.1
	[image: $${\underline{-{\textbf {0.0969}}}}$$]
	0.4720
	0
	[image: $${\underline{-{\textbf {0.0805}}}}$$]
	0.5436
	−0.1
	−0.0178
	0.8683

	B-Y7
	[image: $${\underline{-{\textbf {1.87}}}}$$]
	[image: $${\underline{-{\textbf {0.0383}}}}$$]
	0.0873
	0.3
	[image: $${\underline{-{\textbf {0.0223}}}}$$]
	0.6423
	0.2
	[image: $${\underline{-{\textbf {0.0239}}}}$$]
	0.6048
	0.1
	0.0016
	1.0620

	B-Y8
	[image: $${\underline{-{\textbf {1}}}}$$]
	[image: $${\underline{-{\textbf {0.0352}}}}$$]
	0.0595
	0
	[image: $${\underline{-{\textbf {0.0936}}}}$$]
	0.4592
	0
	[image: $${\underline{-{\textbf {0.0707}}}}$$]
	0.5772
	0
	[image: $${\underline{-{\textbf {0.0246}}}}$$]
	0.7955

	Sha1
	0
	0
	0.1145
	0
	0
	1.0691
	0
	0
	1.0556
	0
	0
	1.0128

	Sha2
	0
	0.0213
	0.0948
	0
	0.0032
	0.9095
	0
	0.0032
	0.9095
	0
	0
	1

	Sha3
	0
	[image: $${\underline{-{\textbf {0.0223}}}}$$]
	0.0412
	0
	−0.0063
	0.9034
	0
	−0.0150
	1.0066
	0
	0.0089
	0.8974

	Sha4
	0
	0.0191
	0.0445
	0
	0.0048
	0.7842
	0
	−0.0116
	0.7542
	0
	0.0166
	1.0398

	Sha5
	[image: $${\underline{-{\textbf {1}}}}$$]
	[image: $${\underline{-{\textbf {0.1657}}}}$$]
	0.0725
	0
	−0.0115
	1.0913
	0
	−0.0096
	1.0378
	0
	−0.0019
	1.0515

	Sha6
	[image: $${\underline{-{\textbf {1}}}}$$]
	[image: $${\underline{-{\textbf {0.0601}}}}$$]
	0.0401
	0
	[image: $${\underline{-{\textbf {0.0326}}}}$$]
	0.9091
	0
	−0.0131
	0.9696
	0
	−0.0198
	0.9376

	Sha7
	[image: $${\underline{-{\textbf {1}}}}$$]
	[image: $${\underline{-{\textbf {0.0607}}}}$$]
	0.0486
	0
	−0.0107
	0.9207
	0
	−0.0112
	1.1010
	0
	0.0005
	0.8363

	Sha8
	0
	[image: $${\underline{-{\textbf {0.0373}}}}$$]
	0.0899
	0
	−0.0086
	0.9101
	0
	−0.0186
	0.9235
	0
	0.0102
	0.9855

	Sha9
	[image: $${\underline{-{\textbf {0.6}}}}$$]
	[image: $${\underline{-{\textbf {0.0337}}}}$$]
	0.0644
	−0.2
	[image: $${\underline{-{\textbf {0.0290}}}}$$]
	0.6864
	−0.5
	[image: $${\underline{-{\textbf {0.0282}}}}$$]
	0.8039
	0.3
	−0.0008
	0.8538

	Sha10
	0
	0.0083
	0.0738
	0
	[image: $${\underline{-{\textbf {0.0405}}}}$$]
	0.6378
	0.1
	[image: $${\underline{-{\textbf {0.0321}}}}$$]
	0.6166
	−0.1
	−0.0086
	1.0343

	Sha11
	−0.2
	−0.0082
	0.0461
	0
	0.0002
	0.6732
	0
	0.0181
	0.6601
	0
	−0.0176
	1.0198

	Sha12
	[image: $${\underline{-{\textbf {2}}}}$$]
	[image: $${\underline{-{\textbf {0.0820}}}}$$]
	0.0557
	0
	[image: $${\underline{-{\textbf {0.0455}}}}$$]
	0.8690
	0
	[image: $${\underline{-{\textbf {0.0340}}}}$$]
	0.8816
	0
	−0.0119
	0.9857

	Sha13
	[image: $${\underline{-{\textbf {0.7}}}}$$]
	0.0045
	0.0614
	0
	[image: $${\underline{-{\textbf {0.0283}}}}$$]
	0.7063
	0
	−0.0133
	0.8215
	0
	−0.0153
	0.8597

	SD1
	0
	−0.0127
	0.0588
	0
	[image: $${\underline{-{\textbf {0.0400}}}}$$]
	0.7761
	0
	−0.0008
	0.8432
	0
	[image: $${\underline{-{\textbf {0.0392}}}}$$]
	0.9204

	SD2
	[image: $${\underline{-{\textbf {1}}}}$$]
	[image: $${\underline{-{\textbf {0.0968}}}}$$]
	0.0546
	0
	[image: $${\underline{-{\textbf {0.0719}}}}$$]
	0.7381
	0
	[image: $${\underline{-{\textbf {0.0665}}}}$$]
	0.7522
	0
	−0.0058
	0.9813

	SD3
	0
	[image: $${\underline{-{\textbf {0.0258}}}}$$]
	0.0616
	0
	[image: $${\underline{-{\textbf {0.0784}}}}$$]
	0.6670
	0
	[image: $${\underline{-{\textbf {0.0698}}}}$$]
	0.8998
	0
	−0.0092
	0.7412

	SD4
	[image: $${\underline{-{\textbf {1}}}}$$]
	[image: $${\underline{-{\textbf {0.0529}}}}$$]
	0.0523
	0
	[image: $${\underline{-{\textbf {0.0857}}}}$$]
	0.5953
	0
	[image: $${\underline{-{\textbf {0.0895}}}}$$]
	0.6487
	0
	0.0042
	0.9177

	SD5
	1
	0.0267
	0.0510
	0
	−0.0184
	0.6856
	0
	−0.0041
	0.6511
	0
	−0.0143
	1.0531

	SD6
	[image: $${\underline{-{\textbf {3}}}}$$]
	[image: $${\underline{-{\textbf {0.1275}}}}$$]
	0.0715
	0
	[image: $${\underline{-{\textbf {0.0300}}}}$$]
	0.7314
	0
	[image: $${\underline{-{\textbf {0.1104}}}}$$]
	0.7151
	0
	0.0903
	1.0228

	SD7
	[image: $${\underline{-{\textbf {3}}}}$$]
	[image: $${\underline{-{\textbf {0.1294}}}}$$]
	0.0701
	0
	[image: $${\underline{-{\textbf {0.0388}}}}$$]
	0.9601
	0
	[image: $${\underline{-{\textbf {0.1141}}}}$$]
	0.7806
	0
	0.0851
	1.2298

	SD8
	[image: $${\underline{-{\textbf {4}}}}$$]
	[image: $${\underline{-{\textbf {0.1305}}}}$$]
	0.0644
	0
	[image: $${\underline{-{\textbf {0.0995}}}}$$]
	0.6577
	0
	[image: $${\underline{-{\textbf {0.0874}}}}$$]
	0.7694
	0
	−0.0132
	0.8547

	SD9
	[image: $${\underline{-{\textbf {3.97}}}}$$]
	[image: $${\underline{-{\textbf {0.1105}}}}$$]
	0.0643
	−0.1
	[image: $${\underline{-{\textbf {0.0942}}}}$$]
	0.6492
	−0.1
	[image: $${\underline{-{\textbf {0.1084}}}}$$]
	0.6739
	0
	0.0160
	0.9634

	SD10
	[image: $${\underline{-{\textbf {10}}}}$$]
	[image: $${\underline{-{\textbf {0.3754}}}}$$]
	0.0694
	−0.2
	[image: $${\underline{-{\textbf {0.0999}}}}$$]
	0.4840
	−0.2
	[image: $${\underline{-{\textbf {0.0960}}}}$$]
	0.7446
	0
	−0.0043
	0.6500

	SD11
	[image: $${\underline{-{\textbf {12.1}}}}$$]
	[image: $${\underline{-{\textbf {0.4034}}}}$$]
	0.0426
	0
	[image: $${\underline{-{\textbf {0.1621}}}}$$]
	0.4889
	0
	[image: $${\underline{-{\textbf {0.1184}}}}$$]
	0.5044
	0
	[image: $${\underline{-{\textbf {0.0496}}}}$$]
	0.9693

	Avg
	−1.63
	−0.1278
	0.0591
	0
	−0.0695
	0.5741
	−0.01
	−0.0734
	0.6467
	0.01
	0.0042
	0.8878

	Total
	−52.23
	−0.1278
	0.0591
	0
	−0.0695
	0.5741
	−0.4
	−0.0734
	0.6467
	0.4
	0.0042
	0.8878


	Instances
(large)
	AKS VS SDVRLH2 (SD)
	LSP VS LS
	LSC VS LS
	LSP VS LSC

	Avg #v
	Avg ttd
	#FE
	Avg #v
	Avg ttd
	#FE
	Avg #v
	Avg ttd
	#FE
	Avg #v
	Avg ttd
	#FE

	AKS-SD
	(AKS-SD)/SD
	AKS/SD
	LSP-LS
	(LSP-LS)/LS
	LSP/LS
	LSC-LS
	(LSC-LS)/LS
	LSC/LS
	LSP-LSC
	(LSP-LSC)/LSC
	LSP/LSC

	B-Y9
	[image: $${\underline{-{\textbf {1}}}}$$]
	−0.0128
	0.0745
	0
	[image: $${\underline{-{\textbf {0.0487}}}}$$]
	0.5440
	0
	[image: $${\underline{-{\textbf {0.0431}}}}$$]
	0.5578
	0
	−0.0059
	0.9752

	B-Y10
	[image: $${\underline{-{\textbf {2.8}}}}$$]
	[image: $${\underline{-{\textbf {0.0389}}}}$$]
	0.0686
	0.4
	[image: $${\underline{-{\textbf {0.1001}}}}$$]
	0.4203
	−0.2
	[image: $${\underline{-{\textbf {0.0851}}}}$$]
	0.5271
	0.6
	−0.0164
	0.7975

	B-Y11
	[image: $${\underline{-{\textbf {2.3}}}}$$]
	[image: $${\underline{-{\textbf {0.0555}}}}$$]
	0.0714
	0.2
	[image: $${\underline{-{\textbf {0.0354}}}}$$]
	0.4717
	0.2
	[image: $${\underline{-{\textbf {0.0321}}}}$$]
	0.4814
	0
	−0.0034
	0.9798

	B-Y12
	−0.5
	−0.0039
	0.0739
	0.6
	[image: $${\underline{-{\textbf {0.0728}}}}$$]
	0.4685
	0.3
	[image: $${\underline{-{\textbf {0.0517}}}}$$]
	0.4434
	0.3
	[image: $${\underline{-{\textbf {0.0223}}}}$$]
	1.0567

	B-Y13
	[image: $${\underline{-{\textbf {2.4}}}}$$]
	[image: $${\underline{-{\textbf {0.0517}}}}$$]
	0.0783
	0.4
	[image: $${\underline{-{\textbf {0.0554}}}}$$]
	0.4065
	0.1
	[image: $${\underline{-{\textbf {0.0449}}}}$$]
	0.4257
	0.3
	−0.0110
	0.9550

	B-Y14
	[image: $${\underline{-{\textbf {2.27}}}}$$]
	[image: $${\underline{-{\textbf {0.0369}}}}$$]
	0.0757
	0.4
	[image: $${\underline{-{\textbf {0.1151}}}}$$]
	0.4005
	0
	[image: $${\underline{-{\textbf {0.1076}}}}$$]
	0.4970
	0.4
	−0.0083
	0.8058

	B-Y15
	[image: $${\underline{-{\textbf {7.6}}}}$$]
	[image: $${\underline{-{\textbf {0.0818}}}}$$]
	0.0846
	0
	[image: $${\underline{-{\textbf {0.0479}}}}$$]
	0.4494
	0
	[image: $${\underline{-{\textbf {0.0415}}}}$$]
	0.4564
	0
	−0.0067
	0.9845

	B-Y16
	[image: $${\underline{-{\textbf {1.3}}}}$$]
	[image: $${\underline{-{\textbf {0.0207}}}}$$]
	0.0761
	0.1
	[image: $${\underline{-{\textbf {0.1098}}}}$$]
	0.4654
	0.2
	[image: $${\underline{-{\textbf {0.0940}}}}$$]
	0.5195
	−0.1
	−0.0174
	0.8959

	B-Y17
	[image: $${\underline{-{\textbf {6.33}}}}$$]
	[image: $${\underline{-{\textbf {0.1224}}}}$$]
	0.0776
	0.3
	[image: $${\underline{-{\textbf {0.0407}}}}$$]
	0.4831
	0.4
	[image: $${\underline{-{\textbf {0.0376}}}}$$]
	0.4133
	−0.1
	−0.0032
	1.1690

	B-Y18
	[image: $${\underline{-{\textbf {6.23}}}}$$]
	[image: $${\underline{-{\textbf {0.0438}}}}$$]
	0.0795
	0.4
	[image: $${\underline{-{\textbf {0.1062}}}}$$]
	0.4134
	0.4
	[image: $${\underline{-{\textbf {0.1121}}}}$$]
	0.4003
	0
	0.0066
	1.0326

	B-Y19
	[image: $${\underline{-{\textbf {10.07}}}}$$]
	[image: $${\underline{-{\textbf {0.1875}}}}$$]
	0.0708
	0.5
	[image: $${\underline{-{\textbf {0.0440}}}}$$]
	0.3177
	0.3
	[image: $${\underline{-{\textbf {0.0369}}}}$$]
	0.4150
	0.2
	−0.0073
	0.7655

	B-Y20
	[image: $${\underline{-{\textbf {4.63}}}}$$]
	[image: $${\underline{-{\textbf {0.0540}}}}$$]
	0.0839
	0.2
	[image: $${\underline{-{\textbf {0.0770}}}}$$]
	0.4458
	0.1
	[image: $${\underline{-{\textbf {0.0915}}}}$$]
	0.5260
	0.1
	0.0160
	0.8475

	Sha14
	[image: $${\underline{-{\textbf {1.2}}}}$$]
	[image: $${\underline{-{\textbf {0.0291}}}}$$]
	0.0425
	0.3
	[image: $${\underline{-{\textbf {0.0892}}}}$$]
	0.5648
	0
	[image: $${\underline{-{\textbf {0.0331}}}}$$]
	0.7226
	0.3
	[image: $${\underline{-{\textbf {0.0580}}}}$$]
	0.7816

	Sha15
	[image: $${\underline{-{\textbf {3.9}}}}$$]
	[image: $${\underline{-{\textbf {0.0536}}}}$$]
	0.0496
	0
	[image: $${\underline{-{\textbf {0.1183}}}}$$]
	0.5238
	0
	[image: $${\underline{-{\textbf {0.0577}}}}$$]
	0.5978
	0
	[image: $${\underline{-{\textbf {0.0643}}}}$$]
	0.8762

	SD12
	[image: $${\underline{-{\textbf {1}}}}$$]
	[image: $${\underline{-{\textbf {0.0499}}}}$$]
	0.0748
	0.2
	[image: $${\underline{-{\textbf {0.1139}}}}$$]
	0.3707
	0.2
	[image: $${\underline{-{\textbf {0.0953}}}}$$]
	0.4179
	0
	[image: $${\underline{-{\textbf {0.0206}}}}$$]
	0.8870

	SD13
	[image: $${\underline{-{\textbf {5}}}}$$]
	[image: $${\underline{-{\textbf {0.1253}}}}$$]
	0.0775
	0
	[image: $${\underline{-{\textbf {0.1894}}}}$$]
	0.3804
	−0.1
	[image: $${\underline{-{\textbf {0.1602}}}}$$]
	0.4894
	0.1
	[image: $${\underline{-{\textbf {0.0348}}}}$$]
	0.7772

	Avg
	−3.66
	−0.0774
	0.0716
	0.25
	−0.1057
	0.4333
	0.12
	−0.0888
	0.4715
	0.13
	−0.0185
	0.9189

	Total
	−58.53
	−0.0774
	0.0716
	4
	−0.1057
	0.4333
	1.9
	−0.0888
	0.4715
	2.1
	−0.0185
	0.9189






4.3 Further Analysis
Validating Effectiveness of Our Node Insertion Rules. We tested each rule’s effectiveness, comparing LSP and LSC against LS in Table 2. The difference between LS/LSP/LSC and AKS is LS does not use the AKI operator, and the LSP or LSC algorithms respectively use the Proximity or Connectivity rules for node insertion. Results show similar vehicle counts but significant ttd improvements with node insertion rules. For small-scale instances, LSP and LSC reduced ttd by an average of 6.95% and 7.34%, respectively. In large-scale instances, they achieved 10.57% and 8.88% average reductions, with maximum improvements of 18.94% and 16.02%.
Applying node insertion rules significantly reduced the number of fitness evaluations (FEs), particularly in large-scale problems, as Table 2 shows. In small-scale instances, LSP and LSC used, on average, 57.41% and 64.67% of LS’s FEs, respectively. For larger-scale problems, both LSP and LSC required less than half of LS’s FEs, highlighting the improved computational efficiency of the proposed rules.
The results convincingly show the node insertion rules in this study significantly lowered ttd in most instances and enhanced computational efficiency.
Node Distribution Impacts Rule Performance. The performance of our node insertion rules, as seen in Table 2 (LSP VS LSC), differs across instances. For example, LSP performs better on instances like SD11 and Sha15, while LSC outperforms on SD6 and SD7. This reveals that the effectiveness of the two rules varies by instance.
We analyzed LSP and LSC’s performance regarding node distribution, shown in Fig. 3. LSP’s ttd is worse than LSC’s on some instances (like SD6 and SD7), but better in others (e.g., Sha14, Sha15). In some cases, such as B-Y1 and B-Y7, both algorithms show similar performance. The node distributions in these instances are significantly different intuitively.[image: ]
Fig. 3.Node distribution of different problem instances. (a) The ttd of LSP is significantly worse than LSC on SD6 and SD7. (b) The ttd of LSP is significantly better than LSC on Sha14 and Sha15. (c) There is no significant difference between LSP and LSC. For comparative ttd data of LSP and LSC, please refer to Table 2.



Further analysis involved altering node distributions in some instances to observe performance changes. We used [image: $$\varDelta = (ttd_{lsp} - ttd_{lsc}) / ttd_{lsc}$$] to compare LSP’s and LSC’s ttd. A negative [image: $$\varDelta $$] means LSP performed better, while a positive one indicates the opposite. Changes in SD6 and SD7 reduced the ttd gap between LSP and LSC, as Fig. 4 shows. Meanwhile, SD1, SD8, and SD9, initially with minimal differences, showed significant changes after modification.
Moreover, we modified the node distribution of existing instances to generate new instances (details can be found in Sect. 5 of the supplementary material [24]). Results in Table 3 (LSP VS LSC) show node distribution’s significant effect on rule effectiveness. LSP performed well on eight instances but was less effective on another ten instances compared to LSC.[image: ]
Fig. 4.Comparing LSP and LSC on modified instances with new node layouts. E.g., SD7 was altered to SD7*. We tracked each algorithm’s ttd and used [image: $$\varDelta $$] to see which performed better: negative [image: $$\varDelta $$] indicates LSP was more effective, while positive [image: $$\varDelta $$] favours LSC.



This emphasizes the significant influence of node distribution on the suitability and performance of our insertion rules, indicating that the selection of a rule should correspond to the specific characteristics of each instance’s node distribution.Table 3.Comparative analysis on new instances. AKS employs the AKI operator, while LSP and LSC utilize Proximity and Connectivity rules, respectively. LSrdm randomly selects between two rules. #v = the number of vehicles; ttd = total travel distance; #FE = the number of fitness evaluations. The data in bold signifies that our strategy produces better results than the contrasted strategies numerically. The Mann-Whitney U test was employed, and the data with underlined values indicate a significant difference at the significance level [image: $$\alpha =0.05$$].


	Instances
	LSP VS LSC
	AKS VS LSP
	AKS VS LSC
	AKS VS LSrdm

	Avg #v
	Avg ttd
	#FE
	Avg #v
	Avg ttd
	#FE
	Avg #v
	Avg ttd
	#FE
	Avg #v
	Avg ttd
	#FE

	LSP-LSC
	(LSP-LSC)/LSC
	LSP/LSC
	AKS-LSP
	(AKS-LSP)/LSP
	AKS/LSP
	AKS-LSC
	(AKS-LSC)/LSC
	AKS/LSC
	AKS-rdm
	(AKS-rdm)/rdm
	AKS/rdm

	Ins1
	0
	0.0630
	1.2593
	0
	[image: $${\underline{-{\textbf {0.0797}}}}$$]
	0.8067
	0
	[image: $${\underline{-{\textbf {0.0218}}}}$$]
	1.0159
	0
	−0.0066
	1.0910

	Ins2
	0.1
	0.0728
	1.1064
	−0.1
	[image: $${\underline{-{\textbf {0.0880}}}}$$]
	0.8470
	0
	[image: $${\underline{-{\textbf {0.0216}}}}$$]
	0.9372
	0
	−0.0019
	1.0487

	Ins3
	0
	0.0518
	1.1660
	0
	[image: $${\underline{-{\textbf {0.0703}}}}$$]
	0.7887
	0
	[image: $${\underline{-{\textbf {0.0221}}}}$$]
	0.9196
	0
	0.0058
	1.0224

	Ins4
	0
	0.0685
	1.0359
	0
	[image: $${\underline{-{\textbf {0.0844}}}}$$]
	0.7499
	0
	[image: $${\underline{-{\textbf {0.0217}}}}$$]
	0.7768
	0
	−0.0139
	0.9831

	Ins5
	0
	0.0070
	1.1053
	0
	[image: $${\underline{-{\textbf {0.0307}}}}$$]
	0.8268
	0
	[image: $${\underline{-{\textbf {0.0239}}}}$$]
	0.9139
	0
	−0.0092
	1.0438

	Ins6
	0
	0.0352
	1.0659
	0
	[image: $${\underline{-{\textbf {0.0654}}}}$$]
	0.7612
	0
	[image: $${\underline{-{\textbf {0.0325}}}}$$]
	0.8114
	0
	−0.0071
	1.0313

	Ins7
	0
	-0.0030
	0.8502
	0
	[image: $${\underline{-{\textbf {0.0263}}}}$$]
	1.0159
	0
	[image: $${\underline{-{\textbf {0.0292}}}}$$]
	0.8637
	0
	−0.0022
	1.0997

	Ins8
	0
	0.0567
	1.2233
	0
	[image: $${\underline{-{\textbf {0.0742}}}}$$]
	0.7262
	0
	[image: $${\underline{-{\textbf {0.0218}}}}$$]
	0.8884
	0
	−0.0047
	0.9949

	Ins9
	0
	0.0328
	1.1607
	0
	[image: $${\underline{-{\textbf {0.0469}}}}$$]
	0.7359
	0
	−0.0157
	0.8541
	0
	0.0073
	0.9846

	Ins10
	0
	[image: $${\underline{-{\textbf {0.0842}}}}$$]
	0.8297
	0
	−0.0019
	1.0684
	0
	[image: $${\underline{-{\textbf {0.0859}}}}$$]
	0.8865
	0
	[image: $${\underline{-{\textbf {0.0408}}}}$$]
	0.7547

	Ins11
	0
	[image: $${\underline{-{\textbf {0.0726}}}}$$]
	0.7540
	0
	0.0041
	1.1614
	0
	[image: $${\underline{-{\textbf {0.0688}}}}$$]
	0.8757
	0
	[image: $${\underline{-{\textbf {0.0322}}}}$$]
	1.0764

	Ins12
	0
	[image: $${\underline{-{\textbf {0.0612}}}}$$]
	0.9289
	0
	0.0071
	0.9805
	0
	[image: $${\underline{-{\textbf {0.0546}}}}$$]
	0.9107
	0
	[image: $${\underline{-{\textbf {0.0431}}}}$$]
	1.1278

	Ins13
	0
	[image: $${\underline{-{\textbf {0.0617}}}}$$]
	1.0223
	0
	0.0037
	0.8865
	0
	[image: $${\underline{-{\textbf {0.0582}}}}$$]
	0.9062
	0
	[image: $${\underline{-{\textbf {0.0233}}}}$$]
	0.9760

	Ins14
	0
	[image: $${\underline{-{\textbf {0.0288}}}}$$]
	0.9382
	0
	0.0026
	0.9940
	0
	[image: $${\underline{-{\textbf {0.0263}}}}$$]
	0.9326
	0
	[image: $${\underline{-{\textbf {0.0236}}}}$$]
	0.9679

	Ins15
	0
	[image: $${\underline{-{\textbf {0.0301}}}}$$]
	0.8478
	0
	−0.0131
	0.9679
	0
	[image: $${\underline{-{\textbf {0.0429}}}}$$]
	0.8207
	0
	[image: $${\underline{-{\textbf {0.0288}}}}$$]
	1.0100

	Ins16
	0.4
	[image: $${\underline{-{\textbf {0.0723}}}}$$]
	0.7220
	−0.03
	0.0015
	1.1115
	0.37
	[image: $${\underline{-{\textbf {0.0709}}}}$$]
	0.8025
	0.37
	[image: $${\underline{-{\textbf {0.0288}}}}$$]
	0.8527

	Ins17
	0.1
	[image: $${\underline{-{\textbf {0.0556}}}}$$]
	0.8045
	−0.07
	0.0178
	0.9862
	0.03
	[image: $${\underline{-{\textbf {0.0387}}}}$$]
	0.7933
	0.33
	[image: $${\underline{-{\textbf {0.0419}}}}$$]
	0.8633

	Ins18
	0.1
	[image: $${\underline{-{\textbf {0.0360}}}}$$]
	0.9742
	0
	−0.0157
	0.8551
	0.1
	[image: $${\underline{-{\textbf {0.0511}}}}$$]
	0.8330
	0
	[image: $${\underline{-{\textbf {0.0337}}}}$$]
	0.9857

	Ins19
	0
	[image: $${\underline{-{\textbf {0.0489}}}}$$]
	0.7892
	0
	0.0095
	1.0586
	0
	[image: $${\underline{-{\textbf {0.0398}}}}$$]
	0.8354
	0
	[image: $${\underline{-{\textbf {0.0214}}}}$$]
	1.0112

	Avg
	0.04
	0.0001
	0.8851
	−0.01
	−0.0365
	0.9559
	0.03
	−0.0364
	0.8461
	0.04
	−0.0163
	0.9797

	Total
	0.7
	0.0001
	0.8851
	−0.2
	−0.0365
	0.9559
	0.5
	−0.0364
	0.8461
	0.7
	−0.0163
	0.9797





Further Validating Our AKI Operator. To further validate our AKI operator, we created new instances with different node distribution and compared the AKS algorithm (using AKI) against LSP, LSC, and LSrdm (which randomly selects between two rules) on these instances. As shown in Table 3, AKS consistently reduced ttd more than LSP (nine instances), LSC (18 instances), and LSrdm (ten instances). This shows AKI’s ability to adaptively select the best rule for node insertion, efficiently handling diverse node distributions by blending the strengths of both rules.


5 Conclusion
This paper presents a knowledge-guided approach for solving complex 3L-SDVRP. We hypothesize that in an effective giant tour, physically proximate nodes should be adjacent or close in node sequence. To realize this, we employ node insertion to modify a giant tour and develop two node insertion rules: Proximity and Connectivity. Further, we develop the AKI operator, which adaptively selects the most appropriate node insertion rules based on node distribution characteristics and offers a larger step size than traditional methods. The integration of the AKI operator within local search framework leads to the development of the AKS algorithm.
Extensive experimental analysis validate the effectiveness of our proposed AKI operator and AKS algorithm in improving search efficiency and solution quality, particularly in reducing total travel distance (ttd). This highlights the importance of a deep understanding of problem characteristics, the strategic use of domain knowledge to guide the search process, and the appropriate balance of small and large search step sizes in intelligent optimization algorithms. Although this paper concentrates on the 3L-SDVRP, our proposed AKI operator and AKS algorithm are not limited to this problem and can be adapted to solve other VRP variants. Future research in this field should focus on further exploring the integration of domain knowledge with optimization algorithms. This could involve investigating additional problem characteristics, refining the AKI operator, or applying the AKS algorithm to other complex optimization scenarios.
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Abstract
The recombination operator plays an important role in many evolutionary algorithms. However, in Cartesian Genetic Programming (CGP), which is part of the aforementioned category, the usefulness of crossover is contested. In this work, we investigate whether CGP’s positional bias actually influences the usefulness of the crossover operator negatively. This bias describes a skewed distribution of CGP’s active and inactive nodes, which might lead to destructive behaviours of standard recombination operators. We try to answer our hypothesis by employing one standard CGP implementation and one without the effects of positional bias. Both versions are combined with one of four standard crossover operators, or with no crossover operator. Additionally, two different selection methods are used to configure a CGP variant. We then analyse their performance and convergence behaviour on eight benchmarks taken from the Boolean and symbolic regression domain. By using Bayesian inference, we are able to rank them, and we found that positional bias does not influence CGP with crossover. Furthermore, we argue that the current research on CGP with standard crossover operators is incomplete, and CGP with recombination might not negatively impact its evolutionary search process. On the contrary, using CGP with crossover improves its performance.
Keywords
Cartesian Genetic ProgrammingCGPCrossoverRecombinationPositional Bias
1 Introduction
Cartesian Genetic Programming (CGP) is a form of Genetic Programming (GP), based on directed, acyclic and feed–forward graphs whose nodes are arranged in a two-dimensional grid. CGP mainly relies on mutation and selection operators for its evolutionary search process.
For GP, numerous different crossover algorithms exist [17] but its overall utility is doubted [26, 32]. Similarly, since its inception in 1999 by Miller [21], the use of a crossover operator in CGP is an active research topic. To this day, its advantage is questioned as an effective crossover operator relies on extensions to the CGP formula and highly depends on the specific use case [10]. Furthermore, it is still unclear as to why crossover raises issues in the context of CGP [4, 11, 21, 22].
Our hypothesis is to assume that the positional bias influences CGP with a recombination algorithm, an effect which potentially limits CGP to fully explore its search space [8]. It describes a problem in which nodes contributing to an output have a non-uniform distribution in the graph. This in turn might lead to problems for standard recombination operators like the point-, multi-n-, or uniform-crossover. These operators do not consider semantic structures, like such non-uniform distributions of nodes. To counteract positional bias, Cui et al. [5] introduced an operator to fully eliminate it. We will take advantage of this operator to test our hypothesis. If positional bias plays a role in CGP’s issues with crossover, using a recombination algorithm with this extension might boost its performance or lead to interesting results. By empirically analysing its performance and behaviour, a better understanding of this overall issue could be gained.
We provide a quick overview of the core principles of CGP, reintroduce the concept of positional bias and how to mitigate it in the following Sect. 2. Afterwards, Sect. 3 gives an overview of related work. We will then explain our hypothesis and state our research questions in Sect. 4. Subsequently, we discuss our experimental setup in Sect. 5, and the results and its discussion is given in Sect. 6. At last, Sect. 7 summarizes our findings and discusses future research directions.

2 Cartesian Genetic Programming
In this section, we reintroduce the supervised learning algorithm called Cartesian Genetic Programming (CGP) [21]. An additional emphasis will be made on CGP’s positional bias and one method on how to reduce it.
2.1 Representation
Standard CGP is represented by a directed, acyclic and feed-forward graph. It contains partially connected nodes, which are arranged in a grid. This allows for an arbitrary amount of program inputs and any desired amount of outputs. Originally, CGP used a [image: $$c \times r$$] grid with [image: $$c \in \mathbb {N}_+$$] and [image: $$r \in \mathbb {N}_+$$]. With today’s standards, a CGP model consists of only one row for most applications [20].
The set of nodes in a graph defined by CGP can be divided into input-, output- and computational nodes. Input nodes receive the program input directly, and relay these values to computational and/or output nodes. Similarly, output nodes define the program’s final output by redirecting the output of an input- or computational node. They are represented by a single connection gene. Computational nodes are represented by one function- and m connection genes, with [image: $$m \in \mathbb {N}_+$$] being the maximum arity of one function in the whole function set. The function gene encodes the computational function of a node. It gets its input from previous nodes via its connection genes. They define a path between a previous and the current node.
Computational nodes can also be categorized into active and inactive nodes. The former are part of a path to one or multiple output nodes—hence they contribute to the program’s final output. Inactive nodes are not part of a path to output nodes and do not contribute to an output. Still, by allowing such inactive nodes to persist throughout the training process, it improves CGP’s evolutionary search through neutral genetic drift [18, 29].
An illustrative example of a graph defined by CGP can be seen in Fig. 1. It depicts the genotype with two input-, three computational- and one output node. Active nodes are drawn with a solid line, while inactive nodes are marked by dashed lines. It contains two input-, three computational-, and one output node. In this example, both inputs are subtracted. Afterwards, this intermediate result is being added to itself and redirected as the program output. The node [image: $$n_2$$] is not part of a path to an output node, and is therefore inactive.[image: ]
Fig. 1.Example graph defined by a CGP genotype. The dashed node and connections are inactive due to not contributing to the output.



Given this description of CGP’s representation, when we mention a graph with [image: $$N \in \mathbb {N}_+$$] nodes, this graph will have only one row, N computational nodes, and additional input and output nodes corresponding to the given learning task. Furthermore, to improve readability and clarity, a graph defined by this representation will be called Standard for the remainder of this work.

2.2 Positional Bias
CGP enforces a feed-forward grid. Goldman and Punch [8] found that this leads to positional bias. This issue describes a non-uniform distribution of nodes being active throughout the whole graph. Computational nodes near input nodes have a higher chance of being active compared to the ones near the output nodes. This negatively impacts CGP’s evolutionary search process, as it increases the difficulty to solve certain tasks and decreases its performance [9, 23].
The reason behind positional bias is CGP’s grid-structure combined with feed-forward connections. Nodes near input nodes have more nodes to their right. This means, more nodes can mutate a connection to them—which in turn increases the probability of them becoming active. Nodes near output nodes, however, have less nodes to their right. Hence, their chance to be part of a path to an output node decreases, too.[image: ]
Fig. 2.Distribution of active nodes over a graph defined by CGP.



Figure 2 shows a visualization of positional bias for a better understanding. It depicts a plot of the distribution of active nodes, averaged over 75 independent runs on the 3-bit multiply Boolean benchmark. On the x-axis, the position of a computational node in its graph is given. The y-axis indicates its probability of being active. A clear example of positional bias can be seen here. About the first quarter of computational nodes have a (very) high probability of being active, and the remaining node’s probabilities are minimal.
One solution to solve positional bias is to use the levels back parameter from the original CGP [19], which restricts the connectivity of a node. However, its usage is not recommended as it negatively impacts CGP’s performance [20]. This is why we will also refrain from using it.
To fully mitigate positional bias, Cui et al. [5] introduced the Equidistant-Reorder (E-Reorder) operator, which was inspired by the original Reorder operator from Goldman and Punch [8]. It works by generating a new genome [image: $$ G^\prime $$], which is initialized by inheriting all input and output nodes from the original genome [image: $$ G $$] because these do not change their positions. In addition, [image: $$ G^\prime $$] reserves enough space for computational nodes to fit all computational nodes of [image: $$ G $$]. Afterwards, all active nodes from [image: $$ G $$] are placed in the same sequence and equidistantly apart into [image: $$ G^\prime $$]. All inactive nodes from [image: $$ G $$] are then placed in the same sequence into the next genome location of [image: $$ G^\prime $$] where no active node was placed. Finally, [image: $$ G $$] is replaced by [image: $$ G^\prime $$]. Because [image: $$ G^\prime $$] and [image: $$ G $$] have the same ordering of active nodes, the genotype of [image: $$ G^\prime $$] changes but the phenotype stays the same. As a result, Cui et al. were able to fully eliminate positional bias, which lead to an increase in CGP’s performance. For a more in-depth algorithmic explanation, we refer to their work [6].
To improve readability, we will refer to a CGP version with the E-Reorder operator as E-Reorder.


3 Related Work
In the context of CGP, the effects and behaviours of crossover operators have been investigated by various previous authors. Regarding the influence of positional bias on CGP’s crossover operator, to the best of our knowledge, the work of Cui et al. [6] is the only one who investigated it. In this work, we expand their perspective and analyses.
Still, various other previous works laid out the foundation to our investigation. The earliest work regarding CGP and crossover was done by Miller [21]. While his original work did not argue against using crossover, he later claimed that the one-point crossover showed a disruptive behaviour [20].
Cai et al. [2] argued that CGP is not positional independent. This means, CGP’s components and their workings depend on their position in the graph. Problems may arise now with crossover, as they do not consider such dependencies. Hence, useful structures are destroyed. To counteract this problem, the authors introduced a new crossover operator which also considers such dependencies. However, our work differs from theirs as they did not consider the distribution of active nodes or positional bias in their work.
Kalkreuth et al. [13] also argued that simply swapping genes randomly does not improve CGP. In their work, they introduced a subgraph-crossover operator which only recombines active nodes. A comprehensive study was done [11] and they showed a beneficial behaviour in two problem domains. However, contrary to this work, they also did not consider positional bias.
Similarly to the just described work, Husa and Kalkreuth [10, 11] introduced the block-crossover, which swap blocks of consecutive active nodes. It is based upon the subgraph crossover [13] and embedded CGP [15].
Normally, CGP’s representation is integer based, similarly to standard genetic programming. Clegg et al. [4] changed it to a floating-point based representation. This allowed them to introduce specialized crossover operators. Wilson et al. [33] based their work upon this aspect and further analysed a floating-point based representation of CGP.
One use case of CGP is that image processing as filter pipelines can be evolved with it. Slaný et al. [25] used the original grid-structure of CGP for this task. They also included single-point and multi-point crossover without modifying CGP in their studies. By observing the fitness landscape of their solutions, the authors concluded that the single-point crossover improved the evolutionary search.
Another domain specific approach was done by Torabi et al. [28]. They used CGP in the context of neural architecture search and adapted a specialized crossover mechanism to design convolutional neural networks.
A more recent method, developed from Kalkreuth [12], describes an operator which recombines only active nodes.

4 Positional Bias and Crossover
We originally assumed that positional bias might influence CGP’s issues, as discovered in previous studies (cf. Sect. 3), with recombination operators. Our rationale is that active nodes accumulate near input nodes, while inactive nodes concentrate near output nodes. As such, because active nodes contribute to the program’s output, their clustering near input nodes can be viewed as important node–structures. However, traditional crossover operators like the [image: $$n-$$]point or uniform crossover do not consider such clusters. It is possible that, by applying crossover, important semantic structures might get destroyed. Other methods from Husa and Kalkreuth [10], Cai et al. [2] or Kalkreuth et al. [11–13] do however consider such structures. This may be one explanation for their performance gain.
To summarize: By applying traditional crossover operators with Standard, important structures of active nodes near the input nodes might get destroyed. Such clusterings are due to positional bias. With E-Reorder, positional bias can be fully circumvented. As a result, by applying the E-Reorder operator before crossover, these stated negative effects might be weakened, too.
Thus, in this work we will focus on answering two research questions:	Q1: Has positional bias an effect on CGP with a crossover operator?

	Q2: Is there a difference in behaviour when different CGP variants with and without crossover are analysed?






5 Experimental Design
In order to gauge the effects of positional bias on CGP with crossover, we conducted an empirical study. We give a brief introduction into Bayesian inference to evaluate and rank different CGP configurations. They are used to compare multiple CGP configurations, which we use for our statistical analysis. Afterwards, we describe CGP’s configuration and the benchmarks used1.
5.1 Bayesian Data Analysis
To answer our research questions, a fair comparison of algorithms and a qualitatively sound evaluation must be ensured. For this task each CGP variant must be ranked to find the best solution. For Boolean benchmarks we only examine the number of training iterations until a solution is found (I2S). Thus, for these types of benchmarks, algorithms are ranked according to their I2S. Considering symbolic regression benchmarks, the final goal is to minimize their fitness value—which is why they are ranked according to their final test fitness value. For both benchmark types these numbers cannot be negative. Hence, other common distributions such as Student’s t distributions can not be expected to model the data well [16]. This is why we performed a Bayesian data analysis for the posterior distributions of our results2. The model to compare the algorithms is based on the Plackett-Luce model described by Calvo et al. [3]. It allows the computation of a set of ranked options by estimating the probabilities of each of the options to be the one with the highest rank.
Additionally, for the I2S of Boolean benchmarks, we report the 95 % highest posterior density intervals (HPDI) of the distribution of [image: $$\mu _{config}$$], where [image: $$\mu _{config}$$] is a random variable corresponding to the respective performance measurement. At that, the distribution of [image: $$\mu _{config}$$] is estimated by the gamma distribution–based model for comparing non-negative data from cmpbayes [24]. Please note, a 95 % HPDI interval [l, u] can be read as [image: $$p(l~\le ~\mu _{config}~\le u)~=~95\,\%$$]. This means, the probability of the algorithms results lying between the bounds [image: $$l \in \mathbb {N}_+$$] and [image: $$u \in \mathbb {N}_+$$] is 95%.
Furthermore, prior sensitivity analyses were conducted prior to ensure the robustness of all models. As they always display similar results, robust and meaningful models are implicated. Finally, please note that cmpbayes uses Markov Chain Monte-Carlo sampling to obtain its distributions. Therefore, the usual checks to ensure convergence and well-behavedness (trace plots, posterior predictive checks, [image: $$\hat{R}$$] values, effective sample size) were performed. For more information regarding the models, we refer to Kruschke [16] and Pätzel [24].

5.2 CGP Variants and Their Configuration
To answer our hypothesis, a broad set of configurations must be evaluated and compared. For basic baselines, we use the following two configurations: No crossover, Standard with a [image: $$(1+4)$$] Evolutionary Strategy (ES); and no crossover, E-Reorder with a [image: $$(1+4)$$]-ES. Both variants are commonly found in literatures—that means, CGP uses an elitist [image: $$\left( \mu + \lambda \right) $$]-ES with [image: $$\mu = 1$$] and [image: $$\lambda = 4$$], and no crossover [20, 29].
These baselines are then compared with the combinations of different components. We employ two different CGP variants: Standard and E-Reorder. For the selection method, a standard tournament selection with elitists or [image: $$\left( \mu + \lambda \right) $$]-ES is used. Considering the crossover operators, we tested four operators: 1-point, 2-point, 3-point, and uniform crossover. A crossover rate of 0.9 was used for all configurations. Furthermore, the option of no recombination must also be evaluated. Including our baselines, this leads to 22 different algorithmic combinations. To further clarify the combination of non-baseline modules, we list the components in Table 1.Table 1.Different components from which a CGP configuration is created. We tested the combination of all categories and two baselines.


	Crossover Operator
	CGP Variant
	Selection Strategy

	1-point crossover
	[image: $$\left( \mu + \lambda \right) $$]-ES
	Standard

	2-point crossover
	Tournament selection
with elitists
	E-Reorder

	3-point crossover
	 	 
	Uniform crossover
	 	 
	No crossover
	 	 




To mutate the genotypes, we use Single [9]. This operator works by mutating random genes until a gene corresponding to an active node is mutated. This enforces a measurable change in the phenotype—compared to the standard point mutation which may only mutate inactive nodes, which makes it impossible to gauge the quality of the genotypical change [7, 8]. Furthermore, it has the benefit that it does not need a mutation probability and achieves similar results compared to a standard point mutation.
For the baselines, their number of computational nodes N must be optimized. Considering other CGP configurations, we additionally optimized [image: $$\mu $$] and [image: $$\lambda $$] when the [image: $$(\mu + \lambda )$$]-ES is used. For tournament selection, we included the tournament size, population size, and the number of elitists into the hyperparameter optimization process. For each parameter, we investigated the following possibilities: [image: $$N~\in ~\left\{ 50, 100, 150, \cdots , 2000\right\} $$], [image: $$\mu ~\in ~\left\{ 2, 4, 6, 8, 10\right\} $$], [image: $$\lambda ~\in ~\left\{ 10, 12, 14, \cdots , 50\right\} $$], tournament size[image: $$~\in ~\left\{ 2, 4, 6, 8\right\} $$], population size[image: $$~\in ~\left\{ 10, 12, 14, \cdots , 50\right\} $$], number of elitists[image: $$~\in ~\left\{ 2, 4, 6, 8, 10\right\} $$].
To find the best hyperparameters, we used a Tree-structured Parzen Estimator3. All configurations were tested 20 times with independent repetitions and completely random seeds. For our final results, each CGP version used the best set of hyperparameters found for a given benchmark and were run again for 50 times with independent repetitions and different random seeds.

5.3 Benchmarks
To evaluate our hypothesis, Boolean and symbolic regression benchmarks were tested. We used four Boolean benchmarks problems: 3-bit Parity, 16–4-bit Encode, 4–16-bit Decode and 3-bit Multiply. In the following, we will call these Parity, Encode, Decode and Multiply, respectively. Parity is regarded as too easy by the Genetic Programming community [31]. However, it was commonly used as a benchmark in literature [14, 21]. This is why we also included it in our evaluations for ease of comparison. Encode and Decode are problems with different input and output sizes (16 inputs and 4 outputs, and vice versa). At last, Multiply is a comparatively hard problem and recommended by White et al. [31]. For these benchmark problems we used their standard Boolean function set: AND, OR, NAND and NOR. As their fitness function, we employed a standard one, too. It is defined by the ratio of correctly mapped inputs.
The goal for Boolean benchmarks is to achieve a solution which is able to correctly map all inputs. Thus, each benchmark runs on an unlimited budget and we report the number of training iterations until a solution is found (I2S).
In terms of symbolic regression benchmarks we again adhered to the recommendations from the GP community [31] and previous works [11]. Four different benchmarks were used: Keijzer-6, Koza-3, Nguyen-7 and Pagie-1. Their definitions are shown in Table 2.Table 2.Symbolic regression benchmarks used. U[a, b, c] means that c uniform random samples are drawn from a to b, inclusive. E[a, b, c] defines a grid of points from a to b, with c being the spacing.


	Name
	Variables
	Equation
	Training Set
	Testing Set

	Keijzer-6
	1
	[image: $$\sum _{i}^{x}\frac{1}{i}$$]
	E[1, 50, 1]
	E[1, 120, 1]

	Koza-3
	1
	[image: $$x^6 - 2 \cdot x^4 + x^2$$]
	[image: $$U[-1, 1, 20]$$]
	None

	Nguyen-7
	1
	[image: $$\ln \left( x + 1\right) + \ln \left( x^2 + 1\right) $$]
	U[0, 2, 20]
	None

	Pagie-1
	2
	[image: $$\frac{1}{1 - x^{-4}} + \frac{1}{1 - y^{-4}}$$]
	[image: $$E[-5, 5, 0.4]$$]
	None





The function set consists of eight mathematical functions: addition, subtraction, multiplication, protected division, sine, cosine, natural logarithm and the exponential function. As for the fitness function, the mean absolute error over the whole benchmark with n entries was used:
In this setting, an algorithm is classified as converged when the fitness value becomes less than 0.01. Furthermore, each CGP variant is given [image: $$5 \cdot 10^5$$] training iterations per run. Again, we only limit their budged based on training iterations. In this way, all configurations have a chance of convergence—which might not be the case when we limit their budged depending on their population size.


6 Evaluation
With our experimental setup explained, we now focus on answering our research questions. On that account, we report the top three parametrizations regarding the performance. We do not list all combinations of modules per benchmark, as there are a total of 22 different configurations. Combined with eight different benchmarks, presenting all results would take up too much space. For a complete list of all results, we refer to zenodo: https://​doi.​org/​10.​5281/​zenodo.​10830014. Furthermore, in the complete list we report the mean fitness, standard deviation of the fitness, number of active nodes, total number of nodes, population size, number of elitists, tournament size, success rate, HPDI and the probability of one solution being the best.
6.1 Performance of Different Module Combinations
Table 3.Selected results on Boolean benchmarks. We report the mean fitness (mean(I2S)), HPDI, number of active nodes (# active), total number of nodes (# nodes), and the probability of one solution being the best ([image: $$p_{best}$$]). Entries are sorted according to [image: $$p_{best}$$].


	CGP variant
	[image: $$mean(I2S  )$$]
	HPDI
	# active
	# nodes
	[image: $$p_{best}$$]

	Parity

	1-p. cr., Standard, [image: $$(4 + 50)$$]
	137
	(98, 189)
	48
	650
	0.07

	2-p. cr., E-Reorder, [image: $$(8 + 38)$$]
	690
	(416, 1146)
	431
	800
	0.07

	uni. cr., Standard, [image: $$(2 + 48)$$]
	136
	(101, 182)
	36
	450
	0.06

	[image: $$\cdots $$]
	[image: $$\cdots $$]
	[image: $$\cdots $$]
	[image: $$\cdots $$]
	[image: $$\cdots $$]
	[image: $$\cdots $$]

	Encode

	2-p. cr., Standard, [image: $$(2 + 44)$$]
	2,192
	(1878, 2541)
	63
	150
	0.13

	1-p. cr., Standard, [image: $$(2 + 50)$$]
	2,564
	(2146, 3044)
	87
	400
	0.12

	no cr., Standard, [image: $$(2 + 50)$$]
	2,288
	(1919, 2718)
	77
	300
	0.11
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	[image: $$\cdots $$]
	[image: $$\cdots $$]
	[image: $$\cdots $$]
	[image: $$\cdots $$]
	[image: $$\cdots $$]

	Decode

	2-p. cr., Standard, [image: $$(8 + 50)$$]
	3,229
	(2871, 3643)
	126
	250
	0.21

	3-p. cr., Standard, [image: $$(8 + 46)$$]
	3,415
	(2997, 3884)
	162
	450
	0.15

	no cr., E-Reorder, [image: $$(8 + 50)$$]
	3,414
	(2946, 3960)
	208
	250
	0.15
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	[image: $$\cdots $$]
	[image: $$\cdots $$]
	[image: $$\cdots $$]
	[image: $$\cdots $$]
	[image: $$\cdots $$]

	Multiply

	1-p. cr., Standard, [image: $$(2 + 44)$$]
	35,519
	(29547, 42588)
	96
	350
	0.15

	no cr., E-Reorder, [image: $$(2 + 50)$$]
	53,593
	(41036, 69020)
	247
	300
	0.13

	uni. cr., Standard, [image: $$(2 + 48)$$]
	42,120
	(34939, 50555)
	95
	350
	0.13
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Table 4.Selected results on symbolic regression benchmarks. We report the mean I2S ([image: $$mean(I2S  )$$]), mean fitness (mean(fit)), number of active nodes (# active), total number of nodes (# nodes), the success rate (s-rate), and the probability of one configuration being the best in terms of test fitness ([image: $$p_{best}$$]). Entries are sorted according to [image: $$p_{best}$$].


	CGP variant
	[image: $$mean(I2S  )$$]
	mean(fit)
	# active
	# nodes
	s-rate
	[image: $$p_{best}$$]

	Keijzer-6

	uni. cr., E-Reorder, [image: $$(10 + 40)$$]
	2
	0.000
	9
	50
	1.00
	0.14

	2-p. cr., E-Reorder, [image: $$(10 + 48)$$]
	1
	0.000
	8
	50
	1.00
	0.10

	3-p. cr., E-Reorder, [image: $$(8 + 32)$$]
	2
	0.000
	9
	50
	1.00
	0.09
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	Koza-3

	3-p. cr., E-Reorder, tour.
	1059
	0.003
	19
	50
	1.00
	0.12

	uni. cr., E-Reorder, tour.
	323
	0.006
	21
	50
	1.00
	0.08

	uni. cr., E-Reorder, [image: $$(10 + 30)$$]
	5893
	0.006
	16
	50
	1.00
	0.08
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	Nguyen-7

	1-p. cr., E-Reorder, tour.
	14063
	0.009
	31
	50
	1.00
	0.08

	1-p. cr., Standard, tour.
	24621
	0.010
	14
	50
	1.00
	0.07

	uni. cr., Standard, tour.
	28423
	0.009
	16
	150
	1.00
	0.07
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	Pagie-1

	1-p. cr., Standard, tour.
	482817
	0.033
	32
	100
	0.08
	0.08

	uni. cr., Standard, [image: $$(6 + 46)$$]
	459114
	0.034
	97
	850
	0.12
	0.08

	no cr., Standard, [image: $$(8 + 50)$$]
	451652
	0.036
	91
	450
	0.16
	0.08
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We report selected results on Boolean and symbolic regression benchmarks in Table 3 and Table 4. Again, we refer to https://​doi.​org/​10.​5281/​zenodo.​10830014 for a complete view of our results.
Discussion: Boolean Benchmarks. For the Boolean benchmarks, tournament selection does not perform well in this setting. It leads to the worst results on all benchmarks except for Parity. On Multiply, all configurations with this selection method even reaches a success rate of zero.
Regarding our original research question Q1, the positional bias does probably not affect CGP in the context of Boolean benchmarks. On the contrary, in most cases  Standard  with recombination seems to outperform  E-Reorder  with no crossover both in terms of mean fitness and [image: $$p_{best}$$]; while E-Reorder outperforms Standard when both variants do not use crossover. For Multiply, Standard with an [image: $$(\mu + \lambda )$$]-ES finds solutions with less active nodes compared to E-Reorder with [image: $$(\mu + \lambda )$$]-ES, which indicates a more compact solution with less redundant computations. This is contrasted by the general trend that the Standard baseline normally has more active nodes compared to the E-Reorder baseline. Regarding the other benchmarks, such a behaviour cannot be observed. There is only a slight tendency towards Standard with crossover having less active nodes than E-Reorder.
Interestingly, a 1-point or 2-point crossover leads to the best results in most cases. We believe that, in this setting, Standard with a 1- or 2-point crossover should drastically change its geno- and phenotype. In addition, Boolean benchmarks display a deceptive fitness landscape [30]. In this context, this means that a multitude of different solutions lead to the same fitness value. Hence, due to great changes in the genotype introduced by recombinations, more regions in the fitness landscape might be explored. This, in turn, might improve its evolutionary search process—and lead to less I2S.
Discussion: Symbolic Regression Benchmarks. Compared to Boolean benchmarks, a tournament selection does not completely impair its performance. Still, a CGP configuration with crossover leads to the best results in all cases again.
Additionally, for the first three out of four benchmarks, E-Reorder with crossover probably leads to the best results in terms of mean I2S and mean fitness value. The greatest difference in I2S can be seen with Nguyen-7. The lowest I2S is achieved with 2-point crossover, E-Reorder and tournament selection. This configuration achieves a mean I2S of 2,078 with a mean test fitness value of 0.011—compared to its counterpart: 2-point crossover, Standard and tournament selection, which needs 19,000 iterations and achieves a mean fitness of 0.010.
According to the test fitness value and I2S, Pagie-1 is the hardest symbolic regression benchmark for CGP. When only its mean test fitness is considered, Standard with or without recombination always outperforms E-Reorder. Furthermore, 1-point crossover with Standard and tournament selection has the highest [image: $$p_{best}$$]. This notion contradicts our hypothesis. However, when the success rate combined with its mean I2S is considered, a 2-point crossover E-Reorder variant comes on top with a success rate of 0.16.
All in all, E-Reorder with crossover should lead to better results for symbolic regression benchmarks. However, to answer Q1 in the context of symbolic regression benchmarks, the positional bias does probably not affect CGP with crossover.

6.2 Convergence Behaviour
[image: ]
Fig. 3.Convergence plots for each regression benchmark. For better visualization, the x- and y-axis have a logarithmic scale and we cut them off after they reach a mean fitness of less than 0.01. The shaded area indicates their respective standard deviation.



To better understand the effects of crossover on CGP, we depict convergence plots for symbolic regression. We also try to classify their convergence behaviour according to Stegherr et al. [27]. Please note that we do not include convergence plots for Boolean benchmarks. Because of their deceptive fitness landscape [30], they all show the exact same convergence behaviour by design: Fast to Slow. Hence, no additional value can be gained by including them.
Considering the plots for symbolic regression benchmarks, including the behaviour of all 22 configurations will make it impossible to analyse. This is why we will only include the behaviour of four CGP configurations: No Crossover, Standard, [image: $$(1+4)$$]-ES; No Crossover, E-Reorder, [image: $$(1+4)$$]-ES; The best Standard and E-Reorder configuration with crossover. For these plots, we averaged the convergence of 50 runs. Furthermore, to easier see the differences, the x- and y-axis have a logarithmic scale. In addition, we included their respective standard deviation (shaded area).
As can be seen in Fig. 3, they all depict a similar convergence behaviour—which can be classified into Fast to Slow. Within the first few iterations, a relatively low fitness value is achieved. Afterwards, the rate of improvement decreases for all CGP variants, and a lot of training iterations are needed for small improvements. Nevertheless, when only convergence plots are examined, all algorithms behave very similar. Thus, it can be concluded that the behaviour of CGP does not change when a crossover method is included.

6.3 General Discussion
An unusual observation in our work is the general lack of performance issues for Standard with crossover. Contrary to some previous works, we could not replicate the negative impact of recombination on CGP. We believe that this might be due to several reasons.
One of the earliest works on CGP with crossover was done by Miller [21]. His work differs greatly from ours, as he used a [image: $$c \times r$$] grid, with [image: $$c &gt; 1$$] and [image: $$r &gt; 1$$]. Compared to our work, we used [image: $$r=1$$] which is also the recommended number of rows nowadays [20]. Furthermore, he only considered tournament selection, which, in our setting, lead to the worst results in most cases for Boolean benchmarks independent of using crossover or not.
Clegg et al. [4] also argued against the use of standard crossover techniques. They analysed CGP’s convergence behaviour, tested on a single symbolic regression problem. Four crossover operators were compared against a standard CGP implementation, and they found that these recombination operators increased the I2S. However, according to their description, they did not optimize CGP’s hyperparameters or tested different selection operators. Additionally, their statement that crossover negatively impairs CGP is only based on one fairly simple problem, which can also be criticised.
To the best of our knowledge, Husa and Kalkreuth [10] were the first to present a comparative study on crossover for CGP. In their setting, they found that CGP with crossover can outperform the [image: $$(1+\lambda )$$]-ES without crossover for an arbitrary configuration. When the hyperparameters for each configuration are optimized, though, the [image: $$(1+\lambda )$$]-ES without crossover always outperforms CGP with crossover. Nonetheless, they only tested Boolean benchmarks and combined recombination operators with tournament selection. In our work, this selection operator impaired CGP’s performance on Boolean benchmarks which is why we have to treat their conclusion with reservation.
Considering our results, we believe that the use of a recombination operator does not always impair CGP’s performance. On the contrary, with the right configuration and parametrization, CGP might even profit from it. As we presented in Sect. 6.1, Standard with crossover is almost always able to achieve better results compared to their baseline. Even when their convergence behaviour is visually analysed in Sect. 6.2, we do not see a negative effect caused by crossover.
To finally give a definite answer to our research questions:	Q1  & A1: Has positional bias an effect on CGP with a crossover operator employed? No, positional bias does not affect CGP with a recombination algorithm in our setting.

	Q2  & A2: Is there a difference in behaviour when different CGP variants with and without crossover are analysed? No, there is no difference in convergence behaviour in our setting.







7 Conclusion
In this work, we investigated the effect of the positional bias on CGP with a crossover operator employed. On that account, we compared two different CGP versions, one with and one without positional bias. A standard CGP variant (Standard) was used, which suffers from the negative effects of positional bias. To fully mitigate this problem, we employed a CGP variant with the Equidistant-Reorder operator (E-Reorder). These variants were then evaluated with two different selection strategies, four different recombination algorithms, or with no crossover operator employed—leading to a comparison of 22 unique algorithmic configurations of CGP. To gauge the effects of positional bias on crossover, four Boolean and four symbolic regression benchmarks were used. We optimized the hyperparameters for each combination of benchmark and CGP version, ranked and discussed the optimized configurations.
In our testing, we found that positional bias has no effect on CGP with crossover. On the contrary, by adding a recombination algorithm, the performance of Standard could be improved in all cases. While previous works suggested that recombination does not or negatively impact CGP, we believe that this decision was made too early. Using a tournament selection, for example, lead to the worst results on Boolean benchmarks independent of using crossover or not. However, most authors used CGP with tournament selection and crossover on Boolean benchmarks without considering other selection operators in the past. This might lead to an overall worse performance—and to draw a conclusion that CGP does not profit from crossover.
As for future works, other selection and crossover operators should be paired with CGP. Furthermore, more benchmark categories should be tested before giving a final answer to the question: Does crossover impact CGP negatively? In addition, positional bias does probably not influence CGP with crossover negatively, according to our results. However, more configurations can be tested. We used an Equidistant-Reorder method, which fully eliminates positional bias. Nevertheless, more extensions should be tested, like the standard Reorder method [8]. It would also be possible to use the extension called DAG [8], which allows arbitrary node connections as long as no cycles form. This graph can be reordered into a feed-forward graph without changing the sequence of any operations. In this way, the positional bias is mitigated and crossover operators can be applied and tested, too.
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Footnotes
1The source code can be found at: https://​github.​com/​CuiHen/​CGP_​with_​Crossover_​Strategies.

 

2We utilized the Python library cmpbayes [24] for all statistical models.

 

3For the hyperparameter search, we utilized the Python library Optuna [1].
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Abstract
When developing empirical equations, domain experts require these to be accurate and adhere to physical laws. Often, constants with unknown units need to be discovered alongside the equations. Traditional unit-aware genetic programming (GP) approaches cannot be used when unknown constants with undetermined units are included. This paper presents a method for dimensional analysis that propagates unknown units as “jokers” and returns the magnitude of unit violations. We propose three methods, namely evolutive culling, a repair mechanism, and a multi-objective approach, to integrate the dimensional analysis in the GP algorithm. Experiments on datasets with ground truth demonstrate comparable performance of evolutive culling and the multi-objective approach to a baseline without dimensional analysis. Extensive analysis of the results on datasets without ground truth reveals that the unit-aware algorithms make only low sacrifices in accuracy, while producing unit-adherent solutions.
Keywords
Genetic ProgrammingUnit-awarenessPhysics Constraints
1 Introduction
Lately, the need to analyze and understand the behavior of machine learning (ML) models has increased to gain a more profound understanding of the underlying system, and to avoid unexpected behaviors. To this end, combining ML techniques with physics principles is a promising approach. For data-driven methods such as deep learning, various methods have been proposed to enforce desired behaviors in the models [11]. However, it is impossible to test the entire possible input space of variables to such a system, so that some level of uncertainty in the behavior will always remain.
Symbolic regression (SR) algorithms, on the other hand, produce free-form equations from data. These allow domain experts to analyze the behavior of the underlying systems. For many engineering and physics applications, such equations are only trustworthy and useful if they reflect certain physical properties. Genetic programming (GP) from the family of evolutionary algorithms (EA) is an established method for SR. Unit-aware GP is an approach to encourage the compliance with physical laws. The goal is to produce equations that account for input variable units, adhere to physical laws during computation, and yield the same physical unit in the output as the target variable. Our previous work shows that the optimization process can benefit from unit information of input and target variables [21, 25]. These papers address benchmark equations without any constants. Other publications treat constants as variables with a constant value and known units. In both scenarios, the known units can guide the algorithm towards the correct solution.
In practice, the identification of new empirical equations is more complex: the amount, value, and position within the equation as well as the units of the constants are unknown. Every constant can take on arbitrary units, which makes previous unit-aware GP approaches impossible to use. However, both, unknown constants and symbolic models that adhere to physical unit constraints, are an important requirement of domain experts from various scientific fields.
In this paper, we apply a method for dimensional analysis that includes constants with undetermined units similar to SymbolicRegression.jl. The unit of a constant is treated as a “joker”, which can take on any unit. We propose different techniques to handle unit violations, from the area of constraint handling and multi-objective optimization. We study the effect of these techniques using datasets of equations that have been discovered empirically in the past. We also apply different noise levels to the benchmark datasets to examine how sensitive our approaches are to noisy data. We know from related studies that the importance of prior knowledge increases as the noise in the data increases [9, 12]. This paper intends to study whether this effect is also observable when constants with unknown units are used. We furthermore test the proposed methods on datasets without ground truth from fluid mechanics and thermodynamics. Our experiments indicate that unit-adherent equations can be as accurate as others. Our research contributes to investigations on integrating domain knowledge into GP algorithms to generate useful solutions for domain experts.

2 Background and Related Work
Increasing attention is given to integrating prior knowledge into data-driven modeling, with recent papers specifically addressing this aspect. SR methods generally have a large search space of possible equations, especially as the complexity of the searched functions increases. This often leads to problems such as convergence to local optima, overfitting, or loss of interpretability. The main motivation to exploit prior knowledge is to reduce the search space and guide the search towards useful models.
2.1 Integration of Physics and Prior Knowledge in SR Algorithms
A prominent technique for the identification of symbolic models for dynamical systems using prior knowledge is sparse identification of nonlinear dynamics (SINDY) [2]. It uses sparse regression on a function basis of selected functional terms which appear frequently in governing equations of dynamical systems. Various publications demonstrate the success of the method, even for long-standing problems in science [2, 6, 10]. The applicability is, however, limited to identifying models that exclusively consist of the functional terms provided.
AI Feynman is another physics-inspired method for symbolic regression [23]. The goal is to identify functions of practical interest, which often share certain characteristics such as symmetries, separability, as well as consistency in terms of physical units. A dimensional analysis component takes the units of the variables into account and matches combinations of these variables with a given target unit. This approach requires all units to be known in advance. This is not the case when searching for new empirical equations with unknown constants. However, the dimensional analysis component can be considered a counter-movement to contemporary machine learning methods, which often standardizes features into dimensionless quantities. AI Feynman shows that, indeed, unit information can be valuable to the algorithm.
In [13], the applicability of existing SR methods for physical systems is discussed. The SciMED framework is proposed, a scientist-in-the-loop approach, to include prior knowledge in the search for useful equations. Their method outperforms AI Feynman as well as GP-GOMEA [24] in some cases. Generally, GP-based SR approaches provide the opportunity to include prior knowledge on various levels. Popular frameworks such as PySR allow for user-defined functions, additional objectives or certain building rules [4]. The inclusion of shape constraints in GP algorithms as additional objectives was extensively studied in [8, 9]. Overall, the benefit of knowledge about target functional shapes increases with the noise level in the training data.

2.2 Unit-Aware Genetic Programming
The consideration of physical units in the search for symbolic models was studied early in the GP area. Keijzer and Babovic suggested different methods to handle unit violations in GP [12]. A multi-objective approach minimizing the dimension error yields the best results, and unit information gains importance as the noise level of the data increases. The algorithms with dimensional analysis only found the ground truth solutions regularly when the used constants and units were given as input features. This approach sets the foundations of our work. However, contrary to [12], our approach does not assume that new constants are dimensionless, which makes a big difference in the dimensional analysis.
Some methods from the literature prevent the generation of invalid individuals by defining a building grammar, which was used for unit-aware feature construction for experimental physics [3] or construction of multigrid solvers [22]. Others allow the building of solutions with unit violations, and define methods to handle them. For dimensional analysis with undetermined units of constants, we see the latter as more feasible. Overall, we can identify three predominant ways to deal with unit-related constraint violations in GP: first, a multi-objective variant that minimizes the number of unit violations as an additional objective [16, 25]. Second, a correction mechanism that manipulates the model to match the input and target unit, for example by multiplication with a constant [12]. And third, the addition of a penalty term for unit violations to the primary objective [4]. The most drastic case is the “death penalty”, which assigns a large penalty value to guarantee that an individual will not survive to the next generation [1, 18]. The brood selection strategy by [12] has similarities with the death penalty approach: multiple offspring are generated from one individual, and the one with the smallest unit violation will be added to the population. It is applied already at the reproduction and not at the selection stage of an algorithm.
The PySR backend SymbolicRegression.jl recently released a functionality to consider unknown constants in the dimensional analysis [4]. The equation is evaluated, and the units are propagated through the equation accordingly. Constants act as so-called “wildcards” and can take on arbitrary units. In case of unit violations, a penalty term is added to the primary objective. This penalty does not account for the number of unit violations, i.e., solutions with few violations are treated equally to solutions with many violations. Depending on the penalty value, this can have the effect of a death penalty.
In this paper, we assess different methods to handle unit violations using a dimensional analysis function that accounts for unknown constants. We use the unit propagation scheme from SymbolicRegression.jl as a starting point for our implementations. Our approach considers the number of unit violations in the dimensional analysis, rather than returning a boolean value that indicates whether a violation occurs. Furthermore, we propose and compare different ways to account for unit violations in the evolutionary process. Combining parameter estimation with the death penalty for constraint handling has the negative effect that a solution, that does not survive to the next generation because of the death penalty, still uses computational resources for the expensive parameter estimation. Our proposed constraint handling approaches exploit the cheaper dimensional analysis to handle unit violations before fitting. We furthermore assess a multi-objective approach, considering the magnitude of unit violations.


3 Unit-Aware Genetic Programming with Unknown Constants
Genetic Programming for SR is a well-established population-based approach to develop symbolic models from data [14]. Equations are usually represented as trees, which are formed using elements from the feature and function sets. Starting from an initial random population of trees, crossover and mutation operations are applied iteratively to create new individuals. For SR tasks, the equations are typically evaluated using the prediction error on the target variable as the primary fitness measure. A complexity measure is included as a second optimization criterion to avoid bloat and present a set of Pareto-optimal (PO) solutions in terms of error and complexity to the decision maker.
3.1 Dimensional Analysis with Unknown Constants
In GP, different types of constants are used in practice. When only known constants are used, they can be included in the training data and treated like regular features (e.g., the Feynman datasets [23]). When unknown constants are used, contemporary GP-based SR methods use parameter estimation on top of the evolutionary process. The number and position of constants within an equation is determined during the generation of a tree. The values of the constants are then fitted to the target variable using a parameter estimation algorithm. This fitting process is a computationally expensive task.Table 1.Set of common functions used in GP with their expected input units and the resulting output unit. A joker unit is represented as [[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]].


	Function
	Units of operands
	Unit after execution of function

	[image: $$+$$], −
	[a, b, c], [a, b, c]
	[a, b, c]

	[a, b, c], [[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[a, b, c]

	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]], [[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]

	[image: $$\cdot $$]
	[a, b, c], [d, e, f]
	[[image: $$a+d, b+e, c+f$$]]

	[a, b, c], [[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]

	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]], [[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]

	[image: $$\div $$]
	[a, b, c], [d, e, f]
	[[image: $$a-d, b-e, c-f$$]]

	[a, b, c], [[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]

	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]], [[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]

	[image: $$e^{\circ }$$], [image: $$\log ({\circ })$$]
	[0, 0, 0]
	[0, 0, 0]

	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[0, 0, 0]

	[image: $$\sin (\circ )$$], [image: $$\cos (\circ )$$], [image: $$\tan (\circ )$$]
	[0, 0, 0]
	[0, 0, 0]

	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[0, 0, 0]

	[image: $$\sqrt{\circ }$$]
	[a, b, c]
	[[image: $$\frac{a}{2}, \frac{b}{2}, \frac{c}{2}$$]]

	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]

	[image: $$\circ ^k$$] (k [image: $$\in $$] [image: $$\textbf{N}$$])
	[a, b, c]
	[a [image: $$\cdot $$] k, b [image: $$\cdot $$] k, c [image: $$\cdot $$] k]

	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]

	[image: $$\circ ^{\circ }$$] (binary power operator)
	[0, 0, 0], [0, 0, 0]
	[0, 0, 0]

	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]], [0, 0, 0]
	[0, 0, 0]

	[[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]], [[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]]
	[0, 0, 0]





We express the units of a variable as a vector of exponents of SI units with the order [m, kg, s, A, K, mol, cd]. A quantity in Newton [N] = [[image: $$\frac{\textrm{kg} \cdot \textrm{m}}{\textrm{s}^2}$$]] can thus be expressed as [image: $$[1, 1, -2, 0, 0, 0, 0]$$]. In this paper, constants have generally unknown units, which makes traditional approaches to detect unit violations infeasible. To overcome this issue, we apply the unit propagation scheme, similarly as implemented in SymbolicRegression.jl, and introduce a joker unit [[image: $$\diamondsuit , \diamondsuit , \diamondsuit $$]], representing unknown units. Dimensionless inputs are expressed as [0, 0, 0]. Table 1 displays how our proposed algorithm handles operands with known and unknown units for a set of functions that are commonly used in SR algorithms. This set of functions is non-exhaustive and can be extended to custom functions as well. For the sake of readability, we display only three elements of the unit vector. The rules, however, apply to all seven elements.
The use of joker units leads to some special cases which need to be addressed: addition and subtraction require equal units of both operands. If one operand is a joker, the unit of the other operand is returned. If both operands are jokers, a joker is returned. For multiplication and division, one or two joker operands produce a joker output. Functions requiring dimensionless inputs assume that a joker operand is dimensionless, and return a dimensionless quantity accordingly. Operations with fixed exponents ([image: $$\sqrt{\circ }$$] and power operations [image: $$\circ ^2, \circ ^3, \dots $$]) produce a joker output if the function input is a joker. The binary power operator requires both operands to be dimensionless and returns a dimensionless quantity. If one or two operands have joker units, they are assumed to be dimensionless to return a dimensionless quantity.[image: ]


We apply the recursive Algorithm 1 for dimensional analysis, which traverses the tree in the most straightforward way, like the evaluation itself, starting at the root node. It becomes apparent that the joker unit is only introduced into the tree by constants. As Table 1 indicates, these jokers are propagated through the tree by most of the functions. Unit violations occur when operands with non-matching or non-joker units are added or subtracted, as well as for functions which require dimensionless inputs. When a violation occurs, the violation counter is increased by one (see lines 15, 28, 33), and the true output unit of the operation returned. For addition and subtraction, one of the operand units is chosen randomly. For example, the term [image: $$\log ([1,2,0])$$] violates the rules defined in Table 1. In this case, the true output unit [0, 0, 0] of the operation is returned.
When the traversal is complete, the algorithm returns the output unit d of the equation as well as the number of unit violations v. The Manhattan distance between d and the target unit [image: $$d'$$] is added to v to also account for mismatches with the target unit. A joker output is assumed to be equal to the target unit.

3.2 Techniques to Handle Unit Violations in Symbolic Models
Derived from the literature review in Sect. 2.2, we introduce three techniques to deal with unit violations in GP trees.
Evolutive Culling. The dimensional analysis is computationally cheaper compared to the fitting of constants followed by the numerical evaluation. Evolutive culling makes use of this fact by performing the dimensional analysis directly after an offspring is created. Individuals with unit violations, will be excluded from the population. Compared to the death penalty approach, this method saves time by avoiding fitting and evaluating an invalid model that will not survive the next generation because of the high penalty given to the primary objective. Thus, the space of valid individuals can be explored more thoroughly. As a potential disadvantage, individuals with high accuracy but small unit violations cannot evolve into individuals without unit violations. This might lead to overall worse performance regarding the primary objective.
Repair Mechanism. For many fundamental laws of physics, constants alongside their units had to be discovered empirically to fit experimental observations. These multiplicative constants often have unconventional units, which balance output units of an equation to match the target unit. Vice versa, one can see a unit violation as a hint where such a balancing constant should be inserted.
We propose the following repair mechanism: whenever a unit violation occurs, a multiplicative constant is inserted into the tree at that position to match the expected unit of the function. Algorithm 1 is modified so that a multiplicative constant is inserted whenever a unit violation is detected, rather than increasing the violation counter. For example, an addition of [m] and [s] can be balanced by multiplying one of the operands with a constant. This turns the term into a joker so that the function returns the unit of the other operand according to Table 1. The operand to be repaired is chosen randomly, so it can make a big difference how many constants are inserted depending on which operand is chosen. When functions expecting dimensionless input receive an incorrect unit, the input term is multiplied by a constant to make it dimensionless.
Since the repair function is applied immediately after the offspring generation, only valid individuals are considered. The repaired trees will then go into the fitting and evaluation process. As a potential downside, the repair mechanism can lead to the insertion of many or unnecessary constants, which might negatively affect the primary objective and slows down the fitting process.
Multi-objective Approach. The two methods discussed previously focus on exploring the space of valid, physics-adherent equations. The multi-objective approach presented here allows for unit-violating individuals within the population, and it considers the number of unit violation as an additional objective.
Multi-objective optimization makes use of the concept of Pareto-dominance. Modern GP algorithms minimize multiple objectives at the same time, usually an error and a complexity objective. Depending on the application, it can be beneficial to include a correlation measure as a supporting objective. This helps individuals with poor accuracy but high correlation with the target variable to advance to the next generation, where they can continue evolving to better individuals. Formulating constraints as additional optimization objectives is a common approach in GP [8, 12, 25]. We employ the NSGA-II algorithm to optimize multiple objectives simultaneously [7]. The PO front contains multiple equations of the same level of complexity—with and without unit violations. Equations without unit violations are preferred over equations with unit violations if they have the same accuracy and complexity. However, there is no guarantee that a model without unit violations will be found for each level of complexity.
All algorithms are implemented in TiSR, a GP-based framework for thermo-dynamics-informed symbolic regression [17] written in Julia. Its applicability is not limited to thermodynamics, but any kind of problems from the physics and engineering domain. TiSR allows for fast algorithmic prototyping through simple code structures, while including all state-of-the-art components of a GP-based SR framework.


4 Datasets and Experiment Configurations
4.1 Datasets
The proposed algorithms are evaluated on known empirical equations from the empiricalBench benchmark presented in [4]. This benchmark does not include constants in the datasets so that the algorithms have to recover them alongside the form of the target equation. Table 2 gives an overview of selected datasets for which dimensional analysis can be performed. In addition, we use datasets from physics applications without ground truth. The fluid mechanics dataset from the application of particle-laden flows was introduced by the authors in [20]. A force F on a particle is computed from the positions of its neighboring particles in spherical coordinates [image: $$r, \theta , \varphi $$]. The thermodynamics dataset uses temperature T and density [image: $$\rho $$] of a gas mix to predict the pressure P [19].Table 2.Benchmark equations employed for our experiments with their input and target features and the respective units.


	Name
	Equation
	Input Features & Units
	Target Unit

	Hubble’s Law
	[image: $$v = H_0 D$$]
	Distance D [m]
	Velocity v [[image: $$\textrm{m}\,\textrm{s}^{-1}$$]]

	Kepler’s Third Law
	[image: $$P = (\circ ) \sqrt{a^3}$$]
	Distance a [m]
	Period P [d]

	Newton’s Gravitation
	[image: $$F = G \frac{m_1 m_2}{r^2}$$]
	Mass [image: $$m_1, m_2$$] [kg],
Distance r [m]
	Force F [N]

	Ideal Gas Law
	[image: $$P = \frac{nRT}{V}$$]
	Number density n [mol],
Temperature T [K],
Volume V [[image: $$\textrm{m}^3$$]]
	Pressure P [Pa]

	Rydberg Formula
	[image: $$\lambda = \frac{1}{R_H(\frac{1}{n_1^2} - \frac{1}{n_2^2})}$$]
	Principal Quantum Number [image: $$n_1, n_2$$] [[image: $$\cdot $$]]
	Wavelength [image: $$\lambda $$] [m]

	Fluid Mechanics
	unknown
	Distance r [m],
Angle [image: $$\theta , \varphi $$] [[image: $$\cdot $$]]
	Force F [N]

	Thermodynamics
	unknown
	Temperature T [K],
Density [image: $$\rho $$] [[image: $$\textrm{kg}\,\textrm{m}^{-3}$$]]
	Pressure P [Pa]





We also study the sensitivity of the proposed algorithms to noise. When recovering the exact equation on noisy data, the choice of the noise level is an important parameter. It has to be guaranteed that the noisy data is still described best by the target equation, and not a different one of the same complexity. We assume that beyond [image: $$10\%$$] noise, it is difficult to recover the exact equation. The noise levels of [image: $$5\%$$] and [image: $$10\%$$] were inspired by [5, 15]. For the Rydberg equation, noise levels beyond [image: $$3\%$$] were too noisy for the exact equation to be recovered, as experiments with [image: $$10\%$$] noise indicated [4]. We thus applied [image: $$1\%$$] and [image: $$3\%$$] noise.

4.2 Experiment Configurations
Table 3 gives an overview of the algorithm settings and use-case dependent function sets. The input features and units from Table 2 are the training data of the algorithms, so that necessary constants need to be identified by the algorithms. For other parameters, the standard settings of TiSR are used [17]. We set time limits of thirty minutes for experiments on empiricalBench datasets and sixty minutes for experiments without ground truth. This approach is favored over fixed generation counts due to algorithmic modifications that affect the generation runtime. However, we aim to evolve unit-adherent equations without compromising runtime efficiency. We compare the proposed algorithm to a baseline algorithm without dimensional analysis. All algorithms optimize multiple objectives at the same time: the mean squared error (MSE), the function complexity and the Spearman correlation as a supporting objective as defined in [25]. In addition, we assess an algorithm that minimizes the number of unit violations as a fourth objective. Each algorithm is repeated 31 times.Table 3.Algorithm Configurations for Experiments


	Population size
	500

	Max. complexity of equations
	30

	Complexity of variables and functions
	1

	Complexity of constants
	2

	Function set empiricalBench
	[image: $$+, -, \cdot , \div , e^{\circ }, \log (\circ ), \sqrt{\circ }, \circ ^2, \circ ^3$$]

	Function set Fluid Mechanics
	[image: $$+, -, \cdot , \div , e^{\circ }, \log (\circ ), \sin (\circ ), \cos (\circ ), \circ ^{\circ }$$]

	Function set Thermodynamics
	[image: $$+, -, \cdot , \div , e^{\circ }, \log (\circ ), \circ ^{\circ }$$]






4.3 Evaluation Procedure
The assessment whether an algorithm identified a specific target equation correctly comes with two major issues: first, the selection of a solution from the PO front. Finding the best trade-off between accuracy and complexity automatically is a complex task. And second, the equivalence check of two equations using libraries like Python sympy or Julia SymbolicUtils. As related studies report [15], small differences in the simplification as well as the value of fitted constants might lead to misclassification. To overcome these issues and base our analysis on trustworthy results, we eye-check each PO front for the target equation, which makes a total of more than 1800 checked PO fronts. Some parts of the analysis can be accelerated by automatically scanning a PO front for solutions which have already been classified as correct by a human. An equation counts as solved when the shape of the equation is correct, the exact values of the fitted constants are irrelevant. We define two stages of success: finding the exact solution and finding a solution close to the exact one, which is measured by eyeball. For the datasets without ground truth, we analyze the PO fronts.


5 Results and Analysis
5.1 Empirical Datasets with Known Solutions
Table 4 gives an overview of the performance of the proposed algorithms on known benchmark datasets of equations. It becomes apparent that all algorithms recover the correct equations for all datasets and all noise levels with a high success rate. Only the proposed repair mechanism has lower rates of identifying the exact equation as the noise level increases. It still finds solutions close to the target equation in the final PO front, which often contain additional constants. Overall, we conclude from these results that evolutive culling as well as the multi-objective approach perform at least as good as the baseline method. However, it should be noted that there is almost no space for improvement, as the baseline algorithm finds the correct solution in almost all cases.Table 4.Number of correct/almost correct/wrong rediscoveries of target equations for different datasets and noise levels out of 31 runs.


	Dataset
	Noise Level
	Baseline
	Evolutive Culling
	Repair Mechanism
	Multi-objective

	Hubble
	[image: $$0\%$$]
	31/0/0
	31/0/0
	30/1/0
	31/0/0

	[image: $$5\%$$]
	31/0/0
	31/0/0
	28/3/0
	31/0/0

	[image: $$10\%$$]
	31/0/0
	31/0/0
	26/5/0
	31/0/0

	Kepler
	[image: $$0\%$$]
	31/0/0
	31/0/0
	31/0/0
	31/0/0

	[image: $$5\%$$]
	31/0/0
	31/0/0
	25/6/0
	31/0/0

	[image: $$10\%$$]
	31/0/0
	30/1/0
	26/5/0
	31/0/0

	Newton
	[image: $$0\%$$]
	31/0/0
	31/0/0
	31/0/0
	31/0/0

	[image: $$5\%$$]
	31/0/0
	31/0/0
	31/0/0
	31/0/0

	[image: $$10\%$$]
	31/0/0
	31/0/0
	31/0/0
	31/0/0

	Ideal Gas
	[image: $$0\%$$]
	31/0/0
	31/0/0
	31/0/0
	31/0/0

	[image: $$5\%$$]
	30/1/0
	31/0/0
	16/17/0
	31/0/0

	[image: $$10\%$$]
	31/0/0
	31/0/0
	8/23/0
	31/0/0

	Rydberg
	[image: $$0\%$$]
	31/0/0
	31/0/0
	31/0/0
	29/0/2

	[image: $$1\%$$]
	31/0/0
	31/0/0
	31/0/0
	31/0/0

	[image: $$3\%$$]
	27/3/1
	29/1/1
	24/4/3
	29/1/1






5.2 Empirical Datasets with Unknown Solutions
For the thermodynamics (TD) and fluid mechanics (FM) datasets, no ground truth solution is known. To compare the algorithms, we analyze the resulting PO fronts for interesting characteristics: the numbers of solutions, the percentage of solutions with unit violations, and the mean number of constants in the equation. Furthermore, we look at the number of generations performed within the time limit. For pairwise statistical comparison to the baseline method, the non-parametric Mann-Whitney U test at a confidence level [image: $$\alpha = 0.95$$] is performed.[image: ]
Fig. 1.Measurements on the Pareto-optimal front for datasets with unknown solutions from thermodynamics and fluid mechanics over 31 independent runs.



Figure 1 indicates that the PO fronts of the multi-objective approach contain more solutions compared to the other approaches, which is supported by statistical tests. This can be explained with the additional unit violation objective, which allows the algorithm to include solutions with multiple levels of unit violations per complexity value.
The upper right subplot of Fig. 1 shows the percentage of solutions with unit violations within the PO front. When using the multi-objective algorithm, if a complexity level has multiple solutions with varying numbers of unit violations, the lowest one is selected. If this is zero, no unit violations are considered for that complexity level. First, we observe that it can indeed be problematic to exclude dimensional analysis from the algorithm when the requirement for unit-adherent equations exists. This is reflected by median values of more than 80% of solutions with unit violations on the TD dataset and more than 40% on the FM datasets when the baseline algorithm without dimensional analysis is applied. The multi-objective approach not only finds more solutions, but also more solutions without unit violations. The difference is particularly drastic for the TD dataset, but can also be observed for the FM datasets. Evolutive culling and the repair mechanism ensure unit-compliance of the equations, resulting in a final front with 0% of solutions with dimensional error. On this criterion, all proposed methods outperform the baseline algorithm with statistical significance.[image: ]
Fig. 2.Solutions of 31 combined PO fronts per algorithm on the TD dataset. The magnitude of unit violations is color-coded from white (0 violations) to black (22 violations), with 22 being the maximum number of unit violations on the TD dataset. (Color figure online)



The number of constants within an equation is an important quality criterion for domain experts, who prefer models with fewer constants. On the TD dataset, evolutive culling and repair mechanism contain equations with significantly more constants in the PO front than the baseline algorithm. This cannot be confirmed statistically for the FM datasets, but a similar tendency can be observed in the bottom left subplot of Fig. 1. Evolutive culling does not insert new constants into the tree like the repair mechanism does, but still shows higher usage of constants. This can be explained by the joker unit, which is introduced only by constants and propagated through the tree by most functions, encouraging the use of constants in equations. The multi-objective approach does not show significant differences to the baseline in the numbers of constants.
By looking at the number of generations completed within the time limit, we aim to assess the runtime differences between the algorithms. The number of generations is normalized by the minimum number of generations a single run achieved within each dataset to account for different dataset sizes. It can be seen that evolutive culling tends to run more generations and the repair mechanism runs fewer generations compared to the baseline algorithm. These observations are supported by the results of the statistical test. The runtime loss of the repair mechanism can be explained with the higher number of constants that need to be fitted, which increases the duration of one generation. Evolutive culling excludes solutions with unit violations from the population, which leads to smaller population sizes in the current implementation of the algorithm. This explains the higher number of generations performed by the algorithm. The multi-objective approach performs significantly more generations on the TD dataset, which is not continued for the FM datasets. A more profound understanding of this behavior requires a closer look at the population dynamics during the evolution.
Figure 2 displays the 31 combined PO fronts for each algorithm on the TD dataset. We seek to examine the effects of the algorithms with dimensional analysis on the primary error objective MSE. Unsurprisingly, the baseline algorithm contains more solutions with unit violations in the PO front. Looking at the multi-objective approach, one can see that the unit-adherent solutions with complexities between five and eight have considerably higher MSE values than the ones with unit violations. This effect almost vanishes for higher complexities from nine to 15. For complexities above 16, all algorithms identify solutions with MSE values close to 0. The algorithms with dimensional analysis thereby have fewer unit violations than the baseline. Due to space reasons, we only analyze the TD dataset here. Similar observations are made for the FM datasets.


6 Conclusions and Future Work
We applied a method for unit-aware GP that includes constants with undetermined units. Constants introduce “joker” units, which are propagated through the tree according to a propagation scheme. The dimensional analysis returns the magnitude of unit violations of an equation. Two approaches were presented to avoid unit-violating individuals during evolution: evolutive culling and a repair mechanism. The additionally proposed multi-objective approach minimizes the magnitude of unit violations as an additional objective. Experiments conducted on datasets of known equations have shown that both evolutive culling and the multi-objective approach perform as well as a baseline method without dimensional analysis. The repair mechanism often introduces more constants than necessary, which is an undesired behavior. No advantages of unit-aware approaches were observed compared to the baseline method when the noise level in the datasets increased. This indicates that more complex benchmark equations should be employed in the future. In-depth analysis of the PO fronts for benchmark datasets without ground truth revealed that a large share of solutions in the PO front of the baseline algorithm have unit violations. All proposed unit-aware algorithms were able to identify solutions with similarly low error but without unit violations. However, evolutive culling and the repair mechanism showed higher usage of constants compared to the baseline algorithm.
When the requirement for unit-adhering equations exists, it is definitely beneficial to include unit information in the GP algorithm. The proposed algorithms have shown low sacrifices in accuracy on the used datasets. From a practical perspective, we prefer the multi-objective approach as it offers decision makers multiple levels of unit violations per complexity. However, to better understand the strengths and weaknesses of each algorithm, further investigation on the population dynamics using more complex benchmark equations is necessary. One could also think of combining the methods, such as repairing solutions with small dimension error, culling solutions with large dimension error, and using the multi-objective unit-aware approach as an overall optimization algorithm.
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Abstract
Container relocation problems represent a significant challenge in maritime ports and terminals. To address this challenge, there is a growing demand for innovative and efficient solution methods. While exact and metaheuristic methods often yield superior results, they require a substantial time to reach good solutions. On the other hand, relocation rules (RRs) represent simple yet efficient constructive heuristics. Nevertheless, RRs suffer from two main issues, they are difficult to design for different problem variants and their performance is quite limited. To tackle the first issue, genetic programming is commonly used to automatically generate RRs. However, regarding the second issue, there is no single approach by which their performance can be improved. In this study, we investigate the application of the rollout algorithm in combination with manually and automatically generated RRs to improve their performance. The idea of using the rollout algorithm is to balance between an exhaustive and heuristic search, where RRs are used to determine the most appropriate decision in each step of the rollout algorithm. The results demonstrate that with the use of the rollout algorithm it is possible to significantly improve the performance of RRs, albeit with increased execution time. Nevertheless, even in this case, the method can still solve all the considered problems within seconds, underscoring its effectiveness.
Keywords
Container relocation problemRelocation rulesGenetic programmingRollout heuristic
1 Introduction
In the past two decades, maritime transport has become increasingly prevalent, making it a significant factor in global trade [1]. Estimations suggest that 90% of goods are now transported via sea routes [2, 3]. In container yards, containers with cargo awaiting loading are usually stacked atop one another due to limited port storage space. When loading onto ships, containers must be retrieved in a specific order. This order often does not correspond to the accessibility sequence, necessitating additional container relocations during loading. It is important to note that container retrieval sequences are rarely known in advance [1], making it mostly impossible to pre-arrange containers beforehand. To ensure that ships can depart promptly, it is essential for retrieval to be completed in as short a time as possible. The problem of container retrieval in a predetermined sequence is known in the literature as the Container Relocation Problem (CRP) or Block Relocation Problem (BRP).
In CRP, it is assumed that containers are organised into stacks (defining the yard’s width), tiers (defining the height), and bays (defining the length). The primary objective is to optimise container retrieval based on predefined criteria. Common criteria include minimising the total number of additional relocations needed to retrieve the containers in a specific order, the time required to retrieve all containers, and energy consumption during container retrieval. CRP is an NP-hard combinatorial optimisation problem [4], prompting the use of heuristic methods to solve it. These methods range from straightforward relocation rules (RRs) [4, 5] to complex metaheuristics [5–7]. While metaheuristics generally outperform simple RRs, they are not applicable in dynamic environments and generally require more time to obtain a good solution. Although RRs are applicable in both static and dynamic environments, they can obtain solutions in a short amount of time and can be efficiently designed using genetic programming (GP) [8–10], the question of whether they can be further adapted to achieve even better results in situations where all system information is available upfront, such as in solving CRP in a static environment, still remains.
In this paper, we propose the application of a rollout algorithm [11] to improve the performance of automatically designed rules. This approach consists of combining an enumeration mechanism and heuristic search. The main idea is to use exact search in a small part of the solving process and use information obtained using heuristics for the remaining part. In this way, we can use an exact algorithm to traverse a larger solution space and to improve results on one side, as well as reduce execution time using heuristics on the other side. The successful application of the rollout algorithm on similar problems can be found in [12] for unrelated machine environment and in [13] for resource-constrained scheduling problem. Given the above, it is worthwhile to explore whether this approach can be adapted for use with automatically developed RRs for CRP in situations where all information is known beforehand.
The rest of the paper is organised as follows. The review of the related literature is provided in Sect. 2. The required background about CRP and automatically designing RRs is given in Sect. 3. Section 4 describes the rollout algorithm. Section 5 describes the experimental study and outlines the obtained results. Finally, Sect. 6 provides a conclusion to the paper and outlines possible future research directions.

2 Literature Overview
CRP was first mentioned in [14], where a problem with a single bay was considered. As this problem becomes increasingly important in various real-world scenarios, numerous variants of this problem and methods for solving them are being developed [15]. In [6], a heuristic based on the expected number of additional relocations (ENAR) within a branch-and-bound algorithm was successfully applied, producing results that were not significantly worse than those obtained by the branch-and-bound algorithm while significantly reducing execution time. Further, a beam search algorithm in combination with three RRs was used in [5].
CRP with multiple bays was addressed for the first time in [16], where a three-phase heuristic was used. Moreover, this is the first study in which crane working time was included in the objective function. In [17], the corridor method with dynamic programming was used, while in [4], two mathematical models of CRP were given, and the branch-and-bound method with the min-max rule was applied. The iterative deepening A* in combination with new lower-bound measures is used in [18]. Multiple RRs were additionally proposed in the same paper.
A chain heuristic method, which considers not only the container that needs to be retrieved but also several containers that will need to be moved soon, was proposed in [19]. The GRASP metaheuristic is also used for solving CRP and its various versions [7, 20–22]. Tabu search was used in [23], where the dynamic CRP with a single bay was solved. A more recent research direction in CRP is the automated development of RRs using GP for different CRP variants [8–10]. In these studies, more than one optimisation criterion was used: the total number of relocations, crane working time, and energy consumption. These studies have demonstrated that automatically developed rules significantly outperform manually designed RRs.
In addition to the development of metaheuristics, new exact algorithms are designed using new problem formulations that can be solved more efficiently [24]. New lower bounds that can be used in algorithms such as the branch-and-bound algorithm were also defined [25]. An overview of how Operational Research and Big Data can work together in solving container relocation operations, including CRP, is provided in [26]. Furthermore, a heuristic for solving stochastic CRP, in which containers are retrieved in batches but the order of batches is unknown, is proposed in [27]. For solving CRP with item families, a two-stage simulated annealing approach was used in [28].
On the other hand, despite its simplicity, the rollout algorithm has not yet been applied to CRP. Its application with various heuristic methods for obtaining better results can be found in [11, 29, 30]. Moreover, its application with automatically developed dispatching rules for unrelated machine environment can be found in [12], and with automatically developed priority rules for the resource constrained project scheduling problem in [13, 31]. In both cases, the rollout algorithm significantly improves the obtained results, suggesting its potential applicability to RRs for solving CRPs. However, the main limitation of the rollout algorithm has shown to be its execution time, which is significantly higher than that of the individual dispatching and relocation rules that were used for solving scheduling problems.

3 Background
3.1 The Container Relocation Problem
Starting from the initial layout within the storage yard containing N containers, CRP aims to retrieve all containers in a predetermined order while optimising one or more criteria. The order in which containers are retrieved is determined by their IDs, with each container having a unique ID. Since the storage space where containers are located is limited, they are stacked on top of each other. Generally, the storage yard consists of one or more bays, each comprising S stacks and H tiers. The height of stack s is given by h(s) and must be less than or equal to H. Since containers of different sizes are usually stored separately, in the CRP model it is possible to assume that all containers are the same size.
The order in which containers will need to be retrieved is generally unknown during storage, and everyday situations arise where the next container is blocked by other containers stacked on top of it. Therefore, CRP distinguishes between two types of movements - relocation and retrieval. Retrieval involves fetching the container at the top of its stack in the yard and placing it on the loading truck. On the other hand, relocation consists of transferring a container from one stack to another to ensure the retrieval of containers in the defined order. The container that needs to be retrieved next is referred to as the target container. Also, we distinguish between the stack from which the container is relocated (source stack) and the stack to which the container is relocated (destination stack).
Depending on whether containers are stored in one or more bays, we distinguish between single-bay CRP and multi-bay CRP. An example of a smaller storage yard in single bay CRP is shown in Fig. 1. In this example, we see that the container with ID 1 can be retrieved and will be moved to the truck located in stack 0. The next container to be retrieved is the container with ID 2, which cannot be immediately retrieved because a container with ID 6 blocks it. To retrieve it, the blocking container needs to be relocated. Since the first stack has reached the maximum allowed height, a container with ID 6 can be relocated to either the second or third stack, after which it would be possible to retrieve the container with ID 2. After retrieving the container with ID 2, the container with ID 3 must be retrieved next, and the retrieval process will continue until all containers are retrieved and loaded. The main objective in the problem is to minimise the number of container relocations that need to be performed, since those moves are considered wasteful.[image: ]
Fig. 1.Example of single bay CRP storage yard.



Regarding the allowed moves, we distinguish between restricted and unrestricted CRP variants. In the restricted variant, only containers from the stack containing the target container can be relocated. On the other hand, the unrestricted version has no such limitations, and any container from the top of a stack can be moved to any other stack with available space. The rationale behind the unrestricted version is to allow additional relocations on stacks where the target container is not located to prevent subsequent blocking issues. Therefore, in the unrestricted version, it is possible to first relocate the container with ID 3 to the third stack and then the container with ID 6 to the second stack, thereby preventing additional relocations.

3.2 Generating Relocation Rules with GP
Relocation rules (RRs) are simple heuristics that solve CRPs iteratively by identifying the next container that needs to be retrieved, and retrieving it if possible. In cases where retrieval is not possible, RRs determine how to relocate containers blocking the target container. RRs can be divided into two parts: the relocation scheme (RS) and the priority function (PF). The RS defines the general framework of the RR, which is defined manually due to its simplicity.
Considering the allowed moves, RSs are categorised into those applicable for restricted versions of CRP (Algorithm 1) and those applicable for unrestricted versions of CRP (Algorithm 2). In both versions, the next container for retrieval is determined initially; if it resides on top of a stack, it is immediately retrieved. Otherwise, a decision is made regarding the relocation of the container blocking the target container. The stack to which the blocking container is relocated to is determined using the PF. The distinction between the two RSs lies in the unrestricted version’s additional step: before relocating a container from its stack to the selected target stack, any containers in the target stack with a lower ID than the container being relocated are transferred to another stack on which the container would not block any of the containers if such exist.[image: ]

[image: ]


PFs are mostly mathematical expressions that assign a numerical value to each stack where the container can be relocated. Depending on the assigned numerical value and the PF used, the stack with either the minimum or maximum value is selected. Designing PFs manually requires expertise to determine which properties are essential to be included in the expression, often involving a trial-and-error process. Therefore, attempts have been made to automate this process using genetic programming (GP), with several studies showing that rules developed by GP achieve better results than existing manually defined ones [8–10]. Alternative approaches could also be used to generate RRs, however, compared to GP they usually have certain drawbacks such poor interpretability (in case of artificial neural networks [32]) or limited generalisation capability (in case of decision trees [33]).
GP is often used as a hyper-heuristic for developing scheduling rules [34–37] due to its flexible solution representation. A tree representation is typically used in GP, with two types of nodes: terminal and function nodes. The set of function nodes includes various mathematical and logical functions, while the set of terminal nodes contains different problem attributes and constants. The function set and terminal set form the set of primitives used to construct the expression. The primitive set should neither be too large nor too small, and should contain features contributing to rule quality. For single bay CRP it was demonstrated that a good choice for the function set was to compose it out of basic arithmetic operations - addition, subtraction, multiplication, and protected division [8]. The terminals proposed in that study are given in Table 1. The original research found that GP performs best when using all six terminals for the restricted variant and the SH, EMP, DIFF, and RI terminals for the unrestricted variant.Table 1.Terminal nodes used for single bay CRP


	Name
	Description

	SH
	Height of the stack

	EMP
	Number of available places in the stack

	CUR
	Container ID of the container being relocated

	RI
	Number of containers in the stack with a smaller ID than that of the selected container

	AVG
	Average of container IDs in a stack

	DIFF
	Difference between smallest container ID in a stack with the ID of the container that is relocated





The main idea of GP is that the initial population composed of individuals representing PFs, generated using the ramped-half-and-half method [38], improves through iterations using crossover and mutation operators. Individuals with better fitness are more likely to be selected for crossover, producing new offspring, which are further mutated. After the algorithm terminates, the best individual within the population is returned as the solution and used as the PF by the RR. More details about developing rules for single bay CRP can be found in [8].


4 The Rollout Heuristic
The rollout heuristic is a simple yet effective optimisation procedure that balances between exhaustive and heuristic search. While exact algorithms construct all possible solutions for each potential decision, such an exhaustive search is prohibitive for larger problems due to time constraints. In contrast, heuristics construct solutions in a greedy manner by determining the best decision at each point. The rollout algorithm combines the two approaches by first enumerating all possible decisions for the current step and then applying a specific greedy strategy to construct the remaining solution for each decision. These solutions are then used to determine which of the potential decisions in the current step would be the best. Since not all possible decisions are considered, this approach can significantly reduce the computational complexity.
The choice of heuristic significantly impacts the performance of the rollout algorithm: overly simplistic heuristics lead to poor decisions and low-quality results, while more sophisticated ones improve outcomes at the expense of longer execution times. Striking a balance between heuristic effectiveness and runtime is essential for achieving optimal method efficiency.
In this paper, we apply two versions of the rollout algorithm, namely 1-level and 2-level rollout. In both versions, the initial step involves determining the next container for retrieval. If the container is on top of its stack, it can be retrieved immediately. Otherwise, it is necessary to determine to which stack blocking container need to be relocate. The blocking container can be relocated to any stack that is not full.
In the 1-level version, the first step is to enumerate all possible stacks to which the first blocking container can be relocated. The algorithm then evaluates the quality of each possible decision using the RR to construct the remaining solution. The quality of each decision is defined as the total number of container relocations until all containers have been retrieved. The pseudocode for the 1-level rollout algorithm is given in Algorithm 3. The 2-level variant is similar to the 1-level version, with one difference, it enumerates all possible choices up to depth 2, meaning for the next two containers that need to be relocated, Then the RR is applied to evaluate the quality of each possible choice, similar to the 1-level version. Figure 2 provides a conceptual illustration of these two versions. Based on the previous discussion, similar rollout approaches composed of more levels of enumeration could be considered. However, this would lead to a significant increase in execution time, which is impractical or even not feasible in most cases.[image: ]
Fig. 2.The outline of the rollout algorithm.
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5 Experimental Study
5.1 Experimental Setup
To assess the potential of improving the performance of RRs by using the rollout algorithm, RRs generated automatically by GP from [8] were used. For this purpose, the standard 3-tournament steady-state GP algorithm was used, where in each iteration three individuals were randomly selected from the population to compete in the tournament [38]. The top two individuals were used by the crossover operator to create a new child individual, which was further mutated with a given probability. This new individual then replaces the worst individual from the tournament and the entire procedure is repeated until a given termination criterion is satisfied. GP operated on a population size of 1 000 individuals, with a mutation probability of 0.3 and 50 000 function evaluations as the termination criterion. With the aforementioned parameters, GP requires approximately 1 h for a single execution. Regarding the genetic operators, the algorithm uses the subtree, uniform, context preserving, size fair, and one point crossovers, as well as the subtree, hoist, node complement, node replacement, permutation, and shrink mutations [38]. Each time a crossover or mutation needs to be performed, one of the previously defined operators is randomly selected. Due to its stochastic nature, GP was executed 30 times both for the restricted and unrestricted RR variants to obtain a representative sample of RRs.
In addition to RRs automatically designed by GP, the performance of the rollout algorithm was also evaluated when combined with standard manually designed RRs. These include both restricted RRs, such as TLP [16], RI [16], Min-Max (MM) [4], PR4 [18], and unrestricted RRs, such as PU1 and PU2 [18]. Since these rules are deterministic, only a single value is outlined in the tables.
To test the performance of the proposed rollout method, the Caserta dataset was used [17]. This dataset consists of 840 problem instances, each representing a container yard containing between 9 and 100 containers arranged into 3 to 10 stacks. The maximum allowed stack height is [image: $$h+2$$], where h represents the maximum height of any stack at the beginning. The entire original Caserta dataset is used as the test set to ensure the results are comparable to other studies. However, when generating the RRs with GP, a new training set was generated using the same procedure by which the original Caserta dataset was generated. Finally, the Mann-Whitney statistical test was used to test whether there is a significant difference in the obtained results since some results do not follow the normal distribution. The differences are considered significant if a p-value below 0.05 was obtained.

5.2 Results
This section outlines the results obtained by the rollout method when applied with manually and automatically designed RRs, as well as when using the 1-level or 2-level rollout variant. The summary of the results is given in Table 2, which first outlines the number of relocations obtained by using manually designed RRs, followed by the results obtained when using automatically designed RRs. For automatically designed RRs, the minimum, median, and maximum values of the 30 executions are outlined in the table, where RE stands for restricted RR variant and UN for the unrestricted one. The first column (denoted as “Individual RRs”) of the table outlines the results obtained by the individual RRs (i.e., when not used with the rollout algorithm), whereas the second and third column represent the results obtained by the 1-level and 2-level rollout algorithm variants for that specific RRs. Furthermore, to better outline the performance improvement by the rollout algorithm, the “Imp.” column outlines the percentage improvement of the rollout algorithm over the individual rules. Furthermore, the “Imp. 1-level” column outlines the percentage improvement of the 2-level rollout algorithm over the 1-level variant.
From Table 2, it is evident that the application of the rollout algorithm significantly improves the performance of RRs in all cases. The largest improvements are achieved for the simplest rules, such as TLP, MM, or RI. As the complexity and with it the quality of the RRs increases, the improvements obtained by the rollout algorithm diminish. This is expected since simpler RRs are prone to making poor decisions, and as such, the information about the effect of an action on the future helps to avoid such decisions. Since better rules already perform well, there is a limit to how much the rollout algorithm can improve their performance. The 1-level rollout algorithm can improve the performance of individual RRs by around 9%, whereas the 2-level variant can improve it by around 12%. Comparing the improvements obtained by both variants, it is notable that larger improvements are obtained when transitioning from individual rules to the 1-level rollout algorithm. On the other hand, comparing the results between the 1-level and 2-level variants reveals that although there are still improvements in the results, they are not as large. This suggests that using additional levels in the rollout heuristic could lead to only a limited improvement in the results.
It is interesting to observe how the choice of different RRs affects the performance of the rollout algorithm. The TLP and RI rules consistently yield the worst results for both rollout variants. When utilised with the rollout algorithm, other RRs perform more or less the same, with PU2 usually achieving a slightly better performance. However, it is really interesting to note how the MM rule, which, when utilised by itself, does not perform well, can actually match the performance of the more sophisticated rules when used in combination with the rollout algorithm. The analysis of the results obtained by the automatically designed RRs reveals that when used individually, the unrestricted variant performs better, however, with the introduction of the rollout algorithm this changes and the restricted version performs slightly better. Comparing the best automatically designed rule against the best manually designed one, the automatic one performs better by 5% without the rollout algorithm, by 3% for the 1-level variant, and by 1.5% for the 2-level variant. Notably, as the number of rollout levels increases, the differences between the methods diminish, as is expected, since worse rules gain more benefit from these additional levels of exhaustive search.Table 2.The results obtained by the rollout heuristic when minimising the number of container relocations. ’Imp’ denotes the percentage improvement of the rollout methods over the individual RRs, whereas ‘Imp 1-level’ denotes the percentage of improvement of 2-level rollout over 1-level rollout.


	 	Individual RRs
	1-level
	2-level

	Result
	Result
	Imp.
	Result
	Imp
	Imp 1-level

	TLP
	35982
	28268
	27.29
	24643
	46.01
	14.71

	RI
	29524
	24070
	22.66
	22338
	32.17
	7.75

	MM
	28996
	22518
	28.77
	21641
	33.99
	4.05

	PR4
	25859
	22528
	14.79
	21621
	19.60
	4.19

	PU1
	25049
	22537
	11.15
	21605
	15.94
	4.31

	PU2
	24962
	22483
	11.03
	21570
	15.73
	4.23

	 	Min.
	Med.
	Max.
	Min.
	Med.
	Max.
	Imp.
	Min.
	Med.
	Max.
	Imp
	Imp 1-level

	RE
	23758
	23983
	24252
	21784
	21940
	22338
	9.31
	21233
	21361
	23631
	12.27
	2.71

	UN
	23786
	23901
	24126
	21951
	22008
	22144
	8.60
	21331
	21369
	21436
	11.85
	2.99





To better outline how much the performance of automatically designed RRs can be improved by using the rollout algorithm, Fig. 3 outlines the results from Table 2 that were obtained by RRs individually and when coupled with the rollout algorithm. For both the restricted and unrestricted variants it is clear that applying the rollout algorithm significantly improves the results in comparison to the individual rules. This is supported by the statistical tests since a p-value close to 0 was obtained. Furthermore, using the 2-level variant leads to significantly better results in comparison to using the 1-level variant. However, it is interesting to note how the distribution of the results of the initial RRs is kept even when the rollout algorithm is used. This could be interpreted as a sign that there is a high correlation between the performance of individual RRs and the rollout algorithm when applying them. In order to test this, the Spearman’s Rho test was performed to measure whether there is a correlation between the results obtained by individual rules and the 1-level and 2-level rollout algorithm. Surprisingly, for the restricted version the test returned that there is actually no correlation between those results, as values of around 0 were obtained. This means that there is no connection between the performance of the individual RRs and their performance when used by the rollout algorithm. This was confirmed by a closer inspection of the results which showed that certain well-performing RRs simply underperformed when being combined with the rollout algorithm. For the unrestricted RR variant, a correlation value of 0.5 was obtained, which suggests that there is a certain correlation between the quality of individual rules and their performance with the rollout algorithm.[image: ]
Fig. 3.Box plot representation of the results.



The previous results demonstrate that the rollout algorithm has the potential to significantly improve the results obtained by RRs. However, this does come at the expense of requiring significantly more time to construct the schedule. In order to analyse the run-times of the different approaches, they are summarised in Table 3. When used by themselves, the RRs require around 0.01 s to solve the entire problem set. However, as soon as they are coupled with the rollout algorithm, the execution time increases to several seconds. Although this represents an increase of two orders of magnitude, it still represents quite a short execution time since solving a single instance again takes less than 1 s. However, for the 2-level variant, the execution time can be anywhere between 300 and 2 000 s, which represents an increase equal to 4 orders of magnitude.Table 3.Time (in seconds) required to solve the entire problem set.


	 	Individual RRs
	1-level rollout
	2-level rollout

	Time
	Time
	Slowdown
	Time
	Slowdown

	TLP
	0.01
	2.97
	239.70
	1019.53
	82339

	RI
	0.02
	3.17
	192.39
	783.70
	47499

	MM
	0.01
	2.34
	168.38
	560.61
	40305

	PR4
	0.01
	2.64
	180.42
	623.41
	42565

	PU1
	0.01
	2.12
	142.88
	341.49
	23028

	PU2
	0.02
	2.50
	130.70
	372.43
	19489

	RE
	0.04
	8.10
	185.87
	2141.98
	49176

	UN
	0.04
	5.37
	122.32
	1010.68
	23025





To better outline the trade-off between the performance of RRs and their execution time, Fig. 4 denotes a scatter plot in which the performance of each method is plotted against its execution time. Both for the 1-level and 2-level variants the order between the different methods is quite similar. The slowest execution times, but also the best results, are achieved when using automatically generated RRs, especially the restricted variant. On the other hand, the shortest execution times are achieved by the PU1 and PU2 rules, also achieving the best results among the manually designed rules. Automatically designed RRs achieved the best performance, but also with the expense of having longer execution times. Especially the restricted variant had a longer execution time, which is likely due to the fact that the unrestricted performs certain relocations without evaluating the complex PF.[image: ]
Fig. 4.The trade-off between the execution time and solution quality for the rollout algorithm coupled with different RRs.





6 Conclusion
This study considered the combination of automatically and manually designed RRs with the rollout algorithm to improve the performance of both for CRP. The obtained results show that the rollout algorithm significantly improves the performance of RRs. Furthermore, using automatically designed RRs instead of manually designed ones yields superior results. Therefore, the two approaches showed a good synergy in improving their individual performances.
However, it is important to note a potential drawback: the rollout algorithm significantly increases the execution time of RRs. While the increase is still acceptable for the 1-level variant, for larger levels of exhaustive search render the execution time becomes unmanageable. Given that the 2-level variant did not show a substantial improvement in the results over the 1-level variant, its application may offer limited benefits.
The results obtained in this study open up several potential future research directions. Addressing the issue of the increased execution time of the rollout algorithm could involve exploring methods to create partial solutions for selecting the best decision in each step of the rollout algorithm. Additionally, at the current moment, RRs are designed by GP completely independently of the rollout heuristic, which may limit their performance potential with the rollout algorithm. Therefore, evolving RRs specifically for use in the rollout algorithm represents another promising research direction.
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Abstract
Genetic programming (GP)-based feature construction has achieved great success as an automated machine learning technique to improve learning performance. The key challenge in GP-based feature construction is that it is easy to overfit the training data. In supervised learning, unseen data usually lie in the vicinity of the training data and behave similar to the training data. However, a rugged model may make significantly different predictions, thus resulting in poor generalization performance. Here, we propose pessimistic vicinal risk minimization method to control overfitting in GP-based feature construction. The idea is to minimize the worst-case loss on vicinal examples of training instances, where vicinal examples are synthesized using an instance-wise mixing method. The experimental results on 58 datasets demonstrate that GP with the proposed overfitting control method clearly outperforms standard GP and seven other overfitting control methods for GP, validating the superiority of using pessimistic vicinal risk minimization to control overfitting in GP for feature construction.
Keywords
Genetic ProgrammingEvolutionary Machine LearningSymbolic RegressionFeature ConstructionVicinal Risk Minimization
1 Introduction
Automated feature construction has become a well-studied topic in the recent domain of automated machine learning [1]. For a given dataset (X, Y), the goal of automated feature construction is to construct a set of features [image: $$\varPhi (X)$$] to improve the learning performance of algorithm [image: $$\mathcal {A}$$] over the original feature space X. Among automated feature construction methods, genetic programming (GP)-based methods [1, 2] are popular due to their flexible and variable-length representation, gradient-free optimization, and global search mechanism. These characteristics enable GP to explore a symbolic space to discover interpretable features and optimize non-differentiable losses, such as the L0-norm.
One challenge of existing GP-based feature construction methods is their tendency to overfit training data, especially in the presence of label noise or with limited samples. A widely used solution is to control model sizes; however, this approach has been challenged because the generalization of GP is often more about the semantics/behavior of the GP models rather than their sizes [3]. For instance, sin(sin(x)) and [image: $$x \times x$$] have the same model size but differ significantly in their semantics, which can affect how well the models generalize.
Given the limitations of optimizing tree size to control overfitting, numerous works have proposed to use theoretical statistical learning techniques, such as Tikhonov regularization [4], VC dimension [5], and Rademacher complexity [6], to control the complexity of GP and improve generalization. Although these metrics have been found to be effective in traditional machine learning (ML), such as in support vector machines, their effectiveness is challenged by large deep neural networks with VC dimensions lower bounded by [image: $$\varOmega (WL\log (W/L))$$] for W parameters and L layers [7], which is usually large for modern neural networks. Thus, these metrics may not be suitable optimization objectives for controlling overfitting [8].
In recent years, vicinal risk minimization (VRM) has achieved significant success in controlling overfitting in deep learning [9]. For a model f and a loss function [image: $$\mathcal {L}$$], a general loss is defined as follows:[image: $$\begin{aligned} \mathcal {L}(f)=\int \mathcal {L} \left( f(x), y\right) \; dP(x, y) \end{aligned}$$]

 (1)


where f(x) represents the prediction of the model on sample x, and P(x, y) represents the probability of sampling the pair (x, y) from the underlying data distribution. The empirical risk considers only the loss on training samples, i.e., [image: $$\frac{1}{n} \sum _{i=1}^n \mathcal {L} \left( f\left( \textbf{x}_i\right) , y_i\right) $$]. In contrast, VRM considers both the training samples [image: $$x_i \in X$$] and their neighborhoods [image: $$\textbf{x} \in \mathbb {N}(x_i)$$], known as vicinal samples. Formally, the vicinal risk is defined as follows:[image: $$\begin{aligned} \mathcal {VIC}(f)=\frac{1}{n} \sum _{i=1}^n \int \mathcal {L} \left( f(\textbf{x}), y_i\right) d P_{x_i}(\textbf{x}) \end{aligned}$$]

 (2)


Here, [image: $$P_{x_i}(\textbf{x})$$] is a probability density function based on the distance between [image: $$\textbf{x}$$] and sample [image: $$x_i$$], meaning that vicinal samples closer to the training samples have a higher occurrence probability. By optimizing such an objective, it is hoped that the model will not only perform well on training samples but also exhibit stable behavior on samples generated from the same distribution as the training samples.
However, in ML, one issue is that within a radius [image: $$\tau $$] around a sample x, for all vicinity examples [image: $$x+\sigma $$] subject to [image: $$||\sigma || \le \tau $$], only specific perturbations [image: $$\sigma $$] may worsen the training loss, as observed in adversarial attacks [10]. Thus, this paper explores controlling overfitting by minimizing the vicinal risk in pessimistic cases to avoid overfitting, with the hope that the model achieves uniform stability [11] across all possible unseen scenarios. Nonetheless, unlike adversarial training, the unseen sample should lie on the manifold of the underlying data distribution. Therefore, this paper focuses on mixup-synthesized samples [12], which are more likely to synthesize data that lie on the real manifold, as defined by Eq. (3):[image: $$\begin{aligned} x_{\text {mixup}}=\lambda \cdot x_a+(1-\lambda ) \cdot x_b, \end{aligned}$$]

 (3)


where [image: $$x_a$$] and [image: $$x_b$$] are two nearby training instances, and [image: $$\lambda \in [0,1]$$] is a randomly sampled mixing ratio.
1.1 Goals
In this paper, we propose pessimistic vicinal risk as a regularizer to control overfitting, aiming for learned models to exhibit stable behavior on potential unseen data. The objectives of this paper are summarized as follows:	To control overfitting, a pessimistic VRM (P-VRM) framework is proposed based on a multi-objective evolutionary feature construction algorithm.

	A theoretical analysis is conducted to demonstrate that P-VRM implicitly promotes local linearity between each training instance and its worst-case vicinal instance, thereby improving generalization performance.

	To validate the effectiveness of the proposed method, we compare P-VRM with seven complexity measures and standard GP for their effectiveness in controlling overfitting across 58 datasets.







2 Related Work
2.1 Overfitting Control Techniques in GP
Overfitting control techniques in GP can be divided into three main types. The first type is based on the probably approximately correct learning theory, using measures such as model size, Tikhonov regularization [4], VC dimension [5], and Rademacher complexity [6] to control the complexity of GP models. These approaches are based on solid theoretical foundations, yet their effectiveness is somewhat limited for deep learning-based feature learning techniques [8]. The second technique is ensemble learning, which is based on the bias-variance theory, either through homogeneous [13] or heterogeneous ensemble learning [14], assembling a set of GP models to enhance generalization performance. However, these ensemble models often lack interpretability. The third category includes several practical overfitting control techniques from ML that have been adapted for GP, such as early stopping [15], semi-supervised learning [16], random sampling [17], and soft targets [18]. However, these techniques often lack a strong theoretical foundation.

2.2 Vicinal Risk Minimization
For deep learning-based feature construction, VRM has been demonstrated to be effective in improving generalization performance [12]. VRM considers vicinal examples during training and offers benefits like Jacobian regularization and robustness against noisy targets [19]. However, VRM is rarely studied in GP, especially for regression or feature construction.
VRM in Deep Learning. In deep learning, particularly in computer vision, VRM is commonly achieved through data augmentation techniques like randomly cutting an image (CutOut) [20], mixing two images (MixUp) [12], mixing patches of images (CutMix) [21], and mixing the original image with an augmented image (AugMix) [22]. These approaches follow the idea of VRM, where the average loss on synthesized samples directs gradient descent. Nevertheless, adversarial attacks [23] demonstrate that very specific perturbations can drastically alter the loss, suggesting that optimizing the average vicinal risk might not be sufficient.
VRM in Genetic Programming. In GP, VRM has primarily been investigated for classification. For classification, defining vicinity samples is straightforward, as adding a small perturbation [image: $$\epsilon $$] to an input x typically does not change the class label y. Therefore, VRM has been shown to be useful for learning decision trees [24] and GP classifiers [25]. However, this assumption may not hold for regression, where the output is continuous, which poses a challenge for employing VRM in GP for regression.

2.3 Evolutionary Feature Construction
Based on evaluation methods, evolutionary feature construction can be categorized into filter-based, wrapper-based, and embedded methods. Filter-based methods use general metrics like impurity [26] or information gain [27]. They are cost-effective but may yield sub-optimal accuracy. Wrapper-based methods evaluate features using a specific learning algorithm. For wrapper-based evolutionary feature construction, multi-tree GP has been widely used, including algorithms like M3GP [2], FEAT [1], and GP-GOMEA [28]. These methods can construct highly discriminative features for a specific learning algorithm but may lead to overfitting. Embedded methods integrate feature construction into the learning process, such as symbolic regression [29]. They provide a balance between training time and accuracy. This paper studies wrapper-based methods, with a focus on addressing generalization issues.


3 Proposed Algorithm Framework
3.1 General Framework
In this paper, a multi-tree GP, denoted as [image: $$\varPhi $$], is used to represent multiple features [image: $$\phi _1, \dots , \phi _m$$], where m is dynamically evolved for different GP individuals. These constructed features are employed to transform original features X into the constructed features [image: $$\varPhi (X)$$], which are then fed into a linear regression model LM to make predictions. This work follows the general framework of evolutionary feature construction, incorporating additional steps such as vicinal data synthesis, vicinal risk estimation, and archive maintenance1. The key steps are as follows:	Population Initialization: At this stage, a population of GP individuals is randomly initialized. For each individual, a GP tree is initialized using either the full or grow method with equal probability, i.e., the ramped-half-and-half method. The number of trees in an individual can be increased through mutation operators later during the evolutionary process.

	Parent Selection: Automatic [image: $$\epsilon $$] lexicase selection [30] is used for parent selection. Lexicase selection iteratively chooses an instance k to set a threshold for eliminating individuals with poor performance. The threshold is defined as [image: $$\mathcal {L}_k(p)&lt; \min _{p' \in P} \mathcal {L}_k(p')+\epsilon _{k}$$], where [image: $$\min _{p' \in P} \mathcal {L}_k(p')$$] is the minimum loss on instance k, and [image: $$\epsilon _{k}$$] is the median absolute deviation. Those with a loss larger than the threshold are eliminated from the candidate parent pool. This process repeats until one individual remains and is selected as the parent. The lexicase selection operator is applied |P| times to select |P| parents.

	Offspring Generation: Offspring are generated using random subtree crossover and mutation operators. Additionally, random tree addition and deletion operators [2] are used to dynamically increase or decrease the number of trees m in an individual [image: $$\varPhi $$].

	Solution Evaluation: The evaluation of candidate solutions involves two objectives: pessimistic vicinal risk based on the mixup strategy, i.e., [image: $$O_1(\varPhi )$$], and leave-one-out cross-validation loss, i.e., [image: $$O_2(\varPhi )$$]. These two objectives are obtained based on four functions:	Vicinal Data Synthesis: First, vicinal data [image: $$\tilde{X}$$] is synthesized using the instance-wise mixup strategy outlined in Sect. 3.3.

	Feature Transformation: For each individual [image: $$\varPhi $$], both the original data X and the vicinal data [image: $$\tilde{X}$$] are transformed using all GP trees [image: $$\phi $$] within the individual [image: $$\varPhi $$] to form [image: $$\varPhi (X)$$] and [image: $$\varPhi (\tilde{X})$$], respectively.

	Pessimistic Vicinal Risk Estimation ([image: $$O_1(\varPhi )$$]): To evaluate the performance of the constructed features on vicinal data, first, the original data [image: $$\varPhi (X)$$] is used to train a linear regression model LM. Then, the pessimistic vicinal risk is calculated by applying the linear model LM to the vicinal data [image: $$\varPhi (\tilde{X})$$] according to the vicinal risk estimation method detailed in Sect. 3.4.

	Leave-one-out Cross-validation ([image: $$O_2(\varPhi )$$]): This objective is obtained by evaluating the leave-one-out cross-validation loss on the constructed features [image: $$\varPhi (X)$$] using a linear model LM.






	Survival/Environmental Selection: After evaluation, non-dominated sorting with crowding distance [31] is used to select promising candidates for the next generation. This process reduces the set of parents and offspring, initially sized at 2|P| individuals, back to |P| individuals.

	Archive Maintenance: At the end of each generation, the model with the lowest vicinal risk [image: $$O_1(\varPhi )$$] is stored in an external archive as the final prediction model.





The processes of solution evaluation, parent selection, offspring generation, environmental selection, and archive maintenance are repeated until a termination criterion is met.[image: ]
Fig. 1.(a) Comparison between empirical risk minimization (ERM), VRM, and P-VRM using the Gaussian synthesis strategy. (b, c) Comparison between the Gaussian synthesis strategy and the mixup synthesis strategy.




3.2 P-VRM
In this paper, we consider the loss in the worst-case scenario over all vicinal examples, thus employing “pessimistic” VRM. Formally, pessimistic vicinal risk is defined as:[image: $$\begin{aligned} \mathcal {V}(f)=\frac{1}{n} \sum _{i=1}^n \max _{x \in \mathbb {N}(x_i)} \mathcal {L} \left( f(\textbf{x}), y_i\right) , \end{aligned}$$]

 (4)


where [image: $$\mathbb {N}(x_i)$$] represents the neighborhood region of point [image: $$x_i$$]. By optimizing Eq. (4), we aim for the model to achieve stable behavior even in the presence of the worst perturbations around each data point. Figure 1a illustrates the differences between ERM, VRM, and P-VRM. Typically, vicinal samples used to calculate vicinal risk are synthesized by adding Gaussian noise [image: $$\mathcal {N}(0,\sigma )$$] to existing points [image: $$x \in X$$], as shown in Fig. 1b. In this paper, our mixup is based on synthesizing a mixture of a sample [image: $$x_i \in X$$] with its neighboring point [image: $$x_j \in \mathbb {N}(x_i)$$] with a randomly sampled ratio [image: $$\lambda \sim \text {Beta}(\alpha , \beta )$$]. An example of mixup-based vicinal example synthesis is shown in Fig. 1c. Intuitively, mixup can be understood as a linear interpolation between two nearby points, thereby synthesizing data without disrupting the data manifold.

3.3 Instance-Wise Vicinal Data Synthesis
In the traditional mixup framework, vicinal data are generated by mixing two randomly selected examples from the original dataset [12]. This can lead to some examples not being selected, while others are selected multiple times, resulting in inaccurate and biased vicinal risk estimation. To achieve accurate VRM, we propose an instance-wise mixup strategy to ensure that all examples are selected exactly the same number of times. Specifically, for each instance [image: $$x_a \in X$$], we mix it with K nearby instances [image: $$x_{b,1}, \dots , x_{b,K}$$] to generate vicinal samples [image: $$x_{\text {mixup}}$$]. There are two key questions in this approach: how to select the K nearby instances [image: $$x_b \in \mathbb {N}(x_a)$$], and how to mix the instance [image: $$x_a$$] with [image: $$x_b$$].
Kernel-Based Sample Selection. To synthesize data, a nearby sample [image: $$x_b \in \mathbb {N}(x_a)$$] needs to be selected based on sample [image: $$x_a$$]. Defining the vicinity in feature space is challenging because it is difficult to capture the underlying data manifold that represents the true data distribution. Therefore, we define vicinity based on labels, [image: $$y_a$$] and [image: $$y_b$$]. Specifically, to determine the similarity between samples [image: $$(x_a, y_a)$$] and [image: $$(x_b, y_b)$$], we use a Gaussian kernel function: [image: $$K(y_b, y_a) = e^{-\gamma \Vert y_b - y_a\Vert ^2}$$] [32]. In each round of vicinal sample generation, distances are first normalized to create a probability distribution, i.e., [image: $$P(y_b | y_a) = \frac{K(y_b, y_a)}{\sum _{y_i \in Y} K(y_i, y_a)}$$], which is then used to sample instances based on their proximity to sample [image: $$(x_a, y_a)$$]. Based on this probability distribution, K samples are selected to generate vicinal samples.
Vicinal Data Synthesis. For a pair of samples [image: $$\{(x_a, y_a), (x_b, y_b)\}$$], the standard mixup equation is [image: $$x_{\text {mixup}}=\lambda \cdot x_a+(1-\lambda ) \cdot x_b$$] [12], where [image: $$\lambda $$] is the mixing ratio sampled from a Beta distribution with parameters [image: $$\alpha =\beta $$] [12]. The probability density function of the Beta distribution is given by: [image: $$\text {Beta}(x;\alpha ,\beta ) = \frac{x^{\alpha -1}(1-x)^{\beta -1}}{B(\alpha , \beta )}$$], where B is the beta function, [image: $$B(\alpha , \beta ) = \int _{0}^{1} t^{\alpha - 1} (1 - t)^{\beta - 1} \,~\hbox {dt} $$]. The choice of the Beta distribution follows convention [12] and is motivated by its property of ensuring the sampled mixing ratio [image: $$\lambda $$] falls within the interval [0, 1] with arbitrary parameter settings.
However, for P-VRM, the vicinal sample [image: $$x_{\text {mixup}}$$] of instance [image: $$x_a$$] should contain more of [image: $$x_a$$] than [image: $$x_b$$]. Thus, the instance-wise mixup is defined as in Eq. (5),[image: $$\begin{aligned} x_{\text {mixup}} = (0.5+|\lambda - 0.5|) \cdot x_a + (0.5 - |\lambda - 0.5|) \cdot x_b, \end{aligned}$$]

 (5)


where, by setting the sample ratio for [image: $$x_a$$] to be [image: $$0.5+|\lambda - 0.5|$$], we ensure that the ratio of [image: $$x_a$$] in [image: $$x_{\text {mixup}}$$] is greater than or equal to 0.5. The label of the synthesized sample [image: $$y_{\text {mixup}}$$] is synthesized using the same equation and ratio. The instance-wise mixup equation can be viewed as adding a perturbation to the sample [image: $$(x_a, y_a)$$]:[image: $$\begin{aligned} x_{\text {mixup}} &amp;= x_a + (0.5 - |\lambda - 0.5|) \cdot (x_b - x_a),\end{aligned}$$]

 (6)



[image: $$\begin{aligned} y_{\text {mixup}} &amp;= y_a + (0.5 - |\lambda - 0.5|) \cdot (y_b - y_a). \end{aligned}$$]

 (7)




Theorem 1
For a predictive model [image: $$f: X \rightarrow Y$$], pessimistic mixup implicitly promotes local linearity around each sample [image: $$x_a \in X$$] by optimizing the objective: [image: $$\max _{\lambda , (x_b, y_b) \in \mathbb {N}(x_a)} (0.5 - |\lambda - 0.5|)^2(y_b - y_a - \nabla f(x_a)^\top (x_b - x_a))^2$$], where [image: $$\lambda $$] is a mixup ratio drawn from a Beta distribution [image: $$\text {Beta}(\alpha , \beta )$$], and [image: $$\mathbb {N}(x_a)$$] denotes the neighborhood of [image: $$x_a$$].

Proof: The prediction of a model for a mixup sample, [image: $$f(x_{\text {mixup}})$$], can be approximated using a first-order Taylor expansion around the sample point [image: $$x_a$$] as[image: $$\begin{aligned} f(x_{\text {mixup}}) \approx f(x_a) + \nabla f(x_a)^\top (x_{\text {mixup}} - x_a) + \mathcal {O}((x_{\text {mixup}} - x_a)^2), \end{aligned}$$]

 (8)


where [image: $$f(x_a)$$] is the model prediction on the original sample [image: $$x_a$$], [image: $$\nabla f(x_a)$$] is the gradient of the model prediction with respect to the input at [image: $$x_a$$]. The term [image: $$\nabla f(x_a)^\top (x_{\text {mixup}} - x_a)$$] represents the linear approximation of the change in the model prediction due to the perturbation [image: $$x_{\text {mixup}} - x_a$$], and [image: $$\mathcal {O}((x_{\text {mixup}} - x_a)^2)$$] represents the higher-order remaining terms. For conciseness, let [image: $$\delta = (0.5 - |\lambda - 0.5|)$$]. Substituting Eq. (8) into the vicinal risk loss [image: $$(y_{\text {mixup}} - f(x_{\text {mixup}}))^2$$], we have:[image: $$\begin{aligned} &amp;(y_{\text {mixup}} - f(x_{\text {mixup}}))^2 \end{aligned}$$]

 (9)



[image: $$\begin{aligned} &amp;\approx (y_a + \delta (y_b - y_a) - f(x_a) - \nabla f(x_a)^\top (x_{\text {mixup}} - x_a))^2\end{aligned}$$]

 (10)



[image: $$\begin{aligned} &amp;= (y_a + \delta (y_b - y_a) - f(x_a) - \nabla f(x_a)^\top ((x_a + \delta (x_b - x_a)) - x_a))^2\end{aligned}$$]

 (11)



[image: $$\begin{aligned} &amp;= ((y_a - f(x_a)) + \delta (y_b - y_a - \nabla f(x_a)^\top (x_b - x_a)))^2\end{aligned}$$]

 (12)



[image: $$\begin{aligned} &amp; \le 2 (y_a - f(x_a))^2 + 2 \delta ^2(y_b - y_a - \nabla f(x_a)^\top (x_b - x_a))^2. \end{aligned}$$]

 (13)


This bound indicates that minimizing both the mean square error and the term [image: $$\delta ^2(y_b - y_a - \nabla f(x_a)^\top (x_b - x_a))^2$$] can achieve the same effect as minimizing the mixup-based vicinal risk. To investigate the regularization effect of P-VRM based on mixup, assuming a constant training error [image: $$(y_a - f(x_a))^2$$], the optimization process focuses on the following objective:[image: $$\begin{aligned} \mathcal {V}=\max _{\lambda , (x_b, y_b)} (0.5 - |\lambda - 0.5|)^2(y_b - y_a - \nabla f(x_a)^\top (x_b - x_a))^2. \end{aligned}$$]

 (14)


Discussion: To find the optimal model [image: $$f^*$$] that minimizes [image: $$\mathcal {V}$$] for a specific instance [image: $$x_b^*, y_b^*$$], the optimal gradient can be determined by setting [image: $$\frac{\partial \mathcal {V}}{\partial \nabla f(x_a)}=0$$]:[image: $$\begin{aligned} \frac{\partial \mathcal {V}}{\partial \nabla f(x_a)} = 2\delta ^2(\nabla f(x_a)^\top (x_b^* - x_a)- (y_b^* - y_a)) (x_b^* - x_a)=0. \end{aligned}$$]

 (15)


The optimal gradient is achieved when the gradient of the function [image: $$\nabla f(x_a)$$] is parallel to the vector difference [image: $$x_b^* - x_a$$], scaled by the difference [image: $$y_b^* - y_a$$], i.e.,[image: $$\nabla f(x_a)^\top (x_b^* - x_a) = y_b^* - y_a$$]. Ideally, this alignment should occur for every instance [image: $$x_b$$] within a local vicinity of [image: $$x_a$$] to minimize the pessimistic vicinal risk. In practice, this implies that P-VRM encourages the model f to maintain a constant gradient, i.e., to approximate a linear function on the worst-case instance lying within the linear manifold, which is formed by each sample [image: $$x_a$$] and its neighboring points [image: $$x_b$$], thereby improving the generalization performance of the model f.

3.4 Pessimistic Vicinal Risk Estimation
The process of estimating the pessimistic vicinal risk is outlined in Algorithm 1. To ensure reliable estimation, vicinal risk is estimated over K rounds for each sample x, and the maximum loss on each synthesized sample [image: $$x_{\text {mixup}}$$] is considered as the pessimistic risk. Subsequently, the final pessimistic risk of the GP individual [image: $$\varPhi $$] is computed as the average of the pessimistic risks across all instances [image: $$x \in X$$]. In each iteration, two key components are worth highlighting:	Cached Vicinal Data (Line 4): The mixup data [image: $$(X_{\text {mixup}}, Y_{\text {mixup}})$$] are regenerated for the K rounds but generated only once for each round and cached in memory for consistency across different individuals. There are two benefits of using the caching strategy. Firstly, it can save computational costs for synthesizing data. Secondly, it ensures a fair comparison on vicinal risk across individuals by providing a shared reference for evaluations.

	Pessimistic Risk Estimation (Lines 7-8): After computing vicinal risk, [image: $$(\hat{y}_i - y_{\text {mixup}})^2$$], it is compared to the historically worst vicinal risk on example i, denoted as [image: $$\mathcal {V}_i$$]. The historical worst vicinal risk [image: $$\mathcal {V}_i$$] is updated if the new risk exceeds the previously recorded worst risk.





[image: ]
Algorithm 1. Pessimistic Vicinal Risk Estimation





4 Experimental Settings
4.1 Datasets
The datasets used in this paper are from the Penn Machine Learning Benchmark (PMLB) [33]. There are 120 “black-box” datasets in PMLB; after excluding datasets synthesized by Friedman functions, 58 datasets remain, which are used for experiments.

4.2 Comparison Methods
The comparison methods include standard GP and GP with seven common complexity measures to control overfitting:	Standard GP without Regularization: This is the standard GP with leave-one-out cross-validation loss as the objective.

	Parsimony Pressure (PP) [34]: PP is based on Occam’s razor principle. The number of nodes in GP trees within an individual is considered as the complexity measure.

	Tikhonov Regularization (TK) [4]: This paper only focuses on zero-order TK due to its simplicity and effectiveness [4], where zero-order TK of model f is defined as ||f(X)||. The aim of zero-order TK is to prevent extreme predictions.

	Grand Complexity (GC) [4]: GC is a combination of parsimony pressure and Tikhonov regularization, where the dominance relationship between these two objectives is used as an optimization objective.

	Rademacher Complexity (RC) [6]: RC measures a model’s ability to fit a given dataset with randomly labeled data. It is formally defined as: [image: $$ {\text {R}}_n(\mathcal {L})=\mathbb {E}\left[ \sup _{l \in \mathcal {L}} \frac{1}{n} \sum _{i=1}^n \sigma _i l\left( x_i,y_i\right) \right] , $$] where [image: $$\sigma _i \in \{-1, 1\}$$] is a random variable.

	Correlation between Input and Output Distances (IODC) [18]: IODC measures the correlation between input pairwise distances and output pairwise distances to evaluate the smoothness of a model. It is defined as: [image: $$ {\text {IODC}}(\varPhi )=\frac{{\text {Cov}}(\textrm{I}, \textrm{O})}{\sigma _{\textrm{I}} \sigma _{\textrm{O}}}. $$] A higher IODC value indicates a smoother model.

	Weighted Maximum Information Coefficient between Residuals and Variables (WCRV) [35]: WCRV seeks to minimize two factors: the correlation between highly informative features and the residual R, and the selection of uninformative features. It is formally defined as: [image: $$ {\text {WCRV}}\left( \varPhi \right) = \sum _{{\text {MIC}}_{x^k, Y} \ge mv} {\text {MIC}}_{x^k, Y}\times {\text {MIC}}_{x^k, R} +\sum _{{\text {MIC}}_{x^k, Y}&lt;mv}\left( 1-{\text {MIC}}_{x^k, Y}\right) . $$]

	VRM: VRM refers to the conventional mixup-based VRM [12] that is commonly used in deep learning, which focuses on minimizing the average loss across all vicinal samples [image: $$\mathbb {N}(x)$$], rather than just the worst-case samples. The objective function is formally defined as: [image: $$ \mathcal {V}(f)=\frac{1}{n} \sum _{i=1}^n \sum _{x \in \mathbb {N}(x_i)} \mathcal {L} \left( f(\textbf{x}), y_i\right) d P_{\textbf{x}_i}(\textbf{x}) $$], which corresponds to Eq. (2).





To ensure fair comparisons, we evaluate these methods using the same multi-objective evolution framework as this paper. Standard GP adheres to this framework without a survival selection operator. In VRM, the model with the lowest vicinal risk is chosen as the final model. For other benchmark methods, to balance training accuracy and model complexity, the minimum Manhattan distance-based (MMD) knee point is used to select the final solution from the non-dominated set of trade-off solutions for prediction [36]. Given the different scales of complexity measures compared to mean squared error in the benchmark methods, we first normalize the two objectives, denoted by [image: $$\mathcal {O}_1(\varPhi )$$] and [image: $$\mathcal {O}_2(\varPhi )$$]. Then, the individual with the smallest sum of the two objectives, [image: $$\mathcal {O}_1(\varPhi )+\mathcal {O}_2(\varPhi )$$], is selected as the final model in the MMD method.

4.3 Parameter Settings
The parameter settings follow the convention in GP, as shown in Table 1. A large crossover rate and a small mutation rate are used to encourage the exchange of building blocks. To prevent division by zero, we use the analytical quotient, defined as [image: $$AQ(a,b)=\frac{a}{\sqrt{1+b^2}}$$] [37]. Additionally, the analytical logarithm, which is defined as [image: $$Log(a)=log(\sqrt{1+a^2})$$], is used to replace the traditional logarithm operator.Table 1.GP Parameter Settings


[image: ]




4.4 Evaluation Protocol
For each experiment, each baseline method is executed on each dataset with 30 different random seeds [38]. In each round, the dataset is randomly split into a training set with 100 points, and all remaining data serve as the test data. This setting is used in existing GP literature to simulate the scenario of limited samples [39]. For datasets with fewer than 100 points, a 50%-50% training-test split is used to ensure enough training and test data. For the evaluation metric, [image: $$R^2$$] scores are used to account for different scales across datasets. The Wilcoxon signed-rank statistical comparison, at a significance level of 0.05, is used to compare the statistical differences between pairs of algorithms [40].
Table 2.Statistical comparisons of test [image: $$R^2$$] scores across various overfitting control strategies. (“+”, “[image: $$\sim $$]”, and “-” indicate that the method in a row performs better than, similarly to, or worse than the method in a column, respectively.)


	 	VRM
	PP
	RC
	GC

	P-VRM
	22(+)/29([image: $$\sim $$])/7(-)
	22(+)/31([image: $$\sim $$])/5(-)
	46(+)/10([image: $$\sim $$])/2(-)
	23(+)/32([image: $$\sim $$])/3(-)

	VRM
	—
	11(+)/38([image: $$\sim $$])/9(-)
	38(+)/10([image: $$\sim $$])/10(-)
	16(+)/29([image: $$\sim $$])/13(-)

	PP
	—
	—
	38(+)/13([image: $$\sim $$])/7(-)
	15(+)/34([image: $$\sim $$])/9(-)

	RC
	—
	—
	—
	5(+)/10([image: $$\sim $$])/43(-)

	 	IODC
	TK
	WCRV
	Standard GP

	P-VRM
	31(+)/24([image: $$\sim $$])/3(-)
	44(+)/12([image: $$\sim $$])/2(-)
	38(+)/18([image: $$\sim $$])/2(-)
	31(+)/21([image: $$\sim $$])/6(-)

	VRM
	24(+)/25([image: $$\sim $$])/9(-)
	28(+)/29([image: $$\sim $$])/1(-)
	27(+)/23([image: $$\sim $$])/8(-)
	22(+)/34([image: $$\sim $$])/2(-)

	PP
	23(+)/29([image: $$\sim $$])/6(-)
	25(+)/31([image: $$\sim $$])/2(-)
	26(+)/26([image: $$\sim $$])/6(-)
	25(+)/25([image: $$\sim $$])/8(-)

	RC
	5(+)/21([image: $$\sim $$])/32(-)
	5(+)/20([image: $$\sim $$])/33(-)
	11(+)/17([image: $$\sim $$])/30(-)
	13(+)/14([image: $$\sim $$])/31(-)

	GC
	25(+)/26([image: $$\sim $$])/7(-)
	23(+)/33([image: $$\sim $$])/2(-)
	25(+)/30([image: $$\sim $$])/3(-)
	24(+)/21([image: $$\sim $$])/13(-)

	IODC
	—
	19(+)/24([image: $$\sim $$])/15(-)
	15(+)/30([image: $$\sim $$])/13(-)
	21(+)/16([image: $$\sim $$])/21(-)

	TK
	—
	—
	11(+)/33([image: $$\sim $$])/14(-)
	10(+)/27([image: $$\sim $$])/21(-)

	WCRV
	—
	—
	—
	17(+)/22([image: $$\sim $$])/19(-)







5 Experimental Results
5.1 Comparisons of Test [image: $$R^2$$] Scores
General Analysis. The results of [image: $$R^2$$] scores are presented in Table 2 and Fig. 2. All complexity measures effectively control overfitting to varying degrees. Even the least effective method, TK, reduces overfitting in 10 datasets. However, P-VRM is particularly successful, outperforming standard GP on 31 datasets and only underperforming on 6 datasets. In this section, we mainly focus on comparing P-VRM with VRM and PP, as P-VRM surpasses the other methods on at least 23 datasets.
P-VRM vs. Parsimony Pressure.
In GP, tree size has been widely used to control overfitting. For GP-based evolutionary feature construction, the results in Table 2 show that tree size remains a competitive measure for controlling overfitting [41], outperforming standard GP on 25 datasets and only performing worse on 8 datasets. However, tree size does not account for the semantics of a GP tree; it cannot distinguish between the complexity of [image: $$x^2$$] and sin(x). The results in Table 2 indicate that merely controlling the tree size is insufficient for controlling overfitting. Optimizing VRM outperforms optimizing tree size on 22 datasets while only underperforming on 5 datasets, and is similar on 31 datasets. This confirms that considering the complexity from the perspective of the semantics of GP trees, especially pessimistic vicinal risk, leads to better generalization performance.[image: ]
Fig. 2.Evolutionary plots of the test [image: $$R^2$$] scores for different complexity measures.


[image: ]
Fig. 3.Evolutionary plots of the training and test [image: $$R^2$$] scores for P-VRM.


[image: ]
Fig. 4.Distribution of tree sizes across 58 datasets when optimizing different complexity measures.



P-VRM vs. VRM. The only difference between P-VRM and VRM is that P-VRM focuses on the worst-case vicinal risk, while VRM considers the average risk over all vicinal examples. Experimental results in Table 2 show that P-VRM significantly outperforms VRM on 22 datasets and only performs worse on 7 datasets. This suggests that pessimistic vicinal risk is more effective for controlling overfitting than average vicinal risk.

5.2 Comparisons of Training [image: $$R^2$$] Scores
Statistical comparisons of training [image: $$R^2$$] results are presented in Table 3. The results reveal that P-VRM is a stronger regularizer than VRM but weaker than PP. P-VRM significantly underperforms in training [image: $$R^2$$] compared to VRM on 44 datasets out of 58, yet only underperforms compared to PP on 13 datasets out of 58. Given the suboptimal results of VRM and PP on test [image: $$R^2$$] scores, this suggests that effective overfitting control requires a carefully designed inductive bias towards complexity regularization. Both overly strong and overly weak regularization can negatively affect test performance. Figure 3 further illustrates the evolutionary plots of training and test [image: $$R^2$$] for the P-VRM method. The positive Pearson correlations between training and test [image: $$R^2$$] scores further affirm that P-VRM is an effective measure for controlling overfitting.Table 3.Statistical comparisons of training [image: $$R^2$$] scores across various overfitting control strategies.


	 	VRM
	PP
	RC
	GC

	P-VRM
	0(+)/14([image: $$\sim $$])/44(-)
	28(+)/17([image: $$\sim $$])/13(-)
	56(+)/2([image: $$\sim $$])/0(-)
	46(+)/10([image: $$\sim $$])/2(-)

	VRM
	—
	48(+)/10([image: $$\sim $$])/0(-)
	58(+)/0([image: $$\sim $$])/0(-)
	56(+)/2([image: $$\sim $$])/0(-)

	PP
	—
	—
	58(+)/0([image: $$\sim $$])/0(-)
	46(+)/12([image: $$\sim $$])/0(-)

	RC
	—
	—
	—
	1(+)/4([image: $$\sim $$])/53(-)

	 	IODC
	TK
	WCRV
	Standard GP

	P-VRM
	37(+)/15([image: $$\sim $$])/6(-)
	36(+)/15([image: $$\sim $$])/7(-)
	39(+)/13([image: $$\sim $$])/6(-)
	1(+)/13([image: $$\sim $$])/44(-)

	VRM
	53(+)/5([image: $$\sim $$])/0(-)
	53(+)/4([image: $$\sim $$])/1(-)
	48(+)/8([image: $$\sim $$])/2(-)
	2(+)/38([image: $$\sim $$])/18(-)

	PP
	29(+)/23([image: $$\sim $$])/6(-)
	32(+)/20([image: $$\sim $$])/6(-)
	38(+)/15([image: $$\sim $$])/5(-)
	0(+)/3([image: $$\sim $$])/55(-)

	RC
	1(+)/4([image: $$\sim $$])/53(-)
	0(+)/1([image: $$\sim $$])/57(-)
	2(+)/9([image: $$\sim $$])/47(-)
	0(+)/0([image: $$\sim $$])/58(-)

	GC
	12(+)/27([image: $$\sim $$])/19(-)
	11(+)/26([image: $$\sim $$])/21(-)
	23(+)/25([image: $$\sim $$])/10(-)
	0(+)/1([image: $$\sim $$])/57(-)

	IODC
	—
	16(+)/19([image: $$\sim $$])/23(-)
	27(+)/19([image: $$\sim $$])/12(-)
	0(+)/0([image: $$\sim $$])/58(-)

	TK
	—
	—
	31(+)/12([image: $$\sim $$])/15(-)
	0(+)/4([image: $$\sim $$])/54(-)

	WCRV
	—
	—
	—
	0(+)/2([image: $$\sim $$])/56(-)






5.3 Comparisons of Tree Sizes
The comparisons of tree sizes are presented in Fig. 4. The results indicate that P-VRM exhibits a similar magnitude of tree sizes compared to standard GP. This confirms that improving generalization performance is more about regularizing semantics rather than tree size [3]. Thus, rather than simply applying the traditional Occam’s Razor philosophy, which suggests controlling tree sizes to prevent overfitting, it is more effective to control functional complexity in GP.
In addition to comparisons of tree sizes, training time for different complexity measures is also compared, as provided in Appendix A of the supplementary material.


6 Further Analysis
In this section, we further analyze the advantage of P-VRM by considering two questions:	Is it useful to adopt mixup in place of Gaussian perturbation to synthesize vicinal samples?

	Is the proposed vicinal risk also helpful when using Gaussian perturbation to synthesize vicinal samples?





To answer these two questions, we compare the proposed P-VRM with two variants under the same evolutionary feature construction framework:	GVRM: This variant introduces a small Gaussian noise, [image: $$\mathcal {N}(0,0.1)$$], to synthesize vicinal data [25], while maintaining the original labels.

	P-GVRM: Similar to GVRM, but this variant focuses on pessimistic vicinal risk rather than average vicinal risk.



Effectiveness of MixUp. The comparisons of test [image: $$R^2$$] scores between P-VRM and P-GVRM are presented in Table 4. As indicated by the [image: $$R^2$$] scores, P-VRM outperforms P-GVRM on 23 datasets and performs worse on only 8 datasets, highlighting the effectiveness of using mixup instead of Gaussian noise [25] to synthesize vicinal examples. The inferiority of P-GVRM is because Gaussian noise may synthesize some examples that do not conform to the data manifold, whereas mixup synthesizes samples more closely aligned with the data manifold. Therefore, using mixup to synthesize vicinal data is more effective.
Effectiveness of Pessimistic Vicinal Risk. Another interesting finding is that P-GVRM outperforms GVRM on 22 datasets and is similar on 34 datasets. This suggests that even when Gaussian noise is used to synthesize vicinal examples, employing pessimistic vicinal risk benefits evolutionary feature construction in controlling overfitting.Table 4.Statistical comparisons of [image: $$R^2$$] scores using mixup or Gaussian noise for synthesizing vicinal samples.


	 	P-GVRM
	GVRM

	P-VRM
	23(+)/27([image: $$\sim $$])/8(-)
	30(+)/21([image: $$\sim $$])/7(-)

	P-GVRM
	—
	22(+)/34([image: $$\sim $$])/2(-)






7 Conclusions
In this paper, we propose P-VRM to reduce overfitting and improve the generalization performance of GP-based evolutionary feature construction. P-VRM minimizes the vicinal risk on the worst-case vicinal examples, and theoretical analysis shows that P-VRM encourages the model to maintain a constant gradient and approximate a linear function between each instance and its worst-case vicinal instance, thereby improving generalization performance. Experiments on 58 datasets show that P-VRM effectively controls overfitting compared to seven other complexity measures, including classical VRM and parsimony pressure. An analysis of model size suggests that controlling overfitting is more about controlling semantic complexity rather than merely model size. Further comparison between mixup-based vicinal data synthesis and Gaussian noise-based synthesis reveals that using mixup to synthesize vicinal data is more effective in controlling overfitting.
For future work, exploring the effectiveness of other strategies, such as CutMix [21], to further control overfitting in GP-based feature construction is worthwhile. Additionally, investigating the efficacy of the proposed P-VRM in broader classes of symbolic regression techniques, including those based on reinforcement learning [42] or transformer [43] techniques, is also promising.

Appendices


A Comparisons of Training Time
The comparisons of training time are presented in Fig. 5. It shows the distribution of median training time on each dataset over 30 random seeds. Experimental results indicate that P-VRM requires more time than standard GP and simple complexity measures, such as parsimony pressure. Specifically, P-VRM takes 1481 seconds in median, while standard GP takes 320 seconds in median. The standard deviations of P-VRM and standard GP are 121 and 28 seconds, respectively. The reason P-VRM is more time-consuming is that it needs to compute the semantics of GP trees on vicinal data, whereas parsimony pressure merely examines the syntax of GP trees. Hence, P-VRM is more time-consuming. However, the training time for P-VRM remains within a reasonable range. Also, the overfitting issue cannot be solved by simply increasing the number of iterations or training time. Therefore, the increase in training time of P-VRM to address the overfitting issue is still acceptable.[image: ]
Fig. 5.Distribution of training time across the 58 datasets when optimizing different complexity measures.





B Post-hoc Parameter Analysis
P-VRM involves two hyperparameters. The first is the bandwidth of the Gaussian kernel used to sample instances [image: $$x_b$$] based on [image: $$x_a$$], and the second is the [image: $$\alpha , \beta $$] values in the beta distribution used to determine the mixing ratio. This section examines the sensitivity of these parameters to different settings.
B.1 Bandwidth
In P-VRM, a Gaussian kernel samples a paired instance [image: $$y_b$$] based on [image: $$y_a$$] as follows:[image: $$\begin{aligned} K(y_b, y_a) = e^{-\gamma \Vert y_b - y_a\Vert ^2} \end{aligned}$$]

 (16)


Here, the bandwidth [image: $$\gamma $$], is a critical parameter that defines the scope of the vicinity for each point. A smaller bandwidth implies a larger vicinity, while a larger bandwidth suggests that only proximate samples are likely to synthesize mixup instances. This study considers three different bandwidths, and the kernel values [image: $$K(y_b, y_a)$$] for various combinations of bandwidth [image: $$\gamma $$] and instances [image: $$y_a, y_b$$] are depicted in Fig. 6.[image: ]
Fig. 6.Kernel values for different bandwidths [image: $$\gamma $$] and instances [image: $$y_a, y_b$$].



Experimental results, as shown in Table 5, indicate that the proposed method is robust to changes in bandwidth settings, as changing from 0.5 to 0.25 has no significant impact on 54 out of the 58 datasets.Table 5.Statistical comparisons of test [image: $$R^2$$] scores across various bandwidths.


	Bandwidth
	0.25
	0.5

	1.0
	3(+)/53([image: $$\sim $$])/2(-)
	0(+)/58([image: $$\sim $$])/0(-)

	0.25
	—
	1(+)/54([image: $$\sim $$])/3(-)






B.2 Alpha/Beta
In mixup, the mixing ratio [image: $$\lambda $$] is sampled from a Beta distribution [image: $$\text {Beta}(\alpha , \beta )$$]. The probability density function of the Beta distribution is defined as:[image: $$\begin{aligned} p(x; \alpha , \beta ) = \frac{1}{B(\alpha , \beta )} x^{\alpha - 1} (1 - x)^{\beta - 1}, \quad 0 \le x \le 1, \end{aligned}$$]

 (17)



[image: ]
Fig. 7.Probability density functions of the Beta distribution for different [image: $$\alpha $$] values.



where [image: $$B(\alpha , \beta )$$] denotes the Beta function. For simplicity, [image: $$\alpha $$] is set to be equal to [image: $$\beta $$] in mixup, i.e., [image: $$\alpha =\beta $$]. In this section, three different settings of [image: $$\alpha $$] are examined: 0.5, 1, and 10, and their probability density functions are illustrated in Fig. 7.
Table 6 presents a comparison of test [image: $$R^2$$] scores obtained using different [image: $$\alpha $$] values in the Beta distribution for sampling the mixing ratio. The experimental results indicate that an [image: $$\alpha $$] value of 1 yields reasonably good results. This suggests that, in practice, a uniform distribution can be used in P-Mixup to speed up the sampling process, as the uniform distribution is more straightforward to sample from than the Beta distribution.Table 6.Statistical comparisons of test [image: $$R^2$$] scores across various [image: $$\alpha $$] values.


	[image: $$\alpha $$]
	10.0
	1.0

	0.5
	6(+)/46([image: $$\sim $$])/6(-)
	4(+)/54([image: $$\sim $$])/0(-)

	10.0
	—
	4(+)/49([image: $$\sim $$])/5(-)
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Abstract
This paper tackles the challenge of symbolic regression (SR) with a vast mathematical expression space, where the primary difficulty lies in accurately identifying subspaces that are more likely to contain the correct mathematical expressions. Establishing the NP-hard nature of the SR problem, this study introduces a novel approach named Symbol Graph Genetic Programming (SGGP) (Code is available at https://​github.​com/​SymbolGraph/​sggp). SGGP begins by constructing a symbol graph to represent the mathematical expression space effectively. It then employs the generalized Pareto distribution based on semantic similarity to assess the likelihood that each edge (subspace) in this graph will yield superior individuals. Guided by these probabilistic evaluations, SGGP strategically samples new individuals in its quest to discover accurate mathematical expressions. Comparative experiments conducted across three different benchmark types demonstrate that SGGP outperforms 21 existing baseline SR methods, achieving greater accuracy and conciseness in the mathematical expressions it generates.
Keywords
Symbolic RegressionSemanticsSymbol GraphExtreme Distribution
1 Introduction
Symbolic regression (SR) refers to discovering a symbolic function [image: $$f^*$$] fitted by the given data set (X, Y) from the mathematical expression space [image: $$\varOmega $$] [14, 21, 23, 32], i.e., [image: $$f^*={\textrm{argmin}} \ l(Y,f(X))$$], where l is the loss function. As the SR problem is NP-hard [39], evolutionary computation (EC) methods, especially genetic programming (GP) methods [8, 13, 22, 33, 40, 41], are commonly used to find approximate solutions for the SR problem.
While effective, these GP methods often overlook the specific characteristics of the dataset in their search processes, presenting an area for potential enhancement [10]. Recent research in SR has started to integrate machine learning and deep learning (ML/DL) algorithms [2, 6, 12, 24, 31]. However, the outcomes of these ML/DL algorithms tend to be influenced by the predefined regression models and the training datasets used. Despite these advancements, large-scale benchmark comparisons [20] reveal that the top three SR approaches are still GP-based. Moreover, these contemporary GP-based methods have been shown to surpass ML/DL-based approaches in performance. This highlights the ongoing relevance and effectiveness of GP methods in the field of SR.[image: ]
Fig. 1.Symbol Graph Genetic Programming.



In order to more effectively guide the GP search in accordance with the specifics of a given dataset, we introduce an innovative approach named Symbol Graph Genetic Programming (SGGP). SGGP uniquely employs a semantic operator for navigating the search toward a fitted mathematical expression within the specially designed symbol graph. This symbol graph1 represents the mathematical expression space [image: $$\varOmega $$] of SR. SGGP first constructs a symbol graph and initializes the population within this graph (as illustrated in Fig. 1(a)). It then utilizes the semantic operator to generate new populations. The semantic operator first utilizes individual semantic similarity (SS) [45] to measure the similarity between the individual output and the given dataset. SS is recorded at the edge that the individual passes through. So, each edge has a vector that saves the SS values of all individuals that pass through it. In Fig. 1(a), the edge [image: $$e\langle sin,x \rangle $$] records two semantic similarity values 0.6 and 0.8 of the two individuals “[image: $$sin(x_1\times x_2)$$]” and “[image: $$sin(x_1^2)+x_2$$]”. The semantic operator then leverages the vector to generate the edge extreme distribution [image: $$F(SS,\sigma ,\xi )$$] (i.e., generalized Pareto distribution (GPD) [30]), evaluating the probability of better individuals appearing on the edge. Due to the limited memory, recording all individuals in the vector is impossible. We create a new parameter updating method that updates [image: $$\sigma $$] and [image: $$\xi $$] with average estimation, ensuring that the expected value of this distribution remains unchanged. At last, the semantic operator samples new individuals with these probabilities on edges. For example, in Fig. 1(d), the root vertex ‘[image: $$\diamond $$]’ connects ‘sin’ with 80% probability, ‘sin’ then selects ‘−’ with 60% probability, ‘−’ finally selects ‘[image: $$x_1$$]’ and ‘[image: $$x_2$$]’ with 70% and 80% respectively. So, a new individual “[image: $$sin(x_1-x_2)$$]” is generated for the next population.
The proposed Symbol Graph Genetic Programming (SGGP) diverges from traditional GP methods by employing a semantic operator for the generation of new individuals. The semantic operator employs the generalized Pareto distribution based on semantic similarity to assess the likelihood that each edge (subspace) in the symbol graph will yield superior individuals. This key feature positions SGGP as a more promising solution finder than classical GPs.
The main contributions of this paper are the following: 	(1)
We construct a symbol graph to effectively represent the entire mathematical expression space of SR. Moreover, this symbol graph can preserve data features as semantics, utilizing these semantics to progressively convert rewards to the optimal solution.

 

	(2)
We detail the development of SGGP, which, in contrast to classical GPs, leverages the semantic operator to generate individuals. This operator guides the search through the symbol graph, offering a novel approach to problem-solving in this field.

 

	(3)
We demonstrate that SGGP significantly outperforms 21 baseline methods [20] on Feynman Symbolic Regression Benchmarks [37], Strogatz Benchmarks [19], and Penn Machine Learning Benchmarks [29].

 






2 Related Work
2.1 Mathematical Expression Encoding
Genetic Programming (GP) remains a prevalent and effective technique for addressing the symbolic regression (SR) problem [9, 10, 20]. GP operates by evolving the encoding of mathematical expressions to search for solutions within the mathematical expression space. Consequently, much research has been devoted to exploring various mathematical expression encodings. These include tree-encoded GPs [5, 15, 25, 28], graph-encoded GPs [1, 27, 32], and linear-encoded GPs [3, 8, 23].
Tree-encoded GPs typically represent mathematical expressions as expression trees, with internal nodes denoting mathematical operators ([image: $$+$$] and sqrt) and terminal nodes representing input variables ([image: $$x_1$$] and [image: $$x_2$$]) or constants (2 and pi). Graph-encoded GPs, on the other hand, utilize graphs for encoding. For instance, Cartesian genetic programming (CGP) [27] depicts mathematical expressions as directed acyclic graphs laid out on a two-dimensional grid of computational nodes. Lastly, linear-encoded GPs convert mathematical expressions into fixed-length linear strings, as seen in gene expression programming (GEP) [8] and linear GP (LGP) [3]. While all three encoding strategies effectively represent mathematical expressions, they each have limitations, particularly in retaining the features of the data they are meant to model. This is a key aspect that influences the effectiveness of GP in solving the SR problem.
This paper introduces Symbol Graph Genetic Programming (SGGP), which features a novel symbol graph encoding. SGGP leverages this graph encoding to effectively preserve data features as semantics, utilizing these semantics to progressively converge toward the optimal solution.

2.2 Semantics Methods
Semantics serves as the foundational knowledge that provides “grounding” for symbols, such as instruction opcodes [18]. The semantics of a tree are indicative of its functionality [26, 38, 44, 45]. Some researchers have integrated semantic awareness in GP, defining semantics based on traditional fitness values (e.g. mean square error) or the behavior of the tree [16, 17, 28]. For instance, Moraglio et al. [28] proposed a geometric operator, called Semantic Geometric Crossovers (SGX). It utilizes the weighted average of parents’ semantics to obtain offspring, ensuring that the offspring is at least better than one of the parents. However, this definition of semantics cannot reliably predict the GP behavior [43], nor can it correctly find potential structures contributing to the final solution [4]. Therefore, a reliable alternative definition is required.
In this context, Zojaji et al. [43] defined the semantics of a tree in terms of the normalized mutual information between its output and the target, a concept also referred to as semantic similarity (SS), i.e.,[image: $$\begin{aligned} SS(t) = \frac{I(X(t); Y)}{H(Y)}, \end{aligned}$$]

 (1)


where X is the output of the tree t, Y is the target value, I(X; Y) is the mutual information of X and Y, and H(Y) is the entropy of Y. In their approach, they harnessed semantics to segment the search space into smaller subspaces and subsequently evolved individuals within these areas. However, the effectiveness of this method is heavily influenced by the accuracy of subspace selection; an incorrect choice can significantly impact the algorithm’s efficiency.
SGGP, on the other hand, moves away from the concept of subspace selection and instead concentrates on selecting edges. It employs Semantic Similarity (SS) to assess the likelihood of encountering better-performing individuals along a given edge. Based on this probability assessment, SGGP then proceeds to sample new individuals, thus guiding the search process more effectively through the use of targeted probabilities.


3 Symbol Graph Genetic Programming
We introduce Symbol Graph Genetic Programming (SGGP), a novel approach designed to search for the optimal mathematical expression within a symbol graph. This symbol graph is specially constructed to represent the mathematical expression space of SR. SGGP distinguishes itself from traditional evolutionary algorithms by employing a unique semantic operator, as opposed to the conventional evolutionary operators like recombination and mutation. This semantic operator is pivotal in guiding the search for fitting mathematical expressions, as it leverages population feedback during the search process, contrasting with more random search methodologies. As delineated in Algorithm 1, the semantic operator operates in two key phases: 	1.
Computing the Extreme Distribution: Initially, the semantic operator calculates the extreme distribution on each edge by analyzing populations. This step, covered in Lines 4–12 of the algorithm, involves a detailed assessment of the current populations traversing each edge, from which it derives the extreme distribution.

 

	2.
Sampling New Individuals: Based on the extreme distributions calculated, the semantic operator then proceeds to sample new individuals. This is executed in Lines 13–16 of the algorithm. By leveraging the information gathered in the extreme distribution, the operator is able to make more informed decisions about where to sample new individuals from within the symbol graph.

 





[image: ]
Algorithm 1. SGGP



3.1 Constructing the Symbol Graph
To describe the mathematical expression space, we construct a symbol graph [image: $$G=(V,E) $$] as shown in Fig. 1(a). The symbol graph is a layered graph that includes three types of layers: 1) the top layer, 2) the leaf layer, and 3) the function layer. 1) The top layer only contains a ‘[image: $$\diamond $$]’ vertex as the root vertex. The ‘[image: $$\diamond $$]’ vertex is the cumulative sum operator ‘[image: $$\sum $$]’, which can linearly combine mathematical expressions from the second layer (function layer) and the leaf layer. For example, in Fig. 1(a), the ‘[image: $$\diamond $$]’ vertex can represent “[image: $$sin(x_1\times x_2)+sin(x_1^2)+x_2+log(x_1-x_2)$$]”. 2) The leaf layer contains constant vertices [image: $$V_c$$] and variable vertices [image: $$V_x$$]. Each constant vertex shows a constant, such as 1.2, e, and [image: $$\pi $$], and each variable vertex represents a variable. 3) The function layer has l levels. Each level consists of operator vertices [image: $$V_{op}$$] that represent the mathematical functions, such as ‘[image: $$+$$]’, ‘[image: $$\times $$]’, and ‘sin’. Each vertex op in [image: $$V_{op}$$] can connect all vertices of its next level and the leaf layer.
The symbol graph contains any mathematical expression by connecting a tree from the root ‘[image: $$\diamond $$]’ vertex to vertexes in the leaf layer. For example, in Fig. 1(a), the tree connected with the green line represents the mathematical expression “[image: $$sin(x_1^2)+x_2$$]”. So, the symbol graph is the mathematical expression space [image: $$\varOmega $$] of SR. Moreover, the edge e connecting a vertex and its connected descendant vertexes represents a subspace [image: $$\omega $$]. [image: $$\omega $$] contains mathematical expressions represented by trees with this vertex as the root. Therefore, each edge is a mathematical expression subspace.

3.2 Computing the Extreme Distribution
As depicted in Fig. 1(a), the symbol graph is a crucial component of our approach, where each edge represents a subspace of mathematical expressions [image: $$\omega $$]. To assess the potential of [image: $$\omega $$] for generating optimal mathematical expressions based on historical populations, the semantic operator employs the concept of extreme distribution, specifically the Generalized Pareto Distribution (GPD) [7, 30, 35]. This distribution is composed of Semantic Similarities (SS) calculated from the historical populations that have traversed [image: $$\omega $$]. In order to compute the extreme distribution for each edge ([image: $$\omega $$]), the semantic operator begins by gathering these SS values. Once obtained, these similarities are used to compute the extreme distribution. This method allows for a data-driven evaluation of each subspace within the symbol graph, enhancing the probability of identifying the most effective mathematical expressions for given problems.
Computing Semantic Similarity. An edge may be passed through by one or multiple individuals. For example, as shown in Fig. 1(a), the edge between ‘sin’ and ‘[image: $$\times $$]’ is passed by the two individuals “[image: $$sin(x_1\times x_2)$$]” and “[image: $$sin(x_1^2)+x_2$$]”. The edge records these individuals’ semantic similarities computed by Eq. 1, such as 0.6 and 0.8 of “[image: $$sin(x_1\times x_2)$$]” and “[image: $$sin(x_1^2)+x_2$$]”. Since semantic similarity is the mutual information between an individual’s output and the target value (Y), semantic similarities on one edge can effectively evaluate the mathematical expression subspace [image: $$\omega $$] that the edge represents.
For the root vertex ‘[image: $$\diamond $$]’, its out-degree is uncertain. It may choose one or multiple child vertexes. To represent the goodness of different degrees, it needs to record semantic similarities of individuals with different out-degrees. For example, in Fig. 2, ‘[image: $$\diamond $$]’ records two vectors [image: $$V_1$$] and [image: $$V_2$$], which save the semantic similarities of individuals with one degree and two degrees, respectively. [image: $$V_1$$] saves the semantic similarities of “[image: $$sin(x_1\times x_2)$$]” and “[image: $$log(x_1-x_2)$$]”, while [image: $$V_2$$] save the semantic similarity of “[image: $$sin(x_1^2)+x_2$$]”.[image: ]
Fig. 2.Computing semantic similarity for the root vertex ‘[image: $$\diamond $$]’.



Generating Extreme Probability. The purpose of SR is to find the single or few best-performing individuals fitting the dataset in the mathematic expression space. So, we assume that semantic similarities on one edge follow the extreme distribution—generalized Pareto distribution (GPD). GPD is used to evaluate the probability of better individuals appearing on the edge ([image: $$\omega $$]). GPD is the following cumulative distribution function [11].[image: $$\begin{aligned} F_{\sigma ,\xi }(x)=1-(1+\frac{\xi x}{\sigma })^{-\frac{1}{\xi }}, \end{aligned}$$]

 (2)


where [image: $$1+\frac{\xi x}{\sigma }&gt;0$$]. [image: $$\sigma $$] and [image: $$\xi $$] are the scale and shape parameters, respectively. The following three steps compute them at each iterative generation.
(1) First selecting the extreme sample set [image: $$T^{'}$$] from semantic similarities (SS) that are greater than the threshold [image: $$\psi $$] in an edge, i.e.,[image: $$\begin{aligned} T^{'}=\cup _{i=1}^n \{SS_i|SS_i&gt;\psi \}, \end{aligned}$$]

 (3)


where [image: $$\psi $$] is a quantile of [image: $$T^{'}$$].
(2) Then, using the modified L-moments method, estimate the two parameters [image: $$\sigma $$] and [image: $$\xi $$]. The L-moments method [34] needs extreme samples of all historical generations, wasting memory and computing time. To avoid this waste, the modified L-moments method only collects extreme samples at the current generation. It first estimates the two parameters [image: $$\hat{{\hat{\xi _t}}}$$] and [image: $$\hat{{\hat{\sigma _t}}}$$] by the following Eq. 4.[image: $$\begin{aligned} \hat{{\hat{\xi _t}}}=2-\frac{(n_t-1)\sum _{i=1}^{n_t} SS_i}{\sum _{i&gt;j}(SS_i-SS_j)}, \hat{{\hat{\sigma _t}}}=(1-\hat{\hat{\xi _t}}) \times \frac{\sum _{i=1}^{n_t} SS_i}{n_t}, \end{aligned}$$]

 (4)


where [image: $$n_t$$] is the number of [image: $$T^{'}$$] in the t-th generation, [image: $$SS_i$$] represents the i-th extreme sample after sorting [image: $$T^{'}$$] in ascending order. Then, it utilizes the following Eq. 5 update [image: $$\xi $$] and [image: $$\sigma $$].[image: $$\begin{aligned} {\hat{\xi }}_t=\frac{{\hat{\xi }}_{t-1}\times N+\hat{{\hat{\xi _t}}}\times n_t}{n_t+N}, {\hat{\sigma }}_t=\frac{{\hat{\sigma }}_{t-1}\times N+\hat{{\hat{\sigma _t}}}\times n_t}{n_t+N}, \end{aligned}$$]

 (5)


where N represents the number of historical population extreme samples. This equation is reasonable since it can unbiasedly estimate [image: $$\xi $$] and [image: $$\sigma $$] (proven in Sect. 4).
(3) The extreme probability [image: $$P_t$$] aims to evaluate the probability of better individuals appearing on edge ([image: $$\omega $$]) or the probability of the root vertex degree of better individuals. [image: $$P_t$$] is computed by [image: $$P_t=1-F_{\hat{\sigma _t},\hat{\xi _t}}(\theta )$$], where [image: $$\theta \in (0,1)$$] is the threshold of semantical similiary. So, [image: $$P_t$$] describes the probability of an individual appearing and its semantic similarity greater than [image: $$\theta $$].

3.3 Sampling New Individuals
The semantic operator samples new individuals according to the extreme probability on each edge. When it generates a new individual, it builds the individual from the root vertex ‘[image: $$\diamond $$]’ to vertexes in the leaf layer in the symbol graph. The semantic operator determines the [image: $$\diamond $$]’s degree based on its extreme probabilities. Then, it chooses vertexes from the top to the bottom based on probabilities of edges at the same level. For example, for the new individual “[image: $$sin(x_1-x_2)$$]” in Fig. 1(d), the semantic operator first samples the [image: $$\diamond $$]’s degree as 1 based on probabilities on the vertex [image: $$\diamond $$]. It uses the roulette wheel to randomly select the vertex ‘sin’ based on probabilities at the first level, ‘[image: $$10\%$$]’, ‘[image: $$40\%$$]’, ‘[image: $$20\%$$]’, ‘[image: $$80\%$$]’, ‘[image: $$25\%$$]’, and ‘[image: $$35\%$$]’. It then randomly selects the next vertexes ‘−’, ‘[image: $$x_1$$]’, and ‘[image: $$x_2$$]’ based on the probabilities at the second and third levels. It finally generates the new individual “[image: $$sin(x_1-x_2)$$]”.


4 SGGP Analysis
4.1 Parameter Estimation in GPD
Lemma 1
[image: $$\hat{\xi _t}$$] and [image: $$\hat{\sigma _t}$$] obtained by Eq. 5 are unbiased estimators in GDP.

Proof
According to Eq. 4,[image: $$\begin{aligned} {\hat{\xi }}_t=\frac{{\hat{\xi }}_{t-1}\times N+\hat{\hat{\xi _t}}\times n_t}{n_t+N}=\frac{\sum _{i=1}^{t-1}{\hat{\hat{\xi }}}_i\times n_i+\hat{\hat{\xi _t}}\times n_t}{n_t+\sum _{i=1}^{t-1}n_i}, \end{aligned}$$]

 (6)


where [image: $$n_i$$] is the number of extreme samples in the i-th generation. According to [34], [image: $$\hat{\hat{\xi }}_i$$] is an unbiased estimator, i.e., [image: $$E[\hat{\hat{\xi }}_i]=\xi $$]. So, the expectation of [image: $$\hat{\xi _t}$$] is[image: $$\begin{aligned} \nonumber E[{\hat{\xi }}_t]&amp;=\frac{\sum _{i=1}^{t-1}E[\hat{\hat{\xi }}_i]\times n_i+E[\hat{\hat{\xi _t}}]\times n_t}{n_t+\sum _{i=1}^{t-1}n_i}\\ &amp;=\frac{\sum _{i=1}^{t}E[\hat{\hat{\xi }}_i]\times n_i}{\sum _{i=1}^{t}n_i}=\frac{\sum _{i=1}^{t}\xi \times n_i}{\sum _{i=1}^{t}n_i}=\xi , \end{aligned}$$]

 (7)


which means [image: $$\hat{\xi _t}$$] is an unbiased estimator. Similar to the above proof, [image: $$\hat{\sigma _t}$$] is also proved to be an unbiased estimator.


4.2 Space Complexity
Compared with classical GPs, such as GEP [8] and GPlearn [15], SGGP utilizes the individual semantic similarity and the extreme distribution GPD to find a mathematical expression. So, SGGP requires additional space to record them.
Lemma 2
Supposed that the space complexity of the classical GP [15] is [image: $$\Theta (GP)$$], the space complexity of SGGP is [image: $$\Theta (SGGP)=\Theta (GP+n\times m)$$], where m is the number of edges in the symbol graph, n is the number of individuals in the population.

Proof
SGGP records semantic similarities of all individuals of one generation in each edge vector. Assuming that there are m edges in the symbol graph, the edge vector contains at most n semantic similarities since there could be at most n individuals that pass through this edge. Moreover, the vector of the root vertex records n semantic similarities. So, SGGP requires [image: $$\Theta (m\times n+n)$$] to record these semantic similarities. Besides, to generate the parameters of GPD and the extreme probabilities, SGGP requires [image: $$\Theta (4\times (m+s))$$] to save four parameters ([image: $$N,{\hat{\xi }}_t,{\hat{\sigma }}_t, P_t$$]), where s is the number of the root vertex’s extreme distributions, [image: $$m+s$$] is the total number of extreme distributions in the symbol graph. Since [image: $$n\gg 4$$], [image: $$m\gg s\ge 1$$], [image: $$\Theta (GP+n\times m+n+4\times (m+s))\approx \Theta (GP+n\times m+n) \approx \Theta (GP+n\times m)$$]. Thus, the space complexity of SGGP is [image: $$\Theta (GP+n\times m)$$].


4.3 Time Complexity
Unlike classical GP [15], SGGP utilizes the semantic operator to generate new individuals rather than crossover and mutation. So, it requires additional computing time to implement the semantic operator, including the computation of semantic similarity, extreme distribution, and sampling for new individuals.
Lemma 3
Supposed that the time complexity of GP is O(GP), the time complexity of SGGP is [image: $$O(GP+(n\times k+n^2\times m)\times g)$$], where n is the number of individuals in one generation, k is the running time of Eq. 1, m is the number of edges, and g is the number of generation.

Proof
SGGP computes n individuals’ semantic similarities in one generation by Eq. 1. It takes [image: $$O(n\times k)$$] time. The additional time of generating the extreme distribution mainly focuses on the estimation of parameters [image: $$\hat{\hat{\sigma _t}}$$] and [image: $$\hat{\hat{\xi _t}}$$]. According to Eq. 4, the estimation takes [image: $$O(n^2\times (m+s))$$] time, where s is the number of the root vertex’s extreme distributions, and [image: $$m+s$$] is the total number of extreme distributions in the symbol graph. Besides, SGGP takes [image: $$O(n\times (m+s))$$] times to sample new individuals with extreme probabilities, since it traverses at most [image: $$m+s$$] subspaces when sampling an individual. Since [image: $$m\gg s$$], [image: $$n\gg 1$$], [image: $$O(GP+n\times k+n^2\times (m+s)+n\times (m+s)) \approx O(GP+n\times k+n^2\times m+n\times m) \approx O(GP+n\times k+n^2\times m)$$]. Thus, the time complexity of SGGP is [image: $$O(GP+(n\times k+n^2\times m)\times g)$$].



5 Experiment
5.1 Datasets and Parameter Settings
We conducted a comprehensive evaluation of SGGP’s performance using three distinct types of benchmarks: Penn Machine Learning Benchmarks (PMLB) [29], Feynman Symbolic Regression Benchmarks (FSRB) [37], and Strogatz Benchmarks [19]. PMLB, encompassing 54 black-box problems, serves to assess the performance of SR algorithms in high-dimensional datasets. Meanwhile, FSRB and Strogatz Benchmarks, comprising 54 known physics problems, are utilized to evaluate the algorithms’ effectiveness in accurately finding the correct solutions, a metric called ‘solution recovery rate’.Table 1.SGGP Parameter


	Parameter
	Value

	Function Set
	[image: $$+,-,\times ,\div ,sin,cos,log,sqrt,sigmod$$]

	Population Size
	1000

	Max Generations
	PMLB:500

	FSRB and Strogatz:1000

	Stopping Threshold
	[image: $$1e^{-5}$$]

	Extreme Val Threshold [image: $$\psi $$]
	0.85

	Semantic Sim Threshold [image: $$\theta $$]
	0.9

	Symbol Graph’s Layer
	6

	Root Vertex’s Degree
	[image: $$1 - 4$$]





On PMLB, we compare SGGP with 21 baseline algorithms [20] and run these algorithms on each benchmark 10 times. On FSRB and Strogatz, compared with 14 baseline algorithms [20], SGGP runs on each benchmark 20 times, including 10 times with Gaussian noise. Parameters of 21 baseline algorithms are from [20], while detailed parameters of SGGP are listed in Table 1.

5.2 Result
The performance of SGGP relative to 14 baseline SR algorithms on the FSRB and Strogatz is illustrated in Fig. 3. The results clearly demonstrate that SGGP surpasses these baseline algorithms in terms of both [image: $$R^2$$] and solution recovery rate.[image: ]
Fig. 3.Result comparisons on FSRB and Strogatz.


[image: ]
Fig. 4.Wilcoxon signed-rank test on the FSRB and Strogatz benchmarks, where [image: $$\alpha =4.8e^{-4}$$].



Notably, SGGP achieves the highest [image: $$R^2$$] value (0.994), indicating significantly greater accuracy compared to 11 of the SR baseline algorithms, including AFP_FE, AFP, EPLEX, FEAT, among others. While SGGP’s accuracy does not significantly outdo that of three algorithms (GP-GOMEA, SBP-GP, and Operon), its solution recovery rate is markedly superior, as evidenced in Fig. 4. In fact, SGGP’s solution recovery rate is the highest, significantly outperforming the other 11 SR baseline algorithms.
Furthermore, SGGP is good at noise suppression. At a noise level of 0.1, it performs 25.93% better than the second-ranked method, gplearn. This effectiveness can be attributed to the semantic similarity integral to SGGP. Semantic similarity measures individuals based on mutual information and entropy, which can inherently provide resistance to noise [42].[image: ]
Fig. 5.Result comparisons on PMLB.


[image: ]
Fig. 6.Pareto front with model size and [image: $$R^2$$] score.



Figure 5 showcases the performance of SGGP in comparison to 21 baseline SR algorithms on the PMLB. In this evaluation, SGGP demonstrates superior performance, achieving an [image: $$R^2$$] score of 0.784. Additionally, SGGP excels in generating more concise mathematical expressions. With an average expression size of 23.5, it ranks first among the top 14 algorithms in terms of the [image: $$R^2$$]. This efficiency in expression size is largely attributed to the use of a limited-level symbol graph in SGGP, which effectively prevents the issue of bloating often seen in genetic programming. Therefore, SGGP is the best trade-off algorithm between accuracy and simplicity, as shown in Fig. 6.

5.3 Discussion
Why does SGGP outperform the other baseline algorithms on most benchmarks? The standout performance of SGGP can be primarily attributed to its semantic operator. This operator enables SGGP to leverage individual semantic similarity and the extreme distribution (GPD) to direct its search. This methodology enhances the efficiency of the search process, allowing SGGP to identify the correct solutions more rapidly.[image: ]
Fig. 7.Convergence Comparisons on “[image: $$\sqrt{\frac{x_0 \times x_1}{x_2}}$$]”. Dashed lines indicate the mean fitness of one algorithm running 10 times. The solid blue line is one of the results that SGGP runs. Sankey graphs, 
[image: ], 
[image: ] and 
[image: ], indicate each edge probability in the symbol graph. (Color figure online)



The convergence curve of the fitness scores of the four algorithms (SGGP, GPlearn, DSR, and BSR) on the benchmark “[image: $$\sqrt{\frac{x_0 \times x_1}{x_2}}$$]” are illustrated in Fig. 7. SGGP can quickly reduce fitness and find the optimal solution after running 60 generations. In comparison, the other three algorithms can still not find optimal results even after running 1000 generations.
SGGP first initializes the population within the symbol graph. Then, the semantic operator utilizes individuals’ semantic similarities in the initial population to evaluate the extreme distribution (GPD) of each edge. With these extreme distributions, the semantic operator samples individuals for the second generation. In the second generation, the Sankey graph 
[image: ] shows more individuals passing through edges [image: $$\langle Mul,Log\rangle $$], [image: $$\langle Log,Sqrt\rangle $$], [image: $$\langle Sqrt,Div\rangle $$], [image: $$\langle Mul,x_1\rangle $$], [image: $$\langle Mul,x_0\rangle $$], [image: $$\langle Div,x_2\rangle $$], [image: $$\langle Sqr,Div\rangle $$] et al. In the fourth generation, as shown in Sankey graph 
[image: ], since individuals that pass through edges [image: $$\langle Mul,Log\rangle $$], [image: $$\langle Log,Sqrt\rangle $$] are not good at their semantic similarities, probabilities on these edges become lower. Meanwhile, the probabilities on edges, [image: $$\langle Div,Mul\rangle $$], [image: $$\langle Mul,Div \rangle $$] and [image: $$\langle Div,x_1\rangle $$] become higher. In the sixth generation, as shown in Sankey graph 
[image: ], probabilities on the edges of the benchmark “[image: $$\sqrt{\frac{x_0 \times x_1}{x_2}}$$]” are high. So, SGGP can find the target solution by sampling individuals based on probabilities of edges.[image: ]
Fig. 8.The fitness distribution comparison on “[image: $$\sqrt{\frac{x_0 \times x_1}{x_2}}$$]”. Each curve is a kernel density estimate of RMSE for a specific generation, with the purple curve indicating the presence of the extreme distribution, while the blue curve denotes its absence. The darker the color, the larger the generation. Triangle markings denote the mean fitness of the distribution at the final generation. (Color figure online)



Figure 8 characterizes the significance of extreme distribution. When compared to the method of evaluating each edge using average semantic similarity (without extreme distribution), the utilization of extreme distribution enhances the fitness of individuals in each generation, thereby increasing the probability of generating superior individuals. For example, at the end of generation, the absence of extreme distribution results in an average fitness of 0.33. Nevertheless, upon employing the extreme distribution, it can be reduced to 0.15. So, with the help of extreme distribution, SGGP can search for superior individuals.
The convergence and fitness distribution comparisons on this benchmark (Other benchmarks are available at https://​github.​com/​SymbolGraph/​sggp.) illustrate that the extreme distribution with semantic similarity can give the right evaluation (i.e., edges in the target mathematical expression with high probabilities) and superior individuals. Thus, the semantic operator based on the extreme distribution can guide SGGP to search for the optimal solution within the symbol graph efficiently.


6 Conclusion
In this paper, we design a novel symbol graph describing the mathematical space of the symbolic regression. Based on the symbol graph, we propose a new genetic programming methodology, Symbol Graph Genetic Programming (SGGP). SGGP employs the extreme distribution—Generalized Pareto Distribution (GPD)—alongside semantic similarity to calculate probabilities for each edge in the symbol graph. It then efficiently searches for the correct solution by sampling new individuals based on these probabilities. Experiments show that SGGP outperforms 21 baseline methods that include the start-of-the-art ML/DL methods and EC methods.
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Footnotes
1We employ the symbol graph to prove that the SR problem is NP-hard [36].
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Abstract
Genetic programming (GP) approaches are among the state-of-the-art for symbolic regression, the task of constructing symbolic expressions that fit well with data. To find highly accurate symbolic expressions, both the expression structure and any contained real-valued constants, are important. GP-GOMEA, a modern model-based evolutionary algorithm, is one of the leading algorithms for finding accurate, yet compact expressions. Yet, GP-GOMEA does not perform dedicated constant optimization, but rather uses ephemeral random constants. Hence, the accuracy of GP-GOMEA may well still be improved upon by the incorporation of a constant optimization mechanism. Existing research into mixed discrete-continuous optimization with EAs has shown that a simultaneous and well-integrated approach to optimizing both discrete and continuous parts, leads to the best results on a variety of problems, especially when there are interactions between these parts. In this paper, we therefore propose a novel approach where constants in expressions are optimized at the same time as the expression structure by merging the real-valued variant of GOMEA with GP-GOMEA. The proposed approach is compared to other forms of handling constants in GP-GOMEA, and in the context of other commonly used techniques such as linear scaling, restarts, and constant tuning after GP optimization. Our results indicate that our novel approach generally performs best and confirms the importance of simultaneous constant optimization during evolution.
Keywords
Genetic programmingConstant optimizationSymbolic regressionModel-based evolutionary algorithms
1 Introduction
In recent years, the field of eXplainable AI (XAI) has received increased attention, especially for use cases where AI models can affect lives and livelihoods. Given a dataset and a library of atomic functions such as [image: $$\{+,-,\times ,\div ,\sin \}$$], symbolic regression (SR) is the task of finding an interpretable expression that best describes the relation between one (output) variable and other (input) variables [15]. Compact SR models (i.e., expressions) are interesting from the perspective of XAI and interpretable ML (IML), as they are readable and therefore have the potential to be humanly understandable [24, 31]. GP-GOMEA is a genetic programming (GP) based SR method that is amongst the state-of-the-art for finding compact, yet accurate expressions and part of the non-dominated front on the recent SR benchmark SRBench [17, 29].
GP approaches generally primarily optimize the expression structure through a process of iteratively recombining individuals in a population of (initially random) expressions. The strength of GP-GOMEA in particular is finding expression structures by dynamically learning and exploiting a linkage model during optimization that captures key dependencies between parts of an expression template. Still, in general, for an SR expression to be highly accurate, not only must the right expression structure be found, also the real-valued coefficients must be optimized. Typically, ephemeral random constants (ERCs) are used [15], which are random constants that are sampled during initialization and then not modified any further. Current approaches refine these by performing gradient-based search or randomly mutating constant values. While the expression structure is optimized by performing variation on the whole population, constant optimization typically is performed on individual solutions. In the context of XAI, where SR expressions need to be compact, finding better constants is expected to increase expression accuracy while keeping expressions compact.
In this paper, we present and evaluate GP-RV-GOMEA, a new approach to constant optimization in GP-GOMEA that takes inspiration from GAMBIT [25], a fully integrated model-based evolutionary algorithm (MBEA) approach to mixed discrete and continuous optimization. To make constant optimization a first-class citizen in GP-GOMEA, SR is considered to be a mixed discrete and real-valued problem, where GP-GOMEA is used to optimize the structure of expressions and the real-valued GOMEA (RV-GOMEA) is used to simultaneously optimize the constants of all expressions. Compared to random coefficient mutations, the design and use of a dedicated MBEA is expected to lead to a more directed and effective search that is better positioned to overcome potentially ill-conditioned gradients that non-linear-least-squares methods can encounter [16].
The remainder of this paper is organized as follows. Related works are first discussed in the following Section. In Sect. 3 we describe the new method GP-RV-GOMEA. In Sect. 4, we perform experiments to assess the performance of GP-RV-GOMEA as well as other GP-GOMEA variants. We discuss our main findings in Sect. 5 and draw our final conclusions in Sect. 6.

2 Related Work
Since the introduction of ERCs, constant optimization in GP has become a well-studied subject and various approaches have been suggested, including coefficient mutations [30], gradient-based search [9, 14, 23], and meta-heuristic optimization [1, 5, 10, 20, 26].
In [1, 20], real-valued EAs are nested within a GP algorithm to separately optimize the constants of either the best or all individuals, respectively. In [26], simulated annealing is used in the same manner. Coefficient mutations, gradient-based search, and the approaches presented in [1, 20, 26], all optimize the constants in expressions separately per expression, either in a nested loop inside GP, or after GP terminates. In this paper, we consider simultaneous evolutionary optimization. The motivation for joint optimization is that as the GP population converges over time, similar constant values are likely needed across the population, and thus constant optimization is not viewed as an independent problem for each individual in this work. Moreover, in related work with mixed discrete and continuous variables, their joint optimization has been shown to be advantageous over independent nested, or sequential optimization [25].
In [5], differential evolution is used to optimize the expression structure and constants at once. However, GP is modeled as a fully real-valued optimization problem by using a fixed number of decision variables to encode the expression structure, combined with a mapping from continuous values to GP operators. The remaining decision variables are the constant values available to an individual. Instead of ERCs, constant references are added that are substituted with the corresponding constant value during evaluation. Our method differs from this approach by interleaving optimization of the structure and constants, and using separate algorithms to do so. A similar approach has been presented in [10], however, significant progress both in GP and real-valued optimization has been made since 1995. Moreover, our method further includes an optimization to avoid unnecessary fitness evaluations, not present in any of the previous approaches. To the best of our knowledge, this also is the first work comparing such a form of constant optimization with other approaches.
An approach to mixed discrete and real-valued optimization using GOMEA has been presented in [25]. Our new method takes direct inspiration from that work but uses GP-GOMEA as a specialized GP algorithm for the discrete part and RV-GOMEA for the constants. Regarding constants in GP-GOMEA, ERCs and coefficient mutation have been explored in [29] and [30] respectively. Both approaches are used as a baseline for the new method we introduce here.

3 Model-Based Evolutionary Constant Optimization in GP-GOMEA
In this section, GP-RV-GOMEA, a combination of GP-GOMEA and RV-GOMEA based on GAMBIT is presented. First, the family of gene-pool optimal mixing evolutionary algorithms (GOMEAs) and the individual algorithms used are shortly described before the combination is introduced.
3.1 Gene-Pool Optimal Mixing Evolutionary Algorithms
Similar to other population-based algorithms, GOMEAs work by iteratively refining an initially random set of candidate solutions. Each individual in a GOMEA is typically represented as a fixed-length list of decision variables. To achieve effective optimization, the aim in a GOMEA is to model and exploit dependencies between linked variables [6].
These dependencies can be set a priori or learned in every generation during optimization. This linkage information is modeled using a so-called family of subsets (FOS) structure, a set that contains subsets of all decision variable indices. Each subset in the FOS then corresponds to a group of linked variables and is used as a crossover mask during variation. To learn the FOS during optimization, hierarchical clustering using UPGMA [8] is often used on the decision variables. As a similarity measure, typically the mutual information between the decision variables is used [6]. Starting from all single variable subsets, a subset is added for every pair of joined subsets during hierarchical clustering. This results in a so-called Linkage Tree FOS.
Variation then is performed for each individual subset in the FOS, where all variables in the given subset are varied together. For discrete variables, the new values are inherited from a donor randomly picked from the population, or sampled from a previously estimated multivariate normal distribution in the real-valued case. The changed solution is then evaluated, and reverted in case the fitness is worse compared to before the modification. This variation procedure is called Gene-pool Optimal Mixing (GOM) and is performed for all FOS subsets and individuals in a single generation. For discrete decision variables, the donors are a copy of the population that is not modified, to match the distribution of values at the time of learning the linkage model. The real-valued distribution used corresponds to a potentially adapted (see Sect. 3.3) maximum-likelihood estimate of the top [image: $$35\%$$] solutions in the population for every FOS subset.
Further, forced improvements, a mechanism which forces solutions that did not improve within the last [image: $$1+\log _{10}(\text {population size})$$] generations, are used [6]. This mechanism subjects such solutions to an additional round of GOM steps until the solution has improved, where the donor is the elite of the current population. If no improvement can be found after processing all FOS subsets, the solution is replaced with the elite solution.

3.2 GP-GOMEA
GP-GOMEA [29] is the GP variant of GOMEA, where a fixed, tree-based symbolic expression template is mapped to a string representation. This inherently limits the maximum size of the learned expressions. Typically, full [image: $$n$$]-ary trees are used, where [image: $$n$$] is the largest arity in the function set used. Using a fixed template introduces syntactic introns for expressions smaller than the template size, i.e., all subtrees of terminal nodes such as input features or constants have no impact on the symbolic expression encoded by a solution. This is exploited during GOM when no actively used node is changed. The inherited modifications are simply accepted as the fitness remains unchanged.

3.3 RV-GOMEA
RV-GOMEA [4] is the real-valued version of GOMEA for continuous search spaces. When the linkage is not set a priori, then the similarity metric used during clustering typically is the Pearson product-moment correlation coefficient. However, in this paper, only the full FOS, i.e., a single crossover mask containing all variables, is used as all constants used in a solution can affect each other.
In addition to sampling new values from a learned distribution, additional mechanisms detailed in [4] influence the variation compared to other GOMEA variants. These are the Anticipated Mean Shift (AMS), which shifts a part of the population in the direction of the mean shift between the previous and current generation, and Adaptive Variance Scaling (AVS) to adapt the step size in case solutions are found more than a standard deviation away from the distribution mean. Forced improvements in the real-valued case are performed by bisecting the values of the solution and the elite for each FOS subset.

3.4 GP-RV-GOMEA
Solution Representation. To make constant optimization a first-class citizen, the GP-GOMEA genotype consisting of discrete decision variables is extended with a fixed number of real-valued constants that will be optimized using RV-GOMEA. Instead of special constant nodes, the GP terminal set is extended with constant references for all added constants. This representation is shown in Fig. 1 and during evaluation, constant references are substituted with the corresponding value from the real-valued decision variables. Note that introns can be both discrete or real-valued.[image: ]
Fig. 1.The genotype (left) of a single individual in GP-RV-GOMEA and how it relates to the encoded expression (right). Shaded values are introns that do not affect the semantic meaning of the expression.



Interleaving Scheme. Using this mixed representation, optimization then follows the approach described in [25] with additional modifications specific to GP. The approach is outlined in Algorithm 1. After initialization, in every generation, first, the discrete linkage model used by GP-GOMEA is learned from the current population. This is followed by a mixed variation procedure that interleaves performing discrete GOM using GP-GOMEA and real-valued variation steps using RV-GOMEA until all subsets in the discrete FOS have been processed. In [25], this interleaving is done by shuffling the order of all variation steps, both discrete and continuous, to balance the computational effort spent. However, as GP-GOMEA only performs evaluations if actively used nodes are modified, this quickly leads to an imbalanced distribution of computational effort between the discrete and real-valued optimization. Hence, a different approach directly based on the number of evaluations performed for each variable type is used. To balance the computational effort spent, the ratio of real-valued to discrete evaluations ([image: $$\in [0,\infty ]$$]) is transformed into a probability of performing a real-valued step and then the next step is sampled from the uniform distribution (lines 6–7 in Algorithm 1) . Note that while GP steps amount to performing GOM for all solutions and a single FOS subset, the real-valued steps amount to performing a full RV-GOMEA generation. Thus, the real-valued steps consist of computing the maximum-likelihood estimate, performing GOM, and finally AMS.
[image: ]
Algorithm 1GP-RV-GOMEA



Forced Improvements. After the main variation steps have been performed, forced improvements are performed as described in [6, 27]. The real-valued RV-GOMEA steps also perform forced improvements, however, as opposed to the procedure described in [4], the real-valued forced improvements in the proposed method are modified to take the discrete structure into account. This is done by ensuring that the donor used makes use of constant values and then interleaving the discrete and real-valued forced improvements steps, as is done for the main variation shown in Algorithm 1. Since improvements can be both of structural and real-valued nature, the number of generations without improvements needed before real-valued forced improvements are applied was decreased from the default of 100 in RV-GOMEA to 20 generations.
Real-Valued Intron Handling. Similar to how GP-GOMEA can have introns, it is possible for real-valued constants to not be used in the encoded expression. To avoid unnecessary evaluations, changes to unused constants thus are not evaluated and are simply accepted in line with the intron handling of GP-GOMEA. Note that as we use the full FOS for RV-GOMEA, any change to the constants of a solution that actively uses at least one constant still has to be evaluated.
In RV-GOMEA, the constant values used for the maximum-likelihood estimation are selected based on the solution fitness. However, with the presence of introns, some of the values used for this estimate possibly do not contribute to the fitness of an individual. To avoid introducing noise through these inactive values, we make RV-GOMEA “intron aware” by filtering out these intron values in all steps where constant values are used to guide optimization. When selection is performed, for each constant index, the top [image: $$35\%$$] of the active values are selected. Similarly, AMS is performed only on individuals with active constants and AVS only considers active values when updating the variance scaling factors.


4 Experiments and Results
In this section, we perform two types of experiments. The first experiment is performed using noise-free synthetic problems to isolate constant optimization and validate the effectiveness of the proposed approach. The second experiment uses real-world data to confirm the practical usefulness of the approach.
4.1 Experimental Setup
We compare the proposed approach without and with intron-aware (IA) model updates to GP-GOMEA with ERCs [29] and GP-GOMEA with coefficient mutation [30], hereafter abbreviated as RV, RV+IA, ERCs, and ERCs+CM, respectively. To isolate the effect of constant optimization from other techniques commonly used to increase performance such as linear scaling [13] (hereafter LS), constant tuning after optimization, and restarts, all combinations are tested. The other parameters used are detailed in Table 1. The function set was chosen based on [21], where it was shown that this function set tends to generalize well to unseen data. In all experiments, cross-validation with 5 folds and 7 repeats per fold using different seeds is used, corresponding to 35 runs per problem, method, restart, and LS configuration.Table 1.The parameter settings used in the experiments.


	 Parameter
	Method

	ERCs
	ERCs+CM
	RV
	RV+IA

	Objectives
	Mean squared error (MSE)

	Tree height
	5 (31 Nodes)

	Operators
	[image: $$+,-,\times ,\div ,\sin $$]

	Constant initialization
	[image: $$\mathcal {U}(\min \{y_{train}\}, \max \{y_{train}\})$$]

	Termination
	[image: $$10^7$$] evaluations or convergence

	Population size
	1000

	Constant probability
	[image: $$50\%$$]

	Number of constants
	 	 	10
	10

	Intron Awareness
	 	 	No
	Yes





We compare based on a fixed evaluation budget, as the different methods do not use the same number of fitness evaluations per generation. In addition, a run without restarts is stopped when it converges. A run is considered as converged when either all individuals encode the same structure or no evaluations were spent during a full generation. For the synthetic problems, a target mean squared error (MSE) value of [image: $$10^{-8}$$] was used as an additional termination criterion in the first experiment. With restarts, the previous convergence conditions or no improvement to the elitist solution of the current restart within 10 generations trigger a full restart. Note that two elitist solutions are maintained, one to maintain the best solution across all restarts and one for the best solution of the current restart. A budget of [image: $$10^7$$] evaluations is used to ensure that all methods can converge within the computational budget. Hence, without restarts the fitness after convergence is compared, albeit this is not a fair comparison based on the actual number of evaluations spent. With restarts, the comparison based on evaluations is fair, however, the number of restarts or generations performed is not. Constant optimization after GP is performed using the L-BFGS implementation from PyTorch [22] with a limit of 500 iterations, after which the resulting model is simplified using SymPy [19].

4.2 Synthetic Problems: Does RV Within GP Work as Desired?
In the first experiment, we use the following synthetic problems with 1000 instances sampled with [image: $$x_i\sim \mathcal {U}(-10,10)$$]:[image: ]


These problems were selected with specific criteria in mind. First, discovering the correct structure should not be overly challenging, to compare the constant optimization capabilities of various methods. Second, the chosen problems were designed to feature nested or non-linear combinations of constants, thereby ensuring that LS does not fully mitigate the need for constant optimization. Lastly, the synthetic problems were crafted to exhibit multi-modal constant optimization landscapes, motivating the use of gradient-free techniques. The landscape near the optimal constant values for [image: $$\sin (\pi \cdot x + e)$$] is shown in Fig. 2.[image: ]
Fig. 2.The constant optimization landscape can be multi-modal, both with and without linear scaling (LS). The error for every constant combination was computed using (the same) 500 instances sampled from [image: $$\mathcal {U}(-10,10)$$].



The results are shown in Fig. 3 and Table 2. Note that this is an inherently biased comparison, as ERCs do not have an inherent ability to change the value of constants other than recombining several constants to represent new values not sampled initially. Likewise, coefficient mutation is random by nature, and thus the likelihood of improving constants decreases as the constant values get closer to the closest local optima. Nonetheless, we can confirm that our approach (i.e., RV and RV + IA) effectively optimizes constants, and clearly is better at reaching the MSE target of [image: $$10^{-8}$$] compared to the other constant optimization types considered (Fig. 3). Table 2 shows that with intron awareness the proportion of runs reaching the MSE target increases, indicating that the real-valued distributions estimated have a better fit.[image: ]
Fig. 3.The training and testing MSE scores for the synthetic problems on a logarithmic scale. The bar corresponds to the median MSE before tuning, while the circle and horizontal line correspond to the median and interquartile range (IQR) after post-processing. Note that the MSE was capped at the target value of [image: $$1e-8$$], which is highlighted with a vertical line.


Table 2.Proportion of runs that reach the [image: $$10^{-8}$$] MSE target. The best values per setting are highlighted in bold and the percentage in parentheses corresponds to the contribution of constant optimization after GP. The colored triangles indicate statistically significantly better methods ([image: $$p&lt;0.05$$]) as per Fisher’s exact test [7].


[image: ]



Both LS and restarts increase the average performance of all methods and decrease variance. With restarts, both RV variants reliably reach the target value in almost all runs. The constant optimization performed during post-processing is most noticeable for ERCs without LS or restarts, where it can lead to noticeable MSE improvements. However, compared to optimizing constants during optimization, the overall effect of tuning the best model after GP is small. Interestingly, tuning after and restarts have an unintuitive interaction when considering ERCs. Without restarts, the re-occurring subexpression [image: $$\sin (\pi \cdot x)$$] is often modeled with a constant that can be improved during post-processing. With restarts, however, many runs find [image: $$\sin (x + x + x)$$] instead, as [image: $$3\cdot x \approx \pi \cdot x$$]. Since constant tuning was only applied before simplification, the lack of an explicit constant explains the decreased performance of ERCs with restarts.[image: ]
Fig. 4.The number of constants used and expression sizes for the synthetic problems. The bar corresponds to the median before post-processing, while the circle and horizontal line correspond to the median and IQR after post-processing.


[image: ]
Fig. 5.The SHAP [18] values show how different aspects influence expression size for the synthetic problems. The different methods are highlighted on the color map, for the other binary aspects the color indicates whether it was enabled or not.



In terms of the expressions found, in Figs. 4 and 5 we can see that apart from the simplification during post-processing, LS has a clear effect on both the number of constants used and the expression size, partly explained by the added scaling terms which add 2 constants and 4 nodes. The effect of simplification for the problems used tends to be considerable, for some problems the size after simplification is halved. The type of constant optimization used, however, has little impact on the expression size.

4.3 Real-World Problems: GP-RV-GOMEA vs ERCs and Coefficient Mutation
In this experiment, we consider the problems listed in Table 3 and compare the obtained expressions in terms of the coefficient of determination [image: $$R^2$$] score, expression size, and the number of constants used. Compared to the previous result, this experiment aims to provide a practically relevant comparison to the other forms of constant optimization.Table 3.The real-world problems used in the second experiment.


	Problem
	# Instances
	# Features

	Airfoil Self-noise [28]
	1503
	5

	Concrete Compressive Strength [11]
	1030
	8

	Energy Cooling [2]
	768
	8

	Energy Heating [2]
	768
	8

	Yacht Hydrodynamics [12]
	308
	6





[image: ]
Fig. 6.The training and testing [image: $$R^2$$] scores for the real-world problems. The bar corresponds to the median [image: $$R^2$$] before tuning, while the circle and horizontal line correspond to the median and IQR after post-processing.



The results for the [image: $$R^2$$] scores displayed in Fig. 6 confirm that the proposed approach performs competitively on real-world problems, again outperforming both ERCs and coefficient mutation in terms of solution accuracy. Without LS or restarts, the RV version with intron-aware Gaussian model updates performs slightly worse compared to when intron awareness is not used. This could be explained by the noisy Gaussian distribution updates being more robust to changes in the expression structure between real-valued steps, as updating the distribution takes longer in contrast to the intron-aware version. With restarts or LS, however, the use of intron-awareness tends to perform a little better.[image: ]
Fig. 7.The median and IQR for the test [image: $$R^2$$] scores over evaluations spent with linear scaling and restarts enabled.



Figure 7 shows that while ERCs have an initial advantage as all computational effort is spent on finding better structures, the importance of constant optimization becomes apparent as the evolution progresses. Improvements are still found close to reaching the computational budget, indicating that an increased budget could lead to improved results.[image: ]
Fig. 8.The number of constants used and expression sizes for the real-world problems. The bar corresponds to the median before post-processing, while the circle and horizontal line correspond to the median and IQR after post-processing.



Both LS and restarts improve accuracy and decrease variance for all methods tested, with LS having a bigger effect. In line with the synthetic problems in the previous experiment, the effect of tuning constants after GP is most noticeable for ERCs and in the absence of LS and restarts, but small compared to the effect of constant optimization during optimization.
In contrast to the synthetic problems, Fig. 9 indicates that next to LS, the RV constant optimization methods also lead to larger expressions while the effect of simplification decreased. This motivates a multi-objective approach.
Statistical testing results following the approach recommended by [3] are shown in Table 4, indicating that GP-RV-GOMEA is highly likely to lead to similar or noticeably better [image: $$R^2$$] scores compared to ERCs and coefficient mutation.[image: ]
Fig. 9.The SHAP [18] values show how different aspects influence expression size for the real-world problems. The different methods are highlighted on the color map, for the other binary aspects the color indicates whether it was enabled or not.


Table 4.The pair-wise probabilities of how likely [image: $$M_1$$] is to perform better, approximately equal (within [image: $$0.01 R^2$$]), or worse in terms of test [image: $$R^2$$] compared to [image: $$M_2$$] with LS and restarts, using a Bayesian hierarchical correlated t-test [3].


	[image: $$M_{1}$$]
	[image: $$M_{2}$$]
	[image: $$P(R^2_{M_{1}}\!\!&gt;\! R^2_{M_{2}})$$]
	[image: $$P(R^2_{M_{1}}\!\!\approx \! R^2_{M_{2}})$$]
	[image: $$P(R^2_{M_{1}}\!\!&lt;\! R^2_{M_{2}})$$]

	ERCs
	ERCs + CM
	0.172
	0.749
	0.079

	ERCs
	RV
	0.019
	0.400
	0.581

	ERCs
	RV + IA
	0.025
	0.205
	0.771

	ERCs + CM
	RV
	0.059
	0.114
	0.827

	ERCs + CM
	RV + IA
	0.056
	0.026
	0.918

	RV
	RV + IA
	0.009
	0.971
	0.020







5 Discussion
We proposed GP-RV-GOMEA, a new form of constant optimization in GP-GOMEA based on GOMEA-based mixed discrete and continuous optimization. Our experiments confirmed that simultaenous constant optimization across the whole population as opposed to per individual indeed works well for GP-GOMEA, and that our proposed approach clearly outperforms previous forms of constant optimization both with and without intron-aware real-valued Gaussian model updates. This holds for all combinations of linear scaling, restarts, and constant tuning after GP. Furthermore, on the problems considered, constant optimization during evolution has a positive effect on solution quality. However, on real-world problems, solution sizes tend to increase as well. While LS generally has the largest impact on accuracy, clearly, constant optimization too can have a noticeable impact.
The proposed approach introduces new parameters, such as the size of the constant pool available and the parameters of RV-GOMEA. These have not been explored extensively yet, as the goal of this work was to determine if such an approach is feasible and effective, revitalizing the research by [10]. Notably, not all mechanisms introduced in GAMBIT [25] were considered in this work, possibly increasing the effectiveness of this approach further.
Furthermore, the method has not yet been compared to on-line gradient-based constant optimization, which is a commonly used form of constant optimization in GP. Possibly a hybrid approach akin to basin hopping could prove to be more effective than only using one form of constant optimization.
This work introduced a novel, intron-aware approach to updating the real-valued optimizer, showing increased performance on synthetic and real-world problems when combined with linear scaling or restarts. Notably, intron-awareness affects how fast the real-valued model can adapt to the changes in the real-valued fitness landscape introduced by structural changes. Compared to the intron-aware version, the decreased adaptivity can be seen as an implicit form of regularization, although no overfitting was found with the settings used.
While primarily caused by LS, the observed increases in expression size with constant optimization suggest that a multi-objective approach is needed to ensure small and accurate models. Concerning constant tuning after GP, the observed interaction with restarts suggests that fine-tuning should be applied both before and after simplification to obtain better results.

6 Conclusion
Over the years, several approaches to constant optimization in GP have been proposed, however, they come with drawbacks such as the need for gradients or large numbers of evaluations due to blind search. With this in mind, we proposed a novel, model-based, way of optimizing constants in GP-GOMEA, which we evaluated in the context of linear scaling, restarts, and optimization after GP on both synthetic and real-world data.
Our experiments confirm that optimizing constants across GP individuals can be effective and that simultaneous (evolutionary) constant tuning during GP can be required for increased performance. Compared to ERCs and coefficient mutation with the same underlying GP algorithm, we find that the proposed method improves overall expression accuracy in all settings considered, while achieving similar expression size.
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Abstract
In this contribution we study how to effectively evolve programs tailored for biomedical image segmentation by using an Active Learning approach in Cartesian Genetic Programming (CGP). Active Learning allows to dynamically select training data by identifying the most informative next image to add to the training set. We study how different metrics for selecting images under active learning impact the searchability of CGP. Our results show that datasets built during evolution with active learning improve the performance of Cartesian GP substantially. In addition, we found that the choice of the particular metric used for selecting which images to add heavily impacts convergence speed. Our work shows that the right choice of the image selection metric positively impacts the effectiveness of the evolutionary algorithm.
Keywords
cartesian genetic programmingbiomedical datadata samplingactive learning
1 Introduction
The field of biomedical image analysis has experienced a significant revolution with the usage of Neural Networks, particularly Deep Learning (DL) techniques, displaying a similar trend that happened in the broader domain of Computer Vision. Deep Neural Networks exhibit remarkable performance across various image classification and segmentation tasks within medical disciplines such as dermatology, radiology, and pathology [14, 15], occasionally surpassing human experts. Nonetheless, DL methodologies encounter two primary limitations. Firstly, they are regarded as black-box systems, as the decision-making processes of deep Neural Networks often lack interpretability, a difficult challenge in critical domains like medicine. Secondly, DL approaches necessitate substantial amounts of annotated data, a resource-intensive and costly task typically carried out by busy experts, that reduces the acquisition of larger datasets for training purposes.
Recent work has demonstrated that Cartesian Genetic Programming (CGP) is an effective approach to address the above-mentioned limitations inherent in DL [12, 28], with results competitive to DL. CGP evolves solutions based on a set of mathematical functions that process given inputs to produce an expected output. The phenotype of a CGP program can be represented as a graph which often is evolved using a (1+[image: $$\lambda $$]) evolutionary strategy [31]. One of the main benefits of CGP is the use of a fixed-length integer-based genome to encode the functional graphs, mitigating the bloat effect encountered in many tree GP approaches, allows evolution to design small and interpretable solutions [40]. Particularly in image processing tasks, the CGP function library contains Computer Vision (CV) functions that are combined and optimized in order to construct tailored image processing pipelines suitable for specific objectives.
Minimizing the amount of necessary data for evolving effective programs in CV tasks poses an important challenge. Our goal in this work is to improve the evolution of CGP when processing biomedical images. In our previous work [29] we showed that building a small set of data samples in a dataset increases the convergence speed of CGP and leads to potentially more diverse solutions.
It is now well established Active Learning (AL) is able to effectively sample the most informative data points on different domains of knowledge [16, 17, 20, 34]. In specific in Image Processing tasks [10, 26, 29], AL methods can provide performance improvements by using information from evolution (or training) to iteratively build a dataset. The main idea is to identify useful sample images from a larger dataset to apply during training which create programs of equivalent performance, but with less overhead [11]. Also, AL might help evolution avoid overfitting [6].
We here argue that we can incorporate ideas from AL methodologies and apply them to CGP to generate more data-efficient programs for biomedical image segmentation. We focus our efforts on developing a method to sample informative images, selected during evolution, resulting in a smaller training set than without these methods. We expect that CGP with AL can achieve higher performance with faster convergence than traditional CGP. This work extends our recent works [29, 30] by an in-depth discussion of the impacts of Active Learning in CGP, including a discussion the frequency of images sampled and the potential impacts of the highly frequent images in the search dynamics of CGP; investigating the experimental results in terms of performance; convergence speed; program size; and on how to use information about the frequency of sampled images to improve CGP performance. Therefore, our contributions can be summarized as follows: 	(1)
We show that some images lead to more uncertainty in the number parallel runs of CGP variants and discuss possible reasons why.

 

	(2)
We study the sampling frequency of each image available to be used in the training dataset.

 

	(3)
We investigate if using information about the frequency of sampling can directly affect the performance of CGP.

 





The paper is organized as follows: Section 2 introduces the necessary background. Section 3 explains relevant concepts. Section 4 gives the experimental setup. Section 5 presents the experimental results of our analysis. Finally, Sect. 6 concludes the paper and discusses further research.[image: ]
Fig. 1.The genotype of CGP.


Table 1.Description of the function library used in CGP.
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2 Preliminaries
Most work in the area of Computer Vision tasks uses blackbox approaches, such as artificial Deep Neural Networks. However, these models have proven to be difficult for humans to analyze and interpret [12, 33]. One way to complement these blackbox methods is to use methods that are inherently explainable. The class of Genetic Programming (GP) approaches is among such methods. Here we highlight Cartesian Genetic Programming (CGP), an evolutionary computation algorithm that evolves easier-to-interpret programs (as with most GP variants), in comparison to Deep Learning models [1, 9, 12, 18, 36, 40].
2.1 Cartesian Genetic Programming
Cartesian Genetic Programming (CGP) is a Genetic Programming variant [31] specialized in evolving graph genotypes. Such graphs are often direct and acyclic and are indexed by Cartesian coordinates. Evolution defines how to connect the nodes of the graphs and the function of each node. CGP has been successfully applied in multiple domains [1, 9, 36]. Specifically, CGP has been applied in Computer Vision tasks such as for controlling agents to play ATARI games [40], and in image processing tasks, such as biomedical image segmentation and object detection in robotics [12, 18].
CGP generally employs the (1+[image: $$\lambda $$]) Evolutionary Algorithm (EA), although any other evolutionary algorithm could be used. Initially, a population of [image: $$\lambda $$] individuals is randomly generated and evaluated on the problem in question. Then, evaluation is conducted by first generating the programs from the graphs and then measuring their performance on the task considered. The solution with the highest performance is maintained to the next generation step, influencing the next [image: $$\lambda $$] individuals created via mutation. This process is repeated until a termination criterion is reached. For more information, see [9, 31, 40].
GP has been widely used in the biomedical domain, and as Khan et al. stated, GP is usually used in classification of cancerous cells [25]. In particular, one can find GP contributions that involve feature extraction  [3, 4, 8, 24, 38] or that involve image classification [2, 5, 41].

2.2 Dynamic Data Sampling
Dynamic data sampling is one of the most important components of Active Learning (AL) methods and its effects have been studied on different Machine Learning algorithms [13, 20, 37]. AL is frequently used in Deep Learning in the context of processing biomedical data [16, 32] with most of the work on AL focusing on finding the metric that leads models to the highest performance [16]. Interestingly, there are papers that suggest random sampling as a strong baseline [10, 26].
In the domain of GP, the efficacy of Active Learning for symbolic regression tasks has been widely demonstrated in a diverse group of research, from works that focus on reducing the number of such evaluations [17] and on creating smaller, balanced datasets by recursively keeping the most ‘meaningful’ exemplars  [39] to studies on improving the rate and consistency at which well-performing solutions are found while reducing the required number of training samples [19, 20]. For classification problems, Hamida et al. [6, 22] showed how different sampling methods studied across the years affect the performance of GP. Yet, we did not find works that combine AL and GP in the biomedical domain. Recently, we have shown that AL [29, 30] methods can provide performance improvements in bio-medical image processing.
Here, we use uncertainty as the base for dynamic data sampling, in a similar manner as discussed by Nguyen et al. [23]. That is, given a model trained in a dataset D, each image not in the training dataset is assigned an uncertainty value based on the model’s behavior. The image with highest uncertainty is labelled (by an oracle or expert) and added to D. Then, D is given to the model for training.

2.3 CGP Implementation
The CGP implementation we use is based on [12], a modular Cartesian Genetic Programming system to generate programs for computer vision tasks. This system introduces the notion of non-evolvable nodes which are functions not subjected to optimization in the syntactic graph. Through this algorithm, the image processing stack optimizes the order of functions and their parameters resulting in an image processing algorithm similar to a human-designed one, since they are based on established functions for image processing.
[image: ]
Algorithm 1. Adaptive Bio-image Sampling in CGP (ABS-CGP)



Figure 1 shows how our CGP implementation works. This genotype is a sequence of integers known as genes (each one represented as a box containing a single integer) that are organized into nodes. A node is composed of a single function drawn from the function library, at least one connection, and optional parameters. Moreover, in this implementation, the end nodes of CGP are connected to a fixed endpoint. This endpoint is useful since it allows CGP to obtain insight given by a Computer Vision expert. We use the Watershed Transform [7] as the endpoint. Thus, our CGP has 2 outputs, corresponding to the mask and markers necessary for the Watershed Transform endpoint. Finally, we use image processing functions mostly from OpenCV and Skimage, which apply programs directly to images. Only a few nodes, the “active” nodes, are used, as they are actually connected to the output of the program graph. Other nodes with no connections to the output are called “inactive” nodes. The outputs of a program can come from any node and are determined by the evolutionary process.
Table 1 lists the basic functions used in our function library and their related arities. These operators are functions from the OpenCV Python package and are fixed for all CGP variants compared1.


3 Adaptive Image Sampling in Cartesian GP
The CGP with Adaptive Biomedical-image Sampling (ABS-CGP) template we propose for instantiating and designing sampling method variants is shown in Algorithm 1. The main difference to standard CGP is that instead of using a fixed training dataset during evolution, our template uses a smaller dataset that is selected during evolution, given the different metrics (explained below). We sample the subset of images to be part of the training dataset used in evolution via sampling mechanisms. Two of these mechanisms sample data based on uncertainty-related information, while the other mechanism samples images based on values taken from a uniform distribution.
To calculate uncertainty in CGP our (1+[image: $$\lambda $$]) EA2, we use a group of parallel CGP runs, executed in parallel. Uncertainty-based AL utilizes this group of diverse runs of programs to search different areas of the search space, the diversity of the models then allows their disagreement to be used as an uncertainty measure to select new training data where uncertainty is maximized. The idea is that selecting data where uncertainty is high will lead to the selection of data that will be most informative to the current models in training [20].
The idea of maximizing uncertainty relies on our intuition that parallel runs of CGPs can increase the diversity of the elite programs that can be exploited to guide the collection of informative data. In addition, by having parallel runs of CGP we can increase program diversity on the aggregated population level not present in the ([image: $$1 + \lambda $$]) EA that is most frequently used in CGP. In this study, the parallel runs are employed to estimate uncertainties only. Thus, for generating segmentation masks and all metrics related to the performance of ABS-CGP we choose from the parallel runs one program, the one with the highest fitness value on the training data.
3.1 Sampling Mechanisms
Uncertainty counts the pairwise differences between the pixels of the predicted masks for each program on an image. If two pixels have a different label between two masks, [image: $$m_1$$] and [image: $$m_2$$], a value of 1 is assigned to that pixel; otherwise, a value of 0 is applied. For an image of pixel dimensionality (i, j),
uncertainty = 
[image: ]
The Weighted Uncertainty doubles the uncertainty measurement if one pixel is labeled as 0 and the other pixel is labeled with a non-zero value. This assumes higher uncertainty should be assigned if models disagree on whether a pixel is foreground (non-zero) or background (0).
Weighted = 
[image: ]
Random Uniform sampling serves as a baseline. Sampling is done using uniformly distributed values to select one image at each step. There is not any information gathered from the parallel runs of CGP.

3.2 Evaluation Metric and Termination Criterion
Average Precision (AP) We follow the work in [35] that defines average precision [image: $$AP = TP / (TP + FP + FN)$$], where TP means true positives, FP means false positives and FN means false negatives. We use AP as our fitness function with a threshold of 0.5 to determine the true positives of the predicted mask.
Our goal is to study the effect of sampling of images from the dataset during evolution. Thus, we have a different number of images processed by ABS-CGP and standard CGP, at each generation. Given the different sizes of the datasets used during evolution, we use the number of images processed during evolution as the termination criterion. This criterion does not discriminate if there is a repetition of data points in the training set.


4 Experimental Setup
To verify if dynamically sampling the training dataset is an effective approach for CGP, we compare standard CGP with a variation of CGP that samples data during evolution, named ABS-CGP, with different sampling mechanisms. ABS-CGP builds the dataset for training using the dynamic data sampling methods (Sect. 3) and standard CGP uses all 89 images available in the training set. We run all CGP variants with the parameters shown in Table 2, the same as in [12]. ABS-CGP adds new data to the dataset for training every 100 generations, but more work is needed if we want to tune the parameters for the CGP variants, specially on the number of generations. In preliminary experiments, we found out that using 1,000,000 images processed as the budget for all CGP variants is enough for them to converge. For statistical purposes, 30 independent runs are done for each variant. We test three configurations on the number of parallel runs. For standard CGP and ABS-CGP with uniform metric, the number of parallel run is: 1, 5, 10 and 15. For the uncertainty-based metrics, the number of parallel runs is: 2, 5, 10 and 15.[image: ]
Fig. 2.A target image from the CELLPOSE dataset.


Table 2.Parameters used.
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4.1 Performance Comparison
For prototyping, we use the CELLPOSE dataset [35] which consists of 100 images of fluorescent-labeled protein of cultured neuroblastoma cells with phalloidin FITC and DAPI nuclear stain. For a fair comparison, we follow the work in [35], where the data is split into 89 images for training and 11 for testing. Figure 2 shows a target image from this dataset used for testing. The state-of-the-art performance in this dataset of 0.93 by DL and 0.89 with CGP [12].

4.2 Reproducibility
For reproducibility purposes, relevant data and code are available at:
https://​zenodo.​org/​records/​10992287. We run the experiments on HPC resources on the OLYMPE supercomputer, a SEQUANA (ATOS-BULL) computing cluster with a power of 1.365 Pflop/s Peak, equipped with Intel Skylake 6140 processors.


5 Experimental Comparison
We systematically examine and interpret the outcomes of image segmentation into cells versus background obtained through experimentation based on overall performance and convergence speed, images sampled and number of nodes used over evolution. We highlight that all metrics and measures are calculated based on the highest-performing program of the parallel runs of the CGPs variants.
Table 3.Mean AP performance of parallel runs of ABS-CGP with different sampling mechanisms given 30 independent executions for each configuration.


[image: ]



Table 3 shows the impact on performance on the test data of using parallel runs in ABS-CGP. The main result from our experiments is that data sampling positively impacts the performance of CGP, since all methods found better performance than standard CGP that uses all data available for training, under the current experimental settings and budget. That is not a surprise, since sampling data during evolution allows the programs to explore more carefully individual features of images, without overfitting. Also, combining dynamic data sampling with parallel ABS-CGP runs increases the performance of CGP.[image: ]
Fig. 3.Dynamically sampling images for training helps CGP to achieve high performance faster. We show the best performing configuration of CGP and ABS-CGP with: uncertainty, uniform and weighted uncertainty.



5.1 CGP Vs ABS-CGP
On our previous work [30], we found that using parallel runs of CGP without AL reduces the performance of CGP under the same budget, thus we compare the highest-performing ABS-CGP given each metric directly against a simple run of CGP. The highest performing ABS-CGP configurations are highlighted in bold in Table 3. We can verify the convergence speed of such algorithms in the sequential boxplots shown in Fig. 3. The most striking observation is that ABS-CGP clearly converges faster than traditional CGP, while all ABS-CGP showed a relatively high performance from the very beginning. To verify if there is statistically significant difference between ABS-CGP and CGP, we conducted the Mann-Withney-Wilcoxon test3. We highlight that we are only comparing the performance of ABS-CGP with a metric at a time against CGP, as we are not interested in performance differences between ABS-CGP variants. All ABS-CGP methods show statistical difference to CGP, with p-value [image: $$ &lt; 0.05$$].[image: ]
Fig. 4.Size of the programs generated given the number of active nodes.



Figure 4 shows the number of nodes of CGP and the highest performing ABS-CGP for each sampling method. All CGP variants work with small programs during the whole evolution process. The size of the programs evolved by ABS-CGP varies given the sampling method, although all are working with programs slightly bigger than CGP. Figure 5 shows the final models generated by AB-CGP and the related outcome segmentation obtained using those models. The segmentation models produced by ABS-CGP show different levels of complexity and interpretability. These Figures give strong support that the models generated are overall simple and likely very interpretable.[image: ]
Fig. 5.Example of interpretable graphs by ABS-CGP used to create the segmentation mask for the image in Fig. 2.




5.2 Frequency of Images Used
The most surprising result found in this study concerns the frequency of images used. Figure 6 shows the sampling frequency of each image available to be used in the training dataset. These results are based on the aggregate outputs of ABS-CGP with uncertainty-based metrics over 60 independent executions (30 runs for each metric of these metrics, the results of traditional CGP and ABS-CGP with Uniform sampling are not shown since they do not sample images), since these metrics are the ones that capture information about images. Clearly, some images are selected more often than others.
[image: ]
Fig. 6.Images sampled by all ABS-CGP parallel runs with both uncertainties sampling. Some images are more sampled. This suggests that there are features present in such images that lead to more uncertainty among the programs.



Figure 7 show the most frequently selected images: 0, 20 and 21; and, for comparison, on and the least frequently selected ones: 78, 45 and 63. The images on the top of this Figure shows that the size, shape and brightness of the cells vary considerably, possibly indicating different details of the cells present in these images. This variation in cells indicates more complex data, which is a reasonable explanation for why these images were frequently sampled. Our analysis goes in agreement with observations from the biological field, where images with more cells are harder to analyze because the density of the cell often leads to cell membranes getting in contact, and possibly covering between cells (cells on top of each other). Additionally, images with high cell densities have a higher likelihood of showing rare events, which can make analysis more difficult. One of such events are mitosis, where a cell produces two identical nuclei in preparation for cell division, increasing cell density.[image: ]
Fig. 7.Frequently sampled images (top) and least frequently sampled images (bottom). The top images lead to more uncertainty for ABS-CGP.



Looking at the bottom images of Fig. 7, however, it is possible to come up with a different scenario. The most clear distinction is that the number of cells is drastically smaller in this case, which, by itself, leads to a decrease in uncertainty values of the programs within the parallel ABS-CGP runs. This is because our metrics indirectly take into consideration the number of cells present in an image thus limiting the total uncertainty estimation of the program of the parallel ABS-CGP runs. Overall, we see several differences between the two groups of images, revealing possible insights into the characteristics of this dataset.
When we look at the scatter-plot on the image sampled frequency versus number of cells in images, Fig. 8, we see that more images are selected as the number of cells increase. Some of the most frequently selected images 0, 20 and 21 have 175, 175 and 174 cells, respectively. On the other hand, some of the least frequently selected images 78, 45 and 63 have 20, 52 and 21, respectively, a much lower number of cells. That supports our argument that the number of cells in an image leads to more uncertainty in the programs in the parallel ABS-CGP runs, however, it is clear that this alone is not the only cause of uncertainty.

5.3 CGP and Frequently Sampled Images
Given the fast convergence of the solutions shown by ABS-CGP and the preference for sampling some specific images, we test if using information about the frequency of sampled images could benefit the performance of CGP. We compare: (1) ABS-CGP with the uniform metric and 15 models, (2) the 10 most frequently sampled images ABS-CGP selected before training based on the results of the previous Sect. 5.2, (3) the 10 least frequently sampled images and (4) CGP that uses 10 images randomly selected before training.[image: ]
Fig. 8.Image sampled frequency versus number of cells per image. The regression line in black shows some correlation between the variables. Numbers in dark red show the index of the ten most frequently sampled images and the numbers in orange show the index of the ten least frequently sampled images. (Color figure online)


[image: ]
Fig. 9.Median convergence performance. ABS-CGP converges fast, to high values with lower standard deviation.



Figure 9 shows the median AP convergence results. The performance of ABS-CGP (mean: 0.85 and standard deviation: 0.01) shows that using dynamic sampling leads to high-performing models that can generalize well to the test data (as shown by the low standard deviation), suggesting we need to find a fine balance in the choice of representative images to be used in training. Interestingly, having a dataset composed of 10 images randomly selected can achieve high final results (mean: 0.83 and standard deviation: 0.03), however, with a higher standard deviation, meaning randomly selecting images before the search progress starts is sensitive to the data sampling. The CGP variants that use the most and least frequently sampled images are the worse-performing algorithms that converge early during the search process, before half of the search, showing that they are not able to generalize well to the test data. These findings exhibit the significance of dynamic sampling and Active Learning concepts in optimizing performance for this particular problem domain.


6 Discussion
We have studied how to effectively evolve programs for biomedical image segmentation using Cartesian GP (CGP). We utilized ideas from the Active Learning domain to create a training dataset that grows in size during evolution, since in we aim to sample the most informative biomedical images for model training. We found that there are two main benefits of using growing training datasets: (i) It improves the performance of the algorithms in terms of AP, and (ii) it increases the convergence speed of CGP. Additionally, we showed that having CGP trained with the 10 most frequently sampled images accelerated the convergence speed, but training CGP with a dataset composed of 10 images randomly selected also increases the convergence speed and leads better end results, indicating a subtle balance in the choice of images for training. Later, to provide a more comprehensive analysis of ABS-CGP we will apply this method to different datasets and we compare it against Lexicase selection [21, 27].
Our results also show that the data sampling in CGP provides valuable insights into the features that induce uncertainty in the programs. For example, we found a group of images that are frequently sampled, and that these images contain many cells that vary in size, shape and color. Through systematic observation and further analysis of the specific features of these images, we might be able to reduce undesired variability in program output. This analysis might help increase the interpretability of programs and also lead to additional improvements in performance. The ideas explored in this contribution can serve as a basis for future research on the co-evolution of datasets. By exploring the evolution of datasets in connection with the programs generated from them, CGP might find more general programs that can deal efficiently with more diverse data sets that better capture the complexities of real-world scenarios.
Finally, this work represents a new stride towards achieving a broader objective in the construction of an interactive learning system within the domain of biomedical image analysis. We expect that the combination of CGP with Active Learning has the potential to reinforce the development of applications where a human expert annotates specific images or areas of large images upon request. The images or areas for annotation would be suggested by the learning algorithm based on its current requirement for annotated data, such as specific cell types, color diversity, shapes, or others. The ultimate aim is to foster a collaborative effort between our CGP learner and a human expert, guiding the learning procedure through the complexities of the images to be analyzed.
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Footnotes
1The number of parameters needed by a given function.

 

2(1+[image: $$\lambda $$]) EAs are local search algorithms and do not benefit from large populations.

 

3Shapiro-Wilk’s method showed a p-value [image: $$&lt; 0.05$$] implying that the distribution of the data is significantly different from normal distribution.
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Abstract
We analyse the search behaviour of genetic programming (GP) for symbolic regression (SR) in search spaces that are small enough to allow exhaustive enumeration, and use an improved exhaustive symbolic regression algorithm to generate the set of semantically unique expression structures, which is orders of magnitude smaller than the original SR search space. The efficiency of GP and a hypothetical random search in this set of unique expressions is compared, whereby the efficiency is quantified via the number of function evaluations performed until a given error threshold is reached, and the percentage of unique expressions evaluated during the search after simplification to a canonical form. The results for two real-world datasets with a single input variable show that GP in such limited search space explores only a small fraction of the search space, and evaluates semantically equivalent expressions repeatedly. GP has a smaller success probability than the idealised random search for such small search spaces.
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1 Introduction
Symbolic regression (SR) is a machine learning task where the goal is to find an expression representing a function of the parametric functions family [image: $$f(x; \theta )$$] that accurately fits a dataset [image: $$(x_i, y_i)_{i=1}^n$$] with an adjusted value of [image: $$\theta $$] [27, 28]. This is commonly performed using search algorithms that explore a search space composed of mathematical expressions.
In evolutionary algorithms (EA) [13], a set of solution candidates (here called population) is used in a parallel search, where parts of solution candidates are recombined, mutated, evaluated repeatedly, to gradually evolve improvements. Processes observed in natural evolution, most importantly inheritance of traits from parents to children, and selection pressure, are simulated. Genetic programming (GP) [27] is an evolutionary algorithm that is popular for SR. In tree-based GP for SR the search space of genotypes (i.e., expression trees that can be generated up to a given length limit), can be distinguished from the (much smaller) set of distinct expressions after the conversion to a canonical form, as many different expressions represent the same function (e.g., [image: $$x\,(x+p_1)$$] and [image: $$p_1\,x + x^2$$]). Many modern GP implementations for SR use a solver for more efficient parameter optimisation [6, 26], which means expressions may contain placeholders [image: $${p_1} \ldots p_k$$] for real-valued fitting parameters, and reparameterised forms are possible to represent the same function (e.g., [image: $$p_1\,(x + p_2)$$] and [image: $$p_1\, x + p_2'$$]) . The solution space is the space of functions that can be produced by fitting the elements from the search space to a given dataset. The elements of the solution space include the best-fit parameter values and the fitting objective value (e.g. log-likelihood for maximum likelihood, or the mean of squared errors for least-squares fitting). As a consequence of local optima when fitting parameters, GP systems may produce different solutions for the same expression.
The efficiency of a search algorithm can be quantified via the probability of reaching a solution of a certain quality by the number of evaluated solution candidates [20, 21, 44]. An efficient search algorithm samples solution candidates with minimal repetition, and invests more time evaluating more promising solution candidates. Ideally, it enumerates the solution candidates following an order from the most promising to the least promising, thus hopefully reaching an acceptable solution quickly. Particularly for SR, this can be challenging since there are many equivalent representations for the same function, either because they evaluate to the same fitness, or because they are isomorphic to other solutions. Whether this is helpful to traverse SR’s search space is open to debate as some authors point out that it can degrade the overall performance, while others show that this may play an important role in reaching a global optimum, as neutral steps may be necessary to reach promising search regions [1, 12, 22, 23].
We analyse the efficiency of GP for SR with parameter optimisation [26], whereby the efficiency is defined as the success probability after a number of evaluated solution candidates. For this purpose, we extend an existing minimal Python implementation of GP. We propose a new method which allows to calculate explicitly how many of the evaluated solution candidates are unique expressions—or alternatively: how often GP revisits expressions that are isomorphic to previously evaluated expressions. In contrast to previous work, we do not use the fitness values for the detection of semantic duplicates because they depend on the optimised parameter values. Instead, we use symbolic simplification to a canonical form, which allows to detect duplicate expression forms regardless of the parameterisation. We use equality saturation [17, 45], adapted to simplify and rewrite equivalent expressions into the same form, to enable quantification of how many isomorphic solutions are visited throughout the search. The analysis is done for a limited search space, for which we fully enumerate all solutions using Exhaustive Symbolic Regression (ESR) [3] for two datasets from the physical sciences. In this way, the success probability for finding the best solution or e.g. one of the top 100 solutions with GP can be calculated.
The results show a worrying inefficiency of GP for SR with a very low rate of unique solutions and a success probability smaller than an idealised random search when limiting the search space to short expressions.
In the following sections we describe some of the related work (Sect. 2), followed by a brief explanation of our research methods (Sect. 3). In Sect. 4, we analyse the obtained results about the efficiency of SR, followed by a brief comment on the limitations of our experiments (Sect. 5) and final discussions (Sect. 6).

2 Related Work
The characteristics of the GP search space and the biases of GP when exploring the search space have been extensively studied in earlier work.
Ebner [12] investigated the redundancy in the solution encoding in GP for SR and argued that, even though the search space of SR is much larger than commonly seen in genetic algorithms, this redundancy is important to guarantee that one of such equivalent solutions is reached. Later, Daida et al. [9, 10] asked the question “What makes a GP problem hard?” and studied the consequences of using an iterative growth mechanism for trees in GP. They showed that certain tree structures are much more likely to be visited during the exploration of the search space than others. If a solution lies within the unlikely region of the search, GP has a lower success rate.
Gustafson et al. [19] observed a high frequency of offspring sharing the same fitness values as one of their parents, even with structural differences, chiefly when both parents had a similar fitness value. They suggested to disallow the recombination of two parents with the same fitness value. With this simple mechanism, they observed a significant increase in improved and worsened offspring, and a high decrease of no-change offspring.
Neutrality and redundancy have further been studied by Hu, Banzhaf, and Ochoa [1, 22, 23] for linear GP for Boolean SR problems with the help of search trajectory networks. They found that more complex phenotypes are harder for evolution to discover as they are represented by fewer genotypes and overrepresented phenotypes are easier to find.
Niehaus et al. [36] showed that caching fitness values and simplification of solution candidates can significantly reduce the evaluation time for graph-based GP. This observation implies that GP generates a significant number of expressions that can be simplified to the same expression. Similarly, McPhee et al. [34] analysed the possible semantic outcomes of subtree crossover and found that for Boolean GP, most crossover events (over 75%) produced no immediately useful semantic changes, drawing the attention to the need of investigating new crossover operators for GP.
Langdon [30] observed that function evaluation values and opcodes are similar or identical in expanding regions from the root node for SR, large trees, and over thousands of GP generations. Nevertheless, fitness continued to evolve even though most crossover events had near zero disruption.
Simplification of SR expressions during the evolution or creation of the expressions have been shown to be beneficial [7, 38, 40, 41] as well as an important mechanism for diversity control [4, 5].
Several alternative algorithms for SR have been proposed, which try to improve efficiency by preventing re-evaluations of redundant expressions. This includes algorithms that enumerate a restricted search space [3, 24, 46] or algorithms that decompose the problem and build the solutions incrementally [14, 40]. Other algorithms use an evolutionary approach, but limit the search space to find less complex models [15, 16, 25, 43].

3 Methods
To understand how well GP explores the SR search space, we use an improved version of ESR to enumerate the whole search space. This provides important insights into the characteristics of the search space, such as the goodness-of-fit of the best model, or the number of models that reach given goodness-of-fit thresholds. To allow the enumeration of the search space, we limit the set of operators to [image: $$\{+, -, \cdot , \div , x^{-1}, {\text {powabs}}(x,y)^{5}\}$$]1 and the length of expressions, defined as the number of nodes of the expression tree of operators and operands, to maximally [image: $$\{10, 12, 20\}$$] nodes. For the length limits of 10 and 12 nodes, we exhaustively generate the solution space with ESR. The limit of 20 nodes is used only for GP. We extend an existing implementation of tree-based GP (TinyGP) [42] and run the algorithm with different size limits and log all evaluated expressions.
In a post-processing step, we analyse whether the GP implementation found the best models and we simplify all visited expressions with equality saturation to a canonical form. To quantify the search efficiency we determine the number of distinct expressions visited by GP. The analysis is done for two real-world datasets with a single input variable. In the following subsections we give more details about the algorithms and datasets.
3.1 Improved Exhaustive Symbolic Regression
Exhaustive Symbolic Regression [3] (ESR) is an SR algorithm that affords enumeration of the full SR solution space as defined by the function and terminal sets and a length limit. The algorithm described by Bartlett, Desmond, and Ferreira [3] has three phases: first it generates all valid expression trees, in the second phase the expression trees are simplified and only unique expressions are kept. Finally, the parameters of the unique expressions are optimized to fit the expressions to a given dataset. The first two phases only need to be executed once for a given terminal and function set, as they are independent of the dataset. Only the last phase of parameter optimization has to be done for each dataset individually. Compared to GP, ESR guarantees to find the best solution – assuming the optimal parameters are found. It fits and evaluates only simplified expressions to prevent evaluations of structurally different but semantically identical expressions. However, the runtime grows exponentially with the number of variables and the maximum length limit.
Based on the original Python implementation of ESR,2 we have prepared a new implementation in Julia which includes several improvements. In our improved implementation, expressions are generated by repeatedly applying derivation rules from a formal grammar using a breadth-first search procedure. The grammar [image: $$G({\text {E}})$$] used for this work is:[image: ]



whereby [image: $${\text {inv}}(a) \equiv a^{-1}$$], and p is a placeholder for free parameters.
Sequences that are semantically equivalent to an earlier visited sequence are detected and removed. This semantic de-duplication is implemented via simplification of expressions to a canonical form using equality graphs (e-graph), which is a data structure that allows compact storage of expressions that are congruent with respect to a given set of rules [35, 45]. In the context of SR, equality saturation (eq-sat) provides a mechanism for simplifying expressions to a canonical form, which opens many new pathways for more detailed study of SR algorithms and their improvement. For example, we have used eq-sat for simplifying solutions produced by GP to remove redundant parameters [17, 29].
We have adapted the rule set described in [17] to simplify the expressions while minimizing the number of parameters and returning a canonical representation of the expression. The complete set of rules is listed in the extended form of this paper available as a supplement.3 The algorithm maps isomorphic expressions into a single hash value to detect redundant genotypes, similar to Burlacu et al. [4].
Figure 1 shows the exponential growth of the number of expression trees and unique simplified expressions with the expression length limit and the grammar G(E). The gap between the two values also grows exponentially, which implies that the redundancy problem becomes more extreme for longer length limits.[image: ]
Fig. 1.Growth of the search space and solution space sizes for the used function set. After simplification we found [image: $$80\,407$$] unique expressions with maximum length 10, and [image: $$1\,083\,803$$] unique expressions with maximum length 12. At maximum length 10 there are approximately 50 times more trees than unique expressions. This factor grows exponentially with maximum length.



The final step of ESR is fitting all unique expressions to the dataset, which means finding optimal values for all parameter placeholders in the expressions. ESR does up to 340 random restarts ([image: $$\sim {\text {unif}}(-3, 3)$$]) to have a high chance of finding a global optimum.
While ESR was designed to be an exhaustive method, it may also iterate through the unique expressions in random order, fit them to the dataset at hand, and stop at any time returning the best solution found so far. We refer to this algorithm as random search (RS) in the following, and use it as a benchmark to quantify the success probability and efficiency of GP. It should be noted, however, that this is an idealized random search in a much smaller search space, as it only visits unique expressions.

3.2 Genetic Programming
We adapted the TinyGP [42] implementation by Moshe Sipper, a Koza-style genetic programming system for symbolic regression [27] that is easy to understand and can be easily extended to include parameter optimization for non-Gaussian likelihoods, such as the MNR likelihood described below. TinyGP implements a ramped half-and-half initialization and follows the usual GP process. For a population of size P, P new individuals are generated by: 1) selecting two parents using tournament selection; 2) applying crossover between these parents with probability [image: $$p_{cx}$$], otherwise returning the first parent; 3) applying subtree mutation at a random node with probability [image: $$p_{mut}$$]; 4) replacing the current population with the newly generated solutions; 5) replacing the worst solution in the population with the best of all time (elitism). The algorithm enforces the maximum depth limit for the initial generation and later enforces only the length limit in crossover and mutation.
We have adapted the TinyGP code to support univariate functions (inv, powabs), parameter nodes ([image: $$\theta $$]), and parameter optimization using SciPy minimize4 and the default BFGS optimizer. The partial derivatives of expressions w.r.t. [image: $$\theta $$] (and x for the MNR likelihood) are calculated via forward-mode automatic differentiation (cf. [32]). For the initial population, the algorithm resamples expressions if the evaluation result is erroneous (i.e., Inf, NaN). To enforce the length limits, individuals longer than the limit are assigned a bad fitness value.
Table 1 lists the GP hyperparameter values. We ran three experiments for each dataset varying the maximum length limit. We collected the logs with all evaluated expressions from 50 independent runs for both datasets and for the analysis.5
Table 1.List of the hyperparameters used in the experiments.


	Parameter
	Value

	Maximum length
	10
	12
	20

	Population size
	100
	100
	500

	Generations
	250
	250
	250

	Minimum depth
	2
	2
	2

	Initial maximum depth
	4
	4
	4

	Tournament size
	2
	2
	4

	Crossover probability
	[image: $$100\%$$]
	[image: $$100\%$$]
	[image: $$100\%$$]

	Mutation probability
	[image: $$25\%$$]
	[image: $$25\%$$]
	[image: $$25\%$$]

	Objective (Nikuradse)
	min. MSE
	min. MSE
	min. MSE

	Objective (RAR)
	max. MNR logL
	max. MNR logL
	max. MNR logL

	L-BFGS iterations
	10
	10
	10

	Function set
	[image: $$+, -, \div , \times , {\text {powabs}}, {\text {inv}}$$]






3.3 Datasets
Flow in Rough Pipes - Nikuradse. We extracted the dataset from Nikuradse on the flow in rough pipes from [37]. Symbolic regression results for this dataset predicting the relationship between turbulent friction [image: $$\lambda $$] and scaled roughness have been reported by Guimerà et al. [18] and Reichardt et al. [39] who stressed that “Over eight decades later, and despite the fundamental and practical importance of the problem” the functional dependency of friction from the Reynolds number and the relative roughness is still unknown. They found that their system called Bayesian machine scientist prefers Prandtl’s collapse over other models proposed later. We use ESR and GP to find an expression for the collapse [image: $$y=f(x)$$] using the scaled variables [image: $$y=\lambda ^{-1/2} - 2\,\log \frac{r}{k}$$] and a single input variable [image: $$x=\log \frac{v_*\,k}{\nu })$$] as reported in [37].
Radial Acceleration Relation (RAR). The Radial Acceleration Relation describes the link between the acceleration sourced by visible stars and gas (“baryons” in astrophysicists’ jargon), [image: $$g_{\text {bar}}$$], and the total dynamical acceleration as traced by the trajectories of dynamical tracers in galaxies, [image: $$g_{\text {obs}}$$] [31]. The relation is a key, although somewhat contentious, piece of evidence in the debate over the meaning of the “missing mass problem,” namely that galaxy dynamics appears to require significantly more mass than is visible (e.g. [33]). The RAR was analysed with ESR by Desmond, Bartlett, and Ferreira [11] to search for a functional fit [image: $$y=f(x, \boldsymbol{\theta })$$], where the single input variable x is [image: $$g_{\text {bar}}$$], [image: $$\boldsymbol{\theta }$$] are free parameters, and y is [image: $$g_{\text {obs}}$$]. Here we improve upon [11] by using the likelihood of Marginalised Normal Regression (MNR), described by Bartlett and Desmond [2]. We have verified separately to [2] that MNR leads to unbiased parameter recovery on mock RAR-like datasets, while the uniform prior method used in [11] does not.[image: ]
Fig. 2.Distribution of MSE values for all possible expressions with the Nikuradse dataset (a) and a zoomed region (b). The constant model [image: $$p_1$$] has an MSE [image: $$=0.063$$] and only 10% of the solutions have a better MSE. The expression [image: $$p_1 ^{x p_2^x}$$] reaches MSE = 0.019 which only around 1% of the expressions surpass. The subplot on the right hand side shows that MSE less than 0.002 is reached only by about the 100 best expressions with length 12.





4 Results
We report the distribution of solution qualities for both datasets as found by ESR, and the best solutions found by GP, as well as GP success probabilities for finding solutions with increasingly lower error thresholds. Additionally, we report the number of semantically unique expressions that are visited by GP.
4.1 Characterization of the Solution Space
Figures 2a and 2b show the distribution of MSE values for the Nikuradse dataset for the solution spaces with unique expressions with maximum length 10 and 12. The best expression for length 10 has MSE = [image: $$2.7\cdot 10^{-3}$$] and the best expression for length 12 has MSE = [image: $$1.46\cdot 10^{-3}$$]. We can see from this plot that just about [image: $$0.01\%$$] of all expressions have an MSE close to the minimum, a majority of the expressions have an MSE about 10 times higher. It is also worth noticing that only [image: $$10\%$$] of the expressions are better than the baseline model [image: $$p_1$$] and only [image: $$1\%$$] are better than [image: $$p_1^{x\, p_2^x}$$].
Figures 3a and 3b show the distribution of MNR log-likelihood values for the RAR dataset for the unique expressions with maximum length 10 and 12. The distribution shows a large subset of solutions (approximately [image: $$1\%$$] of all solutions) with a log-likelihood around 1000. The best solution for length 10 has log-likelihood 1002.34, the best for length 12 has log-likelihood 1013.24.[image: ]
Fig. 3.Distribution of log-likelihood values for all possible expressions for the RAR dataset (a) and a zoomed region (b). Around 10% of all solutions reach a good log-likelihood [image: $$\approx 1000$$]. The zoomed plot shows that approximately only the 100 best solutions with length 12 have a log-likelihood above 1005.




4.2 Quality of GP Solutions
Table 2 shows the results obtained by GP with the different maximum length limits for each dataset. We report the objective values of the best solution found over 50 independent runs, as well as the average and standard deviation of the objective values of the 50 solutions. For both datasets and both length limits, GP was not able to find the global optimum (model structure and coefficients). Only when allowing longer expressions, GP was capable of finding a better solution for the Nikuradse dataset. When looking at the average objective, we can see that only when we set a larger length limit we find solutions with similar objective values are closer to the best solutions in the more restricted search spaces.Table 2.Objective values of the best solutions found by GP compared to the global optimum in the search space found by ESR. For the Nikuradse dataset the MSE is reported, for the RAR dataset the negative MNR log-likelihood (smaller values are better). GP does not find the global optimum for both datasets and both length limits.


	Dataset
	Max. length
	Optimum
	Best
	Mean
	StdDev

	Nikuradse
	10
	[image: $$2.70\cdot 10^{-3}$$]
	[image: $$ 4.50 \cdot 10^{-3}$$]
	[image: $$7.56 \cdot 10^{-3}$$]
	[image: $$2.97\cdot 10^{-3}$$]

	Nikuradse
	12
	[image: $$1.46\cdot 10^{-3}$$]
	[image: $$ 2.01 \cdot 10^{-3}$$]
	[image: $$5.39 \cdot 10^{-3}$$]
	[image: $$1.49\cdot 10^{-3}$$]

	Nikuradse
	20
	 	[image: $$ 1.30 \cdot 10^{-3}$$]
	[image: $$1.33 \cdot 10^{-3}$$]
	[image: $$0.03\cdot 10^{-3}$$]

	RAR
	10
	[image: $$-1002.34$$]
	[image: $$ -1000.65$$]
	[image: $$ -999.20$$]
	0.805

	RAR
	12
	[image: $$-1013.24$$]
	[image: $$ -1002.30$$]
	[image: $$-1000.03$$]
	1.056

	RAR
	20
	 	[image: $$ -1007.08$$]
	[image: $$-1002.31$$]
	0.934






4.3 Success Probability
For a better insight into the reasons why GP does not find the global optimum for both datasets, we analyse the empirical cumulative density function (ECDF) for the number of total expressions visited until finding a solution (cf. [21]). To compare the efficiency of search algorithms we plot the ECDF and show multiple curves for different objective value thresholds and search algorithms in a single plot. The reported success probability is calculated as the fraction of the 50 independent runs, where the threshold is reached and the x-axis shows the number of total visited expressions until the value was reached in the runs.
We use ESR-based RS as an (idealized) benchmark that ignores the effort for parameter optimization and the problem of local optima.
In Fig. 4 we can see the ECDF-curves for multiple MSE thresholds for the Nikuradse dataset. Perhaps surprisingly, RS has a higher success probability and needs to visit fewer expressions to find solutions for all thresholds. However, it is clear that our RS always finds the best solution in the finite solution space as it does not resample solutions. The first threshold of 0.02 is deliberately high, as we know that approximately 10% of the solutions have a better MSE. For length [image: $$=10$$], GP requires approximately 600 visited expressions to find a solution in 50% of the runs and found a solution in all runs after visiting 4000 expressions. RS, finds solutions in 50% of the runs after visiting 100 expressions and in all runs after fewer than 1000 expressions. For lower thresholds, the algorithms require more time to find solutions and success probability of GP decreases as we have limited the GP runs to visit a maximum of 25000 expressions (250 generations with population size 100). GP finds no solutions below the thresholds 0.002 and 0.0015. This pattern is repeated for maximum length 12.[image: ]
Fig. 4.Success probability of GP and RS over number of visited expressions for length = 10 and length = 12 for the Nikuradse dataset. For length = 10, GP has a high probability to find solutions with MSE below 0.2 and 0.1, but success rate drops below 10% for a threshold of 0.005. For length = 12, the success rates are higher, but GP did not find the best solutions in any of the 50 runs.



Figure 5 shows the ECDF for RS and GP for the RAR dataset with a similar result. GP does not find the best solutions, and has to visit more expressions than RS until it finds solutions. The success rate of reaching a solution with neg. log-likelihood (nll) below [image: $$-1000$$] is only approximately [image: $$15\%$$] even for maximum length 12.[image: ]
Fig. 5.Success probability over number of visited expressions for RAR for length = 10 and length = 12. For length = 10, GP finds solutions with nll below [image: $$-995$$] easily but found only a single solution with nll [image: $$&lt; -1000$$] in 50 runs. For length = 12, GP has a success rate of [image: $$\approx 15\%$$] for nll [image: $$&lt; -1000$$], but fails to find one of the [image: $$\approx 100$$] best solutions with nll [image: $$&lt;-1005$$].




4.4 Semantic Duplicates
The previous plots highlight an issue with the power of GP when compared to RS. One reason is wasteful exploration of repeated expressions. Notice that GP can visit repeated expressions in two occasions: they may be regenerated through crossover and mutation, by chance; or GP can generate a new expression that is structurally different to all previously visited expressions but equivalent after simplification. The same simplification procedure based on eq-sat that we used for ESR to produce the set of semantically distinct expressions can be used to analyse how many of the expressions visited by GP are duplicates.[image: ]
Fig. 6.Number of expressions, and distinct expression structures visited by a single GP run for the Nikuradse dataset relative to population size (top row) and number of total evaluations (bottom row).



Figure 6 shows the number of distinct expressions visited throughout the search for the three length limits. The top row of the plot shows the number of distinct expressions, distinct expression structures (ignoring parameter values), distinct expression structures after simplification, and expressions that can be simplified to the trivial expression [image: $$p_1$$] (a constant model) for each generation. The frequencies are given as fractions of the population size. The plots in the bottom row show the aggregates over the whole run, where distinctness is determined over the whole run. These plots reveal a worrying behaviour of GP when restricted to such extreme length limits. Without applying simplification, GP generates between [image: $$60\%$$] to [image: $$80\%$$] of distinct expressions ([image: $$20\%$$] of the expressions or expression structures are the same). When we simplify such expressions, this range goes down to only [image: $$20\%$$] to [image: $$40\%$$]. This behaviour is similar for maximum lengths 10 and 12. For maximum length 20, the search is a little less wasteful, with distinct expressions after simplification in the range of [image: $$40\%$$] and [image: $$60\%$$]. Even more alarming is that around 50% of the expressions can be simplified to a constant [image: $$(p_1)$$] for length = 10 and length = 12, and for length = 20 this is still [image: $$10\%$$] to [image: $$20\%$$]. The accumulated counts in the bottom row show that only [image: $$10\%$$] to [image: $$20\%$$] of all expressions that GP visits are unique. Notice that the expression [image: $$p_1$$] can be generated in many forms, such as [image: $$p_1 + p_2$$] or [image: $$p_1 / p_2^{p_3}$$]. The high percentage of such trivial expression being sampled by GP is related to its position in the search space in which it has a reasonable MSE, and many expressions have a worse MSE.
We observe a similar behavior for RAR dataset as depicted in Fig. 7, with the main difference that the number of distinct expressions and expression structures visited by GP is higher ([image: $$80\%$$] to [image: $$100\%)$$], which could be a consequence of the fact that a large proportion of all expressions has a likelihood value close to the best one. The number of semantically distinct expressions after simplification is however again much lower and around [image: $$50\%$$], the main contributor to this are again the expressions that can be simplified to a constant [image: $$(p_1)$$], which account for [image: $$\approx 20\%$$] of the expressions. The aggregated counts of distinct expressions are similarly low as for Nikuradse. Only around [image: $$10\%$$] of the evaluated expressions were unique and [image: $$90\%$$] were re-visits.[image: ]
Fig. 7.Number of expressions and distinct expression structures visited by a single GP run for RAR relative to population size (top row) and number of total evaluations (bottom row).





5 Limitations
We should stress that these experiments are limited to the investigation of visited expressions without considering the lineage of the generated expressions (i.e., the exploration path traversed to reach the optimal expression). We focused on a broader view of the efficiency of GP as a search algorithm for SR comparing with the enumerated search space and an idealized random search, if it could guarantee sampling only without repetition.
We used an adapted version of TinyGP which is much simpler than state-of-the-art GP systems such as Operon [6] or PySR [8]. To make sure that the results are not an artefact of TinyGP, we have executed the same experiments for Nikuradse dataset using Operon and have found similar results.6 The number of unique expressions visited by Operon is similarly low.
We restricted the GP expressions to short length limits. This was necessary to have the same search space for ESR and GP. While we did quantify the efficiency of GP for a larger length limit of 20 nodes, we cannot calculate the success probability for finding the best solutions in the larger search spaces. We consider only the goodness-of-fit for the training data and ignore potential overfitting.
GP may require larger length limits to find the best solutions, which can then be simplified. We analysed the GP runs with length limit 20, and plotted the ECDF for the number of visited expressions until finding solutions which have length smaller or equal to 12 nodes after simplification. This increased the success rate of finding good solutions with GP but the global optimum could still not be found. More details are given in the supplementary. We leave a more detailed study of this effect for future work.

6 Discussion and Conclusions
We investigated the search behaviour of genetic programming for symbolic regression by applying a simple implementation called TinyGP to two real-world datasets. We focused on symbolic regression of functions of a single variable with short length limits (10–20 nodes). For this search space, enumeration of all semantically unique expressions is possible using an improved implementation of the Exhaustive Symbolic Regression algorithm.
Having the enumerated solution space, we could first verify that in both datasets a large portion of the expressions are of low quality and only [image: $$0.01\%$$] to [image: $$1\%$$] (depending on the dataset) are within a reasonable distance from the optimum in the fitness space. Using 50 independent restarts of GP we did not find the optimal solutions for any of the search spaces. Comparing the success rate of GP with an idealized random search, we found that GP visits an order of magnitude more expressions to find solutions with the same success rate.
Finally, we highlighted that a significant portion of the expressions visited by GP are semantically equivalent to previously visited expressions. We determine semantic equivalence of expressions by simplification to a canonical form using equality saturation to detect isomorphic expressions even when parameter values are different. This is an important novelty compared to existing SR literature, where semantic equivalence is detected only through shared fitness values.
It remains to be seen whether the observed number of re-evaluations is helpful for GP, or if the efficiency of the search process can be improved by preventing these. Even though the redundancy of representations grows exponentially with larger search spaces, it is not known whether the same proportion of re-visited expressions also occurs when GP is used with more typical length limits of up to 100 nodes, or with more input variables.
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Footnotes
1[image: $${\text {powabs}}(x,y) =|x|^y$$].

 

2https://​github.​com/​DeaglanBartlett/​ESR.

 

3https://​github.​com/​folivetti/​ppsn24_​gp_​esr_​comparison.

 

4https://​docs.​scipy.​org/​doc/​scipy/​reference/​generated/​scipy.​optimize.​minimize.​html.

 

5These experiments were executed on a Dell G5 with a Core i7-9750H and 16 GB of RAM.

 

6Details can be found in the supplement.
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Abstract
Audiology entities are using Machine Learning (ML) models to guide their screening towards people at risk. Feature Engineering (FE) focuses on optimizing data for ML models, with evolutionary methods being effective in feature selection and construction tasks. This work aims to benchmark an evolutionary FE wrapper, using models based on decision trees as proxies. The FEDORA framework is applied to a Hearing Loss (HL) dataset, being able to reduce data dimensionality and statistically maintain baseline performance. Compared to traditional methods, FEDORA demonstrates superior performance, with a maximum balanced accuracy of 76.2%, using 57 features. The framework also generated an individual that achieved 72.8% balanced accuracy using a single feature.
Keywords
Feature EngineeringGrammatical EvolutionAudiology
1 Introduction
The advances in our digital world have brought us large amounts of data that can be used to extract domain-specific knowledge. One such domain is the medical field, where data is used to help professionals better decide through its analysis, visualization and usage in decision support systems.
The medical field encompasses a broad range of disciplines, including audiology. As a specialized branch within the medical field, it focuses on studying hearing, balance, and associated disorders. In February 2024, the World Health Organization (WHO) reiterates its prediction that by 2050, 2.5 billion people will have Hearing Loss (HL), with 1 in 10 requiring rehabilitation [11]. This condition can negatively impact a person’s life, either professionally or personally.
As such, audiology technicians are conducting screenings to assess the hearing health of the population, while collecting data that can help guide the screening towards people at risk, through intelligent models.
This can be achieved by Machine Learning (ML) models that provide a wide range of methods to detect and predict patterns. One key aspect of properly modelling them is defining the data representation that is given as input. Feature Engineering (FE) is a step in the ML pipeline dedicated to transforming data to suit the requirements of these models. Despite existing methods to address this problem, evolutionary methods have demonstrated their utility for selecting and constructing novel features.
This work aims to benchmark an evolutionary FE wrapper, using models based on decision trees as proxies. The FEDORA framework will be applied to a HL classification dataset, in three different settings, varying only on the choice of the proxy, which can be a Decision Tree (DT) or its bagging and boosting variants: Random Forest (RF) and Extreme Gradient Boosting (XGB), respectively.
Results confirm that FEDORA can reduce the dimensionality of the data while statistically maintaining baseline performance, in every experiment. The framework is compared with common FE methods and consistently outperforms them, with statistical significance and large effect sizes. The best result obtained is 76.2% balanced accuracy using an individual from the RF proxy experiment, and a XGB as the testing model, using 57 features that were selected or constructed from the 60 original ones. When using the least amount of features, the best result is 72.8% balanced accuracy using an individual from the DT proxy experiment and a RF algorithm as the testing model, using a single feature.

2 Related Work
2.1 Evolutionary Feature Engineering
As a step of the ML pipeline, FE defines the process of transforming an original dataset into a refined one. It can be partitioned into two domains: Feature Selection (FS) and Feature Construction (FC). The goal of FS is to remove redundant or misleading features that can compromise the performance of the models. In addition, FC seeks to build new features from the original ones, providing an enhanced representation that may help ML models, especially those that cannot create a complex internal representation or decision boundary.
There are three main types of FE methods: filter, wrapper and embedded. [2]. Filter methods assess the features without the use of a ML model. In contrast, wrapper methods use the performance of such models to evaluate the set of features, which is the approach this work follows. At last, embedded methods perform FE while training the model.
Evolutionary FE methods have been proposed over the years with Genetic Programming (GP) [3] being the most common approach. Concerning approaches that use DT-based proxies, Tran et al. [13] proposed MultGPFC, a hybrid (filter and wrapper) framework that uses a DT proxy and a filter distance metric. The fitness function is given by a linear combination of both approaches, with the accuracy of the DT being the average score of a 3-fold cross-validation repeated 3 times with different data splits. The framework was applied to 6 datasets, showing that it can construct and select features that boost the performance of ML testing models, although being more effective for a DT. Cherrier et al. [2] also followed a GP approach to design and compare evolutionary wrapper or filter methods that construct interpretable features for three experimental physics datasets. Among the methods, the 3-fold cross-validation accuracy of a DT and XGB models were used to evaluate the individuals, in different experiments. Whether evolving one or more features, all methods improved the baseline.
Regarding Grammatical Evolution (GE) [10] works, Miquilini et al. [6] compared two types of DT algorithms as proxies, namely J48 and REPTree, for evolving a single feature. The fitness of the individuals was measured in a 5-fold cross-validation setting and given by its average accuracy. Being applied to 16 datasets, both proxies produced features that empowered the corresponding models with higher performance and a smaller tree depth than the baseline, for most problems. Additionally, the work of Monteiro et al. [8] proposed FERMAT, a framework that uses Structured Grammatical Evolution (SGE) [4, 5], a GE variant, as the evolutionary engine. In this work, a DT is used as the proxy for a RF, the testing model. The fitness of the individuals was given by the validation Root Mean Squared Error (RMSE) of the proxy. It was applied to two regression problems, having success in selecting and constructing new features that helped regression models achieve better predictions.

2.2 Machine Learning in Hearing Loss Detection
The current status of HL detection by ML models is overviewed in the work of Miranda [7]. Most works focus on actively detecting HL through the results of audiology screenings or related procedures, demographics, medical data and noise exposure metrics. These features generally match with the ones highlighted by the WHO as relevant HL causes. Frequently, studies on HL detection focus on specific categories or origins of HL, such as sensorineural or noise-induced causes, as well as environments where HL is prevalent, such as industrial settings [12].
Results show that with screening or similar information, ML models can achieve accuracy values above 70%, depending on the data and model used. However, when aiming to guide screening towards people at risk, it is expensive to perform a screening procedure across the whole population. Therefore, models that rely solely on personal, medical, and demographic factors to predict the likelihood of HL, in the absence of screening data, could be valuable for discerning which contextual factors have a greater impact on HL.


3 Approach
In this work, FEDORA [9] will be applied to a HL detection problem using three distinct classifiers based on decision trees, namely basic DT models and their bagging and boosting counterparts, RF and XGB, as proxy models in the evolutionary framework. Figure 1 illustrates the inner workings of the framework.[image: ]
Fig. 1.FEDORA: Feature Engineering through Discovery of Reliable Attributes



The framework starts by splitting the original dataset into training (40%), validation (40%) and test subsets (20%). The training and validation subsets are given to the evolutionary process, where SGE will generate individuals that select and construct a new dataset from the original one, through a context-free grammar. These transformations will be applied to the training and validation subsets, which will then be used to train the proxy model and validate the transformation, respectively. The fitness is given by the validation error, namely (1 - Balanced Accuracy). After the specified generations of the evolutionary process, the individual with the lowest validation error is returned. This individual is then applied to the three subsets and its ability to generalize to unseen data is evaluated. This assessment involves training a range of Machine Learning (ML) models using both the training and validation subsets and subsequently evaluating their performance on the test set.

4 Experimental Setup
This study addresses detecting HL with contextual attributes through binary classification. The dataset generation process is fully defined in [7]. The dataset has 60 features and cannot be publicly published due to sensitive patient screening information.
Regarding the experimental settings, Table 1 summarizes the parameters of the framework for each one of the three experiments. Most settings are alike, only diverging in the proxy model. All the models used the default package parameters, except for the RF where the n_estimators and max_depth parameters were defined to 5. The grammar used in the experiments enables the selection and construction of algebraic-type features and is available here1.Table 1.Experimental Settings


	Parameters
	Experiments

	Proxy Model
	DT
	RF
	XGB

	Population
	200

	Generations
	100

	Runs
	30

	Elitism
	10%

	Crossover Rate
	0.9

	Mutation Rate
	0.1

	Minimum Tree Depth
	3

	Maximum Tree Depth
	10

	Selection
	Tournament (size 3)

	Fitness
	1 - Balanced Accuracy





Four types of models were selected as testing models: DT, RF, XGB and Multi-Layer Perceptron (MLP). These models will assess the generalization performance of the FEDORA individuals, comparing its balanced accuracy scores with the baseline and other FE methods, such as Principal Component Analysis (PCA), Uniform Manifold Approximation and Projection (UMAP), Self-Organizing Maps (SOMs) and Autoencoders (AEs).
Each FE technique will use the same number of features as the FEDORA individual. For instance, if the FEDORA individual has 15 features, both the number of PCA and UMAP components would be equal to 15, the 2D SOM grid would have dimensions of 15[image: $$\,\times \,$$]1, and the code size of the AE would be set to 15. The AE parameters consist of 50 neurons for the single hidden layers, with linear activation functions, and using mean squared error as the error metric. Its training involves using a batch size of 32, running for 50 epochs, using Stochastic Gradient Descent.

5 Results and Discussion
The evolution process will be examined from the perspectives of fitness and the number of features, considering the average values across 30 runs over the generations. This allows us to overview the evolution process from both perspectives, checking for relevant behaviours. The best individuals will be analysed via the number and construction complexity of the features they generate. This gives us insights from both FS and FC standpoints. The performance results of ML classifiers, using various FE methods, will also be visually examined and statistically analysed to check for meaningful differences.
5.1 Using Decision Trees as Proxy
Figure 2 showcases a collection of plots depicting the results of the DT experiment from different perspectives. In Panel 2a, the evolution of the average fitness of populations and the performance of the best individuals across 30 runs is depicted over successive generations, showing an effective minimization trend of the balanced accuracy validation error. The population line reaches an average error mark of 32%, while the best line achieves a lower error of 29%.
In Panel 2b, four distinct lines are displayed, each representing the average number of features selected by FEDORA across 30 runs. These lines correspond to the averages of the population (population), the best individual (best), and individuals with the least (minimum) and greatest (maximum) number of features. The minimum and maximum lines are roughly around both ends of the number of allowed features by the grammar. Conversely, the best and population lines have been decreasing over the generations, without any signs of stabilizing, despite having an initial increase. These two panels show that using a DT as the proxy model induces the framework to maximise performance and reduce the number of features over the generations.
Panel 2c illustrates feature ratios derived from the best individual of each run. To construct this chart, we establish criteria for classifying features produced by FEDORA individuals. A feature is named as original if it is solely selected from the original dataset (e.g. feature1), engineered if a single operator merges two original features (e.g. feature1 + feature2), and complex if two or more operators are utilized (e.g. feature1 + feature2 - feature3). Also, Panel 2d must be considered when interpreting this one, as it provides the total number of features for each best individual. The feature complexity ratios are normalized by these values, as shown in the equations below.[image: $$\begin{aligned} R_{O} = \frac{N_{Selected}}{N_{Total}}  R_{E} = \frac{N_{Engineered}}{N_{Total}} R_{C} = \frac{N_{Complex}}{N_{Total}} \end{aligned}$$]



Therefore, Panel 2c shows that the individuals are composed of constructed and selected features since the ratio of original features and the sum of engineered and complex features ratios are both positive. Some individuals present large ratios of engineered and complex figures due to having a low number of features, as observed in Panel 2d. Runs 6, 8 and 25 returned individuals without original features, only being composed of engineered or complex features.
To compare FEDORA with the baseline and other common FE methods, Panel 2e exhibits a series of 24 boxplots associated with the testing outcomes. Each boxplot contains 30 points, representing each run individually. The value of each point corresponds to the balanced accuracy score of the respective FE method and testing model pipeline in a particular run. When using a DT as the testing model, the FEDORA boxplot visually improves baseline performance, while slightly deteriorating it on the other ML models. Examining the remaining FE techniques, most underperform the baseline and FEDORA in all testing models. When aiming for maximum performance with minimal features, run 8 returned an individual that achieves a 72.8% balanced accuracy score with a RF classifier, with a single complex feature. Its phenotype is shown below:[image: $$x_{29}-x_{22}*x_{22}+(x_{8}*x_{42}/(x_{35}*x_{9}+x_{53}))$$]
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Fig. 2.Experiment Summary - DT




5.2 Using Random Forests as Proxy
Figure 3 presents the same set of plots with the results of the RF experiment. In Panel 3a, one can see that both lines stabilize around the 20-generation mark, with slight improvements observed in the subsequent generations, resulting in a final average validation error of 29% for the population line and 26% for the best line.
Panel 3b shows that the population and best lines exhibit simultaneous growth up to the point of reaching 50 features, with the latter slightly surpassing the former, a behaviour that contrasts with the DT experiment. Also, the minimum and maximum lines are close to the 0 and 60 features mark, respectively.
Panel 3c demonstrates that the features generated by the individuals are approximately 80% original, 10% engineered and 10% complex, while mostly using less than 60 features, as shown in Panel 3d. Although differently than observed in the DT experiment, these Panels reinforce the claim that the framework can simultaneously select and construct features.
Regarding the testing results, Panel 3e shows that FEDORA maintains baseline performance, despite using fewer features. It also outperforms the remaining FE methods, which deteriorate baseline performance across all testing classifiers. The best-performing individual was obtained in run 19, with a 76.2% balanced accuracy score, using the XGB classifier with 57 total features (45 Original, 6 Engineered and 6 Complex). It corresponds to the best score obtained in this paper by the proposed framework.[image: ]
Fig. 3.Experiment Summary - RF




5.3 Using Extreme Gradient Boosting as Proxy
Figure 4 summarizes the obtained results of the XGB experiment. Similarly to the RF experiment, Panel 4a shows a clear effective minimization of the error, this time achieving lower error scores with both lines stabilizing earlier, at the 10-generation mark, with the population line achieving an error of around 27% and the best an error of roughly 25%.
The analysis made for the Panels 3b, 3c and 3d of the RF experiment is directly applicable to the Panels 4b, 4c and 4d of this experiment, i.e. FEDORA can perform FS and FC since the original ratio and the sum of the remaining ratios are positive, correspondingly. Although returning individuals with a slightly greater amount of features, the evolution and complexity ratios of the features in this experiment are similar to the RF proxy experiment.
In Panel 4e, FEDORA can maintain baseline performance across all classifiers. The framework outperforms common FE methods, especially when using the RF and XGB classifiers. It is possible to observe a narrow improvement over the baseline with the XGB classifier when using the FEDORA individuals. The best-performing individual of this experiment was obtained in run 19, with a 76% balanced accuracy score, using the XGB classifier with 58 total features (39 Original, 13 Engineered and 6 Complex).[image: ]
Fig. 4.Experiment Summary - XGB




5.4 Statistical Analysis
To compare the results of the different experiments, we performed a statistical analysis to check for any meaningful differences. The statistical tests were only applied to the FE methods of one single testing classifier for each experiment, for simplicity. The chosen testing model for the statistical test is the same as the proxy of the corresponding experiment.
Without making any parametric or paired assumptions, the Kruskal-Wallis non-parametric test was applied to compare the FE techniques, in each experiment, to check if the median scores of all the groups are equal, with a significance level of 0.05. Table 2 gives the Kruskal-Wallis test results for every experiment. As the p-value is 0 for all experiments, every experiment rejects the null hypothesis, i.e. there are differences in the medians of the groups. Therefore, a pairwise post hoc analysis is required for every pair of groups in each experiment.
Pair-wise comparisons were made using Dunn’s posthoc test and correcting the resulting p-values with the Bonferroni correction. Cliff’s [image: $$\delta $$] was used to measure the effect size. The symbol “[image: $$\sim $$]” denotes a negligible effect size ([image: $$|\delta | &lt; 0.147$$]), “+” denotes a small effect size ([image: $$0.147 \le |\delta | &lt; 0.33$$]), “++” a medium one ([image: $$0.33 \le |\delta | &lt; 0.474$$]) and “+++” a large one ([image: $$|\delta | \ge 0.474$$]).
Table 3 details the effect sizes for Dunn’s posthoc analysis for the DT proxy experiment. It shows statistically significant differences between FEDORA and the other FE methods, with a large effect size. There are also differences between the baseline and the common FE methods, with a large effect size. For this experiment, there is no evidence of differences between the baseline and the FEDORA groups, meaning that the framework can statistically maintain performance. There are statistically significant differences between the UMAP and the Artificial Neural Network (ANN) based FE methods, i.e. the SOMs and the AEs, both with large effect sizes.
Table 4 provides the effect sizes for the RF proxy experiment. Once again, the baseline and the proposed framework have statistically significant differences with the common FE methods. Also, the baseline and FEDORA groups do not seem to have differences. Furthermore, there are statistically significant differences between the PCA and UMAP groups and between the AE and UMAP groups, with large effect sizes. Table 5 gives the effect sizes for the XGB experiment. The statistical analysis is the same as the one made for Table 4 since the tables are identical.Table 2.Kruskal-Wallis Test Results


	Experiment
	Model
	H
	P-Value

	DT
	DecisionTreeClassifier
	143.45
	0

	RF
	RandomForestClassifier
	156.48
	0

	XGB
	XGBClassifier
	145.27
	0




Table 3.Dunn’s test effect sizes - DT
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Table 4.Dunn’s test effect sizes - RF


[image: ]


Table 5.Dunn’s test effect sizes - XGB
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5.5 Discussion
Concerning the evolution plots, all fitness plots show that individuals are gradually evolving throughout the generations. When using a DT model as the proxy, the best line appears to be the one with greater evolution progress, although not quite matching the lower performances of the remaining experiments.
The feature evolution plots show a different angle of evolution. The number of features of the best individuals in the DT experiment is decreasing throughout the generations, alongside the population mean. Such an event is not noticeable in the other experiments. The exact opposite happens, i.e. the best and population lines tend to grow and stabilize, with the latter resembling a logarithmic function. By observing the number of features in the DT experiment, it is noticeable that its individuals can achieve a much lower feature dimensionality. This experiment also shows a higher ratio of engineered and complex features, although having fewer features biasing them. For the RF and XGB experiments, it is possible to observe that FEDORA can simultaneously select and construct novel features since the ratio of original features and the sum of engineered and complex features ratios are positive.
Regarding the comparison with other common FE methods and the baseline, the comparison plots show that FEDORA is consistently above the PCA, UMAP, SOMs and AEs methods while statistically maintaining baseline performance. In the DT experiment, FEDORA is also able to improve past the baseline values when using a DT as the testing model, although such results are not statistically significant.
From the analysed experiments, a pattern emerges in the behaviour of FEDORA. The DT experiment can reduce the number of features to a degree that the other proxy models cannot. When comparing the inner workings of the proxy models, the RF and XGB models have one thing in common that the DT model does not: the ability to create a more complex internal representation of the given data or decision boundary, which generally translates into better performances. A DT can only make simple decisions with the provided data, which translates into axis-parallel hyper-planes decisions in the feature space, which might not properly address a complex dataset. As such, if the evolution transformations do not provide adequate features to this model, i.e. constructed features that allow for non-linear decisions in the original feature space, the DT will most likely have worse performance than the remaining models, when facing a hard problem. Consequently, this encourages evolution to provide well-engineered features, thus making the fitness function much more discriminant. On the other hand, the remaining models do not put this kind of pressure on the evolution process. Each model takes charge of either constructing its features internally or defining a more complex decision boundary. Therefore, evolution just gives it a solid amount of original features, so that the model can find what works best for itself, and a few suggestions in the form of engineered and complex features. Consequently, the best individuals tend to have a much higher number of features when using RF, or XGB models as proxies. When using these models as the proxy, aiming for individuals with a low number of features becomes a problem. As such, ways to bias the evolution may be required, namely reducing the number of features that a transformation can produce in the grammar, e.g. 1 to 10 instead of 1 to 60, or adding a fitness component that penalizes individuals with many features. The usage of different feature combining operators may also be of use. These modifications might prove themselves useful in such a task.
Given these results and considering that FEDORA and the other methods usually work with fewer features, with their main purpose being a FE technique, effectively reducing the number of features and statistically maintaining the baseline performance are great results. From the methods used in this work, FEDORA is the only one that can almost always have this behaviour. Also, it is possible to understand the phenotype of a FEDORA individual to a certain degree, depending on the choice of the operators defined in the grammar.


6 Conclusion
This work analysed the results of evolutionary wrapper approaches using decision tree based models as proxies and compared them with common FE techniques on a HL detection problem. Three experiments were conducted using the proposed framework, each employing different proxy models.
When comparing the three experiments, an interesting behaviour of the framework was discovered, when changing the proxy model. The DT experiment drastically reduced the number of features, while the other models did not. To further reduce the number of features, one could bias the grammar or apply some penalty in the fitness function for the individuals that use a large number of features. This might not change the behaviour when using different models other than a DT, but it forcefully reduces the number of features.
The results confirm that FEDORA can reduce the dimensionality of the data while statistically maintaining baseline performance, in every experiment. The framework consistently outperforms the remaining FE methods, with statistical significance and large effect sizes, proving itself as a viable alternative.
The best result obtained is 76.2% balanced accuracy using an individual from the RF experiment, and a XGB algorithm as the testing model, using 57 total features (45 Original, 6 Engineered and 6 Complex) out of the 60 original ones. When using the least amount of features, the best result is 72,8% balanced accuracy using an individual from the DT experiment and a RF algorithm as the testing model, using a single complex feature.
In future work, exploring the above-mentioned behaviours might be relevant to better understanding them, namely when biasing the grammar or penalizing the use of many features in the fitness function. Concerning the explainability of the FEDORA transformations, researching meaningful grammar operators might prove useful in addressing problem-specific needs. In this case, having logical operators for the boolean features, which have values of “yes” or “no”, and the choice of a simple decision algorithm as the proxy, may increase explainability. Additionally, the previous study has identified several areas for future research, yet to be addressed. For instance, comparing the framework with other common and more complex methods and completing the full ML pipeline through the use of a method that addresses the Combined Algorithm Selection and Hyperparameter optimization problem (CASH), such as [1], and comparing it to other full pipeline frameworks, could be beneficial for contextualizing and evaluating the framework within the Automated Machine Learning (AutoML) and Evolutionary Computation (EC) domains. The framework still needs to be analysed with different datasets to properly assess its generalization capabilities.
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Abstract
Program synthesis constitutes a category of problems where the objective is to automatically produce computer programs that meet specified criteria. Among Genetic Programming algorithms, Cartesian Genetic Programming has been successfully used for a variety of function synthesis problems, such as circuit design, pattern analysis, and game playing. These problems are designed to work only on a single data type, for example, boolean values or entire images. Cartesian Genetic Programming cannot directly be applied to problems with multiple data types, which poses a great limitation, as more realistic programs should be able to deal with different data types. Mixed-Type Cartesian Genetic Programming is the only current extension of Cartesian Genetic Programming which allows for processing different data types. In this work, we present and study Multimodal Adaptive Graph Evolution, a multi-chromosome generalization of Cartesian Genetic Programming that groups functions by return type and constrains graph mutation based on node’s type coherence. We compare Multimodal Adaptive Graph Evolution to Mixed-Type Cartesian Genetic Programming on the Program Synthesis Benchmark Suite, showing that the representation and mutation constraints of Multimodal Adaptive Graph Evolution aid in the search of multimodal functions. Using Search Trajectory Networks, we find that Multimodal Adaptive Graph Evolution converges faster to a local or global minimum compared to Mixed-Type Cartesian Genetic Programming and explores the solution space more effectively by creating candidate solutions with lower semantic redundancy.
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Genetic programmingProgram synthesisEvolutionary computationSearch Trajectory Networks
1 Introduction
In modern Machine Learning (ML), methodologies are increasingly dependent on the integration and adaptation to a diverse set of input data. All data, regardless of its type, present an opportunity to discover unknown and novel patterns. However, incorporating multimodality into ML algorithms presents a considerable challenge. Genetic Programming (GP) is a promising approach for tackling multimodality as it aims at automatically generating computer programs which can rely on libraries of high-level functions that treat various data types.
GP has been applied in many domains such as medical image analysis [4], game playing [27], cryptography [12], and robotic control [18]. GP operates by optimizing populations of computer programs, refining them iteratively based on a fitness function. While GP has been heavily studied for program synthesis, most approaches focus on single-type problems, limiting their broader applicability. PushGP [23, 24] and Mixed-Type Cartesian Genetic Programming (MT-CGP) [6] have emerged to address multimodal problems effectively. Both have shown promising results across tasks ranging from computer vision to control. PushGP, a stack-based GP algorithm, handles multimodal data by pulling and pushing results onto corresponding stacks based on their types. Conversely, MT-CGP extends Cartesian Genetic Programming (CGP) by expanding the function library for evolution, enabling the use and return of various types while retaining the same graph representation.
In this work, we describe and study Multimodal Adaptive Graph Evolution (MAGE), an extension of CGP that integrates multiple function libraries, each specialized for a distinct return type. Unlike MT-CGP, MAGE adopts a multi-chromosome representation, such as a Cartesian grid, where function libraries are divided and organized, assigning to each chromosome one of these libraries. This restructuring offers two primary advantages. First, it reduces genome size, facilitating optimization. Second, the division of function libraries tailored to specific return types decreases the search space. Moreover, the structured approach of the framework enhances adaptability for problems involving new data types, as integrating a new function library can be achieved without extensive re-engineering of existing libraries. This work extends our recent abstract [25] by presenting a detailed explanation of MAGE, performing an extensive comparison between MT-CGP and MAGE for program synthesis, and offering an analysis of the search behavior dynamics, which shows that MAGE excels in reducing semantic redundancy within its explored individuals compared to MT-CGP.
In this paper, we begin by introducing the core concepts of GP and PS, with a specific emphasis on CGP methods. We then proceed to provide a comprehensive description of the MAGE algorithm. Subsequently, we conduct an evaluation of MAGE against MT-CGP across all problems encompassed in the Second Program Synthesis Benchmark Suite (PSB2) [8], showcasing that MAGE consistently converges faster and reaches better local minima compared to MT-CGP. Also, MAGE is more likely to synthesize programs that generalize to test data. Finally, we analyze the search process of both algorithms for one of the problems to illustrate their behavioral disparities. For reproducibility purposes, relevant data, code and the appendix are available online1.

2 Background
Genetic Programming entails the process of discovering efficient computer programs for a given task by evolving the ordering and parameters of mathematical functions [11]. Given its intrinsic ability to generate computer programs, GP has found widespread applications in Program Synthesis (PS) [5, 22]. In PS, GP automatically creates programs through an evolutionary approach, rather than relying on manually crafted steps to achieve the desired program. Various program representations and evolutionary algorithms have been used, such as tree-based GP [11], stack-based GP like PushGP [24], linear GP [2], grammar-based GP [26], and Cartesian GP [16].
Program synthesis problems come in various forms. Symbolic Regression (SR) is a type of PS that aims to derive a mathematical formulation that accurately models data, typically with scalar inputs and outputs. When the true formula is known, the algorithm must not only approximate but also identify the correct solution. The SRBench compilation of SR problems encompasses over 200 numerical datasets, including 130 instances of known ground truth regression problems, serving as a primary benchmark for GP methods [3, 21].
The Program Synthesis Benchmark Suite presents a range of such problems but where both training data and solutions exhibit mixed-type characteristics [8, 9]. The PSB2 suite introduces 25 new PS problems intended to offer greater challenges compared to those found in PSB1.
The PSB suite has been studied using PushGP, which has demonstrated the ability to solve many multimodal problems [8, 22]. PushGP is built upon the Push family of programming languages and operates as a stack-based evolutionary framework. It inherently accommodates multimodal data by assigning a dedicated stack for each data type. Instructions within the ‘exec’ stack push and pop items from these typed-stacks in accordance with the instruction’s signature. Upon completion of the evolutionary process, the individual’s outputs are the last elements from the stacks corresponding to the desired types.
CGP, proposed by Miller et al. [16], represents computer programs in a directed, acyclic graph. CGP tackles the complexity of solving specific problems by using a library of functions that provide essential building blocks for creating effective programs. Therefore, the selection of functions in this library is critical, as it directly impacts the effectiveness of the generated programs. For example, functions used in Computer Vision applications must be capable of conducting image processing and feature extraction [4, 7, 27].
In CGP, new candidate individuals are generated at each generation, following the (1+[image: $$\lambda $$]) Evolutionary Algorithm [17]. This process evaluates new individuals given a fitness function and the highest performing individual, the elite, is saved between generations. The next set of individuals is created by mutating the genome elite individual. CGP has been applied to single-type problems, where inputs and outputs are expected to be of the same type. However, many problems involve different types, requiring multimodal functions to exploit the information and connections between inputs.
Mixed-Type Cartesian Genetic Programming has been utilized to tackle problems involving attributes of varying types [6]. The main difference between CGP and MT-CGP is that the latter uses a multi-type function library and accommodates, quite explicitly, combinations of different types into its functions. Other aspects of the evolutionary process remain the same as in CGP.
Adding multimodal functions enables the introduction of higher-order functions, significantly simplifying the genome. For example, in the image processing scenario calculating the average of an image, such as the average of all pixel values, based solely on scalar pixel input values is not a simple task and would be exceedingly challenging for a single-type CGP [6]. MT-CGP has been applied to solve various problems across different domains, such as designing sound synthesizers from audio signals and scalars [15] or learning Atari game strategies from vector and scalar inputs [27].
A significant challenge in MT-CGP is that all functions may need to be connected to all possible combinations of data types. To address this issue, practitioners of MT-CGP have proposed three main strategies, each with its limitations. The first strategy involves engineering functions that use logic to accommodate all types. While this approach offers flexibility, it requires manual adjustments for every function, particularly when dealing with problems involving new types. The second strategy entails writing functions for every combination of types and employing heuristics to dispatch them. However, this approach encounters a combinatorial problem as the number of types increases. Lastly, functions can be wrapped to return a default value in case of a mismatch between signature and input types. Unfortunately, this approach sacrifices all previous information in the genome. [6] employed the first two strategies depending on function input type and dimensionality. In [27], the first strategy was employed for most functions, and the third strategy of a default value was used for a subset of matrix functions for which no scalar function equivalent was appropriate. In this work, we choose the third strategy for our MT-CGP implementation due to the large number of functions which makes the first two approaches infeasible. MAGE, which we present next, is intended to resolve this problem by constraining function definitions to a specific type or explicit combination of types and ensuring that the mutation step adheres to these constraints.

3 MAGE
Multimodal Adaptive Graph Evolution (MAGE) builds on CGP principles by adding a data-type structure at the framework level, accommodating different types across the three stages of a CGP program: inputs, operations, and outputs.
A MAGE genome comprises multiple chromosomes, one for each distinct return type, similar to PushGP’s approach of separating stacks by types. Every output from a given node of one of these chromosomes is guaranteed to have the same, fixed type. To ensure this, each chromosome is associated with a specific function library that guarantees a single return type. Knowing the return type of each node facilitates the design of “type-safe” mutation operations, thereby guiding the search for viable solutions. This “type-safe” mutation operator ensures that, following a mutation, the node’s function accepts the types of the node’s inputs.
As a result, a MAGE genome consists of as many chromosomes as there are function libraries. Like CGP, each node in the chromosome connects a function to specific inputs in the graph. However, what distinguishes MAGE is that inputs can explicitly originate from other types (i.e., other chromosomes), thereby promoting composition, interaction, and dynamic parameterization of functions. We first describe MAGE formally and then illustrate MAGE with an example.
Formally, a MAGE genome [image: $$\mathcal {G}$$] is composed of multiple Chromosomes [image: $$\mathcal {C}_{i}$$], each ensuring a single return type, hence associated with a single function library [image: $$\mathcal {L}_{i}$$]. A Chromosome [image: $$\mathcal {C}_{i}$$] is a vector composed of nodes [image: $$\mathcal {N}^{*}_{i,j}$$] where i and j denote the horizontal and vertical position, respectively. We distinguish between 3 kinds of nodes: Input nodes [image: $$\mathcal {N}^{I}_{i,j}$$], Program nodes [image: $$\mathcal {N}^{P}_{i,j}$$], and Output nodes [image: $$\mathcal {N}^{O}_{i,j}$$]. All nodes are vectors composed of the smallest value holders, which we denote as the Allele. An Allele [image: $$ a _{(i,j,k)}$$] picks a number in a certain range [image: $$\mathcal {R}_{(i,j,k)}$$]. For alleles that represent functions, [image: $$ a ^{f}_{(i,j,k)}$$], we have : [image: $$\mathcal {R}_{(i,j,k)} = \mathcal {R}_{i} = \{ 0, ... , |\mathcal {L}_{i} |\}$$]. In order to maintain the acyclic properties, for alleles that represent a connection to another node, [image: $$ a ^{c}_{(i,j,k)}$$], we have [image: $$\mathcal {R}_{(i,j,k)} = \mathcal {R}_{j} = \{ 0, ... , j -1 \}$$]. So far, this representation is fairly standard in classical CGP.
Then, each connection is coupled with an index specifying its type, for that type of allele, [image: $$ a ^{t}_{(i,j,k)}$$], we have [image: $$\mathcal {R} = \{ 0, ..., |\{ \mathcal {C}_{0}, ..., \mathcal {C}_{n}\}|\}$$], i.e., from 0 to the number of types in [image: $$\mathcal {G}$$]. Input nodes just hold the input values for the program and its type t : [image: $$\mathcal {N}^{I}_{i,j} = \{\textbf{x}, t\}$$]. Gathering all together, for a fixed arity of 2, Program nodes are composed of one function allele, and two tuples (connection allele - connection’s type allele) : [image: $$\mathcal {N}^{P}_{i,j} = \{ a ^{f}_{(i,j,0)}, a ^{c}_{(i,j,1)}, a ^{t}_{(i,j,2)}, a ^{c}_{(i,j,3)}, a ^{t}_{(i,j,4)} \}$$]. With this representation, we have all the information needed to determine whether a given node is in a correct or erroneous state based on whether the function signature (encoded in [image: $$ a ^{f}_{(i,j,1)}$$]) accepts the operand types (encoded in [image: $$ a ^{t}_{(i,j,\cdot )}$$]) with help of a lookup table that maps encoded types to computer types. Therefore, the availability of the input nodes’ types, without the need to evaluate them, enables us to perform “type-safe” mutations. That is, when dealing with the mutation of a node [image: $$\mathcal {N}^{P}_{i,j}$$] we can know the types of its promised inputs by looking at the current value of the type alleles ([image: $$ a ^{t}_{(i,j,*)}$$]), consequently we can check the accordance of the function encoded in [image: $$a^{f}_{(i,j,1)}$$] and the types of the potential inputs. In case of a mismatch, we reiterate the mutation operation until a correct mutation is achieved. We believe this approach aids evolution in efficiently exploring the search space, generating meaningful candidates, and thus increasing the likelihood of finding superior solutions compared to MT-CGP.
In Fig. 1, we present a visual example demonstrating MAGE’s explicit typed structure. The key components of MAGE are depicted: the variety of function libraries, each linked to a distinct chromosome; and the interconnections spanning across types. Specifically, we depict a MAGE genome for the Squared Digits problem in PSB2 as an example. In this problem, the program has to:	Cast the input Int to String (e.g. “123”, by using the String library).

	Split the String characters (e.g. {“1”, “2”, “3”}, by using the Vector{String} library).

	Parse the Vector{String} to a Vector{Int} (e.g. {1,2,3}, by using the Vector{Int} library).

	Element-wise square that vector (e.g. {1,4,9}, by using the Vector{Int} library)

	Cast it again, but this time to a Vector{String} (e.g. {“1”, “4”, “9”}, by using the Vector{String} library).

	Finally, concatenate the Vector{String} into a single String (e.g. “149” by using the String library). This will be the output of this program.





All functions in this program are from the following libraries: String, Vector{String} and Vector{Int}. We now describe the input, program, and output of the MAGE program depicted in Fig. 1.[image: ]
Fig. 1.Multimodal Adaptive Graph Evolution



Inputs. The first three nodes represent the program’s inputs, represented solely on the x axis, with their types known beforehand. This allows inputs to possess a type absent in the chromosomes. Consider the first input (e.g. 123): no chromosome specifically addresses Int values, yet the input can still be used.
Program. The nodes in program depicted in Fig. 1 illustrate network connections with an arity of 2, meaning each function has at most two inputs. When a directed arrow connects one node to another, it signifies that the left node serves as an input to the right node. If no arrows appear between connected nodes, it indicates that there’s no need to establish a connection because the function accepts only one operand, not two. Examining the known arity of the function enhances genome decoding and phenotype evaluation speed by reducing the active graph only to the nodes used.
Connections can extend vertically across types and horizontally across positions. For instance, the active node in position 8 (e.g., {12,7,1,-,-}) indicates that the function with index 12, from the Vector{String} library (i.e., cast_list_str), is to be applied to the inputs of that node. By examining the function signature of cast_list_str we know that the function only takes a single input, hence, the last connection and type indices are not depicted. The sole input for cast_list_str will be the node at position 7 of type Vector{Int}. As the function signature and input are type-coherent in node 8, this node is considered to be in the correct state. All mutations done by MAGE leave nodes in that state.
Outputs. Output nodes function similarly to Program nodes. We opted for fixed output nodes to eliminate the output node mutation rate hyperparameter. Moreover, recent analyses showed that fixed output nodes improve results in CGP [18]. To implement this, we fixed the function allele to point to an identity function (the first function in the library by convention), the connection allele to the last node in the chromosome, and the connection’s type allele to the desired output type (i.e. chromosome index).
In addition to the “type-safe” mutation operator introduced by MAGE, we incorporated an active-node-material only mutation. With this configuration, a node can exit the iterative mutation loop only if it is in a correct state and its active part differs from its condition prior to the mutation. In other words, when a node is mutated, it must change its active components while maintaining a correct state, thereby enforcing genuine changes in the active node material. This type of mutation becomes increasingly important as we expand the maximum arity of a node, since it is common for the majority of functions to have low arity and thus mutating unused parts of a node has no effect.

4 Multimodal Function Synthesis
We compared MAGE and MT-CGP using the Second Program Synthesis Benchmark (PSB2), with 25 program synthesis problems drawn from coding challenges. PSB2 is mainly multimodal, with most problems involving more than two types, and single-type problems require other data types to be solved.
We manually crafted functions capable of completely addressing all PSB2 problems except for the Bowling problem, which required unreasonable problem-specific functions. As such, we know that for all other problems at least a global minimum is attainable, permitting us to fairly evaluate MAGE and MT-CGP.
Table 3, in the appendix, shows the typed function libraries we used. Unlike PSB2, we omitted a library for Char since it can be treated as a String and the Boolean library is minimal, used only in one PS problem. Additionally, we introduced two more complex types: Vector{Tuple{Int,Int}} and its String-String counterpart. The number of functions in the Float and Integer libraries is equal because they share the same function set. The same principle applies to the Vector{Tuple{ [image: $$\cdot $$], [image: $$\cdot $$] }} libraries and the majority of functions handling vectors.
Our MAGE implementation for program synthesis was developed in the Julia programming language [1], capitalizing on the multiple dispatch paradigm and the hierarchical type system. This approach enabled us to craft specialized and optimized methods by reusing generic methods, eliminating the need for redundant function definitions. For each library, we integrated a final caster function. Consider the add function in the Float and Int libraries: it takes two inputs that are subtypes of Number and returns another subtype of Number. When applied in the Float library, the add function’s result is casted to Float. Conversely, in the Int library, the result is truncated to an Int, ensuring the correct return type. Notably, the same function definition can be employed for all four combinations of inputs (Int, Float) without further adjustments.
As MAGE represents a generalization of both CGP and MT-CGP, all three frameworks can use the same function libraries, but arranged differently. MT-CGP allows for the use of multimodal functions combined in a single library, and the mutation operation and decoding step do not impose any type constraints. To continue execution, all of our functions return a default (fallback) when an error is encountered and they can arise from a type discrepancy. In MAGE this only happens in the case of a runtime exception (other than a type discrepancy).
Four key distinctions separate MT-CGP from MAGE. Firstly, MAGE employs a “type-safe” mutation operation, while MT-CGP allows unconstrained mutation. Secondly, in MAGE, mutations exclusively target the active part of nodes and in MT-CGP alleles to mutate are picked randomly. Thirdly, all nodes in the initial MAGE genome undergo correction, iterating until they are left in a correct state. Fourthly, MAGE organizes nodes in x and y coordinates, while MT-CGP does it only on the x axis. For reproducibility purposes, relevant data, code and the appendix are available online (see the end of 1).

5 Results
We conducted a comprehensive comparison between MT-CGP and MAGE using the entire PSB2 suite, employing the fitness functions outlined in [8]. At the end of this section, we provided a brief comparison between MAGE and PushGP. Each algorithm (MT-CGP and MAGE) underwent evaluation through 25 independent runs per problem. Shared parameters were kept consistent for both MAGE and MT-CGP, as listed in Table 4, in the appendix. To minimize the variability in mutation probabilities, we performed exactly one random mutation per individual at each generation for both MAGE and MT-CGP. Finally, each algorithm had access to the same functions for each problem.
5.1 Comparing Performances Between MT-CGP and MAGE
In Fig. 2 we present convergence plots for the Camel Case and FizzBuzz problems, showing the performance differences between MT-CGP and MAGE. Convergence plots for all 25 PSB2 problems are further presented in Appendix Section C. In Table 1, we present the average final fitness on the test dataset for all PSB2 problems. We present the generalization ability of both algorithms in Appendix Section B.[image: ]
Fig. 2.Comparison of the convergence of MT-CGP (
[image: ]) and MAGE (
[image: ]) on the Camel Case and FizzBuzz problems. Fitness is based on error (lower is better). Dashed lines indicate training data; solid lines indicate test data. Results are averaged over 25 runs per experiment. (Color figure online)



MT-CGP only outperforms MAGE on the GCD problem; for all other problems, MAGE significantly outperforms MT-CGP. MAGE also converges much faster than MT-CGP, requiring thousands fewer iterations to reach a certain fitness score. Additionally, MAGE solves more problems (9 vs 5) and in a more consistent fashion than MT-CGP, see Table 5 in Appendix section B. In 4 out of the 9 problems where MAGE produces at least one complete solution, over 50% of the independent runs successfully solve the problem, indicating strong signs of generalization and reduced individual variance. When MT-CGP solves a problem at least once, the success rate of MT-CGP compared to MAGE’s is lower, and solving the problem requires substantially higher number of generations.Table 1.Fitness of the best individual at the final iteration of each run (lower is better). Results are averaged over 25 runs and standard deviation is represented in parentheses. Bold indicates statistically superior results ([image: $$p&lt;0.001$$]).


	Problem
	MT-CGP
	MAGE

	Basement
	2.23 (1.36)
	0.16 (0.63)

	Bouncing Balls
	81.13 (17.83)
	57.02 (16.27)

	Bowling
	61.06 (29.59)
	14.6 (7.57)

	Camel Case
	0.5 (0.68)
	0.0 (0.0)

	Coin Sums
	85.41 (56.0)
	4.64 (11.55)

	Cut Vector
	5718.87 (917.57)
	3764.33 (324.01)

	Dice Game
	0.26 (0.12)
	0.09 (0.06)

	Find Pair
	4467.57 (535.59)
	3337.89 (155.78)

	FizzBuzz
	2.75 (0.5)
	0.1 (0.13)

	Fuel Cost
	7238.42 (3237.73)
	2639.57 (2680.36)

	GCD
	6.7 (6.36)
	16.04 (43.09)

	Indices of Substring
	1552.91 (595.04)
	0.28 (0.79)

	Leaders
	1128.77 (651.93)
	507.57 (549.89)

	Luhn
	9.02 (4.95)
	5.58 (0.32)

	Mastermind
	1.57 (0.02)
	1.21 (0.1)

	Middle Character
	1.48 (0.01)
	1.31 (0.31)

	Paired Digits
	21.17 (3.01)
	15.68 (1.05)

	Shopping List
	57.15 (25.07)
	26.24 (5.4)

	Snow Day
	7.96 (2.16)
	6.19 (3.04)

	Solve Boolean
	0.17 (0.0)
	0.1 (0.05)

	Spin Words
	5.01 (0.09)
	3.82 (1.36)

	Square Digits
	6.7 (0.05)
	5.69 (0.7)

	Substitution Cipher
	11.4 (0.48)
	10.59 (0.3)

	Twitter
	13.81 (7.94)
	3.23 (1.95)

	Vector Distance
	93.12 (51.88)
	47.53 (14.95)





We posit that these differences between MAGE and MT-CGP come from the more directed and assisted search in MAGE. In MT-CGP the search space is harder to navigate, given the high number of possible combinations between inputs of different types where there could be a type discrepancy and loss of genetic material. Conversely, MAGE only produces type-consistent individuals, allowing evolution to proceed to relevant solutions rapidly. To illustrate this hypothesis, we analyze the search space of MAGE and MT-CGP.

5.2 Comparing MAGE and MT-CGP Search Trajectories
To further understand the structural differences between both algorithms, we propose a search trajectory analysis for one of the PSB2 problems. We study the Camel Case PS problem as it was certainly the easiest problem for both MAGE and MT-CGP, as such, we would expect similar trajectory dynamics across the search space for the two algorithms. In this section, we provide a visual explanation as to why MAGE outperforms MT-CGP by using a more effective search, with less local minima bottlenecks.
Recently, Search Trajectory Networks (STNs) have been proposed as a tool for modeling population dynamics and adapted for different domains [10, 14, 19, 20]. In STNs, the question of grouping solutions at different levels of granularity is well acknowledged. In our recent work [25] we expanded the original STN model to show all individuals generated at each generation in a behavioral/functional space rather than a genetic encoding space. Here, we focus on the behavioral grouping level. We consider two individuals to be the same if they produce the same outputs when faced with a known, fixed set of inputs. This approach addresses both the semantic and the structural redundancy present in the genotype and phenotype [10]. In practice, Behavioral STNs produce high-quality descriptions of the search process of CGP algorithms [25].
The main purpose of the population-STN is to show all discovered individuals and to assess how well a search strategy explored elite locations. Some algorithms fail to search productively, often visiting low-performing solutions or repeatedly revisiting known ones. Conversely, an efficient algorithm effectively explores an elite individual’s neighborhood until finding an escape.[image: ]
Fig. 3.Traditional (elite-only) STNs on the behavioral partition scheme for the Camel Case problem, showing an aggregate of the first 20 runs for each algorithm. Node color indicates fitness, darker is better. For intermediate nodes, size is proportional to locality. Square, circles, triangles denote first, intermediate, last local optima found in at least one run, respectively; stars denote global optima. Edge color indicates a run id, where black lines are shared by at least two runs. Edge thickness is proportional to the ratio of correct transitions between nodes out of all possible transitions explored.



Figure 3 shows the elite Behavioral STNs graphs comparing MT-CGP and MAGE for the Camel Case problem. We first note that escaping local optima is not trivial for both algorithms, indicated by large nodes and thin edges that reach the global optimum. This means that the algorithms exhaustively searched across the local minima neighborhood until finding the right mutation that yields the optimal behavior. Overall, MAGE presents thicker edges, denoting a more concise and directed exploration before finding a correct path to escape local minima. On the other hand, MT-CGP edges are generally thin for all elite nodes, indicating that the search for improvement was less effective than for MAGE.
We observe that all runs tend to converge to two distinct local optima (LO) behaviors, shown by blue nodes, which are very close to the final global optimum (GO) node (the only star). These nodes form part of a necessary path to the GO, indicating the presence of two strong and neutral LOs. Interestingly, the GO can be reached by escaping these LOs. Some runs of both algorithms also find intermediate behaviors that lead to the GO. MAGE consistently escapes the LOs and reaches the true GO, while some MT-CGP runs get trapped in LO behaviors, indicated by their triangular shape in the graph.[image: ]
Fig. 4.Population-level Behavioral STN for a single Camel Case run for both algorithms. Node color indicates fitness (darker is better). Node size for intermediate nodes is proportional to genome locality. Squares, circles, and stars represent the first, intermediate (or last for MT-CGP), and GO behaviors, respectively. Brown edges indicate elite trajectory, orange indicates a degrading transition, and green indicates an improving transition (but not to a new elite). (Color figure online)



Figure 4 shows the population-STN of two of these runs. MAGE moves more quickly and reliably over elite behaviors, exploring effectively around the strong LOs until finding the GO (the star node). In contrast, MT-CGP gets trapped between two strong and neutral LOs (the large circular nodes). The node size indicates that MT-CGP stays in the LOs longer than MAGE. Despite this prolonged exploration, fewer unique behaviors are visited, making it harder to discover the global optimum, which is never found.Table 2.Graph metrics on the STNs of MT-CGP and MAGE on the Camel Case problem for all runs. The last metric considers only runs that found the GO.


	Metric
	MT-CGP
	MAGE

	Mean # Genomes per run
	129057
	3739

	Mean # Phenomes per run
	129025
	3624.12

	Mean # Behaviors per run
	127
	232.2

	Ratio Phenomes/Genomes
	1
	0.97

	Ratio Behaviors/Genomes
	0.00099
	0.06209

	Mean # individuals explored at each elite behavior
	21995
	768

	Mean # genomes explored at each elite behavior
	19856
	693

	Mean # behaviors explored at each elite behavior
	25
	51

	Mean # iterations at each elite behavior
	1999
	70

	Mean # behaviors explored during last transition to GO
	45
	109





Our visual observations are statistically corroborated. Table 2 presents graph metrics for both algorithms on the Camel Case problem, revealing clear distinctions in their search dynamics. MT-CGP explores numerous genome representations, yet many are semantically redundant, as such, MT-CGP fails to reveal new behaviors (129,057 genomes explored for only 127 behaviors discovered on average per run). In contrast, MAGE uncovers more behaviors with fewer genomes (3,739 genomes explored for 232 behaviors discovered on average per run).
MAGE solves the Camel Case problem in significantly fewer iterations, averaging 70 iterations per LO transition compared to MT-CGP’s 1,999 iterations. Additionally, as visually observed, a strong LO typically precedes the GO for most runs. Both algorithms extensively sample the neighborhood to escape it, exploring more behaviors than average. However, only MAGE consistently escapes the strong LO by exploring over twice its average LO behavior rate.

5.3 A Concise Comparison Between MAGE and PushGP
In this study, we did not conduct an exhaustive comparison between MAGE and PushGP for several reasons. The function sets available for MAGE and PushGP differ significantly. Additionally, the evolution budgets and repetitions were not the same: PushGP was benchmarked with 100 independent runs, each having a budget of 300,000 evaluations, whereas MAGE was benchmarked with 25 independent runs, each having a budget of 200,000 evaluations. Nor [8] or us performed hyperparameter tuning on both GPs approaches. Most importantly, our primary objective extends beyond achieving high fitness scores. We are focused on exploring how MAGE serves as a multimodal extension of CGP and how it improves the search process through type-informed mutations.
Bearing this in mind, PushGP scores for each PSB2 problem are reported in Appendix section B, with data drawn from [8]. It is noteworthy that for the seven problems where both algorithms achieve solutions, MAGE demonstrates higher consistency in finding complete solutions. For example, MAGE successfully resolves the Coin Sums problem in 44% of runs, whereas PushGP achieves this in only 2% of runs. This superior generalization is evident in five out of the seven problems where both methods found solutions. Additionally, MAGE, given the function sets we used, consistently solves two problems for which PushGP could not produce a solution: Indices of Substring and Leaders, where MAGE generalized 88% and 40% of the time, respectively. However, PushGP exhibits capability in solving a broader range of problems, including some that challenged MAGE, such as Middle Character, Substitution Cipher, and Twitter. We hypothesize that these problems require control flow and iteration functions, areas where CGP and MAGE may struggle. Enhancing MAGE’s capacity to address these challenges is a future focus of this research.


6 Conclusion
In this paper, we introduced Multimodal Adaptive Graph Evolution (MAGE), a multimodal generalization approach based on CGP. MAGE employs a multi-chromosome representation similar to PushGP’s stack separation by type. This division by types enables various optimizations and search enhancements, notably improving convergence by enhancing the mutation operator’s ability to detect and resolve type discrepancies in an encoded node.
We conducted a comparison between MT-CGP and MAGE on the Program Synthesis task, utilizing the complete collection of problems included in the Program Synthesis Benchmark Suite (PSB2). Comparisons between the models were made using the same set of functions and under identical hyperparameters. In terms of fitness, our results reveal that MAGE consistently outperformed MT-CGP across 24 out of the 25 problems by a significant margin. MAGE found complete solutions to more problems than MT-CGP (9 vs 5). Additionally, MAGE exhibited faster convergence and superior generalization capabilities.
Search Trajectory Networks provided insights into why MAGE consistently outperforms MT-CGP. We analyzed the search dynamics of both algorithms for one of the PSB2 problems. Our findings suggest that MT-CGP is prone to getting trapped in local optima, some of which may be neutral networks. While MT-CGP extensively explores the genome space, the individuals it produces are often highly redundant compared to MAGE. Two genomes are semantically redundant if they produce the same outputs but their encoding is different. Surprisingly, although MT-CGP explores the neighborhoods of local optima for longer periods and generates more unique genomes than MAGE, it paradoxically yields far fewer unique behaviors than MAGE and, thus, is unable to escape strong local optima.
Furthermore, we believe that better results can be achieved for both methods by exploring a wider range of parameter values. The fixed parameter set applied here may not be optimal for every problem, particularly concerning mutation rate and genome length. Also, the sensitivity of MAGE to different parameter values requires further exploration. Moreover, alternative fitness functions may enhance algorithm performance, especially for problems with vector-type outputs, where the current fitness function heavily penalizes length mismatches. Modifications such as penalizing solutions with incorrect vector lengths or adopting a different selection mechanism like Lexicase Selection [13] could address these issues. Such adjustments can complement MAGE’s alterations to the CGP representation and mutation process without affecting the selection mechanism.
In conclusion, we emphasize the importance of constraining and guiding evolution in GP to effectively explore the search space. MAGE represents a significant advancement in this direction, offering a more efficient and robust approach for solving multimodal problems across diverse domains.
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Abstract
Can evolution operate effectively with noisy floating-point function primitives? In this paper, we are motivated by recent work that aims to accelerate genetic programming (GP) through specialized hardware and field-programmable gate arrays (FPGAs), for which it has been shown that additional performance and power/energy benefits could likely be achieved with floating-point function primitives that trade off enhanced computational efficiency for increased error. Although GP is known to be robust in filtering out certain forms of noise (e.g., within input data), it is not immediately clear that less-accurate function primitives would be viable for GP, since GP formulates arbitrary compositions of its primitives, which could potentially compound error to a prohibitive level. In addition, when introducing more complex forms of computation, such as function differentiation and local optimization techniques, it is not readily apparent that using rougher primitive implementations would be tenable. Here, we address both situations by employing the state-of-the-art CPU-based Operon tool on a diverse set of 15 regression problems, and we show that tree-based GP is capable of evolving very similar (and sometimes better) results with alternative high-performance approximations of standard function primitives, while often also allowing for faster CPU runtimes. Most importantly, in the context of specialized hardware, we conclude that our proposed techniques can likely allow for significant speedups over general-purpose computing platforms, as well as improved power/energy efficiency.
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1 Introduction
Recent trends in machine learning highlight the need for energy-efficient computation, during both training and inference [19, 33, 50]. For example, despite widespread success, neural networks often consume prohibitive amounts of power and energy for many use cases [5, 50], in addition to posing considerable scaling challenges for well-established use cases, such as data centers [1, 5, 40, 50]. Such limitations can motivate other learning systems, such as genetic programming (GP) [4, 30, 43], where it has been widely shown that the pairing of evolutionary search with alternative model structures (e.g., trees, assembly languages, tangled program graphs, etc.) can sometimes allow for significantly more compact solutions and enhanced efficiency during inference [26, 31, 43]. However, training often remains complex with current GP techniques, which motivates the exploration of improvements to training efficiency [7, 13, 14].
There are various ways to improve the training efficiency of GP, and they generally involve either increasing performance (i.e., throughput) or enhancing energy efficiency, for which there are at least four key benefits: (1) with increased performance, useful solutions can potentially be found in a shorter amount of time; (2) with improved energy efficiency, there is the potential for lower operational costs, which (3) can allow for more cost-effective multi-computer GP systems, in turn allowing for higher performance; and (4) with either improved performance or improved energy efficiency, better solutions can potentially be found when allowing the system to consume a similar amount of runtime/energy.
In this paper, we explore the possibility of improving the training efficiency of GP by way of alternative floating-point math approximations for standard function primitives.1 As described further in Sect. 2, we are motivated by recent work that suggests modern field-programmable gate array (FPGA) devices are capable of providing significant improvements to both the runtime and energy efficiency of GP, when compared to solutions employing general-purpose CPU/GPU systems [11]. Importantly, for floating-point applications, it is suggested in [11] that a key optimization needed for achieving significant computational efficiency with an FPGA relies on the idea of implementing GP function primitives with a minimal amount of shared single-precision floating-point multiply-add (MAD) resources, for which modern FPGA devices have native support. Unfortunately, designing this resource-sharing mechanism for standard implementations of floating-point operators is challenging, due to high-performance requirements of the relevant algorithms often leading to overly complex or obfuscated realizations. However, this begs the question: are standard floating-point operators even needed in the context of GP? Could more efficient implementations that more roughly approximate the corresponding continuous operators suffice for evolution? We answer such questions in this paper.
As a proof-of-concept, we consider fifteen diverse benchmark problems within the application domain of symbolic regression [28, 39, 42, 52], and we extend the recent state-of-the-art tool Operon [7] with several new computational backends, in order to compare various single-precision floating-point approximations that trade off increased error for enhanced performance. Notably, we find that not only can the set of approximations with the highest amount of error perform very similar to standard implementations, such approximations can even allow evolution to evolve more compact and higher-quality models (in terms of fitness) within a shorter period of time, depending on the dataset.
Ultimately, there are several important takeaways from this work. First, within the context of specialized hardware, it is clear that there is the potential to leverage high-performance approximations of single-precision floating-point math without dramatically reducing the solution quality of evolution, even when performing complex operations that compound approximation error, such as local optimization through gradient-based techniques. Second, when applying such approximations to CPU systems, there is the possibility for practically-significant performance enhancements, especially for problems with larger datasets. For our tests using an AMD Ryzen 5950X CPU, with 16 cores, 3.4 GHz clock frequency, and AVX2 instruction optimizations, we achieved average speedups of up to 2.02[image: $$\times $$], and average energy reductions of up to 1.78[image: $$\times $$]. Third, on a more theoretical level, it has been shown in other ML paradigms that noise is beneficial to produce simpler and more general solutions [15, 32], a result that can be readily applied in GP [3, 55]. Using alternative function implementations can be similar to injecting noise into solutions, with the added benefit that it is faster. Thus, our results give further credence to the idea that evolution can robustly deal with various, sometimes significant, forms of noise and discretization. Overall, our current work represents a significant first step in the direction of enhancing the computational efficiency of GP systems through the use of alternative implementations of standard floating-point function primitives, and it helps lay the foundation for how specialized hardware could exhibit significant performance and energy advantages over general-purpose CPU/GPU systems.
The rest of this paper is organized as follows. In Sect. 2, we present additional background and motivation for the proposed techniques. In Sect. 3, we overview some related work. In Sect. 4, we describe our chosen floating-point math approximations. In Sect. 5, we detail our design of experiments. In Sect. 6, we present and analyze results. In Sect. 7, we conclude the study.

2 Background
Within GP, the performance bottleneck for training and the primary candidate for efficiency improvements is generally the evaluation of individuals [4, 43]. Although this subroutine is normally an embarrassingly parallel procedure [43], it can be challenging to accelerate with general-purpose CPU/GPU systems, primarily due to the need for evaluating dynamically-evolving programs [11]. More specifically, although GPUs have numerous computation cores, the need for conditional program execution (e.g., to decide which function primitive to execute) and large cache sizes generally limits acceleration capabilities, and even though CPUs are better equipped for conditional execution, it is prohibitively expensive to continually scale up the number of CPU cores/threads [7, 11, 22].
To address such limitations of general-purpose systems, recent work has explored the possibility of creating specialized hardware accelerators for GP using modern field-programmable gate array (FPGA) devices [11]. In brief, FPGAs are programmable computing platforms for which specialized digital circuits can be designed, without the need to manufacture integrated circuits. When compared to FPGA technologies leveraged by some older GP systems (e.g., [17, 18, 29, 47]), contemporary FPGAs are better equipped to handle GP acceleration due to the availability of significantly more resources, as well as more powerful resources, e.g., native components for floating-point multiply-add (MAD) operations [9].
Importantly, for floating-point applications, it is suggested by [11, Sect. 7.2, item 2] that a key optimization needed for achieving significant computational efficiency with an FPGA relies on the idea of designing GP function primitives that both minimize and share low-level floating-point MAD resources, referred to as “floating-point DSPs” in [11]. For example, suppose that we have the function set [image: $$\mathcal {F} = \{+, -, *, x^2\}$$], where [image: $$x^2$$] represents the squaring operation. In essence, if computation cores are meant to compute only one primitive during any given clock cycle, then rather than implement this set of function primitives with four MAD components (where each MAD is a multiplier followed by an adder), a core could instead share a single MAD component across all functions—since no operation here independently requires more than one—which would free up more FPGA resources for more parallel computation.
Perhaps the most important consequence of this aforementioned strategy is that the number of MAD resources required for a single computation engine is dictated by the primitive that requires the maximum number of MAD operations. Considering the prior example, if we were to include a primitive that required ten MADs, the minimum amount of MADs that would be required for the sharing scheme would be ten. Therefore, there is significant motivation to minimize the maximum number of MAD operations across all functions.
To minimize the maximum number of MADs, the most obvious option is to remove complex function primitives. Unfortunately, even relatively straightforward operations such as divide or logarithm can potentially take a significant number of MADs, which then limits the potential throughput and power/energy benefits of specialized hardware. Fortunately, there is another possibility: replace complex function primitives with approximations that are more efficient in terms of MADs and any other low-level device resources. In this case, we would generally be trading off increased error for enhanced performance: the higher error that we can allow, the more likely that we can simplify the relevant hardware implementation. However, we must first establish whether or not GP can operate effectively with primitives containing non-negligible amounts of error.
Although GP is known to be robust in filtering out certain forms of noise (e.g., within input data), it is not immediately clear that approximating function primitives would be viable for GP, since GP formulates arbitrary compositions of its primitives, which could potentially compound error to a prohibitive level. In addition, even if standard program evaluation could effectively leverage more coarse-grained approximations, it is not readily apparent that using such approximations for other forms of computation—such as function differentiation and local optimization—would be tenable. In this paper, we address both situations.

3 Related Work
Approximate computing is an emerging paradigm that exploits the acceptable error in applications in order to enable more effective approximations that improve application performance/energy [35, 46]. Although the widespread usage of machine learning (ML) has made approximation a mainstream design strategy, various forms of approximate computing remain limited within evolutionary computation (EC) domains [46]. Regarding genetic programming (GP) [4, 43], numerous works have employed GP in order to construct high-performance solutions, e.g., [24, 53], but comparatively few works have developed approximations for GP itself, especially for floating-point applications [46].
Approximate computing often goes unused because most developers are unaware of existing approximations, and they are unlikely to create new approximations, especially for different applications or architectures. However, the automatic nature of EC can potentially alleviate such issues [46]. For example, recent work has demonstrated how competitive floating-point function approximations can be automatically found from scratch using EC [45]. Such techniques are complementary to our current work, which explores how high-performance and less-accurate primitives may affect evolutionary search.
As with other ML domains, the use of low-precision numerical systems (e.g., 8/16-bit floating-point or fixed-point) can likely lend itself to more energy-efficient computation for GP applications [11, 21]. Such strategies are complementary to our proposed technique, in which we implement standard GP function primitives with alternative approximations, rather than with alternative number systems. For our current work, we employ the IEEE-754 single-precision floating-point format [20], but future work could potentially employ any numerical format. In addition, we target symbolic regression as a proof-of-concept, but approximate primitives could likely be used for other types of problems.

4 Methodology
For this study, we consider various alternative approximations for several commonly used mathematical primitives, but we leverage standard implementations for addition and multiplication, since standard multiply-add (MAD) operations are natively supported by the FPGA technologies that we intend to target (Sect. 2) [9, 23, 51]. Ultimately, we use alternative approximations for computing program outputs and for computing derivatives when performing local optimization techniques. Other computation such as that for fitness measures are implemented using standard math implementations. These other procedures could potentially be approximated as well, but we leave this for future work. Care must likely be taken if approximating fitness measures, since poor approximations might deceptively promote inappropriate solutions.
The math primitives that we choose to approximate are division, sine, cosine, natural exponentiation, natural logarithm, square root, and hyperbolic tangent. For these primitives, we consider three different implementation sets, where we generally trade off lower complexity in terms of maximum number of MAD resources for lower function accuracy, since the maximum number of MADs directly affects the possible throughput of specialized hardware (Sect. 2):	MAD-16 (16 MADs). Lowest function error—see Table 1—but also the lowest theoretical performance for hardware. This implementation is based on the VDT library, which has been successfully used at CERN [41].

	MAD-10 (10 MADs). Notable middle ground between the number of MAD resources and function error. The threshold of ten was defined primarily based on the number of MAD resources needed to significantly improve the error of sine/cosine when compared to the MAD-04 implementation.

	MAD-04 (4 MADs). Highest performance and highest error, when compared to the other implementations. Very little complexity, in terms of MADs.





With recent higher-end FPGA devices, thousands of MAD components can potentially be available [9]. For example, if we suppose that 9, 000 (roughly 75%) of the 12, 300 MAD resources for the “AGM 039” device listed in [23] could be utilized for specialized GP computation cores (Sect. 2) [11], and if we suppose that a moderate clock frequency of 300 MHz could be utilized [9, 37, 49, 51], then our three proposed primitive set implementations could allow for a theoretical peak throughput of 168.75 billion, 270 billion, and 675 billion node operations per second, respectively. (We divide total number of MAD resources by the numbers listed for our primitive set implementations, and then multiply by 300 million.)
Notably, other optimizations are possible in order to increase throughput even further. First and foremost, the design could be optimized for timing, so that a higher clock frequency may be used [9, 51]. Then, in contexts where local optimization is expected and a weight term is to be allocated to each program node—similar to Operon—there effectively can be up to 3[image: $$\times $$] as many nodes in each program once accounting for the multiplication operations, and we can compute the extra multiplication for each node in parallel to a computation core with just one extra MAD resource, which would allow theoretical peak throughput values to be multiplied by three. (Given the assumptions of the previous example, it is possible to allocate the extra MAD resource for each computation core.) In fact, we plan to consider also adding bias terms to the Operon system, in which case a similar argument could allow for up to a 5[image: $$\times $$] improvement in peak throughput. We leave other optimizations for future work.
Our work also motivates two novel model deployment strategies: (1) training and deploying with the same alternative primitive implementations, and (2) training with alternative implementations and deploying with standard implementations, where we apply linear scaling in both cases [25]. Due to the fact that we are using approximations for the standard single-precision floating-point format [20], item (1) offers a clear path to both energy-efficient training and energy-efficient inference, either with general-purpose or specialized computer systems. However, if the use of such primitives during inference is not desirable for any reason, then item (2) offers a meaningful strategy for using standard primitives.
Approximation Details
Below, we discuss the algorithms used by our implementation sets. As a side note, when we employ approximations defined by the VDT library [41], we usually perform additional input validation. Refer to our code for more details [10].
Division. We use [image: $$\textrm{div}(x_1, x_2) = x_1 \times \frac{1}{x_2} = x_1 \times (x_2^{-1})$$], and we approximate [image: $$x_2^{-1}$$] by first exploiting some well-known numerical properties of the single-precision floating-point encoding [20], and then by improving an initial estimate with Newton-Raphson (NR) iterations [36]. The number of NR iterations distinguishes performance and error among our three sets. We use 4, 4, and 1 iterations for the MAD-16, MAD-10, and MAD-04 sets, respectively.
Sine/Cosine. We use polynomial approximations of varying accuracy. For the MAD-16 and MAD-10 sets, we employ the approximation given by the VDT library [41]; for the MAD-04 set, we augment the following simple approximation of a particular sine wave once reducing the input x to the range [image: $$[-1, 1]$$]:[image: $$x \cdot (1 - \textrm{abs}(x))$$]. We note that sine and cosine were the primary bottlenecks for reducing the maximum number of MAD resources; it is challenging to construct practical implementations of these functions that require less than four MADs. In addition, we note that our chosen approximations necessitate a limited input domain, due to limited capabilities in transforming arbitrary floating-point inputs to a relevant range like [image: $$[-1, 1]$$], although future work can explore using other methods at the cost of increased complexity.
Natural Exponentiation. For the MAD-16 set, we employ the approximation given by the VDT library [41]. For the other two sets, we use [image: $$\textrm{exp}(x) = 2 ^ {x / \textrm{log}(2)}$$]. We split [image: $$t \triangleq {x / \textrm{log}(2)}$$] into an integer i and fraction f such that [image: $$t = i + f$$] and [image: $$0 \le f &lt; 1$$]. From this, we can compute [image: $$2 ^ {x / \textrm{log}(2)} = 2 ^ f \cdot 2 ^ i$$] by first approximating [image: $$2 ^ f$$] with a polynomial, and then by scaling with [image: $$2 ^ i$$], the latter of which can be performed simply by adding i to the encoded exponent value of the floating-point result [image: $$2 ^ f$$] [20]. When approximating [image: $$2 ^ f$$], we use polynomials of degree-6 and degree-2 for the MAD-10 and MAD-04 sets, respectively.
Natural Logarithm. For the MAD-16 set, we employ the approximation given by the VDT library [41]. For the other two sets, we consider inputs to be of the form [image: $$x = m \cdot (2 ^ e)$$], where e is the unbiased exponent value of the floating-point input [20], and where m is [image: $$1.0 + m'$$] for mantissa [image: $$0 \le m' &lt; 1$$]. Then, we use [image: $$\textrm{log}(x) = \textrm{log}(m) + e \cdot \textrm{log}(2)$$]. To compute [image: $$\textrm{log}(m)$$], we use polynomials of degree-6 and degree-2 for the MAD-10 and MAD-04 sets, respectively.
Square Root. We employ [image: $$\textrm{sqrt}(x) = x \cdot (x^{-0.5})$$], and we approximate [image: $$x^{-0.5}$$] with the fast inverse square root approximation [36], employing 4, 2, and 1 N-Raphson iterations for the MAD-16, MAD-10, and MAD-04 sets, respectively.
Hyperbolic Tangent. For the MAD-16 and MAD-10 sets, we use [image: $$\textrm{tanh}(x) = 1 - 2 / (\textrm{exp}(2x) + 1)$$], saturating to [image: $$-1$$] or [image: $$+1$$] when outside of the range [image: $$[-32, 32]$$], and we use methods similar to what was previously described for approximating the exponentiation and reciprocal operations. For the MAD-04 set, we use a simple polynomial approximation and saturate when outside of the range [image: $$[-3, 3]$$]. Similar to sine/cosine, it is challenging to construct practical implementations of this function that require less than four MADs.Table 1.Median relative percentage error for the proposed functions and their associated derivatives. See the text about results of tanh derivative for MAD-04.


	 	Mad-16
	Mad-10
	Mad-04

	f
	[image: $$\partial {f}$$]
	f
	[image: $$\partial {f}$$]
	f
	[image: $$\partial {f}$$]

	div
	0
	0
	0
	0
	0.08353
	0.25052

	sin
	0
	0
	0
	0
	6.87843
	5.30876

	cos
	0
	0
	0
	0
	5.30876
	6.87843

	exp
	0
	0
	9.28e−6
	9.28e−6
	0.11890
	0.11890

	log
	0
	0
	0
	0
	0
	0.08327

	sqrt
	0
	0
	0
	0
	0
	0

	tanh
	5.96e−6
	1.71e−4
	1.43e−4
	2.24539
	0.00897
	100





Following from the above, we list in Table 1 median relative percentage error values for each function and its associated derivative(s), for each MAD backend. We include derivatives since we leverage gradient-based local search. For each primitive, we use a set of one million random inputs, uniformly distributed in the interval [image: $$[-10, 10]$$], and we use the NumPy Python library as a baseline when computing relative error [38]. Note that the relative error of each partial derivative for arity-two functions independently contributes to the relevant error listed. Also, note that the derivative of the tanh function for MAD-04 was frequently zero, which caused the median relative error to be 100%, even though absolute error was reasonable. Ultimately, we consider the listed errors to be acceptable.Table 2.Summary of the chosen benchmark problems. [image: $$F_4$$] to [image: $$F_{15}$$] are synthetic.


	Id
	Name
	Features
	Instances
	Training range

	[image: $$F_{1} $$]
	Airfoil Self Noise [6]
	5
	1503
	[0, 1000)

	[image: $$F_{2} $$]
	Chemical-I [28]
	57
	1066
	[0, 711)

	[image: $$F_{3} $$]
	Concrete [54]
	8
	1000
	[0, 500)

	[image: $$F_{4} $$]
	Friedman-I [16]
	10
	10 000
	[0, 5000)

	[image: $$F_{5} $$]
	Friedman-II [16]
	10
	10 000
	[0, 5000)

	[image: $$F_{6} $$]
	Poly-10 [42]
	10
	500
	[0, 250)

	[image: $$F_{7} $$]
	Pagie-1 [39]
	2
	1676
	[0, 676)

	[image: $$F_{8} $$]
	Vladislavleva-1 [52]
	2
	2125
	[0, 100)

	[image: $$F_{9} $$]
	Vladislavleva-2 [52]
	1
	321
	[0, 100)

	[image: $$F_{10}$$]
	Vladislavleva-3 [52]
	2
	5683
	[0, 600)

	[image: $$F_{11}$$]
	Vladislavleva-4 [52]
	5
	6024
	[0, 1024)

	[image: $$F_{12}$$]
	Vladislavleva-5 [52]
	3
	3000
	[0, 300)

	[image: $$F_{13}$$]
	Vladislavleva-6 [52]
	2
	93 666
	[0, 30)

	[image: $$F_{14}$$]
	Vladislavleva-7 [52]
	2
	1300
	[0, 300)

	[image: $$F_{15}$$]
	Vladislavleva-8 [52]
	2
	1206
	[0, 50)






5 Empirical Study
We investigate the empirical validity of our proposed methodology on a collection of real-world and synthetic symbolic regression problems, which are described in Table 2. In particular, we are interested to observe the extent of GP’s ability to evolve solutions when standard function primitives exhibit significant numerical deviations (Table 1), as well as how such noise is compounded by compositional expressions and, separately, by gradient-based local search [7]. We incorporate the proposed MAD implementations in Operon [7], and we compare with three other backends based on the Eigen, STL, and VDT C++ libraries [7, 41].
We employ the NSGA-II algorithm [12] with a population of 1, 000 individuals and a computational budget that stops evolution after either one million solution evaluations or 1, 000 generations. The remaining parameters are given in Table 3. For each combination of computational backend and benchmark problem, we first perform a set of 100 runs without local search. Then, we repeat this experiment, but with three iterations of local search using the Levenberg-Marquardt (LM) algorithm [27], which consumes the computational budget much faster.
The different numerical properties of GP primitives from each backend affect the underlying genotype-to-phenotype maps, thus affecting the evolvability of the representation [2]. Therefore, it is possible to obtain solutions which rely on certain approximate behavior in order to maximize fitness. For this reason, it is important to consider re-evaluating and deploying all solutions with a common computational backend. However, our work also enables the possibility of deploying GP models with the same backend employed during training. Here, we consider both forms of deployment, and when using the former, we leverage the STL backend to re-evaluate all solutions. For both forms of deployment, we apply linear scaling using the training data [25]. When performing linear scaling, rather than have default weight/bias values of 1.0 and 0.0 when encountering not-a-number (NaN) program outputs, we replace such outputs with zero.Table 3.Run parameters for Operon


	Tree constraints
	Depth [image: $$\le $$] 10, Length [image: $$\le 50$$]

	Fitness function
	[image: $$R^2$$] (coefficient of determination)

	Crossover probability
	[image: $$100\%$$]

	Mutation probability
	[image: $$25\%$$]

	Selection mechanism
	Crowded tournament selection, size of 5

	Function set
	[image: $$+$$], −, [image: $$\times $$], [image: $$\div $$], [image: $$\sin $$], [image: $$\cos $$], [image: $$\exp $$], [image: $$\log $$], [image: $$\text {sqrt}$$], [image: $$\tanh $$]

	Terminal set
	constant, constant [image: $$\cdot $$] variable

	Stop criterion
	1M solution evaluations or 1, 000 generations





To effectively compare backends, we define various performance/energy measures. First, we generalize the traditional notion of the performance measure “GP operations per second (GPops/s)” [8] to allow for node derivative calculations, and we concisely name this measure “nodes per second (NPS)” to better align with our following measures. When a total number of node operations is needed, we use an estimate based on average population statistics [10].
From NPS, we relate performance to energy consumption with the “nodes per watt (NPW)” measure:[image: $$\begin{aligned} \text {NPW} &amp;\triangleq \frac{\text {NPS}}{\text {Total power (Watt)}} = \frac{\text {Total number of node operations}}{\text {Total energy (Joule)}}. \end{aligned}$$]

 (1)


Note that, as with standard “performance-per-watt” measures, the units of time cancel, and we equivalently calculate work per unit energy. Separate from NPW, we define another performance-per-watt measure named “fitness per watt (FPW),” where we consider “performance” to be the self-explanatory “fitness per second (FPS),” and where the GP fitness measure is to be maximized:[image: $$\begin{aligned} \text {FPW} &amp;\triangleq \frac{\text {FPS}}{\text {Total power (Watt)}} = \frac{\text {Fitness}}{\text {Total energy (Joule)}}. \end{aligned}$$]

 (2)


Overall, the NPS/FPS measures quantify forms of throughput, with FPS allowing one to draw conclusions about how solution quality relates to runtime, whereas the NPW/FPW measures additionally relate performance to energy, which is useful when considering operational costs. Note that all measures are to be maximized. Here, we measure energy/runtime via the Linux perf tool.
Lastly, we note that we can meaningfully generalize the above measures to represent aggregate values across different datasets as long as we compute only one ratio involving total sums over all datasets, similar to how it has been documented for the “floating-point operations per second (FLOPS)” measure [48].

6 Results
All of the following results except those described for Fig. 2 are given within the context of the first deployment strategy listed in Sect. 4, i.e., scaling the outputs of learned solutions based on re-evaluation with the STL backend.[image: ]
Fig. 1.Median [image: $$R^2$$] scores on test sets, for each backend, for each problem



First, we consider the median test [image: $$R^2$$] fitness scores for all backends, for all problems, without/with local search using nonlinear least squares (NLS), as depicted by the radar charts in Fig. 1. Immediately, we see that the shapes and area of the polygons given for all the backends appear largely similar, which intuitively suggests that the different implementations of the relevant function primitives do not cause catastrophic discrepancies in solution quality. This result is not too surprising for the Eigen, STL, VDT, and MAD-16 backends, since the relative difference in function outputs between these backends is more or less negligible, but this result is remarkable for our proposed MAD-10 and MAD-04 implementation sets, due to the presence of significantly higher amounts of function error, which can become further pronounced via arbitrary function compositions and the use of automatic differentiation for local search.Table 4.Statistical significance of Eigen’s test [image: $$R^2$$] values being “statistically greater” than the MAD backends, and relative percentage differences between median [image: $$R^2$$] values. White/black squares indicate runs without/with local search.


[image: ]



In Table 4, we further compare each MAD backend against Eigen—the default backend of Operon—using the Mann-Whitney U statistical test [34] between [image: $$R^2$$] test set values obtained for each problem, for runs without/with local search. The test operates under the null hypothesis that the [image: $$R^2$$] values have the same underlying distribution, and under the alternate hypothesis that Eigen’s results are “statistically greater,” i.e., that Eigen delivers better [image: $$R^2$$] values. In addition to p-values (shown in white cells), we list the relative percentage difference between Eigen’s median test [image: $$R^2$$] score and the median test [image: $$R^2$$] score of each MAD backend (shown in gray cells), where a negative value can be interpreted as the relevant MAD backend typically performing worse than Eigen.
For the MAD-16 and MAD-10 backends, we observe many p-values greater than 0.05 and many non-negative relative percentage differences, which allows us to conclude that the use of these implementation sets often allows for similar or better fitness scores than the standard Operon system. For the MAD-04 backend, the analysis needs to be more nuanced. First, although we see many smaller p-values and many negative relative differences, the median relative difference is always greater than −7.7% and on average greater than −1.1%. Thus, the practical difference in fitness may be negligible depending on the dataset, but importantly, we are not yet considering the trade-offs involving performance and power/energy that may be possible when allowing for the MAD-04 backend.
In Table 5, we consider various average measures for the entire set of benchmark problems, which identify in their own regard that the MAD-04 backend is generally more efficient than other backends—consider the bold values. (We can safely compute an average across all problems by computing only one ratio, as described in Sect. 5.) For example, we see that the MAD-04 backend achieves the highest mean scores for almost all of the “nodes per second (NPS),” “nodes per watt (NPW),” “fitness per second (FPS),” and “fitness per watt (FPW)” measures defined in Sect. 5, often achieving values between 2–10% greater than Eigen. This sharp contrast in results between Tables 4 and 5 illustrates how considering only plain fitness scores can lead to incomplete conclusions.Table 5.Various average measures for the set of benchmark problems. See Sect. 5 for details on NPS, NPW, FPS, and FPW. Runtime and energy are given in seconds and Joules, respectively. Size is for final models. [image: $$\varDelta R^2$$] is the mean difference in test [image: $$R^2$$] values when compared to Eigen, and [image: $$\varDelta R^2 \text { (Rel.)}$$] is a relative percentage equivalent. The “NLS” subscript identifies runs with local search.


[image: ]



Most importantly, we emphasize that the values reported in Table 5 are for a CPU, whereas our ultimate intention is to leverage specialized hardware, which can likely exhibit even more attractive performance and power/energy trade-offs [11]. For example, the aggregate nodes-per-second (NPS) values for Operon in this study are frequently on the order of 20–30 billion, whereas our discussion in Sect. 4 illustrates how leveraging the proposed MAD backends with an FPGA could potentially allow for NPS values in the hundreds of billions, if not trillions. Separately, it has been widely shown that FPGA devices can often infer significant power/energy benefits [37, 44, 49, 51]. Therefore, with considerable potential for improving both performance and power/energy when employing an FPGA device, it is clear that any minor differences in fitness scores caused by the proposed MAD implementations may be far outweighed by practical improvements in runtime and operational costs when using such systems. At the very least, these results should validate the introduction and future consideration of alternative floating-point primitives for improving the computational efficiency of GP, which was the overarching goal of this work.[image: ]
Fig. 2.Comparing median test [image: $$R^2$$] scores between both deployment strategies



To conclude this section, we briefly consider the second deployment strategy listed in Sect. 4, i.e., training and deploying with the same computational backend. In Fig. 2, we examine the MAD-based runs without local search. Overall, the figure shows that median test [image: $$R^2$$] values when employing the same backend used during training are very similar or better when compared to median [image: $$R^2$$] values for STL-corrected models. (Trends for mean test [image: $$R^2$$] values and for local search were similar.) Therefore, we establish that GP inference may also benefit from alternative backends, for the purposes of better computational efficiency.

7 Conclusion
Can we allow for the use of rough approximations of floating-point primitives? Our study indicates yes, with the performance and power/energy benefits being notable for CPU devices, yet likely very significant for specialized hardware, e.g., with FPGA devices. Our study also indicates that such alternative primitives can potentially be leveraged during both training and inference, thus allowing for continued performance/energy benefits. Future work should explore how simple we can make the numerical system in order to extract additional efficiency. For example, can we meaningfully utilize alternative primitives with 8/16-bit floating-point encodings? Separately, although similar program sizes resulted from the use of alternative primitives, future work should consider possible differences in interpretability. Overall, this work marks a considerable initial step toward improving the computational efficiency of GP systems through the use of alternative implementations of standard floating-point function primitives. Furthermore, our findings help lay the groundwork for potential advancements in specialized hardware for GP, which can likely offer notable performance and power/energy advantages over traditional general-purpose CPU/GPU systems.

Disclosure of Interests
The authors have no competing interests to declare.


References
	1.
Acun, B., et al.: Carbon explorer: a holistic framework for designing carbon aware datacenters. In: Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, vol. 2, pp. 118–132 (2023)


	2.
Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear, K. (ed.) Advances in Genetic Programming, vol. 1, pp. 47–74. MIT Press (1994)


	3.
Bakurov, I., Haut, N., Banzhaf, W.: Sharpness minimization in genetic programming. In: Winkler, S., et al. (eds.) Genetic Programming - Theory and Practice XXI, p. forthcoming. Springer (2025). https://​arxiv.​org/​abs/​2405.​10267


	4.
Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming - An Introduction. Morgan Kaufmann, Estes Park (1998)


	5.
Bashir, N., et al.: Enabling sustainable clouds: the case for virtualizing the energy system. In: Proceedings of the ACM Symposium on Cloud Computing, SoCC 2021, pp. 350–358. Association for Computing Machinery, New York (2021)


	6.
Brooks, T.F., Pope, D.S., Marcolini, M.A.: Airfoil self-noise and prediction. Technical report 1218, NASA (1989)


	7.
Burlacu, B., Kronberger, G., Kommenda, M.: Operon C++: an efficient genetic programming framework for symbolic regression. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, GECCO 2020, pp. 1562–1570. Association for Computing Machinery, New York (2020)


	8.
Chitty, D.M.: Faster GPU-based genetic programming using a two-dimensional stack. Soft. Comput. 21(14), 3859–3878 (2017)Crossref


	9.
Chromczak, J., et al.: Architectural enhancements in Intel Agilex FPGAs. In: Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA 2020, pp. 140–149. Association for Computing Machinery, New York (2020)


	10.
Crary, C., Burlacu, B., Banzhaf, W.: PPSN 2024 Conference Software Code (2024). https://​github.​com/​christophercrary​/​conference-ppsn-2024


	11.
Crary, C., Piard, W., Stitt, G., Bean, C., Hicks, B.: Using FPGA devices to accelerate tree-based genetic programming: a preliminary exploration with recent technologies. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds.) EuroGP 2023. LNCS, vol. 13986, pp. 182–197. Springer, Cham (2023). https://​doi.​org/​10.​1007/​978-3-031-29573-7_​12Crossref


	12.
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., Fast, A.: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)Crossref


	13.
Díaz-Álvarez, J., Castillo, P.A., de Vega, F.F., Chávez, F., Alvarado, J.: Population size influence on the energy consumption of genetic programming. Meas. Control 55(1–2), 102–115 (2022)Crossref


	14.
Fernández de Vega, F., Díaz, J., García, J.Á., Chávez, F., Alvarado, J.: Looking for energy efficient genetic algorithms. In: Idoumghar, L., Legrand, P., Liefooghe, A., Lutton, E., Monmarché, N., Schoenauer, M. (eds.) EA 2019. LNCS, vol. 12052, pp. 96–109. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-45715-0_​8Crossref


	15.
Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). https://​openreview.​net/​forum?​id=​6Tm1mposlrM


	16.
Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)MathSciNet


	17.
Funie, A.I., Grigoras, P., Burovskiy, P., Luk, W., Salmon, M.: Run-time reconfigurable acceleration for genetic programming fitness evaluation in trading strategies. J. Signal Process. Syst. 90(1), 39–52 (2018)Crossref


	18.
Funie, A.I., Salmon, M., Luk, W.: A hybrid genetic-programming swarm-optimisation approach for examining the nature and stability of high frequency trading strategies. In: 2014 13th International Conference on Machine Learning and Applications, pp. 29–34 (2014)


	19.
García-Martín, E., Rodrigues, C.F., Riley, G., Grahn, H.: Estimation of energy consumption in machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019)Crossref


	20.
Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. (CSUR) 23(1), 5–48 (1991)MathSciNetCrossref


	21.
Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited numerical precision. In: International Conference on Machine Learning, pp. 1737–1746. PMLR (2015)


	22.
Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 6th edn. Morgan Kaufmann Publishers Inc., San Francisco (2017)


	23.
Intel: Intel Agilex™M-Series FPGA and SoC FPGA Product Table [Online] (2015). https://​cdrdv2.​intel.​com/​v1/​dl/​getContent/​721636


	24.
Jia, H., Verma, N.: Exploiting approximate feature extraction via genetic programming for hardware acceleration in a heterogeneous microprocessor. IEEE J. Solid-State Circuits 53(4), 1016–1027 (2018)Crossref


	25.
Keijzer, M.: Scaled symbolic regression. Genet. Program Evolvable Mach. 5, 259–269 (2004)Crossref


	26.
Kelly, S., Heywood, M.I.: Emergent solutions to high-dimensional multitask reinforcement learning. Evol. Comput. 26(3), 347–380 (2018)Crossref


	27.
Kommenda, M., Burlacu, B., Kronberger, G., Affenzeller, M.: Parameter identification for symbolic regression using nonlinear least squares. Genet. Program Evolvable Mach. 21(3), 471–501 (2020)Crossref


	28.
Kordon, A.K., Castillo, F.A., Smits, G., Kotanchek, M.E.: Application issues of genetic programming in industry. In: Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming - Theory and Practice III, pp. 241–258. Springer, Boston (2006). https://​doi.​org/​10.​1007/​0-387-28111-8_​16Crossref


	29.
Koza, J.R., Bennett, F.H., Hutchings, J.L., Bade, S.L., Keane, M.A., Andre, D.: Evolving computer programs using rapidly reconfigurable field-programmable gate arrays and genetic programming. In: Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, FPGA 1998, pp. 209–219. Association for Computing Machinery, New York (1998)


	30.
Koza, J.: Genetic Programming - On Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)


	31.
La Cava, W., et al.: Contemporary symbolic regression methods and their relative performance. In: Advances in Neural Information Processing Systems, vol. 35, pp. 1–16 (2021)


	32.
Liu, J., Cai, J., Zhuang, B.: Sharpness-aware quantization for deep neural networks. arXiv:​2111.​12273 (2023)


	33.
Martín, E.G., Lavesson, N., Grahn, H., Boeva, V.: Energy efficiency in machine learning: a position paper. In: Annual Workshop of the Swedish Artificial Intelligence Society (2017). https://​api.​semanticscholar.​org/​CorpusID:​44010140


	34.
McKnight, P.E., Najab, J.: Mann-Whitney U Test. The Corsini Encyclopedia of Psychology, pp. 1–1 (2010)


	35.
Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv. (CSUR) 48(4), 1–33 (2016)


	36.
Moroz, L.V., Walczyk, C.J., Hrynchyshyn, A., Holimath, V., Cieśliński, J.L.: Fast calculation of inverse square root with the use of magic constant - analytical approach. Appl. Math. Comput. 316, 245–255 (2018)MathSciNetCrossref


	37.
Nurvitadhi, E., et al.: Can FPGAs beat GPUs in accelerating next-generation deep neural networks? In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA 2017, pp. 5–14. Association for Computing Machinery, New York (2017)


	38.
Oliphant, T.E., et al.: Guide to Numpy, vol. 1. Trelgol Publishing, USA (2006)


	39.
Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evol. Comput. 5, 401–418 (1997)Crossref


	40.
Patros, P., Spillner, J., Papadopoulos, A.V., Varghese, B., Rana, O., Dustdar, S.: Toward sustainable serverless computing. IEEE Internet Comput. 25(6), 42–50 (2021)Crossref


	41.
Piparo, D., Innocente, V., Hauth, T.: Speeding up HEP experiment software with a library of fast and auto-vectorisable mathematical functions. J. Phys. Conf. Ser. 513(5), 052027 (2014). https://​dx.​doi.​org/​10.​1088/​1742-6596/​513/​5/​052027


	42.
Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003). https://​doi.​org/​10.​1007/​3-540-36599-0_​19Crossref


	43.
Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enterprises UK Ltd, Egham (2008)


	44.
Putnam, A., et al.: A reconfigurable fabric for accelerating large-scale datacenter services. IEEE Micro 35(3), 10–22 (2015)Crossref


	45.
Real, E., et al.: AutoNumerics-Zero: automated discovery of state-of-the-art mathematical functions. arXiv preprint arXiv:​2312.​08472 (2023)


	46.
Sekanina, L.: Evolutionary algorithms in approximate computing: a survey. arXiv preprint arXiv:​2108.​07000 (2021)


	47.
Sidhu, R.P.S., Mei, A., Prasanna, V.K.: Genetic programming using self-reconfigurable FPGAs. In: Lysaght, P., Irvine, J., Hartenstein, R. (eds.) FPL 1999. LNCS, vol. 1673, pp. 301–312. Springer, Heidelberg (1999). https://​doi.​org/​10.​1007/​978-3-540-48302-1_​31Crossref


	48.
Smith, J.E.: Characterizing computer performance with a single number. Commun. ACM 31(10), 1202–1206 (1988)Crossref


	49.
Stitt, G., Gupta, A., Emas, M.N., Wilson, D., Baylis, A.: Scalable window generation for the Intel Broadwell+Arria 10 and high-bandwidth FPGA systems. In: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA 2018, pp. 173–182. Association for Computing Machinery (2018)


	50.
Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for modern deep learning research. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13693–13696 (2020)


	51.
Tan, T., Nurvitadhi, E., Shih, D., Chiou, D.: Evaluating the highly-pipelined Intel Stratix 10 FPGA architecture using open-source benchmarks. In: 2018 International Conference on Field-Programmable Technology (FPT), pp. 206–213 (2018)


	52.
Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)Crossref


	53.
Wilson, G., Banzhaf, W.: Linear genetic programming GPGPU on microsoft’s Xbox 360. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 378–385. IEEE Press (2008)


	54.
Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)Crossref


	55.
Zhang, H., Chen, Q., Xue, B., Banzhaf, W., Zhang, M.: Sharpness-aware minimization for evolutionary feature construction in regression. IEEE Trans. Pattern Anal. Mach. Intell. (submitted). https://​arxiv.​org/​abs/​2405.​06869




Footnotes
1We specify “alternative” since standard implementations of floating-point functions are themselves approximations of continuous counterparts [20].
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Abstract
Funnels are related to the big-valley hypothesis in combinatorial fitness landscapes. It suggests that local optima are not randomly distributed but are instead clustered around the global optimum, forming a coarse-grained global structure. Multi-funnel structures emerge when more than one cluster of local optima is present, some surrounding sub-optimal solutions. These multi-funnel landscapes can be challenging to search, as the optimisation process may get trapped in a sub-optimal funnel. We propose a characterisation of funnels in multi-objective combinatorial landscapes based on the solution ranks using non-dominated sorting, and a variation of the recent graph model of multi-objective landscapes: the compressed Pareto local optimal solution network (C-PLOS-net). Using a set of [image: $$\rho $$]mnk-landscapes, we construct and visualise monotonic C-PLOS-nets, and introduce a set of metrics to characterise the landscapes’ funnel structure. The proposed metrics are found to capture the landscape global structure, to correlate with benchmark parameters, and to explain the performance of well-established multi-objective local search and evolutionary algorithms.
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1 Introduction
The study of fitness landscapes has a long tradition in single-objective optimisation [1–3]. The aim is to understand the structure of search spaces in relation to the fitness function and how this structure impacts the performance of optimisation algorithms. Some landscape analysis tools and metrics have been extended to multi-objective optimisation [4–6], and recently included into algorithm selection and recommendation studies [7, 8]. However, to our knowledge, no studies have defined and examined funnels in multi-objective optimisation. Our goal is to bring the concept of funnels from single-objective to multi-objective combinatorial landscapes. More specifically, our contributions are as follows:	We propose a definition of funnels for multi-objective combinatorial landscapes (Sect. 3);

	We introduce new features and visualisations that capture the funnel structure of multi-objective landscapes (Sects. 3 and 4);

	We explore how the proposed funnel features correlate with algorithm performance (Sect. 5).






2 Background
2.1 What is a Funnel?
An energy landscape [9] is a mapping of all possible conformations of a molecular entity (clusters, glasses, proteins) to their respective energy levels. The term ‘funnel’ was introduced in this context to refer to “a region of configuration space that can be described in terms of a set of downhill pathways that converge on a single low-energy structure or a set of closely related low-energy structures” [10]. The energy landscape of proteins is characterised by a single deep funnel, accounting for their ability to fold to their native state. Conversely, certain shorter polymer chains that misfold are expected to have additional secondary funnels that can act as traps in the folding process.
Funnels have also been studied in evolutionary computation and fitness landscapes. In continuous optimisation, the dispersion and nearest-better-clustering metrics [11, 12] were introduced to detect the landscape’s funnel structure. They have subsequently been used in exploratory landscape analysis [13]. In combinatorial optimisation, funnels are related to the “big valley” hypothesis [14], which suggests that local optima in travelling salesperson problems are not distributed randomly. Instead, they are clustered around one central global optimum. The idea of a single valley was later challenged, revealing that complex landscapes are characterised by multiple valleys or funnels [15, 16]. A characterisation of funnels in combinatorial optimisation using local optima networks (LONs) [17] was proposed in [18]. The idea is to consider monotonic sequences [19] of local optima, that is, sequences of local minima where fitness is always decreasing. This led to the development of the monotonic (compressed) LON model, where deteriorating edges are removed, and funnels are depicted as the collection of paths to a single sink node (a node without outgoing edges). Although global optima are sinks with the best fitness, landscapes can also have sinks with sub-optimal fitness values.

2.2 PLOS-Net and Compressed PLOS-Net
A multi-objective landscape can be defined as a triplet [image: $$({X}, \mathcal {N}, f)$$] such that [image: $${X}$$] is the solution space, [image: $$\mathcal {N}:{X}\mapsto 2^{X}$$] is a neighbourhood relation, and [image: $$f:{X}\rightarrow {Z}$$] is an objective function vector. A solution [image: $$x \in {X}$$] is a Pareto local optimal solution (PLOS) if it is not dominated by any of its neighbours [20]; i.e. [image: $$\forall x^\prime \in \mathcal {N}(x)$$], [image: $$x^\prime $$] does not dominate x. For [image: $$m=1$$], we remark that this is equivalent to the conventional definition of a single-objective local optimum.
Given a multi-objective landscape, the Pareto local optimal solutions network (PLOS-net) model [21] is constructed as an unweighted, directed graph [image: $$G = (N, E)$$]. The set of nodes N represents the PLOS, and there is an edge [image: $$e_{ij} \in E$$] from [image: $$x^i$$] to [image: $$x^j$$] if [image: $$x^j \in \mathcal {N}(x^i)$$].
The compressed PLOS-net (C-PLOS-net) [22] adds a numerical attribute to the PLOS-net nodes, which gives the rank of the corresponding solution in the landscape. All solutions from the search space are sorted into different layers of mutually non-dominated solutions, following the non-dominated sorting procedure [23] used, e.g., in NSGA-II [24]. The rank of a solution corresponds to the layer it belongs to, with a lower rank being better and a Pareto optimal solution having a rank of 1. The C-PLOS-net is constructed by compressing the nodes (i) that are connected and (ii) that have the same rank. Therefore, a C-PLOS-net is a weighted, directed graph [image: $$G^\prime = (N^\prime , E^\prime )$$] such that:	The set of nodes [image: $$N^\prime $$] are connected components of each PLOS-net’s sub-graph induced by the nodes with the same rank r, with [image: $$r \in \left\{ {1, 2, \ldots }\right\} $$].

	There is an edge [image: $$e_{ij}^\prime \in E^\prime $$] if a PLOS within the compressed node i has a neighbour in the compressed node j.







3 Multi-objective Funnels: Definition and Metrics
In order to define funnels in the context of multi-objective optimisation, we determine the quality of Pareto local optimal solutions by considering their ranks.
3.1 Rank-Distance Correlation
Taking inspiration from the well-known fitness-distance correlation (fdc) landscape metric from single-objective optimisation [25], we start by introducing the rank-distance correlation coefficient (rdc) as the Spearman correlation between the ranks and the Hamming distances of Pareto local optimal solutions to Pareto optimal solutions. Specifically, for each PLO solution i in the search space we have a pair [image: $$(r_i, d_i)$$], where [image: $$r_i$$] is the rank of PLO i and [image: $$d_i$$] is the Hamming distance from i to its closest Pareto optimal solution. We compute this metric using the fully enumerated set of local and global Pareto-optimal solutions in the landscapes.
We note that a multi-objective fitness-distance correlation measure was introduced as the correlation between distances in the variable space and in the objective space among the Pareto global optimal solutions [26, 27]. This measure reflects the relative difficulty of moving “along” the Pareto front. However, it is crucial to understand that this is fundamentally different from rdc, which considers all Pareto local optimal solutions and the difficulty of improving from local to global optima.

3.2 Monotonic Compressed PLOS-Net and Pareto Optimal Funnel
Similar to the case of single-objective optimisation [18], we define the monotonic C-PLOS-net (MC-PLOS-net for short) as a directed graph that retains improving edges only, that is, edges leading from higher-ranked (i.e. worst) nodes to lower-ranked (i.e. better) ones. Notice that the MC-PLOS-net does not contain neutral edges (i.e. edges between PLO solutions with the same rank) as those are compressed into single nodes. From the MC-PLOS-net, we can easily detect the sink and source nodes, as those nodes in the graph without outgoing and incoming edges, respectively.
Once the MC-PLOS-net is constructed, we define the Pareto optimal funnel as the aggregation of all pathways in the network that lead to Pareto optimal nodes. MC-PLOS-nets are directed graphs where all edges are improving, meaning they connect nodes with decreasing rank values. Every descending path in the network necessarily ends in a sink, that is a node without outgoing edges. When sink nodes have a rank of 1, they are Pareto optimal solutions. However, sinks can have a higher rank. From the MC-PLOS-net, we compute the network metrics described at the bottom of Table 1.Table 1.Description of funnel metrics.


	metric
	description

	rdc
	rank distance correlation coefficient

	funnel_prop
	proportion of nodes in the Pareto optimal funnel

	funnel_depth
	longest (weighted) path length from source to Pareto optimal nodes

	funnel_paths
	number of pathways from source to Pareto optimal nodes

	sink_num
	number of sub-optimal sinks







4 Fitness Landscape Analysis and Visualisation
4.1 Benchmark Problems
We consider [image: $$\rho $$]mnk-landscapes [28] as multi-objective multi-modal problems with objectives correlation. Candidate solutions are binary strings of length n. The neighbourhood ([image: $$\mathcal {N}$$] in Sect. 2.2) is based on the well-established 1-bit-flip operator: two solutions are neighbours if the Hamming distance between them is equal to one. The objective function vector [image: $$f=(f_1, \ldots , f_i, \ldots , f_m)$$] is defined as [image: $$f:\lbrace 0, 1 \rbrace ^{n} \rightarrow [0,1]^m$$] such that each objective [image: $$f_i$$] is to be maximised. The objective value [image: $$f_i(x)$$] of a solution [image: $$x=(x_1, \ldots , x_j, \ldots , x_n)$$] is the average value of individual contributions associated with each variable [image: $$x_j$$]. The contribution of [image: $$x_j$$] depends on its own value and on the values of [image: $$k &lt; n$$] variables other than [image: $$x_j$$], chosen uniformly at random. By increasing k, landscapes can be gradually tuned from smooth to rugged. The contribution values follow a multivariate uniform distribution such that [image: $$\rho &gt; \frac{-1}{m-1}$$] defines the correlation among the objectives. The positive (resp. negative) correlation [image: $$\rho $$] decreases (resp. increases) the degree of conflict between the objective values. [image: $$\rho $$]mnk-landscapes show different characteristics and degrees of difficulty for multi-objective algorithms [8].Table 2.Benchmark parameters (10 instances are randomly generated for each parameter combination).


	description
	values

	number of variables
	 [image: $$n= 16$$]

	number of interactions 
	[image: $$k\in \left\{ {0, 1, 2, 4}\right\} $$]

	number of objectives
	[image: $$m\in \left\{ {2, 3}\right\} $$]

	objectives correlation
	 [image: $$\rho \in \left\{ {-0.4, 0.0, 0.4}\right\} $$] s.t. [image: $$\rho &gt; \frac{-1}{m-1}$$]





We generate 240 [image: $$\rho $$]mnk-landscapes following the parameters listed in Table 2. This allows us to investigate landscapes ranging from smooth to rugged, with two and three objectives, and conflicting, uncorrelated or correlated objectives. These are small landscapes that can be exhaustively enumerated. We then proceed to generate the PLOS-net, C-PLOS-net and MC-PLOS-net models. The metrics and visualisations reported in this article focus on the newly proposed MC-PLOS-net model.

4.2 Rank-Distance Correlation
Figure 1 shows the rank-distance correlation (rdc) plots, along with the Spearman correlation coefficients (R) and significance levels (p-values). This is shown for six exemplary landscapes with conflicting objectives ([image: $$\rho =-0.4$$]) and increasing ruggedness [image: $$k\in \{0, 2, 4\}$$]. The top plots report measures for landscape with [image: $$m= 2$$] objectives, whereas the bottom plots report results for [image: $$m= 3$$] objectives. The regression lines with 95[image: $$\%$$] confidence regions are also displayed. The horizontal axis is for the Hamming distance between all PLO solutions and their closest Pareto optimal solution. The vertical axis is for the rank of each PLO solution. From these plots, we observe a high positive correlation between distance and rank values for smooth landscapes ([image: $$k= 0$$], left plots) suggesting a rank gradient towards Pareto optimal solutions. As the ruggedness increases ([image: $$k\in \{2, 4\}$$], middle and right plots), the correlation reduces but remains moderately positive. The plots reveal that solutions at the same distance to Pareto optimal solutions have a wide range of rank values (vertical set of points with the same x-coordinate). This is particularly noticeable for the largest value of [image: $$k= 4$$].[image: ]
Fig. 1.Rank-distance correlation for landscapes with conflicting objectives ([image: $$\rho =-0.4$$]), increasing ruggedness [image: $$k\in \{0, 2, 4\}$$], and two values of [image: $$m\in \{2, 3\}$$]. The x-axis represents the Hamming distance to the closest Pareto optimal solution. The Spearman correlation coefficient and its corresponding p-value are also displayed.


[image: ]
Fig. 2.Funnel metrics and correlation with benchmark parameters.



The distribution of the rdc metric for the entire set of benchmark parameters can be seen in Fig. 2a. Overall, rdc values are moderate to high, suggesting that the landscapes are not overly difficult to search. They seem to have a global structure where Pareto local optima are clustered around global optima. The rdc coefficient decreases with [image: $$k$$] in all cases, which is consistent with the increasing search difficulty for rugged landscapes. The impact of the two other instance parameters, [image: $$\rho $$] and m, is less significant. The rdc values remain fairly consistent across different [image: $$\rho $$] values and generally tend to be higher for [image: $$m= 3$$]. The distribution of rdc values is also more compact for [image: $$m= 3$$]. In most cases, the coefficient is above 0.2 for [image: $$m= 2$$] and above 0.4 for [image: $$m= 3$$].
Figure 2b shows the correlations amongst all the proposed funnel metrics and the benchmark instance parameters. The rdc metric highly correlates with the ruggedness parameter [image: $$k$$], indicating that it is a good predictor of search difficulty. rdc also shows a strong correlation with the other network-based funnel metrics, particularly with the number of sub-optimal sinks. This is noteworthy as rdc is not a network metric, and still captures aspects of the global landscape connectivity structure. A more comprehensive discussion of the network-based metrics is presented in Sect. 4.4.

4.3 Network Visualisation
Visualising fitness landscapes brings an intuitive support in understanding search difficulty. Node-edge diagrams are commonly used for network visualisation, where shapes (circles, squares, etc.) represent nodes and lines or curves represent edges. Attributes like colour, shape and width can highlight relevant features of nodes and edges. Another key aspect of network visualisation is the graph layout, which refers to the positioning of nodes and edges in the 2D plane.[image: ]
Fig. 3.Node-edge diagrams with three alternative graph layouts for four exemplary MC-PLOS-nets with [image: $$\rho = -0.4$$], [image: $$m= 2$$], and [image: $$k\in \{0,1, 2, 4\}$$]. The smooth landscape ([image: $$k= 0$$], top row) presents a single funnel that converges to Pareto optimal nodes (rank = 1). By contrast, the rugged landscapes [image: $$k\in \{1, 2, 4\}$$] reveal secondary funnels and an increasing number of connected components and sink nodes.



To visualise the MC-PLOS-net models, we identify relevant features of nodes and edges that relate to the landscape’s funnel structure. Specifically, we differentiate between four types of nodes: (i) pos: Pareto optimal solutions, (ii) sinks: sub-optimal nodes without outgoing edges, (iii) sources: nodes without incoming edges, and (iv) standard: nodes that do not fit into categories (i) to (iii). Node and edge colours indicate whether they belong to the Pareto optimal funnel(s), that is, whether they belong to pathways converging to Pareto optimal solutions. The size of nodes is proportional to their incoming weighted degree (also known as incoming strength). Therefore, it indicates the extent to which nodes act as attractors in the search process. Similarly, the intensity of an edge’s colour reflects its enumeration frequency.
Regarding the graph layout, we explore three alternatives: (i) for problems with two objectives (m = 2) a natural layout is to place nodes using their objective values ([image: $$f_1, f_2)$$] as coordinates (x, y); (ii) a force-directed layout (stress majorisation [29]), and (iii) keeping the x-coordinates suggested by the stress majorisation layout and embedding the node ranks as the y-coordinate. Force-directed layouts are based on a physical analogy where nodes are charged particles joined by strings. These algorithms strive to distribute vertices evenly in space, maintain approximately uniform edge lengths, and minimise edge crossings. Nodes which share more edges are closer to each other, providing an intuitive view of the graph connectivity. These algorithms typically involve a stochastic minimisation process. Stress majorisation [29] adapts an optimisation function from multidimensional scaling. It is a reliable choice for our purposes as it is deterministic and suitable for networks with multiple components.
Figure 3 illustrates these three layouts (Objectives, Force-directed and Rank) for four example landscapes with [image: $$m= 2$$], [image: $$\rho = -0.4$$], and [image: $$k\in \{0,1,2,4\}$$]. The plots reveal that the smooth landscape ([image: $$k= 0$$], top row) contains a single Pareto optimal funnel, with all pathways leading to the single compressed node with rank = 1. In contrast, the rugged landscapes ([image: $$k&gt; 0$$], rows 2 to 4) show an increasing number of separated connected components and nodes (visualised in blue) which are not in pathways leading to Pareto local optimal nodes. Instead, these blue nodes are in pathways leading to sub-optimal sink nodes, depicted as triangles with a darker outline. The number of these sink nodes (triangles) drastically increases with the ruggedness parameter [image: $$k$$]. These plots confirm that the notion of funnel, using the monotonic sequences definition, does not correspond to connected components in the graph. Rather, pathways that do not lead to Pareto optimal solutions may belong to the connected component containing the Pareto optimal node(s).
We argue that the three considered layouts, in conjunction with the network decorations (Fig. 3), offer alternative views of the same complex networks. The objectives layout looks familiar as it is consistent with traditional Pareto front visualisations of bi-objective problems. However, it provides additional insights into the connectedness of PLO solutions as well as their grouping by funnel membership. An information that standard visualisations might overlook. The force-directed layout makes the most of the space to reveal network connectivity patterns and separate connected components. Lastly, the rank layout makes the optimisation process more tangible by showing the decreasing pathways of connected nodes converging towards optimal or sub-optimal sinks.
Figure 3 shows MC-PLOS-nets with conflicting objectives only ([image: $$\rho =-0.4$$]). To examine the effect of varying the correlation of objectives on the landscape global structure, Fig. 4 reports the node-edge diagrams for networks with [image: $$\rho $$] [image: $$\in \{-0.4, 0.0, 0.4 \}$$], [image: $$m= 2$$], and [image: $$k= 1$$]. We chose the objectives layout to convey the networks. The plots show a drastic reduction in both the number of nodes and the proportion of nodes in the Pareto optimal funnel when the objectives correlation increases, even though the landscapes have the same ruggedness level ([image: $$k= 1$$]). The connectivity between nodes (number of edges) is also markedly reduced with an increase in objectives correlation, leading to the emergence of many small-sized connected components. Figures 3 and 4 illustrate that MC-PLOS-nets capture the funnel structure of the landscape and reveal the underlying benchmark parameters. The following section explores the distribution of the network metrics and their correlation with benchmark parameters.[image: ]
Fig. 4.Node-edge diagrams with the objectives graph layouts for three exemplary MC-PLOS-nets with increasing objectives correlation [image: $$\rho \in \{-0.4, 0.0, 0.4 \}$$], [image: $$m= 2$$], and [image: $$k= 1$$]. The number of nodes and the proportion of nodes in the Pareto optimal funnel clearly decrease with the objectives correlation.




4.4 Network Metrics
The distributions of all the network-based funnel metrics in relation to benchmark parameters [image: $$\rho $$], [image: $$m$$] and [image: $$k$$] are reported in Fig. 5. All metrics appear to capture the benchmark parameters, particularly the ruggedness [image: $$k$$]. For [image: $$k= 0$$], all nodes consistently belong to the Pareto optimal funnel (i.e. funnel_prop equals one). funnel_prop then decreases as [image: $$k$$] increases, nearing zero for [image: $$k= 4$$] and correlated objectives [image: $$\rho ~=0.4$$]. funnel_prop decreases with the amount of correlation among the objectives and is substantially higher for 3 objectives ([image: $$m= 3$$]), especially for conflicting and uncorrelated objectives. The correlation matrix from Fig. 2b reveals that funnel_prop moderately correlates with the benchmark parameters, positively with [image: $$m$$] and negatively with [image: $$\rho $$] and [image: $$k$$].[image: ]
Fig. 5.Distribution of network metrics with respect to benchmark parameters.



The depth of the Pareto optimal funnel (funnel_depth) measures the maximum weighted path distance between source nodes (nodes without incoming edges) and Pareto optimal nodes. As [image: $$k$$] increases, the depth of funnels also increases, as shown in the correlation matrix (Fig. 2b). For [image: $$m=2$$], funnel_depth values decrease with increasing objectives correlation. However, for [image: $$m=3$$], this trend seems to reverse. A striking observation is the shallow funnels for [image: $$m=3$$] and conflicting objectives [image: $$\rho ~= -0.4$$].
The total number of alternative pathways from source nodes to Pareto optimal nodes is captured by the funnel_paths metric. This metric strongly correlates with the ruggedness parameter [image: $$k$$], as evidenced by the log scale on the y-axis and the correlation coefficient from Fig. 2b. The number of paths decreases with increasing objectives correlation, and is higher for [image: $$m= 3$$] than for [image: $$m= 2$$].
Finally, the number of sub-optimal sinks (sink_num) strongly correlates with [image: $$k$$], as revealed by both the logarithmic y-scale in Fig. 5 and the correlation coefficient (0.96, see Fig. 2b). The number of sinks is always zero for [image: $$k= 0$$] and then rapidly increases for larger [image: $$k$$] values. Conversely, sink_num does not show any correlation with the other two benchmark parameters [image: $$\rho $$] and [image: $$m$$].


5 Funnel Features Vs. Search Performance
This section examines the impact of funnel features on both algorithm performance and algorithm selection.
5.1 Algorithms and Parameter Settings
We consider the following multi-objective algorithms, commonly applied to [image: $$\rho $$]mnk-landscapes [7, 8].
	PLS: Pareto local search (PLS) [20] is a multi-objective local search method that maintains an unbounded archive A of mutually non-dominated solutions. This archive is initialised with a randomly chosen solution. In every iteration, a solution is randomly picked from the archive [image: $$x \in A$$], and its neighbours are evaluated. For [image: $$\rho $$]mnk-landscapes, the neighbours [image: $$\mathcal {N}(x)$$] are solutions that are a Hamming distance 1 away from x. Solutions that are dominated are filtered out, while non-dominated solutions from [image: $$A \cup \mathcal {N}(x)$$] are saved in the archive. The current solution x is then tagged as visited to avoid re-evaluating its neighbours in future iterations. The entire process naturally stops once all solutions in the archive are marked as visited.

	G-SEMO: The global simple evolutionary multi-objective optimiser (G-SEMO) is an elitist, steady-state, multi-objective evolutionary algorithm [30]. Like PLS, G-SEMO maintains an unbounded archive A and selects one solution [image: $$x \in A$$] randomly in each iteration. It then generates a single offspring [image: $$x^\prime $$], where each binary variable of x is independently flipped at a rate of [image: $$1/n$$]. The archive is then updated with non-dominated solutions from [image: $$A \cup \left\{ {x^\prime }\right\} $$]. This process repeats until a stopping condition is met. Unlike PLS, which explores the entire 1-bit-flip neighbourhood, G-SEMO uses a standard stochastic bit-flip mutation so that there is a non-zero probability of reaching any solution from the search space.

	NSGA-II: The non-dominated sorting genetic algorithm II (NSGA-II) is a dominance-based multi-objective evolutionary algorithm [24]. At a given iteration t, the current population [image: $$P_t$$] combines with its offspring [image: $$Q_t$$], and is divided into non-dominated fronts [image: $$\{F_1, F_2, \dotsc \}$$] according to the non-dominated sorting procedure [23]. Offspring generation follows a standard setting with uniform crossover and stochastic bit-flip mutation. The front that a solution belongs to determines its rank within the population—this corresponds to the ranking used as a node attribute in C-PLOS-nets. Selection is based on rank-values, with crowding distance serving as a tie breaker. Survival selection involves populating [image: $$P_{t+1}$$] with the best-ranked solutions. We record all non-dominated solutions found by NSGA-II and return them at the end of the search process.





Each algorithm is run independently 30 times per instance. PLS terminates when it naturally reaches a Pareto local optimum set [20]. We set the stopping condition of G-SEMO and NSGA-II at [image: $$10\,000$$] evaluations. NSGA-II uses a population of size 100. For every algorithm, we evaluate the quality of all non-dominated solutions found in each trial. Algorithm performance is measured as the proportion of identified Pareto optimal solutions, referred to as the Pareto resolution (reso). We also report the hypervolume [31], and more specifically, the relative hypervolume (hv) covered by the final archive with respect to the exact Pareto front. A higher hv value is better, and [image: $$\textsf {hv}=1$$] means that the exact Pareto front was identified. The hypervolume reference point is set to the origin.

5.2 Experimental Results and Discussion
We begin by measuring how the benchmark parameters and funnel features correlate with algorithm performance in Fig. 6. Specifically, we look at the number of evaluations (eval) for PLS, as well as the Pareto resolution (reso) and relative hypervolume (hv) achieved by PLS, G-SEMO, and NSGA-II. Performance measures are to be maximised, so a positive correlation indicates a positive effect on approximation quality. The only exception is for eval, where a positive correlation would actually indicate a negative impact on runtime.[image: ]
Fig. 6.Spearman correlation between features and algorithm performance.



The runtime of PLS increases with the proportion of funnels (funnel_prop)—as it does with the number of objectives and their degree of conflict. This result on a positive impact on both reso and hv, similar to the effect of correlated ranks and distances (rdc). By contrast, the depth of funnels (funnel_depth) and the number of sinks (sink_num) negatively affect approximation quality. The impact of rdc and sink_num is consistent across algorithms, while the influence of the number of pathways from the source to Pareto optimal nodes (funnel_paths) is more noticeable for NSGA-II and G-SEMO.
Let us now study the collective impact of funnel features on algorithm performance. Using the benchmark parameters and funnel features as predictors, we construct a regression model for predicting the approximation quality of the different algorithms and the runtime of PLS. Our model is based on the well-established random forests [32, 33] with default parameters, using all considered 240 [image: $$\rho $$]mnk-landscape instances for training. We conduct 30 independent runs of random forests for each performance measure, and we report average values below. The variance explained by the model (R[image: $$^2$$]) and the relative importance of predictors according to random forests are provided in Fig. 7. The measure of importance is the standard mean decrease in prediction accuracy [32, 33]: A higher value indicates a more important predictor.[image: ]
Fig. 7.Relative importance of features in predicting algorithm performance.



The variance explained by the model is consistently higher than 0.65. This suggests that the prediction model accounts for over [image: $$65\%$$] of the variance in predicted values across all problems. This is comparable to previous work [22], despite we here consider significantly fewer features. Interestingly, each funnel feature is among the most important ones for at least one performance measure: rdc for the hypervolume of PLS, funnel_prop for all PLS performance measures, funnel_depth for PLS and the resolution of NSGA-II, funnel_paths for NSGA-II and G-SEMO, and sink_num for all measures except the runtime of PLS and the resolution of NSGA-II.
Our study concludes with a simple CART decision tree [34, 35] for algorithm selection, depicted in Fig. 8. The tree recommends the best algorithm for a given problem, using benchmark parameters and funnel features as predictors. The algorithm with the best average hypervolume among PLS, G-SEMO, and NSGA-II is considered the correct class for a given instance. Therefore, this decision tree addresses a classification task with the three considered algorithms as classes. Out of the 240 [image: $$\rho $$]mnk-landscape instances, 53 were omitted because no algorithm was superior, leaving 187 instances for training. The numbers beneath each tree node indicate the instances where G-SEMO, NSGA-II, and PLS are the best, respectively, followed by the proportion of instances covered by the node. The cross-validated classification accuracy is [image: $$88\%$$], slightly higher than [22]. This is significantly better than always selecting NSGA-II, which is superior in [image: $$44\%$$] of instances from this dataset.
Interestingly, the predictors that appear in the tree, deemed as the most important for algorithm selection, are all funnel features. This implies that funnel features provide valuable information to make an informed decision on which algorithm to choose from the portfolio. We observe that the classifier recommends PLS over NSGA-II when more than [image: $$98\%$$] of nodes are in the Pareto optimal funnel. This makes sense, given that there is no need to escape from local optima when the vast majority of those lead to the Pareto set. Among instances with less than [image: $$98\%$$] of nodes in the Pareto optimal funnel, NSGA-II clearly outperforms G-SEMO when the number of sub-optimal sinks is relatively large (20 or more), highlighting the benefit of crossover in such cases.[image: ]
Fig. 8.CART decision tree for algorithm selection (classification accuracy: 0.88). The numbers beneath each tree node indicate the instances where G-SEMO, NSGA-II, and PLS are the best, respectively, followed by the proportion of instances covered by the node.





6 Conclusions
We proposed a characterisation of funnels in combinatorial multi-objective landscapes based on the notion of solution ranks (layers of non-dominated solutions). We adapted the PLOS-net landscape model with two main changes: node-compression and monotonic (rank-decreasing) edges. We named this new model monotonic compressed PLOS-net (MC-PLOS-net). We then proposed visualisations and network metrics that characterise the landscape’s global structure. Additionally, we proposed the rank-distance correlation metric, rdc, which uses the set of Pareto local and global optimal solutions. All the proposed funnel metrics proved to accurately capture the landscape’s global structure, to correlate with benchmark parameters, and to explain the performance of well-established multi-objective local search and evolutionary algorithms.
Our empirical results were derived from small, fully enumerated combinatorial landscapes. In future work, we plan to consider continuous optimisation, as well as scale the proposed model to larger problems. The rank-distance correlation metric can be generalised to larger landscapes by sampling Pareto local optimal solutions and the best known solutions. Similarly, the proposed funnel network features could be extracted from approximated MC-PLOS-net models.
We also plan to integrate the newly-proposed features with the set of existing multi-objective landscape features in order to conduct a more comprehensive study on performance prediction and algorithm selection for multi-objective optimisation.
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Abstract
Feature selection plays a crucial role in improving the performance of machine learning (ML) models for various prediction tasks and in explaining their recommendations. Feature selection can be defined as an optimization problem whose evaluation function calls on an ML algorithm—a method known as the wrapper approach. While a thorough understanding of the landscape of the feature selection problem might help guide the development of efficient evolutionary algorithms and algorithm selection technologies, only a couple of previous studies have explored this problem’s landscape. In addition, only k-nearest neighbors classification is typically used as an ML model. This paper investigates how the choice of an ML model influences the search difficulty of the feature selection problem. Specifically, we examine the feature selection problem with 14 classification datasets and 6 ML models by means of landscape analysis and local optima networks, and we relate them to the performance of three feature selection algorithms. Our findings have important implications for feature selection problems and algorithms.
Keywords
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1 Introduction
Feature selection consists in choosing the most effective features from a given set to maximize the prediction accuracy of a machine learning (ML) model [3, 6]. Discarding irrelevant or redundant features can help prevent the ML model from overfitting. Existing techniques for feature selection include filter, embedded, and wrapper approaches [6]. Unlike the first two approaches, wrapper feature selection performs iterative optimization of a subset of features. The quality of a feature subset is evaluated by actually training an ML model using those selected features as predictors. Evolutionary wrapper feature selection has demonstrated its promising performance in the literature [4, 24]. Given a dataset with n features, the feature selection problem seeks a subset of [image: $$p \le n$$] features that maximizes the accuracy of the considered ML model. As such, candidate solutions can be represented by a binary string of length n. Each position in the binary string indicates whether the corresponding feature is selected or not. Then, the fitness function corresponds to a prediction score, such as classification accuracy.
We note that evaluating the quality of a feature subset is computationally intensive. Each call to the evaluation function requires training an ML model. However, despite being time-consuming due to its iterative nature, the wrapper approach typically yields a better feature subset than the filter and embedded approaches [4, 24]. This explains why computationally cheap ML algorithms, like k-nearest neighbors (kNN), are generally used in wrapper feature selection [4]. However, it remains unclear whether the challenges and solutions induced by other ML models are the same.
Landscape analysis plays a crucial role in understanding the structure of optimization problems through the lens of search algorithms [18]. Insights gained from landscape analysis are not only useful for understanding algorithm performance, but also for designing new efficient optimizers and selecting the most suitable approach [2, 9, 10]. In recent years, analyzing the landscape of hyperparameter optimization problems in ML has emerged as a popular topic in the evolutionary computation community; see, e.g., [16, 17, 19, 20].
Unfortunately, the landscape analysis of the feature selection problem has attracted less attention. In fact, this issue has only been addressed in couple of previous studies from Mostert et al. [11, 12]. In [11], the authors conduct a landscape analysis of the feature selection problem in terms of fitness distribution, fitness level, and neutrality. They find that the filter method generally outperforms the wrapper sequential feature selection method on instances with large neutral regions. In [12], they further analyze the landscape of the feature selection problem by means of local optima networks (LONs) [14]. They find that irrelevant features create plateaus in the landscape, which could be harmful to search algorithms that stagnate due to these equivalent solutions. However, both of their analyses focus on kNN only. As such, it is still unclear how the ML model actually shapes the landscape of the feature selection problem.
Inspired by the above discussions, this paper aims at improving our understanding of feature selection by exploring how the choice of the ML model influences the problem landscape. Our contributions can be summarized as follows: 	(1)
We contrast the landscapes and LONs resulting from 14 classification datasets with varying numbers of features, classes, and observations.

 

	(2)
We contrast the landscapes and LONs resulting from 6 established ML models that use different induction approaches.

 

	(3)
We connect our findings from landscape analysis to the actual performance of three established feature selection algorithms.

 





The paper is structured as follows. Section 2 provides preliminary information. Section 3 outlines the experimental setup. Section 4 presents the results of our analysis. Section 5 concludes the paper and discusses further research.

2 Background
We start by introducing feature selection and landscape analysis below.
2.1 The Feature Selection Problem
Given a set V of n features and a score function f evaluating the performance of an ML algorithm, the feature selection problem seeks a subset of features S that achieves the maximum score value:[image: $$S^\diamond = \mathop {\text {arg max}}\limits _{S \subseteq V} f(S).$$]



In the context of evolutionary feature selection, a subset S is generally represented by an n-dimensional binary string [image: $$x=(x_1, \ldots , x_n)^{\top }$$]. For each feature [image: $$i \in \{1, \ldots , n\}$$], [image: $$x_i=1$$] when the corresponding feature is included in S, and [image: $$x_i=0$$] otherwise. The total number of feasible subsets is thus [image: $$2^n$$]. The wrapper feature selection problem can be seen as a black-box pseudo-Boolean optimization problem. Multiple evolutionary algorithms have been proposed to solve this problem in the literature. The reader is referred to [4, 24] for a review.

2.2 Landscape Analysis
We define the fitness landscape of feature selection as a triplet [image: $$(\mathcal {X}, \mathcal {N}, f)$$]:	[image: $$\mathcal {X}$$] is the search space, that is the set of bitstrings of length n, with [image: $$\vert \mathcal {X}\vert = 2^n$$].

	[image: $$\mathcal {N} :\mathcal {X} \mapsto 2^\mathcal {X}$$] is a neighborhood relation. Following previous studies on this problem domain [22], we use the 1-bit-flip relation: two solutions are neighbors if their Hamming distance is one.

	[image: $$f :\mathcal {X} \mapsto \mathbb {R}$$] is a fitness function, that is the ML prediction score or, more specifically, the classification accuracy. We assume f is to be maximized.





A solution [image: $$x^\diamond \in \mathcal {X}$$] is a global optimum if there is no [image: $$x \in \mathcal {X}$$] such that [image: $$f(x^\diamond ) &lt; f(x)$$] . A solution [image: $$x^\star \in \mathcal {X}$$] is local optimum if there is no [image: $$x \in \mathcal {N} (x^\star )$$] such that [image: $$f(x^\star ) &lt; f(x)$$]. The distribution and connectivity of local optima in the landscape are crucial as they act as attraction points for search, consequently hindering the ability to reach a global optimum. In addition to traditional landscape analysis measures, we consider local optima networks for studying them, as in [12].
The local optima network (LON) [14] adapts the idea of representing physical energy landscapes as complex networks [5] in order to condense the information from the landscape into a weighted graph of local optima. A LON is defined as a directed, weighted graph [image: $$G=(N,E)$$]. The nodes N of the graph represent local optima. An edge [image: $$e \in E$$] exists between two nodes if there is a non-zero probability for the search process to transition from one node to another. To be more specific, the basin of attraction of a local optimum [image: $$x^\star \in \mathcal {X}$$] refers to the set of solutions that converge to [image: $$x^\star $$] when applying a simple hill-climbing local search. The count of these solutions is the size of the basin and is used as the width of a LON node. We follow the concept of escape edges in LONs [21]: The weight of an edge represents the probability of transitioning from one local optimum’s basin of attraction to another, upon applying a perturbation followed by a local search. As in [12], we set the perturbation strength to 2 bit-flips.
In the monotonic LON, only the edges that lead to an improved local optimum are kept. In the compressed monotonic LON (CM-LON), nodes with the same fitness value are collapsed, and any duplicate edges are aggregated [13].


3 Experimental Setup
This section outlines the experimental setup of our analysis. Although various performance measures exist for ML, we simply focus on classification accuracy in this work. We consider the following 6 ML algorithms for classification: kNN, support vector classification (SVC), logistic regression (LR), decision tree (DT), random forests (RF), and naive Bayes (NB). We employ the implementation available in scikit-learn [15] with default parameters — see https://​scikit-learn.​org/​stable/​. While kNN, SVC, LR, and NB are deterministic algorithms, DT and RF are not. In order to minimize the effect of randomness, we conduct ten independent executions of DT and RF on each dataset. On top of that, we conduct a 5-fold cross-validation for all methods. We use the same instantiation of cross-validation folds across runs. The average score across folds and runs is then considered. All (average) score (i.e. fitness) values are rounded to [image: $$10^{-9}$$] to prevent numerical issues.
Table 1 describes the 14 classification datasets considered in this work. The previous study on the landscape of feature selection [12] used seven of those—marked with a star ([image: $$\star $$]) in Table 1. They were extracted from the UCI repository [1]. We supplement them with seven additional datasets to aim for more generalizable results. As pointed out in [4], the breast-cancer, vote, heart-statlog, zoo, and lymph datasets have often been used for benchmarking evolutionary feature selectors due to their small number of observations. The number of features in all datasets is at most 18. Like Mostert et al. [12], we focus on datasets with few features. This allows us to fully enumerate all [image: $$2^n$$] solutions. Indeed, information about all [image: $$2^n$$] solutions is required to compute the exact LON and other landscape characteristics. Investigating datasets with more features would present several challenges that we leave open for future work. We converted nominal features into numerical features using one-hot encoding to ensure the experimental condition is the same for all ML algorithms. We further remark that the empty solution [image: $$x_0 = (0, \ldots , 0)^{\top }$$] implies that the ML model cannot use any feature. To prevent any bias, we decided to deem [image: $$x_0$$] as unfeasible and to discard it from our analysis. Considering the 14 datasets and 6 ML models, this leads to a total of 84 different subset selection problems (or landscapes).Table 1.14 classification datasets considered in this work.


	 	dataset
	nominal
	numerical
	classes
	data
	features
	[image: $$\vert \mathcal {X}\vert $$]

	[image: $$\star $$]
	diabetes
	
[image: ]
	
[image: ]
	2
	768
	8
	256

	[image: $$\star $$]
	breast-cancer
	
[image: ]
	
[image: ]
	2
	286
	9
	512

	[image: $$\star $$]
	breast-w
	
[image: ]
	
[image: ]
	2
	699
	9
	512

	[image: $$\star $$]
	page-blocks
	
[image: ]
	
[image: ]
	5
	5473
	10
	1 024

	[image: $$\star $$]
	vowel
	
[image: ]
	
[image: ]
	11
	990
	12
	4 096

	[image: $$\star $$]
	heart-statlog
	
[image: ]
	
[image: ]
	2
	270
	13
	8 192

	 	schizo
	
[image: ]
	
[image: ]
	2
	340
	14
	16 384

	 	credit-approval
	
[image: ]
	
[image: ]
	2
	690
	15
	32 768

	[image: $$\star $$]
	zoo
	
[image: ]
	
[image: ]
	7
	101
	16
	65 536

	 	vote
	
[image: ]
	
[image: ]
	2
	435
	16
	65 536

	 	pendigits
	
[image: ]
	
[image: ]
	10
	10 992
	16
	65 536

	 	letter
	
[image: ]
	
[image: ]
	26
	20 000
	16
	65 536

	 	vehicle
	
[image: ]
	
[image: ]
	4
	846
	18
	262 144

	 	lymph
	
[image: ]
	
[image: ]
	4
	148
	18
	262 144





Finally, we apply three wrapper methods to the considered problems: the forward sequential feature selector (F-SFS), the backward SFS (B-SFS), and a genetic algorithm (GA). Both F-SFS and B-SFS are well-established approaches [15]. The GA follows a simple steady-state approach with uniform crossover and standard bit-flip mutation with a rate of 1/n. The population size is set to n, and the maximum number of calls to the evaluation function is set to [image: $$n^2$$].

4 Empirical Results and Discussion
This section presents the dissimilarity of landscapes across problems and the results of feature selection algorithms relative to the landscape analysis.
4.1 Distribution of Fitness Values
We begin by simply reporting the distribution of fitness values, measured in terms of classification accuracy, for each model and dataset in Fig. 1. We observe significant differences in the range of values between ML models and datasets. However, this does not necessarily imply that some ML models are superior, as the quality of each subset of features is inherent to the considered ML model. Additionally, the fitness values span larger ranges in some cases. This suggests that some ML models may generate solutions that are more similar or equivalent than others, a characteristic known as landscape neutrality. We will delve deeper into this in subsequent discussions.[image: ]
Fig. 1.Distribution of classification accuracy (i.e. fitness) values. The best value for each dataset and ML model is represented with a diamond shape.




4.2 Correlation of Solution Rankings Produced by ML Models
We continue by measuring the correlation between the relative ranking of solutions produced by the different ML models. For each dataset and each pair of models, Fig. 2 gives the Spearman rank correlation coefficient between the accuracy of all solutions from the landscape. This gives an indication of the level of agreement between the two models in evaluating the fitness of solutions. For each pair of models, a point represents a specific dataset while the boxplot summarizes the distribution of coefficients. We observe that some ML models agree more than others, although none of them perfectly align on all datasets.[image: ]
Fig. 2.Correlation of solution fitness values between each pair of ML models.



We can see both small and large correlations for some datasets. Overall, there is a small correlation on the heart-statlog and schizo datasets in most cases when comparing kNN with other ML models. Likewise, the solution rankings between NB and others are mostly uncorrelated on the breast-cancer, page-blocks, and credit-approval datasets. Interestingly, a significant correlation exists between any pair of ML models on the vowel, pendigits, and letter datasets, all of which have a high number of classes.

4.3 Global Optima
Figure 3 reports the count of global optima for each dataset and ML model. We follow [12] and report the number of global optima plateaus, such that neutral networks are collapsed. This means that any set of global optima that are connected by the neighborhood relation counts as one. For feature selection, this implies that one or more features actually have no effect on classification accuracy, regardless of whether they are included or excluded in the optimal subset.[image: ]
Fig. 3.Number of global optima.



In most problems, there is a single global optima plateau. The only exception is for the zoo dataset, where kNN reveals four, while SVC and LR have two. LR also has two global optima plateaus for breast-w and lymph, and three for credit-approval and vote. The only case where NB has two global optima plateaus is for lymph. These observations could imply that finding a global optimum is easier for these problems. However, we will later see that this neutrality also occurs at sub-optimal levels, which can potentially mislead the search. Delving deeper into the analysis of global optima, we find that the optimal proportion of selected features remains fairly consistent across ML models—details are not provided due to space restriction. While there are differences between datasets, there is no significant difference between the ML models.

4.4 Fitness-Distance Correlation
We continue our analysis of the global structure of the landscape with the fitness-distance correlation (FDC) [8]. As one of the earliest metrics from landscape analysis, FDC estimates how the fitness function properly guides the search towards the global optimum. Figure 4 reports the Pearson correlation, from all solutions in the landscape, between classification accuracy (fitness) and the Hamming distance to the nearest global optimum. According to Jones and Forrest [8], for maximization, the closer the FDC to [image: $$-1$$], the more straightforward the problem: fitness increases as we approach the global optimum. Conversely, an FDC close to 1 is misleading for search, while an FDC around 0 makes the problem difficult due to the lack of correlation between fitness and distance.
We note large variations in the FDC depending on the dataset. For instance, using kNN, the page-blocks and vowel datasets respectively achieve insignificant and relatively large negative FDC values. This suggests that the former has a weak global structure, while the latter has a strong one. Interestingly, the four datasets with [image: $$n=16$$] features (i.e. zoo, vote, pendigits, and letter) yield quite different FDC values. The FDC for pendigits and letter is close to [image: $$-1$$] whereas that of zoo and vote is close to 0. This suggests that the landscapes induced by the first two datasets are easier than those from the last two. The main difference between them is the number of classes and observations. Both these factors appear to significantly influence the global structure of the landscape.[image: ]
Fig. 4.Fitness-distance correlation.



The type of ML model appears to affect the global structure of the feature selection problem as well. For instance, for the breast-w dataset, the FDC is slightly positive for DT whereas it is moderately negative for the other models. However, we do not observe any clear trend across datasets when examining a specific ML model.

4.5 Ruggedness
Let us now analyze the ruggedness [23] of the landscape depending on the considered dataset and ML model. We here measure the ruggedness as the Spearman correlation among the fitness values of neighboring solutions. For each pair of neighbors [image: $$x, x^\prime \in \mathcal {X}$$] such that [image: $$x^\prime \in \mathcal {N} (x)$$], we measure the correlation between f(x) and [image: $$f(x^\prime )$$]. A larger correlation indicates a smoother landscape. The results are given in Fig. 5.[image: ]
Fig. 5.Correlation between the fitness values of neighbor solutions (ruggedness).


[image: ]
Fig. 6.Rate of neutrality between neighboring solutions.



Overall, the correlation is high, suggesting that landscapes are all relatively smooth. Exceptions where the correlation drops below 0.75 exist for the diabetes, breast-cancer, breast-w, and page-blocks datasets. However, this could be an artifact of fewer neighbor pairs in these cases, as all these datasets have [image: $$n \le 10$$] features. The ruggedness also appears to be consistent across ML models for a specific dataset. As such, we find that the landscape difficulty induced by different ML algorithms is not due to the ruggedness but to other factors that we examine further below.

4.6 Neutrality
Figure 6 gives the level of neutrality of the 84 landscapes under consideration, measured as the average proportion of equivalent solutions in the neighborhood of each solution. A landscape is neutral when many neighbors share the same fitness value. It can be pictured as having multiple plateaus. We can see that the neutrality of the feature selection problem is highly dependent on the dataset and ML model. For instance, the zoo, heart-statlog, credit-approval, and vote datasets exhibit a high neutrality. By contrast, the pendigits and letter datasets have almost no neutral neighbors. Note that Mostert et al. [12] propose reducing neutrality by removing irrelevant features. However, they did not consider the datasets that produce less neutrality in their analysis.
By relating our results with existing algorithms, it is worth noting that some approaches for handling equivalent solutions have been proposed in the context of multi-objective feature selection [7]. Despite most prior studies using kNN, it is important to remark that our results underscore significant variations in neutrality across ML models. Notably, the level of neutrality is actually larger for SVC and NB, whereas it is quite low for DT and RF. The lower neutrality of the latter two ML models may be attributed to their stochastic nature, although we did perform multiple training for those. This suggests that existing wrapper algorithms might be worth revisiting in light of the ML model being used.

4.7 Local Optima Networks
Escaping from local optima is one of the main challenge for search algorithms. Therefore, understanding the number and distribution of local optima, along with the size of their basins of attraction, is crucial for comprehending the difficulty of the landscape. LONs have been widely used for this purpose. We built LONs and CM-LONs for all landscapes. A full analysis of these networks is out of reach in this paper due to space limitations. However, we provide some examples in Fig. 7. The size of each node corresponds to the size of its basin. The node color represents the classification accuracy, with darker shades representing better solutions. The edge width corresponds to the transition probability. The datasets considered in these examples all have [image: $$n=16$$] features.[image: ]
Fig. 7.Examples of obtained LONs.



The plots show that the structure of the landscape can be visually distinguished across datasets and ML models. For instance, the LON appears much denser for LR (bottom left) than for kNN (top left) when using the letter dataset. Similarly, the LON is denser for the vote dataset (top right) than for the letter dataset (top left) under kNN. In fact, the LON of kNN for letter (top left) aligns with the expectation of a relatively smooth landscape. The LON (top right) and CM-LON (bottom right) of kNN for the vote dataset can also be compared. We here observe a significant reduction of nodes and edges. By contrast, the CM-LON of LR for letter (not reported) has only one node less than its LON. We observed that the compression rate from LON to CM-LON, though varying among datasets, was fairly consistent across ML models. Nonetheless, kNN often attained a higher compression rate compared to other ML models. We delve deeper into the analysis of local optima using statistics over the LONs below.

4.8 Local Optima
In Fig. 8 (top), we report the number of local optima for all datasets and ML models. Similar to what we did with global optima, we treat plateaus of local optima as a single count. However, considering the variability of plateaus across different landscapes, Fig. 8 (bottom) quantifies the number of solutions within each local optima plateau, accounting for neutrality at the local optima level.[image: ]
Fig. 8.Number of local optima (top) and average number of solutions in local optima plateaus (bottom)—notice the log scale.



Here as well, we observe significant differences across datasets and ML models. kNN and LR tend to produce more local optima. In fact, they are the models with the highest number of local optima in about one-third of the datasets. By contrast, NB often produces the fewest local optima, in about half of the datasets. This could explain the lower correlation we observed between NB and other ML models on the corresponding datasets, as discussed in Sect. 4.2. However, as anticipated in Sect. 4.6, NB also has the largest plateaus of local optima. This implies that local optima are typically clustered, making the NB algorithm potentially more resistant to noise caused by irrelevant features. Surprisingly, we found a single local optimum (or plateau) for SVC on the diabetes dataset, for NB on the zoo dataset, for kNN and LR on the pendigits dataset, and finally for SVC, RF and NB on the letter dataset. This means that local optima are all global optima, indicating that the corresponding landscapes are uni-modal.
Among the different datasets, schizo, credit-approval, zoo, vote, vehicle, and lymph often produce more local optima. By contrast, pendigits and letter typically yield significantly fewer local optima, and without any plateau. This might be surprising, given that these last two datasets are not the ones with the fewest features. Yet, we anticipated these landscapes were easier when examining the FDC in Sect. 4.4. It is noteworthy that pendigits and letter are the datasets with the largest number of observations—more than [image: $$10\,000$$], significantly more than other datasets. Training ML models with such large datasets is time-consuming, particularly for kNN which computes the pairwise distance between observations. We believe this might be the reason why large datasets are seldom used for benchmarking evolutionary feature selectors. Nevertheless, our findings underscore the importance of considering those. The question of whether having more observations consistently leads to fewer local optima requires further investigations that we leave open for future research. This could have significant implications for the explainability of feature selection.
Similar to global optima, the proportion of features selected on local optima stays fairly consistent across ML models, usually around 0.5 for all landscapes—details are omitted due to space constraint. However, the pendigits and letters datasets show a significant difference, as local optimal subsets often include more, if not all, features.[image: ]
Fig. 9.Proportional sizes of global optima’s basins of attraction (top), and incoming strength of escape edges towards global optima (bottom).




4.9 Basins of Attraction
Figure 9 presents statistics on local optima’s basins of attraction. The proportional size of global optima’s basin (on top) gives the probability for a simple local search to fall into a global optimum when starting from a random solution. The incoming strength of escape edges towards global optima (at the bottom) represents the probability of transitioning from a local to a global optimum. A higher value means that a local search is more likely to fall into a global optimum after perturbation.
We first remark that for 9 of the landscapes, both measures equal 1. This is expected as they correspond to those with a single optimum, as discussed in Sect. 4.8. In other landscapes, the basins of global optima remain relatively large, and complementary investigations reveal that the largest basin often ranks high in fitness. In addition, datasets with more features ([image: $$n=18$$]) tend to have proportionally smaller global optima’s basins. However, it is worth noting that these cases simply have more local optima, while the rank of the largest basin remains low. The global optima’s incoming strength varies with the dataset and ML model. For example, a high value can be observed for the diabetes, pendigits, and letter datasets under any ML model. By contrast, the value is low for the vehicle and lymph datasets. These findings shall be related to the number of local optima in these datasets, as discussed in Sect. 4.8.

4.10 Algorithm Performance
We conclude our analysis by relating our observations on the landscape of feature selection problems with the performance of established wrapper algorithms, as described in Sect. 3. Table 2 gives the performance of the three considered algorithms for each dataset and ML model. We measure performance as the proportion of runs (among 31) in which the algorithm under consideration was able to identify a global optimum. Our primary focus is to compare algorithm performance across different ML models and datasets for each feature selector.
Firstly, we note that there is a substantial number of problems where SFS-F and SFS-B agree with each other. With a few exceptions, SFS-F and SFS-B typically have a success rate of either [image: $$0\%$$] or [image: $$100\%$$] due to their deterministic nature. The only element of randomness lies in how ties are broken. This explains why the success rate falls in between in some landscapes with neutrality; see Sect. 4.6. In fact, the optimal subset is always identified by SFS-F and SFS-B across different datasets and ML models when the landscape has (1) a single global optima’s basin of attraction, and (2) no plateaus. Overall, DT and RF tend to be easier to solve than other ML models. By contrast, SFS-F and SFS-B seldom identifies an optimal solution for kNN or LR, which were shown to produce more local optima in Sect. 4.8. As highlighted above, both DT and RF have landscapes with relatively strong FDC, almost no neutrality, and few plateaus. In addition, the largest basin of attraction often leads to an optimal solution for RF.Table 2.Success rate of SFS-F, SFS-B and GA on the considered problems. Best values are highlighted in gray.


[image: ]



Now shifting our attention to GA, we notice a higher variation in the success rates. For a given dataset, the ML model resulting in the highest success rate is almost always identical to either SFS-S or SFS-B. Similar to those, either DT or RF is among the best for 9 out of the 14 datasets. Interestingly, a strong correlation seems to exist between the best GA setting and its FDC value. Indeed, in half of the datasets, the ML model with the lowest degree of difficulty in terms of FDC has the highest success rate. The corresponding ML model consistently shows a relatively lower neutrality rate as well. Furthermore, for almost all datasets, the largest basin of attraction for the ML model with the highest success rate falls into a global optimum. Finally, as anticipated above, for problems with [image: $$n=16$$] features, the landscapes induced by pendigits and letter appear to be easier to solve than those of zoo and vote. This holds for all three algorithms.


5 Conclusions
In this paper, we conducted a landscape analysis to study various aspects of difficulty in wrapper methods for feature selection. We examined 14 classification datasets and 6 ML models, resulting in 84 different landscapes. Our findings suggest that the difficulty and solutions are inherent to the landscape being considered. Specifically, we observed significant differences across ML models. This highlights the need to explore ML models beyond kNN, which is commonly used in the existing literature. Given the observed variations among landscapes, we do not recommend to use one ML model as a proxy for another ML model.
In addition to considering additional datasets, ML models, and feature selection algorithms, we aim to assess the impact of other classification scores. We also plan to address the challenges raised by problems with a larger number of features, thus going beyond complete enumeration. Our experimental analysis indicated that studying how the landscape difficulty varies with the number of classes and observations, particularly in terms of neutrality and multimodality, requires further consideration. In addition, the established sequential feature selection approach essentially performs a local search starting from a specific solution. We believe our methodology could help formalize its probability of successfully identifying a global optimum. At last, we expect to enhance the explainability of feature selection by analyzing and interpreting the features that wrapper methods most frequently choose.
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Abstract
Local optima are a menace that can trap optimisation processes. Frequency fitness assignment (FFA) is an concept aiming to overcome this problem. It steers the search towards solutions with rare fitness instead of high-quality fitness. FFA-based algorithms have shown promise in the literature, but their behaviour is not well understood. We take a first step in this direction by seeking to explain FFA behaviour and performance for the first time. In particular, we attempt to understand the difference in how FFA-based algorithms navigate the space when compared with a standard objective-guided algorithm which incorporates diversification: simulated annealing (SA). As a testbed for these investigations, a set of quadratic assignment problem (QAP) benchmark instances designed to be difficult for metaheuristics is used. A statistical analysis of trajectory behaviours for FFA-based algorithms is conducted. Additionally, we consider and compare the fitness distributions encountered by each algorithm, as well their respective proficiency on the problems. The findings help to explain FFA performance behaviours, and show that FFA explores more widely and consistently than SA. It is hoped that the explanatory approach adopted in this study serves as an example and inspires further similar investigations into how—and why—FFA-assisted optimisation works.
Keywords
frequency fitness assignmentquadratic assignment problemfitness landscape
1 Introduction
Frequency fitness assignment (FFA) [1] is a mechanism which can be incorporated into optimisation algorithms. With FFA, the search is conducted in an unconvential manner: it is steered based on fitness rarity instead of fitness quality. FFA algorithms have shown some promise in terms of performance on some problems (for example, jobshop scheduling [2] and the travelling salesperson problem [3]) but the reasons for this are not well understood. An investigation into how these FFA-based algorithms navigate the space has not been conducted. In particular, a recent study indicated two curious results: firstly, that an FFA version of simulated annealing (SA) can out-perform regular SA; and secondly, that two different FFA algorithms achieve very similar performance to one another [4]. The reasons for these phenomena have not yet been researched.
The field of explainable AI (XAI) [5] has emerged from the desire to understand—and explain the decisions of—artificial intelligence. Although the associated methods are typically geared towards machine learning models, some authors also consider the pursuit of interpretable metaheuristics under the umbrella of XAI [6, 7]. Indeed, under this lens, the entire field of fitness landscape analysis [8] might be considered in that way: with these approaches, topological features can be used to provide insight about algorithm performance on a problem. Along a similar vein, a study utilised XAI feature importance techniques to analyse the importance of metaheuristic hyperparameters [9], making another step forward in making optimisation explainable. A recently-proposed tool for understanding metaheuristic behaviour is search trajectory networks (STNs) [10], where the paths taken by an algorithm are captured in a graph format and visualised. This is particularly meaningful when the paths of different algorithms on the same problems are contrasted. The illuminative power of STNs was increased further in a work which integrated them with language models to provide natural-language explanations [11].
In this work, we take a first step towards understanding FFA behaviour, with a particular focus on gaining insight into the aforementioned results from the literature. As a testbed, we consider a set of benchmark instances of the well-known quadratic assignment problem (QAP). Four algorithms are subject to analysis: a basic hill climber, simulated annealing, and their respective FFA counterparts. We investigate their trajectories through the space in several ways: 1) with STN visualisation, 2) by approximating entropy and fitness deltas, and 3) by considering how often fitness values are visited during the search. In addition, we consider and compare their algorithmic performance. In the next section, we introduce the background on FFA and the QAP. We then introduce search trajectory networks and the investigated algorithms in Sect. 3. In Sect. 4, we outline the experimental setup and in Sect. 5, we present our results. Limitations and possible future avenues are discussed in Sect. 6. Finally, we summarise our findings in Sect. 7.

2 Background
2.1 The Quadratic Assignment Problem
The Quadratic Assignment Problem (QAP) [12] involves assigning [image: $$n$$] facilities to [image: $$n$$] locations. The search space is the permutations of size [image: $$n$$]; therefore, the size of this space is [image: $$n!$$]. In a solution [image: $$s$$], [image: $$s^{(i)}$$] gives the location of a facility i. There is a distance (cost) between each pair of locations and there is a flow (cost) between each pair of facilities, and these are specified in two matrices which define an instance: the distance matrix [image: $$A$$] and the flow matrix [image: $$B$$]. The objective function associated with a permutation [image: $$s$$] is quadratic and considers the sum of pairs of assignment costs (an assignment cost is the product of a distance and a flow cost):[image: ]

 (1)


where matrix entries are formulated with subscript; for example, [image: $$B_{ij}$$] is the flow between facilities i and j. In choosing the instance set for this study, there are a few considerations. We would like all instances to be the same size, n (that is, number of facilities and locations) and type (for example, uniform random distances and flows) so that behaviour cannot be attributed to these factors. Additionally, instances should be difficult for metaheuristics but have a publicly recorded best-known fitness value. The QAP library (QAPLIB) is often used in literature; however, it does not have sufficiently large sets of instances of the same type and size as each other for our purposes. We instead consider the taie27 set of 20 instances1. These instances were designed to be difficult for metaheuristics [13] and, at size [image: $$n=27$$] (i.e., with 27 facilities and locations), they are not trivial. Yet, they are still small enough that our algorithms might reach the best known solution. The instances are symmetric, and also have some notion of ‘structure’—meaning that the distances and flows are not random, and that groups of locations are clustered together on the plane. A well-known feature of QAP instances is the notion of flow dominance, which is the standard deviation of the flows between facilities. Another is ruggedness: the standard deviation of the fitness difference between adjacent solutions. The instance designers state that taie27 problems have low flow dominance and have a high degree of ruggedness [13].

2.2 Frequency Fitness Assignment
Frequency fitness assignment (FFA) [1] is the principle of using the rarity of an objective value instead of its quality to guide optimisation. That is, instead of using the objective function [image: $$f\!\left( s\right) $$], a frequency function [image: $$H\left[ f(s)\right] $$] is used. During the search, the number of times an objective value [image: $$f\!\left( s\right) $$] has been seen in selection decisions, i.e., its frequency, is stored in [image: $$H\left[ f(s)\right] $$]. All objective values initially have a frequency of zero and their frequency is incremented by 1 every time they appear. FFA has been embedded into evolutionary algorithms and applied to jobshop scheduling [2], the travelling salesperson problem [3], and algorithm synthesis with genetic programming [1], among others. Its authors have found that, as a mechanism, it sometimes leads to better solutions than the default objective-guided algorithms into which it has been plugged.
FFA is related to the concepts of tabu search [14] and quality-diversity algorithms, particularly novelty search [15]. Novelty search (NS) favours selection of solutions that are novel with respect to a user-defined descriptor, such as a vector of features derived from either a genotype or phenotype. NS maintains an archive of previous solutions: the novelty of a new solution is calculated with respect to solutions in this archive and to the current population. The novelty descriptor is not typically related to fitness but rather to the characteristics of a solution. Conceptually, FFA shares some similarities to a novelty search process but where the descriptor is fitness based and the fitness frequency table [image: $$H\left[ f(s)\right] $$] is analogous to the archive used by novelty search. While tabu search retains a short-term memory of tabu moves, FFA tracks fitness frequency over the whole search and avoids common fitnesses. FFA is, in essence, a mechanism for optimisation which is plugged into existing algorithms to replace objective-steered decisions. It is not an algorithm in its own right.
FFA has particular limitations: its exploitative strengths are nullified when all possible solutions have unique objective values. This can be true for NK Landscapes, but also for continuous fitness landscapes like the Rosenbrock, Ackley or Griewank functions which are likely unsolvable for FFA without some form of amendment. Conversely, when there is a low number of unique objective values, FFA seems to outperform more standard approaches [3]. Essentially blind to the underlying objective function, FFA’s performance seems to depend on the distribution of fitness values, which can either work for or against it. The QAP, used in this work, has a discrete solution space with integer fitness values and should therefore be suitable for FFA. Nonetheless, it should be noted that its effectiveness could be anywhere on the curve: the more unique objective values a problem instance has, the worse FFA is expected to perform [3].

2.3 Search Trajectory Networks
Search trajectory networks (STNs) [10] are a graph-based, data-driven modelling tool to visualise and analyse the dynamics of metaheuristic algorithms. STNs allow the direct visual comparison of the trajectories of two or more algorithms when solving an optimisation problem. A strength of STNs is that there is no need for additional sampling or data gathering methods. Instead, the data to construct the models are collected from several runs of the metaheuristics under study. We now define relevant terminology for understanding STNs.
	Representative solution. A representative solution captures the status of the search algorithm. For single-point metaheuristics such as those studied here, the incumbent solution is used.

	Location. In general terms for STNs, a location is a subset of solutions which occupy a partition of the search space (this allows for the modelling of continuous spaces); however, for discrete spaces such as the QAP, a location is considered to be a single solution.

	Trajectory. A trajectory is a sequence of locations in the order that the search visited them. In our case, with single-point searches, this captures the locations of the current solution over time.

	Nodes (N). The nodes are a set of locations from trajectories.

	Edges (E). The edges are directed, and each connect two consecutive locations in a search trajectory. Edges have a weight: the frequency that search connected the two locations.

	STN. A search trajectory network, STN = (N, E), is directed and weighted, comprising the nodes N and edges E as defined above. STNs consist of several trajectories obtained from independent runs of the algorithm.







3 Methodology
3.1 Algorithms
There are many excellent metaheuristic algorithms for the QAP; these include robust tabu search [16], iterated local search [17], ant colony optimisation (ACO) [18], genetic hybrids [19], and simulated annealing [20].
The purpose of the present work is not to propose a new competitive algorithm, but rather to understand frequency fitness assignment and algorithm behaviour on the QAP. For this study, we would like to do a preliminary exploration into the utility of FFA on QAP and would therefore like the algorithms to be as simple as possible. Tabu search would be a confusing framework to use in conjunction with FFA, because it would be difficult to know what is arising from the tabu tail—which consists of ‘tabu’ moves which do not lead to fitness improvement and are temporarily disallowed—and what comes from FFA. Iterated local search is not appropriate either: it is predicated on the idea of advancing through levels of local optima, but FFA-steered search removes any identification of local optima. ACO and genetic hybrids are swarm or population-based and are therefore not as straightforward operationally as single-point searches. Additionally, the STNs of those methods would require additional decision-making: which swarm or population member (or combination thereof) should represent a node in the visualisation? In this work we therefore consider basic single-point approaches: hill climbing, simulated annealing, and their FFA-based variants. All four algorithms are illustrated in Fig. 1. Hill climbing [21], here called objective-steered hill climbing (OHC) for the sake of clarity is maybe the most basic metaheuristic. OHC has the advantage of simplicity and a lack of parameters. From a random starting solution [image: $$s_{c}$$], OHC carries out random mutation using the search operator “[image: $$\textrm{move}$$]” and obtains the new solution [image: $$s_{n}$$]. If the mutated solution [image: $$s_{n}$$] is at least as good as [image: $$s_{c}$$], it replaces it. This process continues until a termination condition is met. Simulated annealing [22] is one of the most prevalent metaheuristics [23]. We here refer to it as objective-steered simulated annealing (OSA), again for the sake of clarity. The foundation of the algorithm is random mutation hill climbing; however, OSA also sometimes allows deteriorating moves according to a cooling schedule. Typically many deteriorating moves will be allowed at the start (to facilitate exploration) and only very few small deteriorations at the end of the search (to bring about exploitation). As a result, OSA is less likely to become stuck at local optima than OHC. For each algorithm, we design an FFA-based variant in which all occurrences of objective values [image: $$f\!\left( s\right) $$] in the selection decisions are replaced by their corresponding frequencies [image: $$H\left[ f(s)\right] $$], which are incremented by 1 before the selection steps. In other words, based on the (objective-steered) hill climber (OHC), we develop a corresponding frequency hill climber (FHC). For simulated annealing, we develop the FFA-based frequency simulated annealing (FSA). All algorithms consider a random swap of facilities in the permutation as the move operator spanning the neighbourhood structure.[image: ]
Fig. 1.The four investigated algorithms.




3.2 Entropy and Fitness [image: $$\delta $$]
The progress of each algorithm is tracked throughout the run in two ways: first, by logging the fitness of the incumbent solution at each iteration; and secondly, by logging an improvement to the best-seen fitness when it is found. We therefore obtain both non-monotonic and monotonic time-series of fitness values which characterise algorithm runs. Non-monotonic series are limited to the first 500 incumbent solutions. It seemed appropriate to analyse the beginning of the search because all of the algorithms are ‘active’ then—we noticed OHC quickly converges to a local optimum. To quantify patterns and complexity in the series of encountered fitness series, entropy can be computed [24, 25]. For this, an appropriate measure of entropy must be selected. We noticed that almost every fitness value was unique for certain time series. At first glance, this might make it seem as though FFA is unsuitable—however, an abundance of unique values in the sampled series does not necessarily an abundance in the space overall. The uniqueness of values in some series means that Shannon entropy [26] and nonlinear serial dependence entropy tests [27] will probably not be suitable: both are based on frequency distributions of individual values. Instead, we select a metric which considers the similarity of sub-series within a tolerance level: the approximate entropy [28]. This can capture irregularity and randomness within a time series (with higher values indicating less regularity and more randomness). The approximate entropy considers a vector embedding of dimension m, with respect to a tolerance level r for a time series of length N. From the original time series, sub-series of length m are extracted as the embedded vectors. Then the similarity between them is checked, and the average log-likelihood of similarity [image: $$\phi $$] between these m-dimensional vectors is calculated: [image: $$\phi (m, r, N) = \frac{1}{N - m + 1} \sum _{i=1}^{N - m + 1} \log \frac{C(m, r, i)}{C(m+1, r, i)}$$], where [image: $$C(m, r, i)$$] is the number of embedded vectors (of length m) that are sufficiently similar (according to r) to the embedded vector at index i. The equation can then be used to compute the approximate entropy [image: $$\varXi _(m, r, N)$$], which is the difference between log-likelihoods for vectors of dimension m and vectors of dimension m+1:[image: $$\begin{aligned} \varXi (m, r, N) = \phi (m, r, N) - \phi (m+1, r, N) \end{aligned}$$]

 (2)


Note that while [image: $$[\delta \in [0, \infty )]$$], the typical range is from 0 to 2 [29, 30]. A detailed description of [image: $$\varXi $$] including walkthrough can be found in a dedicated paper [29].
The monotonic series in our study are less suited to being measured for entropy: the fitness can only increase, meaning that there is a consistent direction and there is less likelihood of complexity or irregularity. For these series, we focus instead on the fitness difference, [image: $$\delta $$], between adjacent pairs in the monotonic series. In computing these, we would like to find out how the algorithms compare with respect to the magnitude of [image: $$\delta $$].


4 Experimental Setup
4.1 Algorithm Analysis
For all algorithms, the termination condition is 10 million fitness evaluations (FEs). 30 independent runs are executed per algorithm setup [image: $$\times $$] instance combination. The algorithms are implemented in Python; version 3.10 is used. On each instance, the corresponding runs of the different algorithms start at the same initial solutions.
The initial temperature [image: $$T_{0}$$] for the cooling schedule of OSA is set individually for each instance (owing to different objective value ranges). Based on preliminary experiments, we chose [image: $$T_{0}=0.10 * (m_{obj} - b_{obj})$$], where [image: $$m_{obj}$$] is the mean objective value over 100 randomly sampled solutions and [image: $$b_{obj}$$] is the best known value2. For FSA, [image: $$T_{0}$$]will relate to fitness frequencies instead of values, and is set to 2 here—this is the value suggested in a previous work using this algorithm [4]; the cooling schedule parameters are also from that study, and are the same for both OSA and FSA: the temperature decays exponentially with the number of FEs, [image: $$\alpha = 1 - (\frac{1}{T_{0}})^{\frac{1}{ evals }}$$], where [image: $$ evals $$] is the total budget in terms of FEs. At each iteration, the new temperature [image: $$T_{\tau }$$] is obtained as [image: $$T_{\tau } = T_{0}(1 - \alpha )^{\tau - 1}$$], where [image: $$\tau $$] is the number of completed FEs. From the algorithm trajectories, the approximate entropy [image: $$\varXi $$] is computed using the R package praca [31]. There are two important parameters for this: the embedding dimension m and the tolerance r. We set m=2, while r is 20% of the standard deviation of the series—these are the common values in the literature [32]. Entropy is averaged over 30 runs and is computed on the non-monotonic series.

4.2 STN Graph Layout
In graph visualisation, a layout is the set of coordinates to place nodes in the plane [33]. There are different approaches to this, such as force-directed algorithms [34]; however, such algorithms do not place ‘similar’ nodes together. For the purposes of our STN visualisations, the y-axis is for fitness. We would like node positions on the x-axis to capture proximity: placing similar solutions near to one another. To this end, we formulate node placement along the STN visualisation x-axis as an optimisation problem.
Assume that the list [image: $$D$$] of candidate solutions was recorded during the runs and that we want to layout these solutions in the graph along the horizontal axis. In a first step, all identical candidate solutions are merged and the potentially slightly shorter list [image: $$D'$$] is yielded. Assume that we have a distance metric [image: $$d$$] that provides us with the distance between two solutions in [image: $$D'$$]. Now these solutions are permutations and – since we use “swaps of two values” as search operator when solving the QAP – their similarity can be represented by their swap distance, i.e., the minimum number of swaps of two arbitrary elements in a permutation [image: $$s_{1}$$] required to arrive at permutation [image: $$s_{2}$$]. Our goal is that the nearest neighbors of a given solution (based on [image: $$d$$]) will also be its nearest neighbors on the horizontal axis of our STN. We can map this layout problem to a QAP as follows: the candidate solutions [image: $$s\in D'$$] that we tracked during solving the “actual” QAP) are the facilities. They are to be mapped to the locations 1..|[image: $$D$$]’|. These locations are the x-coordinates in the STN plots. The distance [image: $$A_{ij}$$] between locations i and j is simply [image: $$|i-j|$$], since we want to layout all objects on a single one-dimensional axis. For any given solution [image: $$s_{p}$$], the flow matrix [image: $$B$$] should assign the largest flow to its nearest neighbor solution [image: $$s_{q}$$] based on the distance metric [image: $$d$$], then a somewhat smaller flow to its second-nearest solution [image: $$s_{r}$$], and maybe a flow of zero to the solutions that are very far away. Solving such a QAP would then place the solutions that are similar under [image: $$d$$] close together on the x-axis of the STN plot (while not caring about the relative location to far-away solutions). So we construct [image: $$B$$] to have very large flows to solutions that are very similar under the distance metric [image: $$d$$] as follows. For each solution in [image: $$D'$$], we compute the average rank—of all other solutions by their distance. If all other solutions have a unique distance, then the nearest one will have rank 1, the second-nearest one will have rank 2, the third-nearest one rank 3, and so on. The ranks of solutions with the same distance will be averaged, e.g., if two nearest solutions exist, their rank is 1.5. To obtain integer flows, we multiply these values by 2 and subtract the result from [image: $$2|D'|$$] and then square it. This leads to large flows to the nearest neighbors and quadratically declining flows to farther away solutions (based on [image: $$d$$]). Since we are dealing with many solutions, we also simply set the flows for everything after the 1024-th nearest neighbor to zero. The layout QAP attempts to place the nearest neighbors as closely together as possible in the STNs (and does not care about the spatial relationship of far-away solutions). We obtain the x-coordinates for the solutions in our plots by applying OHC to this auxiliary QAP for 100 000 FEs. The limitations to this QAP layout approach to visualisation are detailed in the supplemental material3.

4.3 Statistical Tests
We would like to test for three main hypotheses in the experimental analysis. The null hypotheses are:	[image: $$\circ $$] There is no significant difference in the distributions of [image: $$\varXi $$] and [image: $$\delta $$] for trajectories obtained from the different algorithms

	[image: $$\circ $$] There is no significant difference in the distributions of fitnesses encountered by the different algorithms

	[image: $$\circ $$] There is no significant difference in the distributions of algorithm performance





For gathering evidence, we use Mann-Whitney tests for each hypothesis and each pair of algorithms. Multiple tests are conducted per hypothesis, so we correct the tests using a Bonferroni correction. Although runs of different algorithms start from the same solutions, we do not consider the samples to be paired, owing to the fact that the pairs will likely unpair soon after the searches begin due to randomness in the searches. In any case, if the unpaired test provides some “significant” result, then it would also be significant in the paired test. For presentation of results, plots are annotated with the significance level of the test result as follows: ns means [image: $$p &gt; 0.05$$] or ‘not significant’; * [image: $$0.01 &lt; p \le 0.05$$]; ** [image: $$0.001 &lt; p \le 0.01$$]; *** [image: $$0.0001 &lt; p \le 0.001$$]; **** [image: $$p \le 0.0001$$].


5 Results
5.1 Trajectory Analysis
Figure 2 shows, for each algorithm variant, a plot of search trajectory networks (STNs). For the purpose of visual clarity, each plot represents only five runs of the associated algorithm on the instance tai27e01 (plots for all other instances are provided in the supplemental material[image: $$^{7}$$], and display similar trends to tai27e01). The fitness is on the y-axis and solutions are located on the x-axis according to a one-dimensional ordering optimisation discussed above. Runs can be differentiated by colour and symbol. From comparing Fig. 2a (objective-steered hill-climbing) with the other three plots, we immediately notice that the improved solutions discovered during the single runs are usually rather similar to their predecessors. This means that the trajectories taken are not very explorative in nature. Once the algorithm begins on a path, it does not deviate too far from the starting solution. This, of course, fits exactly with what the algorithm is—a local search.[image: ]
Fig. 2.Search trajectory networks for the QAP instance tai27e01. For the purpose of visual clarity, only five runs are shown per plot. Each run is a different colour. Fitness is on the y-axis and solutions are placed in an ordering along the horizontal axis which is obtained from optimising their placement according to the relative permutation swap distances



For objective-steered simulated annealing and the two FFA-based algorithms (Figs. 2b, 2c, and 2d), the trajectories appear to explore widely. They seem to be much less related to the starting location. It is interesting that below a fitness of 10 000, the FFA trajectories (Figs. 2b and 2d) zig-zag across a fairly large permutation distance several times. Recalling that they are steered based on fitness rarity, and that nodes are only logged for these STNs when an improvement on the best-seen solution is found, this tells us that rarer and better objective values may require big genotypic changes at this stage in the search or that several different local optima with high quality exist. Figure 3 presents measurements taken from the algorithm trajectories: Fig. 3a is the median approximate entropy, [image: $$\varXi $$], across 30 non-monotonic trajectories for each instance; Figs. 3b and 3c capture the median fitness delta, [image: $$\delta $$]  across 30 monotonic trajectories. The [image: $$\delta $$] values in Fig. 3b are not rescaled, while those in Fig. 3c are rescaled with respect to the number of evaluations which were associated with that [image: $$\delta $$]; that is, how many evaluations passed since the previous fitness improvement. This gives an indication of the computational cost of the search interred to obtain a given fitness advancement. Let us first consider the [image: $$\varXi $$] distributions in Fig. 3a. We notice that, firstly, the two FFA algorithms (FHC and FSA) display higher values than their objective-steered counterparts. The lowest entropies, by far, are associated with OHC—this makes sense, as this is a simple hill climber without any diversification mechanism. There is indication of significance according to the Mann-Whitney tests for each pair of algorithms except the two which have FFA mechanisms (FHC and FSA)). When observing Figs. 3b and 3c, remember that with QAP the fitness function is minimised; it follows that lower (more negative) [image: $$\delta $$] values are desirable because they represent steeper fitness improvements by the algorithm. Figure 3b shows that—when the number of evaluations is not considered—the FFA algorithms have more substantial [image: $$\delta $$] than the objective-steered versions. It is interesting to note that the OHC-OSA and FHC-FSA pairs are not statistically different in Fig. 3b, although all others pairs are. When the [image: $$\delta $$] values have been rescaled with respect to how many evaluations were used to obtain them, there is quite a different picture when comparing the FFA algorithms with the others: the trend has now flipped, in that the FFA algorithms have much smaller values than the objective-steered algorithms. This indicates that these approaches take a large number of evaluations to make the fitness improvements in Fig. 3b. Notice also that Fig. 3c shows a statistical difference between OHC and OSA where there was not in Fig. 3b, communicating the fact that the [image: $$\delta $$] values achieved by OSA take longer to obtain than those achieved by OHC.[image: ]
Fig. 3.Metrics of the algorithm trajectories of 30 runs on 20 instances. For each distribution pair, there is indication of significance level (with Bonferroni correction) for a Mann-Whitney U test. For interpreting plots (b) and (c), recall that QAP is a minimisation domain; it follows that strongly-negative [image: $$\delta $$] is desirable.




5.2 Fitness Frequency
We are interested in the difference in the distribution of the fitness values which are encountered by each of the studied algorithms. Figure 4 shows measurements for the fitness distributions seen by each of them during 30 runs. The fitness frequency is used by the FFA-based algorithms to make the selection decisions. However, we also collected this information for the objective-driven algorithms for the purpose of this analysis. Figure 4a shows the number of different fitness values seen by each algorithm. It is immediately apparent that OHC discovers substantially fewer unique fitness values than the other three algorithms. We also note that the FFA-based approaches uncover more unique fitness values than OSA. In Fig. 4b we show a measure of dispersion for the fitness frequencies: the standard deviation. The plot shows that the standard deviation for OHC is markedly higher than for the other three candidate approaches. Next-highest is OSA; the two FFA-based algorithms have a (comparatively) very low standard deviation in the fitness frequencies. This means that the different fitness values which are found are typically encountered equally often; in contrast, OHC (and to a lesser extent, OSA) may visit some solution fitnesses very rarely and others exceedingly often, which likely happens when they arrive at a local optimum.[image: ]
Fig. 4.Measurements of the fitness distributions encountered by the algorithms during 30 runs on each of the 20 instances. Number of values is the number of unique fitness values seen across all runs by the algorithm. fitness frequency [image: $$\sigma $$] is the standard deviation of the fitness frequencies (counts for each fitness value seen). For each distribution pair, there is indication of significance level (with Bonferroni correction) for a Mann-Whitney U test




5.3 Algorithm Performance
Although the intention is not to propose new algorithms for QAP, analysing the relative algorithm performances may lead to insights and understanding about the interplay between the algorithms and the problem space. Figure 5 shows the algorithm performance information for 30 runs of each algorithm over the 20 instances. We show the median obtained fitness over 30 runs, presented as an approximation ratio of the best known value for the instance (lower is better), in Fig. 5a. The standard deviation of the obtained fitness is shown in Fig. 5b. When we consider the median obtained fitnesses in Fig. 5a, it is immediately evident that OHC is the worst performer according to this metric—having higher values which, additionally, are also inconsistent. The best fitnesses are obtained by OSA, followed by the two FFA algorithms. Between those two (FHC and FSA), there is no significant difference in their distributions. The standard deviations in Fig. 5b paint a similar picture: the FFA-based approaches very similar to one another. We note from this plot, however, that the FFA algorithms display the lowest standard deviation in obtained fitness from the four approaches. This implies that FFA approaches may be less susceptible to starting location and that, given enough evaluations, FFA may be more consistent in reaching a fitness level. The two FFA approaches are followed by OSA. The OHC algorithm is the worst performer, with a much larger standard deviation than the other three.[image: ]
Fig. 5.Algorithm performance by the four algorithms on the 20 instances; for the median, this metric is over the 30 runs and is presented as an approximation ratio of the best-known value for the instance (lower is better). The obtained fitness [image: $$\sigma $$] (standard deviation) is [image: $$\sigma $$] for obtained fitness over 30 runs. For each distribution pair, there is indication of significance level (with Bonferroni correction) for a Mann-Whitney U test





6 Limitations and Outlook
We note that the considered instances represent a specific class of QAP, and that therefore the results might be different when we study other types. For example, there is a newly-introduced class of QAP based on the principle from MAX-SAT of using sub-problems (clauses) to construct the larger problem [35]. This QAP class has displayed what appears to be a phase transition from easy to hard problems according to some instance parameters. We wonder whether FFA will encounter this phase transition or may circumvent it. It is also important that subsequent research considers more sophisticated algorithms for analysis, although this will require careful design of how to incorporate FFA and subsequently analyse its behaviour. Nevertheless, the presented results fit nicely with the existing literature: a previous study had shown that standard SA could be out-performed by its FFA counterpart on TSP. We sought to understand the fact that the unconventional optimisation style of FFA could achieve better results than an algorithm as popular and generally effective [36, 37] as SA. Although we saw that in our case (on QAP) standard SA was more successful overall, there were some runs where it failed to find good fitness. The FFA counterpart was shown to be more consistent in finding a solution of decent quality. In terms of explanation for why FFA may manage this, we discovered that FFA algorithms visit more unique fitness values than standard SA; that their fitness trajectories have higher entropy; and that (given enough evaluations) their fitness improvements are more substantial. Another phenomenon we set out to understand further was that two different FFA algorithms had previously displayed very similar performance [4]. In our study, this also occurred. The results help to explain why this behaviour happens: 1) there was no statistical difference in their trajectory entropy, fitness deltas, and exploration of fitness values, and 2) the STN visualisations showed similar exploration. In general, we brought a new perspective to FFA optimisation. This paradigm shift towards understanding the mechanics of how these algorithms navigate should lay the groundwork for further studies into the potential for assisting search with the fundamental principle of steering towards hidden gems.

7 Conclusions
We have conducted a study with the aim of 1) putting forward the perspective of (and possible methods for) explaining the performance of frequency fitness assignment FFA-assisted optimisation, and 2) applying this with the objective of understanding specific previously-observed results from the literature. For the testbed, we consider a benchmark set of quadratic assignment problem (QAP) instances which are known to be challenging for metaheuristics. For simplicity and in the spirit of a preliminary investigation, we implement basic search algorithms: hill climbing and simulated annealing. These are compared with their FFA-based counterparts: frequency-steered hill climbing and frequency simulated annealing. We found that although standard simulated annealing has the best performance overall, the FFA-based methods may be less susceptible to starting location than objective-steered searches and more consistently reach good solution qualities. They also explore more widely. These factors help to explain previous results from the literature. We also gained insight into why different FFA-assisted algorithms may perform similarly to one another: the way they experience and navigate the space is very closely related. The hope of this study is to inspire a more illustrative and explanatory approach to FFA-assisted optimisation in the future. Data from this work is publicly available in a Zenodo repository4.
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Abstract
Partition Crossover induces lattices over subsets of local optima in the search spaces of classic combinatorial problems such as MAX-SAT and the Traveling Salesman Problem. This paper explores the interaction between Partition Crossover, the lattices that are produced, and various algorithmic decisions. First, we prove that hard selection such as “truncation selection” will make it more difficult to find opportunities to successfully apply Partition Crossover. This suggests that less aggressive forms of selection could be more productive. Second, we consider hybrid genetic algorithms (GAs) that only recombine solutions that are local optima. We prove that hybrid GAs have an inherent bias that makes them more likely to sample other local optima. These two results can inform the design of more effective hybrid evolutionary algorithms.
Keywords
Graybox optimizationPartition CrossoverNK LandscapesHybrid Genetic AlgorithmsMAX-3SAT
1 Introduction
Partition Crossover operates by finding a decomposition of the evaluation function into q linearly separable components and then returns the best of [image: $$2^q$$] possible offspring in O(n) time [17] or even in O(1) time for special circumstances [5]. But what can we say about all of the [image: $$2^q$$] possible offspring? All of these offspring are provably local optima in the smallest hyperplane subspace containing the parents [17]. Empirical results show that many (perhaps most) of these offspring are also local optima in the full search space. We now know that all of the offspring produced by one Partition Crossover event can be evaluated by a single linear equation [21]. But what can we say about all of these offspring, and what information does this provide about selection, sampling bias and the design of evolutionary algorithms?
Partition Crossover operators were first defined for the Traveling Salesman Problem [7, 13, 19, 20]. However, they generalize to all k-bounded pseudo-Boolean optimization problems [17], including MAX-kSAT problems [3]. In this paper, we assume Partition Crossover is only used to recombine solutions that are local optima. If the parents are local optima, then all of the children generated by Partition Crossover are also local optima in the smallest (highest order) hyperplane subspace that contains the two parents. But some children may not be local optima in the full search space. For Boolean representations, when this is the case, the improving move must require flipping a bit where the two parents shared the same assignment [17].
In this paper, we consider k-bounded pseudo-Boolean functions such as random NK landscapes [11, 12], and MAX-3SAT problems [14, 15]. We look at all the ways a “lattice" can be discovered by Partition Crossover. Given a pair of parents, a lattice is a hypercube connecting all of the children under a recombination mask of length q. By recombination mask we mean an auxiliary binary vector indicating whether a component comes from the first or the second parent. The size of the lattice is [image: $$2^q$$]. When all of the children in a lattice are local optima, there will be [image: $$2^q/2 = 2^{q-1}$$] (complementary) pairs of parents that can discover the same lattice. This observation allows us to compute new statistics about the lattice structure.
First, we prove a new result showing that strong selection, such as truncation selection, can limit the number of ways that Partition Crossover can discover local optima. This bias occurs because all of the children in a lattice can be evaluated with a single linear equation, and because Partition Crossover is “reversible". By “reversible" we mean that if parents P1 and P2 can be recombined to produce two children C1 and C2, the crossover process can be reversed: C1 and C2 can be the parents, and P1 and P2 can be the children. If C1 is the second-best possible child, then C2 must be the second-worst possible child. If strong selection removes C2 from the population, then this limits the ability of Partition Crossover to discover improving moves.
Second, we prove that Partition Crossover is biased toward finding solutions which are local optima when the parents are always local optima. Assuming an unbiased distribution of possible children we prove that there is a bias such that Partition Crossover will generate twice as many children that are local optima compared to children that are not local optima.
Empirically, we exhaustively enumerate all of the local optima in random NK landscapes of size [image: $$n=40$$]. For NK landscapes, [image: $$N=n,$$] and [image: $$k = K+1$$] when considering k-bounded pseudo-Boolean functions. We have also enumerated the local optima of MAX-3SAT problems for [image: $$n=30$$]. To make these MAX-3SAT instances more structured, we first generate a random SAT expression over 3 variables, and then use a standard transform to convert the SAT expression to MAX-3SAT.
Section 2 introduces Partition Crossover, as well as a linear equation that can be used to evaluate subsets of local optima. Section 3 proves that strong selection can inhibit the performance of Partition Crossover. Section 4 proves that hybrid evolutionary algorithms can be biased toward finding local optima when parents are also local optima. Finally, Sect. 5 concludes this work.

2 Partition Crossover (PX)
The following function F1 is a MAX-3SAT instance with [image: $$m=16$$] subfunctions and [image: $$n=20$$] variables. The subfunctions are labeled from a to r. The variables are labeled with integers from 1 to 20, where integer i denotes variable [image: $$x_i$$].[image: ]


Let W(f(x)) denote the application of the Walsh Transform W to function f(x). This yields the Walsh (Fourier) polynomial for f(x). For all k-bounded pseudo-Boolean functions,[image: $$\begin{aligned} f(x) = \sum _{i=1}^m f_i(x) \end{aligned}$$]

 (1)



[image: $$\begin{aligned} W(f(x)) = \sum _{i=1}^m W(f_i(x)) \end{aligned}$$]

 (2)


where [image: $$f_i(x)$$] is a subfunction which is defined over k variables. The definition of subfunction [image: $$f_i$$] includes which k variables to extract from bit string x.
When [image: $$f_i(x)$$] is a function of 3 variables, there are at most 8 terms in the Walsh Transform of [image: $$W(f_i(x))$$] and only 4 nonlinear coefficients in the resulting Walsh polynomial. If the number of variables per subfunction is bounded by k,  then the number of coefficients of the Walsh polynomial associated with each subfunction is also bounded by a constant. Assuming [image: $$m=O(n),$$] the total number of coefficients in the resulting Walsh polynomial is O(n).
Partition Crossover constructs the Variable Interaction Graph (VIG) of the Boolean function [17]. The variables are the vertices of the VIG. There is an edge in the VIG when there is a nonlinear interaction between two variables. We use the Walsh Transform to convert functions into a polynomial form which exactly determines which variables have a nonlinear interaction. Using the Walsh polynomial is important if coefficients in different subfuntions are likely to cancel, as is the case with MAX-kSAT problems. Figure 1 (left) illustrates the VIG for function F1.[image: ]
Fig. 1.Variable interaction graph (VIG) for example F1 as well as the decomposed recombination graph for P1 and P2. The size of nodes in the VIG graph is proportional to their degree, highlighting variables with more interactions.



Let P1 denote Parent 1 and P2 denote Parent 2. Furthermore, assume P1 and P2 are local optima under a Hamming bit-flip neighborhood (in general, any neighborhood operator will suffice). The first step of Partition Crossover for pseudo-Boolean functions is to remove vertices from the VIG that corresponds to variables where P1 and P2 have a shared assignment (both 1 or both 0). The variables that remain in the VIG all have complementary assignments (0 and 1, or 1 and 0). After variables with the same assignment are removed, the VIG is often decomposed into q connected subgraphs. Each subgraph is also a recombining component. Decomposing the VIG will also decompose f(x) into linearly separable subfunctions. Let the two parent solutions P1 and P2 be:[image: $$\begin{aligned} P1~ = ~00000~ 00000~ 00000~ 00000 \end{aligned}$$]




[image: $$\begin{aligned} P2 ~= ~11111 ~10011~ 01100 ~11101 \end{aligned}$$]



After vertices 7, 8, 11, 14, 15 and 19 are deleted, there are four connected subgraphs. This “shatters” the VIG and produces the “recombination graph” (as shown in Fig. 1, right plot).
When the VIG is shattered into q connected subgraphs, the evaluation function f(x) is (temporarily) decomposed into a set of subfunctions [image: $$g_1(x) \cdots g_q(x).$$] Let [image: $$x'$$] denote any string where the shared bits in P1 and P2 are fixed. Then[image: $$\begin{aligned} f(x') = g(x') = \sum _{i=1}^q g_i(x') \end{aligned}$$]



It follows that if the VIG has been shattered, this must decompose both the variables and the subfunctions. For example, in the recombination graph in Fig. 1, variables 1, 2, 5, 6 are associated with the original subfunctions a, b, c, d while variables 16, 17, 18 are associated with subfunctions k, m. Variables 10, 12, 13 are associated with subfunctions o, p, q, r.
2.1 A Linear Equation for Lattices
A linear equation must exist that can evaluate all of the offspring produced by a single Partition Crossover event. Let q denote the number of recombining components. Let b denote an auxiliary binary vector of length q,  which also serves as a recombination mask over the set of components. Therefore every possible offspring can be uniquely associated with a specific binary string of length q.
By definition, when [image: $$b=1^q$$] the offspring is just a copy of P1; all of the recombining components are inherited from P1. Thus, when [image: $$b=0^q$$] the offspring is a copy of P2. For other offspring, let [image: $$b_i = 0$$] indicate that the offspring inherits bits from Parent 2 in the [image: $$i^{th}$$] recombining component. All other bits are inherited from Parent 1.
Theorem 1
(see [21]). Under Partition Crossover, all of the offspring of parents P1 and P2 can be evaluated using the following linear equation and the auxiliary binary vector b. For any child C[image: $$\begin{aligned} f(C) = \alpha _0 + \sum _{i=1}^q \alpha _i b_i \end{aligned}$$]

 (3)


where [image: $$\alpha _0 = f(P2)$$] and [image: $$f(P1) = \alpha _0 + \sum _{i=1}^q \alpha _i$$] because [image: $$b=1^q.$$]

The b vector defines a hypercube which organizes the offspring. We characterize this hypercube as a non-planar lattice. If all of the children are local optima in the search space, then all of these local optima are related in fitness via Eq. (3). Furthermore, there are exactly [image: $$2^{q-1}$$] recombination events that can discover the same lattice, when complementary parents (according to the binary mask) are crossed. Additional recombination events can sometimes discover a smaller subset of the same lattice.
Our results prove that the evaluations of local optima in the search are not arbitrary, but rather determined by the lattices to which they belong as expressed by Eq. (3). We also stress that lattices exist regardless of whether Partition Crossover is used or not. Partition Crossover is just one mechanism that can discover these lattices.


3 How Strong Selection Inhibits Lattice Discovery
We index offspring from 0 because each index can be converted into the binary mask b. For example, with 3 recombining components the binary masks range from 000 to 111, which can also be denoted by 0 to 7. In both cases, the masks are complements.
Lemma 1
For any child [image: $$C_i$$] in the lattice produced by Partition Crossover, denote its complement by [image: $$\overline{C_i}.$$] The following equalities hold:[image: $$\begin{aligned} f(P1) + f(P2) = f(C_i) + f(\overline{C_i}) = \frac{1}{2^{q-1}} \sum _{i=1}^{2^q} f(C_i) \end{aligned}$$]

 (4)





Proof
In Eq. (3) inheritance from P1 is represented by [image: $$b=1^q$$] and from P2 is represented by [image: $$b=0^q.$$] If crossover mask b generates child C under PX, then [image: $$\overline{b}$$] generates [image: $$\overline{C}.$$] It follows that [image: $$f(C) + f(\overline{C}) = f(P1)+ f(P2)$$] and the result must hold.    [image: $$\square $$]

Theorem 2
Assume all of the children have a different objective value and are sorted by increasing fitness. Let [image: $$b_i$$] be the mask of the [image: $$i^{th}$$] children in the sorted list with [image: $$i=0$$] to [image: $$2^q-1.$$] Then, [image: $$\overline{b_{i}}={b_{2^q -i-1}}$$], [image: $$\overline{C_{b_{i}}}=C_{b_{2^q -i-1}}$$] and recombining [image: $$C_{b_i}$$] with [image: $$C_{b_{2^q -i-1}}$$] regenerates the full lattice.

Proof
The following ranking holds with respect to the evaluation function f(x):[image: $$\begin{aligned} f(C_{b_0}) &lt; f(C_{b_1}) &lt; \ldots &lt; f(C_{b_{2^q -2}}) &lt; f(C_{b_{2^q-1}}). \end{aligned}$$]



By Lemma 1:[image: $$\begin{aligned} f(P1) + f(P2) = f(C_l) + f(\overline{C_l}). \end{aligned}$$]



Because the evaluation of every child [image: $$C_l$$] is unique, the child [image: $$C_{b_0}$$] must be paired with [image: $$C_{b_{2^q-1}}$$], which means that [image: $$\overline{C_{b_0}}=C_{b_{2^q-1}}$$]. Thus, the child with the lowest evaluation must be paired with the child with the highest evaluation. To show this must be true, assume the child [image: $$C_{b_0}$$] is paired with a different child, [image: $$C_{b_k}$$], and the child [image: $$C_{b_{2^q-1}}$$] is paired with [image: $$C_{b_j}$$]. Obviously [image: $$f(C_{b_{2^q -1}}) &gt; f(C_{b_k})$$] and [image: $$f(C_{b_j}) &gt; f(C_{b_0})$$]. Thus [image: $$f(C_b{_{{2^q}-1}}) + f(C_{b_j}) &gt; f(C_{b_0}) + f(C_{b_k})$$], which contradicts the fact that both sums must equal [image: $$f(P1)+f(P2)$$].
We can remove [image: $$C_{b_0}$$] and [image: $$C_{b_{2^q-1}}$$] from the list and apply the same argument recursively to [image: $$C_{b_1}$$] and [image: $$C_{b_{2^q-2}}$$]. By induction the proof follows.    [image: $$\square $$]

Corollary 1
Theorem 2 generalizes to any indexing scheme that preserved the order of complementary recombination masks.

For example, Theorem 2 holds if an exclusive-or (xor) operator is used to reorder the indices because xor does not change the Hamming distance between strings (indices). As long as there is a unique mapping between two indexing schemes that preserved the order of complementary recombination masks, Theorem 2 can be satisfied using that indexing scheme.
We next show that the discovery of lattices is sensitive to strong selection. One strong form of selection is truncation selection. We will assume there is a population of size of at least 2, and all solutions with an evaluation below some fitness threshold [image: $$f(x) = T$$] are forever deleted from the population.
Corollary 2
Under Partition Crossover, truncation selection favors the set of parents which return the highest value when we take the following MIN.[image: $$\begin{aligned} MIN [ f(C_i), f(\overline{C_i}) ] \end{aligned}$$]






To see why this is the case, consider the following 8 offspring associated with a recombination event with [image: $$q=3$$]:[image: $$\begin{aligned} f(C_0) &lt; f(C_1) &lt; f(C_2) &lt; f(C_3) &lt; f(C_4) &lt; f(C_5) &lt; f(C_6) &lt; f(C_{_7}) \end{aligned}$$]



If the sum of any two indices equals 7, the solutions are complements (e.g., [image: $$C_1$$] and [image: $$C_6$$]); these complements can be recombined by Partition Crossover to regenerate the lattice of eight solutions. Assume we apply truncation selection before crossover occurs, and solutions with evaluations less than [image: $$f(C_3)$$] are eliminated:[image: ]


Thus, it is no longer possible to recombine [image: $$C_1$$] with [image: $$C_6$$] because [image: $$C_1$$] has been eliminated. Instead of having 4 ways to discover this crossover event, there is now only 1. The only way to now rediscover the same set of eight solutions is to recombine [image: $$C_3$$] and [image: $$C_4$$].
Thus, truncation selection favors the two children with rank [image: $$2^{q-1}-1$$] and [image: $$2^{q-1}$$]. If there is a lattice of size 1024, then the two children (potential parents) with the highest probability of surviving truncation selection are those with rank 512 and rank 513 out of the 1024. Every potential parent with a rank higher than 513 must be paired with a potential parent with a rank of less than 512 to regenerate the entire lattice of 1024 children.
One might argue that half of these offspring might be generated by recombining [image: $$C_5$$] and [image: $$C_6$$] to generate [image: $$C_4$$] and [image: $$C_7$$]. But this is often not possible. Consider the following two orderings of the offspring.[image: $$\begin{aligned} f(C_0) &lt; f(C_1) &lt; f(C_2) &lt; f(C_3) &lt; f(C_4) &lt; f(C_5) &lt; f(C_6) &lt; f(C_7), \end{aligned}$$]




[image: $$\begin{aligned} f(C_3) &lt; f(C_2) &lt; f(C_6) &lt; f(C_7) &lt; f(C_0) &lt; f(C_1) &lt; f(C_5) &lt; f(C_4). \end{aligned}$$]



Under truncation selection, the second ordering impacts the ability of Partition Crossover to generate this lattice, as well as lower dimensional hyperplanes (subsets) of this lattice.
Under the first ordering, [image: $$C_5$$] and [image: $$C_6$$] are complements in a smaller PX event with 2 recombining components (e.g. 101 and 110 differ in two bits). These can be recombined to obtain [image: $$C_7$$] (e.g. 111). But in the second ordering, [image: $$C_5$$] and [image: $$C_1$$] do not provide the same opportunity (recombination of 001 and 101 can yield no new offspring) and it is impossible to generate [image: $$C_4$$] (e.g. 100).
We have looked at numerous examples of Partition Crossover, and this often happens. Sometimes the ordering is such that truncation selection allows Partition Crossover to occur with fewer recombining components. Sometimes truncation selection destroys all but one recombining component and in these cases, Partition Crossover can yield no new offspring.
3.1 Algorithm Design Implications
The results in Theorem 2 and the associated Corollary 2 have implications for evolutionary algorithms that use truncation selection, or other heuristic methods that utilize Partition Crossover. For example, the LKH (Lin-Kernigham-Helsgaun) algorithm for the Traveling Salesman Problem [8, 9] has long used the Iterated Partial Transcription crossover operator, which is a form of Partition Crossover with [image: $$O(n^2)$$] cost per recombination. LKH now also includes the GPX2 Partition Crossover operator (which has O(n) cost per crossover). LKH uses a dynamically defined population size of 2, along with truncation selection.
Similarly, the DRILS (Deterministic Recombination and Iterated Local Search) algorithm has been used for k-bounded pseudo-Boolean functions such as NK Landscapes, and QUBO problems [1, 2, 4] as well MAX-SAT instances [3]. The strategy used by DRILS is effectively the same as the strategy used by LKH. There is a dynamically defined population of size 2.
Both LKH and DRILS are Iterated Local Search (ILS) algorithms that also utilize Partition Crossover (either IPT, PX or GPX). These ILS algorithms only keep the best solution found so far, plus a current candidate solution found after one (or more) perturbations followed by local search. However, given the negative impact of truncation selection on Partition Crossover’s ability to discover lattices of offspring, attention should be directed to other strategies to achieve similar goals. For example, a population of size 3 or 4 could be used, where an improved best-so-far offspring as well as its complement are retained since this would extract maximum diversity from a recombination event.


4 Sampling Bias When Recombining Local Optima
It is common in real-world applications to use hybrid evolutionary algorithms, which combine local search and genetic recombination. Examples are the two algorithms mentioned in the previous section (Sect. 3), namely, the highly successful LKH algorithm for the TSP [8], and the DRILS algorithm, which has successfully solved NK landscapes with one million variables, arguably making it the most successful evolutionary algorithm for NK landscape problems. DRILS has also been applied to large industrial MAX-kSAT instances [3]. New work has extended DRILS by using local search to improve additional offspring [1, 2]. Modern methods such as DRILS can find improving moves quickly (for example in O(1) time for k-bounded pseudo-Boolean functions) but they require special data structures (e.g. score vectors [10, 16, 18].)
Assume that a hybrid evolutionary algorithm only recombines solutions which are local optima. We now prove that this introduces a sampling bias that makes it more likely that hybrid evolutionary algorithms which use Partition Crossover will find more solutions that are also local optima.
We will define the term “suboptimum" (SO) to denote any solution that is a local optimum in some well-defined hyperplane subspace, but which is not a local optimum in the full search space. In this paper, these hyperplane subspaces are associated with a lattice induced by Partition Crossover.[image: ]
Fig. 2.Two lattices (a and b) of size 8. Lattice a has 2 local optima which are complements and 6 suboptima (which are not local optima). Lattice b has 6 local optima which are complements and 2 suboptima. If only local optima are recombined, there are three crossover events which will discover lattice b and only one way for crossover to discover lattice a.



Figure 2 illustrates this bias by showing two lattices, a and b. Lattice a has 2 local optima and 6 suboptima, while lattice b has 6 local optima and 2 suboptima. Together, they have an equal number of local optima and suboptima (i.e., 8). All of the local optima can be arranged into complements that can be used by Partition Crossover to generate the entire lattice of size 8. For example, recombining local optima 3b and 4b will regenerate all of the children in lattice b because the crossover masks 3=011 and 4=100 are complements. These masks represent combinations of 3 recombining components.
In this example (Fig. 2) 3 recombination events will find lattice b (right) with 6 local optima, while there is only 1 recombination event that will find lattice a (left). Thus, if we randomly sample and only recombine local optima, we are 3 times more likely to find the rightmost lattice (lattice b) which contains more local optima. This simple illustration shows that recombining solutions which are local optima creates a bias such that (all other factors being equal) there is a higher probability of finding those lattices that contain a higher number of local optima. This is both a surprising and novel result.
4.1 Computing Conservative Bounds
We will use the variable names LO and SO to count the number of offspring in a set of lattices that are local optima (LO) and the number of offspring that are suboptima (SO) but not true local optima. Note that [image: $$LO \ge 2$$] because the 2 parents used by Partition Crossover must be local optima.
Let d denote the number of ways the lattice can be “discovered" by recombining local optima. We will first organize our variables into tuples: (LO, d, f, q). The variable q allows us to consider all PX events with the same number of recombining components. The variable f indicates the frequency (or count) of the number of times we have a lattice that can be reached in d ways (by recombining local optima). We don’t need both SO and LO since [image: $$SO + LO = 2^q$$].
The following tuples are taken from a random NK landscape instance (N=40, K=2) for lattices of size 16 (i.e., [image: $$q=4$$]). Because we are only recombining local optima, if [image: $$2^q = 16$$] then there can be at most 14 children that are SO. Again, we are using the tuple: (LO, d, f, q). Some examples follow:
        (2, 1, 72, 4)
        (3, 1, 150, 4)
        (4, 1, 231, 4) (4, 2, 51, 4)
        (7, 1, 325, 4) (7, 2, 36, 4) (7, 3, 3, 4)
Thus, the tuple [image: $$(LO=3, d=1, f=150, q=4)$$] counts the number of unique lattices (there are [image: $$f=150$$] of them) where the number of locally optimal (LO) offspring is 3, the number of suboptimal offspring (SO) is [image: $$16-3 = 13$$], and the number of ways this lattice can be discovered by recombining local optima is [image: $$d=1$$]. These examples are from Partition Crossover events where [image: $$q=4.$$]
We compute a vector D which averages the relative frequency of each possible tuple for a specific value of LO. Vector [image: $$\textbf{D}$$] is indexed by the value of LO (from 2 to [image: $$2^q -1$$]). Let T be the set of all tuples. Then, the vector [image: $$\textbf{D}$$] is defined as:[image: $$\begin{aligned} \textbf{D}_i = \frac{\sum _{(i,d,f,q) \in T} d \cdot f}{ \sum _{(i,d,f,q) \in T} f} \end{aligned}$$]



For example, for the tuples: (7, 1, 325, 4) (7, 2, 36, 4) (7, 3, 3, 4)
we obtain the following values for the [image: $$\textbf{D}$$] vector.[image: $$\begin{aligned} \textbf{D}_7 = ((1 \cdot 325)+(2 \cdot 36)+(3 \cdot 3)) / (325+36+3) = 1.11538462 \end{aligned}$$]



We compute bounds on vector D to bound the number of ways a lattice can be discovered, and to bound the number of local optima which are discovered when a lattice is found. These bounds are connected because every unique crossover event must use 2 distinct local optima to discover and access the lattice.
Assume there are 4 local optima in a lattice where [image: $$q=4$$]; we might generate the entire lattice using 2 different recombination events (e.g. [image: $$C_2 \times C_{13}, C_3 \times C_{12}$$]). Alternatively, the local optima in the lattice might be [image: $$C_1$$], [image: $$C_{2}$$], [image: $$C_3$$] and [image: $$C_{13}.$$] But [image: $$C_3$$] and [image: $$C_1$$] are not complements and they can not generate the same (entire) lattice (only [image: $$C_{2} \times C_{13}$$] generates the entire lattice).
We construct a vector [image: $$UB^D$$] which computes an upper bound on the number of ways of discovering the lattice. For an upper bound, we optimistically assume that the maximal number of local optima are complements. The [image: $$LB^D$$] vector computes a lower bound on the number of ways of discovering the lattice. For a lower bound, we pessimistically assume that the minimal number of local optima are complements.
Our proofs only use the first half of [image: $$UB^D$$] and the second half of [image: $$LB^D.$$] We use the upper bound [image: $$UB^D$$] when the majority of offspring are suboptima. This maximizes the count of suboptima offspring that are sampled. We use the lower bound [image: $$LB^D$$] when the majority of offspring are local optima. This minimizes the count of local optima that are sampled. The upper bound and lower bound on vector D are illustrated by the vectors in Table 1 for a lattice of size 16.Table 1.Vectors specific to a lattice of size 16 (q= 4). The LO vector counts the number of offspring that are true local optima, and is used to index the other vectors. The vectors [image: $$UB^D$$] and [image: $$LB^D$$] compute upper (UB) and lower (LB) bounds on the number of ways of discovering a lattice given the LO vector.


	    The LO vector:           
	2,
	3,
	4,
	5,
	6,
	7,
	8,
	9,
	10,
	11,
	12,
	13,
	14,
	15,
	16

	[image: $$~~~ UB^D ~~~~~~~~~~~~~$$]
	1,
	1,
	2,
	2,
	3,
	3,
	4,
	4,
	5,
	5,
	6,
	6,
	7,
	7,
	8

	[image: $$~~~ LB^D ~~~~~~~~~~~~~$$]
	1,
	1,
	1,
	1,
	1,
	1,
	1,
	1,
	2,
	3,
	4,
	5,
	6,
	7,
	8

	[image: $$~~~ UB^D ~$$]first half    
	1,
	1,
	2,
	2,
	3,
	3,
	_,
	_,
	_,
	_,
	_,
	_,
	_,
	_,
	_,

	[image: $$ LB^D ~$$]second half      
	_,
	_,
	_,
	_,
	_,
	_,
	_,
	1,
	2,
	3,
	4,
	5,
	6,
	7,
	8





Let F denote a frequency vector, where [image: $$F_i$$] counts the number of unique lattices that have [image: $$i=LO$$] number of local optima.
Theorem 3
Assume we enumerate all lattices of a particular size in a search space relative to any Partition Crossover operator, and that the resulting frequency vector F is uniformly distributed. Over all possible recombinations, and for [image: $$q &gt; 2$$], a hybrid genetic algorithm that only recombines local optima will sample [image: $$\frac{(2^{q-1} + 1)}{(2^{q-2}-1)} &gt; 2$$] more lattices where [image: $$LO &gt; SO$$], compared to the lattices where [image: $$SO &gt; LO$$].

Proof
We can ignore the case where [image: $$SO = LO = 2^{q-1}.$$] Because two unique local optima are required for recombination, the vector [image: $$UB^D$$] has the following structure: 1, 1, 2, 2, 3, 3, 4, 4, [image: $$\ldots .$$] We optimistically sum over [image: $$UB^D$$] from [image: $$LO=2~ \text{ to } ~(2^{q-1}-1)$$] when [image: $$SO &gt; LO.$$] This has a summation:[image: $$\begin{aligned} E\#(SO &gt; LO) = 2 \sum _{i=1}^{2^{q-2}-1} i ~~~ = ~~~ (2^{q-2}-1)(2^{q-2}) \end{aligned}$$]



where [image: $$E\#(SO &gt; LO)$$] counts the expected number of lattices where [image: $$SO &gt; LO$$]. This provides an (optimistic) upper bound on lattice discoveries when [image: $$SO &gt; LO.$$]
When [image: $$LO &gt; SO$$] (starting at index [image: $$2^{q-1}+1$$]) the vector [image: $$LB^D$$] has the structure: 1, 2, 3, 4, 5, [image: $$\ldots $$] Summing over [image: $$LB^D$$] from [image: $$LO=(2^{q-1}+1)~ \text{ to } ~2^{q}$$] yields[image: $$\begin{aligned} E\#(LO &gt; SO) = \sum _{i=1}^{2^{q-1}} i = (2^{q-2})(2^{q-1} + 1) \end{aligned}$$]



where [image: $$E\#(LO &gt; SO)$$] counts the expected number of lattices where [image: $$LO &gt; SO$$]. This gives us an (pestimistic) lower bound on lattice discoveries when [image: $$LO &gt; SO.$$]
Because vector F is uniformly distributed we can use an unweighted count of local optima and suboptima frequencies. Thus, for all [image: $$q &gt; 2$$], the ratio of these bounds over the first and second half of D is[image: $$\begin{aligned} \frac{E\#(LO &gt; SO)}{E\#(SO &gt; LO)} = \frac{(2^{q-2})(2^{q-1} + 1)}{(2^{q-2}-1)(2^{q-2})} = \frac{(2^{q-1} + 1)}{(2^{q-2}-1)} &gt; 2 \end{aligned}$$]



Assumming F is uniformly distributed relative to vectors SO and LO, this ensures that the number of suboptimal and local optimal solutions are sampled at approximately equal rates. Thus, any algorithm that only recombines local optima will discover more local optima than suboptimal solutions.    [image: $$\square $$]

Another way to think about this proof is that the “discovery" vector D yields a bias that increases the probability of sampling local optima. Also, the proof is independent of the actual number of unique local optima and the number of unique suboptimal solutions: the proof only depends on the distribution of vector F which can sample any local optima or suboptima multiple times. For example, if the frequency data for [image: $$LO = 14 ~~(SO = 2)$$] and [image: $$LO =2 ~~ (SO = 14)$$] is the same, then the distribution over F ensures that the number of Local Optima and Suboptima are approximately equal. Other proofs that respect these symmetries could also be developed; a uniform distribution over F is not strictly required.
Note that for [image: $$q=2$$] the bias toward sampling local optima is on average less than 2. This is significant since [image: $$q=2$$] represents the most common (numerous) lattices. But for [image: $$q=3$$] we can see that [image: $$\frac{(2^{3-1} + 1)}{(2^{3-2}-1)} = 5.$$] For [image: $$q=4$$] we find [image: $$\frac{(2^{4-1} + 1)}{(2^{4-2}-1)} = 3.$$] The empirical data we have collected reflects these same trends.

4.2 Empirical Results by Enumeration
To illustrate the bias resulting from only recombining local optima, we fully enumerated all the local optima in a random NK landscape where [image: $$N=40, K=2$$], and then we recombined all possible local optima pairs using Partition Crossover. We use Goldman’s “hyperplane elimination" algorithm to enumerate all local optima; the algorithm identifies hyperplanes of the search space that can be ignored (and thus eliminated) because they do not contain a local optimum [6].
Across the entire search space, and for all lattice sizes, the number of suboptima is 9999 and the number of local optima is 2067.
To compute the average discovery rate for each lattice we count the number of unique lattices and then count the number of duplicate lattices. Considering only lattices of size 8 and larger (i.e., [image: $$q &gt; 2$$]), the ratio is 1.7 to 1. Looking just at lattices exactly of size 8, the ratio is 2.75 to 1. The difference between these numbers and Theorem 3 is due to the sampling distribution over vector F.
We next consider the lattices exactly of size [image: $$2^q = 2^4 = 16$$]. Table 2 shows the results. Counting each lattice once, the majority of the offspring were suboptima. Suboptimal solutions occur with a combined frequency of 28,298 since each offspring can appear in multiple (unique) lattices. Local optima occur with a combined frequency of 25,382.
The distribution of the frequency vector F in Table 2 is not uniform. When [image: $$SO &gt; LO$$] the combined frequency of lattices is 1,712. But when [image: $$LO &gt; SO$$] the combined frequency is 1,058. Thus, the raw frequencies are biased toward lattices that have more suboptima than local optima.Table 2.All lattices of size 16 ([image: $$q=4$$]) for a random NK landscape with [image: $$N=40, K = 2$$]. F denotes the frequency of lattices for a specific row. D denotes the average number of ways of discovering the lattices in that row. For each row, [image: $$LO \#$$] is the number of local optima in the lattice. [image: $$SO \#$$] is the number of suboptima in the lattice. [image: $$SO~freq = SO \# \cdot D \cdot F$$] while [image: $$LO~freq = LO \# \cdot D \cdot F$$]. The probability of discovering a local optimum is 59.10%.


	 	SO #
	LO #
	D
	F
	SO freq
	LO freq

	 	14
	2
	1.00000
	72
	1008
	144

	 	13
	3
	1.00000
	150
	1950
	450

	 	12
	4
	1.18085
	282
	3996
	1332

	 	11
	5
	1.00450
	444
	4906
	2230

	 	10
	6
	1.25500
	400
	5020
	3012

	 	9
	7
	1.11538
	364
	3654
	2842

	 	8
	8
	1.92307
	585
	9000
	9000

	 	7
	9
	1.57627
	177
	1953
	2511

	 	6
	10
	2.25521
	384
	5196
	8660

	 	5
	11
	3.00000
	17
	255
	561

	 	4
	12
	4.00000
	350
	5600
	16800

	 	3
	13
	5.00000
	0
	0
	0

	 	2
	14
	6.00000
	41
	492
	3444

	 	1
	15
	7.00000
	6
	42
	630

	 	0
	16
	8.00000
	83
	0
	10624

	Sum
	 	 	 	3355
	43072
	62240





When we use vector D to add to the calculations the number of ways that a lattice can be discovered, the frequencies flip. Now, local optima have a discovery frequency of 62,240 and suboptima have a discovery frequency of 43,072 (a ratio of 1.44). The children are [image: $$59.10\%$$] local optima, despite the fact that the lattices contain more suboptima than local optima.
Does this bias change if we only consider recombination events that generate an improving move? We removed lattice counts when one of the parents was also the best offspring (and thus could not generate an improving move). For the lattices in Table 2, the sampling rate of local optima jumped to 68.09%. So filtering in this way increased the probability of returning a new child that is also a local optimum.
We also examined all lattices of size 8 for the studied NK landscape. Note that we only need the D and F vectors to compute the bias, since these are indexed by LO. The vectors are[image: ]


Local Optima Sampled:   330,701       Suboptima Sampled:   126,435
In this case vector F is somewhat more uniformly distributed (compared to the results in Table 2). We also see a stronger bias in terms of sampling more than twice as many local optima compared to suboptima; the ratio is 2.61. This is directly a result of the bias introduced by the discovery vector D.
We conjecture that more stable distributions of F will be associated with larger values of n, and with also with lattices with larger sampling rates.
Another useful observation is that the lower bound [image: $$LB^D$$] appears to be reasonably tight when bounding the cases where [image: $$LO &gt; SO:$$] the values in the empirical D vector match the lower bound quite well. But the upper bound [image: $$UB^D$$], used when [image: $$SO &gt; LO$$], appears to be less tight and the empirical values of the D vector are much lower than the bound: empirically the D vector has values that are always less than 2 when [image: $$SO &gt; LO.$$]
Finally, we also generated a MAX-3SAT instance, [image: $$n=30$$], and enumerated all local optima. In general, MAX-3SAT instances display more local optima than random NK landscapes. For all lattices of size 8 (q=3), local optima were sampled at a ratio of 6.41 to 1 over suboptima, and thus at rates more consistent with Theorem 3 (for q=3). The F and D vectors are as follows:[image: ]


For all lattices of size 16 (q=4), local optima were sampled at a ratio of 3.44 to 1 over suboptima. Again, these results are consistent with Theorem 3 ([image: $$q=4$$]).


5 Conclusions
This paper presents proofs and empirical data (by instance enumeration) illustrating how two fundamental algorithm decisions impact the effectiveness of Partition Crossover. These theoretical and empirical results have practical implications for the algorithmic design of hybrid evolutionary algorithms.
Theorem 2 proves that offspring can be sorted by fitness and that truncation selection favors the set of parents which return the highest value when we take the following MIN.[image: $$\begin{aligned} MIN [ f(C_i), f(\overline{C_i}) ] \end{aligned}$$]



Theorem 3 proves that Partition Crossover is biased toward generating offspring that are local optima when the parents are local optima. The theorem requires an assumption of a uniform distribution over vector F to obtain a 2 to 1 expected sample rate biased toward local optima. But the theorem and proof also documents that the bias exists. A bias will also be manifested under different distributions: there will be a bias for example, for any symmetric distribution over vector F. Furthermore, heavily tailed distributions will increase the bias toward sampling local optima, because vector D is provably most biased in the tails (the beginning and end of the vector).
We used exhaustive enumeration of local optima (by leveraging the mathematics of hyperplane elimination) of an NK landscape where [image: $$n=40$$] and [image: $$k=3$$] and for a MAX-3SAT instance where [image: $$n=30$$]. Enumeration has the advantage that we capture all of the data. Our empirical results clearly show a bias, and any difference between the theoretical results and the empirical results are due to variation in the sampling rates in vector F. The initial distributions can be biased toward find more suboptima (as happened with the NK Landscape) or toward finding more local optima (as happened with MAX-3SAT).
In the future, more empirical work should be done by sampling large problems (e.g. [image: $$n &gt; 10,000$$]). More empirical work is also needed to understand fundamental differences between NK landscapes, MAX-kSAT problems and QUBO problems. But this paper has established a solid theoretical foundation for future work.
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Abstract
The processing of features in data is among the key topics in machine learning. While a broad range of heuristics for feature processing, including feature selection, have been developed and experimented with, less research has been concerned with the underlying fitness landscape. In this paper, we perform a fitness landscape analysis of feature selection, using local optima networks and other methods. We focus on the impact of regularization, an important element of many machine learning methods. Our study using ten datasets and learning of decision trees confirms and adds to previous findings that feature selection landscapes are highly multimodal. It is the first study to focus on the impact of regularization on the landscape induced by feature selection. In the ten datasets studied, we find a high degree of multimodality when there is no regularization. With increasing regularization, the degree of multimodality generally drops off but remains substantial.
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1 Introduction
Context. Feature selection is a machine learning (ML) problem that has been getting more important as datasets continue to grow, both in terms of number of features and number of cases [15, 24, 28]. Redundant and irrelevant features not only reduce the performance of supervised learning models, but also force users to gather more data than required, potentially increasing operating costs while decreasing interpretability [15, 48].
In feature selection, a distinction is often made between filter, wrapper, and embedded methods [24]. Variants of local search (such as backward selection and forward selection) have traditionally been employed for wrapper-based feature selection [15]. More recently, other methods including genetic algorithms [18, 19, 26], stochastic local search [33, 63], memetic algorithms [50], item sets [23], regression [22], and deep learning [31, 58, 63] have been used.
The plethora of methods studied may suggest that the feature selection problem is not only a complex one, perhaps in part due to the multimodality of its fitness landscape, but also a problem of broad interest to the scientific community. Feature selection problems seem to be multimodal [34], even if this has not been emphasized in the literature, with some exceptions [6, 50, 59].
Motivating Challenges. There is a broad and deep literature on multimodal optimization [29, 43]. However, the problem of feature selection is under-researched and the following observations can be made [35]. First, much research on multimodal optimization has focused on synthetic or continuous optimization problems [21, 36, 45]. Feature selection, on the other hand, is a combinatorial, real-world optimization problem. Second, in cases where evolutionary algorithms have been used for combinatorial problems, including feature selection [18, 52, 61], there has been surprisingly little emphasis on maintaining diversity using niching [60], although there are some exceptions [6, 59]. At the same time, diversity maintenance has been argued to be beneficial when optimizing multimodal problems [29, 43], and there are indications that feature selection induces multimodal fitness landscapes [34]. Third, multimodal optimization algorithms often search for “as many local optima as possible” without explicit guidance [25, 51]. Machine learning including feature selection may be computationally demanding, and thus it may be better to compute the desired number of local optima directly rather than computing too many local optima and then delegating the pruning task to be carried out manually. However, the degree to which the “as many local optima as possible”-method is problematic for feature selection is not clear, and depends on the nature of the fitness landscape, which again depends on the dataset, the ML algorithm, and the degree of regularization.
Contributions. In this paper we study the feature selection problem from an empirical fitness landscape perspective, with particular emphasis on better understanding how multimodality varies for different regularization settings. Our contributions include the following:	We establish the number of local optima for different datasets when using decision trees for machine learning. Our ten relatively small datasets enable an exhaustive study of the corresponding fitness landscapes. We establish that all ten datasets induce highly multimodal fitness landscapes in which the number of local optima ranges from 17 up to 50,985.

	We visualize and analyze how the local optima vary under different regularization settings. We find that the number of local optima drops with increasing degree of regularization, but the drops vary dramatically across different datasets and degree of regularization. For the highest level of regularization that we study, the number of local optima ranges from 6 to 133.

	We make datasets and source code publicly available, thus enabling reproducibility and future research.





Overall, we seek to improve the understanding of the multimodal nature of feature selection problem in this paper. We firmly establish the multimodal nature of ten different datasets via our empirical study of decision tree learning. The hope is that this empirical study will inform future research on multimodal optimization methods, including evolutionary niching methods, for feature selection and other combinatorial problems.

2 Background
2.1 Feature Selection for Machine Learning
Feature selection has been utilized in many domains, including for text classification and categorization [13, 62], for visual recognition and scientific data [7], and for biological and medical data sets [22]. While deep learning, including deep neural networks, has alleviated some of the challenges of feature engineering including feature selections, challenges remain. These challenges include explainability, interpretability, and understandability [39]. These things are especially important in high-stakes decision making that impacts human health and safety [3, 27, 48]. For high-stakes decision making, model-based interpretability, in which feature selection is crucial, can be argued to be essential [39, 48].
Decision trees are typically interpretable and used for classification or regression [4, 46]. We focus in this paper on classification trees. In this case, the leaf nodes contain class labels while the remaining nodes represent features. Intuitively, a decision tree is structured such that the most distinguishing features are closest to the root. The quality of a feature is computed while learning a tree. The better a feature is in distinguishing between different class labels in the examples of the dataset, the more important the feature is, and the closer it is to the root of the tree. Decision trees have also been used incrementally [57], in ensembles known as random forests [5], and in hybrids with other AI or ML methods [27, 64].
To some extent, decision tree learning performs embedded feature selection [44, 53] by not including irrelevant and redundant features in the tree. Unfortunately, the method is still prone to overfitting by growing too large decision trees, in other words including too many features [4, 47]. Clearly, feature selection using a filter or wrapper is a general approach to counter-act this problem,1 an approach that also works with ML models beyond decision trees.
Despite much progress on heuristic optimization algorithms, the landscapes of many real-world fitness functions are not well understood [29, 43]. This is certainly the case for the fitness landscapes of feature selection [34]. In this paper, we are (i) using an existing ML method, decision tree learning [4, 46, 47], to exhaustively create fitness function samples and (ii) producing results that improve the understanding of feature selection fitness landscapes, especially regarding the number and structure of local and global optima, thereby enabling next-generation multimodal optimization methods.

2.2 Landscape Analysis and LONs
Many benchmarking fitness functions—including the Ackley, Griewank, Rastrigin, Schwefel Sine, Shekel’s Foxhole, Sine Envelope, Eggholder, and Weierstrass functions—are multimodal and have been extensively studied in the literature [21, 36]. However, many of these test functions are synthetic or continuous. Thus, there is the question of how they compare to fitness functions found in combinatorial applications. Although exploratory landscape analysis started for continuous landscapes [21, 36], such landscape analysis has also been conducted for the combinatorial domain [17, 40, 41, 55] including feature selection [37, 38].
Especially relevant is the use of suitable visualization methods for multimodal combinatorial domains, where the concepts of ruggedness and neighborhoods are difficult to visualize [1, 49]. For this, we explore Local Optima Networks (LONs)  [12, 42]. A LON is a compact representation of the fitness landscape in the form of a weighted graph, and it shows the size and direction of the basins of attraction [11] across the landscape. We augment LONs with other visualization methods as discussed in Sect. 3 and Sect. 4.

2.3 Feature Selection, Regularization, and Multimodality
We specifically focus on the interaction between feature selection and regularization. Regularization is important in many different areas of machine learning [8, 15, 16, 56, 61, 65], as it holds relevance even for recent machine learning methods such as deep convolutional neural networks (CNNs) [9]: “A critical factor in training concerns the network’s regularization, which prevents the structure from overfitting. This work analyzes several regularization methods developed in the past few years, showing significant improvements for different CNN models.”
Feature selection can be understood as a pseudo-Boolean function optimization problem [15, 33, 34]. Much existing research has developed significant results by focusing on pseudo-Boolean functions with rather few local optima. In contrast, highly multimodal pseudo-Boolean functions remain a challenge [25, 29]. This raises these questions: How multimodal are feature selection problems? How does multimodality change as the degree of regularization is varied? Existing research highlights feature redundancy, multimodality, and distribution of local optima in the feature subsets [32, 37, 38]. Building on these findings, we return to our answers to these questions—which are based on empirical studies of feature selection fitness landscapes with varying degrees of regularization—in Sect. 4.


3 Methods and Models
Similar to previous research on continuous synthetic benchmark fitness functions [36, 45], we focus on landscapes rather than optimization methods. We perform an empirical study with decision tree learning on several feature selection problems. As a consequence, we get a global picture of the effect of varying degree of regularization, as discussed in Sect. 3.2 about experimentation.
3.1 Definitions and Methods
In this paper, we explore fitness landscapes [1] of the form [image: $$(\mathcal {X}, f, \mathcal {N})$$], where [image: $$\mathcal {X}$$] is the search space, f is a fitness function to optimize, and [image: $$\mathcal {N}$$] is a neighborhood relation of some kind.
We consider feature selection as a pseudo-Boolean function (PBF) optimization problem. The search space [image: $$\mathcal {X}$$] is the set of bitstrings [image: $$\mathbb {B}^n$$] of length n. We optimize (without loss of generality, maximize) a function of the form [image: $$f: \mathbb {B}^n \rightarrow \mathbb {R}_{\ge 0}$$]:[image: $$\begin{aligned} \boldsymbol{b}^* = \arg \max _{\boldsymbol{b} \in \mathbb {B}^n} f(\boldsymbol{b}). \end{aligned}$$]

 (1)


As feature selection landscapes are multimodal, we are interested in a set of multiple local optima. A solution [image: $$\boldsymbol{b}^*$$] is considered a local optimum (in this paper, a minimum) if it is not larger than all its neighbors:[image: $$\begin{aligned} \forall \boldsymbol{b}' \in N(\boldsymbol{b}^*), f(\boldsymbol{b}^*) \le f(\boldsymbol{b}'). \end{aligned}$$]

 (2)


We define a set of local optima [image: $$\boldsymbol{B}^*_L = \{\boldsymbol{b}^*_1, \boldsymbol{b}^*_2, \dots \}$$] where each [image: $$\boldsymbol{b}^*_i$$] is a local optimum. We differentiate between the set of local optima [image: $$\boldsymbol{B}_L^*$$] and the set of global optima [image: $$\boldsymbol{B}_G^*$$], or their shorthand [image: $$\boldsymbol{L}$$] and [image: $$\boldsymbol{G}$$] respectively. An optimum [image: $$\boldsymbol{b}^*_i$$] is said to be global when [image: $$f(\boldsymbol{b}^*_i) &gt; f(\boldsymbol{b}^*_j)$$] for all [image: $$\boldsymbol{b}^*_j \in \boldsymbol{L}$$], given that [image: $$\boldsymbol{b}^*_j \ne \boldsymbol{G}$$].
For feature selection, we interpret the presence of a 1 in a bitstring [image: $$\boldsymbol{b}$$] as using that feature for training a classifier, while a 0 means we do not use it. We model the feature selection problem as an energy function to minimize:[image: $$\begin{aligned} h(\boldsymbol{b}) = h_E(T(\boldsymbol{b})) + \epsilon \cdot h_P(\boldsymbol{b}), \end{aligned}$$]

 (3)


where [image: $$h_E(T(\boldsymbol{b}))$$] is the classification error over a given dataset, using an ML model T (in this paper, a decision tree). Regularization (or penalty) is formalized by [image: $$h_P(\boldsymbol{b})$$], which penalizes according to the number of features (or 1-bits) used for training with the feature subset [image: $$\boldsymbol{b}$$]. This type of feature-penalization is common in ML [8, 15, 61]. The [image: $$\epsilon $$] parameter controls the degree of regularization: by using small values for [image: $$\epsilon $$], we put more weight on minimizing the classification error. On the other hand, larger values for [image: $$\epsilon $$], encourage using as few features as possible.
Since we deal with bitstrings, the neighborhood relation [image: $$N :\mathcal {X} \rightarrow 2^{\mathcal {X}}$$] assigns neighbors to every solution in the search space [image: $$\mathcal {X}$$]. In this paper, we use a subset of this neighborhood relation more akin to the standard definition of local neighborhood [image: $$\mathcal {N}(\boldsymbol{b})$$]: a set of states reachable in one bit flip (or all states with a Hamming distance of 1) from a given state [image: $$\boldsymbol{b}$$].
Given any hill-climbing algorithm HC, e.g., the 1+1 EA [10], the basin of attraction of a local optimum [image: $$\boldsymbol{b}^*$$] is the set [image: $$\{\boldsymbol{b} \in \mathbb {B}^n \;|\; HC(\boldsymbol{b}) = \boldsymbol{b}^*\}$$]. Basins of attraction are the foundations of LONs. A LON is a weighted graph of the form [image: $$G = (V, E)$$], where the set of vertices V is the set of local optima, and E is the set of basin-transition edges. Given two different local optima [image: $$\boldsymbol{b}_1^*$$] and [image: $$\boldsymbol{b}_2^*$$], an edge [image: $$e_{12} \in E$$] links their corresponding vertices if there are neighboring points in their respective basins of attraction. The weight of this edge is the number of such pairs, [image: $$w(e_{12}) = |\{(\boldsymbol{b}_i, \boldsymbol{b}_j) \in \mathbb {B}^{2n} \;|\;\ HC(\boldsymbol{b}_i) = \boldsymbol{b}_1^* \;,\; HC(\boldsymbol{b}_j) = \boldsymbol{b}_2^* \;,\; \boldsymbol{b}_i \in \mathcal {N}(\boldsymbol{b}_j)\}|$$].

3.2 Experimental Settings and Data
We study 10 datasets from the University of California, Irvine (UCI) ML Repository [20]. We consider relatively small-n classification datasets that can be exhaustively enumerated. The datasets are presented in Table 1, and the computed accuracy tables are available in the paper’s repository [54].
On each dataset, we train a decision tree and compute an accuracy table that comprises all possible [image: $$2^n$$] subsets of features. The decision tree implementation is provided by the BetaML.jl package in Julia [30], and we use the default hyperparameters2 with a 70/30 train/test split.
While there is little research reported on hyperparameter (HP) tuning for decision tree learning in the literature, we focus here on two relevant studies by Gomes Mantovani et al. [14] and Aouedi et al. [2]. Gomes Mantovani et al. [14] empirically study the impact of HP parameter tuning using 94 datasets. They observe that “[T]uning techniques can significantly improve the predictive performance of the [decision trees]. Depending on the dataset, tuning techniques’ performance values can be very small compared to those obtained by default HP settings. Hence, the results indicate that it is better to use the default settings for some optimization problems.” They also find differences between CART [4] and C4.5 [47], in that HP tuning has a greater positive impact on CART. Aouedi et al. report several experimental findings about different tree models for ML, including the decision tree and random forest models [2]. In particular, they investigate the impact of varying the HPs max_depth and min_samples_split. Their main finding is that “the difference between tuned and default [hyperparameters] of [random forest] and [decision tree] is small,” and report for decision trees that “accuracy ranges from 81.51% with its default parameters to 82.31% with the tuned version.” These experimental results support our use of BetaML.jl’s default HPs for decision tree learning.Table 1.Datasets used in this study, sorted by number of features (n). We present the number of examples m, as well as the number of local optima [image: $$|\boldsymbol{L}|$$] and global optima [image: $$|\boldsymbol{G}|$$] for various values of the regularization term [image: $$\epsilon $$]. We highlight in bold the two datasets that we analyze further in Sect. 4.2.


	 	 	 	 	Number of optima

	Name
	Subject Area
	n
	m
	[image: $$\epsilon =0$$]
	[image: $$\epsilon =1/32$$]
	[image: $$\epsilon =1/16$$]
	[image: $$\epsilon =1/8$$]

	[image: $$|\boldsymbol{L}|$$]
	[image: $$|\boldsymbol{G}|$$]
	[image: $$|\boldsymbol{L}|$$]
	[image: $$|\boldsymbol{G}|$$]
	[image: $$|\boldsymbol{L}|$$]
	[image: $$|\boldsymbol{G}|$$]
	[image: $$|\boldsymbol{L}|$$]
	[image: $$|\boldsymbol{G}|$$]

	1-seeds
	Biology
	7
	210
	20
	5
	14
	1
	6
	1
	7
	1

	2-e-coli
	Biology
	7
	336
	17
	1
	7
	1
	7
	1
	6
	1

	3-breast-w
	Health and Medicine
	9
	699
	65
	2
	6
	1
	9
	1
	9
	1

	4-glass
	Physics and Chemistry
	9
	214
	65
	1
	51
	2
	22
	2
	7
	2

	5-heart-c
	Health and Medicine
	13
	303
	700
	1
	407
	1
	117
	1
	13
	1

	6-wine
	Physics and Chemistry
	13
	178
	976
	58
	286
	2
	29
	3
	14
	3

	7-credit-a
	Business
	15
	690
	2511
	4
	351
	1
	18
	1
	15
	1

	8-zoo
	Biology
	16
	101
	10862
	8275
	3003
	1
	134
	1
	16
	1

	9-letter-r
	Computer Science
	16
	20000
	3964
	1
	16
	1
	16
	1
	16
	1

	10-hepatitis
	Health and Medicine
	19
	155
	50985
	2284
	23577
	3
	7621
	3
	133
	3







4 Experimental Results
4.1 Experiment 1: Impact of Varying Regularization
Goal. The goal of this experiment is to examine the modalities of the ten datasets summarized to the left of Table 1 and see if and how they change when introducing different values of the regularization parameter [image: $$\epsilon $$].
Design. As discussed in Sect. 3.2, for each dataset we construct accuracy tables via exhaustive enumeration of all [image: $$\boldsymbol{b} \in \mathbb {B}^n$$] feature subsets. After the decision tree has been trained on 70% of the dataset using features indicated by [image: $$\boldsymbol{b}$$], it is tested on the remaining 30%. Then, and depending on the model’s accuracy, we calculate its energy using Eq. 3. For the regularization term, we test with [image: $$\epsilon \in \{0, 1/32, 1/16, 1/8\}$$].
Results and Discussion. To the right in Table 1 we present the number of local optima (including global optima) for each dataset, under different regularization values [image: $$\epsilon $$]. The first thing to notice is the nontrivial number of optima [image: $$|\boldsymbol{L}|$$] for all datasets. Even for the two smallest datasets with 7-bit long bitstrings, we have [image: $$|\boldsymbol{L}|=20$$] and [image: $$|\boldsymbol{L}|=17$$] local optima respectively. At the other end of the spectrum we have more than 50,000 optima for hepatitis. Secondly, it is of interest to highlight how the number of optima varies when the regularization parameter [image: $$\epsilon $$] increases. As we increase the fitness penalty on the number of features in the fitness function h, we indirectly reshape the landscape since the model prefers bitstrings with fewer bits sets to 1. Although the expected behavior is a decrease in the number of optima, the decrease is quite significant but highly variable between datasets. See for example the difference for the hepatitis dataset in the last row, for [image: $$\epsilon = 1/8$$] with [image: $$|\boldsymbol{L}|=133$$] versus [image: $$\epsilon =0$$] with [image: $$|\boldsymbol{L}|=50985$$].[image: ]
Fig. 1.Hinged bitstring map (HBM) of the 4-glass dataset with 9 features. The plot at the top illustrates the landscape with [image: $$\epsilon =0$$], while the plot at the bottom shows the landscape when [image: $$\epsilon =1/8$$]. Local and global optima are highlighted with a blue and red outline, respectively. (Color figure online)


[image: ]
Fig. 2.Hinged bitstring map (HBM) of the 5-heart-c dataset with 13 features. The plot at the top illustrates the landscape with [image: $$\epsilon =0$$], while the plot at the bottom shows the landscape when [image: $$\epsilon =1/8$$]. Local and global optima are highlighted with a blue and red outline, respectively. (Color figure online)


[image: ]
Fig. 3.Energy changes on a fixed set of bitstrings, including 04-glass’ global optimum under [image: $$\epsilon = 0$$], [image: $$\boldsymbol{b}^*_{273}$$], with three features selected (top), and 05-heart-c’s global optimum under [image: $$\epsilon = 0$$], [image: $$\boldsymbol{b}^*_{6571}$$], with eight features selected (bottom).




4.2 Experiment 2: A Study of Regularization in Two Datasets
Table 2.The tree lowest-energy optima in 4-glass and 5-heart-c datasets, for regularization values [image: $$\epsilon =0$$] (top three rows in sub-table) and [image: $$\epsilon =1/8$$] (bottom three rows). Redundant or unimportant features are highlighted on each group when there is a tie, i.e., two different feature subsets [image: $$\boldsymbol{b}^*_i$$] and [image: $$\boldsymbol{b}^*_j$$] have the same energy [image: $$h(\boldsymbol{b}^*_i) = h(\boldsymbol{b}^*_j)$$].


[image: ]



Goal. A steep reduction in the number of optima suggests that the landscapes undergo several changes due to regularization. In this experiment, we aim to describe such changes by studying two datasets in detail.
Design. We take a closer look at two datasets—4-glass and 5-heart-c—with [image: $$|\boldsymbol{L}|=65$$] and [image: $$|\boldsymbol{L}|=700$$] local optima respectively in the unregularized case. We visualize their optima comparing the landscapes under regularization values of [image: $$\epsilon =0$$] and [image: $$\epsilon =1/8$$]. Additionally, we observe the three lowest-energy optima [image: $$\boldsymbol{b}^*_i$$] to look for redundant features, and how they change under regularization.
Results and Discussion. Figures 1 and 2 show a general overview of the 4-glass and 5-heart-c datasets, respectively. In these 2D bitmaps, we slice the bitstring into two halves: the first half of the bitstring is mapped to the x-axis, while the second half is mapped to the y-axis (rounding up in favor of the x-axis, in case of an odd n). Then, each bitstring [image: $$\boldsymbol{b}$$] is colored according to its energy, and the optima are outlined: blue for local optima [image: $$\boldsymbol{L}$$] and red for global optima [image: $$\boldsymbol{G}$$].
This simple visualization, which we call the hinged bitstring map (HBM), comes with a drawback. Two neighboring points in the plot may not necessarily be neighboring bitstrings. Nevertheless, an HBM allows us to build intuition about changes in the landscape when it is subject to regularization. Due to this arrangement, a “grid”-like structure appears. See for example Fig. 2, the HBM for the 5-heart-c dataset for [image: $$\epsilon = 1/8$$]. Lines of good solutions (in green) emerge due to the high regularization factor. For a point (x, y) where [image: $$x = 2^k, k \in \mathbb {N}$$], its left neighbor [image: $$(2^k-1, y)$$] has a much higher penalty: [image: $$h_P(2^k) = 1$$] and [image: $$h_P(2^k - 1) = k$$]. This produces a vertical line of good solutions compared to their left neighbors. The same applies for horizontal lines when [image: $$y = 2^k$$].
To compare some of the local optima in more detail, we look at the three lowest-energy optima for each of the selected datasets. Table 2 presents these bitstrings, as well as their energy in two different regularization scenarios. When comparing the three lowest-energy local optima in the 4-glass dataset under no regularization (the first three rows of Table 2), one can notice some redundant features. This is consistent with previous research on landscape analysis for feature selection [38, 40], where the decision of whether or not to include a redundant feature makes no difference in the model’s accuracy.
However, it is important to also consider that the original local optima (i.e., the local optima of the landscape when [image: $$\epsilon =0$$]—[image: $$\boldsymbol{b}^*_{273}$$] for 04-glass and [image: $$\boldsymbol{b}^*_{6571}$$] for 05-heart-c) are not necessarily optima under another regularization landscape. In fact, notice the ID column of Table 2. For both 04-glass and 05-heart-c, the three lowest-energy optima in [image: $$\epsilon = 0$$] (273, 63 and 235) are not the three lowest-energy optima in [image: $$\epsilon = 1/8$$], where bitstrings 1, 2, and 16 have the least energy. This notion can be confirmed by looking at Fig. 1, where some of the local optima highlighted in the top panel (with [image: $$\epsilon =0$$]) are lost when using [image: $$\epsilon =1/8$$]. To visualize this effect in greater detail, we present plots of the energy of a selection of feature sets in Fig. 3. The selection includes the unregularized, global optima ([image: $$\boldsymbol{b}^*_{273}$$] and [image: $$\boldsymbol{b}^*_{6571}$$] for 04-glass and 05-heart-c, respectively), as well as some other feature subsets with different number of bits set to 1. See for example [image: $$\boldsymbol{b}^*_{273}$$] on the top panel of Fig. 3 (located at [image: $$\Vert \boldsymbol{b}^*_{273} \Vert $$] on the x-axis), which is no longer an optimum for the other regularization cases [image: $$\epsilon \in \{1/32, 1/16, 1/8\}$$].[image: ]
Fig. 4.Hexagonal binned plot of the Hamming distance from all local optima to their closest global optimum. Each bin aggregates distance counts, where a darker shade means more local optima are at that given distance to the global optimum.


[image: ]
Fig. 5.Partial LONs of the 04-glass dataset (with [image: $$n=9$$] features and [image: $$|\boldsymbol{B}^*|=65$$] local optima for [image: $$\epsilon =0$$]), as subjected to different regularization scenarios. The size of a vertex indicates the size of the basin of attraction, while the thickness of an edge represents its weight. Layout is according to the HBM for 04-glass in Fig. 1.


[image: ]
Fig. 6.Partial LONs of the 05-heart-c dataset (with [image: $$n=13$$] features and [image: $$|\boldsymbol{B}^*|=700$$] local optima for [image: $$\epsilon =0$$]), as subjected to different regularization scenarios. Layout is according to the HBM for 05-heart-c in Fig. 2.




4.3 Experiment 3: Connectedness and Optima Distribution
Goal. The goal of this experiment is to further analyze the 4-glass and 5-heart-c datasets to examine how the spread of optima through the landscape changes under different regularization levels.
Design. For each dataset (i.e., 4-glass and 5-heart-c) and under regularization schemes with [image: $$\epsilon \in \{0, 1/8, 1/16, 1/32\}$$], we calculate the Hamming distance from all local optima to their closest global optimum in order to look for potential big valley structures [40, 41]. Further, we reconstruct the HBMs (see Figs. 1 and 2) by using LONs. The LONs allow us to see the size of basins of attraction and the links between these basins, things not visualized using the HBMs.
Results and Discussion. Fig. 4 presents a series of hexagonal binned plots of the Hamming distances from all local optima [image: $$\boldsymbol{L}$$] to their closest global optimum in [image: $$\boldsymbol{G}$$]. This plot aggregates the distance counts into bins, where denser regions (with more counts) have a darker shade. For clarity, regions with no counts are not drawn. Under no regularization, the plots on both datasets illustrate a structure where most of the local optima are concentrated around a single global optimum—a landscape feature often referred to as the big valley structure [32, 40, 41]. However, regularization induces changes in the landscape that alter the basins of attraction, and there is a split into separate regions. In other words, the big valley structure disappears for higher [image: $$\epsilon $$] values, here [image: $$\epsilon =1/16$$] and [image: $$\epsilon =1/8$$]. Both of these separate regions are centered on different local optima representing a singleton feature subset. See for example the second and fourth groups of Table 2 (with bitstring IDs [image: $$\{1, 2, 16\}$$] and [image: $$\{32, 128,512\}$$] respectively.) For 04-glass, the number of global optima goes from [image: $$|\boldsymbol{G}|=1$$] with no regularization ([image: $$\boldsymbol{b}^*_{273}$$]), up to [image: $$|\boldsymbol{G}|=2$$] with regularization [image: $$\epsilon =1/8$$] ([image: $$\boldsymbol{b}^*_{1}$$] and [image: $$\boldsymbol{b}^*_{2}$$]), both bitstrings 1 and 2 being the center of their own basin in the split structure.
The split of the landscape can be confirmed by looking at Figs. 5 and 6, which show the resulting LONs for the 4-glass and 5-heart-c datasets respectively. The LONs are plotted with the bidimensional mapping used in the HBMs, in Figs. 1 and 2. Similar to these HBMs, the color of a vertex corresponds to its energy. In this case, the size of a vertex represents the size of the basin of attraction of optima, and the edges’ weights are proportional to the thickness of the drawn lines. To reduce the number of edges drawn and ensure readability (especially in 5-heart-c with [image: $$|\boldsymbol{L}|=700$$]), edges whose weight is below a certain threshold are discarded. This threshold is set to [image: $$30 \%$$] of the highest weight for the 4-glass dataset and [image: $$40 \%$$] for the 5-heart-c dataset.
In the 04-glass unregularized landscape (c.f. the top left panel of Fig. 5), we can see an optimum that is clearly bigger than the rest, i.e., the center of a big valley. In contrast, the landscape induced by the regularization value of [image: $$\epsilon =1/8$$] (c.f. bottom right panel of Fig. 5) shows two valleys, around the two global optima near the origin: [image: $$\boldsymbol{b}^*_{1466}$$] and [image: $$\boldsymbol{b}^*_{2528}$$].
More interestingly, for the 05-heart-c dataset (c.f. Figure 6) the number of optima is considerably higher, so changes in the landscape induced by regularization seem more noticeable. The optima distribution across the landscape goes from an even spread (as seen in the top left panel) to two separate regions with multiple basins of roughly the same size (in the bottom right panel), in line with the split shown in the last panel of Fig. 4.


5 Conclusion and Future Work
A central component of machine learning (ML) is the processing of features from input data [15]. When it comes to ML in support of high-stakes decision-making, the interpretability of ML models is essential [3, 27, 39, 48]. And feature selection, along with an interpretable ML model like the decision tree, can play an important role in ensuring such interpretability. While a plethora of heuristic methods have been developed and tested for feature selection [7, 13, 18, 19, 22, 26, 34, 62], there has been very little research on the underlying pseudo-Boolean fitness landscape induced by feature selection, with notable exceptions [38]. Previous research indicates that feature selection induces multimodal fitness landscapes [34], but the details of such landscapes have remained largely unknown.
This paper seeks to address this gap in knowledge through an empirical study of the learning of decision trees [4, 46, 47] from ten datasets while varying the degree of regularization. The modest dataset sizes enable exhaustive enumeration, in which local (including global) optima can easily be identified. We consider the impact of regularization on the number and structure of optima in the fitness landscapes. We conclude that there is a high degree of multimodality when there is no regularization and that the degree of multimodality generally drops off with increasing regularization.
This work improves the understanding of the multimodal nature of the feature selection problem. We hope that this empirical study will inform future research on improved multimodal optimization methods, including evolutionary niching methods, for feature selection and other combinatorial problems. The computed accuracy tables are available online [54].
There are several avenues for extending this research, e.g., carrying out similar analyses on the remainder of the datasets. Another path for future work is to study different types of datasets and ML methods, for example for regression, and explore the impact of the datasets’ properties on regularization. Furthermore, combining the analysis with other landscape features (like ruggedness and deception) is a possibility, as is utilizing the newfound knowledge about feature selection fitness landscapes to improve heuristics for feature selection.
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Footnotes
1Other methods, not studied here, include decision tree pruning [4, 47].

 

2We used these hyperparameter values for the DecisionTreeClassifier of BetaML: max_depth=0 (no limits), min_gain=0.0, min_records=2, max_features=0 (consider all features), splitting_criterion=BetaML.Utils.gini (Gini impurity index [4]), and rng = Random.GLOBAL_RNG (no set seed for random number generation).
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Algorithm 3. Calculate node density between nodes ¢ and j

Input: g: a giant tour; 7: index of node i in g
Output: p: the node density between ¢ and j
: n « the number of node ing; P +— @; p < 0
: i g[nl;j < gln+1]// g indexing starts from 0
forn —n+2ton—1do
k— g[n']
dij, dir, dji +— distances between each pair of nodes ¢, 7, and k&
ifd;p < dij and djk < dij then
pr +— get node density around node &k by Algorithm 2 ith parameters 9 = 5/, 9’ = n+2)
P~ PU{ps}
end if
10: end for
11: If P # 0 then p — get the mean of all elements in P end if
12: return p
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Input: mazxGen, popSize, threshold, symbol graph G, Dataset D, extreme val thresh-

old v, semantic similarity threshold 8, extreme distribution F’
Output: A best mathematical expression f*
1: population «— initIndividual(G, popSize)
2: f* « select BestIndividual(population)
3: while fitness(f*) > threshold && t < mazGen do

4:  for edge e in G do
5: for i = 1: popSize do
6: 88S; — computeSS(population[i], D)
7 end for
8: T U?zl{SSiISSi > ’l/)}
9: &, 61 — estimatePara(T")
10: &:,6+ — updatePara(é:, 61)
11: probability « generatePro(F,, ; (S8 > 0))
12:  end for
13: for i =1: popSize do
14: child «— sample NewIndividual(G, probability)
15: nextpopulation[i]«— child
16: end for

17:  population «— nextpopulation

18:  f* « selectBestIndividual(population)
19: end while

20: return f*

(Equation 1)

(Equation 3)
(Equation 4)

(Equation 5)
(Equation 2)
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Parameter Value

Parameter Value
Maximum Population Size 200 Maximum Number of Trees 10
Number of Generations 100 Elitism (Number of Individuals) 1
Crossover Rate 0.9 Bandwidth of Gaussian Kernel 0.5
Mutation Rate 0.1 B of Beta Distribution 1
Tree Addition Rate 0.5 Tterations of Risk Estimation (K) 10
Tree Deletion Rate 0.5 1, - % AQ,
Initial Tree Depth 0-3 _ Abs, Sart, Neg,
Maximum Tree Depth 10 Functions Log, Max, Min,

Initial Number of Trees 1 Sin, Cos, Square
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Require: The individual ind, the training set Zirain-
Ensure: The fitness value of ind.

|
= o

Random select instance ¢ € Zirain
Construct an initial solution s? by the CW heuristic, let s; «— s?, s} — s
Set p(e) = 0 for all the edges;
while stopping criteria not met do
while s; is not a local optimum do > Local search
Improve s; by local search in terms of h(-) shown in Eq. (7);
Update s} with the best solution found so far;
for each edge e € s; do > Perturbation
Calculate its utility value util(e) by the utility function ind;

0

i)

Find the edge e* = argmaxecs; util(e), p(e*) « p(e*) + 1,

: return f; = (g(s?) — g(s?))/g(s?);
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Algorithm 1. Repair EVRP Solution

1: INPUT: s* %infeasible EVRP solution

2: apply segmentation in s*

3: for (each subtour S; in s*) do

4:  if (S; violates energy constraint) then

5: while (no further improvement in S;) do

6: for (each node j in S;) do

T 8! « reinsert j using Unstrining and Stringing moves
8: end for

9: re-insert charging station(s) to the best position
10: end while
11:  endif
12: end for

13: OUTPUT: s* %repaired EVRP solution
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Algorithm 4, Adaptive Knowledge-guided Search (AKS) Algorithm
Input: problem instance data
Output: best solution Spes:

1: P « get packing solution for each node

2: Sinit < generate initial giant tour; Spest «— Sinit

3: fort « 110 nyy: do

4 Scurr ¢ Sbest

5 for iter «— 1to n;ter do

6: Njwap — get neighborhood of scyrr by Swap

7T Nywap «— apply the AKI operator (Algorithm 1) with probability p to Ngwap
8 Siter_pest <— decode individuals and pick best individual in Nyqqp

9: Nagpt +— get neighborhood of Siter_pest by 2-opt
10: Nagpt < apply the AKI operator (Algorithm 1) with probability p to Nagp:
11: N « N2opt U {SiteT_best}
12: Siter_best < decode individuals and pick best individual in N
13: Spest +— Update Spest DY Siter pest Where necessary
14: Scurr ¢ Siter_best
15: if scurr has not been improved for n,q_imp consecutive iterations then break end if
16: end for
17: end for

18: return spes:
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1: GNRPA (level, policy)
2.  iflevel == 0 then
3: return playout (policy)
4. else
5: bestScore «— —oo
6: for N iterations do
e (score,new) «+— GNRPA(level — 1, policy)
8: if score > bestScore then
9: bestScore + score
10: seq « new
11: end if
12: adapt (policy, seq)
13: end for
14: return (bestScore, seq)
15:  endif

Algorithm 3: The GNRPA algorithm.
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1: Replay (state, sequence)
2 for b € sequence do
3 count[code(b)] «— count[code(b)] + 1
4 for m € possible moves for state do
5: nb[code(m)] « nb[code(m)] + 1
6 end for
7 play (state, b)
8 end for
Algorithm 4: The Replay algorithm





OEBPS/images/634488_1_En_13_Chapter/634488_1_En_13_Chapter_TeX_IEq140.png





OEBPS/images/634488_1_En_13_Chapter/634488_1_En_13_Chapter_TeX_IEq141.png





OEBPS/images/634488_1_En_10_Chapter/634488_1_En_10_Chapter_TeX_IEq56.png
(8 4 38)





OEBPS/images/634488_1_En_10_Chapter/634488_1_En_10_Chapter_TeX_IEq57.png
(2 4 48)





OEBPS/images/634488_1_En_10_Chapter/634488_1_En_10_Chapter_TeX_IEq58.png





OEBPS/images/634488_1_En_10_Chapter/634488_1_En_10_Chapter_TeX_IEq59.png





OEBPS/images/634488_1_En_10_Chapter/634488_1_En_10_Chapter_TeX_IEq52.png
Pboest





OEBPS/images/634488_1_En_16_Chapter/634488_1_En_16_Figa_HTML.png
Initialize (1 4+ A) CGP.
while Stopping criterion is not met do
Evolve CGP with the training dataset.
Update elite solution.
Calculate uncertainty metric on the images not in the training set.
Add one image to the training dataset, the image with the highest uncertainty
metric value.
end while
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Algorithm 1., Adaptive Knowledge-guided Insertion (AKT) Operator

Input: g: a giant tour; @ 4e,,.: density ratio threshold
Output: g: the giant tour after node insertion
1: n « the number of node in g; K «— 0 //x: current node index
2: whilex < n —2do
3: i+ g[k]; 7« g[r + 1] // tnserting node vetwsen i and j
4. d;; « distance between ¢ and j;
5: pi +— get node density around ¢ by Algorithm 2 with parsmeters 9 = r, 8’ =k + 1)
6 p; « get node density around j by Algorithm 2 wich parameters 6 =k + 1,8/ =k + 2)
7 if maz(pi, p;)/min(pi, pj) > Odens then

// There is a large gap in node density around % and j.

8: if p; > p; then // node density around i is Llarger.
9: g +— use Proximity rule to insert a node between ¢ and j, then update g
10: else i fode deasiiy mroond ¥ ds Tazosrs
11: g +— use Connectivity rule to insert a node between ¢ and j, then update g
12: end if
13: else 2 Hodes dorniy roround i pnd.J bs winll i
14; dio, d;o «— distance between i (or 7) and depot o
15: if dij > di, and dij > djo then v = 56 1 5z Fepgiy, 55 BEFOSIES) SIHES BS £5 HeD6s.
16: g < use Proximity rule to insert a node between ¢ and 7, then update g
17: elSe // i and j are on the same side of the depot.
18: pij <« calculate average node density between ¢ and j by Algorithm 3 ith 5 = x)
19: ifpij/'mi'n(pi, pj) > O deis then 77 meos pessivyiwetvesn 4 g0  mee 1azges.
20: g +— use Connectivity rule to insert a node between ¢ and j, then update g
21: €lS€ 1 sz, penmrEy e, j-aE § 55 1950 SUGRIFLESREY OEEERE,
22: g < use Proximity rule to insert a node between ¢ and j, then update g
23: end if
24 end if
25: end if

26: ke—kKk+1
27: end while
28: return g
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Algorithm 1: Recursive Dimensional Analysis

input : Root node n of the tree, units of variables

output : Tuple (output dimension d, number of unit violations v)
1 function recDimAnalysis(n):

2 if n is a constant then
3 return([$, O, O], 0)
4 end
5 if n is a variable then
6 return([a, b, d, 0)
7 end
8 if n is a unary operation then
9 d, v «— recDimAnalysis(n.child)
10 if units match case from Table 1then
11 | d + unit after execution of operation
12 else
13 d + true output unit of operation
14 ve—v+1
15 end
16 return (d, v)
17 end
18 if n is a binary operation then
19 dright, Uright +— recDimAnalysis(n.right)
20 diefs, Viefy +— recDimAnalysis(n.left)
21 if units match case from Table 1then
22 d + unit after execution of operation
23 U “— Uright T+ Uleft
24 end
25 if n € {4+, —}then
26 U ¢ Unight + Vieft + 1
27 d «— choice(diest, dright)
28 end
29 if n is power operator then
30 U ¢ Uright + Vlett + 1
31 d « [0,0,0]
32 end
33 return (d, v)
34 end

35 end
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Algorithm 2: Unrestricted relocation scheme.

1
2
3
4
5
6
7
8
9

while container yard not empty do

C = GetNextContainer();

S = GetStack(C);

while container C is not on top of stack S do

foreach stack st, st I= S and st not full do

| et = CalculatePriority(st);

end

D = stack with min(ms:);

SC = top container ID of stack S;

DC = top container ID of stack D;

while SC < DC and stack S1 exists such that minC(S1) > DC do
Relocate the top container from D to S1;
DC = top container ID of stack D;

end

Relocate the top container from S to D;

end
Retrieve container C;
end
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Algorithm 2. Calculate node density around node ¢

Input: g: a giant tour; 9, 9': node indexes in g
Output p: the node density around g[9]

0 S bh B

: n +« the number of node in g
) «—g[ﬁ],D +— 0 // g indexing starts from 0
: for k «— g[¥'] to g[n — 1] do

dg; + distance between nodes k and #; D; «— D; U {d:}
end for
D; «+ sort D; in increasing order
p + get the average of the first | 2=2=2
return p

| elements in D;






OEBPS/images/634488_1_En_3_Chapter/634488_1_En_3_Chapter_TeX_Equ11.png
.yd
_:UC .
.yC

d d + x4

Te— Tq) " Yo -

(yC \/(yc

Wy =






OEBPS/images/634488_1_En_17_Chapter/634488_1_En_17_Fig4_HTML.png
Success probability

Nikuradse len=10

10

100 1000 10000

Visited expressions

Nikuradse len=12

100 10000

Visited expressions






OEBPS/images/634488_1_En_3_Chapter/634488_1_En_3_Chapter_TeX_Equ10.png
| —(xe—xq) Y1 + 24 Yo — T yd

Ve — ya)? + (z. — 24)?





OEBPS/images/634488_1_En_3_Chapter/634488_1_En_3_Chapter_TeX_Equ13.png
0 = arctan 2 <y2 —y1> .

X9 — I





OEBPS/images/634488_1_En_16_Chapter/634488_1_En_16_Figc_HTML.gif
Pixala 2, fmygy #magy andmy gy =0 ormgqy =0,
3 k=11, #migy #Amagy end migy # 0 and mag,p £0,
o 0, otherwise.





OEBPS/images/634488_1_En_3_Chapter/634488_1_En_3_Chapter_TeX_Equ12.png
0, if 6 >0,
0 + 2w, otherwise,

On(x1, 22, Y1, y2) = {





OEBPS/images/634488_1_En_3_Chapter/634488_1_En_3_Chapter_TeX_Equ15.png
¢ = arctan 2 <y2 _yc> — arctan 2 <y1 _yc> :
To — T, X1 — e





OEBPS/images/634488_1_En_3_Chapter/634488_1_En_3_Chapter_TeX_Equ14.png
Qb, 1f¢20’

Oc(x1, T2, Y1, Y2, Tey Ye) = { ¢ + 2, otherwise,





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Figg_HTML.gif





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq123.png





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq122.png





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq121.png





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq120.png





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq127.png
44%





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq126.png
K%





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq125.png





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq124.png
65%





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq119.png





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq118.png
{F, F>,..

.}





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq117.png
Qy





OEBPS/images/634488_1_En_16_Chapter/634488_1_En_16_Fig7_HTML.png
(a) Image of index 0. (b) Image of index 20. (c) Image of index 21.

(d) Image of index 78. e) Image of index 45.





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq129.png
98%





OEBPS/images/634488_1_En_21_Chapter/634488_1_En_21_Chapter_TeX_IEq128.png
98%





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Chapter_TeX_IEq39.png





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Chapter_TeX_IEq38.png





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Chapter_TeX_IEq37.png





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Chapter_TeX_IEq36.png





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Chapter_TeX_IEq35.png





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Chapter_TeX_IEq34.png





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Chapter_TeX_IEq33.png





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Chapter_TeX_IEq32.png





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Chapter_TeX_IEq31.png





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Chapter_TeX_IEq30.png





OEBPS/images/634488_1_En_6_Chapter/634488_1_En_6_Figg_HTML.png
: Replay (&, s)
for i € [0..len(s)] do
for j € [0..len(s[i]) — 1] do
n « code(t[é][j], s[¢][5], ¢[][5 + 1], s[i][j + 1])
count[n] « count[n] + 1
for m € moves(t[i][j + 1]) do
n « code(t[i][j], s[¢][j], tld]j + 1], m)
nb[n] «— nb[n] +1

QO GU EwN

9: end for
10: end for
11: end for

Algorithm 5: The algorithm to count the NGRAMSs. It takes as arguments the target
structures ¢ and the corresponding solutions s as sequences of moves. It counts the
number of times two following characters in the target structure and the corresponding
two moves happen in the Rfam database. It also counts the number of appearance for
all possible moves.
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Algorithm 1. Efficient hill climber

1: while (A f)(z) < 0 for some h € N do
2:  h « selectImprovingMove(Af);

3:  updateDeltas(Af,z,h);

4: < hiz);

5: end while
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1: procedure GPGLS(The VRP training instances Zirain )

2: Initialise the GP population pop by ramp-half-and-half;

3: while Stopping criteria not met do

4: for each GP individual ind € pop do

5: Evaluate the fitness of ind by eval(ind, Zirain);

6: Update the best individual ind* with the best fitness found so far;
7 Set the offspring population pop’ — 0;

8: Add the top k elites in pop into pop’;

9: while |pop’| < |pop| do
10: Select parents from pop by tournament selection;
11: Generate offspring by crossover/mutation/reproduction;
12: Add the generated offspring into pop’;
13: pop — pop’;

14: return GLS(ind*);
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Algorithm 1. GSEMO

1: Choose z € {0,1}" uniformly at random ;

2: 8« {z}

3: while stopping criterion not met do

4 choose z € § uniformly at random;

5 y + flip each bit of z independently with probability of %;
6: if (AweS:w>y)then

T S—(SUu{yh\{z eS|y = 2};

8 end if

9: end while
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Algorithm 2. Filtering Method

0: Input: Population Py = z!,...,z™ ordered by the decreasing order of /,L(iL'i);
1: for k=1tom do
2:  Calculate o*(z¢,2") for ¢ €4,...,m using either afyep OF Oftoor
3 if minf} o*(2%,2%) > maxT", ; o*(z7,2*) then
4: P U {z*}
5 end if

6: end for

7

: return P






OEBPS/images/634488_1_En_14_Chapter/634488_1_En_14_Figf_HTML.gif





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq61.png
Tmin





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq62.png
T0





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq60.png
Tmaa:





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq54.png
new





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq55.png
Tmaa:





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq52.png
Tmaa:





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq53.png
AT = (Tiae — 70)/ K





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq58.png
old





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq59.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq56.png
T0





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq57.png
AT = (Tiae — 70)/ K





OEBPS/images/634488_1_En_1_Chapter/634488_1_En_1_Fig3_HTML.png
SetA

1 2 3 4
L " | s s |
DMA L3333 AOOL CPLEX
Adapt-CMSA+LS LE8L 30000 MA
Set B
1 2 3 4
L L 1 L 1 L |
DMA L8556 32222 HMA
SetC
1 2 3 4
L L | L | L |
DMA Lidés 37718 GPLEX
Adapt-CMSA+LS L% 32222 LMA
Set D
1 2 3, 4
L " 1 s | s |
DMA L8556 31718 P EX
Adapt-CMSA+LS L& 30000 A
SetE
1 2 3 4
L " | L | s |
Adapt-CMSA+LS 15556 34444 5P| EX
All Sets (A-E)
1 2 3 4

DMA 14887 3755 op|EX
Adapt-CMSA+LS 138 32000 A






OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq50.png
bs





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq51.png
Tmin





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq87.png
n=1/(n—1)





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq88.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq85.png
C nn





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq86.png
¢” =25





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq89.png
Trmar — 1





OEBPS/images/634488_1_En_24_Chapter/634488_1_En_24_Fig1_HTML.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq80.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq83.png
Tomaz = 1/ pC'"





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq84.png
Tmin = Tmax (1 - m) / ((a?}g — 1) m)





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq81.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq82.png
1/pC
T —





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq76.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq77.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq74.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq75.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq78.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq79.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq72.png
f =8775





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq73.png
f =14325





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq70.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq71.png
f =3575





OEBPS/images/634488_1_En_4_Chapter/634488_1_En_4_Chapter_TeX_IEq9.png





OEBPS/images/634488_1_En_4_Chapter/634488_1_En_4_Chapter_TeX_IEq8.png





OEBPS/images/634488_1_En_4_Chapter/634488_1_En_4_Chapter_TeX_IEq7.png





OEBPS/images/634488_1_En_4_Chapter/634488_1_En_4_Chapter_TeX_IEq6.png





OEBPS/images/634488_1_En_22_Chapter/634488_1_En_22_Figx_HTML.gif





OEBPS/images/634488_1_En_4_Chapter/634488_1_En_4_Chapter_TeX_IEq5.png





OEBPS/images/634488_1_En_4_Chapter/634488_1_En_4_Chapter_TeX_IEq4.png





OEBPS/images/634488_1_En_23_Chapter/634488_1_En_23_Equ1_HTML.png
) =D A 40 Bii

i=1 j=1





OEBPS/images/634488_1_En_4_Chapter/634488_1_En_4_Chapter_TeX_IEq3.png
g1 - (92 'g3) = (91 °g2) g3





OEBPS/images/634488_1_En_4_Chapter/634488_1_En_4_Chapter_TeX_IEq2.png
o GxGE—=G





OEBPS/images/634488_1_En_4_Chapter/634488_1_En_4_Chapter_TeX_IEq1.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq98.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq99.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq96.png





OEBPS/images/634488_1_En_5_Chapter/634488_1_En_5_Chapter_TeX_IEq97.png





OEBPS/images/634488_1_En_20_Chapter/634488_1_En_20_Chapter_TeX_IEq10.png
x - (1 —abs(x))





OEBPS/images/634488_1_En_20_Chapter/634488_1_En_20_Chapter_TeX_IEq11.png





OEBPS/images/634488_1_En_20_Chapter/634488_1_En_20_Chapter_TeX_IEq12.png
exp(x) = 2%/10e2)





OEBPS/images/634488_1_En_20_Chapter/634488_1_En_20_Chapter_TeX_IEq13.png
t = x/log(2)





OEBPS/images/634488_1_En_20_Chapter/634488_1_En_20_Chapter_TeX_IEq14.png
t=1+1f





OEBPS/images/634488_1_En_20_Chapter/634488_1_En_20_Chapter_TeX_IEq15.png
0< f<l1





OEBPS/images/634488_1_En_20_Chapter/634488_1_En_20_Chapter_TeX_IEq16.png
ox/log(2) — of . 9i





OEBPS/images/634488_1_En_20_Chapter/634488_1_En_20_Chapter_TeX_IEq17.png





OEBPS/images/634488_1_En_20_Chapter/634488_1_En_20_Chapter_TeX_IEq18.png
22'





OEBPS/images/634488_1_En_12_Chapter/634488_1_En_12_Figc_HTML.png
Algorithm 3: QOutline of the 1-Level rollout algorithm.

1 Input: relocations - list of relocations already done, yardLayout - current

2
3
4
5
6
7
8
9

layout;
while container yard not empty do

C = GetTargetContainer();
S = GetStack(C);
while container C is not on top of stack S do
BC = top container of stack S;
initialise value for best stack - sbest, and its fitness - fsbest;
foreach stack st, st I= S and st not full do
Relocate BC on st and on that layout, apply the RR to construct
the remaining solution, and return the fitness;
if fitness returned is better than fsbest then
update fbest;
shest = st;
end
end
Relocate BC to sbest and update relocations and yardLayout;
end
Retrieve container C and update relocations and yardLayout;

end
return relocations and yardLayout;
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1: playout (policy)
2 state « root
3 while true do
4. if terminal(state) then
5 # sequence(state) contains the moves played from the root to the state
6: return (score (state), sequence(state))
7 end if
8 z+<0
9: for m € possible moves for state do
10: o[m] « epeticulcode(m)l+Bm 4 code(m) is an integer representing move m
11: z — z+ o[m]
12: end for
13: choose a move with probability M
14: play (state, move)
15:  end while

Algorithm 1: The playout algorithm
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