
LN
CS

 1
51

49
Michael Affenzeller · Stephan M. Winkler ·
Anna V. Kononova · Heike Trautmann ·
Tea Tušar · Penousal Machado ·
Thomas Bäck (Eds.)

Parallel Problem Solving
from Nature – PPSN XVIII
18th International Conference, PPSN 2024
Hagenberg, Austria, September 14–18, 2024
Proceedings, Part II

Lecture Notes in Computer Science 15149
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Michael Affenzeller · Stephan M. Winkler ·
Anna V. Kononova · Heike Trautmann ·
Tea Tušar · Penousal Machado · Thomas Bäck
Editors

Parallel Problem Solving
from Nature – PPSN XVIII
18th International Conference, PPSN 2024
Hagenberg, Austria, September 14–18, 2024
Proceedings, Part II

Editors
Michael Affenzeller
University of Applied Sciences Upper Austria
Wels, Austria

Anna V. Kononova
Leiden University
Leiden, The Netherlands

Tea Tušar
Jožef Stefan Institute
Ljubljana, Slovenia

Thomas Bäck
Leiden University
Leiden, The Netherlands

Stephan M. Winkler
University of Applied Sciences Upper Austria
Hagenberg, Austria

Heike Trautmann
University of Paderborn
Paderborn, Germany

Penousal Machado
University of Coimbra
Coimbra, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-70067-5 ISBN 978-3-031-70068-2 (eBook)
https://doi.org/10.1007/978-3-031-70068-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
Chapters 3, 4 and 6 are licensed under the terms of the Creative CommonsAttribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapters.

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-5692-5940
https://orcid.org/0000-0002-4138-7024
https://orcid.org/0000-0002-6495-006X
https://orcid.org/0000-0001-6768-1478
https://orcid.org/0000-0002-5196-4294
https://orcid.org/0000-0002-9788-8282
https://orcid.org/0000-0002-6308-6484
https://doi.org/10.1007/978-3-031-70068-2
http://creativecommons.org/licenses/by/4.0/

Preface

Two years ago, in 2022, the international conference on Parallel Problem Solving from
Nature (PPSN) returned to where it all started in 1990, namely to Dortmund, Germany.
It was great to see that the community had overcome the pandemic and gathered with
more than 100 participants attending in person.

On the last day of the conference, during the closing ceremony, we got the chance
to propose the University of Applied Sciences Upper Austria (FH OÖ) as organizers
and the Softwarepark Hagenberg as the location for PPSN 2024. We were convinced
that FH OÖ as the (with respect to research and development) strongest university of
applied sciences in Austria could be the ideal choice as host for PPSN 2024, especially
as we presented the research group Heuristic and Evolutionary Algorithms Laboratory
(HEAL), one of the most active groups in evolutionary algorithms in Austria, as the core
group of the organization team. After some weeks, we were delighted to hear from the
steering committee that we were chosen as organizers and Hagenberg as the location for
this year’s edition of PPSN.

We are pleased that a record number of researchers followed our call by submitting
their papers for review. We received 294 submissions from which the program chairs
selected the top 101 after an extensive peer-review process, which corresponds to an
acceptance rate of 34.35%. Not all decisions were easy to make, but we benefited greatly
from the careful reviews provided by the international program committee. With an
average of 2.86 reviews per paper, most of the submissions received three reviews,
while some received two. This led to a total of 840 reviews. Thanks to these reviews, we
were able to decide about acceptance on a solid basis.

The papers included in these proceedings were assigned to 12 clusters, entitled
Combinatorial Optimization, Genetic Programming, Fitness Landscape Modeling and
Analysis, Benchmarking and Performance Measures, Automated Algorithm Selection
and Configuration, Numerical Optimization, Bayesian- and Surrogate-Assisted Opti-
mization, Theoretical Aspects of Nature-Inspired Optimization, (Evolutionary) Machine
Learning and Neuroevolution, Evolvable Hardware and Evolutionary Robotics, Multi-
objective Optimization and Real-World Applications which can hardly reflect, the true
variety of research topics presented in the proceedings at hand. Following the tradition
and spirit of PPSN, all papers were presented as posters. The eight poster sessions con-
sisting of 12 or 13 papers each were compiled orthogonally to the clusters mentioned
above to cover the range of topics as widely as possible. As a consequence, participants
with different interests would find some relevant papers in every session and poster
presenters were able to discuss related work in sessions different from their own.

As usual, the conference started with two days of workshops and tutorials (Saturday
andSunday), followed by three days of poster sessions and invited plenary talks (Monday
to Wednesday). We are delighted that three highly renowned researchers from up-and-
coming, related research fields accepted our invitation to give a keynote speech, which
was be the first item on the program over the three days of the conference.

vi Preface

Two of our keynote speakers are young professors at excellent academic institutions,
namely Oliver Schütze (Cinvestav-IPN, Mexico City) and Richard Küng (JKU Linz,
Austria); the third keynoter is a researcher at Google Deepmind, namely Bernardino
Romera-Paredes, with an equally impressive scientific record.

Needless to say, the success of such a conference depends on authors, reviewers, and
organizers. We are grateful to all authors for submitting their best and latest work, to
all the reviewers for the generous way they spent their time and provided their valuable
expertise in preparing these reviews, to the workshop organizers and tutorial presenters
for their contributions to enhancing the value of the conference, and to the local organizers
who helped to make PPSN XVIII happen.

Last but not least, wewould like to thank Softwarepark Hagenberg and theUniversity
of Applied Sciences Upper Austria for the donations.Weare grateful for the long-standing
support of Springer to this conference series. Finally, we thank the RISC Software and
Software Competence Center Hagenberg for providing financial backing.

July 2024 Michael Affenzeller
Stephan M. Winkler
Anna V. Kononova
Heike Trautmann

Tea Tušar
Penousal Machado

Thomas Bäck

Organization

General Chairs

Michael Affenzeller University of Applied Sciences Upper Austria,
Austria

Stephan Winkler University of Applied Sciences Upper Austria,
Austria

Honorary Chair

Hans-Paul Schwefel TU Dortmund, Germany

Program Committee Chairs

Heike Trautmann University of Paderborn, Germany
Tea Tušar Jožef Stefan Institute, Slovenia
Penousal Machado University of Coimbra, Portugal
Thomas Bäck Leiden University, Netherlands

Proceedings Chair

Anna V. Kononova Leiden University, Netherlands

Tutorials Chair

Fabricio Olivetti de França Federal University of ABC, Brazil

Workshops Chair

Roman Kalkreuth RWTH Aachen University, Germany

viii Organization

Publicity Chairs

Jan Zenisek University of Applied Sciences Upper Austria,
Austria

Christian Haider University of Applied Sciences Upper Austria,
Austria

Louise Buur University of Applied Sciences Upper Austria,
Austria

Technical Support Chairs

Oliver Krauss University of Applied Sciences Upper Austria,
Austria

Du Nguyen Duy Software Competence Center Hagenberg, Austria

Steering Committee

Thomas Bäck Leiden University, Netherlands
David W. Corne Heriot-Watt University, UK
Carlos Cotta University of Malaga, Spain
Kenneth De Jong George Mason University, USA
Gusz E. Eiben Vrije Universiteit Amsterdam, Netherlands
Bogdan Filipič Jožef Stefan Institute, Slovenia
Emma Hart Edinburgh Napier University, UK
Juan Julián Merelo Guervós University of Granada, Spain
Günter Rudolph TU Dortmund, Germany
Thomas P. Runarsson University of Iceland, Iceland
Robert Schaefer University of Krakow, Poland
Marc Schoenauer Inria, France
Xin Yao University of Birmingham, UK and SUSTech,

China

Keynote Speakers

Oliver Schütze CINVESTAV-IPN, Mexico
Bernardino Romera-Paredes Google DeepMind London, UK
Richard Küng Johannes Kepler University Linz, Austria

Organization ix

Program Committee

Michael Affenzeller University of Applied Sciences Upper Austria,
Austria

Hernán Aguirre Shinshu University, Japan
Imène Ait Abderrahim University of Djilali Bounaama Khemis Miliana,

Algeria
Youhei Akimoto University of Tsukuba, Japan
Richard Allmendinger University of Manchester, UK
Marie Anastacio Leiden University, Netherlands
Claus Aranha University of Tsukuba, Japan
Dirk Arnold Dalhousie University, Canada
Anne Auger Inria, France
Dogan Aydin Dumlupinar University, Turkey
Jaume Bacardit Newcastle University, UK
Heder Bernardino Federal University of Juiz de Fora, Brazil
Hans-Georg Beyer Vorarlberg University of Applied Sciences,

Austria
Martin Binder Ludwig Maximilian University of Munich,

Germany
Mauro Birattari Université libre de Bruxelles, Belgium
Bernd Bischl Ludwig Maximilian University of Munich,

Germany
Julian Blank Michigan State University, USA
Aymeric Blot University College London, UK
Peter Bosman Centrum Wiskunde & Informatica, Netherlands
Jakob Bossek University of Paderborn, Germany
Anton Bouter Centrum Wiskunde & Informatica, Netherlands
Jürgen Branke University of Warwick, UK
Dimo Brockhoff Inria, France
Alexander Brownlee University of Stirling, UK
Larry Bull University of the West of England, UK
Maxim Buzdalov Aberystwyth University, UK
Stefano Cagnoni University of Parma, Italy
Salvatore Calderaro Palermo University, Italy
Pedro Carvalho University of Aveiro, Portugal
Josu Ceberio University of the Basque Country, Spain
Ying-Ping Chen National Chiao Tung University, Taiwan
Francisco Chicano University of Malaga, Spain
Miroslav Chlebik University of Sussex, UK
Sung-Bae Cho Yonsei University, South Korea
Carlos Coello Coello CINVESTAV-IPN, Mexico

x Organization

Jordan Cork Jožef Stefan Institute, Slovenia
João Correia University of Coimbra, Portugal
Gabriel Cortês University of Coimbra, Portugal
Doğan Çörüş Kadir Has University, Turkey
Ernesto Costa University of Coimbra, Portugal
Carlos Cotta University of Malaga, Spain
António Cunha University of Minho, Portugal
Nguyen Dang St Andrews University, UK
Kenneth De Jong George Mason University, USA
Roy de Winter Leiden University, Netherlands
Kalyanmoy Deb Michigan State University, USA
Antonio Della Cioppa University of Salerno, Italy
Antipov Denis University of Adelaide, Australia
Bilel Derbel Université de Lille, France
André Deutz Leiden University, Netherlands
Konstantin Dietrich TU Dresden, Germany
Benjamin Doerr Ecole Polytechnique, France
Carola Doerr Sorbonne University, France
John Drake University of Leicester, UK
Rafał Dreżewski AGH University of Science and Technology,

Poland
Johann Dreo Pasteur Institute, France
Paul Dufossé ID Solutions Oncology, France
Tome Eftimov Jožef Stefan Institute, Slovenia
Theresa Eimer Leibniz University Hannover, Germany
Michael Emmerich Leiden University, Netherlands
Andries Engelbrecht University of Stellenbosch, South Africa
Anton Eremeev Dostoevsky Omsk State University, Russia
Richard Everson University of Exeter, UK
Pedro Ferreira University of Lisbon, Portugal
Antonino Fiannaca Italian National Research Council, Italy
Jonathan Fieldsend University of Exeter, UK
Bogdan Filipič Jožef Stefan Institute, Slovenia
Steffen Finck Vorarlberg University of Applied Sciences,

Austria
Marcus Gallagher University of Queensland, Australia
José García-Nieto University of Málaga, Spain
Mario Giacobini University of Torino, Italy
Kyriakos Giannakoglou National Technical University of Athens, Greece
Tobias Glasmachers Ruhr-Universität Bochum, Germany
Christian Grimme University of Münster, Germany

Organization xi

Alexander Hagg Bonn-Rhein-Sieg University of Applied Sciences,
Germany

Julia Handl University of Manchester, UK
Nikolaus Hansen Inria, France
Jin-Kao Hao University of Angers, France
Hans Harder Paderborn University, Germany
Emma Hart Edinburgh Napier University, UK
Verena Heidrich-Meisner CAU Kiel, Germany
Jonathan Heins TU Dresden, Germany
Carlos Henggeler Antunes University of Coimbra, Portugal
Carlos Ignacio Hernández

Castellanos
National Autonomous University of Mexico,

Mexico
Ishara Hewa Pathiranage University of Adelaide, Australia
Martin Holeňa Czech Academy of Sciences, Czechia
Andoni Irazusta Garrnendia University of the Basque Country, Spain
Hisao Ishibuchi Southern University of Science and Technology,

China
Christian Jacob University of Calgary, Canada
Domagoj Jakobović University of Zagreb, Croatia
Anja Jankovic RWTH Aachen University, Germany
Thomas Jansen Aberystwyth University, UK
Laetitia Jourdan Université de Lille, CRIStAL, CNRS, France
Bryant Julstrom St. Cloud State University, USA
Timo Kötzing Hasso Plattner Institute, Germany
Roman Kalkreuth RWTH Aachen University, Germany
George Karakostas McMaster University, Canada
Florian Karl Ludwig Maximilian University of Munich,

Germany
Ed Keedwell University of Exeter, UK
Pascal Kerschke TU Dresden, Germany
Marie-Eléonore Kessaci University of Lille, France
Ahmed Kheiri Lancaster University, UK
Wolfgang Konen TH Cologne, Germany
Lars Kotthoff University of Wyoming, USA
Oswin Krause University of Copenhagen, Denmark
Krzysztof Krawiec Poznan University of Technology, Poland
Martin S. Krejca Ecole Polytechnique, France
William B. Langdon University College London, UK
Manuel López-Ibáñez University of Manchester, UK
William La Cava Boston Children’s Hospital, USA
Algirdas Lancinskas Vilnius University, Lithuania
Yuri Lavinas University of Toulouse, France

xii Organization

Per Kristian Lehre University of Birmingham, UK
Johannes Lengler ETH Zurich, Switzerland
Markus Leyser TU Dresden, Germany
Ke Li University of Exeter, UK
Arnaud Liefooghe University of Lille, France
Giosuè Lo Bosco University of Palermo, Italy
Fernando Lobo University of Algarve, Portugal
Nuno Lourenço University of Coimbra, Portugal
Jose A. Lozano University of the Basque Country, Spain
Rodica Lung Babes-Bolyai University, Romania
Chuan Luo Peking University, China
Evelyne Lutton INRAE, France
Jessica Mégane University of Coimbra, Portugal
João Macedo University of Coimbra, Portugal
Mikel Malagón University of the Basque Country, Spain
Katherine Malan University of South Africa, South Africa
Vittorio Maniezzo University of Bologna, Italy
Valentin Margraf Ludwig Maximilian University of Munich,

Germany
Luis Martí Center Inria Chile, Chile
Jörn Mehnen University of Strathclyde, UK
Marjan Mernik University of Maribor, Slovenia
Olaf Mersmann Federal University of Applied Administrative

Sciences, Germany
Silja Meyer-Nieberg Bundeswehr University Munich, Germany
Efrén Mezura-Montes University of Veracruz, Mexico
Krzysztof Michalak Wroclaw University of Economics, Poland
Kaisa Miettinen University of Jyväskylä, Finland
Edmondo Minisci University of Strathclyde, UK
Gara Miranda Valladares University of La Laguna, Spain
Mustafa Misir Duke Kunshan University, China
Marco Montes de Oca EnFi Inc. and Northeastern University, USA
Hugo Monzón RIKEN, Japan
Mario Andrés Muñoz University of Melbourne, Australia
Boris Naujoks TH Cologne, Germany
Antonio J. Nebro University of Málaga, Spain
Ferrante Neri University of Surrey, UK
Aneta Neumann University of Adelaide, Australia
Frank Neumann University of Adelaide, Australia
Michael O’Neill University College Dublin, Ireland
Gabriela Ochoa University of Stirling, UK
Pietro S. Oliveto University of Sheffield, UK

Organization xiii

Una-May O’Reilly Massachusetts Institute of Technology, USA
José Carlos Ortiz-Bayliss Monterrey Institute of Technology and Higher

Education, Mexico
Patryk Orzechowski University of Pennsylvania, USA
Ender Özcan University of Nottingham, UK
Ben Paechter Edinburgh Napier University, UK
Gregor Papa Jožef Stefan Institute, Slovenia
Luís Paquete University of Coimbra, Portugal
Andrew J. Parkes University of Nottingham, UK
Sebastian Peitz Paderborn University, Germany
Kokila Kasuni Perera University of Adelaide, Australia
Stjepan Picek Radboud University, Netherlands
Martin Pilát Charles University, Czechia
Nelishia Pillay University of Pretoria, South Africa
Petr Pošík Czech Technical University in Prague, Czechia
Raphael Patrick Prager University of Münster, Germany
Oliver Preuß Paderborn University, Germany
Mike Preuss Leiden University, Netherlands
Michal Przewozniczek Wroclaw University of Science and Technology,

Poland
Chao Qian Nanjing University, China
Günther Raidl Vienna University of Technology, Austria
Elena Raponi Leiden University, Netherlands
Khaled Rasheed University of Georgia, USA
Alma Rahat Swansea University, UK
Piotr Ratuszniak Koszalin University of Technology, Poland
Tapabrata Ray University of New South Wales, Australia
Quentin Renau Edinburgh Napier University, UK
Riccardo Rizzo Harvard University, USA
Angel Rodriguez-Fernandez CINVESTAV-IPN, Mexico
Eduardo Rodriguez-Tello CINVESTAV-IPN, Mexico
Andrea Roli University of Bologna, Italy
Jeroen Rook University of Twente, Netherlands
Jonathan Rowe University of Birmingham, UK
Günter Rudolph TU Dortmund, Germany
Conor Ryan University of Limerick, Ireland
Saba Sadeghi Ahouei University of Adelaide, Australia
Daniela Santos Lutheran University of Brazil, Brazil
Frédéric Saubion University of Angers, France
Lennart Schäpermeier TU Dresden, Germany
Robert Schaefer AGH University of Science and Technology,

Poland

xiv Organization

Andrea Schaerf University of Udine, Italy
Larissa Schmid Karlsruhe Institute of Technology, Germany
Lennart Schneider Ludwig Maximilian University of Munich,

Germany
Marc Schoenauer Inria, France
Renzo Scholman Centrum Wiskunde & Informatica, Netherlands
Oliver Schuetze CINVESTAV-IPN, Mexico
Moritz Seiler Paderborn University, Germany
Bernhard Sendhoff Honda Research Institute Europe, Germany
Roman Senkerik Tomas Bata University, Czechia
Marc Sevaux University of South Brittany, France
Hadar Shavit RWTH Aachen University, Germany
Ofer Shir Tel-Hai College, Israel
Shinichi Shirakawa Yokohama National University, Japan
Moshe Sipper Ben-Gurion University of the Negev, Israel
Jim Smith University of the West of England, UK
Konstantin Sonntag Paderborn University, Germany
Giovanni Squillero Politecnico di Torino, Italy
Sebastian Stich CISPA Helmholtz Center for Information

Security, Germany
Catalin Stoean University of Craiova, Romania
Thomas Stützle Université libre de Bruxelles, Belgium
Mihai Suciu Babes-Bolyai University, Romania
Dirk Sudholt University of Sheffield, UK
Andrew Sutton University of Minnesota, USA
Urban Škvorc Paderborn University, Germany
Ricardo Takahashi Federal University of Minas Gerais, Brazil
Sara Tari University of the Littoral Opal Coast, France
Daniel Tauritz Auburn University, USA
Dirk Thierens Utrecht University, Netherlands
Kevin Tierney Bielefeld University, Germany
Renato Tinós University of São Paulo, Brazil
Marco Tomassini University of Lausanne, Switzerland
Alberto Tonda INRAE, France
Jamal Toutouh Massachusetts Institute of Technology, USA
Kento Uchida Yokohama National University, Japan
Ryan J. Urbanowicz University of Pennsylvania, USA
Niki van Stein Leiden University, Netherlands
Nadarajen Veerapen University of Lille, France
Filippo Vella National Research Council, Italy
Sébastien Verel University of the Littoral Opal Coast, France
Diederick Vermetten Leiden University, Netherlands

Organization xv

Anh Viet Do University of Adelaide, Australia
Adriano Vinhas University of Coimbra, Portugal
Markus Wagner University of Adelaide, Australia
Hanyang Wang Huawei Technologies, UK
Hao Wang Leiden University, Netherlands
Elizabeth Wanner CEFET, Brazil
Tobias Weber Otto von Guericke University Magdeburg,

Germany
Thomas Weise Hefei University, China
Marcel Wever Ludwig Maximilian University of Munich,

Germany
Darrell Whitley Colorado State University, USA
Dennis Wilson University of Toulouse, France
Carsten Witt Technical University of Denmark, Denmark
Man Leung Wong Lingnan University, Hong Kong, China
Kaifeng Yang University of Applied Sciences Upper Austria,

Austria
Shengxiang Yang De Montfort University, UK
Furong Ye Leiden University, Netherlands
Martin Zaefferer DHBW Ravensburg, Germany
Aleš Zamuda University of Maribor, Slovenia
Saúl Zapotecas-Martínez INAOE, Mexico
Christine Zarges Aberystwyth University, UK
Mengjie Zhang Victoria University of Wellington, New Zealand

Contents – Part II

Benchmarking and Performance Measures

Aggregated Partial Hypervolumes - An Overall Indicator for Performance
Evaluation of Multimodal Multiobjective Optimization Methods 3

Ali Ahrari, Ruhul Sarker, and Carlos A. Coello Coello

Empirical Analysis of the Dynamic Binary Value Problem with IOHprofiler . . . 20
Diederick Vermetten, Johannes Lengler, Dimitri Rusin, Thomas Bäck,
and Carola Doerr

A Deep Dive Into Effects of Structural Bias on CMA-ES Performance
Along Affine Trajectories . 36

Niki van Stein, Sarah L. Thomson, and Anna V. Kononova

Automated Algorithm Selection and Configuration

Emergence of Specialised Collective Behaviors in EvolvingHeterogeneous
Swarms . 53

Fuda van Diggelen, Matteo de Carlo, Nicolas Cambier,
Eliseo Ferrante, and Guszti Eiben

Identifying Easy Instances to Improve Efficiency of ML Pipelines
for Algorithm-Selection . 70

Quentin Renau and Emma Hart

Landscape-Aware Automated Algorithm Configuration Using
Multi-output Mixed Regression and Classification . 87

Fu Xing Long, Moritz Frenzel, Peter Krause, Markus Gitterle,
Thomas Bäck, and Niki van Stein

Feature Encapsulation by Stages in the Regression Domain Using
Grammatical Evolution . 105

Darian Reyes Fernández de Bulnes, Allan de Lima, Edgar Galván,
and Conor Ryan

Evaluating the Robustness of Deep-Learning Algorithm-Selection Models
by Evolving Adversarial Instances . 121

Emma Hart, Quentin Renau, Kevin Sim, and Mohamad Alissa

xviii Contents – Part II

Learned Features vs. Classical ELA on Affine BBOB Functions 137
Moritz Seiler, Urban Škvorc, Gjorgjina Cenikj, Carola Doerr,
and Heike Trautmann

Hybridizing Target- and SHAP-Encoded Features for Algorithm Selection
in Mixed-Variable Black-Box Optimization . 154

Konstantin Dietrich, Raphael Patrick Prager, Carola Doerr,
and Heike Trautmann

iMOPSE: a Comprehensive Open Source Library for Single-
and Multi-objective Metaheuristic Optimization . 170

Konrad Gmyrek, Paweł B. Myszkowski, Michał Antkiewicz,
and Łukasz P. Olech

Understanding the Importance of Evolutionary Search in Automated
Heuristic Design with Large Language Models . 185

Rui Zhang, Fei Liu, Xi Lin, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang

Numerical Optimization

Warm Starting of CMA-ES for Contextual Optimization Problems 205
Yuta Sekino, Kento Uchida, and Shinichi Shirakawa

A Potential Function for a Variable-Metric Evolution Strategy 221
Stephan Frank and Tobias Glasmachers

CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points 236
Kento Uchida, Ryoki Hamano, Masahiro Nomura, Shota Saito,
and Shinichi Shirakawa

Natural Gradient Interpretation of Rank-One Update in CMA-ES 252
Ryoki Hamano, Shinichi Shirakawa, and Masahiro Nomura

Avoiding Redundant Restarts in Multimodal Global Optimization 268
Jacob de Nobel, Diederick Vermetten, Anna V. Kononova, Ofer M. Shir,
and Thomas Bäck

LB+IC-CMA-ES: Two Simple Modifications of CMA-ES to Handle
Mixed-Integer Problems . 284

Tristan Marty, Nikolaus Hansen, Anne Auger, Yann Semet,
and Sébastien Héron

Contents – Part II xix

Bayesian- and Surrogate-Assisted Optimization

Performance Comparison of Surrogate-Assisted Evolutionary Algorithms
on Computational Fluid Dynamics Problems . 303

Jakub Kůdela and Ladislav Dobrovský

Balancing Between Time Budgets and Costs in Surrogate-Assisted
Evolutionary Algorithms . 322

Cedric J. Rodriguez, Peter A. N. Bosman, and Tanja Alderliesten

An Adaptive Approach to Bayesian Optimization with Setup Switching
Costs . 340

Stefan Pricopie, Richard Allmendinger, Manuel López-Ibáñez,
Clyde Fare, Matt Benatan, and Joshua Knowles

Re-examining Supervised Dimension Reduction for High-Dimensional
Bayesian Optimization . 356

Quanlin Chen, Jing Huo, Yiyu Chen, Tianyu Ding, Yang Gao, Dong Li,
and Xu He

Evolve Cost-Aware Acquisition Functions Using Large Language Models 374
Yiming Yao, Fei Liu, Ji Cheng, and Qingfu Zhang

A Surrogate-Assisted Partial Optimization for Expensive Constrained
Optimization Problems . 391

Kei Nishihara and Masaya Nakata

Author Index . 409

Benchmarking and Performance
Measures

Aggregated Partial Hypervolumes - An
Overall Indicator for Performance

Evaluation of Multimodal Multiobjective
Optimization Methods

Ali Ahrari1(B) , Ruhul Sarker1 , and Carlos A. Coello Coello2

1 School of Systems and Computing, University of New South Wales,
Canberra, Australia

a.ahrari@unsw.edu.au, r.sarker@adfa.edu.au
2 CINVESTAV-IPN, Departamento de Computación, Mexico City, Mexico

ccoello@cs.cinvestav.mx

Abstract. Multimodal multiobjective optimization (MMMOO) can be
perceived as the combination of multiobjective optimization (MOO) and
multimodal optimization (MMO). The performance of an MMMOO me-
thod should be thus assessed from both perspectives, leading to the
prevalence of dual-metric indicators in the existing literature. This study
first analyzes the ideal outcome of MMMOO for informed decision-
making to determine the prerequisites of a theoretically and practically
sound performance indicator. Then, it critically evaluates existing indi-
cators, especially those that intend to measure success from the MMO
perspective. Subsequently, it introduces Aggregated Partial Hypervol-
umes (APHVs) as a novel overall parametric performance indicator that
not only addresses the drawbacks of existing ones but can also reflect
the relative importance of MMO for the decision-maker. Finally, a few
descriptive MMMOO examples are studied to verify that the optimal
population according to APHVs matches our understanding of the ideal
outcome of MMMOO, taking into account the relative importance of
both the MMO and the MOO perspectives.

Keywords: Performance indicator · Multimodal multiobjective
optimization · Hypervolume

1 Introduction

Multiobjective optimization (MOO) aims to find a set of diverse non-dominated
solutions that approximate the Pareto front (PF). These solutions reveal the
trade-off between the potentially conflicting objectives of the problem. The
decision-maker can then determine the best overall trade-off among the objec-
tives to select a single solution for its implementation using an a posteriori
decision-making approach [1].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 3–19, 2024.
https://doi.org/10.1007/978-3-031-70068-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_1&domain=pdf
http://orcid.org/0000-0001-7232-7967
http://orcid.org/0000-0002-1363-2774
http://orcid.org/0000-0002-8435-680X
https://doi.org/10.1007/978-3-031-70068-2_1

4 A. Ahrari et al.

Quite often, the availability of distinct solutions for the selected trade-off
can be beneficial. Such distinct solutions provide alternatives to support a reli-
able decision-making process [2]. The importance of such distinct solutions has
already been analyzed and highlighted for several real-world multiobjective prob-
lems, such as path planning [3], space mission design [4], distillation plant layout
[5], functional brain imaging [6], and diesel engine design [7].

Multimodal multiobjective optimization (MMMOO) aims to provide such
distinct solutions. The goal of MMMOO is to find the whole Pareto set (PS),
even though a part of the PS can represent the whole PF. Even solutions that
are slightly dominated can be of interest [2]. MMMOO can be perceived as the
integration of multimodal optimization (MMO) [8] with MOO, two relatively
well-studied fields that can help to advance the knowledge in the less-establish
and more complex field of MMMOO [2]. Evaluation of an MMMOO method
requires assessing it from both the MOO and the MMO perspectives, resulting
in the prevalence of dual-metric indicators in the existing literature:

– a metric that measures the success from the MOO perspective. Most stud-
ies used either hypervolume (HV) [9–11] [12], IGD [13–19], or both of them
[20–23] [24,25] for this purpose.

– a metric that measures the success from the MMO perspective. Most existing
studies used either IGDX ([10,12,16–19,21,25]), Pareto set proximity (PSP)
[9,11,14,20] or both [13,15,22,23,26] for this purpose.

A significant drawback of dual-metric indicators arises when method A is
better than method B according to one metric but worse according to the other
one. In such cases, a dual-metric indicator cannot determine the superior method.
Besides, existing metrics to measure the performance from the MMO perspective
suffer from some theoretical shortcomings, which will be explained in Sect. 3.

To the best of our knowledge, IGDM [27] is the only overall indicator for
MMMOO, which addresses some of the limitations of existing vdual-metric indi-
cators. Nevertheless, it requires tuning a sensitive parameter. Besides, like IGD,
it depends on the procedure used to generate uniformly distributed reference
points on the PF, which can cause some biases in the comparison [28]. There-
fore, developing other overall performance indicators that can overcome these
shortcomings has been encouraged [28].

Another limitation of existing indicators is disregarding the relative impor-
tance of MMO and MOO for the decision-maker, which is referred to as MMO-
MOO trade-off in this study. It implies that improving the performance from
the MMO perspective comes at the cost of deteriorating it from the MOO per-
spective. There are two reasons for this claim. First, it is difficult and sometimes
conflicting to efficiently address both MMO and MOO challenges at the same
time since each demands certain strategies that can negatively affect the other
one. This explains why MMMOO methods are not as good as well-known MOO
methods when only MOO is pursued [2]. Second, for a given problem, the theo-
retically ideal outcome of MMMOO may have a worse HV or IGD than the ideal
outcome of MOO. This means that regardless of the efficiency of the employed

Aggregated Partial Hypervolumes - An Overall Indicator 5

method, improved diversity in solution space may necessitate some sacrifice in
the diversity in the objective function space.

The MMO-MOO trade-off questions whether the added benefits of MMO can
justify the decline in MOO capability. The answer to this question depends on
how much the decision-maker is interested in the availability of diverse solutions,
a feature of the problem that should be specified a priori. Accordingly, perfor-
mance indicators should be able to reflect the relative importance of MMO for
the decision-maker, a feature that is missing in existing ones.

The shortage of overall and pragmatic performance indicators is a major
obstacle to the progress of this field since most developments in the field of evo-
lutionary MMMOO rely on experimental evaluations and comparisons of heuris-
tic and meta-heuristic methods and strategies. This study aims to mitigate this
shortcoming by introducing a novel performance metric that can reliably mea-
sure the success of MMMOO methods. The contributions of this study are as
follows:

– It analyzes different potential outcomes of MMMOO to determine prerequi-
sites of a theoretically and practically sound performance indicator.

– It scrutinizes existing and popular performance indicators for MMMOO.
– It introduces an overall parametric indicator, called Aggregated Partial

Hypervolumes (APHVs) to address the shortcomings of the existing ones.
– It analyzes APHVs on some distinct examples to confirm that indications of

APHVs match our understanding of the optimal outcome of MMMOO for
informed decision-making.

The rest of this study is organized as follows. Section 2 analyzes some poten-
tial outcomes of MMMOO. Section 3 reviews and analyzes relevant performance
metrics for MMMOO. Section 4 introduces APHVs. Section 5 designs descriptive
examples to study APHVs. Finally, our conclusions are drawn in Sect. 6.

2 Qualitative Analysis of Potential MMMOO Outcomes

Figure 1 illustrates a typical MMMOO problem, in which the PS consists of three
regions. Each of these regions can represent the whole PF. Four cases for the
final population are considered:

– The population in Case I (Fig. 1a) has the ideal outcome from the MOO
perspective, but a poor one from the MMO perspective since two regions of
the PS have not been detected at all.

– In Case II (Fig. 1b), the population could detect all three regions and for
each region, it has provided the three most important solutions, i.e., those
that maximize the HV or IGD of that subpopulation. Such an outcome has
generally been used in the MMMOO literature to represent a simple MMMOO
problem where solutions from different PS regions (PSRs) map to the same
point on the PF (e.g., in [11,14,25,29–31]). It provides the best approximation
of individual regions of the PS. Once a trade-off among the objectives has

6 A. Ahrari et al.

been selected, three distinct solutions are available for the decision-maker.
However, we argue that this is not the ideal outcome when both the MOO
and the MMO perspectives are important because all nine solutions almost
map to three points on the PF, resulting in an inferior performance from the
MOO perspective when compared to the population in Fig. 1a. Population in
Case II is superior to that of Case I only if the MMO perspective was quite
important for the decision-maker.

– In Case III (Fig. 1c), the population has nicely approximated the PF and
detected all three regions of the efficient set. This outcome is indeed superior
to the one in Case I; however, it is still not the ideal outcome since solutions
from each part of the PF belong to one particular region of the PS. Once the
decision-maker specifies the desired trade-off among the objectives, there is
limited diversity in the available solutions.

– Case IV (Fig. 1d) shows the pragmatic ideal outcome of MMMOO when per-
formance form both the MOO and the MMO perspectives is important. Con-
vergence and diversity in the objective space are ideal. For each part of the
PF, there are solutions from different regions of the PS, and by a slight devi-
ation from the selected trade-off, three distinct solutions are available for the
decision-maker.

f1

f2

x1

x2

f1

f2

x1

x2

f1

f2

x1

x2

f1

f2

x1

x2

Fig. 1. Potential outcomes of MMMOO. The problem has three distinguishable PSRs.

3 Critical Assessment of Existing Indicators

Hypervolume (HV) [32] and Inverted Generational Distance (IGD) [33] are two
of the most popular metrics for assessing performance of MMMOO methods

Aggregated Partial Hypervolumes - An Overall Indicator 7

form the MOO perspective. Given a set of solutions X =
{
x1,x2, . . . ,x|X|

}
with

normalized objective values 0 F =
{
f1,f2, . . . ,f |X|

}
, HV is the size of the space

that is dominated by solutions in F and dominates a reference point r. vThe ideal
and nadir points have normalized objective values of 0 and 1, respectively, and
the reference point should be slightly dominated by the nadir point, e.g. r = 1.1,
as suggested in [34]. HV is the only known unary Pareto-compliant performance
indicator.

IGD is another popular performance indicator for MOO:

IGD (F∗,F) =
1

|F∗|
|F∗|∑

i=1

min
fj∈F

d(f∗
i ,fj), (1)

in which d() calculates the Euclidean distance between two points, and F
∗ ={

f∗
1,f

∗
2, . . . ,f

∗
|F∗|

}
is a set of uniformly distributed reference points on PF. The

main drawback of IGD is that it is not Pareto-compliant [35]. Besides, the IGD
value depends on the algorithm used to generate the reference points, which may
be difficult to reproduce across studies. IGD+ [36] is an enhanced version of IGD
which is weakly Pareto compliant; however, it does not resolve the challenge of
sampling reference points.

IGDX [21] measures the spread of solutions in the solution space to evaluate
the success from the MMO perspective. Analogous to IGD, it samples a set of
uniformly distributed solutions X∗ =

{
x∗

1,x
∗
2, . . . ,x

∗
|X∗|

}
on PS. Then, IGDX is

calculated as follow:

IGDX (X∗,X) =
1

|X∗|
|X∗|∑

i=1

min
xj∈X

d(x∗
i ,xj). (2)

x1

x2

x3

Fig. 2. Given Reference points (crosses), IGDX of population P1 (shown by circles) is
much smaller than that of P2 (shown by triangles).

Like IGD, IGDX suffers from the dependency on the employed algorithm for
generating the reference point. This dependency is more prominent for IGDX

8 A. Ahrari et al.

since the solution space has generally a higher dimensionality than the objective
space, which makes generating reference points that are uniformly distributed
more challenging. Besides, directional sensitivity of the objective function(s) can
result in misleading IGDX values. Figure 2 depicts such a situation in which at
PS (solid line segment on x1 axis), the fitness function is assumed to be more
sensitive along x3 than x2. Two populations are considered: P1 (circles) has a
slight deviation from PS along x3 while P2 v(triangles) has a large deviation
along x2. The fitness values of the solutions can be identical, but population
P1 has a much smaller IGDX, and thus should be regarded as a better one
according to the IGDX metric. However, P2 provides a greater diversity in the
solution space; therefore, it should be a better choice from the MMO perspective
if diversity of solutions is desired.

Like IGDX, PSP [9] has been frequently used to evaluate the success from
the MMO perspective. It is the ratio of the Cover Rate (CR) and IGDX:

PSP =
CR

IGDX
,CR =

(
k=1∏

D

δk

)1/(2D)

, (3)

in which δk is the coverage of the PS for the kth dimension. It is calculated as
follows:

δk =

⎧
⎪⎪⎨

⎪⎪⎩

1 if V max
k = V min

k

0 if vmin
k ≥ V max

k or vmax
k ≤ V min

k
min{vmax

k ,V max
k }−max{vmin

k ,V min
k }

V max
k −V min

k

otherwise
, (4)

in which vmin
k and vmax

k are the minimum and maximum of the kth element of the
solutions in the population, and V min

k and V max
k are the minimum and maximum

of the PS along the kth coordinate.

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)

Fig. 3. Actual PS (solid line) and final populations (circles) in for three different cases
for problems with two decision parameters.

CR is inspired by the maximum spread [37], a less popular performance
indicator for MOO. CR takes into account only the hypercube that contains

Aggregated Partial Hypervolumes - An Overall Indicator 9

final populations, and compares it with a similarly defined hypercube for the
actual PS. Comparing such limited information can easily result in misleading
conclusions. For instance, PSP is sensitive to the orientation of PS. Figure 3a
shows a situation in which the final population has approximated the PS quite
successfully. The value of CR is about 0.9 in this case. Figure 3b represents
the same problems subject to a linear rotation of the search space, and it is
assumed that the population has converged to exactly the previous solutions after
undergoing the exact same rotation; therefore, the approximation quality has
remained unchanged. It is expected that an indicator assessing the convergence
to the PS has identical values for the cases depicted in Figs. 3a and 3b; however,
we have CR=0 for the latter. Figure 3c reveals a more serious drawback of CR.
The final population (two solutions here) could not approximate the PS properly,
yet, we have CR = 1 in this case, which is the best possible outcome from a
MMO perspective according to the CR indicator. Since PSP is proportional to
CR, the drawbacks of CR are also present in PSP, even though combining CR
with IGDX may mitigate these drawbacks to some extent.

So far, IGDM [27] is the only overall performance indicator for MMMOO
[28]. Like IGD, IGDM requires a set of uniformly distributed reference points
on the PF (f∗

i , i = 1, 2, . . . , |F∗|). For each f∗
i , it finds all the solutions in the

PS that map to that reference point (x∗
i,js). Then, the population members are

assigned to the closest reference solutions according to the minimum Euclidean
distance criterion in the solution space. This means that for every x∗

i,j , there is
a subset of population members, denoted by Pij . Then, the distance between all
x∗
ijs and all the population members in Pij in the objective space is calculated,

and the smallest one is considered dij . IGDM is the mean of all these dij values.
IGDM addresses some of the drawbacks of dual-metric indicators. Most

importantly, it is an overall indicator which facilitates comparison of MMMOO
methods. However, it has the following drawbacks:

– It depends on the algorithm used for generating reference solutions on the
PF.

– Some of Pij ’s can be empty, for which IGDM sets dij = dmax, which is a
default value for reference solutions with no matching population member.
This makes the relative values of IGDM sensitive to dmax, particularly know-
ing that IGDM is the mean of dijs, and the mean is not a robust statistical
measure.

– It cannot reflect the relative importance of MOO and MMO for the decision-
maker. Based on our analysis, the ideal population with minimal IGDM
resembles the one depicted in Case II (1b), which is not generally the best
outcome when both MMO and MMO are important.

4 Aggregated Partial Hypervolumes

Our proposed performance measure is based on the summation of partial hyper-
volumes (PHVs). Let us assume that the PS, consists of K distinct regions,
each of which represents the whole or a part of the PF, i.e., PS = ∪K

k=1PSRk,

10 A. Ahrari et al.

in which PSRk is the kth distinct region of PS. Let Pk be a subset of popula-
tion P for which the closest PSR is PSRk. It is assumed that Pk approximates
PSRk. PHVk is the partial hypervolume that corresponds to Pk, and THV is
the total hypervolume that corresponds to P. Aggregated Partial Hypervolumes
(APHVs) is defined as follows:

APHVs = αt THV + (1 − αt)MPHVs,

MPHVs =
1
K

K∑

k=1

PHVk, 0 ≤ αt ≤ 1
(5)

APHVs is the weighted average of two terms. The first term, THV, mea-
sures the quality of P from the MOO perspective (convergence and spread),
disregarding which PSRs have been approximated. In contrast, the second term
(MPHVs), measures how good every PSR has been approximated on average,
indicating the quality of P from the MMO perspective. Parameter αt specifies
the relative importance of MOO and MMO for the decision-maker, i.e., the
MMO-MOO trade-off. αt = 1 means MMO has no value for the decision maker,
whereas for αt = 0, the importance of finding every region of the PS is maximal.

Figure 4 illustrates how APHVs is calculated for a simple bi-objective min-
imization problem. The PS consists of three distinct regions (PSR1,PSR2,
PSR3), and each region may represent the whole PF. The population P has
successfully approximated all these regions, and can be divided into P1 (pluses),
P2 (circles), and P3 (crosses), based on the distance of its members to the each
PSR. For this example, Fig. 4a calculates THV = 0.557 given the reference point
[1.1, 1.1]T . Figures 4b, 4c, and 4d illustrate how PHVs are calculated for each
subpopulation. For this example, APHVs = 0.557αt+(0.460+0.476+0.384)(1−
αt)/3.

When compared with existing indicators for MMMOO, APHVs has the fol-
lowing advantages:

– Like IGDM, APHVs is an overall indicator, which facilitates comparison of
MMMOO methods.

– Although APHVs is the weighted average of two terms, these two terms have
the same nature. They are all HVs calculated in the objective space with
respect to one fixed reference point.

– APHVs uses a distance metric in the solution space only to group popula-
tion members based on the PSR that they are approximating. Unlike IGDX,
MPHVs (or APHVs when αt = 0) does not use any distance metric in the
solution space to quantify the performance from the MMO perspective.

– MPHVs implicitly takes the quality of solutions into account. It can deal
with potential differences in the sensitivity of the objective function at dif-
ferent parts of the PS or to certain directions, whereas IGDX ignores such
information.

– Unlike IGDX, IGD, and IGDM, APHVs does not require uniformly dis-
tributed reference points on the PS or the PF. The reference point for the

Aggregated Partial Hypervolumes - An Overall Indicator 11

Fig. 4. Calculation of different terms in APHVs for a typical problem with three dis-
tinct PSRs, represented by solid lines. The reference for the calculation of APHVs is
[1.1, 1.1]T .

calculation of APHVs can be easily set (e.g. 1.1 when the objectives are
normalized [35]).

– Unlike IGDM, APHVs can easily reflect the relative importance of the MMO
perspective for the decision maker by setting αt at the problem level.

– Unlike IGDM, APHVs does not have any additional and sensitive parameter
to account for regions of the PS that have not been detected. These sub-
regions simply have a zero PHV.

Quite often, the PSRs are distinguishable given the mathematical description
of the PS. This is the case with most existing mathematically defined benchmark
problems for MMMOO, such as those proposed in the CEC 2019 special session
on MMMOO [38], in which the PS consists of either end-joined or disjoint con-
tinuous PSRs. For a PS with a complex geometry, a mathematically meaningful
procedures to divide the PS into PSRs is required at the problem level, which
can be regarded as a limitation of APHVs.

5 Descriptive Examples

This section designs descriptive examples to highlight distinctive features of
APHVs, especially its capability to reflect the relative importance of MMO and
MOO for the decision-maker. The examples are simple but distinct so that the
search-space can be exhaustively searched and indications of APHVs can be visu-
ally compared with our intuition of the ideal outcome of MMMOO for informed
decision-making. For the same reason, only bi-objective problems with two deci-
sion parameters (0 ≤ x1, x2 ≤ 1) are considered. Both objectives should be
minimized, and the reference point for the calculation of APHVs is r = 1.1.

12 A. Ahrari et al.

For each problem, a set of Pareto optimal solutions of size NP is provided.
The optimal population of size nP is exhaustively sought such that APHVs is
maximized for the predefined αt. Population members are a subset of the NP

provided Pareto optimal solutions. For each αt, we report THV and MPHVs and
their relative ratios to the maximum possible values in parenthesis. It is possible
that multiple of such optimal populations exist in the problem; therefore, for
each value of αt, Nbest indicates the number of different populations with the
maximum APHVs. In such cases, the first population with the maximal APHVs
is illustrated. The outcomes are distinct for the selected values of αt.

5.1 Example 1

This example analyzes APHVs in a relatively simple but insightful scenario. The
problem objectives are:

{
f1(x) = x1 exp(g), f2(x) = (1 − x1) exp(g)

g = sin2(2πx2)
. (6)

The PS consists of three disjoint regions with x2 = 0, 0.5, 1, respectively, and
each can represent the whole front. For this problem, NP = 3 × 17 = 51 and
nP = 6. Figure 5 illustrates the ideal population that maximizes APHVs for
selected values of αt. As observed:

Fig. 5. The optimal MMMOO outcome for the first example according to the APHVs
indicator with different values of αt. The dots represent NP solutions on the PS. Pluses,
circles, and crosses are used to divide the population according to which region of the
PS they are approximating.

Aggregated Partial Hypervolumes - An Overall Indicator 13

– When αt = 0 (maximal importance of the MMO perspective), the optimal
population resembles the one depicted in Fig. 1b, which is the ideal outcome
from the MMO perspective. The HV is 22.1% less than the ideal case from
the MOO perspective due to a lack of sufficient diversity of the whole popu-
lation in the objective space. In fact, from the MOO perspective, the union
of subpopulations is no better than each subpopulation alone.

– when αt = 0.1, subpopulations map to different points of the PF, even though
they are still in two distinguishable regions of the PF. THV is now only
9.3% inferior to the ideal outcome form the MOO perspective. At the same
time, MPHVs has reduced only 0.5%, which is practically negligible. There
are 6 possibilities for the ideal population in this case, which are formed by
swapping the relative solutions in each subpopulation.

– A greater αt is used when the MMO perspective is less important for the
decision-maker, e.g, when the formulated optimization problem is a more
accurate model of the actual problem. A better approximation of the whole
PF thus becomes more important. Comparing the plots in Fig. 5 demonstrates
that APHVs nicely reflects this preference, where the optimal population,
according to the APHVs indicator, should have a higher diversity in the
objective space to maximize THV, in exchange for a weaker approximation
of individual PSRs. The former becomes less important for a greater αt.

– The ideal outcome for 0.3 ≤ αt ≤ 0.99 resembles the outcome in Fig. 1d,
which has a nice balance between the importance of MMO and MOO. This
shows that the indications of APHVs are robust with respect to αt.

5.2 Example 2

In the second test problem, PS consisted of two regions, PSR1 and PSR2 with
x2 = 0 and x2 = 1, respectively. Each PSR can represent the whole front, but
PSR2 is four times larger:

{
f1(x) = g x1/h, f2(x) = g |1 − x1/h|
g = 2 + cos(2πx2 + π), h = (1 + Ax2)/(A + 1), A = 3

. (7)

The set of available Pareto optimal solutions consists of 17 solutions on each
PSR (NP = 2 × 17 = 34). For this problem nP = 8. Figure 6 illustrates the
optimal outcome according to the APHVs indicator for different values of αt. As
observed:

– When αt = 0, the population forms two equally sized subpopulations P1

and P2, which are uniformly distributed on PSR1 and PSR2, respectively,
even though PSR2 is four times larger. Both subpopulations map to exactly
the same points in the objective space to maximize their MPHVs, providing
the decision-maker with the most important trade-off solutions for each PSR.
Once a trade-off is chosen, two distinct solutions are available.

14 A. Ahrari et al.

Fig. 6. The optimal MMMOO outcome for the second test problem according to the
APHVs indicator with different values of αt. The dots represent NP solutions on the
PS. Pluses and circles are used to divide the population according to the region of the
PS that they are approximating.

– According to the IGDX indicator, the ideal outcome from the MMO per-
spective would have only one or two points on PSR1. The reason for this
is that the number of reference points on PSR2 would be four times larger
than the number of reference points on PSR1 since reference points for the
calculation of IGDX are uniformly distributed on the PS. This observation
reveals an intrinsic difference between IGDX and MPHVs (or APHVs when
αt = 0): MPHVs and IGDX specify two fundamentally different populations
when the ideal outcome from the MMO perspective is desired. From the
decision-making perspective, the one specified by IGDX is inferior because
distinct solutions might not be available for the selected trade-off.

– When αt increases, the diversity of the optimal population in the objective
space improves while the quality of the approximation of individual PSRs
declines. Nevertheless, for the large range of 0.2 ≤ αt ≤ 0.99, the ideal out-
come does not change, indicating the robustness of the APHVs metric to the
choice of αt.

5.3 Example 3

The third example investigates a scenario which can be regarded as the opposite
of the one in Example 2: PSR1 at x2 = 0 and PSR2 at x2 = 1 have equal
lengths but the latter maps to a small region of the PF:

Aggregated Partial Hypervolumes - An Overall Indicator 15

Fig. 7. The optimal MMMOO outcome for the third example according to the APHVs
indicator with different values of αt. The dots represent NP solutions on the PS. Pluses
and circles are used to divide the population according to the region of the PS that
they are approximating.

{
f1(x) = g x1/h, f2(x) = g (1 − x1)/h

g = 2 + cos(2πx2 + π), h = (1 + Ax2), A = 4
. (8)

2 × 17 uniformly distributed points are provided on the PS from which the
optimal population of size nP = 6, which consists of two subpopulations, P1

and P2, should be selected. Figure 7 illustrates the optimal outcome for different
values of αt. As observed:

– For αt = 0, the two subpopulations are not equally sized. Proper approx-
imation of PSR1 is more important because the contribution of PSR2 to
MPHVs is limited. For decision-making, detection of PSR2 is useful only if
the decision-maker is interested in a trade-off on the upper left part of the PF.
This characteristic of the problem is well-captured by the APHVs indicator.
The only member of P2 is on the right corner of PSR2 to present the most
important trade-off that can be offered by a solution in PSR2. In contrast,
IGDX recommends a completely different outcome in which both subpop-
ulations are equally sized and uniformly distributed on PSRs, disregarding
the fact that all solutions in PSR2 are useless unless the decision-maker is
interested in a small region of the PF on the top left.

– As expected, a larger αt emphasizes more on diversity of the whole population
in the objective space. Surprisingly, when αt = 0.99, PSR2 has two members
in the optimal population. An extra member on PSR2 has improved THV

16 A. Ahrari et al.

because the available points on PSR2 can provide a better approximation of
the upper left part of PF.

6 Summary and Conclusions

This study introduced an overall indicator, called APHVs, which overcomes the
discussed theoretical and practical shortcomings of existing indicators. APHVs
is the weighted average of two terms: THV, which measures the success from
the MOO perspective, and MPHVs, which quantifies the success from the MMO
perspective. Both terms are inherently hypervolumes calculated on the objective
space with respect to a fixed reference point. The weight parameter, 0 ≤ αt ≤
1, specifies the importance of the MMO perspective for the decision-maker, a
feature that does not exist in the currently available indicators for MMMOO.

Our descriptive test problems presented evidence indicating that APHVs
matches our understanding of the desirable outcome of MMMOO with an arbi-
trary MOO-MMO trade-off. Besides, the parameter αt of APHVs can reliably
reflect the relative importance of MOO and MMO perspectives when evaluating
MMMOO methods. When αt = 0, the optimal population aims to make the
best approximation of individual regions of the PS. By increasing αt, the opti-
mal population focuses more on providing a better approximation of the PF;
nevertheless, the optimal population is not sensitive to the choice of αt, and for
a large range of αt, the optimal population should have a good performance from
both the MMO and the MOO perspectives.

When compared with existing dual-metric indicators, APHVs takes the rela-
tion between PS and PF into account when quantifying MMO success, resulting
in a fundamentally different and practically more meaningful perception of the
MMO success. For example, if a large region of PS maps to a small part of
PF, APHVs gives less importance to that region of the PS. Besides, for APHVs,
diverse solutions are those that belong to different regions of the PS, which might
not necessarily be far from each other in the solution space.

The limitation of APHVs arises when PSRs cannot be easily determined
given the PS; however, this case is scarce in existing benchmark problems for
MMMOO. Formulating a mathematically sound procedure to divide the PS into
PSRs can address this limitation, which can be the subject of future studies.

Acknowledgement. This research has been funded by the Australian Research Coun-
cil Discovery Early Career Researcher Award DE230101281. Computational resources
for this study were provided by the National Computational Infrastructure (NCI),
which is supported by the Australian Government.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

Aggregated Partial Hypervolumes - An Overall Indicator 17

References

1. Purshouse, R.C., Deb, K., Mansor, M.M., Mostaghim, S., Wang, R.: A review
of hybrid evolutionary multiple criteria decision making methods. In: 2014 IEEE
Congress on Evolutionary Computation (CEC), pp. 1147–1154. IEEE (2014)

2. Tanabe, R., Ishibuchi, H.: A review of evolutionary multimodal multiobjective
optimization. IEEE Trans. Evol. Comput. 24(1), 193–200 (2019)

3. Liang, J., Yue, C., Li, G., Qu, B., Suganthan, P., Yu, K.: Problem definitions and
evaluation criteria for the CEC 2021 on multimodal multiobjective path planning
optimization (2020)

4. Schutze, O., Vasile, M., Coello, C.A.C.: Computing the set of epsilon-efficient solu-
tions in multiobjective space mission design. J. Aerosp. Comput. Inf. Commun.
8(3), 53–70 (2011)

5. Preuss, M., Kausch, C., Bouvy, C., Henrich, F.: Decision space diversity can be
essential for solving multiobjective real-world problems. In: Ehrgott, M., Naujoks,
B., Stewart, T., Wallenius, J. (eds.) Multiple Criteria Decision Making for Sus-
tainable Energy and Transportation Systems. LNEMS, vol. 634. Springer, Berlin,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-04045-0 31

6. Sebag, M., Tarrisson, N., Teytaud, O., Lefevre, J., Baillet, S.: A multi-objective
multi-modal optimization approach for mining stable spatio-temporal patterns. In:
IJCAI, pp. 859–864 (2005)

7. Hiroyasu, T., Nakayama, S., Miki, M.: Comparison study of SPEA2+, SPEA2,
and NSGA-II in diesel engine emissions and fuel economy problem. In: 2005 IEEE
Congress on Evolutionary Computation, vol. 1, pp. 236–242. IEEE (2005)

8. Das, S., Maity, S., Qu, B.-Y., Suganthan, P.N.: Real-parameter evolutionary mul-
timodal optimization-a survey of the state-of-the-art. Swarm Evol. Comput. 1(2),
71–88 (2011)

9. Yue, C., Qu, B., Liang, J.: A multiobjective particle swarm optimizer using ring
topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Com-
put. 22(5), 805–817 (2017)

10. Ming, F., Gong, W., Yang, Y., Liao, Z.: Constrained multimodal multi-objective
optimization: test problem construction and algorithm design. Swarm Evol. Com-
put. 76, 101209 (2023)

11. Agrawal, S., Tiwari, A., Yaduvanshi, B., Rajak, P.: Differential evolution with
nearest better clustering for multimodal multiobjective optimization. Appl. Soft
Comput. 148, 110852 (2023)

12. Wang, Y., Liu, Z., Wang, G.-G.: Improved differential evolution using two-stage
mutation strategy for multimodal multi-objective optimization. Swarm Evol. Com-
put. 78, 101232 (2023)

13. Sun, Y., Zhang, S.: A decomposition and dynamic niching distance-based dual elite
subpopulation evolutionary algorithm for multimodal multiobjective optimization.
Expert Syst. Appl. 231, 120738 (2023)

14. Zhang, X., Liu, H., Tu, L.: A modified particle swarm optimization for multimodal
multi-objective optimization. Eng. Appl. Artif. Intell. 95, 103905 (2020)

15. Li, W., Zhang, T., Wang, R., Ishibuchi, H.: Weighted indicator-based evolutionary
algorithm for multimodal multiobjective optimization. IEEE Trans. Evol. Comput.
25(6), 1064–1078 (2021)

16. Li, W., Yao, X., Li, K., Wang, R., Zhang, T., Wang, L.: Coevolutionary framework
for generalized multimodal multi-objective optimization. IEEE/CAA J. Automat-
ica Sinica 10(7), 1544–1556 (2023)

https://doi.org/10.1007/978-3-642-04045-0_31

18 A. Ahrari et al.

17. Lv, Z., Li, S., Sun, H., Zhang, H.: A multimodal multi-objective evolutionary algo-
rithm with two-stage dual-indicator selection strategy. Swarm Evol. Comput. 82,
101319 (2023)

18. Ji, J., Wu, T., Yang, C.: Multimodal multiobjective differential evolutionary opti-
mization with species conservation. IEEE Trans. Syst. Man Cybern. Syst. 54(2),
1299–1311 (2023)

19. Ding, Z., Cao, L., Chen, L., Sun, D., Zhang, X., Tao, Z.: Large-scale multimodal
multiobjective evolutionary optimization based on hybrid hierarchical clustering.
Knowl.-Based Syst. 266, 110398 (2023)

20. Zhang, W., Li, G., Zhang, W., Liang, J., Yen, G.G.: A cluster based PSO with
leader updating mechanism and ring-topology for multimodal multi-objective opti-
mization. Swarm Evol. Comput. 50, 100569 (2019)

21. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of pareto-optimal solutions in
both the decision and objective spaces by an estimation of distribution algorithm.
IEEE Trans. Evol. Comput. 13(5), 1167–1189 (2009)

22. Liang, J., et al.: A clustering-based differential evolution algorithm for solving mul-
timodal multi-objective optimization problems. Swarm Evol. Comput. 60, 100788
(2021)

23. Yue, C., Qu, B., Yu, K., Liang, J., Li, X.: A novel scalable test problem suite for
multimodal multiobjective optimization. Swarm Evol. Comput. 48, 62–71 (2019)

24. Zhou, T., Han, X., Wang, L., Gan, W., Chu, Y., Gao, M.: A multiobjective differ-
ential evolution algorithm with subpopulation region solution selection for global
and local pareto optimal sets. Swarm Evol. Comput. 83, 101423 (2023)

25. Yang, C., Wu, T., Ji, J.: Two-stage species conservation for multimodal multi-
objective optimization with local pareto sets. Inf. Sci. 639, 118990 (2023)

26. Xiong, M., Xiong, W., Liu, Z., Liu, Y., Han, C.: A multi-modal multi-objective
evolutionary algorithm based on dual decomposition and subset selection. Swarm
Evol. Comput. 84, 101431 (2023)

27. Liu, Y., Yen, G.G., Gong, D.: A multimodal multiobjective evolutionary algorithm
using two-archive and recombination strategies. IEEE Trans. Evol. Comput. 23(4),
660–674 (2018)

28. Liu, Y., Xu, L., Han, Y., Zeng, X., Yen, G.G., Ishibuchi, H.: Evolutionary multi-
modal multiobjective optimization for traveling salesman problems. IEEE Trans.
Evol. Comput. 28(2), 516–530 (2023)

29. Zhou, T., Hu, Z., Su, Q., Xiong, W.: A clustering differential evolution algorithm
with neighborhood-based dual mutation operator for multimodal multiobjective
optimization. Expert Syst. Appl. 216, 119438 (2023)

30. Zou, J., Deng, Q., Liu, Y., Yang, X., Yang, S., Zheng, J.: A dynamic-niching-based
pareto domination for multimodal multiobjective optimization. IEEE Trans. Evol.
Comput. (2023). https://doi.org/10.1109/TEVC.2023.3316723

31. Zhang, J., Zou, J., Yang, S., Zheng, J.: An evolutionary algorithm based on inde-
pendently evolving sub-problems for multimodal multi-objective optimization. Inf.
Sci. 619, 908–929 (2023)

32. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

33. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolu-
tionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa,
G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–
697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7 71

https://doi.org/10.1109/TEVC.2023.3316723
https://doi.org/10.1007/978-3-540-24694-7_71

Aggregated Partial Hypervolumes - An Overall Indicator 19

34. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: How to specify a reference
point in hypervolume calculation for fair performance comparison. Evol. Comput.
26(3), 411–440 (2018)

35. Ishibuchi, H., Imada, R., Masuyama, N., Nojima, Y.: Comparison of hypervolume,
IGD and IGD+ from the viewpoint of optimal distributions of solutions. In: Deb,
K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 332–345. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-12598-1 27

36. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 8

37. Tsou, C.-S., Fang, H.-H., Chang, H.-H., Kao, C.-H.: An improved particle swarm
pareto optimizer with local search and clustering. In: Wang, T.-D., et al. (eds.)
SEAL 2006. LNCS, vol. 4247, pp. 400–407. Springer, Heidelberg (2006). https://
doi.org/10.1007/11903697 51

38. Liang, J.-J., Qu, B., Gong, D., Yue, C.: Problem definitions and evaluation criteria
for the CEC 2019 special session on multimodal multiobjective optimization. Com-
put. Intell. Lab. 353–370 (2019). Zhengzhou University, Technical Report 201912

https://doi.org/10.1007/978-3-030-12598-1_27
https://doi.org/10.1007/978-3-319-15892-1_8
https://doi.org/10.1007/11903697_51
https://doi.org/10.1007/11903697_51

Empirical Analysis of the Dynamic
Binary Value Problem with IOHprofiler

Diederick Vermetten1(B) , Johannes Lengler2 , Dimitri Rusin3 ,
Thomas Bäck1 , and Carola Doerr3

1 LIACS, Leiden University, Leiden, The Netherlands
d.l.vermetten@liacs.leidenuniv.nl

2 ETH Zürich, Zürich, Switzerland
3 Sorbonne Université, CNRS, LIP6, Paris, France

Abstract. Optimization problems in dynamic environments have
recently been the source of several theoretical studies. One of these prob-
lems is the monotonic Dynamic Binary Value problem, which theoret-
ically has high discriminatory power between different Genetic Algo-
rithms. Given this theoretical foundation, we integrate several versions
of this problem into the IOHprofiler benchmarking framework. Using this
integration, we perform several large-scale benchmarking experiments to
both recreate theoretical results on moderate dimensional problems and
investigate aspects of GA’s performance which have not yet been studied
theoretically. Our results highlight some of the many synergies between
theory and benchmarking and offer a platform through which further
research into dynamic optimization problems can be performed.

Keywords: Evolutionary Algorithms · Benchmarks · Dynamic
Environment · Dynamic Binary Value

1 Introduction

Evolutionary and genetic algorithms (EAs, GAs) are an important family of
randomized optimization heuristics. In order to better understand the behavior
of these algorithms, we should take advantage of the wide range of perspec-
tives from which they have been studied, including theoretical runtime analysis,
systematic benchmarking studies, and practical experience. While each of these
domains offers its own viewpoint, these should not stay isolated but rather ben-
efit from and strengthen each other.

In the last years, there has been a substantial amount of theoretical work
on two seemingly unrelated situations: optimization of monotonic functions [8],
and optimization in dynamic linear environments [5,13] like dynamic binary
value [11]. For both of these topics, theoretical analysis shows that even among
simple EAs, performance can dramatically differ. Hence, these situations have
high discriminative power between different EAs. To give a flavour of the theo-
retical results, we highlight two specific results here:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 20–35, 2024.
https://doi.org/10.1007/978-3-031-70068-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_2&domain=pdf
http://orcid.org/0000-0003-3040-7162
http://orcid.org/0000-0003-0004-7629
http://orcid.org/0009-0007-3316-0480
http://orcid.org/0000-0001-6768-1478
http://orcid.org/0000-0002-4981-3227
https://doi.org/10.1007/978-3-031-70068-2_2

Analysis of Dynamic Binary Value Problem 21

1. The (1 + 1)-EA with mutation rate 1/N finds the optimum of the dynamic
binary value environment in time O(N log N), while the same algorithm with
mutation rate 2/N needs exponential time [13].

2. The (1 + 1)-EA with mutation rate 1/N finds the optimum of every mono-
tonic function in time O(N log2 N) [10], while the (μ + 1)-EA with the same
mutation rate and large population size μ needs exponential time on some
hard instances [15].

These results illustrate the strengths, but also the limitations of theoretical anal-
yses. They can identify interesting differences between similar algorithms, and
may be able to prove results on whole classes of benchmarks like all monotonic
functions. Moreover, they are able to provide a deep understanding of the given
situation. On the other hand, they are often limited to rather simple algorithms,
and to asymptotic statements like “O(N log N)” or “exponential”. Thus they
leave important gaps that can be filled with systematic benchmarking studies.

In this paper we provide such a benchmarking study for two aforementioned
situations of monotonic and of dynamic linear environments. To this end, we
have several contributions:

– We develop practical variants of the theoretical benchmarks that have been
used for runtime analyses. This requires non-trivial modifications, as the the-
oretical variants are not suited for efficient evaluations, see Sect. 1.2.

– We have integrated them into IOHexperimenter [22], a module of the open-
source IOHprofiler [4] project that allows general access to the new bench-
marks in a framework where they can be easily used to test other iterative
optimization algorithms. Part of this integration is a generic extension of
IOHexperimenter to support dynamic environments.

– We run a systematic evaluation of a large class of algorithms on the new
benchmarks, identifying the parameters which are generally most crucial for
the performance on these benchmarks.

– We investigate several of the theoretical results in a wider context, asking
how big the effects are for small dimensionality N , how sensitive they are for
other parameter settings and how well they transfer to modifications of the
algorithms.

Since this paper brings together many different benchmarking aspects, we
discuss them in more detail in the following sections.

1.1 Dynamic Environments

As mentioned, we have extended the IOHprofiler framework [4] to support
dynamic environments, i.e., environments in which the fitness function f can
change over time. In our experiments, whenever the environment changes, we
re-evaluate the population with respect to the new environment, to avoid com-
paring fitnesses from different environments with each other. However, the imple-
mentation also supports keeping the old fitness values.

22 D. Vermetten et al.

Dynamic environments can occur in various ways through a range of appli-
cations [1]. For example, part of the problem description may be uncertain or
become only available over time [20,21]. Other work studies if algorithms are
able to track slowly moving optima [3,6,7,16,17]. Our work is based on dynamic
linear functions [5,11,13] and the dynamic binary value function [11,12], which
maintain the same global optima and were motivated by shifting training data
for a machine learning system, especially in the context of co-evolution [11]. This
can also be seen for example as a simplified case of algorithm configuration, where
different parameters contribute more on some instances than others [9].

1.2 Theory-Inspired Benchmarks

In recent years, there has been increasing interest and demand for composing a
problem suite with theoretical benchmarks that are suitable for empirical test-
ing. We provide a class of such benchmarks, based on two ideas from theory:
dynamic binary value for dynamic environments and the HotTopic function as
an instance of a hard monotonic function.

The dynamic binary value function DBV is based on the static linear binary
value function BV : {0, 1}N → R;BV(x) =

∑N
i=1 2i−1xi, which computes for a

bit string x the integer encoded by x in binary representation. In the dynamic
setting, we use the same set of weights, but shuffle them via a random permu-
tation. Note that the same permutation is applied for all strings that are eval-
uated in the same environment. Hence, every environment is given by a linear
function with positive weights. In particular, all environments share the all-one
string as their common global optimum, which gives the optimization process a
clear objective: it should produce solutions which are as close as possible to the
invariant global optimum. Moreover, the functions are never deceptive in any
coordinate: whenever we flip a zero-bit into a one-bit, then the fitness increases
in all possible environments. This ensures that the benchmark is feasible and
can be solved efficiently by some algorithms and parameter configurations, but
not by all. This yields the high discriminatory power of the benchmark.

Practically, the BV function can not easily be implemented because the
weights are so large that they cause numerical problems. We do provide an
implementation via a lexicographic comparison, but since this requires an app-
roach that is not compatible with the usual framework of fitness functions, it is
less well-suited as a module to be used by other researchers. Instead, we use the
observation from [11] that DBV can be obtained in the limit from dynamic lin-
ear functions where we draw all weights independently from some heavy-tailed
distribution. In this work, we consider the Uniform, Power-of-two (with a maxi-
mum power) and capped Pareto distributions, and compare them to the version
based on lexicographic comparison.

Moreover, our implementation leaves the freedom to either change the envi-
ronment every generation, or to change it less frequently. This also gives a way
to test a function similar to the HotTopic function introduced in [14] (named
HotTopic in [8]). This function has served an important role as theoretical
benchmark [8,15], but it is forbiddingly slow to evaluate practically. However, it

Analysis of Dynamic Binary Value Problem 23

has been pointed out in [12] that HotTopic may be approximated by a dynamic
linear function in which the environment changes every εn generations, for some
constant ε.

Thus, we provide several practical implementations of theoretical bench-
marks. We empirically validate our implementations in Sect. 3 by testing whether
previous theoretical analyses can be recovered empirically, and find generally a
good qualitative agreement.

1.3 Theoretical Results on the Benchmarks

Here we review very briefly the known theoretical results on the related bench-
marks. For both DBV and HotTopic, the (1 + 1)-EA is very well understood.
For this simple algorithm, the main parameter is the mutation rate. For both
benchmarks, there is a sharp phase transition in the mutation rate χ/N . There
is a constant χ0, which is χ0 = 2.13 . . . for DBV [12] and χ0 = 1.59.. for
HotTopic [8,14]. If χ < χ0 then the (1 + 1)-EA finds the optimum in time
O(N log N), otherwise it needs exponential time in N . The same dichotomy also
holds for other dynamic linear functions, where all weights are drawn indepen-
dently and identically distributed. The threshold χ0 depends on the distribu-
tion and is always larger than the threshold 1.59.. for DBV. For example, the
threshold is χ0 = 2 for an exponential distribution and χ0 = (2 − p)/(1 − p) for
a geometric distribution with parameter p.

For HotTopic, it is known that this result generalizes to a large number
of algorithms, including the (1 + λ)-EA, the (μ + 1)-EA, the (1 + λ)-fEA, the
(μ + 1)-fEA, all without crossover, and the (1 + (λ, λ))-GA, where for the last
three the parameter χ must be substituted appropriately [8]. However, all these
results come with an important caveat: they hold only sufficiently close to the
optimum. This may seem like a harmless condition as usually the hardest part
of optimization is close to the optimum. However, this is not generally the case
for HotTopic. It was shown in [15] that for (μ + 1)-EA without crossover, the
hardest part of HotTopic is not around the optimum, but that the algorithm
instead gets stuck in a region “in distance εn” from the optimum, even though
it would efficiently find the optimum if started in distance εn/2 from the opti-
mum [15]. This shows abstractly the surprising fact that progress from εn to
εn/2 is harder than from εn/2 to 0. However, the ε could not be explicitly speci-
fied. One advantage of our benchmarking approach is that we are able to replace
the abstract value of ε by some concrete numbers, see Sect. 3.

Another interesting result on HotTopic is that crossover helps dramatically
close to the optimum: for every mutation rate χ there is μ0 such that the (μ+1)-
GA using either mutation or crossover, each with probability 0.5, is efficient
close to the optimum. It remained an open question how the behavior is further
away from the optimum, where there are the opposing effects of being (counter-
intuitively) in a harder region of the search space, and having the benefits of
crossover.

For DBV, results other than for the (1 + 1)-EA are a bit more sparse. The
benchmark has been introduced in [11]. Experimental results for a very limited

24 D. Vermetten et al.

set of parameters indicated that also here the hardest part of optimization is
not always next to the optimum, at least not for the (2 + 1) EA and (3 + 1) EA
without crossover. For the (2 + 1) EA this could also be shown formally in [12].
However, it can be ruled out that the reason is the same as for the (μ+1)-EA on
HotTopic, since the latter effect crucially depends on the fact that HotTopic
functions maintain the order of weights for some period of time [11]. So even
though there is a similar surprising behavior, the reasons must be different.

1.4 IOHprofiler

IOHprofiler [4] is a modular toolbox for benchmarking iterative optimization
heuristics. It provides access to a variety of problem suites through a common
interface in its IOHexperimenter [22] module. This allows for a flexible bench-
marking pipeline, which includes data logging. This data can be processed and
visualized in the IOHanalyzer [25] module.

By providing access to a wide variety of problem types with common logging
infrastructure, IOHprofiler has enabled a range of different research questions,
both from a theoretical and practical perspective. For example, recent works have
shown that the star-discrepancy optimization problem provides a challenging
environment for a large set of optimization heuristics [2], or created environments
for competitions on several sets of submodular optimization problems [19].

2 Experimental Setup

2.1 DBV in IOHexperimenter

Our experimental setup is built upon the integration of several versions of the
Dynamic BinVal problem class into the IOHexperimenter environment. To han-
dle the dynamic nature of the problem, a way of progressing its internal state
(importance of each variable), a step-function has to be added to the problem
itself. Note that this means that in practice, the algorithm determines when
the problem’s state is updated, which is needed since the problem itself has no
ability to detect when an evaluation belongs to a new generation. Note that the
internal structure allows for problems with pre-determined update steps, but the
problems we use in this paper all rely on a per-generation update controlled by
the algorithm.

The Dynamic BinVal problem is based on the Binary Value problem defined
via BinVal: {0, 1}n → R;x �→ ∑n

i=1 2i−1xi. In the dynamic version, we draw
a permutation π for each generation and compute all fitnesses with respect to
the permuted weights DBV(x) = DBVπ(x) =

∑n
i=1 2π(i)−1xi. This version of

the problem can not be implemented directly, as the weights would become too
large for the standard datatypes used within IOHexperimenter. As such, we
follow the observation from [12] and draw weights independently from different
distributions instead. In this context, we consider three distinct distributions:

Analysis of Dynamic Binary Value Problem 25

Algorithm 1. Outline of the used Genetic Algorithm.
1: Inputs: Parameters from Table 1, function f to maximize
2: procedure GA
3: Initialize Population P � At random or with fixed distance to optimum
4: while termination criterion not met do
5: if Update required then � Based on update frequency
6: f → step()
7: end if
8: for i in number of offspring do
9: Perform crossover with probability pc, creating Oi � Uniformly

10: if No crossover or Mutation after cross disabled then
11: nflip ← max(nmin,Binom(χ

N
, N))

12: Flip nflip bits to create Oi

13: end if
14: end for
15: Evaluate O (and P if required) � Rank or evaluate based on function
16: P ← (P; O) � Plus or comma selection
17: end while
18: end procedure

– Uniform: Uniform Weights from U(0, 1)
– PowersOfTwo: Uniformly from the set {2i : 1 ≤ i ≤ 31− log2(N)} (to avoid

overflow of the summed value)
– Pareto: Pareto distribution with a limited upper bound ((1−U(0, 0.75))−10,

where 0.75 is chosen to avoid overflow of the summed value)

In addition to these 3 problem variants, we can also consider a ‘true’ version
of the DBV (Ranking) by not implementing an evaluation, but a ranking func-
tion instead. This ranking function sorts the given individuals lexicographically
according to the order of the weights, and thus does not require using the large
powers of 2 directly. While this version is true to the problem, it requires any
used optimization algorithm to be modified from objective-value evaluations to
this ranking scheme, and thus does not give good modularity.

The integration of the 4 versions of DBV into IOHexperimenter has the
additional benefit that we can utilize several transformation methods to vali-
date algorithmic invariances. These transformations, originally proposed in the
context of the ‘PBO’ suite, include changing the target string with a random
bitstring, swapping the order of variables and translating/scaling the returned
objective value. In our experiments, when we refer to a problem instance, this
corresponds to a function combined with a setting of these transformations.

2.2 Used Algorithm

In this paper, we make use of a standard GA which is heavily parameterized to
allow for a variety of experimental setups. An outline of this algorithm is given
in Algorithm 1, while the available parameters are indicated in Table 1. For
our termination criterion, we use a combination of function evaluation budget
(100 · N by default) and optimality (to save computation time).

26 D. Vermetten et al.

Table 1. Parameters available in the used GA version (top) and parameterization
of the DBV functions (bottom). In our experiments, we use the default value unless
stated otherwise.

Parameter Range Default Notes

Mutation factor χ [0, N] 1 Mutation rate is χ
N

Number of offspring λ [1, ∞) 1

Number of parents μ [1, ∞) 1

Selection plus, comma plus

Crossover rate pc [0, 1] 0

Dynamic frequency [0, ∞) 1 Number of generations

Minimum bits flipped nmin [0, N) 0

Mutation after crossover yes, no yes Mutate crossover-result

Function Version Rank, Uniform Power2, Pareto Rank Rank=lexicographic

Instance [0, ∞] [1, 25] Determines transformations

Dimensionality N [1, ∞] 1000

2.3 Experimental Setup and Reproducibility

Throughout our experiments, we make use of N = 1000, and perform indepen-
dent runs on 15 different instances for each configuration. Each run is given
a budget of 1000 · N evaluations. Our full experimental setup, including the
data collection, processing and visualization, is available on our Zenodo repos-
itory [24]. This repository also includes the full datasets from our experiments
in an IOHanalyzer-compatible format.

3 Results

3.1 Exploration of Used Algorithms

For our first set of experiments, we perform a coarse grid sampling of our param-
eter space to identify which factors most impact the algorithm’s performance.
For this setting, performance is measured as the percentage of correct bits after
100 · N evaluations. To analyze the resulting data, we make use of the SHAP
approach [18], which is a popular approach in the context of global explain-
ability [23]. The resulting SHAP-values are shown in Fig. 1, sorted from most
impactful (top) to least (bottom). In this figure, the color of each dot corresponds
to the chosen option, e.g. for selection blue corresponds to a comma while red
corresponds to a plus-strategy.

While the grid used to create Fig. 1 is rather coarse, it does provide an initial
overview of the components of the algorithm which influence the selected per-
formance measure in the most drastic ways. In particular, we notice that using
a comma selection greatly deteriorates the ability to get close the the optimum,
and that using a low number of parents and a large number of offspring is bene-
ficial in this experimental setting. This generalizes the theoretical result in [15],

Analysis of Dynamic Binary Value Problem 27

Fig. 1. Dimenionality 1000, SHAP-values for each of the varied parameter settings. For
selection, red corresponds to plus-selection. For the function version, red corresponds
to the rank-based version. (Color figure online)

where it was identified as a problem of the (μ + 1)-EA that the population is
exchanged only slowly, and the family trees within the population become deep.
Those properties are generally mitigated if the ratio of offspring versus parents
is large. Also of note is the fact that the version of the function has quite some
impact on the algorithm’s performance, while the instantiation of the function
is negligible. This suggests that the used GA is invariant to the used instance
transformations, but not to the used weight-distribution.

3.2 Mutation in 1+1

For our second experiment, we focus on the (1+1) GA and study the impact of
mutation and the used function version on its performance. To achieve this, we
vary the mutation rate between 0 and 6 (with increments of 0.1), as well as the
minimum number of mutated bits between 0 and 1. This is repeated for each
version of the DBV, with 25 independent runs of budget 1000 · N .

In Fig. 2, we show the number of function evaluations required to reach the
optimum for each of the selected GA versions. In Fig. 3 we plot the fraction of
correct bits after the evaluation budget has been exhausted. A dotted black line
highlights the mutation rate of 1.6, which is the theoretical threshold for the
ranking-based version, the solid blue line, in the case where it is allowed that
mutation flips zero bits (the parent is duplicated). Also, theory predicts that
there are no other versions with smaller thresholds [13]. Indeed, both theoretical
predictions are confirmed in Figs. 2 and 3.

When comparing the different versions of DBV in Fig. 2, we observe quite
a stark difference in algorithm performance between the Uniform-based DBV
and the other settings. While for low mutation rates all considered versions
result in the same behavior, which results from flipping 1 bit, which is always

28 D. Vermetten et al.

Fig. 2. Dimensionality 1000, number of evaluations (log-scaled) needed to reach opti-
mum given different mutation rates.

accepted if it was a zero-bit and rejected otherwise, with larger mutation rates
the uniform problem becomes visibly easier than the rest. This is visible both in
the number of evaluations required to reach optimality, as well as in the number
of correct bits after the budget threshold is reached (Fig. 3). We also see that
both the PowersOfTwo and Pareto are very similar to the Rank-based DBV
(with a slight preference for Pareto), so they seem to both be suitable to model
the problem when function-evaluation-based approaches are required.

To understand the dashed lines, we observe that in the (1 + 1) case, gen-
erations have no effect if the parent is duplicated (except for counting as an
idle step). Hence, we should consider the number nflip of flipped bits condi-
tioned on flipping at least one bit. A bit counter-intuitively, the expectation
E[nflip | nflip > 0] goes down by overwriting the case nflip = 0 with nflip = 1,
which means that this change decreases the number of flipped bits in the condi-
tional space. Effectively this change decreases the mutation rate, which is why
the threshold is shifted to the right.

Figure 3 shows that the effect of a large mutation rate is quite dramatic.
For example, for a mutation rate of 3/n the algorithm is only able to set less
than 80% of the bits correctly after a very generous budget of 1000N . This is
still a large distance from the optimum. Even with mutation rate of 3/n, the
algorithm has a chance of roughly 15% (for nmin = 0) to flip exactly one bit
in a mutation, compared to 37% for mutation rate 1/n. Since those are the
mutations that bring most progress in this range, the poor performance can not
be explained by the moderate slowdown (factor 2-3) that larger mutation rates
entail on other benchmarks like OneMax. The large effect shown in Fig. 3 has
not been quantified by theory before.

While the heavy aggregation of Figs. 2 and 3 shows the final performance of
the considered algorithm configurations, it does not show the full behavior of
the underlying runs. Since we recorded the full performance trajectory, we can

Analysis of Dynamic Binary Value Problem 29

Fig. 3. Dimensionality 1000, relative number of correct bits after the budget (1000
times N) is used, given different mutation rates.

load this data into IOHanalyzer to generate more fine-grained visualization, such
as ERT curves [25] illustrated in Fig. 4. The ERT gives some estimates for the
expected running time under some pessimistic assumptions on the running time
in which the optimum is not reached [25]. It tends to overestimate the actual
running times [11]. Again, this shows how suddenly the performance drops at a
given level, and how little is to be gained by increasing the computation budget.

3.3 Adding Multiple Parents: Crossover

For our next set of experiments, we investigate the effects of crossover (uniform)
on the performance of the (μ+1)-GA. We vary μ in {2, 3, 4, 8, 16}, and crossover
rate in {0, 0.5, 0.9}. In addition to the crossover rate, we change whether an
individual resulting from crossover still undergoes mutation or not. Mutation is
not applied after crossover in the previous theory results.

To illustrate the impact of the different versions of crossover, we plot the num-
ber of evaluations until optimality for a given crossover rate 0.5 in Fig. 5. In this
figure, we can see a transition between these two mechanisms, where for lower
mutation rates it is beneficial to still perform mutation after crossover, while
disabling mutation once crossover is performed allows for more stable behavior
at higher mutation rates. One perspective on this is that there is something like
an optimal amount of mutation. If the mutation rate is smaller, then it may be
beneficial to add mutation also after crossover. If the mutation rate is larger,
then it is beneficial to not apply it in every generation.

30 D. Vermetten et al.

Fig. 4. Dimensionality 1000, some selected ERT curves for different mutation rates
(rank-based function).

A similar trade-off can be observed in Fig. 5 for population sizes. While an
increase in population size requires more function evaluations per iteration (each
individual needs to be re-evaluated to perform selection), it also improves the
ability of the algorithm to work with much higher mutation rates.

3.4 Difficulty of the Search Stages

A remarkable theoretical result is that the hardest region for optimization is not
always around the optimum. This has been shown theoretically for the (2+1) EA
on DBV [12] and for the (μ + 1) EA with large constant μ on HotTopic [15].
Notably, the underlying cause is very different in both settings. In this section we
want to investigate how relevant this phenomenon for DBV in practice, which
has also been shown in some narrow-focused experiments in [11], for example for
the (3 + 1) EA for mutation rate 2.7/N . To this end, we seeded the algorithm
with bit strings of a given Hamming distance from the optimum (fraction of
correct bits). By seeding the algorithm with strings ranging from 0.5 to 0.95 and
measuring the time needed to improve this fraction by 0.05, we get an overview
of the relative hardness of each stage of the optimization procedure. The results
of this experiment are visualized in Fig. 6.

In our experiments, we could not reproduce the finding that the hardest
region was in some intermediate range. Comparing with the experiments in [11],
we suspect that this effect only shows for very large budgets. Since we want
to systematically explore different parameter setting in this paper, the required
budget becomes forbiddingly large. We believe our results do show that the effect

Analysis of Dynamic Binary Value Problem 31

Fig. 5. Dimensionality 1000, number of evaluations (log-scaled) needed to reach opti-
mum, on the rank-based functions, given different number of parents and mutation
after crossover setting. Crossover probability is 0.5.

may not be very common in practical setting, and we leave it to future work to
nail down the difference further. However, in Fig. 6 we see another interesting
effect. As for the mutation rate, the number of parents has a trade-off between
different regions of the search space. We generally see that larger population
sizes are beneficial in “easy” regions of the search space, but are detrimental in
“harder regions”. This suggests that in the setting of dynamic optimization and
DBV, there may not be a fixed population size that is optimal throughout all
phases of the optimization process.

3.5 HotTopic: Impact of Update Frequency

While the DBV problem is defined as a fully dynamic problem where the envi-
ronment changes every iteration of the algorithm, we may also change it less fre-
quently. This has been conjectured to be related to the well-studied HotTopic
problem, which is a static monotonic problem, but where different regions of the
search space behave like different linear functions.

To illustrate the impact of the function update frequency, we again show
the number of evaluations required by our (μ, 1)-GA with different settings of
μ. The results of this experiment, where the crossover rate is 0.9 and mutation
after crossover is enabled, can be seen in Fig. 7. From this figure, we observe that
for μ > 1 the difficulty of the problem increases with the update frequency up
until some point, after which the problem difficulty drops again. With a large

32 D. Vermetten et al.

Fig. 6. Dimensionality 1000, number of evaluations (log-scaled) needed to improve the
hamming distance to the optimum solution by 50, on the rank-based functions, given
different number of parents (blue = 2, green = 3, yellow = 4) and mutation rate (plot
titles). Crossover probability is 0. (Color figure online)

enough update frequency, the problem becomes essentially static, at which point
the problem collapses to a static binary value problem. While this function is by
folklore conjectured to be the hardest static linear function, the class of static
linear functions is rather easy, and this includes the static binary value problem.

Interestingly, the intermediate range where the problem is hardest may cor-
respond to HotTopic functions, where informally the “environment” changes
after εN generations, where ε is a small constant. There is a remarkable analogy
to the theoretical results in [15]. There it was also shown that an intermedi-
ate regime is the hardest, but not for the update frequency, but rather for the
distance from the optimum. However, the two quantities may be related in this
context. In the HotTopic analysis, the crucial observation was that if the weight
structure is stable, then some bad family tree structure may evolve temporarily.
However, in some distance from the optimum, improvements are found while this
bad family tree structures dominate. Similarly, here the same bad family tree
structures might evolve while the environment is constant, and new offspring
may evolve while these bad structures are around. We hope that this hypothesis
gives inspiration for future work, be it empirically or theoretically.

Analysis of Dynamic Binary Value Problem 33

Fig. 7. Dimensionality 1000, number of evaluations (log-scaled) needed to reach opti-
mum, on the rank-based functions, given different number of parents, mutation rates
and mutation after crossover setting (pc = 0.9). The x-axis corresponds to the frequency
at which the weights are updated (in number of generations)

4 Conclusions and Future Work

Through a varied set of empirical experiments, we have highlighted several ways
in which benchmarking can be used to build upon results from theoretical analy-
sis in sometimes surprising ways. By integrating different versions of the Dynamic
Binary Value problem into the IOHprofiler platform, we were able to compare
several versions of DBV, highlighting that sampling-based versions, specifically
based on the Pareto distribution, lead to similar performance as the original
DBV formulation, without requiring impractically large weights.

To highlight the potential of the integration of DBV into different bench-
marking pipelines, we analyzed the impact of a variety of algorithmic modifi-
cations to a standard GA, which allows for the exploration of research ques-
tions related to mutation rates, crossover methods and population sizes within
the same setup. Perhaps most intriguing from a theory perspective is the non-
monotone dependence on the update frequency in Fig. 7. For symmetry reasons,
the update frequency makes no difference for population size μ = 1. Hence, the
observation that a lower update frequency makes the problem harder must be
due to the structure of the population. It would be very interesting to understand
how the structure of the evolving populations depends on the update frequency,
and why a lower update frequency leads to more susceptible populations.

The experimental environment described in this paper can be further
extended to look at different kinds of dynamic environments or different algo-
rithmic ideas. Such new empirical studies might be used to determine interesting

34 D. Vermetten et al.

aspects of these problems to further analyze theoretically, leading to a positive
feedback loop between theory and practice.

Acknowledgments. This work was supported by CNRS Sciences informatiques via
the AAP project IOHprofiler. It was initiated at the Dagstuhl seminar 23332.

References

1. Branke, J.: Evolutionary optimization in dynamic environments, vol. 3. Springer
Science & Business Media (2012)

2. Clément, F., Vermetten, D., De Nobel, J., Jesus, A.D., Paquete, L., Doerr, C.:
Computing star discrepancies with numerical black-box optimization algorithms.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
1330–1338 (2023)

3. Dang, D.C., Jansen, T., Lehre, P.K.: Populations can be essential in tracking
dynamic optima. Algorithmica 78, 660–680 (2017)

4. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking
discrete optimization heuristics with IOHprofiler. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pp. 1798–1806 (2019)

5. Janett, D., Lengler, J.: Two-dimensional drift analysis: optimizing two functions
simultaneously can be hard. Theoret. Comput. Sci. 971, 114072 (2023)

6. Kötzing, T., Molter, H.: ACO beats EA on a dynamic pseudo-Boolean function.
In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.)
PPSN 2012. LNCS, vol. 7491, pp. 113–122. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32937-1 12

7. Lehre, P.K., Qin, X.: Self-adaptation can help evolutionary algorithms track
dynamic optima. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1619–1627 (2023)

8. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions.
IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)

9. Lengler, J.: Synergizing theory and practice of automated algorithm design for opti-
mization (Dagstuhl Seminar 23332). Dagstuhl Rep. 13(8), 46–70 (2024). https://
doi.org/10.4230/DagRep.13.8.46

10. Lengler, J., Martinsson, A., Steger, A.: When does hillclimbing fail on monotone
functions: an entropy compression argument. In: 2019 Proceedings of the Sixteenth
Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 94–102.
SIAM (2019)

11. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic envi-
ronments. Nat. Comput. 23(1), 1–15 (2022)

12. Lengler, J., Riedi, S.: Runtime analysis of the (μ+ 1)-EA on the dynamic binval
function. Evol. Comput. Comb. Optim. 12692, 84–99 (2021)

13. Lengler, J., Schaller, U.: The (1+1)-EA on noisy linear functions with random
positive weights. In: 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 712–719. IEEE (2018)

14. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb.
Probab. Comput. 27(4), 643–666 (2018)

15. Lengler, J., Zou, X.: Exponential slowdown for larger populations: the (μ+ 1)-EA
on monotone functions. In: Proceedings of the 15th ACM/SIGEVO Conference on
Foundations of Genetic Algorithms, pp. 87–101 (2019)

https://doi.org/10.1007/978-3-642-32937-1_12
https://doi.org/10.1007/978-3-642-32937-1_12
https://doi.org/10.4230/DagRep.13.8.46
https://doi.org/10.4230/DagRep.13.8.46

Analysis of Dynamic Binary Value Problem 35

16. Lissovoi, A., Witt, C.: Runtime analysis of ant colony optimization on dynamic
shortest path problems. In: Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation, pp. 1605–1612 (2013)

17. Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in
dynamic optimization. Algorithmica 78, 641–659 (2017)

18. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)

19. Neumann, F., et al.: Benchmarking algorithms for submodular optimization prob-
lems using IOHProfiler. CoRR abs/2302.01464 (2023). https://doi.org/10.48550/
arXiv.2302.01464

20. Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algorithms
in dynamic and stochastic environments. In: Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization, pp. 323–357 (2020)

21. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

22. de Nobel, J., Ye, F., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: IOHex-
perimenter: Benchmarking platform for iterative optimization heuristics. CoRR
abs/2111.04077 (2021). https://arxiv.org/abs/2111.04077

23. van Stein, N., Vermetten, D., Kononova, A.V., Bäck, T.: Explainable benchmarking
for iterative optimization heuristics (2024). arXiv preprint arXiv:2401.17842

24. Vermetten, D., Lengler, J., Rusin, D., Bäck, T., Doerr, C.: Reproducibility files and
additional figures (2024), code and data repository (Zenodo): https://doi.org/10.
5281/zenodo.10964455 Figure repository (Figshare): https://doi.org/10.6084/m9.
figshare.25592904

25. Wang, H., Vermetten, D., Ye, F., Doerr, C., Bäck, T.: IOHanalyzer: detailed per-
formance analysis for iterative optimization heuristic. ACM Trans. Evol. Learn.
Optim. 2(1), 3:1–3:29 (2022). https://doi.org/10.1145/3510426, https://doi.org/
10.1145/3510426, IOHanalyzer is available at CRAN, on GitHub, and as web-based
GUI, see https://iohprofiler.github.io/IOHanalyzer/ for links

https://doi.org/10.48550/arXiv.2302.01464
https://doi.org/10.48550/arXiv.2302.01464
https://arxiv.org/abs/2111.04077
http://arxiv.org/abs/2401.17842
https://doi.org/10.5281/zenodo.10964455
https://doi.org/10.5281/zenodo.10964455
https://doi.org/10.6084/m9.figshare.25592904
https://doi.org/10.6084/m9.figshare.25592904
https://doi.org/10.1145/3510426
https://doi.org/10.1145/3510426
https://doi.org/10.1145/3510426
https://iohprofiler.github.io/IOHanalyzer/

A Deep Dive Into Effects of Structural
Bias on CMA-ES Performance Along

Affine Trajectories

Niki van Stein1(B) , Sarah L. Thomson2 , and Anna V. Kononova1

1 LIACS, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
{n.van.stein,a.kononova}@liacs.leidenuniv.nl

2 Edinburgh Napier University, Edinburgh, UK
s.thomson4@napier.ac.uk

Abstract. To guide the design of better iterative optimisation heuris-
tics, it is imperative to understand how inherent structural biases within
algorithm components affect the performance on a wide variety of search
landscapes. This study explores the impact of structural bias in the
modular Covariance Matrix Adaptation Evolution Strategy (modCMA),
focusing on the roles of various modulars within the algorithm. Through
an extensive investigation involving 435 456 configurations of modCMA,
we identified key modules that significantly influence structural bias of
various classes. Our analysis utilized the Deep-BIAS toolbox for struc-
tural bias detection and classification, complemented by SHAP analysis
for quantifying module contributions. The performance of these config-
urations was tested on a sequence of affine-recombined functions, main-
taining fixed optimum locations while gradually varying the landscape
features. Our results demonstrate an interplay between module-induced
structural bias and algorithm performance across different landscape
characteristics.

Keywords: Structural Bias · benchmarking · performance analysis ·
algorithm behaviour

1 Introduction

In light of the rapid advancement of the field of heuristic black-box optimisa-
tion [1], a remarkable array of algorithms is now available to practitioners. The
behaviour of most of these algorithms strongly depends on the settings of numer-
ous hyperparameters, exploding the number of options further and making the
choice of a well-performing algorithm configuration for a specific (real-world)
problem even harder.

And yet, we still do not understand these algorithms well enough. One thing
we can do is screen (a family of) algorithms or algorithm configurations against
some unwanted characteristics. Although it is unrealistic to examine all settings
across all characteristics, initial efforts are essential. Such screening is expensive
c© The Author(s) 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 36–50, 2024.
https://doi.org/10.1007/978-3-031-70068-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_3&domain=pdf
http://orcid.org/0000-0002-0013-7969
http://orcid.org/0000-0001-6971-7817
http://orcid.org/0000-0002-4138-7024
https://doi.org/10.1007/978-3-031-70068-2_3

A Deep Dive Into Effects of Structural Bias 37

but it not only helps eliminate ineffective configurations but also aids in elu-
cidating the internal dynamics that impedes performance. Modular algorithm
designs [2,3], where each operator option can be selected independently of the
choice for other operators, are particularly well-suited for such analyses.

While in many cases, the unwanted characteristics only manifest within spe-
cific function landscapes (and the correspondence between these landscapes and
characteristics can be unknown), it is hypothesised that at least some character-
istics can be assessed in general. One such aspect that has not been investigated
sufficiently is structural bias (SB) [4] and especially its precise causes and influ-
ence on the algorithm’s performance. SB is the algorithm’s inherent limitation in
locating optima in certain regions of the domain independently of the objective
function’s landscape. It stems from the iterative application of a limited set of
algorithm operators and their interplay [4]. While some families of algorithms
have been screened to some extent [2,5], no clear performance implications have
been established so far. Unfortunately, even though such screening is done for
very large algorithm configuration spaces, it necessarily remains limited due to
the need to discretise numerous continuous hyperparameters, thus potentially
overlooking some interactions. This paper is no exception (as we set the contin-
uous parameters to a fixed value), however, its experimental design is structured
to be as comprehensive as computationally feasible.

This paper aims to explore the impact of SB on algorithm performance by
addressing the following questions: 1. How does the performance of structurally
biased versus unbiased configurations change on sequences of functions where the
landscape progressively shifts from rugged to smooth? 2. How does the location
of the optima within the domain1 of these functions affect the performance
depending on the class of structural bias? The complete methodology of our
investigation is summarised in Fig. 1.

2 Background

2.1 Modular CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [6] is a robust,
state-of-the-art evolutionary algorithm used for solving non-linear, non-convex
optimisation problems [1]. Central to its approach is the adaptation of a covari-
ance matrix which determines the shape and scale of the search distribution,
effectively learning the landscape of the problem space. This self-adaptive mech-
anism allows the algorithm to balance exploration of the search space with
exploitation of known good regions, making it particularly effective in a wide
range of practical applications, from machine learning parameter tuning to engi-
neering design optimisation. The Modular CMA-ES (modCMA) [3] is a Python
and C++ modular implementation of the CMA-ES algorithm and many of its
variants, with module options and hyper-parameters that can be switched on
and off independently of each other. In this work we investigate the full scale

1 This paper focuses on box-constrained minimisation problems.

38 N. van Stein et al.

Fig. 1. The summary of the overall methodology used. Full details of all steps are
provided in the corresponding sections. Green blocks highlight the contributions of
this paper. (Color figure online)

of these module options, given in Table 1, leading to a total of 435 456 different
CMA-ES configurations.

2.2 Structural Bias

Structural bias in iterative optimisation heuristics [4,7] refers to the tendency of
certain algorithms or configurations of algorithms to favour specific regions of
the search space over others, despite the absence of initial information indicat-
ing where high-quality solutions might reside. Ideally, an optimisation algorithm
should explore the defined domain boundaries without preconceived preferences,
allowing the data collected from sampled points to guide its progression towards
areas with optimal objective function values. However, in practice, some algo-

Table 1. Considered modules of modCMA and their configurations.

Module name Shorthand Domain

Covariance adaptation covariance {false, true}
Elitism elitist {false, true}
Active update active {false, true}
Sequential selection sequential {false, true}
Base sampler base sampler {Gaussian, Halton, Sobol}
Orthogonal sampling orthogonal {false, true}
Threshold convergence threshold {false, true}
Sample Sigma sigma {false, true}
Bound correction bound correction {off, saturate, mirror, COTN, toroidal, uniform}
Mirrored sampling mirrored {off, mirrored, mirrored pairwise}
Recombination weights weights option {default, equal, λ-decay}
Step size adaptation step size adaptation {CSA, PSR, TPA, MSR, XNES, MXNES, LPXNES}
Local restarts local restart {none, IPOP, BIPOP}

A Deep Dive Into Effects of Structural Bias 39

rithms inherently exhibit a preference, such as a bias towards the centre of the
domain, which can limit their effectiveness in universally discovering the best
solutions across the entire feasible domain. This phenomenon, known as struc-
tural bias, can compromise the algorithm’s ability to perform well in general situ-
ations. Detecting structural bias is hard, as the objective function and behaviour
of the algorithm are always entangled. Using a special objective function (f0),
defined as a completely random fitness landscape, allows one to detect structural
bias using statistical tests as introduced in [8]. There are a few related works on
structural bias that either introduced a different detection method, like the gen-
eralised signature test [9], or analysed different groups of algorithms regarding
SB [10–12].

2.3 SHAP

Shapley Additive Explanations (SHAP), as introduced by Lundberg et al. [13], is
a popular explainable AI (XAI) method for attributing features in model predic-
tions. SHAP quantifies the impact of a specific feature, f , by comparing model
outputs with and without f . The difference in outputs, averaged across models,
defines the SHAP value, which can be positive, negative, or zero, representing
the feature’s marginal contribution.

However, SHAP’s application to large datasets is computationally intensive.
To address this, the TreeSHAP method [14] employs tree-based model struc-
tures to streamline computations, using approximation techniques to enhance
efficiency in scenarios with extensive feature sets. In this work, we use this XAI
method to compute the contributions of different module settings towards spe-
cific structural bias classes. This is done by training XGboost regression models
on the one-hot-encoded algorithm configurations as input and the predicted SB
class label from Deep-BIAS as output. Using these models we can approximate
the SHAP values of each module option per configuration. Note that SHAP is
one way of approximating these contributions, there are other methods such
as f-ANOVA that can also be deployed. However, SHAP has the advantage of
providing also local explanations.

3 Structural Bias Classification

To assess the structural bias (SB) and in the end the interplay of structural
bias with performance depending on landscape features and the location of the
optima, the first step is to detect and classify structural bias per algorithm config-
uration. We conduct a configuration sweep for modCMA [3] using the modcma
package in Python. In this extensive analysis, we use a full grid of all of the
categorical module options in modCMA, as specified in Table 1. This resulted in
a total of 435 456 configurations. For each of these configurations the population
sizes are fixed to μ = 5, λ = 20. The analysis in this paper is broader and more
in-depth than previous analysis of structural bias for modCMA [12] in the sense
that it contains not just a subset of modCMA module options but the complete

40 N. van Stein et al.

set of all categorical options (and a limited set of continues parameters). In addi-
tion, in this work we propose an explainable AI approach, similar to the approach
used in [5], to analyze the different contributions of different module options to
structural bias and to specific types of structural bias, leading to new insights.
In [5], the XAI approaches was used to analyse the contributions of modules and
hyper-parameters on the performance on different function landscapes, here we
use it to assess the influence of modules on structural bias, and differently from
the approach in [5] we one-hot-encode all categorical module options to see how
each option affects the structural bias individually. We also used the approach
to look at second order interactions in relation with structural bias, however,
these second order interactions were marginal and we therefore do not include
these results in this work.

3.1 Methodology

For the assessment and classification of SB, we used the BIAS toolbox [8], avail-
able on [15]. The toolbox provides an SB detection mechanism based on the
aggregation of the results of 39 statistical tests but also a Deep-learning app-
roach [16] to detect and classify SB based on distributions of final points (found
minima) of many independent runs on f0. The three bias types we are looking
at in this work are: SB towards the centre of the search space, towards the
bounds, and uniform (no SB detected). SB is detected by first running an
optimisation algorithm several times on the random objective function f0. Here
we used 100 independent runs with 10.000 function evaluations as budget per
run to make the first classification of SB using the Deep-BIAS toolbox. Due to
its speed and classification accuracy, we leveraged the Deep-BIAS model instead
of the statistical methods in the BIAS toolbox. The Deep-BIAS method classifies
the distribution of (in this case 100) final best points found by the algorithm.
We do have to note that the Deep-learning model is not a perfect predictor. We
therefore also verify the top 20 configurations per SB class, used later in our
experiments, by visual inspection of the final point distributions.

Once we have classified each of the configurations automatically, we can use
the confidence of each SB class to calculate approximate Shapley values using the
TreeSHAP algorithm [14]. The calculated SHAP values for each module option
per structural bias class are shown in Fig. 2. We can use these SHAP values to
gain insights into which module options contribute to what kind of structural
bias.

3.2 Module Contributions to SB

Based on the output of the Deep-BIAS package, most of the considered con-
figurations of modCMA (82%) are classified as Centre biased, 9% as unbiased
(uniform) and 5% as biased towards the bounds. The remaining fraction (3%)
was classified as discretization bias, however after visual inspection, those con-
figurations were mostly misclassified and should be either centre or unbiased and
therefore we did not take them into account.

A Deep Dive Into Effects of Structural Bias 41

Fig. 2. SHAP values showing module contributions to (from left to right) no structural
bias, centre bias and bounds bias classes, respectively. The baseline prediction of these
classes are 0.094, 0.559, 0.054 respectively, meaning that a SHAP value of 0 would
result in the given baseline class probability.

Given the SHAP values from Fig. 2 and taking into account the base value
(mean classification confidence of each class), we see a few interesting patterns.
Overall, the covariance, elitism, threshold, bound correction and step size adap-
tation modules mostly influence the structural bias classification. We can also
observe that in general, option contributions are negatively correlated between
centre SB and bounds SB, in other words, when a module option causes centre
SB it lowers the probability of bounds SB and vice versa. Bounds SB and uni-
form (no SB) seem roughly aligned except for the bound correction methods. Let
us discuss the major modules involved in centre, bounds and unbiased below.

Elitism when turned on, reduces centre SB according to the SHAP data.
Since centre SB is the majority class, Elitism seems to reduce SB in general.
When looking at the inner workings of modCMA and also the objective function

42 N. van Stein et al.

f0, this could be explained due to the fact that with elitism the algorithm is
more likely to get stuck in a (local) minimum on f0 early in the optimisation run,
effectively dampening the structural bias effects. Elitism by itself is however very
likely not to be responsible for any structural biased behaviour. It is important
to note that the SHAP values represent a correlation and not a causation.

Threshold convergence when turned on has a similar effect as elitism
(though less profound). Again, threshold convergence is likely not causing any
biased algorithm behaviour but amplifies (when turned off) or dampens (when
turned on) the SB effects.

Bound correction saturate shows to have a large effect on bounds SB,
which makes perfect sense and is in line with other research on structural bias
[12]. Upon close inspection, all configurations that were classified with high con-
fidence as bounds SB (confidence > 0.45), all used Saturate as the bound cor-
rection method.

Covariance matrix adaptation seems to play a large role in centre SB.
In the context of a standard CMA-ES (so with the covariance module on), the
search distribution is represented by a multivariate normal distribution. This
distribution is characterized by its covariance matrix, which determines the shape
and orientation of the points (solutions) that are sampled. Geometrically, the
shape of this distribution resembles a hyper-ellipse. The search space, on the
other hand, is typically a hyper-cube. This causes a mismatch in shapes being
explored, likely leading to a structural bias towards the centre of the search space.
The hyper-ellipse will naturally avoid sampling close to the edges and especially
the corners of the hyper-cube because these areas are outside the maximum
reach of the distribution whose radius is limited to the smaller distance from
the center to an edge, rather than to a corner. This effect is amplified as the
dimensionality of the space increases. In higher dimensions, the corners of the
hyper-cube are exponentially further away from the centre compared to the
edges. Thus, a spherical sampling distribution centred in the hyper-cube will
leave vast regions in the corners significantly undersampled. This results in a
higher concentration of sample points towards the centre of the search space,
and relatively fewer near the boundaries and corners. It could potentially lead
to suboptimal exploration of the search space, especially if the global optimum
lies near the boundaries or corners of the domain.

Other module options seem to have a limited or mixed effect on structural
bias in modCMA.

3.3 Limitations of Deep-BIAS and Mixed SB

While the deep-learning approach of the Deep-BIAS toolbox is very fast, and
therefore allows the evaluation of 400 000+ configurations, it is not perfect. First
of all, it is known [16] that the SB type ‘Clusters’ is often a misclassified ‘Centre’
SB. As a result of this, after visual inspection of (a large fraction) of the con-
figurations that were initially classified here as Cluster SB, we found out that
all of those actually belonged to the Centre class. We therefore discarded the

A Deep Dive Into Effects of Structural Bias 43

Fig. 3. Examples of the final best point distributions from CMA-ES configurations run
on the SB test function f0 in 2D from 500 independent runs (using different random
seed) of configurations (re)classified as no, centre, bounds and mixed SB.

‘Clusters’ class in our analysis. In addition, after visual inspection of the config-
urations with highest confidence scores for each of the SB classes, we discovered
a mixed class between centre and bounds bias. This mix of two bias directions
was not discovered in earlier structural bias research and was also not taken into
account when developing the (Deep)-BIAS Toolbox. For modCMA, this mixed
SB behaviour seems to occur when there is a configuration that is normally
centre biased and it also uses the Saturate bound correction method (induc-
ing additional bounds SB). For further analysis of the effects of these different
SB classes on performance, we decided to re-classify the top 20 configurations
(sorted by confidence) for each SB class as identified by Deep-BIAS by visual
inspection of the 2D final distributions into four SB classes: Uniform (no SB),
Centre, Bounds and Mixed SB. See Fig. 3 for examples of each class of SB we
took into consideration. The complete set of configurations and distributions of
their final best points across runs can be found in the supplemental material
[17].

4 Effects of Structural Bias on Performance

To analyse the effect of SB on algorithm performance, four distinct SB groups
of algorithm configurations are evaluated on a range of affine function combina-
tions. By gradually changing the function landscape properties, it is evaluated
how the performance of these different groups changes under different conditions.

4.1 Affine Function Pairs

We include as original problems the sphere function (f1 from BBOB, uni-modal)
and four other BBOB functions: f3 (separable Rastrign, multi-modal), f15 (non-

44 N. van Stein et al.

seperable Rastrign, multi-modal), f16 (Weierstrass, multi-modal, adequate global
structure), and f21 (Gallagher’s Gaussian 101-me Peaks Function, multi-modal, weak
global structure). All of these are visualised in 2D in Fig. 1 of the supplemental material.
The sphere function was chosen because we would like to tune flatness into the affine
combinations, and the other four were chosen after visual inspection of their ruggedness
(we would like to track structural bias along affine trajectories which begin at the
flatness of the sphere function and gradually become more rugged).

The notion of affine combinations was first introduced in Dietrich and Mersmann
[18]. We consider affine combinations between BBOB functions and use the generator
later proposed by Vermetten et al. [19] which facilitates combinations of more than two
functions—although we consider only pairs here. Their generator takes three objects as

input in order to construct a function: 1. the desired location for the optimum,
→
Xopt;

2. a vector of length 24—for each of the 24 BBOB functions—indicating proportions,
→
W ; and 3. a vector of length 24 indicating which instances of the BBOB functions

should be used,
→
I . Of course, to obtain pairwise combinations then the proportions

of 22 functions can be set to zero and the remaining two have non-zero weight. An
affine combination Ξ is constructed by the generator according to the fitness scaling
functions:

Ri(x) =
max(log10(x), −8) + 8

Si
(1)

and its inverse (to reverse back to the original fitness scale):

R−1
i (x) = 10(Si·x−8) (2)

Si is a scale factor and is set at literature-recommended values [19] depending on
the base function: 11.0 for f1, 12.3 for f3 and f15, 10.3 for f16, and 10.7 for f21.

With these defined, we can formally state that Ξ can be obtained by the generator
as such:

Ξ(
→
W,

→
I ,

→
Xopt) = R−1(

24∑

i=1

Wi.Ri(fi, Ii(x −
→
Xopt + Oi, Ii) − fi, Ii(Oi, Ii))) (3)

where fi, Ii is instance i of original function fi and Oi, Ii is the location of the
optimum for instance i of function fi.

4.2 Experimental Setup

We access the 24 noiseless BBOB functions in 2D through IOHexperimenter [20].

Affine Combinations. The original BBOB functions involved in the affine pairs
are all 2D, to facilitate visualisation. We consider the region of interest [−4, 4] per
dimension only since the optimum of these BBOB functions can only be located in
this region. For each function pair, a sequence of 51 values α ∈ [0, 1] is defined equally
spaced with a step of 0.02. We define α as the proportion of the Sphere function, which
is BBOB f1. For each combination of two functions with a given alpha, we generate
four affine combinations which differ only in the location of the global optimum—
we use the same instances of the BBOB constituent parts for each of them. We also

A Deep Dive Into Effects of Structural Bias 45

keep the instance number and optimum location consistent across increasing α within
each combination of base function pair and optimum placement strategy. Function
instances—which are the same BBOB function but rotated or translated in different
ways—are randomly selected between the numbers 1 and 100. The four placement
strategies for the optimum are:

1. near to the boundary (within 0.01) in both coordinates,
2. near the centre (between [−0.01, 0.01] in both coordinates),
3. near to the boundary in one coordinate and central in the other,
4. located randomly for both coordinates between [−2, 2].

In total, we generate 816 affine recombination functions (4 original function pairs ×
51 affine weights × 4 locations for the optimum). The process of affine combination and
placement of the optimum is conducted using functions from the IOHExperimenter
package in Python.

Algorithm Performance. For assessing algorithm performance on the 816 func-
tions we consider the top-scoring modCMA configurations for each bias type after
careful visual inspection of the SB distributions (See Sect. 3.3) (bounds (20 configura-
tions), centre (19), mixed (7), and none (10)). In total, this amounts to 56 CMAES
variants and 45 696 algorithm and function-pairs. The algorithm configurations for
these are available in Tables 1–4 of the supplemental material [17]. Each CMA-ES con-
figuration is instantiated in modCMA, provided a budget of 5000 evaluations, and is
executed 30 times on each of the 816 affine functions. As the performance metric, we
use a normalised area under the curve (AUC) with respect to the empirical cumula-
tive distribution function, implemented by Vermetten et al.2. The distribution function
considers the default COCO settings with 51 targets spaced logarithmically beginning
at 10−8 and terminating at 102.

5 Results

Figure 4 presents, for different base BBOB function pairings, states of affine combina-
tion for increasing α (left to right), which is the proportion of the Sphere function f1.
Colour represents fitness and the global optimum is placed here near the centre.

Notice from the left-most plots that with α = 0, the function contains no aspect
of f1. For Fig. 4 rows 1 and 2, their intermediate stages (0.25 ≤ α ≤ 0.75) show the
influence of the ‘roundness’ from f1 being added into the function. In the case of Fig. 4
rows 3 and 4, the effect of increasing α manifests differently, with the bowl shape
and concentric structure of f1 beginning to appear. We can see that when α = 1, the
function is entirely f1.

Figure 5 presents algorithm performance (AUC median and variance) over 30 runs
for the top-scoring CMA-ES variants in each bias class across increasing α (shown on
the horizontal axis), split by location of the optimum (left to right: bounds, centre,
centre of bounds, and random) and for base function pairs (top to bottom): f3 -f1,
f15 -f1, f16 -f1, and f21 -f1.

The first three rows (that is, the first three function pairs) show similar patterns
and trends. Generally, increasing α (proportion of f1) is associated with increasing

2 https://zenodo.org/records/10376912.

https://zenodo.org/records/10376912

46 N. van Stein et al.

Fig. 4. Example 2D landscapes for affine combinations of functions f3, f15, f16, f21
(top to bottom) with f1 for 5 affine weights α shown as labels below individual plots,
where increasing α corresponds to increasing the proportion of f1. On the instances
shown here, the location of the global optimum is fixed near the centre of the domain
and marked in red. (Color figure online)

performance. Notice by comparing the median lines of, for example, the second plot of
the first row with the other three plots in the same row that placing the optimum at
the centre leads to the best performances by the algorithms, regardless of bias class.
Algorithms perform at their worst when the optimum is placed at the bounds in at least
one of the two co-ordinates (see the first and third columns of plots). We also notice
from comparing the plots in the final column that when α is 1.00 (that is, when the
function being optimised is entirely f1) there is a difference in performance—despite

A Deep Dive Into Effects of Structural Bias 47

Fig. 5. Performance median and variance over 30 runs for CMA-ES variants; split into
bias classes, with one line per bias class, across increasing α on the x-axis. Results
are shown for optimum placements (left to right): bounds, centre, centre of bounds,
and random—and for base BBOB function pairs (rows, top to bottom): f3 -f1 ; f15 -f1 ;
f16 -f1 ; and f21 -f1.

the fact that the algorithms are being applied to the same function. This may be
because this particular column of plots relates to random optimum placement.

We now consider how algorithms from the different bias classes compare. Observe
from the first and third plot in the first three rows that the centre and none classes of
algorithms perform best (in that order) when the optimum is located near the bounds
of the function. This is a curious result: intuitively, the bounds algorithms would do the
best. We checked some of the algorithm runs and noticed that centre algorithms appear
to have more freedom of movement—making several small improvements in fitness. On
the other hand, bounds algorithms seem to sometimes get stuck in these cases when

48 N. van Stein et al.

the optimum is on the bounds—struggling to find a fitness improvement and advance
towards the optimum location. We leave a statistical analysis of this phenomenon for
future study. In the cases where the optimum is placed either centrally or randomly,
the best-performing classes of algorithms are bounds and centre (notice the second
and fourth plots in the first three rows). While it makes sense that centre algorithms
would perform best on these, the high performance of bounds is less intuitive. From
examination of a sample of performance runs, it seems that although bounds algorithms
may begin the search as biased towards the bounds, in the specific case where the
optimum is centrally located they seem to be able to navigate towards the centre over
the course of the search. It seems that the performance of bounds-biased algorithms
depends on the location of the optimum, but not in the way which might be expected:
if the optimum is at the bounds, they may struggle; if it is at the centre, they do
better. Note from the Figures that overall, the mixed class of algorithms is the worst
performing.

The last function pairing, shown in the last row, differs from the other pairings
substantially when the optimum is placed centrally (second column). We notice that
performance is excellent (with AUC near to 1 in some cases) and that the trend with
respect to α has reversed: increasing α is here associated with a decrease in performance.
The explanation for this finding can probably be found in the nature of the original
base BBOB function f21, where the global optimum can be found near the bounds at
the bottom of a half-funnel shape. Observe from the lowest-left plot in Fig. 4 that when
the optimum is placed in the centre, this appears to stretch and mirror the half-funnel
structure which leads to the optimum. We therefore speculate that this stretched funnel
surrounding the optimum (in the case when it is centrally placed) is the reason for high
algorithmic performance.

6 Conclusions

This study has systematically explored the interplay between the performance of con-
figurations of the modular Covariance Matrix Adaptation Evolution Strategy (mod-
CMA) and structural bias within different optimisation landscapes. Through the exten-
sive configuration testing of modCMA, encompassing 435 456 configurations, we have
shown that specific modules notably influence the algorithm’s structural bias. Key
insights include the significant impact of modules like covariance adaptation and elitism
in modulating structural bias towards the centre of the search space and bound cor-
rection method Saturate towards the boundaries of the search space.

To investigate the effects of different forms of SB on algorithm performance, we
generated pairwise affine recombinations of BBOB functions with varying proportions
of each composite function. For each function we considered four strategies for placing
the optimum. The configurations with highest confidence per SB class (predicted by
the Deep-BIAS tool) of modCMA, were run 30 times on the affine-combined functions.
The results showed that when the optimum is placed at the centre, bounds-biased and
centre-biased algorithms perform best. The reason for this is likely that when the opti-
mum is near the centre, bounds-biased algorithms can navigate in the right direction
even if they have an inherent bias towards the bounds—the bounds structural bias is
mainly caused by the bounds correction method saturate, which does not often become
active when the search leads away from the bounds. When the optimum is near the
bounds, centre-biased and unbiased algorithms are performing better. We believe that

A Deep Dive Into Effects of Structural Bias 49

centre-biased algorithms have more freedom of movement, and that bounds-biased algo-
rithms with saturate bound correction method become early stuck when the optimum
is at the bounds.

Future research should focus on extending the analysis of structural bias effects
into higher dimensional spaces. As dimensionality increases, the complex interplay
between geometry of high-dimensional spaces, structural bias and landscape features
may exhibit different characteristics that could bring additional insights. This future
work will not only deepen our understanding of structural bias in iterative algorithms
but also guide the development of more robust strategies for tackling complex optimi-
sation problems.

References

1. Bäck, T.H.W., et al.: Evolutionary algorithms for parameter optimization-thirty
years later. Evol. Comput. 31(2), 81–122 (2023)

2. Vermetten, D., Caraffini, F., Kononova, A.V., Bäck, T.: Modular differential evo-
lution. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 864–872. GECCO ’23, Association for Computing Machinery, New York, NY,
USA (2023)

3. de Nobel, J., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: Tuning as a means
of assessing the benefits of new ideas in interplay with existing algorithmic mod-
ules. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pp. 1375–1384 (2021)

4. Kononova, A.V., Corne, D.W., Wilde, P.D., Shneer, V., Caraffini, F.: Structural
bias in population-based algorithms. Inf. Sci. 298, 468–490 (2015)

5. van Stein, N., Vermetten, D., Kononova, A.V., Bäck, T.: Explainable benchmarking
for iterative optimization heuristics (2024)

6. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

7. Davarynejad, M., van den Berg, J., Rezaei, J.: Evaluating center-seeking and ini-
tialization bias: the case of particle swarm and gravitational search algorithms. Inf.
Sci. 278, 802–821 (2014)

8. Vermetten, D., van Stein, B., Caraffini, F., Minku, L.L., Kononova, A.V.: BIAS: A
toolbox for benchmarking structural bias in the continuous domain. IEEE Trans.
Evol. Comput. 26(6), 1380–1393 (2022)

9. Rajwar, K., Deep, K.: Uncovering structural bias in population-based optimization
algorithms: a theoretical and simulation-based analysis of the generalized signature
test. Expert Syst. Appl. 240, 122332 (2024)

10. Kononova, A.V., Caraffini, F., Wang, H., Bäck, T.: Can compact optimisation
algorithms be structurally biased? In: Bäck, T., et al. (eds.) PPSN 2020. LNCS,
vol. 12269, pp. 229–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58112-1 16

11. Vermetten, D., van Stein, B., Kononova, A.V., Caraffini, F.: Analysis of structural
bias in differential evolution configurations. In: Kumar, B.V., Oliva, D., Suganthan,
P.N. (eds.) Differential Evolution: From Theory to Practice. SCI, vol. 1009, pp. 1–
22. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-8082-3 1

https://doi.org/10.1007/978-3-030-58112-1_16
https://doi.org/10.1007/978-3-030-58112-1_16
https://doi.org/10.1007/978-981-16-8082-3_1

50 N. van Stein et al.

12. Vermetten, D., Caraffini, F., van Stein, B., Kononova, A.V.: Using structural bias
to analyse the behaviour of modular CMA-ES. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pp. 1674–1682. GECCO ’22,
Association for Computing Machinery, New York, NY, USA (2022). https://doi.
org/10.1145/3520304.3534035

13. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)

14. Lundberg, S.M., et al.: From local explanations to global understanding with
explainable AI for trees. Nat. Mach. Intell. 2(1), 2522–5839 (2020)

15. van Stein, B., Vermetten, D., Caraffini, F., Kononova V, A.: Deep-bias v1.0.0
(2023). https://doi.org/10.5281/zenodo.7614586

16. van Stein, B., Vermetten, D., Caraffini, F., Kononova, A.V.: Deep BIAS: detecting
structural bias using explainable AI. In: Proceedings of the Companion Conference
on Genetic and Evolutionary Computation, pp. 455–458 (2023)

17. van Stein, N., Thomson, S., Kononova, A.V.: Supplemental Material for A Deep
Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajec-
tories (2024). https://doi.org/10.5281/zenodo.10994149

18. Dietrich, K., Mersmann, O.: Increasing the diversity of benchmark function sets
through affine recombination. In: Rudolph, G., Kononova, A.V., Aguirre, H., Ker-
schke, P., Ochoa, G., Tusar, T. (eds.) Parallel Problem Solving from Nature - PPSN
XVII. PPSN 2022. LNCS, vol. 13398. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-14714-2 41

19. Vermetten, D., Ye, F., Bäck, T., Doerr, C.: MA-BBOB: A problem generator for
black-box optimization using affine combinations and shifts (2023). arXiv preprint
arXiv:2312.11083

20. de Nobel, J., Ye, F., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: IOHexperi-
menter: Benchmarking platform for iterative optimization heuristics. Evolutionary
Computation, pp. 1–6 (2024)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3520304.3534035
https://doi.org/10.1145/3520304.3534035
https://doi.org/10.5281/zenodo.7614586
https://doi.org/10.5281/zenodo.10994149
https://doi.org/10.1007/978-3-031-14714-2_41
https://doi.org/10.1007/978-3-031-14714-2_41
http://arxiv.org/abs/2312.11083
http://creativecommons.org/licenses/by/4.0/

Automated Algorithm Selection
and Configuration

Emergence of Specialised Collective
Behaviors in Evolving Heterogeneous

Swarms

Fuda van Diggelen(B) , Matteo de Carlo , Nicolas Cambier ,
Eliseo Ferrante, and Guszti Eiben

Vrije Universiteit Amsterdam, De Boelelaan 1111, Amsterdam, The Netherlands
fuda.van.diggelen@vu.nl

Abstract. Natural groups of animals, such as swarms of social insects,
exhibit astonishing degrees of task specialization, useful for solving com-
plex tasks and for survival. This is supported by phenotypic plasticity:
individuals sharing the same genotype that is expressed differently for
different classes of individuals, each specializing in one task. In this work,
we evolve a swarm of simulated robots with phenotypic plasticity to study
the emergence of specialized collective behavior during an emergent per-
ception task. Phenotypic plasticity is realized in the form of heterogeneity
of behavior by dividing the genotype into two components, with a differ-
ent neural network controller associated to each component. The whole
genotype, which expresses the behavior of the whole group through the
two components, is subject to evolution with a single fitness function. We
analyze the obtained behaviors and use the insights provided by these
results to design an online regulatory mechanism. Our experiments show
four main findings: 1) Heterogeneity improves both robustness and scal-
ability; 2) The sub-groups evolve distinct emergent behaviors. 3) The
effectiveness of the whole swarm depends on the interaction between the
two sub-groups, leading to a more robust performance than with singu-
lar sub-group behavior. 4) The online regulatory mechanism improves
overall performance and scalability.

Keywords: Swarm robotics · Evolutionary robotics · Heterogeneous
swarm

1 Introduction

Collective motion is widely documented in groups of animals in nature and
has been shown to enhance the group with capabilities that are not apparent
in an individual group member. Those emergent capabilities include increased
environmental awareness [6,16], protection against predators [21], and gradient
sensing [23]. Swarm robotics aims at implementing such collective behaviors
in robots to leverage those advantageous emergent properties for engineering
purposes. Collective motion can enable robotic swarms to achieve sensing beyond
the capabilities of individual agents [15], that is, emergent perception.
c© The Author(s) 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 53–69, 2024.
https://doi.org/10.1007/978-3-031-70068-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_4&domain=pdf
http://orcid.org/0000-0002-7972-1649
http://orcid.org/0000-0002-6435-0873
http://orcid.org/0000-0002-1165-286X
https://doi.org/10.1007/978-3-031-70068-2_4

54 F. van Diggelen et al.

The main challenge in designing collective motion behaviors, and swarm
robotics systems in general, comes from the fact that designers can only imple-
ment robot controllers on individual robots, but that the desired behavior is
defined at the group level [11]. Therefore, successful group behaviors depend on
emergent properties, which are difficult to predict. An approach to this prob-
lem is to define a success metric at the group level and to use it as a reward
to automatically optimize robot controllers [9,11,27,32]. However, the solutions
that emerge through this process tend to overfit their training environment and,
consequently, lack flexibility. Therefore, automated design requires a framework
that maintains good performance under a variety of environmental conditions.
For example, modularization of individual-level control has been proposed as a
solution [9].

We believe that, by leveraging on heterogeneity, we can achieve a modu-
lar framework at the swarm level, as opposed to the prevailing ‘homogeneous
designs’ typically found in the swarm robotics literature [9,11,27]. Distinct sub-
group behaviors can emerge when task specialization is beneficial for the group
as a whole [14]. For example, social insects divide their tasks into sub-tasks,
assigned to specific group members, in order to improve their efficiency [24].
Maintaining a ‘group identity’ while splitting in sub-groups can be achieved
through genetic homogeneity with phenotypic heterogeneity. For example, within
an insect colony, members share similar-to-identical genotypes [25]. The various
behaviors used by insects are encoded in the same genotype and are activated by
external cues, e.g., queen pheromones [12]. This phenomenon, in which the same
genotype expresses a different phenotype through gene regulatory mechanisms,
is known as phenotypic plasticity. Although it is more commonly useful for task
partitioning [8,24], it has also been found in species exhibiting collective motion
[1].

In this paper, we propose to improve the flexibility of automated designs by
promoting modularity at the swarm level through heterogeneity in self-organized
collective behaviors (as apposed to individual-level). Our framework is based on
phenotypic plasticity, where we evolve separate controllers for sub-groups inside
the swarm and, through a regulatory mechanism, adjust the phenotypic ratio of
each group. More specifically, we consider polyphenism, a specific case of pheno-
typic plasticity, whereby phenotypic plasticity is expressed at birth and remains
constant throughout life [1]. Our work is novel as it evolves a heterogeneous
swarm on a swarm level without a priori knowledge of how heterogeneity should
be leveraged. This makes our method task-agnostic and highly adaptable.

The paper is organized as follows. In Sect. 2, we present the state of the
art on automated design for heterogeneous swarms with a unique approach,
that we test in an emergent perception task. Our implementation is detailed
in Sect. 3, considering robots that have limited sensing capabilities (which pre-
vents them from achieving the group task individually) and lack awareness of the
specific roles or specializations within the swarm. In Sect. 4, we present our opti-
mization results and re-test our best controller with different sub-group ratios.
This analysis enables us to design an online regulatory mechanism dependent

Emergence of Specialised Collective Behaviors in Evolving Hetero. Swarms 55

on local conditions, where robots automatically switch between the controllers
with a probabilistic finite-state machine. We discuss, in Sect. 5, specialization
and cooperation of the different sub-groups and conclude our final remarks and
future work in Sect. 6.

2 Related Work

Behavioral heterogeneity induces several challenges, the first of which is task allo-
cation, i.e. dynamically adjusting the number of agents assigned to each available
task [2]. The problem of achieving this goal in a decentralized manner has been
widely addressed by swarm robotics. Approaches to this problem usually focus
on the mechanism of task switching and, therefore, use relatively simplistic,
manually implemented behaviors. With threshold-based responses, robots ini-
tially show some preference for a given task, while simultaneously recognizing
deficiencies in the accomplishment of other tasks (e.g. objects accumulating).
Beyond some threshold, the robot switches to the corresponding task [17]. In
some cases, this switch is probabilistic in order to avoid large-scale population
switches, which might leave another task unaddressed [4]. Mathematical mod-
eling of task allocation has also been proposed [31], which allows custom task
allocation parameters according to their needs.

In addition to task allocation, task specialization focuses on the emergence
of several complementary functions within the swarm. It often refers to physi-
cally heterogeneous swarms, i.e. multi-robot systems composed of multiple robot
platforms [26]. It should be noted that this impairs a vital advantage of swarms,
namely robustness, as in such cases the individual members are not interchange-
able with one another. A more robust design is when the agents are physically
identical but differ in behavioral function [3]. Functional heterogeneity through
behavioral specialization does not suffer from this problem [13]. Here, it is possi-
ble for robots with the same body to switch behavior while employed, also called
task partition. In such a context, maintaining collective behavior at the group
level can be tricky, as online regulatory mechanisms tend to switch individual
behaviors only [7].

Tuci et al. investigated the evolution of task partition (i.e. both task allo-
cation and specialization), with a clonal and aclonal evolutionary process, in
a physically homogeneous swarm of five e-pucks. Here, clonal refers to a single
genotype being shared by all the agent, whereas, with aclonal, their genotypes
are all different from each other. Unsurprisingly, they found that robots per-
formed better in their aclonal approach [28,29], especially if their controller was
optimized with a multi-objective fitness [30], as they could address the required
sub-tasks in parallel. Notably, this approach results in an efficient optimization
process, since each agent in the swarm samples a different genome. Moreover,
plasticity was observed, in the sense that individual robots were able to switch
tasks according to environmental requirements (including their peers’ behaviors).

Closely related, [8] also addressed task partition, with a task that evokes
the environmental context of leafcutter ants who divide their foraging task into

56 F. van Diggelen et al.

two sub-tasks: cutting and dropping leaf fragments into a storage area, on the
one hand, and collecting and bringing the fragments back to the nest, on the
other. Their experimental environment was composed of a slope separating a
nest (below) and a source (above) area so that the robots could individually
retrieve the food objects back to the nest, or deposit them on the slope and
relying on other robots to fetch them. Task allocation was evolved on a proba-
bilistic finite-state machine, composed of simplistic pre-programmed behaviors,
without specifying a preference for collective, rather than individual behavior.
Their success demonstrates that even homogeneous controllers (i.e. a single phe-
notype) can handle task partition through individual experience, stigmergy, and
stochastic switching alone, given enough knowledge on the task to design viable
behaviors.

The presented work on heterogeneous swarm optimization requires in-depth
knowledge of the specific learning task. Whether it be the design of sub-
tasks/goals, pre-defined (modular) behaviors, or finite states; a priori knowledge
is required for the design of these controllers. If such insight is available, we could
utilize more specialized optimization methods (e.g. [20,22]). Unfortunately, in
our case, such prior knowledge is undisclosed with emergent capabilities.

We aim to make collective specialized behavior emerge, without any explicit
reward on the specific sub-tasks. Differently from the aforementioned works, our
approach requires minimal insight about the solution as we do not pre-define
various subtasks/behaviors, such as bucket brigading, finite-state machines, or
task-allocations. Instead, we define a reward on the overall group-level perfor-
mance of the whole task, and let specialization evolve as an optimal solution
to simplify the design of a good performance metric. Our method is more flex-
ible than a modular design with pre-defined specialized behaviors that presup-
pose sub-group interactions affecting the overall swarm performance. In addition,
we automatically obtain task allocation through our online regulatory mecha-
nism. This straightforward method minimizes the time and effort required, while
demonstrably improving overall task performance. Altogether, this work shows
that optimal task partition can be designed automatically using evolutionary
computing, without any specific sub-task knowledge. To the best of our knowl-
edge, no previous work exists that addresses task specialization and allocation
in such a context.

3 Methodology

Optimising a heterogeneous swarm controller without specific knowledge on any
sub-task requires a flexible approach that can be applied on any type of task.
We tested our method in an emergent perception task for gradient sensing where
robots have to find the brightest spot in the center (inspired by fish behavior
described in [23]). For this, we utilize black box optimization in the form of an
evolutionary algorithm on Reservoir Neural Networks (RNN), a method that has
been used on homogeneous swarms in a similar capacity [32]. Full code base can
be found at https://github.com/fudavd/EC_swarm/tree/PPSN_2024

https://github.com/fudavd/EC_swarm/tree/PPSN_2024

Emergence of Specialised Collective Behaviors in Evolving Hetero. Swarms 57

Robot Design
Each robot in the swarm has an identical differential drive hardware design
based on the Thymio II without any communication capabilities (Bluetooth,
radio, WiFi). Our robot consists of a cart with two actuated wheels (max speed is
±14cm/s) in the back and a passive omni-directional wheel in the front. We equip
our robots with range and bearing sensing in 4 directions (specifics are detailed
in Sect. 3) and a local value sensor to measure local light intensity. These sensors
are sampled at 10Hz to obtain control inputs only based on current information,
i.e. no memory of previous state.

It is important to be explicit on the capabilities of our robot design: 1) Robots
do not communicate information to each other (e.g. local values at their posi-
tion, future motor inputs, or any form of message passing); 2) The controller is
memoryless, only current local sensor readings are known; 3) there is no notion
of specialization inside the controller, meaning robots are ‘unaware’ of special-
ization inside the swarm. All in all, this grounds the idea of ‘limited sensing’, as
a single robot is incapable of estimating the gradient of the light.
Controller Design
For general applicability, we require our controller to be as flexible as possible

while capable of learning quickly. For this we opt to use neural networks (which
are expressive function approximators) with random functionalities in the form
of a reservoir to speed up learning (i.e. RNN, [18]). This reservoir is created
by freezing the network weights up to the last layer after random initialization,
resulting in a fixed set of functions from which we learn an optimal combination
in the final network layer.

To allow specialization, we divide our swarm into two sub-groups, with each
sub-group containing a different RNN controller (all sub-group members have
the same RNN). The two RNNs are randomly initialized with different reservoirs
that we save at the start. We describe the swarm genotype as a single vector of
weights from which the first half refers to the last layer of the first RNN, and
the second half to the last layer of the second RNN. The phenotypic plasticity
of our single genome is expressed through our sub-group division.

The phenotype of the controller is illustrated in Fig. 1. The RNN has an
input layer of 9 neurons that are rescaled to [−1, 1], namely 4 directional sensors
(each providing two values: distance and heading) and 1 local value sensor. The
4 directional sensors cover a combined 360◦ view of the robot’s surroundings
(front, back, left, and right quadrants of 90◦ each). Within each quadrant (i) the
sensor obtains the distance (di) and relative heading (θi) of the nearest neighbor
up to a maximum range of 2m (outside of this range the sensor defaults di=2.01
and θi=0). The RNN outputs target speed (v ∈ [−1, 1]) and angular velocity
(w ∈ [−1, 1]), which are transformed into direct velocity commands for the two
wheels.

The RNN architecture is a fully connected neural network with an input layer
with 9 neurons (sin ∈ [−1, 1]9), 2 hidden ReLU layers of the same size (h1, h2 ∈
R

9), and a final output layer with two tanh−1 neurons, RNN ∈ [−1, 1]2. All
hidden reservoir weights are initialized randomly with a uniform distribution

58 F. van Diggelen et al.

(U [−1, 1]). We set all biases to 0 and only optimize the weights of the output
layer during evolution (18 weights per RNN). The final RNN controller can be
formalized as follows:

RNN = tanh−1 (WoutReLU (Wh2ReLU (Wh1sin)))

with, Wh1,h2 ∈ R
9×9 and Wout ∈ R

2×9

Fig. 1. Reservoir Neuron Network controller design.

Emergent Perception Task
We aim to enhance the sensing capability of our robots so that, when operating
collectively as a swarm, they can perceive the gradient. Our set-up consist of
20 robots that are rewarded for navigating to the brightest spot in the center
of a 30× 30m arena. Since an individual robot lacks the capacity to sense the
direction of the gradient field, we anticipate that collective behavior will emerge.
This ‘task’ is not too dissimilar to a behavior found in schools of fish that tend
to aggregate in the shadow as it decreases their visibility from predators [23].

Fig. 2. Experimental setup. (a) The scalar map indicating a random instance of our
swarm task. (b) Our swarm with different sub-groups (colored red and green). (Color
figure online)

Emergence of Specialised Collective Behaviors in Evolving Hetero. Swarms 59

We use Isaac Gym from [19] to simulate our swarm(s) (dt = 0.05s). The task
environment is a scalar field map with its maximum value (255) in the center
(see Fig. 2a). We randomly placed the swarm in a circle at a fixed distance (r =
12m) from the center. At this position, we randomly place each swarm member
within a 3× 3m bounding box (shown in red). The swarm is divided into two
sub-groups (red and green) of 10 members each, as shown in Fig. 2b.

Fig. 3. Experimental setup for optimizing swarm controllers, where an evolutionary
algorithm evaluates different genotypes in our swarm simulator (big dashed box). Please
note that our genotype encodes two different controllers colored green and white boxes.
(Color figure online)

Evolving Swarm Experiment
We optimize our swarm using the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES, [10]). We run 10 repetitions of our experiments to obtain the
overall best controller. Baseline comparison is made with a homogeneous swarm
ofthe same size that is optimized with only one RNN. The choice of CMA-ES is
interchangeable with other derivative free methods, as shown in Fig. 3.

Let us draw a clear distinction between the components within CMA-ES,
where individuals in a population are being optimized, and our swarm which
refers to an instance of an individual, consisting of robots/members that are
assigned to different a sub-group (see Fig. 3). Within our evolutionary algorithm,
we thus have individuals that we want to evaluate. All individuals within this
evolving population have two RNNs with the same two reservoirs. Differences
between individuals are defined by their genotype (a vector of 36 weights, x =
[Wout1: ,Wout2:] with, x ∈ R

36) that encode the last layer weights of the two
RNNs. We evaluate our individual by assigning the RNNs to two sub-groups in
a single swarm of robots, where each sub-group member (i.e. a robot belonging
to a specific sub-group) has the same RNN as the other constituents. After a
trial, we calculate a fitness value based on task performance of the swarm and
assign it to the corresponding individual.

60 F. van Diggelen et al.

CMA-ES is a sampling-based evolutionary strategy that aims to find a dis-
tribution in the search space to sample high-performing individuals with high
probability. Here, CMA-ES samples new candidates x according to a multivari-
ate normal distribution. The covariance matrix of the sampling distribution is
updated at each generation (Cgen) to increase the probability of sampling an
individual with higher fitness.

We set our population size to 30 individuals (i.e., 30 different swarms) and
evolve for 100 generations. Every individual is tested three times, with the
median running to represent the final fitness. This reduces the sensitivity to
lucky runs that are nonrepeatable and therefore nonviable (Table 1).

Table 1. Evolving swarm experiment parameters

Value Description

Runs 10 Number of Runs of our experiment
Learning task: collective gradient sensing
Swarm size 20 Number of robots in a swarm
Ratio 1:1 sub-group division
r 12 Spawn distance from center (meters)
Arena type center Environment: center
Eval. time 10 Test duration in minutes
Optimizer: CMA-ES
genotype U [−5, 5] Initial sampling xinit ∈ R

36

λ 30 Population size
Ngen 100 Termination condition
σ0 1.0 Initial step-size
Nrepeats 3 Number of repetitions per individual

Fitness Function. We define the fitness of a swarm as generally as possible, solely
based on the ability to follow the increasing gradient of the scalar field defined
by the environment (shown in Fig. 2-a). This is done by aggregating the average
light intensity values of all members over time (see Eq. 1).

f =

∑T
t=0 lt

Gmax · T
and lt =

∑N
n=1 Gn

N
(1)

where Gn is the scalar value of the grid cell in which agent n (of all agents, N) is located
at a time t. Therefore, fitness at a specific time (lt) is calculated as the mean scalar
light value of all swarm members. The trial fitness (f) is calculated by averaging all
lt over total simulation time T . Finally, we normalize using the maximum scalar value
Gmax, always equal to 255 for all experiments. A theoretical maximum fitness of 1 can
only be achieved if all members of the swarm stack up in the center for the entire run.
Fitness is only evaluated on swarm level with no distinction between sub-groups or any

Emergence of Specialised Collective Behaviors in Evolving Hetero. Swarms 61

other task-specific principles that promote specialization. Additionally, we would like
to emphasize that our fitness function does not distinguish between robots that are
sensing and following the increasing gradient collectively or as solitaries, or sub-groups
that cooperate or not.
Validation Experiments
After our evolutionary experiment, we obtain the overall best controller over 10 runs.
We re-test this controller to test the emergent perception capability of the swarm to
sense the gradient. Our validation is split in two: 1) we are particularly interested
in the possible collective (sub-group) behavior(s) and the importance of sub-group
interactions, which we elucidate by re-testing the best evolved controller and analysing
the swarms behavior; 2) Using our two RNNs, we implement a straightforward online
regulatory mechanism to mimic phenotypic plasticity induced by pheromones [12]. We
investigate the viability of our (adaptive) heterogeneous swarm through scalability and
robustness experiments.

Collective Behavior and Sub-group Interactions: First, we assess whether collective
motion has emerged in a single re-test. We examine two different aspects of collective
behavior over time: (1) performance as mean scalar light value of the swarm (Eq. 1,
lt); (2) alignment in terms of order (Eq. 2, Φ), which is defined as follows:

Φ =

∑N
n=1 ϕn

N
and ϕn =

∣
∣
∣
∣
∣
∣
(∑P

p=1 ∠ejθp
)
+ ∠ejθn

∣
∣
∣
∣
∣
∣

P + 1
(2)

Here, ϕn defines the order value calculated for agent n. Which is the average current
heading direction of agent n (noted ∠ejθn) and all its perceived neighbors P (noted
as ∠ejθp). The total swarm order Φ is then defined as the average ϕn for all agents in
the swarm. The order measure gives a powerful insight into the alignment of agent’s
direction of motion. If all agents move towards the same direction, then the order
measure approaches 1; and if they move in different directions, the order approaches 0.

Additionally, we investigate the benefits of sub-group interactions on two factors,
namely performance and robustness. We retest our best controller in the same envi-
ronment where we change the sub-group ratios (ratio ∈ {4:0, 3:1, 2:2, 1:3, 0:4}).
Different sub-group ratios can tell us if one sub-group is mainly responsible for the
swarm performance or if sub-group interactions are important. These different ratios
are tested by initializing the swarm at different distances from the center (rratio

∈ {0, 0.25, 0.5, 0.75, 1} as a ratio of the original training distance, 12 m).

Online Regulatory Mechanism: Based on the results of the sub-group interactions
experiment we can heuristically identify the best performing sub-group ratios at certain
light intensities. Subsequently, we create a probabilistic finite state machine where the
choice of sub-group controller within a robot is defined such that, on a holistic group
level, the optimal sub-group ratios should emerge. This probability is only dependent
on the local light value, and thus no communication is implemented to adapt to the
best ratio. For example, if we heuristically find a 1:3 ratio to be the best sub-group
division at the current local light intensity, the probability to sample an action from
the second reservoir is 75%. We update the probabilistic reservoir state every 5 s for
stable behavior (this update frequency is found to be optimal by parameter sweep
{1, 5, 10, 30, 60, 100} seconds).

62 F. van Diggelen et al.

Scalability and Robustness: The swarm should be able to operate with a wide range of
group sizes (i.e. Scalability) and across different types of environment (i.e. Robustness),
using the same best controller. In our Scalability experiment, we initialize the swarm in
the same environment but with the following swarm sizes 10, 20, 50 to see the impact
on performance. In our robustness experiments, we initiate the swarm (of size 20) in
different gradient maps ’Bi-modal’, ’Linear’, ’Banana’ as shown below. Each new arena
poses different challenges: Bi-modal, requires collective decision on where to go (Fig. 4a);
Linear poses a less salient gradient stretched over the full arena (Fig. 4b); Banana, the
banana function is a classic nonlinear minimization problem [5] with a curved shallow

Fig. 4. Validation environments. The black striped line indicates the random initial-
ization location of the swarm (similar to Fig. 2). The striped box in (c) indicates the
area of random initialization

Table 2. Validation experiment parameters

Value Description

Repetitions 60 Number of runs per experiment
Statistics t-test Statistical test
Ratio: sub-group division environment
Swarm size 20 Number of robots in a swarm
Ratio 0:4/1:3/2:2 sub-group division (+inverse)
rratio 0/ 1

4 / 1
2 / 3

4 /1 Spawn distance from center (r)
Arena type center Environment
Eval. time 10 Test duration in minutes
Scalability: Different swarm size
Swarm size 10/20/50 Number of robots in a swarm
Ratio 2:2/adaptive sub-group division
Arena type center Environment
Eval. time 10 Test duration in minutes
Robustness: Different environments
Swarm size 20 Number of robots in a swarm
Ratio 2:2/adaptive sub-group division
Arena type bi-mod./lin./ban. Environment
Eval. time 10 Test duration in minutes

Emergence of Specialised Collective Behaviors in Evolving Hetero. Swarms 63

bottom. For our collective gradient ascent task, this function is interesting, as it has
both shallow gradient and local maxima (Fig. 4c). The experimental parameters we
used in all the validation experiments are described in Table 2.

4 Results

Evolutionary experiment, data published here: https://doi.org/10.34894/0VSN8Z.
We measure the efficacy by the mean and maximum fitness averaged over the 10
independent evolutionary runs for each generation. The results of our evolutionary
experiment show similar max performance between baseline (homogeneous) and het-
erogeneous control Fig. 5a. We see a early plateau in max Baseline while heterogeneous
control is still increasing which indicates possible improvement with more generations.

At the bottom of Fig. 5a we show the genotypical variation of our population in
the best evolutionary run (calculated as mean Standard Deviation, STD). The rapid
increase after generation 20 shows as an increase in variation, while the plateauing of
fitness after generation 50 coincides with the steepest decline in genotype variation. It
is interesting to see that both reservoirs seem to interchangeably adapt their genotype
variation. Where the first reservoir (green) increases first but stabilizes relatively soon,
while the second reservoir (red) remains relatively fixed at first and increases when
the first reservoir starts to flatten out. This may indicate a concurrent adaptation of
reservoirs due to a learned task distribution.

Fig. 5. a: top, mean±STD and max fitness over 100 generations (averaged over 10
runs); bottom, genotype spread in population (STD) of the best heterogeneous run.
b: top, fitness of a single run with best best controller; bottom, the order (alignment)
in the same run. Vertical lines correspond with interesting time frames. (Color figure
online)

Validation experiments Collective behavior & sub-group interactions
Fig. 6 and 5b show the results of our best controller re-tested in the same environment.
A video of this run is provided in the supplementary material. During this trial we
can measure fitness over time, with its final value around 0.38. More interestingly, we
measure the overall alignment of the swarm and the alignment for each sub-group. We

https://doi.org/10.34894/0VSN8Z

64 F. van Diggelen et al.

Fig. 6. Snapshots of the interesting timeframes during the re-test experiment. The
numbers correspond to the order of the vertical bars in the figure, corresponding to
each line plot in Fig. 5b. (1) At first, the swarm spreads out to search for the gradient.
(2) The green sub-group senses a gradient and ’aligns’ the swarm to the left. (3) The
gradient is lost, resulting in the swarm dispersing in different directions (i.e. decreasing
alignment). (4) Red sub-group senses the gradient and directs the swarm towards the
light source. (5) Red slowly pulls in more green swarm members. (6) the swarm starts
to spread around the light source.

provide snapshots of the swarm in the arena in Fig. 6, with the corresponding time
frames represented as dotted vertical lines in Fig. 5b (the snapshot from left to right
reflect the progression in time).

In Fig. 5b, at the start, we see a low initial swarm alignment (black line) that
quickly increases (corresponding to Fig. 6: 1–2). This rapid increase is mainly caused
by sub-group 2 (in red) who tends to align more amongst themselves during the whole
run. Sub-group 1 (in green) does not align that much, but finds the gradient faster
at the start (see snapshot: 3), indicated by a higher fitness. Red follows shortly as
a group given their alignment increase. In a later stage, red dominates the swarm’s
alignment and behavior, thereby concurrently pulling and pushing green towards the
center (corresponding to Fig. 6: 4–5). This is also visible by the oscillating sub-group
performance.

In Table 3 we evaluated the same best swarm in different setups; we repeat the
evaluation at different ratios of sub-groups and at different starting distances from the
gradient center. Every configuration was repeated 60 times. We observe how starting
closer to the target results in higher fitness. We find that evenly mixed sub-groups
at distances far away from the center (rdist ≥ 0.5) perform statistically significantly
higher than any of the extremes (i.e. fully green/red, p ≤ 0.05, df = 118).

When visually inspecting the behavior of the swarms at rdist = 0, we observe how
both extreme ratios of sub-groups are capable of staying at the center of the gradient,
but with different strategies (video in supplementary material). While the swarm made
of only red robots seem to circle around the center with some distance, the swarm made
of only green robots seem to fully occupy the space around the center, coinciding with
a higher fitness. When evaluating the sub-group ratios at their extremes, we see that
both independent sub-groups consistently outperform the best controllers of the first
generation in our evolutionary experiments (∼ 0.3 at rdist = 1.0). However, a mixed
ratio of subgroups performs better for all rdist ≥ 0, indicating an advantage of sub-
group interaction. Furthermore, we see a tendency of the second red sub-group to
correlate with a higher performance at rdist ≥ 1.0.

Online Regulatory Mechanism. Based on the results of Table 3 we assign the light inten-
sity threshold values to the best performing sup-group ratio heuristically. I.e., we design
a probabilistic state machine such that members in the swarm adapt their behavior

Emergence of Specialised Collective Behaviors in Evolving Hetero. Swarms 65

Table 3. Average fitness values (N = 60) of retesting the best swarm with different
sub-group ratios (green:red) from different starting distances (rdist = distance to the
optimum). Sub-group ratios vary from solely sub-group 1 (green) to solely sub-group
2 (red). Solid red boxes indicate best ratio at a given rdist, while the dashed boxed
indicate no statistically significant differences with respect to the maximum.

ratio → 4 : 0 3 : 1 2 : 2 1 : 3 0 : 4

rdist = 0.00 0.79 0.78 0.77 0.73 0.69

rdist = 0.25 0.76 0.76 0.75 0.72 0.68

rdist = 0.50 0.70 0.71 0.70 0.66 0.64

rdist = 0.75 0.56 0.60 0.60 0.57 0.52

rdist = 1.00 0.33 0.41 0.43 0.43 0.38

rdist = 1.25 0.06 0.08 0.13 0.09 0.12

automatically to reflect the optimal ratio on a swarm level using only local information.
Thresholds are based on the light intensities at rdist = {0.125, 0.375, 0.625, 0.875}. This
results in the following function:

Pgreen(light) =

⎧
⎪⎨

⎪⎩

1.0 if light > 229

0.75 if light ∈ (76, 229]

0.50 if light ≤ 76

Scalability & Robustness Retesting the best Baseline and best Heterogeneous swarm
controller shows significant improvement in Scalability and Robustness (p ≤ 0.05), with
and without our online regulatory mechanism in 6 different environments (3 scalability
experiments and 3 robustness). The results of these experiments are presented below
(see Table 4). For Scalability, the performance of the controllers seems to be positively
correlated by the size of the swarm which indicates sensitivity to swarm size. This

Table 4. Validation experiments

Scalability Swarm size
N=60 10 20 50

Baseline 0.23 ± 0.09 0.33 ± 0.12 0.45 ± 0.05

Best 0.35 ± 0.10 0.39 ± 0.12 0.47 ± 0.03

Adaptive 0.40± 0.12∗ 0.43± 0.077∗ 0.49± 0.03∗

Robustness Arena type
N=60 Bi-modal Linear Banana
Baseline 0.40 ± 0.19 0.43 ± 0.24 0.19 ± 0.32

Best 0.43 ± 0.17 0.51 ± 0.19 0.25 ± 0.29

Adaptive 0.47± 0.19 0.59± 0.25 0.31± 0.35

66 F. van Diggelen et al.

positive correlation is the least apparent in the adaptive controller whose performance
is the highest for each swarm size (denoted with star; 10 p ≤ 0.05, 20: p ≤ 0.01, 50:
p ≤ 0.001). Robustness results show the same tendency for the adaptive controller
to outperform the others, although these differences were only statistically significant
between Adaptive and Baseline. On an aggregate (N = 360), Adaptive outperforms the
other controllers with Bonferroni correction: Baseline 0.37 ± 0.18 vs. Best 0.40 ± 0.18
vs. Adaptive 0.45 ± 0.22 with p ≤ 0.01/α for all comparisons (α = 6, df = 718).

5 Discussion

We successfully evolved self-organized sub-group specialization in a swarm of robots, a
difficult task due to the complexity of swarm dynamics. This becomes even more evident
when factoring in the added complexity of optimizing between-group interactions in
conjunction with the specific specialization itself. The strength of our framework lies in
its simple approach to learning these behaviors, which lends itself to broad applicability.
We demonstrated our methods’ effectiveness in the context of an emergent perception
task for gradient sensing, which shares similarities to other source localization tasks
common in robotics literature [33]. Transferring our method to more complex tasks is
also trivial, as 1) the use of task-agnostic nature of RNNs can express a wide array
of behaviors, thus requiring no controller design adaptation; and 2) the simplicity of
our group-level fitness function can be easily adapted, as its design requires minimal
insight into the optimal solution (i.e. no presupposition on certain behaviors or specific
task divisions are required).

The results of our validation experiments show the emergence of specialization in
our sub-groups that is more robust and scalable than homogeneous control (Table 4).
Closer inspection reveals that Sub-group 2 (red) seems to follow the gradient better
at low intensities than sub-group 1 (see start of Fig. 5b) and tends to move more in
coordination (i.e. higher alignment). In contrast, sub-group 1 performs better when
initialized near the center, and shows consistently lower alignment. This indicates that
sub-group 1 shows less sensitivity to the swarm’s overall behavior and tend to be more
greedy as a sub-group. In contrast, sub-group 2 shows more exploratory behavior which
provides more coordinated movement of the swarm when the gradient is found.

Exploration and exploitation are fundamental principles in optimization, in general.
You could interpret our task as such, where our swarm learns to act as an optimizer
that maximizes its local light value. The behavioral findings mentioned above show
that the solution converged on a similar exploitation-exploration task division within
their sub-group specializations. This task division is interesting as we did not encourage
such collective behavior or specialization in our fitness. Arriving at these fundamental
optimization principles in the context of sub-group swarm interactions without prior
knowledge shows the power of automated design for finding collective behaviors suitable
for any user-defined task.

Specialisation provides more robustness and scalability than baseline. Furthermore,
leveraging our specialised controllers reveals that only employing one of the two sub-
group at lower light intensities leads to lower performances than using a mixed ratio
Table 3. This shows that the sub-group performance is enhanced by interactions with
the other specialization. Collaboration becomes unnecessary when robots are placed
near the center of the gradient (rdist ≤ 0.25). The online regulatory mechanism fur-
thermore shows the successful division of specialized tasks within our swarm, as it
significantly improves performance of the best controller. The idea of biasing evolved

Emergence of Specialised Collective Behaviors in Evolving Hetero. Swarms 67

specializations of the swarm adaptively toward a certain phenotype can be found in
nature. Phenotypic plasticity emphasizes the expression of specific parts of the genome
(i.e. our reservoirs) to obtain higher task competency on a swarm level. In our experi-
ments, we successfully showed that this straightforward implementation of phenotypic
plasticity results in higher scalability and significant overall performance.

6 Conclusion

Incorporating specialized behaviors within robot swarms holds the potential to signifi-
cantly enhance overall swarm efficacy and robustness. However, this endeavor presents
formidable challenges. Designing controllers for homogeneous swarms is inherently com-
plex, and extending this to sub-groups within the swarm compounds the difficulty due
to the added intricacy of sub-group interactions. In this paper, we show a viable app-
roach to solve this challenge in a (sub)task-agnostic way, by co-evolving controllers
heterogeneous swarm controllers while only specifying group-level task performance.
We demonstrate that our evolved controllers show clear specialized sub-group behav-
ior with sub-group interactions that improve the collective behavior. These learned
behaviors are effectively used in an online regulatory mechanism, to enhance perfor-
mance and scalability.

In the future, we propose to extend our work to encompass a broader spectrum
of tasks, which could reveal other emergent specializations (communication, line-
following, and mapping). Additionally, we foresee further improvements in the creation
of more sophisticated controller designs where we evolve the number of subgroups and
possibly the online adaptation rules to regulate phenotypic plasticity. Finally, we would
like to test our controllers in a real world application for which we require the develop-
ment of sensors to match our work. Such a milestone would be a first step for realizing
hardware experiments.

Acknowledgments. This work is supported by Technology Innovation Institute
(TII).

References

1. Ariel, G., Ayali, A.: Locust collective motion and its modeling. PLoS Comput. Biol.
11(12), e1004522 (2015)

2. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321
(2016)

3. Bettini, M., Shankar, A., Prorok, A.: Heterogeneous multi-robot reinforcement
learning. In: Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, pp. 1485–1494 (2023)

4. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task
allocation to sequentially interdependent tasks in swarm robotics. Auton. Agent.
Multi-Agent Syst. 28, 101–125 (2014)

5. Clerc, M.: The swarm and the queen: towards a deterministic and adaptive par-
ticle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406). vol. 3, pp. 1951–1957. IEEE (1999)

6. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and
decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005).
https://doi.org/10.1038/nature03236

https://doi.org/10.1038/nature03236

68 F. van Diggelen et al.

7. Feola, L., Sion, A., Trianni, V., Reina, A., Tuci, E.: Aggregation through adaptive
random walks in a minimalist robot swarm. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 21–29 (2023)

8. Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E., Dorigo, M., Wenseleers, T.: Evo-
lution of self-organized task specialization in robot swarms. PLoS Comput. Biol.
11(8), e1004273 (2015)

9. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014)

10. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evo-
lution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/
106365601750190398

11. Hasselmann, K., Ligot, A., Ruddick, J., Birattari, M.: Empirical assessment and
comparison of neuro-evolutionary methods for the automatic off-line design of
robot swarms. Nat. Commun. 12(1), 1–11 (2021)

12. Holman, L.: Queen pheromones and reproductive division of labor: a meta-analysis.
Behav. Ecol. 29(6), 1199–1209 (2018)

13. Hussein, A., Petraki, E., Elsawah, S., Abbass, H.A.: Autonomous swarm shep-
herding using curriculum-based reinforcement learning. In: Proceedings of the 21st
International Conference on Autonomous Agents and Multiagent Systems, pp. 633–
641 (2022)

14. Ioannou, C.C.: Swarm intelligence in fish? The difficulty in demonstrating dis-
tributed and self-organised collective intelligence in (some) animal groups. Behav.
Proc. 141, 141–151 (2017)

15. Karagüzel, T.A., Turgut, A.E., Ferrante, E.: Collective gradient perception in a
flocking robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2020. LNCS, vol. 12421,
pp. 290–297. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60376-
2_23

16. Kearns, D.B.: A field guide to bacterial swarming motility. Nat. Rev. Microbiol.
8(9), 634–644 (2010). https://doi.org/10.1038/nrmicro2405

17. Krieger, M.J., Billeter, J.B.: The call of duty: Self-organised task allocation in
a population of up to twelve mobile robots. Robot. Auton. Syst. 30(1–2), 65–84
(2000)

18. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3, 127–149 (2009)

19. Makoviychuk, V., et al.: Isaac gym: High performance GPU-based physics simula-
tion for robot learning (2021). arXiv preprint arXiv:2108.10470

20. Montague, K., Hart, E., Paechter, B.: A hierarchical approach to evolving
behaviour-trees for swarm control. In: Smith, S., Correia, J., Cintrano, C. (eds.)
Applications of Evolutionary Computation. EvoApplications 2024. LNCS, vol.
14634. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-56852-7_12

21. Olson, R.S., Hintze, A., Dyer, F.C., Knoester, D.B., Adami, C.: Predator confusion
is sufficient to evolve swarming behaviour. J. R. Soc. Interface 10(85), 20130305
(2013). https://doi.org/10.1098/rsif.2013.0305

22. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994.
LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58484-6_269

23. Puckett, J.G., Pokhrel, A.R., Giannini, J.A.: Collective gradient sensing in fish
schools. Sci. Rep. 8(1), 1–11 (2018)

https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1007/978-3-030-60376-2_23
https://doi.org/10.1007/978-3-030-60376-2_23
https://doi.org/10.1038/nrmicro2405
http://arxiv.org/abs/2108.10470
https://doi.org/10.1007/978-3-031-56852-7_12
https://doi.org/10.1098/rsif.2013.0305
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/3-540-58484-6_269

Emergence of Specialised Collective Behaviors in Evolving Hetero. Swarms 69

24. Ratnieks, F.L., Anderson, C.: Task partitioning in insect societies. Insectes Soc.
46, 95–108 (1999)

25. Ravary, F., Lecoutey, E., Kaminski, G., Châline, N., Jaisson, P.: Individual expe-
rience alone can generate lasting division of labor in ants. Curr. Biol. 17(15),
1308–1312 (2007)

26. Rizk, Y., Awad, M., Tunstel, E.W.: Cooperative heterogeneous multi-robot sys-
tems: a survey. ACM Comput. Surv. (CSUR) 52(2), 1–31 (2019)

27. Trianni, V., Tuci, E., Ampatzis, C., Dorigo, M.: Evolutionary swarm robotics: a
theoretical and methodological itinerary from individual neuro-controllers to col-
lective behaviours. Horiz. Evol. Robot. 153, 153–178 (2014)

28. Tuci, E.: Evolutionary swarm robotics: genetic diversity, task-allocation and task-
switching. In: Dorigo, M., et al. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 98–109.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09952-1_9

29. Tuci, E., Mitavskiy, B., Francesca, G.: On the evolution of self-organised role-
allocation and role-switching behaviour in swarm robotics: a case study. In: Arti-
ficial Life Conference Proceedings, pp. 379–386. MIT Press (2013)

30. Tuci, E., Rabérin, A.: On the design of generalist strategies for swarms of simulated
robots engaged in a task-allocation scenario. Swarm Intell. 9, 267–290 (2015)

31. Valentini, G., Hamann, H., Dorigo, M.: Global-to-local design for self-organized
task allocation in swarms. Intell. Comput. 2022(4), 1–12 (2022)

32. Van Diggelen, F., Luo, J., Karagüzel, T.A., Cambier, N., Ferrante, E.: Environment
induced emergence of collective behavior in evolving swarms with limited sensing.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
31–39. ACM New York, NY, USA, (2022)

33. Wang, S., Wang, Y., Li, D., Zhao, Q.: Distributed relative localization algorithms
for multi-robot networks: A survey. Sensors 23(5), 2399 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-09952-1_9
http://creativecommons.org/licenses/by/4.0/

Identifying Easy Instances to Improve
Efficiency of ML Pipelines
for Algorithm-Selection

Quentin Renau(B) and Emma Hart

Edinburgh Napier University, Edinburgh, Scotland
{q.renau,e.hart}@napier.ac.uk

Abstract. Algorithm-selection (AS) methods are essential in order to
obtain the best performance from a portfolio of solvers over large sets
of instances. However, many AS methods rely on an analysis phase, e.g.
where features are computed by sampling solutions and used as input in a
machine-learning model. For AS to be efficient, it is therefore important
that this analysis phase is not computationally expensive. We propose a
method for identifying easy instances which can be solved quickly using
a generalist solver without any need for algorithm-selection. This saves
computational budget associated with feature-computation which can
then be used elsewhere in an AS pipeline, e.g., enabling additional func-
tion evaluations on hard problems. Experiments on the BBOB dataset in
two settings (batch and streaming) show that identifying easy instances
results in substantial savings in function evaluations. Re-allocating the
saved budget to hard problems provides gains in performance compared
to both the virtual best solver (VBS) computed with the original budget,
the single best solver (SBS) and a trained algorithm-selector.

Keywords: Algorithm Selection · Budget Re-Allocation · Black-Box
Optimisation

1 Introduction

For any large set of instances, it is well known that different algorithms will elicit
different performances, resulting in the need to perform algorithm-selection in
order to maximise performance. Typically this is achieved through the use of
machine-learning (ML) methods which either predict the label of the best solver
or predict the performance of an algorithm [15]. In order to apply an algorithm-
selector, some computation is usually required to obtain a feature-vector used
by the ML model. In continuous optimisation, the most common approach is
to compute Exploratory Landscape Analysis (ELA) features [21], while recent
alternatives use short probing trajectories as the model input, obtained by run-
ning one or more solvers on an instance [19,27]. However, regardless of the type
of input chosen, it is crucial to ensure that the analysis required to compute the
input data required by a selector does not itself become too expensive [20].

One obvious way to reduce the effort spent on computing the information
required to train an algorithm-selector would be to identify easy problems that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 70–86, 2024.
https://doi.org/10.1007/978-3-031-70068-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_5&domain=pdf
http://orcid.org/0000-0002-2487-981X
http://orcid.org/0000-0002-5405-4413
https://doi.org/10.1007/978-3-031-70068-2_5

Identifying Easy Instances to Improve Algorithm-Selection 71

can be solved to a desired level of precision by a good general solver without
any need for a selection process. This is particularly relevant given that Kerschke
et al. [17] note that algorithm selection systems generally perform poorly on easy
function instances. Furthermore, an open-issue in continuous optimisation is that
“some problems are embarrassingly easy (e.g., sphere, linear slope)” [16], leading
to the authors asking “is there a (cheap) way to distinguish easy from complex
problems?”. The same sentiment is echoed in [6] in the context of multi-objective
optimisation where the authors note that it is “easy to say they [instances] are
hard, but hard to say they are easy”. While there is a wealth of literature directed
at identifying hard problems, particularly in combinatorial optimisation [28,29],
there is very little literature directed towards identifying easy ones.

In response to the issues just outlined, we propose a revision to the algorithm-
selection pipeline which includes an additional step to predict whether an
instance is easy or hard prior to potentially applying a selector. This additional
model acts as a filter for recognising ‘easy’ instances which can be directly solved
by a general solver with no need to apply algorithm-selection. The information
needed to detect whether an instance is easy is a subset of the information needed
by the algorithm-selector: it can be cheaply computed and reused in the selec-
tion step if needed. In addition, running the general solver on an easy instance
can often produce a solution of desired quality with less budget than the maxi-
mum allocated. The unused budget can then be re-allocated to enable additional
function evaluations on ‘hard’ instances.

We use the BBOB benchmark test-suite as a testbed [7] to test the new
pipeline. Its performance is evaluated in two settings. In the typical ‘batch’ set-
ting, a set of instances need to be solved and are all available when the solving
process starts. We also consider a ‘streaming’ setting which is typical in many
real-word applications: here an infinite stream of instances arrive either periodi-
cally or sporadically [4], and each must be solved on arrival, with no knowledge of
what might arrive downstream in the future. Specific examples appear in many
domains, ranging from the allocation of machines in a factory [23], allocation of
processor time slots in a real-time system [2], allocating communication channels
in a network [8] or allocation of vehicles for transportation tasks [24].

We demonstrate that:

– Without budget re-allocation, including a classifier to identify easy instances
in a pipeline results in a gain in performance compared to using a single
trained algorithm-selector. Furthermore, there is only a small loss in perfor-
mance when compared to the virtual best solver (VBS).

– When re-allocating budget saved by identifying easy instances, we enable
extra function evaluations to be performed on hard instances. This results in
a considerable performance gain for both the batch and streaming setting,
even in comparison to the VBS (calculated using a fixed evaluation budget
per instance).

Reproducibility: Code and data related to this study can be found at [25].

72 Q. Renau and E. Hart

2 Related Work

Kothoff et al. [20] note that although algorithm-selectors can be beneficial, it
is important to ensure that the computational cost of any analysis needed to
inform the selector is minimised, stating ‘if selecting an algorithm for solving a
problem is more expensive than solving the problem, there is no point in doing
so’. Note that the cost of using a selector refers to both the cost of computing
the input and of executing the selector. In the domain of Boolean satisfiability
(SAT) solving, [34] propose the use of a pre-solver—an algorithm with good gen-
eral performance—and start solving an instance with this while simultaneously
analysing the instance. The idea is that easy instances will be solved before the
analysis phase finishes therefore mitigating the need for an additional algorithm-
selection step. However, Tanabe [31] notes that no previous study has used a
pre-solver for black-box optimisation so it is unclear to what extent the same
process could be used. However, this literature underpins the argument that
recognising easy instances in order to save computational effort is an important
line of research for the field. Unfortunately, it is equally clear that recognising
easy problems is not easy: [6] discuss this in the context of multi-objective com-
binatorial optimisation problems while [5] conclude that it is ‘hard to say it’s
easy’ in general (in relation to combinatorial optimisation).

In the continuous optimisation domain, the vast majority of previous work
in AS relies on ELA features which are not cheap to compute: the recommended
budget is usually 50d samples, with d the dimension of the problem. Some recent
work tries to reduce the cost of feature computation by extracting ELA features
from a trajectory obtained by running a solver of interest, rather than computing
ELA features on a set of separate samples that are then discarded [12,13]. Sim-
ilarly, in [3], statistics derived from a fitness trajectory are used as features for
a selector, however, the budget used to calculate the trajectory is 6 times more
than the recommended ELA features budget. In [27], each solver in a portfolio
is run for a short time to create a ‘probing-trajectory’, i.e., short fitness trajec-
tory and this data is used to directly obtain a prediction from a selector: as the
selected solver can then be run starting from the point the probing-trajectory
terminated, thus saving some budget although this is never re-used. [26] pushes
further in this direction in using a selector that uses very short trajectories
derived from running a simulated annealing algorithm that has been tuned to
generate discriminating trajectories. Despite these recent efforts to reduce the
cost of feature-computation, to the best of our knowledge, we are unaware of
any cheap method to identify easy instances which can be solved by a generalist
solver instead of passing them through an algorithm-selector and can reuse any
saved budget to better solve future instances.

3 Motivation

Figure 1 provides an overview of the proposed pipeline in which a new step is
introduced to detect whether an instance is easy to solve. First, a small budget

Identifying Easy Instances to Improve Algorithm-Selection 73

ϕh is used to obtain a feature vector which is passed to the ‘hardness classifier’:
if the instance is classified as easy then the single best solver (SBS) from the
portfolio is used to solve the instance with budget bh. If an instance is labelled
as hard, then algorithm-selection proceeds as normal: further input-data for the
selector is calculated with budget ϕAS > ϕh, and the selector outputs the label
of the best solver from the portfolio which is solved using budget bAS ≥ bh.

One of the proposed advantages of the pipeline is that it offers an opportu-
nity to dynamically re-allocate budget saved from recognising easy instances to
extend the solving budget for hard instances. As additional budget is required
to generate features for the algorithm-selector, then this extra budget is saved
every time an instance is classified as easy. In addition, a lower budget bh can be
allocated for solving instances identified as easy, freeing up further budget. Alter-
natively, the SBS used to solve easy instances can be terminated once a desired
level of precision is reached, i.e. at budget bt, hence again freeing budget—the
amount of budget saved each time will vary depending on how quickly the desired
level of precision is reached. Therefore, the total budget saved per easy instance
is either ϕAS + (bAS − bh) or ϕAS + (bAS − bt), depending on whether the run
is terminated before bh evaluations.

The saved budget is re-allocated among hard instances in a manner that
depends on the setting:

– In the batch setting in which all instances are known at the start, the total
budget saved B from solving easy instances is divided equally amongst the
remaining nh hard instances, thus extending the solving budget for each
instance by B/nh

– In the streaming setting, the budget bi saved on an easy instance is imme-
diately allocated in its entirety to the next hard instance that arrives in the
stream to extend the run of the predicted solver.

The details of how each step is instantiated in the pipeline are provided in the
next section.

Fig. 1. Algorithm-selection pipeline including the ‘easy’ instance filter using short tra-
jectories.

74 Q. Renau and E. Hart

4 Methods

We use the Black-Box Optimisation Benchmark (BBOB) functions from the
COCO platform [9] as a test-bed. In particular, we consider the first 5 instances
of the 24 noiseless functions in dimension d = 10. Instances are variations of
the same base function such as rotations, translations or scaling. We consider
a portfolio of three algorithms—CMA-ES [10], Particle Swarm Optimisation
(PSO) [14], and Differential Evolution (DE) [30]. In order to label each instance
with the best solver, each algorithm is run 5 times per instance for 4,000 eval-
uations, and the median fitness is recorded. CMA-ES is best on 11 functions,
PSO on 7, and DE on 6. CMA-ES is therefore designated as the single best
solver (SBS), i.e., the algorithm having the best median performance. This data
is obtained directly from [32] which records search trajectories per run and is
described in detail in [33]. Note that as these authors performed some tuning,
each solver has a different population size: these are (10,30,40) respectively for
CMA-ES, DE and PSO.

4.1 Hardness Classifier

In previous work [26,27], we demonstrated that training an algorithm-selector
using probing-trajectories—a short time-series of fitness information obtained
from running one or more solvers—outperformed classifiers trained using ELA
features on the BBOB suite. Therefore we also utilise this approach here to
provide input to a ‘hardness’ classifier. This has the advantage that if an instance
is detected as easy, then an instance is simply continued from where the probing
trajectory terminated. We label a function as easy if all 100 runs of the SBS have
a performance below 10−7, and hard otherwise. This threshold has been chosen
arbitrarily and represents a solution that may not be optimal but good enough
in practice. For most problems, practitioners are usually able to set a threshold
representing a good enough solution. Note that the data is imbalanced: only 3
of the 24 functions are labelled as easy1.

The hardness classifier is trained using a single short trajectory obtained by
running the single best solver (CMA-ES) for a short time (7 generations with
a population size 10)2. We use an LSTM network [11] as classifier. An LSTM
is a type of recurrent network that is able to keep track of arbitrary long-term
dependencies in input sequences. Given that our input is a time-series, this is
a natural choice. LSTMs have previously been demonstrated to be useful in
classifying time-varying data in the online bin-packing domain [1]. The LSTM
is trained for 200 epochs, with a learning rate of 0.0001 and optimised with
Adam [18]. These parameters were found through empirical tuning. We provide
an implementation of the network that can be found in [25]. The model outputs
a binary classification that labels an instance as ‘easy’ or ‘hard’.

1 F1, F5, and F6.
2 7 is chosen as this results in a total number of function evaluations that is close to

the recommended ELA budget of 500.

Identifying Easy Instances to Improve Algorithm-Selection 75

To train and evaluate the hardness classifier, we use a 5-fold validation proce-
dure in which a randomly selected 80% of the instance-data is used for training
and the remainder for testing, repeated 5 times. The total number of samples
is 24 × 5 × 100 = 12,000, i.e. 24 functions, 5 instances and with 100 trajectories
per instance. Each test-set contains 20% of this data, i.e. 2,400 instances which
are presented one by one to the hardness classifier. The model used in the final
pipeline is the model with median accuracy from each of the 5 splits.

4.2 Algorithm-Selection

When the output is ‘hard’, the hardness classifier redirects the pipeline to a clas-
sical algorithm-selection model. The input to this classifier consists of concate-
nated probing-trajectories from each solver in the portfolio. This concatenated
vector was demonstrated in [27] to provide improved performance compared to
training a classifier with a single probing-trajectory from one solver. Note that
the probing-trajectory for the SBS has already been calculated in order to run
the first part of the pipeline, so two additional trajectories (from PSO and DE)
need to be computed to obtain the input required for this classifier.

To train the model we use trajectories obtained over 7 generations of each
of the three algorithms (which corresponds to 7 × (10 + 30 + 40) = 560 function
evaluations in total for the portfolio)3. The algorithm-selection procedure is a
classification task, i.e., given a concatenated trajectory representing the instance
at-hand, the selector outputs the label of the algorithm that should be run to
solve the instance. We compile a dataset using data directly obtained from [32].
This contains 5 runs of each solver per instance. We create a concatenated tra-
jectory per instance per run, resulting in (24 × 5 × 5) = 600 trajectories. Each
trajectory is labelled with the solver that produced the best median performance
over the 5 runs of the 5 instances. The algorithm-selector is also an LSTM as
described in Sect. 4.1 and is trained in exactly the same manner using a 5-fold
validation procedure. We test each of the 5 trained models in turn in the pipeline.
For the batch scenario, the instances in each test set can be presented in any
order; for the streaming scenario, each instance is presented to the pipeline in
exactly the order it occurs in the test set.

4.3 Saving and Re-allocating Budget

We investigate different methods of re-allocating saved budget, depending on
the scenario setting (batch or streaming) as described in Sect. 3. We propose
two ways to save budget, which can be used in both scenarios:

– Save Selector Budget (SSB): if an instance is classified as easy using the SBS
trajectory, then there is no need to obtain trajectories for the other solvers in
the portfolio that are needed to use the algorithm-selector. In this case, the

3 Recall from Sect. 4 that each of three solvers have different population sizes in the
data provided by [32].

76 Q. Renau and E. Hart

saved budget bSSB is equal to 7 × (30 + 40) = 490 (7 generation trajectories
not extracted from DE and PSO).

– Save Selector Budget and Curtail Easy Runs (SSB-CE): if an instance is
classified as easy, then the budget for running the SBS is cut by a fixed
amount, from 4,000 function evaluations to 2,700 (minimum budget needed
for the SBS to reach the 10−7 performance for all runs on the three ‘easy’
functions), therefore saving 1,300 function evaluations on top of the 490 from
not evaluating the selector.

In the batch setting, the budget saved per instance is accumulated over the
entire batch of instances. If there are nh hard instances, this budget is then
divided equally between each instance to extend the run of each solver predicted
by the algorithm-selector. In the streaming setting, budget saved on an easy
instance is re-used according to a näıve strategy that extends the length of the
run of the next instance to be identified as hard with the full saved budget from
the previous step. This strategy is simple but provides a reasonable baseline. We
discuss potential alternatives in Sect. 6.

5 Results

We first establish the accuracy of the hardness classifier independently of the
pipeline and then propose some baselines in which there is no re-allocation of
budget. Under this setting (i.e., no re-allocation), both the batch and streaming
scenarios are equivalent. Following this, we evaluate the full pipeline on both
batch and streaming scenarios using the re-allocation strategies outlined above.

5.1 Baselines

Figure 2 shows the median confusion matrix of the 5 random sub-sampling splits
for the hardness classifier. The median accuracy score is 94.5% and the median
balanced accuracy score (accounting for imbalanced data) is 82.1%. The imbal-
ance in the data mentioned previously is reflected in the confusion matrix. The
‘hard’ class is over-represented in the data and is easily classified with 99% accu-
racy. On the other hand, the under-represented ‘easy’ class has an accuracy of
65%. This is not unexpected as we did not implement any mechanisms to rec-
tify the imbalance such as weighting classes or oversampling. Nevertheless, the
hardness predictor is still useful as discussed below.

Firstly, even if ‘easy’ instances are only recognised 2/3 of the time, budget
is saved on each of these instances. This could amount to a significant saving:
for each instance identified as easy we save ((30 × 7) + (40 × 7)) + 1,300 = 1,790
evaluations in the SSB-CE setting: i.e., the number of evaluation needed to
compute the PSO and DE trajectories for input to the AS which are run for
population sizes (30,40) respectively for 7 generations, and the 1,300 evaluations
saved by curtailing the budget. For easy instances that are incorrectly classi-
fied as ‘hard’, no additional cost is incurred—without the additional check in

Identifying Easy Instances to Improve Algorithm-Selection 77

Fig. 2. Median confusion matrix of the hardness prediction.

the pipeline, these instances would have been passed to the algorithm-selector
regardless. Secondly, note from Fig. 2 that almost no ‘hard’ instance is ever mis-
taken for an ‘easy’ instance—the accuracy on these instances is 99%. Mistaking a
‘hard’ instance for an ‘easy’ one could lead to a significant loss in solution quality
as the algorithm-selection step would be bypassed. On the contrary, mistaking
easy instances as ‘hard’ ones does not have any impact on the performance of
the pipeline, although they represent a missed opportunity to save budget.

Table 1. Sum of the loss to the VBS for each split of the batch setting. Results are
shown for the SBS and the pipeline with and without re-allocation strategies. Positive
values indicate a gain over the VBS. Bold indicates the best performance for each
column. The selector in the pipeline is the VBS selector.

Method Overall
loss to
VBS

Loss to
VBS
split1

Loss to
VBS
split2

Loss to
VBS
split3

Loss to
VBS
split4

Loss to
VBS
split5

Baselines SBS −15623.25 −3122.95 −2992.35 −2698.8 −3165.53 −3283.62

Pipeline No Savings −70.27 −18.05 −6.27 −24.32 −16.26 −5.38

Re-allocation Pipeline SSB 129.68 19.61 43.56 16.53 16.62 33.36

Pipeline SSB-CE 315.37 −62.83 67.07 122.89 92.17 96.07

To establish a baseline, we measure the accumulated loss with respect to
the VBS (calculated using the fixed evaluation budget per instance of 4,000) of
(1) SBS; (2) the trained algorithm-selector only; (3) using the full pipeline that
includes the hardness classifier but uses a ‘perfect’ algorithm-selector, i.e. the
VBS; (4) using the full pipeline that includes the hardness classifier and a trained
model as the selector. The loss is calculated as the sum of the performance
V BSi− ti, where i is an instance and t is one of the four methods just described.
The sum is calculated over each instance in each of the 5 test sets for each of
the four methods t.

78 Q. Renau and E. Hart

Table 2. Sum of the loss to the VBS for each split of the batch setting. Results are
shown for the SBS, the trained selector and the pipeline with and without re-allocation
strategies. Bold indicates the lowest loss to the VBS for each column. The selector in
the pipeline is a trained selector.

Methods Overall
loss to
VBS

Loss to
VBS
split1

Loss to
VBS
split2

Loss to
VBS
split3

Loss to
VBS
split4

Loss to
VBS
split5

Baselines SBS −1373.93 −335.62 −251.15 −328.59 −276.23 −182.34

Trained Selector −471.44 −53.07 −117.81 −116.11 −125.42 −59.04

Pipeline No Savings −466.14 −53.96 −117.81 −116.11 −123.34 −54.91

Re-allocation Pipeline SSB −450.78 −51.15 −115.27 −114.35 −119.4 −50.62

Pipeline SSB-CE −438.67 −46.14 −110.09 −110.43 −128.5 −43.51

The results are shown in Table 1 when the VBS is used as selector in the
pipeline and in Table 2 when the trained selector is used in the pipeline (’Base-
lines’ rows). Table 1 shows that the pipeline with no re-allocation outperforms
the SBS but has lower performance than the VBS. Both results are expected:
since the selector in the pipeline is the VBS selector, it is expected to outperform
the SBS. Moreover, the pipeline adds an imperfect hardness classifier to the VBS
selector, we expect to see a degradation compared to purely the VBS.

We observe in Table 2 (Baselines rows) that both the trained selector and
the pipeline without re-allocation outperform the SBS. This result was expected
given that no one solver outperforms the others on all functions and thus there
is a benefit to performing algorithm-selection. We also observe that both the
trained selector and the pipeline with no re-allocation obtain similar losses to
the VBS. These results could also be anticipated since no budget is saved when
the hardness classifier is used. Interestingly, the performance of the pipeline
is slightly better than the performance obtained by using the trained selector
only, even though it only adds a hardness classifier. The use of the hardness
classifier seems to mitigate the selector mistakes, i.e., when the selector gets the
algorithm-selection wrong on ‘easy’ instances, then the use of the SBS as a result
of classifying the instance as easy almost always leads to better results.

Overall, we observe that using the pipeline presented in Fig. 1 does not
degrade the performances compared to a classical algorithm-selection approach.
The next sections present results where the pipeline is fully leveraged, i.e., where
unused budget is saved and re-allocated.

5.2 Re-allocating Budget: Batch Setting

Algorithm Selection with VBS: We use a test set composed of instances that
were not used to train the algorithm selector model, i.e., a batch is composed of
20% × 12,000 = 2,400 instances. The process is repeated five times, i.e. for each
split. These instances are first fed to the hardness classifier and the number of
instances classified as ‘easy’ counted. This determines how many extra function
evaluations can be allocated to extending the runs for instances classified as

Identifying Easy Instances to Improve Algorithm-Selection 79

hard. In the five repetitions of the batch settings, there are between 6.5% and
10% of instances are identified as ‘easy’. This results in a median 49 function
evaluations added to each of the remaining instances classified as hard when
using the SSB strategy and 179 function evaluations when using the SSB-CE
strategy.

Table 1 shows the overall results and results for each split of the data. Inter-
estingly, both re-allocation budget approaches outperform the VBS, i.e., re-
allocating budget to harder instances improves the overall performance. The
SSB-CE strategy obtains the best performance: its overall gain is more than
twice the gain of SSB. Moreover, on split 3, SSB-CE obtains almost the same
gain as SSB on the five splits combined. However, SSB-CE can also be the worst-
performing approach: on split 1, the loss to the VBS is substantial and nearly
matches the overall loss of the pipeline without savings.

Algorithm Selection with Trained Selector: In these experiments, we use exactly
the same procedure outlined in the previous paragraph but replace the VBS
selector with a trained selector. Over the five repetitions, between 6.7% and
10% of instances are identified as ‘easy’. This results in a median 39 function
evaluations added to each of the remaining instances using the SSB strategy and
145 function evaluations using the SSB-CE strategy.

Table 2 shows the loss to the VBS for the three pipelines: without savings,
SSB, and SSB-CE. Even though the number of identified ‘easy’ instances repre-
sents a small part of the whole batch and relatively few evaluations are added to
the remaining functions, we observe a gain compared to the ‘no savings’ result.
The best gain is obtained using the SSB-CE strategy with 5.9% improvement
compared to no savings. Although this is the best-performing strategy overall,
we should note that SSB-CE is outperformed by the trained selector in the split
4. This is due to the curtailing of easy runs, i.e., running the SBS with a smaller
number of function evaluations can lead to decreasing performances for instances
mistakenly labelled as ‘easy’. The SSB strategy offer a good compromise, i.e., it
performs 3.3% better than the pipeline with no savings but consistently performs
better when considered over all splits.

Overall, SSB-CE obtains better performances with both the VBS and trained
selector but is also the most volatile strategy, i.e., although big gains are achieved
overall, losses to classical algorithm-selection can arise in some settings.

5.3 Re-allocating Budget: Streaming Setting

Contrary to the batch setting, in this section we consider a stream where
instances to solve arrive one by one and must be solved in the order they arrive.
We consider two pipelines: one where the algorithm selector is the VBS selector
and one where the selector is a trained classifier.

Algorithm Selection with VBS: Figure 3 displays the cumulative fitness gain
obtained for each of the 5 streams of unseen instances when budget is saved on
‘easy’ instances and then reused on the next predicted instance that is predicted

80 Q. Renau and E. Hart

to be‘hard’. The left figure shows the gain when only the budget from the selector
is saved (SSB) while the right figure shows the results when easy runs are also
curtailed, i.e., fewer evaluations are performed on ‘easy’ instances (SSB-CE).

Fig. 3. Cumulative difference between the full pipeline using the hardness classification
and VBS selector when budget is saved and re-allocated.

Overall, for every model split, we observe a positive gain by using the extra
budget on ‘hard’ instances. The median gain in fitness value on SSB is 34.94
while saving additional evaluations on the ‘easy’ instances (SSB-CE) leads to a
78.22 median gain, more than twice the gain obtained with the selector budget
alone. Despite these gains, we also observe losses for some instances. These occur
due to a misclassification by the hardness classifier. This has a bigger impact
when using the SSB-CE strategy: if an instance is not easy and in particular
if CMA-ES (the SBS) performs poorly on that function, then this results in a
larger loss due to the curtailed run. This appears to have a particular impact in
one of the five models (stream 5).

The results are summarised in Fig. 4. This shows a small loss in comparison to
the VBS when not re-allocating saved budget, contrasting to positive gains when
using the two forms of budget saving and re-allocation. Here it is clear that by
re-allocating unused budget, we realise a gain in performance compared to VBS
performance (calculated as previously explained in Sect. 4.2). This is possible
because re-allocating the budget enables longer runs on some instances, which
then reach better fitness. As expected, this is maximised using the curtailing of
easy runs which re-allocates more budget.

Algorithm Selection with Trained Selector: Recall from Sect. 4.2 that the test
datasets used to evaluate the 5 trained algorithm-selectors models each only con-
tain 120 instances. In addition to this only being a short stream, it is important
to recognise that any gain due to re-allocating saved budget will be influenced by
the order in which instances are presented: this results from the simple strategy
used which re-allocates saved budget to the next hard instance. Therefore, in
order to quantify the effect of this, we create a longer stream in which we ran-
domly select 120 samples (with replacement) from the original 120 test instances,

Identifying Easy Instances to Improve Algorithm-Selection 81

Fig. 4. Boxplots of gains at the end of the stream of instances for each saving budget
strategy with VBS selector.

repeating this 20 times, resulting in a stream of length 2,400. Each group of 120
samples therefore may have a different set of instances and a different ordering.

Fig. 5. Cumulative difference between the full pipeline using the hardness classification
and trained selector when budget is saved and re-allocated.

Figure 5 displays the cumulative fitness gains obtained on the 5 streams of
unseen instances when budget is saved on ‘easy’ instances and then reused on
the next predicted ‘hard’ instance with a trained selector. Overall, the same
behaviour can be seen as observed with a VBS selector, i.e., saving budget
improves the performance of the pipeline while saving budget by curtailing runs
can lead to bigger gains but also to some losses in performance. For every model
but one, the gains obtained with SSB-CE are greater than using SSB. The latter
provides a gain which is greater than only using the pipeline without budget
re-allocation. For example, for stream 4, the gain of 75.5 obtained by using the
pipeline reaches 153 using SSB and 249.7 when SSB-CE is used.

82 Q. Renau and E. Hart

Fig. 6. Boxplots of gains at the end of the stream of instances for each saving budget
strategy with the trained selector.

Figure 6 summarises the performance gains using the pipeline that includes
the hardness classifier compared to an algorithm-selector only. As described in
Sect. 5.2, we see a small gain, even when no budget re-allocation mechanism is
used. Much larger gains are seen by re-allocating budget, with SSB-CE again
providing the best results.

6 Conclusion

This article is motivated by literature that recognises (1) the difficulty of recog-
nising easy instances [6]; (2) the computational cost of deriving information
needed to train algorithm-selectors; (3) the fact that algorithm selectors do not
perform well on easy instances [15]; (4) the need to make the most efficient use of
a fixed function evaluation budget in an algorithm-selection pipeline. To address
these issues, we proposed a pipeline (Fig. 1) that includes a ‘hardness’ classi-
fier whose role is to filter out easy instances which are simply solved using the
SBS. The effect of including this classifier is two-fold: (1) it saves budget both
by removing the need to calculate some of the input required by an algorithm-
selector and by curtailing the run length of easy instances; (2) it re-allocates this
budget to hard instances, enabling larger solving budgets which results in better
performance.

The pipeline was evaluated over two scenarios found in practical applications,
i.e., a batch setting where all instances to be solved are known, and a streaming
setting in which instances arrive one at time and must be solved immediately.

Over a stream of instances generated from the BBOB benchmark suite, we
show that the proposed pipeline including re-allocation results in a gain in perfor-
mance compared to using a trained algorithm-selector on the hard instances. The
magnitude of the gain increases as the amount of budget saved and re-allocated
increases. We also show that we can improve on an ‘oracle’ which uses a fixed

Identifying Easy Instances to Improve Algorithm-Selection 83

budget to identify the VBS (albeit unrealistic in practice). This is possible due
to the dynamic re-allocation of saved budget which increases run length—using
the pipeline results in 7% of budget becoming available for re-allocation.

A critical aspect of the design of the pipeline is that there should not be a cost
to computing the data required as input to the hardness classifier which would
negate the proposed benefits. We addressed this by using a hardness classifier
whose input is a subset of the data required by the algorithm-selector, there-
fore needs to be computed regardless of whether or not the hardness classifier is
used. Specifically, we use short fitness trajectories as input, which fit the crite-
rion identified above and have recently been shown to outperform selectors based
on ELA features [27]. Note that a pipeline that used ELA features as input to
both classifiers would in fact also fit this criterion as feature vectors calculated
for the hardness classifier could directly be used in the algorithm-selector. How-
ever, although a pipeline using ELA features could achieve some performance
benefits, budget would only be saved by identifying easy instances and reducing
the length of the run of the SBS solver (as opposed to the trajectory approach
which also saves budget by reducing feature computation). In addition, in some
circumstances, incorrectly identifying instances as easy and solving with the SBS
can mitigate an incorrect prediction with the algorithm-selector.

Future work can be separated into two categories: (1) improving the hard-
ness classifier and (2) improving the strategy for re-allocating budget. The accu-
racy of the hardness classifier could be improved by addressing the imbalance
in the training dataset, for example generating new easy instances through
instance-generation methods (e.g., [22]) or using imbalance correction techniques
such as weighting, down-sampling, or over-sampling. With regard to budget re-
allocation, we used a näıve strategy of spending for both the batch and streaming
scenarios. Alternative methods could be explored such as spreading the budget
over the next h ‘hard’ instances in the stream or even predicting the level of
‘hardness’ via regression rather than a binary label of easy/hard.

Acknowledgments. The authors are supported by funding from EPSRC award num-
ber: EP/V026534/1

Disclosure of Interest. The authors have no competing interests to declare that are

relevant to the content of this article.

References

1. Alissa, M., Sim, K., Hart, E.: Automated algorithm selection: from feature-based
to feature-free approaches. J. Heuristics 29(1), 1–38 (2023). https://doi.org/10.
1007/s10732-022-09505-4

2. Buttazzo, G.C.: Hard Real-time Computing Systems: Predictable Scheduling Algo-
rithms and Applications, vol. 24. Springer Science & Business Media, New York
(2011). https://doi.org/10.1007/978-1-4614-0676-1

https://doi.org/10.1007/s10732-022-09505-4
https://doi.org/10.1007/s10732-022-09505-4
https://doi.org/10.1007/978-1-4614-0676-1

84 Q. Renau and E. Hart

3. Cenikj, G., Petelin, G., Doerr, C., Korosec, P., Eftimov, T.: Dynamorep: trajectory-
based population dynamics for classification of black-box optimization prob-
lems. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2023, Lisbon, Portugal, 15-19 July 2023, pp. 813–821. ACM (2023).
https://doi.org/10.1145/3583131.3590401

4. Degorre, A., Maler, O.: On scheduling policies for streams of structured jobs.
In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 141–154.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-5 11

5. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR-Spektrum 22, 425–460 (2000)

6. Figueira, J.R., et al.: Easy to say they are hard, but hard to see they are easy-
towards a categorization of tractable multiobjective combinatorial optimization
problems. J. Multi-Criteria Decis. Anal. 24(1–2), 82–98 (2017)

7. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization
Benchmarking 2010: presentation of the Noiseless Functions (2010). http://coco.
gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf

8. Gan, C.H., Lin, P., Perng, N.C., Kuo, T.W., Hsu, C.C.: Scheduling for time-division
based shared channel allocation for UMTS. Wireless Netw. 13, 189–202 (2007)

9. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: a
platform for comparing continuous optimizers in a black-box setting. Optim. Meth-
ods Softw. 36(1), 114–144 (2021). https://doi.org/10.1080/10556788.2020.1808977

10. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evo-
lution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/
106365601750190398

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

12. Jankovic, A., Eftimov, T., Doerr, C.: Towards feature-based performance regression
using trajectory data. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplica-
tions 2021. LNCS, vol. 12694, pp. 601–617. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-72699-7 38

13. Jankovic, A., Vermetten, D., Kostovska, A., de Nobel, J., Eftimov, T., Doerr, C.:
Trajectory-based algorithm selection with warm-starting. In: IEEE Congress on
Evolutionary Computation, CEC 2022, Padua, Italy, 18-23 July 2022, pp. 1–8.
IEEE (2022). https://doi.org/10.1109/CEC55065.2022.9870222

14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995).
https://doi.org/10.1109/ICNN.1995.488968

15. Kerschke, P., Hoos, H., Neumann, F., Trautmann, H.: Automated algorithm selec-
tion: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

16. Kerschke, P., Preuss, M.: Exploratory landscape analysis. In: Proceedings of the
Companion Conference on Genetic and Evolutionary Computation, p. 990-1007.
GECCO 2023 Companion, Association for Computing Machinery, New York, NY,
USA (2023). https://doi.org/10.1145/3583133.3595058

17. Kerschke, P., Trautmann, H.: Automated algorithm selection on continuous black-
box problems by combining exploratory landscape analysis and machine learning.
Evol. Comput. 27(1), 99–127 (2019)

18. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

https://doi.org/10.1145/3583131.3590401
https://doi.org/10.1007/978-3-540-85778-5_11
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-030-72699-7_38
https://doi.org/10.1007/978-3-030-72699-7_38
https://doi.org/10.1109/CEC55065.2022.9870222
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1145/3583133.3595058
http://arxiv.org/abs/1412.6980

Identifying Easy Instances to Improve Algorithm-Selection 85

19. Kostovska, A., et al.: Per-run algorithm selection with warm-starting using
trajectory-based features. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke,
P., Ochoa, G., Tušar, T. (eds) International Conference on Parallel Problem Solv-
ing from Nature, vol. 13398, pp. 46–60. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-14714-2 4

20. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the
art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens,
C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6 18

21. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory Landscape Analysis. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2011, pp. 829–836. ACM (2011). https://doi.
org/10.1145/2001576.2001690

22. Muñoz, M., Smith-Miles, K.: Generating new space-filling test instances for con-
tinuous black-box optimization. Evol. Comput. 28(3), 379–404 (2020)

23. Pinedo, M.: Planning and Scheduling in Manufacturing and Services. Springer,
New York (2005). https://doi.org/10.1007/978-1-4419-0910-7

24. Raff, S.: Routing and scheduling of vehicles and crews: the state of the art. Comput.
Oper. Res. 10(2), 63–211 (1983)

25. Renau, Q., Hart, E.: Identifying easy instances to improve efficiency of ml pipelines
for algorithm-selection - code and data (2024). https://doi.org/10.5281/zenodo.
10590233

26. Renau, Q., Hart, E.: Improving algorithm-selection and performance-prediction via
learning discriminating training samples. In: In Press of the Genetic and Evolu-
tionary Computation Conference, GECCO 2024, Melbourne, VIC, Australia, 14-18
July 2024, pp. 813–821. ACM (2024). https://doi.org/10.1145/3638529.3654025

27. Renau, Q., Hart, E.: On the utility of probing trajectories for algorithm-selection.
In: Smith, S., Correia, J., Cintrano, C. (eds.) Applications of Evolutionary Compu-
tation - 27th European Conference, EvoApplications 2024, Held as Part of EvoStar
2024, Aberystwyth, UK, 3-5 April 2024, Proceedings, Part I. LNCS, vol. 14634,
pp. 98–114. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-56852-7 7

28. Smith-Miles, K., Christiansen, J., Muñoz, M.: Revisiting where are the hard knap-
sack problems? Via instance space analysis. Comput. Oper. Res. 128, 105184
(2021)

29. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learn-
ing from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS,
vol. 6073, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13800-3 29

30. Storn, R., Price, K.: Differential evolution - A simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11(4), 341–359
(1997). https://doi.org/10.1023/A:1008202821328

31. Tanabe, R.: Benchmarking feature-based algorithm selection systems for black-
box numerical optimization. IEEE Trans. Evol. Comput. 26(6), 1321–1335 (2022).
https://doi.org/10.1109/TEVC.2022.3169770

32. Vermetten, D., Hao, W., Sim, K., Hart, E.: To Switch or not to Switch: Predict-
ing the Benefit of Switching between Algorithms based on Trajectory Features -
Dataset (2022). https://doi.org/10.5281/zenodo.7249389

https://doi.org/10.1007/978-3-031-14714-2_4
https://doi.org/10.1007/978-3-031-14714-2_4
https://doi.org/10.1007/978-3-319-19084-6_18
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1007/978-1-4419-0910-7
https://doi.org/10.5281/zenodo.10590233
https://doi.org/10.5281/zenodo.10590233
https://doi.org/10.1145/3638529.3654025
https://doi.org/10.1007/978-3-031-56852-7_7
https://doi.org/10.1007/978-3-642-13800-3_29
https://doi.org/10.1007/978-3-642-13800-3_29
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/TEVC.2022.3169770
https://doi.org/10.5281/zenodo.7249389

86 Q. Renau and E. Hart

33. Vermetten, D., Wang, H., Sim, K., Hart, E.: To switch or not to switch: predicting
the benefit of switching between algorithms based on trajectory features. In: Cor-
reia, J., Smith, S., Qaddoura, R. (eds.) Applications of Evolutionary Computation,
vol. 13989, pp. 335–350. Springer Nature Switzerland, Cham (2023). https://doi.
org/10.1007/978-3-031-30229-9 22

34. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm
selection for sat. Journal of artificial intelligence research 32, 565–606 (2008)

https://doi.org/10.1007/978-3-031-30229-9_22
https://doi.org/10.1007/978-3-031-30229-9_22

Landscape-Aware Automated Algorithm
Configuration Using Multi-output Mixed

Regression and Classification

Fu Xing Long1,2(B) , Moritz Frenzel3 , Peter Krause4 , Markus Gitterle5 ,
Thomas Bäck1 , and Niki van Stein1

1 LIACS, Leiden University, Niels Bohrweg 1, 2333 Leiden, Netherlands
{f.x.long,t.h.w.baeck,n.van.stein}@liacs.leidenuniv.nl

2 BMW Group, Knorrstraße 147, 80788 Munich, Germany
fu-xing.long@bmw.de

3 Altair Engineering GmbH, Calwer Straße 7, 71034 Böblingen, Germany
mfrenzel@altair.com

4 Divis Intelligent Solutions GmbH, Joseph-von-Fraunhofer-Straße 20, 44227
Dortmund, Germany

krause@divis-gmbh.de
5 Munich University of Applied Sciences, Dachauer Straße 98b, 80335 Munich,

Germany
markus.gitterle@hm.edu

Abstract. In landscape-aware algorithm selection problem, the effec-
tiveness of feature-based predictive models strongly depends on the rep-
resentativeness of training data for practical applications. In this work,
we investigate the potential of randomly generated functions (RGF) for
the model training, which cover a much more diverse set of optimiza-
tion problem classes compared to the widely-used black-box optimiza-
tion benchmarking (BBOB) suite. Correspondingly, we focus on auto-
mated algorithm configuration (AAC), that is, selecting the best suited
algorithm and fine-tuning its hyperparameters based on the landscape
features of problem instances. Precisely, we analyze the performance of
dense neural network (NN) models in handling the multi-output mixed
regression and classification tasks using different training data sets, such
as RGF and many-affine BBOB (MA-BBOB) functions. Based on our
results on the BBOB functions in 5d and 20d, near optimal configura-
tions can be identified using the proposed approach, which can most
of the time outperform the off-the-shelf default configuration considered
by practitioners with limited knowledge about AAC. Furthermore, the
predicted configurations are competitive against the single best solver in
many cases. Overall, configurations with better performance can be best
identified by using NN models trained on a combination of RGF and
MA-BBOB functions.

Keywords: Black-box optimization · Exploratory landscape analysis ·
Multi-output mixed regression and classification · Dense neural
network · Randomly generated functions

c© The Author(s) 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 87–104, 2024.
https://doi.org/10.1007/978-3-031-70068-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_6&domain=pdf
http://orcid.org/0000-0003-4550-5777
http://orcid.org/0000-0002-4025-8773
http://orcid.org/0000-0001-8302-0100
http://orcid.org/0000-0001-8760-1682
http://orcid.org/0000-0001-6768-1478
http://orcid.org/0000-0002-0013-7969
https://doi.org/10.1007/978-3-031-70068-2_6

88 F. X. Long et al.

1 Introduction

In landscape-aware algorithm selection problem (ASP) [25,33], the performance
of optimization algorithms has been linked to the landscape characteristics of
black-box optimization (BBO) problems that are quantified using fitness land-
scape analysis [20]. By constructing machine learning (ML) models, for instance,
the performance of optimization algorithms can be estimated based on the land-
scape characteristics of problem instances [11]. In other words, the problem land-
scape characteristics can be exploited to select well-performing optimization
algorithms from an algorithm portfolio prior to the actual optimization runs.
Using a large set of problem instances, and preferably from diverse optimiza-
tion problem classes, the corresponding landscape characteristics and algorithm
performances are utilized for the training of ML models. Following this, the effec-
tiveness of predictive models is heavily dependent on the representativeness of
training data for unseen BBO problems.

Although landscape features are informative in explaining algorithm per-
formances [31], landscape-aware ASP was mainly investigated on benchmark-
ing problems in previous work, such as the widely-used black-box optimization
benchmarking (BBOB) suite [7]. The fact that the BBOB suite is not repre-
sentative enough for engineering applications, such as crashworthiness optimiza-
tion [14,15] and control system calibration [34] in the automotive industry, raises
concerns that predictive models trained using only the BBOB suite might gener-
alize poorly to unseen problem classes that are not being covered. Moreover, for
real-world BBO problems that require expensive function evaluations, e.g., time-
consuming and/or costly simulation runs, the function evaluation budget can be
particularly limited, hindering the generation of a large data set for the model
training. To fill in the gap, we explore an alternative in building pre-trained gen-
eral purpose models that can generalize well for different applications, including
expensive BBO problems, while maintaining an affordable computational effort.
Our ultimate vision is to assist practitioners with little domain knowledge about
ASP, e.g., from engineering fields, to automatically identify the best suited algo-
rithm configuration for their applications.

Our Contribution: In this work, we investigate the potential of tree-based ran-
domly generated functions (RGF) for the training of predictive models, which
are much more diverse than the BBOB suite in terms of optimization landscape
characteristics. In this context, we implement a selection process to identify RGF
that are appropriate as training data. Furthermore, we extend our investigations
towards landscape-aware automated algorithm configuration (AAC) by combin-
ing both algorithm selection and hyperparameter optimization (HPO), that is,
finding the best suited algorithm and fine-tuning its hyperparameters. For the
prediction of optimal configurations, we consider dense neural network (NN)
models, which can easily handle multi-output mixed regression and classifica-
tion tasks. Based on our empirical results, near optimal configurations can be
identified using the proposed approach, which can outperform the off-the-shelf
default configuration and compete against the single best solver (SBS) for many

Landscape-Aware AAC Using Mixed Regression and Classification 89

BBOB functions. In some cases, NN models can perform better than random
forest (RF) models, which are typically considered for landscape-aware ASP.

This paper has the following structure: Related works are introduced in
Sect. 2, followed by the explanations of our methodology in Sect. 3 and exper-
imental setup in Sect. 4. Next, results are analyzed and discussed in Sect. 5.
Lastly, conclusions and future works are presented in Sect. 6.

2 Related Work

The idea of using RGF for the training of feature-based predictive models has
been previously investigated, such as in [42]. In summary, it was reported that
RGF were ineffective for the training of high-quality models in terms of predic-
tion accuracy. Independently of the previous work, our work differs mainly in
the following extensions.

1. Instead of simply using any RGF, we implement an intermediate step to select
RGF that are appropriate for the model training purposes. We argue that this
step is crucial to improve model accuracy, as discussed in Sect. 3.1. In fact,
we suspect that this might partly explain the low model accuracy in [42].

2. We propose to consider NN-based predictive models to handle the multi-
output mixed regression and classifications tasks in AAC, which can some-
times perform slightly better than RF models, refer to Sect. 3.2.

3. Rather than just selecting the best algorithm from a portfolio of limited
algorithms, as typically done in ASP, we extend our investigations towards
combined algorithm selection and hyperparameter optimization (CASH) [35],
or we call AAC [33] in this work.

2.1 Automated Algorithm Configuration

To tackle AAC problems, where the search space can be a mix of continuous,
integer, categorical, and conditional variables, various optimization algorithms
have been implemented, such as tree-structured Parzen estimator (TPE) [1] and
sequential model-based algorithm configuration (SMAC) [13]. As a variant of
Bayesian optimization [23], TPE utilizes Parzen estimators as surrogate models,
which can handle mixed-integer search space and scale well to high dimension-
ality. For example, TPE has been previously applied to fine-tune the learning
rates of covariance matrix adaptation evolutionary strategy (CMA-ES) [41].

In this work, we focus on fine-tuning the configuration of modular CMA-
ES [26], developed based on the original CMA-ES algorithm [8,9]. In short, differ-
ent variants, such as active learning, mirrored sampling, threshold convergence,
and recombination weights, are integrated as modules that can be individually
activated or deactivated, allowing a custom instantiation of CMA-ES. Subse-
quently, modular CMA-ES offers a convenient examination of the interactions
between different modules as well as between modules and hyperparameters,
e.g., population size and learning rates.

90 F. X. Long et al.

2.2 Black-Box Optimization Benchmarking

In previous work, landscape-aware ASP was commonly investigated based on
BBO benchmarking suites, such as the well-known BBOB suite [7] available in
the comparing continuous optimizers (COCO) platform [6] and iterative opti-
mization heuristics profiler tool (IOHProfiler) [4]. Altogether, the BBOB suite
consists of 24 single-objective, continuous, and noiseless functions of different
optimization landscape complexity, which we refer to this suite as the BBOB.

Principally, the BBOB functions can be scaled up to arbitrary dimensionality
and different problem instances can be created through transformations of the
search space and objective values, which is controlled by an internal identifier.
Typically, investigations based on the BBOB suite are carried out within the box-
constrained search space [−5, 5]d, where the global optimum is located within
[−4, 4]d, where d represents the dimensionality. Extensive analysis of the BBOB
problem instances is available in [17].

To complement the diversity of the BBOB suite, additional functions can be
generated via affine combination of two BBOB functions [3], which is based on an
interpolation between two selected BBOB functions and uses a weighting factor
to control the shifting between functions. This approach was later generalized to
affine combinations of many BBOB functions, also known as many-affine BBOB
(MA-BBOB) functions, where the affine combination is no longer limited to only
two functions [38,39].

2.3 Randomly Generated Functions

Apart from the benchmarking suites, a set of functions can be generated using
the function generator proposed in [36], covering a diverse set of optimization
problem classes, as shown in [40]. By using a set of selection pressures, math-
ematical operands and operators are randomly selected from a predefined pool
to construct tree-structured function expressions, which we call RGF. In fact,
RGF with similar landscape characteristics to automotive crashworthiness opti-
mization problems can be created, which is lacking in the BBOB suite [15].

Nonetheless, the properties of RGF are not known a priori, e.g., the global
optimum and optimization complexity, as oppose to the well-studied BBOB
suite. To tackle this problem, an extension has been attempted on this func-
tion generator to guide the function generation towards specific optimization
complexity using genetic programming [16], which is beyond the scope of this
work.

2.4 Exploratory Landscape Analysis

In landscape-aware ASP, exploratory landscape analysis (ELA) is one of the
popular approaches employed to numerically quantify the high-level landscape
characteristics of continuous optimization problems, such as multi-modality and
global structure. While initially only six fundamental feature classes were pro-
posed in ELA, namely y-distribution, level sets, meta-models, local searches,

Landscape-Aware AAC Using Mixed Regression and Classification 91

curvature, and convexity [21,22], more feature classes have been progressively
proposed to complement them, e.g., dispersion, nearest better clustering (NBC),
principal component analysis (PCA), linear models, and information content of
fitness sequences (ICoFiS) [10,12,18,24].

In brief, a design of experiments (DoE) is required for the ELA features
computation, consisting of some samples X = {x1, · · · , xn} and objective val-
ues Y = {y1, · · · , yn}, which are computed using an objective function f , i.e.,
f : X → Y, where xi ∈ IRd, yi ∈ IR, and n is the sample size. Consequently,
the effectiveness of ELA features can be dependent on the DoE sample size,
dimensionality, and sampling strategy [29]. To overcome potential bias of the
hand-crafted ELA features in capturing specific landscape characteristics, deep
NN-based methods have been explored to characterize BBO problems based on
latent space features, e.g., DoE2Vec [32], which we leave for future work.

3 Methodology

The workflow of our landscape-aware AAC approach is visualized in Fig. 1. In the
first step, the landscape characteristics of RGF are captured using ELA and the
corresponding best configurations are identified using HPO during the training
phase. Next, the ELA features and configurations are properly pre-processed for
the training of NN models. Eventually, optimal configurations for unseen BBO
problems can be predicted based on their ELA features using the trained models.
Our approach is described in detail in the following.

Fig. 1. An overview of our proposed landscape-aware AAC approach that can identify
optimal configurations for BBO problems, consisting of a training and testing phase.
During the training phase, using a preferably large set of RGF, the respective ELA
features and optimal configurations identified through HPO (performed on RGF) are
utilized to train NN models. The pre-trained models can then be deployed to predict
the best suited configuration for unseen BBO problems based on their ELA features
in the testing phase.

Generation and Selection of RGF. Firstly, a large set of RGF is generated for the
training of NN models, using the function generator implemented in [15]. Before
the model training, a pre-selection step is integrated to identify RGF that are
appropriate for AAC purposes, refer to Sect. 3.1 for detailed explanations.

92 F. X. Long et al.

Computation of ELA Features. Secondly, the optimization landscape charac-
teristics of RGF are computed using ELA based on some DoE samples. To
combat inherent bias [27], the objective values are normalized using min-max
scaling before the ELA features computation. Since many of the ELA features are
redundant [30], highly correlated ELA features based on Pearson’s correlation
coefficient (>0.95) are discarded, using a similar approach as in [15]. To improve
the performance of NN models, we ensure that the remaining ELA features are
within a comparable scale range via normalization using min-max scaling.

Identifying the best Configuration using HPO. For each individual RGF, the best
performing algorithm configuration found using HPO is considered as the best
suited configuration identified for that function. Similar to the ELA features, the
configuration data are pre-processed for the model training, where categorical
hyperparameters are one-hot encoded, while continuous hyperparameters are
linearly re-scaled to the scale range of [0, 1] using Eq. 1.

znew =
zinit − amin

amax − amin
· (bmax − bmin) + bmin , (1)

where zinit and znew are the initial and re-scaled values, amax and amin are
the lower and upper bound before re-scaling, and bmax and bmin are the lower
and upper bound after re-scaling. In this work, we focus on finding the best
configuration of modular CMA-ES.

Training of NN Models. For the training of NN models, the pre-processed ELA
features are employed as input, while the best configurations identified using
HPO as output. Detailed descriptions of the NN models are included in Sect. 3.2.

Optimal Configurations for BBO Problems. During the deployment or testing
phase, the trained NN models can be used to predict optimal configurations
of modular CMA-ES for unseen BBO problems based on their ELA features.
Similar to the training phase, the input ELA features of BBO problems are
normalized, while the predicted configurations are inversely transformed back
to the original configuration search space. To avoid invalid configurations, e.g.,
negative population size, predicted continuous hyperparameters that fall outside
the search space will be set to either the lower or upper boundary.

3.1 Selection of Appropriate RGF

Unlike the well understood BBOB functions, the landscape characteristics and
global optimum of RGF are not known a priori. Due to the fact that some RGF
are insufficiently discriminative in distinguishing different configurations based
on their optimization performances, not all RGF are appropriate for AAC pur-
poses based on our preliminary testing. Using the HPO results on three chosen
RGF in Fig. 2 as an example, we consider functions with a similar pattern to

Landscape-Aware AAC Using Mixed Regression and Classification 93

‘RGF1’ as ideal for AAC purposes, where a clear configuration ranking with
only a few ties is possible. More importantly, the best configuration can be eas-
ily identified. On the other hand, functions similar to ‘RGF2’ are considered as
inappropriate for AAC, where many, or in extreme situations, all configurations
are equally good, leading to an ambiguous ranking. We suspect that the opti-
mization complexity of such RGF is too low that the choice of configuration does
not matter. Surprisingly, two RGF with a small difference in their ELA features
can have the opposite patterns, which raises questions for future research. To
improve the robustness of trained models, functions similar to ‘RGF3’ are addi-
tionally neglected, where the global optimum seems to be an extreme outlier and
can be found occasionally by a few configurations.

Fig. 2. The optimization convergence of 500 configurations evaluated using HPO on
three chosen RGF. The x-axis shows the number of function evaluations, while the
y-axis shows the re-scaled objective values, with 0 being the best solution found in all
runs. Each curve represents a configuration run using modular CMA-ES (median over
10 repetitions). (Left) Ideal for AAC purposes, where a clear ranking of configurations
is possible. (Middle) Ambiguous ranking of algorithm configurations, where all config-
urations are equally competitive. (Right) The global optimum seems to be an outlier
that can only be found by a few configurations.

To overcome these problems, the following measures are implemented to iden-
tify RGF that are appropriate for AAC purposes.

1. Estimation of global optimum: In a brute-force manner, we perform HPO
on each RGF, focusing on finding a better solution, i.e., a smaller objective
value, and using a similar setup as described in Sect. 4. Eventually, the global
optimum yopt is approximated based on the best solution found in all HPO
runs yhpo using Eq. 2.

yopt =

⎧
⎪⎨

⎪⎩

�yhpo� , if 0 ≤ |yhpo| < 10
�yhpo/10� · 10, if 10 ≤ |yhpo| < 100
�yhpo/10p� · 10p, otherwise

,

p = �log10 |yhpo|� − 1,

(2)

where yhpo is either rounded to the nearest lower integer for a small |yhpo|, or
rounded based on the nearest lower power of 10. Having an estimated global

94 F. X. Long et al.

optimum for RGF is essential in our approach to facilitate an evaluation
of configuration performance (refer to Sect. 4.1) and a comparison between
different functions with varying scale ranges.

2. RGF appropriate for AAC: Using the same HPO results from previous
step, all configurations evaluated are ranked according to their performances,
where ties are assigned with the same rank. The ranking ambiguity is eval-
uated based on the Kendall rank correlation coefficient between the HPO
configuration ranking and a strict ranking (without tie). For a correlation
lower than 0.9, e.g., due to too many ties, such ranking is considered as
ambiguous. Furthermore, we compute the standard score or z-score of the
global optimum found to estimate its deviation from the distribution of other
solutions. When the global optimum is 3 standard deviations away from the
distribution mean, it is considered as an extreme outlier.

3. Elimination of RGF: A RGF is excluded from the training data, if any of
the aforementioned conditions is fulfilled.

While additional computational effort is required for the above-mentioned
measures in identifying RGF appropriate for AAC purposes, we argue that they
are critical in improving the performance of NN models. Moreover, this process
needs to be done only once, since the RGF identified can be re-used in the future
for the same BBO problem classes.

3.2 Multi-output Mixed Regression and Classification

Dense Neural Network: In this work, we investigate the potential of dense NN
models with the following architecture for the multi-output mixed regression and
classification tasks in landscape-aware AAC, as visualized in Fig. 3.

– Input layer: The size of the input layer is equal to the number of ELA
features available in the training data.

– Hidden layers: To determine an optimal inner architecture, different combi-
nations of number of hidden layer {1, 2, 3}, hidden layer sizes {16, 32, 64, 128},
and epochs {100, 150, 200} are evaluated using a grid search approach, 80 : 20
train-test split of the training data, and a repetition of five times. Eventually,
the hidden layers are constructed based on the combination with the smallest
validation loss and assigned with rectified linear unit (ReLU) as activation
function.

– Output layers: In short, different layers are assigned for the mixed regres-
sion and classification tasks. While a single output layer with linear acti-
vation function is dedicated for the multi-output regression task, the multi-
output multi-class classification task is split into multiple classifications tasks.
Precisely, an output layer with softmax activation function is allocated for
each categorical hyperparameter. Consequently, the size of each output layer
depends on the number of hyperparameters respectively.

Landscape-Aware AAC Using Mixed Regression and Classification 95

– Loss functions: The dense NN models are trained using mean squared error
as loss function for regression and categorical cross entropy for classification
task.

input

InputLayer

hidden_1

Dense relu

hidden_2

Dense relu

hidden_3

Dense relu

out_regr

Dense linear

out_active

Dense softmax

out_mirrored

Dense softmax

out_thres_converge

Dense softmax

out_weights

Dense softmax

Fig. 3. An example of the architecture of a dense NN model. From left to right, an
input layer, three hidden layers, and several output layers, with one output layer for
regression and four layers for classification tasks.

Random Forest: For a fair evaluation, the performance of trained NN models is
compared against RF models, which are popular in landscape-aware ASP. Pre-
cisely, the RF models are optimally constructed with fine-tuned configurations
using auto-sklearn [5], an automated CASH tool designed for ML, and 80 : 20
train-test split of the training data. Since multi-output multi-class classification
is currently limited in auto-sklearn, the algorithm configuration problem is
defined as a multi-target regression task, where the categorical hyperparameters
are encoded as numerical labels.

4 Experimental Setup

In brief, the scope of our investigations can be summarized as follows:

– In 5d, using a set of 1 000 RGF as training data, while the 24 BBOB functions
of the first instance as unseen test problems. For a comprehensive analysis,
we also investigate models trained using 1 000 MA-BBOB functions and a
combination of both RGF and MA-BBOB functions;

– An optimization landscape is characterized based on a total of 68 ELA fea-
tures that can be computed without requiring additional function evaluations,
using a DoE of 50 · d samples, pflacco [28], and a similar workflow proposed
in [15];

– In this work, we consider fine-tuning the configuration of modular CMA-ES
within the configuration search space in Table 1, with all optimization runs
are allocated with a budget of 1 000 · d evaluations and 10 repetitions; and

96 F. X. Long et al.

Table 1. An overview of the 11 hyperparameters of modular CMA-ES considered for
AAC. The default configuration is highlighted in bold, where the default learning rates
are automatically determined based on other hyperparameters. The ‘number of chil-
dren’ predicted by predictive models is rounded-off to integer. Symbol: ZZ for integer,
IR for continuous variable, and C for categorical variable.

Num. Hyperparameter Type Domain
1 Number of children ZZ { 5, . . ., 50 } (4 + �(3 · ln(d))�)
2 Number of parent IR [0.3, 0.5] (0.5)

(as ratio of children)
3 Initial standard deviation IR [0.1, 0.5] (0.2)
4 Learning rate step size control IR [0.0, 1.0]
5 Learning rate covariance IR [0.0, 1.0]

matrix adaptation
6 Learning rate rank-µ update IR [0.0, 0.35]
7 Learning rate rank-one update IR [0.0, 0.35]
8 Active update C { True, False }
9 Mirrored sampling C { none, ‘mirrored’, ‘mirrored pairwise’ }
10 Threshold convergence C { True, False }
11 Recombination weights C { ‘default’, ‘equal’, ‘1/2∧lambda’ }

– The TPE available in HyperOpt [2] is employed to identify optimal configu-
rations of modular CMA-ES and assigned with a budget of 500 evaluations.

To analyze the performance of our approach for BBO problems in higher
dimensionality, our investigations are extended to 20d using a smaller experi-
mental scope to minimize computational effort, namely a DoE of 20 · d samples
for ELA features computation, 100 · d evaluations for optimization runs, 300
evaluations for TPE, and only the seven real-valued hyperparameters of modu-
lar CMA-ES are considered.

4.1 Optimization Performance Metric

For real-world applications, (i) it is often practical to find good solutions within
a shorter time, rather than finding the global optimum, and (ii) the global opti-
mum is usually not known, making it difficult to use some popular performance
metrics, e.g., expected hitting time [37]. Hence, we propose to measure the per-
formance of a configuration based on its area under the curve (AUC) of opti-
mization convergence (Fig. 2). By minimizing the AUC metric, we are essentially
searching for configurations that have an optimal trade-off between the solution
found and convergence speed. In this work, all AUC during HPO are computed
using the min-max normalized objective values based on the global optimum
and worst DoE sample.

4.2 Optimization Baseline

Principally, we consider the following three algorithm configurations as compar-
ison reference to evaluate the potential of our approach.

Landscape-Aware AAC Using Mixed Regression and Classification 97

– Default configuration: The readily available configuration in its original
implementation that is simply utilized by practitioners with limited experi-
ence in fine-tuning configurations. Inline with our motivation, our approach
is primarily compared against it.

– SBS: The configuration that can perform well on average across all 24 BBOB
functions and serves as our secondary target to beat in this work. Precisely,
it is identified based on the mean performance of configurations evaluated
across all BBOB functions.

– Virtual best solver (VBS): The best performing configuration for a par-
ticular BBOB function, which can be treated as the lower bound.

Unlike typical ASP approaches, where the SBS and VBS are selected from a
portfolio of limited algorithms using grid search, evaluating all possible config-
urations within the large search space in Table 1 is computationally infeasible.
Subsequently, we determine both solvers via HPO using TPE within an allocated
budget. Due to the stochastic nature of TPE, there might be configurations that
can outperform the VBS identified, but are not discovered during HPO.

5 Results

Due to the limited space, experimental results and figures not included in
this paper can be found in our repository at https://doi.org/10.5281/zenodo.
10965507.

5.1 Representativeness of Training Data

Before delving into analyzing the configuration performances, we take a closer
look at the representativeness of training data. Naturally, predictive models
trained using MA-BBOB functions are expected to perform well, since the prob-
lem classes available in the training data should sufficiently cover the BBOB
suite. While this can be observed most of the time, it is not always the case,
notably for F7 (step ellipsoidal) and F12 (Bent Cigar) in Sect. 5.2. The poor
performances could be due to the insufficient coverage of ELA feature space by
MA-BBOB functions, as shown in Fig. 4, which might be related to the genera-
tion of MA-BBOB functions [38]. In comparison, RGF can better cover the ELA
feature space, highlighting the benefits of using RGF as training data. In fact,
it seems to be advantageous to combine the large distribution of RGF and the
more focused distribution of MA-BBOB on some of the BBOB functions.

5.2 Performance of Predicted Configurations

The optimization performances using different configurations for 24 BBOB func-
tions in 5d are compared in Fig. 5. In general, the optimal configurations identi-
fied using predictive models can clearly outperform the default configuration on
most BBOB functions. On the other hand, the predicted configurations seem to

https://doi.org/10.5281/zenodo.10965507
https://doi.org/10.5281/zenodo.10965507

98 F. X. Long et al.

Fig. 4. Projection of the ELA feature space to a 2d visualization using t-distributed
stochastic neighbor embedding (t-SNE) [19] for 1 000 RGF, 1 000 MA-BBOB, and 24
BBOB functions in 5d (left) and 20d (right), using a similar approach as in [15].

be competitive against the SBS, such as for F7 and F17 (Schaffers F7). Not only
that, our approach using NN models can perform better than the SBS in some
cases, for instance, for F5 (linear slope) and F13 (sharp ridge). Nonetheless, the
performance of predicted configurations is lacking for highly multi-modal func-
tions, e.g., F16 (Weierstrass) and F23 (Katsuura), which might be due to the
absence of ELA features that can accurately capture the landscape characteris-
tics of such complex functions, revealing the weaknesses in our approach. When
compared against the VBS, the predicted configurations sometimes seem to have
a comparable performance, e.g., for F21 (Gallagher’s Gaussian 101-me peaks).

Using the Wilcoxon signed-rank test with the hypothesis optimal configura-
tions identified using our approach can perform better, we statistically evaluate
the performance of different configurations. Precisely, we focus on comparing
NN models against the default configuration, SBS, and RF models, using RGF
as training data. Inline with our previous observations, optimal configurations
predicted using our approach can indeed beat the default configuration for most
BBOB functions, while outperforming the SBS on many BBOB functions, as
depicted in Fig. 6. It is worth reminding that our approach can be competitive
against the default configuration and SBS in a few remaining BBOB functions,
as previously discussed in Fig. 5. This analysis also indicates that our current
approach is more effective on simple functions (first half of the BBOB suite)
compared to complex functions (second half), which might be related to the
ELA features. Apart from that, the performances of NN models are as good as
or even better than RF models for some BBOB functions, particularly in 5d.

As illustrated in Fig. 6, we can in general have similar observations for the
BBOB functions in 20d. When compared to the default configuration, our app-
roach are more effective for many BBOB functions. Nevertheless, the perfor-
mance improvements gained using our approach compared to the SBS in 20d
are less than in 5d, showing rooms for improvement in high dimensionality.

Landscape-Aware AAC Using Mixed Regression and Classification 99

Fig. 5. Performance of modular CMA-ES using different configurations for 24 BBOB
functions in 5d, each repeated for 10 times. The AUC is computed based on objec-
tive values min-max normalized using the global optimum and worst solution in all
configurations, divided by the evaluation budget. A lower AUC is better.

Fig. 6. Pairwise performance comparison between the configuration predicted using
NN models (our approach) against the default configuration, SBS, and RF models for
24 BBOB functions in 5d (top) and 20d (bottom) based on the p-value computed using
the Wilcoxon signed-rank test. The green color indicates that there is statistically
significant evidence to support the hypothesis optimal configurations predicted using
NN models can perform better, with a p-value smaller than 0.05. Alternatively, a darker
purple color (larger p-value) indicates that the hypothesis is more likely to be rejected,
while a lighter purple color (smaller p-value) for a lower chance of rejection.

100 F. X. Long et al.

6 Conclusions and Future Work

Aiming to assist practitioners unfamiliar with fine-tuning of algorithm config-
urations, we propose to construct general purpose predictive models towards
landscape-aware AAC that can identify optimal algorithms as well as hyper-
parameters for different practical applications. To improve the generalization
of our approach, we consider tree-based RGF as training data, which covers a
diverse set optimization problem classes. Furthermore, a pre-selection step is
implemented to select RGF that are appropriate for AAC purposes, and thus, to
improve the prediction accuracy. Moreover, we investigate the potential of dense
NN models for the multi-output mixed regression and classification tasks, which
can easily handle the mixed-integer search space and large training data sets.

When evaluated on the BBOB suite in 5d and 20d using modular CMA-ES,
our results reveal that we can predict near-optimal configurations that outper-
form the default configuration and compete against the SBS in most cases. This
is particularly encouraging for real-world applications, where such a SBS is usu-
ally not available. In fact, properly selected RGF have promising potential as
training data for landscape-aware AAC, since they cover a broader spectrum
of function complexity compared to BBOB and MA-BBOB functions. Subse-
quently, we believe that our approach can generalize well beyond the BBOB
suite, provided that the unseen problems is well represented by the RGF train-
ing set. Overall, configurations with better performance can be best identified
using dense NN models trained on a combination of RGF and MA-BBOB func-
tions.

For future work, we plan to improve our investigations as follows:

– The configuration search space can be expanded to include a variety of opti-
mization algorithms and hyperparameters;

– The performance of NN models can be further improved by fine-tuning more
hyperparameters using an optimizer, e.g., learning rate and batch size;

– An analysis can be extended to better understand the impact of ELA features
pre-processing, e.g., using normalization vs. standardization;

– To further minimize the overall computational costs, alternatives that can
efficiently identify RGF appropriate for AAC purposes can be explored;

– Despite the fact that the estimated yopt seems to be robust in our work, i.e.,
always smaller than all solutions found, further investigations are needed for
confirmation and/or improvements; and

– Eventually, we aim to evaluate and quantify the benefits of our approach for
real-world expensive BBO problems.

Acknowledgments. The contribution of this paper was written as part of the joint
project newAIDE under the consortium leadership of BMW AG with the partners
Altair Engineering GmbH, divis intelligent solutions GmbH, MSC Software GmbH,
Technical University of Munich, TWT GmbH. The project is supported by the Federal
Ministry for Economic Affairs and Climate Action (BMWK) on the basis of a decision
by the German Bundestag.

Landscape-Aware AAC Using Mixed Regression and Classification 101

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems, vol. 24
(2011)

2. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparam-
eter optimization in hundreds of dimensions for vision architectures. In: Interna-
tional Conference on Machine Learning, pp. 115–123. PMLR (2013)

3. Dietrich, K., Mersmann, O.: Increasing the diversity of benchmark function sets
through affine recombination. In: Parallel Problem Solving from Nature–PPSN
XVII: 17th International Conference, PPSN 2022, Dortmund, Germany, 10–14
September 2022, Proceedings, Part I, pp. 590–602. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-14714-2_41

4. Doerr, C., Wang, H., Ye, F., van Rijn, S., Bäck, T.: IOHprofiler: a benchmarking
and profiling tool for iterative optimization heuristics. arXiv e-prints:1810.05281
(2018). https://arxiv.org/abs/1810.05281

5. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-Sklearn
2.0: Hands-free AutoML via meta-learning. J. Mach. Learn. Res. 23(261), 1–61
(2022)

6. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a
platform for comparing continuous optimizers in a black-box setting. Optim. Meth-
ods Softw. 36(1), 114–144 (2021). https://doi.org/10.1080/10556788.2020.1808977

7. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter black-box optimiza-
tion benchmarking 2009: noiseless functions definitions. Research Report RR-6829,
INRIA (2009). https://hal.inria.fr/inria-00362633

8. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in
evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE
International Conference on Evolutionary Computation, pp. 312–317. IEEE (1996)

9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

10. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures
by means of exploratory landscape analysis. In: Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, pp. 265–272. GECCO 2015,
Association for Computing Machinery, New York, NY, USA (2015). https://doi.
org/10.1145/2739480.2754642

11. Kerschke, P., Trautmann, H.: Automated algorithm selection on continuous black-
box problems by combining exploratory landscape analysis and machine learning.
Evol. Comput. 27(1), 99–127 (2019). https://doi.org/10.1162/evco_a_00236

12. Kerschke, P., Trautmann, H.: comprehensive feature-based landscape analysis of
continuous and constrained optimization problems using the r-package flacco. In:
Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M. (eds.)
Applications in Statistical Computing. SCDAKO, pp. 93–123. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25147-5_7

13. Lindauer, M., et al..: SMAC3: a versatile bayesian optimization package for hyper-
parameter optimization. J. Mach. Learn. Res. 23(54), 1–9 (2022). http://jmlr.org/
papers/v23/21-0888.html

https://doi.org/10.1007/978-3-031-14714-2_41
https://doi.org/10.1007/978-3-031-14714-2_41
https://arxiv.org/abs/1810.05281
https://doi.org/10.1080/10556788.2020.1808977
https://hal.inria.fr/inria-00362633
https://doi.org/10.1145/2739480.2754642
https://doi.org/10.1145/2739480.2754642
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1007/978-3-030-25147-5_7
http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html

102 F. X. Long et al.

14. Long, F.X., van Stein, B., Frenzel, M., Krause, P., Gitterle, M., Bäck, T.: Learn-
ing the characteristics of engineering optimization problems with applications in
automotive crash. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1227-1236. GECCO 2022, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3512290.3528712

15. Long, F.X., van Stein, B., Frenzel, M., Krause, P., Gitterle, M., Bäck, T.: Gen-
erating cheap representative functions for expensive automotive crashworthiness
optimization. ACM Trans. Evol. Learn. Optim. 4(2) (2024). https://doi.org/10.
1145/3646554

16. Long, F.X., Vermetten, D., Kononova, A., Kalkreuth, R., Yang, K., Bäck, T., van
Stein, N.: Challenges of ELA-guided function evolution using genetic programming.
In: Proceedings of the 15th International Joint Conference on Computational Intel-
ligence - Volume 1: ECTA, pp. 119–130. INSTICC, SciTePress (2023). https://doi.
org/10.5220/0012206200003595

17. Long, F.X., Vermetten, D., van Stein, B., Kononova, A.V.: BBOB Instance Anal-
ysis: Landscape Properties and Algorithm Performance Across Problem Instances.
In: Correia, J., Smith, S., Qaddoura, R. (eds.) Applications of Evolutionary
Computation: 26th European Conference, EvoApplications 2023, Held as Part of
EvoStar 2023, Brno, Czech Republic, 12-14 April 2023, Proceedings, pp. 380–395.
Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30229-9_25

18. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy.
In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 477–484. GECCO 2006, Association for Computing Machinery, New
York, NY, USA (2006). https://doi.org/10.1145/1143997.1144085

19. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(86), 2579–2605 (2008). http://jmlr.org/papers/v9/vandermaaten08a.html

20. Malan, K.M.: A survey of advances in landscape analysis for optimisation. Algo-
rithms 14(2), 40 (2021). https://doi.org/10.3390/a14020040

21. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, pp. 829–836. GECCO 2011, Association
for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/
2001576.2001690

22. Mersmann, O., Preuss, M., Trautmann, H.: Benchmarking evolutionary algorithms:
towards exploratory landscape analysis. In: Schaefer, R., Cotta, C., Kołodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 73–82. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5_8

23. Mockus, J.: The Bayesian approach to global optimization. In: Drenick, R.F.,
Kozin, F. (eds.) System Modeling and Optimization, pp. 473–481. Springer, Hei-
delberg (1982). https://doi.org/10.1007/BFb0006170

24. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: Exploratory landscape analysis of con-
tinuous space optimization problems using information content. IEEE Trans. Evol.
Comput. 19(1), 74–87 (2015). https://doi.org/10.1109/TEVC.2014.2302006

25. Muñoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-
box continuous optimization problems: a survey on methods and challenges. Inf.
Sci. 317, 224–245 (2015). https://doi.org/10.1016/j.ins.2015.05.010

26. de Nobel, J., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: Tuning as a means of
assessing the benefits of new ideas in interplay with existing algorithmic modules.
In: Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, pp. 1375–1384. GECCO 2021, Association for Computing Machinery, New
York, NY, USA (2021). https://doi.org/10.1145/3449726.3463167

https://doi.org/10.1145/3512290.3528712
https://doi.org/10.1145/3646554
https://doi.org/10.1145/3646554
https://doi.org/10.5220/0012206200003595
https://doi.org/10.5220/0012206200003595
https://doi.org/10.1007/978-3-031-30229-9_25
https://doi.org/10.1145/1143997.1144085
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.3390/a14020040
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1007/978-3-642-15844-5_8
https://doi.org/10.1007/BFb0006170
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.1016/j.ins.2015.05.010
https://doi.org/10.1145/3449726.3463167

Landscape-Aware AAC Using Mixed Regression and Classification 103

27. Prager, R.P., Trautmann, H.: Nullifying the inherent bias of non-invariant
exploratory landscape analysis features. In: Correia, J., Smith, S., Qaddoura,
R. (eds.) Applications of Evolutionary Computation: 26th European Conference,
EvoApplications 2023, Held as Part of EvoStar 2023, Brno, Czech Republic, 12–14
April 2023, Proceedings, vol. 13989, pp. 411–425. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-30229-9_27

28. Prager, R.P., Trautmann, H.: Pflacco: Feature-based landscape analysis of con-
tinuous and constrained optimization problems in Python. Evol. Comput., 1–25
(2023). https://doi.org/10.1162/evco_a_00341

29. Renau, Q., Doerr, C., Dreo, J., Doerr, B.: Exploratory landscape analysis is
strongly sensitive to the sampling strategy. In: Bäck, T., et al. (eds.) PPSN 2020.
LNCS, vol. 12270, pp. 139–153. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58115-2_10

30. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Expressiveness and robustness of land-
scape features. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pp. 2048–2051. GECCO 2019, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3319619.3326913

31. Simoncini, D., Barbe, S., Schiex, T., Verel, S.: Fitness landscape analysis around
the optimum in computational protein design. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 355–362. GECCO 2018, Association
for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/
3205455.3205626

32. van Stein, B., Long, F.X., Frenzel, M., Krause, P., Gitterle, M., Bäck, T.: DoE2Vec:
deep-learning based features for exploratory landscape analysis. In: Proceedings of
the Companion Conference on Genetic and Evolutionary Computation, pp. 515–
518. GECCO 2023 Companion, Association for Computing Machinery, New York,
NY, USA (2023). https://doi.org/10.1145/3583133.3590609

33. van Stein, N., Vermetten, D., Kononova, A.V., Bäck, T.: Explainable benchmark-
ing for iterative optimization heuristics. arXiv preprint arXiv:2401.17842 (2024).
https://arxiv.org/abs/2401.17842

34. Thomaser, A., Kononova, A.V., Vogt, M.E., Bäck, T.: One-shot optimization for
vehicle dynamics control systems: towards benchmarking and exploratory land-
scape analysis. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pp. 2036–2045. GECCO 2022, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3520304.3533979

35. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: com-
bined selection and hyperparameter optimization of classification algorithms. In:
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. p. 847–855. KDD 2013, Association for Computing
Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2487575.2487629

36. Tian, Y., Peng, S., Zhang, X., Rodemann, T., Tan, K.C., Jin, Y.: A recommender
system for metaheuristic algorithms for continuous optimization based on deep
recurrent neural networks. IEEE Trans. Artif. Intell. 1(1), 5–18 (2020). https://
doi.org/10.1109/TAI.2020.3022339

37. Vermetten, D., Wang, H., Doerr, C., Bäck, T.: Integrated vs. sequential approaches
for selecting and tuning CMA-ES variants. In: Proceedings of the 2020 Genetic
and Evolutionary Computation Conference, p. 903–912. GECCO 2020, Association
for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/
3377930.3389831

https://doi.org/10.1007/978-3-031-30229-9_27
https://doi.org/10.1007/978-3-031-30229-9_27
https://doi.org/10.1162/evco_a_00341
https://doi.org/10.1007/978-3-030-58115-2_10
https://doi.org/10.1007/978-3-030-58115-2_10
https://doi.org/10.1145/3319619.3326913
https://doi.org/10.1145/3205455.3205626
https://doi.org/10.1145/3205455.3205626
https://doi.org/10.1145/3583133.3590609
http://arxiv.org/abs/2401.17842
https://arxiv.org/abs/2401.17842
https://doi.org/10.1145/3520304.3533979
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1109/TAI.2020.3022339
https://doi.org/10.1109/TAI.2020.3022339
https://doi.org/10.1145/3377930.3389831
https://doi.org/10.1145/3377930.3389831

104 F. X. Long et al.

38. Vermetten, D., Ye, F., Bäck, T., Doerr, C.: MA-BBOB: a problem generator for
black-box optimization using affine combinations and shifts (2023). https://arxiv.
org/abs/2312.11083

39. Vermetten, D., Ye, F., Doerr, C.: Using Affine Combinations of BBOB Problems
for Performance Assessment. CoRR abs/2303.04573 (2023). https://doi.org/10.
48550/arXiv.2303.04573

40. Škvorc, U., Eftimov, T., Korošec, P.: A complementarity analysis of the COCO
benchmark problems and artificially generated problems. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion, p. 215–216. Asso-
ciation for Computing Machinery, New York, NY, USA (2021). https://doi.org/
10.1145/3449726.3459585

41. Zhao, M., Li, J.: Tuning the hyper-parameters of CMA-ES with tree-structured
Parzen estimators. In: 2018 Tenth International Conference on Advanced Compu-
tational Intelligence (ICACI), pp. 613–618 (2018). https://doi.org/10.1109/ICACI.
2018.8377530

42. Škvorc, U., Eftimov, T., Korošec, P.: Transfer learning analysis of multi-
class classification for landscape-aware algorithm selection. Mathematics
10(3) (2022). https://doi.org/10.3390/math10030432, https://www.mdpi.com/
2227-7390/10/3/432

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/2312.11083
https://arxiv.org/abs/2312.11083
https://doi.org/10.48550/arXiv.2303.04573
https://doi.org/10.48550/arXiv.2303.04573
https://doi.org/10.1145/3449726.3459585
https://doi.org/10.1145/3449726.3459585
https://doi.org/10.1109/ICACI.2018.8377530
https://doi.org/10.1109/ICACI.2018.8377530
https://doi.org/10.3390/math10030432
https://www.mdpi.com/2227-7390/10/3/432
https://www.mdpi.com/2227-7390/10/3/432
http://creativecommons.org/licenses/by/4.0/

Feature Encapsulation by Stages
in the Regression Domain Using

Grammatical Evolution

Darian Reyes Fernández de Bulnes1(B) , Allan de Lima1 , Edgar Galván2 ,
and Conor Ryan1

1 University of Limerick, Limerick, Ireland
{darian.reyesfernandezdebulnes,allan.delima,conor.ryan}@ul.ie

2 Maynooth University, Maynooth, Ireland
edgar.galvan@mu.ie

Abstract. Feature Encapsulation by Stages (FES) is a recently pro-
posed mechanism that can be implemented in any Evolutionary Compu-
tation (EC) metaheuristic. Encapsulation occurs via input space expan-
sion in several stages by adding the best individual so far as an additional
input. FES has been shown to perform well in training Boolean prob-
lems. This paper extends FES to the regression domain. Grammatical
Evolution (GE), a branch of Genetic Programming (GP), supports the
implementation of the FES approach by enabling the investigation of
performance across various search guides expressed in the grammar. We
conduct experiments on both synthetic and real-world symbolic regres-
sion problems, including multi-target issues. Additionally, we study sev-
eral FES-based approaches utilising the best selection process for each
problem, choosing between tournament, ε-Lexicase, and ε-Lexi2. Statis-
tical tests on unseen subsets’ results show that FES outperforms the
standard baseline in all problems. Furthermore, we analyse individual
complexity across generations, showing that populations utilising FES
consist of simpler individuals, thereby reducing computational costs.

Keywords: ε-Lexi2 · Feature Encapsulation by Stages · Grammatical
Evolution · Regression

1 Introduction

Feature Encapsulation by Stages (FES) [19] is a novel mechanism for encapsu-
lating and transferring features from a short evolutionary run (referred to as a
stage) as knowledge into a subsequent stage. It has shown considerable perfor-
mance improvements by combining the original dataset with encapsulated extra
features to obtain a joint solution that enhances the standard baseline, even
when considering various selection processes. Encapsulation occurs through the
expansion of the input space during the transition from one stage to the next,
managed by a grammar. At the beginning of each stage, the entire population
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 105–120, 2024.
https://doi.org/10.1007/978-3-031-70068-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_7&domain=pdf
http://orcid.org/0000-0002-7413-5122
http://orcid.org/0000-0002-1040-1321
http://orcid.org/0000-0001-8474-5234
http://orcid.org/0000-0002-7002-5815
https://doi.org/10.1007/978-3-031-70068-2_7

106 D. Reyes Fernández de Bulnes et al.

is re-initialised, which allows the emergence of individuals that reuse these new
features and avoid premature convergence.

FES has been demonstrated to perform well in training for the Boolean
domain [19], and this paper extends its application to generalise on unseen test
sets in the regression domain. Here, we hypothesise that the trained and validated
encapsulated features, which may exhibit a bias towards the seen dataset, play
a crucial role in addressing the unseen test dataset and statistically outperform
the standard evolutionary process.

To implement and explore the methods, we use Grammatical Evolution (GE),
which evolves programs in any Backus-Naur Form compliant language [21]. We
use GE for its demonstrated capabilities in the Regression domain [5]. Further-
more, variants of Lexicase selection [22] for regression problems have shown
promising results [10] compared to error-aggregating parent selection methods
such as Tournament selection [4]. Recently, several bloat control strategies have
been proposed, such as Lexicographic parsimony pressure [12] for Lexicase selec-
tion in Genetic Programming (GP) [8]. The framework for this paper combines
all of these procedures. Therefore, we first conduct experiments to compare the
GE standard evolutionary process (our baseline) using tournament, ε-Lexicase,
and ε-Lexi2 to tackle the studied problems. Later, we conduct the FES experi-
ments only with the best overall selection process to compare it with the stan-
dard baseline. Comparisons are made regarding performance on the test set and
measuring the complexity of the individuals.

Complexity is defined by measuring the number of utilised nodes. In GE, the
number of nodes represents the number of utilised terminals in the phenotype,
influencing both the mapping and evaluation processes. Thus, this metric directly
correlates to the execution time in GE.

The main contributions of this paper are:

– Presentation of a new variant of FES to generalise on unseen test sets by
encapsulating the output of the best-trained and best-validated individuals;

– Examination of FES methods with the ε-Lexi2 selection process for bloat
control to address regression problems;

– Comparison of FES methods using synthetic and real-world symbolic regres-
sion problems;

– Analysis of the complexity of individuals across generations reducing compu-
tational costs.

In Sect. 2, we discuss related work. Following that, in Sect. 3, we describe the
proposed methodology FES in detail. Following that, Sect. 4 shows the experi-
mental setup for GE, while Sect. 5 contains the results and discussion. Finally,
conclusions and future directions are outlined in Sect. 6.

2 Background

Various strategies have been studied in the fields of Machine Learning (ML) and
optimisation to expand the input space or reuse substructures. This research is
influenced by strategies within and outside of Evolutionary Computation (EC).

FES in the Regression Domain Using GE 107

One of the pioneering works to leverage the reuse of substructures was Koza
et al. [9]. Although this research is specifically related to the circuit problem
domain, its foundation lies in the concept that solving a problem necessitates
multiple applications of the same sophisticated submodules, all of which should
be designed for reusability.

2.1 Evolutionary Computation

Much of the prior related work has been conducted within the realm of EC,
predominantly in the domain of GP. Keijzer et al. [7] introduced the concept
of Run Transferable Libraries (RTL). These were a mechanism for transferring
knowledge obtained in one GP run to another, rather than relying solely on
generational approaches. The primary aim was to address challenges associated
with highly scalable problems.

Some years later, Medernach et al. [16] introduced Wave, an approach that
divides the GP run into several periods. This proposal had the peculiarity of re-
initialising the population at the beginning of each period. However, the draw-
back of this proposal is that it can only be applied to problems where the objec-
tive function can be decomposed into sub-functions for each period. Much recent
work has also focused on evolving features for reuse using Multidimensional Mul-
ticlass Genetic Programming (M3GP) by Batista et al. [2]. M3GP was designed
to address multiclass classification problems by enriching the representation of
the solution space in higher dimensions with a predictive algorithm, such as the
Mahalanobis distance classifier. More recently, Murphy et al. [17] proposed a
method for GE mapping to identify valuable modules that comprise a solution.

2.2 Stacked Methods

Over the last two decades, alongside developments in EC, stacked ML tech-
niques for regression or classification tasks with multiple outputs have emerged.
For example, Godbole and Sarawagi [3] exemplify the importance of feature com-
bination in addressing multi-label classification text tasks, revealing connections
between classes. Similarly, Spyromitros et al. [23] proposed a strategy based on
input space expansion for multi-target regression problems. They examined the
relationship between the outputs and assessed how their estimation contributes
to computing the actual outputs in a subsequent stage.

Liu et al. [13] also analysed multi-output regression problems. They intro-
duced a framework based on Gaussian methods, investigated knowledge trans-
fer among correlated outputs to enhance the quality of predictions, and con-
trasted their proposal with the 2-stage-based Stacked Single-Target (SST). A
couple of years later, Mastelini et al. [14] presented Deep Structure for Track-
ing Asynchronous Regressor Stacking (DSTARS) as an extension of SST by
combining multiple stacked regressors into a deep structure using a validation
sub-procedure. Additionally, Xia et al. [25] directed their attention to multi-label
classification problems, examining a weighted ensemble approach to tackle prob-
lems involving up to 75 labels and over a thousand features. However, all these

108 D. Reyes Fernández de Bulnes et al.

methods are highly susceptible to premature convergence, which we identify as
one of their main drawbacks.

3 Feature Encapsulation by Stages

The transfer of prior knowledge via feature encapsulation and the re-initialisation
of the population, thereby avoiding premature convergence and destroying pre-
viously (evolved) individuals, is carried out in stages. This paper describes a
method to augment a grammar to encapsulate fit individuals in a GE popula-
tion. The population is re-initialised once the grammar has been augmented to
utilise the encapsulated features. This process is referred to as a stage.

Furthermore, we introduce a novel FES variant called Train-
ing/Validation/Test (TVT), which includes a validation procedure to address
model overfitting in the regression domain. Instead of solely encapsulating
the outputs of the best-trained individual (Training/Test (TT) strategy), the
outputs of the best-validated individual are also encapsulated. Compared to the
previous TT strategy (without validation), this new TVT strategy doubles the
number of additional inputs (extra features) facilitated by the GE grammar.
The best-validated individual is selected to confront the test set once the
maximum number of generations is reached.

A complete workflow for both strategies, TT and TVT, is presented in Fig. 1.
It illustrates how, at the end of each stage, the outputs of the best individual
in the population are transformed into encapsulated features for the subsequent
stage. In the TT strategy, the best individual (depicted in green) refers to the
best-trained individual, while the TVT strategy refers to the best-validated indi-
vidual.

The process consists of a series of stages represented by large loops (depicted
as curved arrows). Within each stage, Sensible Initialisation [20] and a spec-
ified number of generations occur. Sensible Initialisation is a modification of
the ramped-half-and-half initialisation procedure created for GP. The first stage
utilises the standard grammar, while subsequent stages employ the extended
grammar. Upon reaching the maximum number of generations (stopping crite-
rion), irrespective of the current stage, the test set is evaluated using the best
individual in the population.

In contrast to the approach outlined in Medernach et al., [16], where the opti-
mal solution involves combining the best individuals from each period to form
a large structure, our methods maintain a hall of fame. FES involves preserving
the best individual across generations throughout the stages without necessitat-
ing the artificial creation of a phenotype at the end of the evolutionary process.
Moreover, unlike the procedure described in Spyromitros et al. [23], which only
manages two offline stages, FES offers flexibility in the number of stages, auto-
matically adjusting within the same evolutionary process. Within our approach,
the input space expands only once throughout the evolution, with no increase
in training instances. Hence, expanding the input space does not result in a
significant rise in computational costs.

FES in the Regression Domain Using GE 109

Fig. 1. Feature Encapsulation by Stages presenting two strategies: Training/Testing
(TT) and Training/Validation/Testing (TVT). TT strategy does not include the ele-
ments in orange, which is the difference between both strategies. (Color figure online)

Furthermore, we present five different management approaches for FES to
investigate the two strategies above:

– 2 stages 25%: two stages, with the second stage starting after 25% of the
generations have elapsed;

– 2 stages 50%: the same as above, but the second stage starts after half of the
generations have elapsed;

– 3 stages: the second stage starts after one-third of the generations have
elapsed, while the third stage commences after two-thirds have elapsed;

– 4 stages: the second stage starts after 25% of the generations have elapsed,
the third stage after 50% of the generations, and the final one after 75% of
the generations;

– Multi-stage: a dynamic number of stages is launched, where a new stage starts
every time the best fitness value changes from generation to generation. To
avoid excessive triggering of stages in early generations with the Multi-stage
approach, we always wait until at least 25% of the total generations have
passed after the previous stage ended before starting a new stage; thus, the
total number of stages ranges from one to four.

The first stage for all proposed methods is identical to the standard baseline,
utilising the standard grammar specific to the problem. Once this initial stage
is completed, the output vectors of both the best-trained and best-validated
individuals are included as new inputs in the extended grammar, effectively
creating new features.

110 D. Reyes Fernández de Bulnes et al.

To better understand and visualise the FES method, we present a hypothet-
ical example in Fig. 2. This diagram illustrates how solutions are encapsulated
in stages, utilising both original and encapsulated features from previous stages.
The example highlights the distinction between nodes and equivalent nodes; a
node in GE corresponds to a terminal, representing an original feature in this
example. After the last stage (depicted in green), the best individual is selected
for evaluation on the test set.

Fig. 2. Hypothetical example of a four-stage approach with five original and two addi-
tional features. Encapsulated features from a previous stage are indicated within paren-
theses and bold text. The best individual phenotype at the end is depicted in green,
combining original features and the two additional features. (Color figure online)

It is also important to note that FES does not increase the number of evalua-
tions (a critical subprocess in EC techniques) or the number of generations of the
evolutionary process. This is the main reason why the comparison to determine
the feasibility of FES is made against the baseline of the standard GE.

4 Experimental Design

This work is focused on the regression domain; for that reason, we select RMSE
as the fitness function:

RMSE =

√
1
n

Σn
i=1

(
pi − ti

)2

(1)

where n is the number of training cases, p the vector of predictions, and t the
target vector.

Additionally, in this section, we define the six studied problems, GE as the
EC framework for FES, and all relevant experimental parameters.

FES in the Regression Domain Using GE 111

4.1 Problems

Six regression problems are studied, comprising two synthetic and four real-world
problems, as listed in Table 1.

The two synthetic problems (Paige 1 and Vladislavleva 4) are recommended
in [15]. In contrast, the four real-world problems are as follows:

– Concrete: This problem concerns the prediction of concrete compressive
strength, a highly nonlinear function of age and ingredients [1] and is crucial
in civil engineering.

– Energy Efficiency: This problem aims to assess buildings’ heating and cooling
load requirements [1].

– Boston Housing: This problem utilises the Boston house-price data for regres-
sion diagnostics [24].

– Tower: This problem involves 15-minute averaged time series data from a
chemical distillation tower to predict propylene concentration [10].

Table 1. Regression problems in order by # features.

Problem Type # features # outputs # training cases # test cases

Paige 1 Synthetic 2 1 676 10000

Vladislavleva 4 Synthetic 5 1 1024 5000

Concrete Real-world 8 1 721 309

Energy Efficiency Real-world 8 2 538 203

Boston Housing Real-world 13 1 354 152

Tower Real-world 25 1 3499 1500

The benchmarks are diverse, featuring 2 to 25 input features and varying
numbers of training and test cases. Additionally, one of the problems involves
multi-output. In the TVT strategy, where a validation set is required, 50% of the
training cases are allocated to it. For example, in the case of Concrete problem,
there are 361 cases for training, 360 cases for validation, and 309 cases for testing.

4.2 Grammatical Evolution

GE [21] is a grammar-based variant of GP that harnesses the power and flexi-
bility of grammar to define and constrain the syntax of potential solutions. Like
other EC techniques, GE evolves a population of solution candidates by adher-
ing to the Darwinian principles of evolution. A modulo rule is used to dictate
production rule selection in the grammar. The process involves expanding all
non-terminals to terminal symbols. A valid program or phenotype is obtained
once all non-terminals have been expanded to terminals. Operations within the
grammar are safeguarded against well-known execution time errors to ensure

112 D. Reyes Fernández de Bulnes et al.

that all results remain within the realm of real numbers. For instance, Eq. 2 is
employed to prevent division by zero.

AQ =
a√

1 + b2
(2)

where a is the dividend and b is the divisor.
As an example, the grammars for the Paige 1 problem in GE are presented

in Table 2. The table comprises two columns to illustrate the differences between
the TT and TVT strategies. It is worth noting that the probability of selecting
that extra feature in the grammar increases in cases where encapsulated fea-
tures are identical-such as when the best-trained and best-validated individuals
are the same. Operations, constants, and input features within the grammars
enable exploration of the continuous real-values search space in this domain.
The grammars for the remaining problems adhere to these same designs and
operations and can be found in our supplementary material.

Table 2. Extended Grammars Version 2 for Paige 1 problem. Input space expansion
is highlighted in bold.

TT TVT

<e> ::= add(<e>,<e>)|sub(<e>,<e>)

|mul(<e>,<e>)|AQ(<e>,<e>)

|cos(<e>)|sin(<e>)

|<x>|<s>0.<c><c>

|<x’>

<x> ::= x[0]|x[1]

<x’> ::= x[2]

<c> ::= 0|1|2|3|4|5|6|7|8|9
<s> ::= −|+

<e> ::= add(<e>,<e>)|sub(<e>,<e>)

|mul(<e>,<e>)|AQ(<e>,<e>)

|cos(<e>)|sin(<e>)

|<x>|<s>0.<c><c>

|<x’>

<x> ::= x[0]|x[1]

<x’> ::= x[2]|x[3]
<c> ::= 0|1|2|3|4|5|6|7|8|9
<s> ::= −|+

The summary of parameters is in Table 3. The GE implementation [11]
utilises variable one-point crossover and int flip per codon mutation. The train-
ing, validation, and testing sets are created randomly, and each run uses a dif-
ferent random seed to ensure variation.

5 Results and Discussion

We utilise the results from 30 runs for all experiments to compute the mean
and conduct statistical tests, such as Friedman or ANOVA (α = 0.05), to assess
whether to reject the null hypothesis H0, along with post-hoc tests such as
Nemenyi or Tukey. If the samples exhibit different variances, Friedman-Nemenyi
tests are performed; otherwise, ANOVA-Tukey tests are conducted, as suggested
by Herbold et al. [6]. A higher rank indicates better performance. When methods

FES in the Regression Domain Using GE 113

Table 3. Summary of parameters.

Parameter type Parameter value

Number of runs 30

Population size 200

Number of generations 200

Re-/Initialisation method Sensible

Mutation probability 0.01

Crossover probability 0.80

Elitism size 1

Max. init. tree depth 7

are connected by a horizontal bar, they fall within the Critical Distance (CD),
indicating no significant difference in average ranks.

First, to determine the optimal selection process for GE experiments with
these problems, we compared the standard baseline using tournament [4], ε-
Lexicase [10], and ε-Lexi2 [12]. The results demonstrated that the bloat control
of ε-Lexi2 led to better results. These findings can be found in the supplementary
materials. Although tournament yielded the best result for the Energy Efficiency
problem among the three selection processes analysed, it did not statistically
outperform ε-Lexi2.

Later, we conducted experiments on the six benchmark regression problems
to evaluate the effectiveness of the proposed approaches in reducing the RMSE
metric. Table 4 presents the mean fitness on the test set, including TT and TVT
strategies and the five FES methods.

We can observe that almost all FES methods outperform the standard base-
line. The Multi-stage approach stands out by achieving the best results in all
studied problems in at least one of the strategies, with four problems show-
ing superior performance with Extended Grammar Version 1 and two problems
with Extended Grammar Version 2. Furthermore, we notice that for the first
four problems, the TT strategy (without validation) performs better. In com-
parison, for the other two problems, the TVT strategy (with validation) generally
yields better results. Overfitting occurred twice with the Boston Housing prob-
lem: once with the three-stage approach (16.690) and once with the Multi-stage
approach (9.108) using the TVT strategy with Extended Grammar Version 2.
This suggests that the random validation may not be strong enough to pre-
vent overfitting, and this behaviour arises due to the high convergence of the
FES methods. When overfitting occurs in these experiments, the training error
continues to be minimised by generations until the last; however, when the best
solution in the last generation is evaluated with the test set, the fitness (RMSE)
jumps considerably to a very high value.

114 D. Reyes Fernández de Bulnes et al.

Table 4. The mean fitness on the test set is provided, including TT and TVT strategies
specified in the second column. Results for the stages approaches include both gram-
mars (Version 1 and Version 2, see Table 2). The best result for each problem/strategy
is highlighted in bold. FES methods consistently outperform the standard baseline.
Notably, the Multi-stage approach stands out by achieving the best results in all prob-
lems studied in at least one of the strategies.

Problem Strategy Baseline 2 stages 25% 2 stages 50% 3 stages 4 stages Multi-stage

Paige 1 TT 0.111 0.094/0.104 0.092/0.096 0.091/0.091 0.082/0.094 0.081/0.087

TVT 0.119 0.100/0.102 0.091/0.086 0.090/0.093 0.095/0.095 0.116/0.114

Vladislavleva 4 TT 0.112 0.111/0.096 0.113/0.105 0.102/0.096 0.103/0.095 0.109/0.098

TVT 0.113 0.114/0.099 0.111/0.104 0.105/0.102 0.106/0.098 0.101/0.098

Concrete TT 10.279 9.687/9.874 9.606/9.633 9.419/9.255 9.202/9.338 9.228/9.546

TVT 10.244 9.809/9.507 9.619/9.587 9.282/9.745 9.386/9.648 9.271/9.233

Energy Efficiency TT 4.951 4.343/3.946 4.297/4.052 3.745/3.597 3.489/3.488 3.462/3.672

TVT 4.623 4.089/3.840 4.086/4.016 3.724/3.585 3.451/3.483 3.500/3.702

Boston Housing TT 5.541 5.351/5.323 5.271/5.309 5.236/5.190 5.351/5.168 5.046/5.247

TVT 5.807 5.425/5.510 5.713/5.793 5.532/16.690 5.530/5.742 5.795/9.108

Tower TT 55.907 54.947/53.965 53.652/53.176 52.355/53.119 52.110/52.544 52.746/53.863

TVT 54.048 54.047/54.587 53.548/53.644 51.558/52.786 51.653/52.134 51.541/53.060

Fig. 3. Boxplot charts comparing for all problems the standard baseline (grey) with the
best FES method (yellow) in terms of the mean of RMSE in 30 runs, including both
strategies TT and TVT. V1 and V2 are Extended Grammar Version 1 and Extended
Grammar Version 2 respectively. (Color figure online)

FES in the Regression Domain Using GE 115

We also note that for the two problems where the TVT strategy performs
better (Boston Housing and Tower), Extended Grammar Version 1 should be
used to avoid overfitting.

After reviewing these results, we selected the best FES approach to generate
the Boxplot charts in Fig. 3, comparing it with the standard baseline using the
two strategies. Upon examining the results of the Energy Efficiency problem,
we observe a more significant improvement compared to the others. This can be
attributed to the multi-output problem, resulting in double encapsulation. Fur-
thermore, after the first stage, a correlation between outputs proves beneficial.

5.1 Statistical Tests

Friedman-Nemenyi statistical tests comparing the standard baseline with the
best FES strategy in terms of mean is shown in Fig. 4.

The results of our study are statistically significant, indicating that the Multi-
stage approach consistently outperforms the baseline in at least one of the strate-
gies across four out of six problems. This finding underscores the importance of
our research in the field of EC, particularly within the context of GE. Notably,
the most substantial difference between the FES methods and the baselines is
observed in the Energy Efficiency problem, further emphasising the relevance of
our findings, particularly in the context of multi-output problems.

5.2 Complexity of the Individuals

Finally, in Fig. 5, we illustrate the number of nodes utilised by the best-trained
individual in the population across generations for the Paige 1, Concrete, and
Tower problems using Extended Grammar Version 1.

The difference between the stripes reflects the node savings provided by FES.
The collapses in the Multi-stage strip correspond to the re-initialisations. Addi-
tionally, the TVT strategy tends to achieve greater savings due to the higher
probability of selecting encapsulated features. For instance, when comparing
these methods with the TT strategy using an Intel i9 with 16 GB of RAM,
the improvements in terms of mean elapsed execution time are as follows: Paige
1 - 73.10%, Concrete - 66.78%, and Tower - 72.00%. These results collectively
demonstrate that FES is a promising method for EC in the regression domain.
All supplementary materials are available in [18].

116 D. Reyes Fernández de Bulnes et al.

Fig. 4. Friedman-Nemenyi or ANOVA-Tukey statistical tests for all problems compar-
ing the standard baseline with the best FES method in terms of mean, including both
strategies TT and TVT. V1 and V2 are Extended Grammar Version 1 and Extended
Grammar Version 2 respectively. Two treatments being compared are significantly dif-
ferent if their intervals do not overlap. Significant differences from the best FES method
(shown in green) for each problem are denoted in red. (Color figure online)

FES in the Regression Domain Using GE 117

Fig. 5. Number of used nodes of the best-trained individual by generations for the
problems Paige 1, Concrete, and Tower.

118 D. Reyes Fernández de Bulnes et al.

6 Conclusions

We have demonstrated substantial performance improvement and computational
cost reduction by dividing the evolutionary process into stages with FES in the
regression domain. The experimental results pertain to the evaluation of test sets,
and statistical tests were conducted to draw conclusions. The overall best variant
is the dynamic Multi-stage approach, as it yielded the best average results across
all studied problems, with four problems using Extended Grammar Version 1 and
two problems using Extended Grammar Version 2. Additionally, we analysed the
complexity of the best-trained individuals in terms of the number of nodes by
generations, demonstrating a shorter execution time for GE using FES.

In future work, our first plan is to address multi-target regression problems
with more than two outputs, as the encapsulated features might exhibit sta-
tistical dependencies among. Furthermore, we aim to study the convergence of
training, validation, and test fitness across generations to understand when over-
fitting occurs and apply a better validation mechanism to avoid it. Lastly, we
plan to study FES in other EC algorithms, such as tree-based GP.

Acknowledgments. This publication has emanated from research conducted with
the financial support of Science Foundation Ireland under Grant number 16/IA/4605.

Disclosure of Interest. The authors have seen and agree with the contents of the

manuscript and they declare that they have no conflict of interest.

References

1. Aha, D.: UCI Machine Learning Repository (1987). https://archive.ics.uci.edu/
ml/datasets.php

2. Batista, J.E., Silva, S.: Comparative study of classifier performance using auto-
matic feature construction by M3GP. In: 2022 IEEE Congress on Evolutionary
Computation (CEC), Padua, Italy, pp. 1–8. IEEE (2022). https://doi.org/10.1109/
CEC55065.2022.9870343

3. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification.
In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056,
pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-
3 5

4. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used
in genetic algorithms. In: RAWLINS, G.J. (ed.) Foundations of Genetic Algo-
rithms, Foundations of Genetic Algorithms, San Francisco, vol. 1, pp. 69–93. Else-
vier (1991). https://doi.org/10.1016/B978-0-08-050684-5.50008-2. https://www.
sciencedirect.com/science/article/pii/B9780080506845500082

5. Gupt, K.K., Kshirsagar, M., Dias, D.M., Sullivan, J.P., Ryan, C.: A novel ml-
driven test case selection approach for enhancing the performance of grammatical
evolution (2023)

6. Herbold, S.: Autorank: a python package for automated ranking of classifiers. J.
Open Source Softw. 5(48), 2173 (2020). https://doi.org/10.21105/joss.02173

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://doi.org/10.1109/CEC55065.2022.9870343
https://doi.org/10.1109/CEC55065.2022.9870343
https://doi.org/10.1007/978-3-540-24775-3_5
https://doi.org/10.1007/978-3-540-24775-3_5
https://doi.org/10.1016/B978-0-08-050684-5.50008-2
https://www.sciencedirect.com/science/article/pii/B9780080506845500082
https://www.sciencedirect.com/science/article/pii/B9780080506845500082
https://doi.org/10.21105/joss.02173

FES in the Regression Domain Using GE 119

7. Keijzer, M., Ryan, C., Cattolico, M.: Run transferable libraries — learning func-
tional bias in problem domains. In: Deb, K. (ed.) GECCO 2004. LNCS, vol.
3103, pp. 531–542. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24855-2 63

8. Koza, J.R.: Genetic Programming, 1st edn. MIT Press, Cambridge (1992)
9. Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A.: Reuse, parameterized reuse,

and hierarchical reuse of substructures in evolving electrical circuits using genetic
programming. In: Higuchi, T., Iwata, M., Liu, W. (eds.) ICES 1996. LNCS, vol.
1259, pp. 312–326. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
63173-9 56

10. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression.
In: Proceedings of the Genetic and Evolutionary Computation Conference 2016,
GECCO 2016, pp. 741–748. Association for Computing Machinery, New York
(2016). https://doi.org/10.1145/2908812.2908898

11. de Lima, A., Carvalho, S., Dias, D.M., Naredo, E., Sullivan, J.P., Ryan, C.: Grape:
grammatical algorithms in python for evolution. Signals 3(3), 642–663 (2022).
https://doi.org/10.3390/signals3030039

12. de Lima, A., Carvalho, S., Dias, D.M., Naredo, E., Sullivan, J.P., Ryan, C.: Lexi2:
lexicase selection with lexicographic parsimony pressure. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2022, pp. 929–937.
Association for Computing Machinery, New York (2022). https://doi.org/10.1145/
3512290.3528803

13. Liu, H., Cai, J., Ong, Y.S.: Remarks on multi-output gaussian process regression.
Knowl.-Based Syst. 144, 102–121 (2018). https://doi.org/10.1016/j.knosys.2017.
12.034. https://www.sciencedirect.com/science/article/pii/S0950705117306123

14. Mastelini, S.M., Santana, E.J., Cerri, R., Barbon, S.: Dstars: a multi-target
deep structure for tracking asynchronous regressor stacking. Appl. Soft Com-
put. 91, 106215 (2020). https://doi.org/10.1016/j.asoc.2020.106215. https://www.
sciencedirect.com/science/article/pii/S1568494620301551

15. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Pro-
ceedings of the 14th Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO 2012, pp. 791–798. Association for Computing Machinery, New York
(2012). https://doi.org/10.1145/2330163.2330273

16. Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: Wave: a genetic program-
ming approach to divide and conquer. In: Proceedings of the Companion Publi-
cation of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO Companion 2015, pp. 1435–1436. Association for Computing Machinery,
New York (2015). https://doi.org/10.1145/2739482.2764659

17. Murphy, A., Ryan, C.: Improving module identification and use in grammatical
evolution. In: 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow,
UK, pp. 1–7. IEEE (2020). https://doi.org/10.1109/CEC48606.2020.9185571

18. Reyes, D.: BDS Group repository (2023). https://github.com/bdsul/fes
19. Reyes, D., de Lima, A., Murphy, A., Dias, D.M., Ryan, C.: Feature encapsulation

by stages using grammatical evolution. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion. GECCO 2024 (2024). https://doi.
org/10.1145/3638530.3654097

20. Ryan, C., Azad, R.M.A.: Sensible initialisation in grammatical evolution. In: Barry,
A.M. (ed.) GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic
and Evolutionary Computation Conference, Chigaco, pp. 142–145. AAAI (2003)

https://doi.org/10.1007/978-3-540-24855-2_63
https://doi.org/10.1007/978-3-540-24855-2_63
https://doi.org/10.1007/3-540-63173-9_56
https://doi.org/10.1007/3-540-63173-9_56
https://doi.org/10.1145/2908812.2908898
https://doi.org/10.3390/signals3030039
https://doi.org/10.1145/3512290.3528803
https://doi.org/10.1145/3512290.3528803
https://doi.org/10.1016/j.knosys.2017.12.034
https://doi.org/10.1016/j.knosys.2017.12.034
https://www.sciencedirect.com/science/article/pii/S0950705117306123
https://doi.org/10.1016/j.asoc.2020.106215
https://www.sciencedirect.com/science/article/pii/S1568494620301551
https://www.sciencedirect.com/science/article/pii/S1568494620301551
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1145/2739482.2764659
https://doi.org/10.1109/CEC48606.2020.9185571
https://github.com/bdsul/fes
https://doi.org/10.1145/3638530.3654097
https://doi.org/10.1145/3638530.3654097

120 D. Reyes Fernández de Bulnes et al.

21. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for
an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055930

22. Spector, L.: Assessment of problem modality by differential performance of lex-
icase selection in genetic programming: a preliminary report. In: Proceedings of
the 14th Annual Conference Companion on Genetic and Evolutionary Computa-
tion, GECCO 2012, pp. 401–408. Association for Computing Machinery, New York
(2012). https://doi.org/10.1145/2330784.2330846

23. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target
regression via input space expansion: treating targets as inputs. Mach. Learn.
104(1), 55–98 (2016). https://doi.org/10.1007/s10994-016-5546-z

24. Vlachos, P.: StatLib-Datasets Archive (1987). https://lib.stat.cmu.edu/datasets/
25. Xia, Y., Chen, K., Yang, Y.: Multi-label classification with weighted classi-

fier selection and stacked ensemble. Inf. Sci. 557, 421–442 (2021). https://doi.
org/10.1016/j.ins.2020.06.017. https://www.sciencedirect.com/science/article/pii/
S0020025520306058

https://doi.org/10.1007/BFb0055930
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1007/s10994-016-5546-z
https://lib.stat.cmu.edu/datasets/
https://doi.org/10.1016/j.ins.2020.06.017
https://doi.org/10.1016/j.ins.2020.06.017
https://www.sciencedirect.com/science/article/pii/S0020025520306058
https://www.sciencedirect.com/science/article/pii/S0020025520306058

Evaluating the Robustness
of Deep-Learning Algorithm-Selection

Models by Evolving Adversarial Instances

Emma Hart(B) , Quentin Renau , Kevin Sim , and Mohamad Alissa

Edinburgh Napier University, Edinburgh, UK
{e.hart,q.renau,k.sim,m.alissa}@napier.ac.uk

Abstract. Deep neural networks (DNN) are increasingly being used to
perform algorithm-selection in combinatorial optimisation domains, par-
ticularly as they accommodate input representations which avoid design-
ing and calculating features. Mounting evidence from domains that use
images as input shows that deep convolutional networks are vulnera-
ble to adversarial samples, in which a small perturbation of an instance
can cause the DNN to misclassify. However, it remains unknown as to
whether deep recurrent networks (DRN) which have recently been shown
promise as algorithm-selectors in the bin-packing domain are equally vul-
nerable. We use an evolutionary algorithm (EA) to find perturbations of
instances from two existing benchmarks for online bin packing that cause
trained DRNs to misclassify: adversarial samples are successfully gener-
ated from up to 56% of the original instances depending on the dataset.
Analysis of the new misclassified instances sheds light on the ‘fragility’
of some training instances, i.e. instances where it is trivial to find a small
perturbation that results in a misclassification and the factors that influ-
ence this. Finally, the method generates a large number of new instances
misclassified with a wide variation in confidence, providing a rich new
source of training data to create more robust models.

Keywords: Combinatorial optimisation · algorithm-selection · deep
neural networks · adversarial samples

1 Introduction

For most combinatorial optimisation domains, it is well known that for a given set
of solvers, each can perform differently on different instances, with no single algo-
rithm dominating the others. This gives rise to the need to perform per-instance
algorithm selection, described in detail in a survey by Kerschke et al. [11]. Typ-
ically a machine-learning algorithm is trained to predict the best solver for an
instance. While earlier works generally relied on training models using feature-
vectors derived from instances, more recent works have exploited new deep-
learning models which circumvent the need to derive features. Deep convolu-
tional neural network architectures originally developed for image-classification
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 121–136, 2024.
https://doi.org/10.1007/978-3-031-70068-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_8&domain=pdf
http://orcid.org/0000-0002-5405-4413
http://orcid.org/0000-0002-2487-981X
http://orcid.org/0000-0001-6555-7721
http://orcid.org/0000-0002-9548-863X
https://doi.org/10.1007/978-3-031-70068-2_8

122 E. Hart et al.

have been shown to be capable of learning to predict the best solver from a port-
folio in the TSP domain by representing the instance as an image containing the
locations of each city [19,23]. In other work, deep recurrent neural networks such
as LSTM (long short-term memory) [9] and GRU (gated recurrent network) [5]
which take an ordered sequence of tokens as input have been trained to act as
an algorithm-selectors in the bin-packing [1,2] and vehicle routing [13] domains.

However, mounting evidence from the machine-learning literature shows in
particular that deep convolutional networks that use images as input are vulnera-
ble to adversarial attacks: that is, applying a small perturbation δ to an instance
x leads to the perturbed instance x+δ being misclassified [3,20,25]. As a result,
an increasing amount of research is being directed towards generating adversarial
attacks, with the goal of understanding how robust a classifier is to variations in
input samples. Most of this research considers black-box attacks [18]: a scenario
in which the attacker only has access to the inputs and outputs of a model,
and has no information about the architecture or weights of the model itself.
Attacks can be targeted in that the adversarial sample is optimised to output a
specific (incorrect) class, or untargeted, in which case the goal is simply to max-
imize the loss between the predicted class and the true class. However, to the
best of our knowledge, there has been no attempt to understand the extent to
which deep recurrent networks which have been proposed as algorithm-selectors
in combinatorial settings such as bin-packing and VRP (vehicle routing prob-
lem) are robust to perturbations in input data. This is crucial to understand: in
any real-world setting it is reasonable to assume that a selector may be faced
with many instances whose data are very similar to those that the model was
trained on (i.e. are in-distribution) and therefore will be classified correctly, but a
systematic methodology to investigate the extent to which this is true is lacking.

To address this issue we propose a method to determine the extent to which
DRNs trained as algorithm-selectors in the bin-packing domain are vulnerable
to small changes in input data. We select online bin-packing as a domain for two
reasons: (1) the class of problems are NP-hard and are worth studying because
they appear as a factor in many other kinds of optimization problem [22]; (2)
DRN models have been shown to be highly accurate classifiers in combinatorial
settings [2,13]. We propose an evolutionary algorithm (EA) to evolve a mask
that when applied to an instance from a dataset used to train a model causes
a small modification that results in the perturbed instance being misclassified.
The contributions are as follows:

– Defining an EA to evolve adversarial instances of bin-packing instances that
are misclassified by a trained DRN while ensuring that the modified instance
remains in-distribution

– Providing new evidence that trained DRNs are vulnerable to adversarial
attacks using two datasets and associated models.

– Providing new insights into which instances are particularly susceptible to
attack and those that are robust, shedding light on which instances lie close
to the decision-boundaries of the classifiers

Evaluating the Robustness of Deep-Learning Algorithm-Selection Models 123

– Generation of a very large set of new instances which can be used for future
training: these instances are diverse in terms of the output probability of the
correct class, i.e. the confidence with which an instance is classified.

2 Related Work

Deep convolutional neural-networks have rapidly garnered interest within com-
binatorial optimisation for the purpose of algorithm-selection [11]. Loreggio
et al. [16] convert a textual description of instances from the SAT and CSP
domains1 to an image and train a convolutional neural network to output solver
predictions. Seiler et al. [23] also use a convolutional NN trained on images
derived from TSP instances to predict the best solver. In continuous optimisa-
tion, Prager et al. [19] consider both image and point cloud representations of
the COCO benchmarks and train a type of CNN called shuffleNET [17] to select
the best performing algorithm.

Instead of using image-based input, Alissa et al. [1,2] directly use the textual
description of an instance in the bin-packing domain (i.e. an ordered list of item-
sizes) to train two types of deep recurrent neural-networks (DRNs) to predict
the best solver. They compare two types of DRN—LSTM [9] and GRU [5]—to
feature-based classifiers, finding that the GRU achieves within 5% of the oracle
performance on between 80.88 and 97.63% of the instances, depending on the
dataset. Diaz [13] propose an attention-based transformer network for selecting
a solver for in the VRP domain, finding improved performance compared to a
multi-layer perceptron.

However, despite the increasing focus in the use of deep classifiers in
algorithm-selection in the combinatorial domain, we are unaware of any work
which has investigated the extent to which these classifiers are robust to pertur-
bations in instances via generating adversarial samples. Liu et al.,. [15] propose
a method to promote data diversity for learning-based branching modules in
branch-and-bound (B&B) solvers in which a learning-based solver and instance
augmentation policy are adversarially trained, but do not focus per-se on the
robustness of the model, rather on instance generation. In contrast, several recent
studies in the domain of image-classification have used evolutionary algorithms
to generate adversarial samples that represent attacks against models trained on
well-known datasets to illustrate the vulnerability of a trained model [3,25] (often
described as an ‘attack’ on the network). For example, GenAttack [3] evolves
visually imperceptible adversarial examples against state-of-the-art image recog-
nition models trained on three popular datasets (ImageNet, CIFAR-10 and
MNIST) with orders of magnitude fewer queries than previous approaches in
a black-box setting. Given an input image, it creates a population by applying
random modifications to the pixels of the original image. In [20], the authors
compare three evolution strategies to generate black-box adversarial attacks on
networks trained on the ImageNet dataset, evolving reduced dimensionality sam-
ples that are then scaled up to reduce the computational burden. Their results
1 SAT: Satisfiability, CSP: Constraint Satisfaction Problems [10].

124 E. Hart et al.

show that CMA-ES [8] is particularly effective in finding adversarial samples
with the fewest queries. In contrast to the works just described which modify
multiple or even all pixels in an image, in [25], differential evolution (DE) [24]
is used to evolve a modification to a single pixel showing that current DNNs
used for image classification are vulnerable to very low-dimensional attacks. Lin
et al. [14] propose a technique called Black-box Momentum Iterative Fast Gradi-
ent Sign Method (BMI-FGSM) that is also inspired by differential evolution, as
well as by iterative gradient-based methods. It leverages DE to approximate gra-
dient direction by searching for the gradient-sign, generating adversarial samples
that are hard to detect and which successfully attack DNNs trained on MNIST,
CIFAR10, and ImageNet datasets.

Inspired by successful attempts to illustrate the vulnerability of convolutional
networks by using an EA to generate attacks, we develop a methodology to eval-
uate the robustness of deep recurrent network classifiers that use a sequence of
tokens as input, using bin-packing as a case-study. Unlike the work in image-
classification which tends to treat the task as a continuous optimisation problem,
we evolve a mask consisting of discrete values in the range −n ≤ x ≤ n which
indicates how each of the discrete variables describing a combinatorial optimi-
sation instance should be modified.

3 Methods

We assume a target model M that has been trained to output the probability of
selecting a target solver s for a given domain. M can only be queried as a black-
box function, i.e. the inputs and outputs are known but there is no information
about the model itself. We search for a perturbation of an original instance iO
(from the training data of the model) labelled as won by the kth solver sk from
a portfolio such that the perturbed instance ip is now misclassified by the model
M. Specifically, we consider without loss of generality a scenario in which k = 2,
i.e. there are two available solvers. For each of the original instances, there is
therefore a winning solver sw and a losing solver sl, determined according to a
metric that quantifies the quality of the packing produced by the solver. For each
instance, applying a perturbation can result in two types of misclassification:

1. The perturbed instance is won by the same solver sw as the original instance,
but the model outputs sl

2. The perturbed instance is now won by sl, but the model still outputs sw

We seek to maximise the probability associated with the output of the
incorrect class. If pw is the probability output by the network for the winning
solver, and pl = (1 − pw) the probability of the losing solver, then we maximize
o = pl − pw. Positive values of o indicate the instance is misclassified while neg-
ative values indicate a correct classification with the magnitude of |o| indicating
the classifier confidence in the prediction2.
2 the approach can be generalised to n classes by taking the difference between

argmax(pl) and pw.

Evaluating the Robustness of Deep-Learning Algorithm-Selection Models 125

3.1 Online Bin-Packing

We use the general method described above to evolve adversarial instances in
the online bin-packing domain. An instance consists of a sequence of items which
must be packed strictly in the order they arrive and no information about the
sequence is known in advance of each item arriving. The goal is typically to
minimise the number of bins. Simple packing heuristics that determine which
bin each item should be placed in are surprisingly effective, particularly best-
fit (BF) and first-fit (FF) [7]. BF places each item into the feasible bin that
minimises the residual space, while FF places each item into the first feasible bin
that will accommodate it. The quality of the resulting packing OFalk is defined
by the commonly used Falkenaeur metric [6] which returns a value between 0
and 1 where 1 is optimal, and rewards packings that minimise empty space.
For a given portfolio of solvers, the winning solver is defined as the solver that
maximises OFalk. Note that two instances that have identical sets of item-sizes
but differ in the order in which items arrive can result in different packings,
and elicit different performances from each heuristic. Therefore, the ordering of
items is an important characteristic of an instance, in addition to the distribution
of item-sizes. In order to minimise the size of the perturbation applied to an
instance, we only evolve perturbations that result in a small modification to
the size of each item defining an instance. Evolving perturbations that changed
the item ordering would result in very different instances and therefore defeat
the objective of trying to understand whether small changes to an instance can
result in a misclassification.

3.2 Data and Models

We use the data and models previously described in [2]. Two datasets denoted
(DS2, DS4) are used: each dataset consists of 2,000 instances, of which 50% are
solved best by the best-fit (BF) heuristic and the remaining 50% by the first-fit
(FF) heuristic. Item sizes are generated from a normal distribution in the range
(20,100) for each dataset; DS2 has 120 items and DS4 has 250. Bins have a max-
imum capacity of 150. As we previously showed that a Gated Recurrent Network
(GRU) outperforms an LSTM on these datasets [2], we restrict the current study
to evaluating the vulnerability of GRU models only. We use the GRU architec-
ture and parameterisation as described in [2] except for the final layer which
is replaced with a softmax function [4] in order to predict probabilities rather
than classes. Models are trained using DS2 and DS4 respectively, according to a
10-fold cross-validation procedure. For DS2, the model has a mean accuracy of
94.44% (+/ − 2.92%) on a validation set (over 10 folds) and 93.5% on the test
set of 400 instances. For DS4, it achieves 97.00% (+/ − 1.11%) mean accuracy
on a validation set and 95.5% on a balanced test set of 400 instances.

In a preliminary step, we apply the trained models to the full dataset of 2,000
instances, then remove the small minority of instances that are misclassified,
given that we are interested in generating perturbed variations of instances which
result in an instance originally classified correctly now being misclassified. This

126 E. Hart et al.

results in a small reduction in the size of the datasets used from here on in, by
16 instances for DS2 and 46 instances for DS4.

3.3 Algorithm Details

Individual Representation: We evolve a mask that is used to perturb an individ-
ual instance. The mask contains i integer values, where i is equal to the number
of items in the instance. Each integer in the mask can take one of three values
[−1, 0, 1]: the item at position j in the original instance is modified by adding
the integer from the mask at position j, hence decreasing the item size by 1,
doing nothing, or increasing the item size by 1. The modification is restricted to
this range in order to minimise the extent of the total change that can be made
though clearly could be adapted to allow a larger magnitude of perturbation.
The maximum total change to the item sizes for an instance is thus equal to the
number of items. Note that the modification is not cumulative, i.e. a mask is
applied exactly once to the original instance.

Algorithm: We use a generational EA to evolve masks. An initial population
of size P is initialised as follows: first, every element in each mask is set to 0.
Then, with probability pinit, each element is uniformly randomly changed to
[−1, 0, 1]. Following the evaluation of the initial population, a generational loop
first selects n = P parents; crossover and mutation are applied with probability
pc, pm respectively to produce an offspring population, after which individuals
are evaluated. The offspring population entirely replaces the parent population.
Tournament selection is used with tournament size 2 and one-point crossover.
Mutation works as follows: each element of the mask is mutated with probabil-
ity 1/(number of items). A customised mutation operator selects a new value
[−1, 0, 1] with equal probability. If a modification results in an item size which
falls outside of the fixed range of item sizes defining a dataset, then the value
is clipped to the respective minimum/maximum allowed value. The population
size is set to 50, and the algorithm runs for 500 generations. Tuning was delib-
erately kept to a minimum in order to demonstrate that a ‘default’ algorithm is
capable of finding adversarial samples.

Evaluation Function: As noted above, we consider a setting with two solvers.
After a mask is applied to an instance i, then a packing is produced from each
solver, resulting in objective values oBF , oFF according to the Falkenauer metric.
Assume we label the winning solver sw and the losing solver sl, and that the
probabilities output by the classifier for sw, sl respectively are pw and pl (such
that pw+pl = 1), then the fitness function that drives the search for misclassified
instances is defined as:

f = pl − pw (1)

The function aims to maximise the confidence of an incorrect classification. A
positive fitness value corresponds to a misclassified instance and a negative value
to a correctly classified instance. A fitness of exactly 0 implies both probabilities
are equal to 0.5 however in practice this situation is never encountered.

Evaluating the Robustness of Deep-Learning Algorithm-Selection Models 127

Algorithm 1. Pseudo-code for assigning a fitness score to a perturbation
Require: Mask, s1, s2 � s1,s2 = solver 1, solver 2

iP ← perturb instance(i, mask)
o(s1) ← solve instance(iP , s1) � Falkenauer metric of s1 on perturbed instance
o(s2) ← solve instance(iP , s2) � Falkenauer metric of s2 on perturbed instance
winner ← argmax(o(s1), o(s2)) � winner is id of solver with max fitness
p(s1) ← query classifier(iP)
p(s2) ← (1 − p(s1))
if winner is s1 then

fitness ← p(s2) − p(s1)
else if winner is s1 then

fitness ← p(s1) − p(s2)
end if
return(fitness)

3.4 Experimental Protocol

We conduct an initial experiment in which we randomly sample 500 masks with
pinit set to the relatively high probability of 0.3 following the initialisation pro-
cedure outlined in Sect. 3.3 and apply the masks to each instance. The purpose
of this is to gain some insight into how easy it is to generate an adversarial sam-
ple by simply randomly sampling masks. An instance is labelled as fragile if at
least one of the randomly sampled masks results in an instance that is misclas-
sified. For DS2, 875 = 43.4% of instances are not labelled fragile, while for DS4,
only 51 instances = 2.55% are not fragile. This result immediately indicates the
model trained on the DS4 instances is much less robust than the DS2 model:
randomly sampling masks that on average have 30% of the elements set to +1 or
−1 results in a misclassified instance. In the remaining experiments, all fragile
instances are removed from the datasets and we only attempt to evolve masks
to perturb the remaining non-fragile instances. All experiments are repeated 10
times per instance.

4 Results

We first present data from experiments that evaluate the effectiveness of the
approach in terms of number of instances that produced misclassifications and
the computational effort required, followed by a deeper analysis of the results.

4.1 Effectiveness of the EA

We consider pinit values of {0.05, 0.3} representing populations that are ini-
tialised with very few item perturbations (at pinit = 0.05) and one with approxi-
mately 1/3 of the items being perturbed on average. We measure the success-rate,
defined as the percentage of the original instances for which the EA evolved at

128 E. Hart et al.

least one mask that resulted in a misclassification across the 10 runs. To mea-
sure the effort required to find an adversarial sample, we define queries3 as the
median of the minimum number of evaluations across each of 10 runs needed
to find an adversarial sample. Finally, for each instance, we record the type of
misclassification as a % of the successful instances: T1 - the true labels of all
new misclassified instances are the same as the original instance; T2 - the true
labels of all new misclassified instances are different from the original instance;
T3 - the new misclassified instances are from both T1 and T2.

Table 1 shows the data just described. For DS2, the success rate decreases as
pinit decreases, as would be expected: for the same number of evaluations, the
evolved masks are likely to contain fewer modifications. Adversarial samples are
found for approximately 33% of instances. Although the success-rate is higher for
DS4 (≈ 56%), recall that the number of non-fragile instances to which the EA is
applied is very small (51 vs 875 for DS2). Interestingly, the value of pinit has no
effect on DS4—in fact, the set of instances for which a successful perturbation
is found is identical for both values of pinit. This suggests there is a subset of
instances that are relatively easily perturbed (i.e. at pinit = 0.05) but further
perturbations have no effect. We shed more insight into this in Sect. 5.

4.2 Quality of Evolved Adversarial Instances

Table 1 shows the median, the first, and third quartiles of the maximum fitness
obtained per instance across the 10 repeated runs. Recall that positive values
indicate that a misclassified instance was found. For DS2(0.3), a large interquar-
tile difference of positive values ranging from just greater than 0 (weak confidence
in the misclassification) to 1 (very strong confidence in the misclassification) is
observed. For DS2(0.05), some masks are evolved that reduce the probability of
a correct classification (compared to the original instance) but are not misclassi-
fied (f < 0). In contrast for DS4, evolved masks generally create instances that
are strongly misclassified.

Table 1. Effectiveness of EA: T1,T2,T3 are the types of misclassification as a %
of misclassified instances. Median, first quartile (Q1), and third quartile (Q3) of the
maximum fitness obtained at the end of each run over all instances.

Success Rate (%) Queries T1 T2 T3 Median
fitness

Q1
fitness

Q3
fitness

DS2(0.3) 33.49 1500 27 61 12 0.9912 0.0002 0.9999

DS2(0.05) 28.69 5600 39 54 7 0.9542 -0.993 0.9999

DS4(0.3) 56.87 50 34 45 21 0.9999 0.9999 1.0

DS4(0.05) 56.87 2300 41 41 18 0.9999 0.9999 0.9999

3 Following the terminology employed in the literature on evolving adversarial samples
for image-classification.

Evaluating the Robustness of Deep-Learning Algorithm-Selection Models 129

5 Analysis

5.1 Path Towards Misclassification

Recall that each instance is perturbed by the application of a single mask and
that fitness is defined as |pl − pw|, with positive values indicating a misclassi-
fication. Positive values close to 0 indicate low confidence in the classification,
and values close to 1 indicate very high confidence in the classification. Figure 1
shows some examples of types of fitness curves obtained from evolving masks
that successfully cause a misclassification on three instances from DS2. It is
clear that different types of behaviours are observed. For example, in Fig. 1(a)
there is a gradual improvement of fitness over time, terminating in either a new
instance misclassified with medium confidence or high confidence respectively. In
Fig. 1(b), a mask is found in the first few generations which causes an immediate
‘flip’ from the original instance being classified correctly with very high confi-
dence to classified incorrectly with very high confidence. In the final example
shown (c), successive generations result in an oscillation between high confi-
dence (correct class) and high confidence (incorrect class). This implies that the
original instance appears very susceptible to perturbation.

Fig. 1. Behaviours observed during mask evolution: generations (x-axis) vs fitness (y-
axis). Each color represents one run. (a) gradual increase in fitness overtime leading to
instances classified incorrectly with medium confidence/high confidence; (b) a mask is
found in the first few generations which immediately ‘flips’ the classification to strongly
misclassified (c) like (b) but perturbations result in oscillation between high confidence
(correct class) and high confidence (incorrect class).

5.2 Insights Into How the Instances Change

The EA is restricted to evolving masks that can only modify the size of each
item by (+/−)1. Given that item sizes in the original datasets are discrete values
drawn from a uniform distribution between 20 and 100 (and clipped to the
minimum/maximum values) then even if every item is changed by +1 or −1,

130 E. Hart et al.

the distribution of item-sizes is unlikely to deviate from the original normal
distribution4.

Given that the bin size remains fixed at 150, then the sum of the n item
sizes Σ =

∑i=n
i=1 itemSizei in the instance can influence the number of bins

required. In the extreme case for example, if all item sizes are increased by 1,
then more bins might be required. For all of the original instances where it was
possible to evolve a mask that resulted in a misclassified instance, we calculate
the difference D between the sum Σ of the items in an original instance and
every new misclassified instance produced for that instance. A box plot of the
median value of D over all m misclassified instances produced is shown in Fig. 2
for DS2. The median difference is +4. Figure 2 also plots the median number
of changes induced by a mask, i.e. the number of items that will be modified.
The median is 92. This indicates that although a large proportion of the items
change size by +/ − 1 (≈ 77% of items), the overall effect of these changes is to
more or less cancel each other out in terms of Σ. Therefore it is reasonable to
assume that this has little impact on the optimal number of bins required.

Fig. 2. Statistics calculated over all the new misclassified instances generated from
DS2 and DS4, pinit = 0.3. Difference: difference in the sum of item sizes between the
original instance and a modified instance; Longest Sequence: maximum length of a
consecutive perturbation; Changes: total number of modifications per instances.

Both heuristics pack items strictly in the order specified by the instance.
Therefore if consecutive items are modified, this could potentially alter the pack-
ing, thereby causing a misclassification. Figure 2 also shows the median length of
the longest consecutive sequence of modifications in a mask that results in a mis-
classification, where a modification is defined as either an increase or decrease in
the item-size. The median length for DS2 is 14.25, and 10 for DS4: the sequences
are relatively short compared to the instance length of 120/250 respectively. The

4 We evaluated this hypothesis empirically by sampling a large number of pairs of
(original-instance, modified-instance); a Kolmogorov-Smirnov test showed that the
null hypothesis could never be rejected.

Evaluating the Robustness of Deep-Learning Algorithm-Selection Models 131

median length of sequences with only positive (+1) modifications which might
be expected to have more effect on packing is 5 for both datasets.

Table 2. Spearman correlation coefficient between the fitness of misclassified instances
and statistics describing the change in instance properties.

Dataset Statistic Correlation p-value

DS2 Longest sequence −0.898 << 0.001

Number of changes −0.903 << 0.001

Difference −0.451 << 0.001

DS4 Longest sequence −0.886 << 0.001

Number of changes − 0.834 << 0.001

Difference −0.623 << 0.001

To determine if there is a relationship between the statistics depicted in Fig. 2
and the median fitness of the misclassified new instances obtained from each of
the original instances, we calculate the Spearman correlation coefficient. The
results are shown in Table 2. A very strong negative correlation is obtained both
between fitness and the longest sequence, and fitness and number of changes
for DS2 and DS4 (<-0.8); in DS4 there is also a strong correlation (<− 0.6
between the difference in the sum of item-sizes D and fitness. This suggests
that modifying a contiguous sequence does have an influence on the packing,
potentially modifying the winning heuristic and resulting in a misclassification.

Fig. 3. DS2: Illustrative examples of masks leading to misclassified instances. Yellow
indicates a change of +1, teal 0 and purple -1. 5 misclassified instances are shown for
each original instance. (Color figure online)

In Fig. 3 we visualise examples of masks leading to misclassifications for three
example instances: (a) the median fitness of the new misclassified instances gen-
erated from the single original instance is close to 0, i.e. new instances are mis-
classified with very low confidence; (b) the median fitness is ≈ 0.5, i.e. there is

132 E. Hart et al.

medium confidence in the (mis)classification; (c) the median fitness ≈ 1, i.e. very
high confidence. This figure clearly illustrates different patterns in the evolved
masks. For new instances that are misclassified but with very low confidence (p
only just greater than 0) there are repeated regions where there are contigu-
ous modifications of +1, as well as repeated but shorter contiguous regions of
‘-1’ modifications. Very few elements are not modified. In contrast, when the
probability of the (mis)classification is close to 1.0, we only observe very short
sequences of each ‘type’ of modification, and it is clear there are many more
elements that are not modified at all.

Figure 3 show only a few of many thousands of masks generated during runs
of the algorithm. The EA tries to maximise the difference in output probabilities
pl − pw. As demonstrated in Fig. 1, in many runs there is a smooth increase in
fitness over generations: at each generation, any individual with fitness > 0 is
misclassified such that 0 ≤ pl − pw ≤ w. Therefore, many misclassified instances
are discovered during the search process which guides the EA to maximise the
fitness function. We count the number of unique masks mU that produced a
fitness > 0 for each starting instance i. Figure 4 shows the distribution of mU

over the a instances for which we were able to evolve at least one mask causing a
misclassification for each of the two datasets. Statistics are provided in Table 3.
The total number of adversarial samples generated is vast, providing a rich source
of training data for training new models. Notice that the median number of
adversarial samples discovered per instance is much higher for DS4 than DS2,
indicating that the model is much less robust but that these samples come from
very few instances (29). On the other hand, as previously noted, there are more
instances in DS2 that can be modified (293) but the number of adversarial
samples generated per instance is lower than DS2.

Fig. 4. New misclassified instances generated from each of the original instances that
produce at least one misclassification (aggregated over 10 runs).

Evaluating the Robustness of Deep-Learning Algorithm-Selection Models 133

Table 3. Unique misclassified instances.

Modifiable
Instances

Total
Instances

Median per
modifiable
instance

DS2 293 25,810,846 93,834

DS4 29 4,578,680 166,633

DS2 251 21,194,879 81,607

DS4 29 4,003,832 144,862

Table 4. DS2: % of instances per
solver label and category.

Robust Perturbable Fragile

DS2 BF 29.0 10.5 10.6

FF 0.5 4.3 45.1

DS4 BF 1.2 0.7 48.3

FF 0 0.8 49.0

6 Where Are the Fragile Instances?

Finally, we use a dimensionality-reduction technique to visualise the instances in
a 2d space to try to uncover any relationships between an instance (described by
its data), the winning solver for the instance and the extent to which the original
instances are: (a) fragile: random search for a mask produces an adversarial
sample; (b) perturbable: evolution discovers at least one mask that creates an
adversarial sample; (c) robust : an adversarial sample cannot be evolved.

In Fig. 5a, we use supervised UMAP [12] to learn a projection that accounts
for the solver label associated with the instance (BF/FF)—this clearly separates
the two classes. We then colour the instances according to the three categories
above. It is immediately obvious that most of the instances in the FF cluster
are fragile (see Table 4); a small number are perturbable (4.3%) and fewer than
1% are robust. In contrast, most of the robust instances come from the BF class
(29%); in this class, the number of fragile and perturbable instances is approx-
imately equal ≈ 10%. In Fig. 5b, we again use supervised UMAP but this time
train on the three category labels listed above. This clearly separates the three
categories, again showing that the fragile instances mainly come from FF. For
DS4, the UMAP projection does not separate the three categories and is there-
fore not shown. Approximately 97% of instances are fragile and are uniformly

Fig. 5. DS2(0.3), UMAP (supervised) trained with different labels.

134 E. Hart et al.

distributed across the space, hence we omit this diagram. Statistics showing the
percentage of instances per category for both datasets are given in Table 4.

7 Conclusions and Future Work

We investigated the robustness of a deep recurrent network used for algorithm-
selection to perturbations in instance data. This was inspired by the wealth
of evidence from the image classification domain demonstrating that convolu-
tional networks are particularly vulnerable to adversarial attacks. We proposed
a method to evolve a mask that perturbs an instance such that the modified
instance is incorrectly classified by a DRN. By restricting the level of perturba-
tion allowed, the method ensures the evolved adversarial samples are similar to
the original instances, therefore we expect the trained network should be capable
of handling them. However, using two datasets, we showed that instances can be
categorised as fragile, perturbable or robust with respect to the trained models,
and that adversarial samples can be evolved efficiently in between 1 and 112
generations, depending on the dataset and the initialisation method. Adversar-
ial samples generated are misclassified with a confidence c, where 0.5 < c ≤ 1.0,
i.e. c ranges from very low to very high.

As well as bringing new insight into the robustness of the models, the app-
roach sheds new light on which instances lie close to decision boundaries in the
space, i.e. are easily perturbed. We also found a subset of instances in which
a perturbation causes the classifier to ‘flip’ from classifying the instance cor-
rectly with very strong confidence to classifying incorrectly with equally strong
confidence; every new perturbation can cause the instance to oscillate between
these two states. Further work is required to understand what characteristics of
the instance data lead to this behaviour, and try to find features that correlate
with this. Another promising avenue of work would be to use an multi-objective
algorithm to minimise the amount of per perturbation while maximising the
probability of misclassification. Finally, a side-effect of the approach is that it
generates a very large number of new instances. These instances are associated
with a diverse range of classification probabilities and therefore represent a rich
source of new training data for training better models in future.

Reproducibility: code and data are available at [21].

Acknowledgements. Emma Hart and Quentin Renau are supported by EPSRC
EP/V026534/1

Disclosure of Interests. The authors have no competing interests to declare that are

relevant to the content of this article.

References

1. Alissa, M., Sim, K., Hart, E.: Algorithm selection using deep learning without
feature extraction. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 198–206 (2019)

Evaluating the Robustness of Deep-Learning Algorithm-Selection Models 135

2. Alissa, M., Sim, K., Hart, E.: Automated algorithm selection: from feature-based
to feature-free approaches. J. Heuristics 29(1), 1–38 (2023)

3. Alzantot, M., et al.: GenAttack: practical black-box attacks with gradient-free
optimization. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pp. 1111–1119 (2019)

4. Bridle, J.S.: Training stochastic model recognition algorithms as networks can lead
to maximum mutual information estimation of parameters. In: Proceedings of the
2nd International Conference on Neural Information Processing Systems, pp. 211–
217. NIPS 1889, MIT Press, Cambridge, MA, USA (1989)

5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

6. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics
2, 5–30 (1996)

7. Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing problems:
a survey. In: Ausiello, G., Lucertini, M. (eds.) Analysis and Design of Algorithms
in Combinatorial Optimization. ICMS, vol. 266, pp. 147–172. Springer, Vienna
(1981). https://doi.org/10.1007/978-3-7091-2748-3 8

8. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evo-
lution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/
106365601750190398

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Hoos, H.H., Stützle, T.: Propositional Satisfiability and Constraint Satisfaction.
In: Stochastic Local Search: Foundations and Applications. Elsevier (2004)

11. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

12. Leland McInnes, John Healy, N.S., Großberger, L.: Uniform manifold approxima-
tion and projection. J. Open Source Softw. 3(29) (2018)

13. Dı́az de León-Hicks, E., Conant-Pablos, S.E., Ortiz-Bayliss, J.C., Terashima-Maŕın,
H.: Addressing the algorithm selection problem through an attention-based meta-
learner approach. Appl. Sci. 13(7), 4601 (2023)

14. Lin, J., Xu, L., Liu, Y., Zhang, X.: Black-box adversarial sample generation based
on differential evolution. J. Syst. Softw. 170, 110767 (2020)

15. Liu, H., Kuang, Y., Wang, J., Li, X., Zhang, Y., Wu, F.: Promoting general-
ization for exact solvers via adversarial instance augmentation. arXiv preprint
arXiv:2310.14161 (2023)

16. Loreggia, A., Malitsky, Y., Samulowitz, H., Saraswat, V.: Deep learning for algo-
rithm portfolios. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 30 (2016)

17. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for
efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9 8

18. Narodytska, N., Kasiviswanathan, S.P.: Simple black-box adversarial attacks on
deep neural networks. In: CVPR Workshops, vol. 2, p. 2 (2017)

19. Prager, R.P., Seiler, M.V., Trautmann, H., Kerschke, P.: Automated algorithm
selection in single-objective continuous optimization: a comparative study of deep
learning and landscape analysis methods. In: Rudolph, G., Kononova, A.V.,
Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) International Conference
on Parallel Problem Solving from Nature, vol. 13398, pp. 3–17. Springer (2022).
https://doi.org/10.1007/978-3-031-14714-2 1

http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/978-3-7091-2748-3_8
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
http://arxiv.org/abs/2310.14161
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-031-14714-2_1

136 E. Hart et al.

20. Qiu, H., Custode, L.L., Iacca, G.: Black-box adversarial attacks using evolution
strategies. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, pp. 1827–1833 (2021)

21. Renau, Q., Hart, E.: Evaluating the robustness of deep-learning algorithm-selection
models by evolving adversarial instances - code and data (2024). https://doi.org/
10.5281/zenodo.10581154

22. Ross, P., Maŕın-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a procedure
that can solve hard bin-packing problems: a new ga-based approach to hyper-
heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L.D., Roy, R., O’Reilly,
U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener,
J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K.A., Jonoska, N., Miller,
J. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1295–1306. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-45110-2 5

23. Seiler, M., Pohl, J., Bossek, J., Kerschke, P., Trautmann, H.: Deep learning as a
competitive feature-free approach for automated algorithm selection on the travel-
ing salesperson problem. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269,
pp. 48–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1 4

24. Storn, R., Price, K.V.: Differential evolution - A simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

25. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
IEEE Trans. Evol. Comput. 23(5), 828–841 (2019)

https://doi.org/10.5281/zenodo.10581154
https://doi.org/10.5281/zenodo.10581154
https://doi.org/10.1007/3-540-45110-2_5
https://doi.org/10.1007/978-3-030-58112-1_4
https://doi.org/10.1023/A:1008202821328

Learned Features vs. Classical ELA
on Affine BBOB Functions

Moritz Seiler1(B) , Urban Škvorc1 , Gjorgjina Cenikj2 , Carola Doerr3 ,
and Heike Trautmann1,4

1 Machine Learning and Optimisation, University of Paderborn, Paderborn, Germany
{moritz.seiler,urban.skvorc,heike.trautmann}@uni-paderborn.de

2 Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia
gjorgjina.cenikj@ijs.si

3 Sorbonne Université, CNRS, LIP6, Paris, France
carola.doerr@lip6.fr

4 DMB Group, University of Twente, Enschede, Netherlands

Abstract. Automated algorithm selection has proven to be effective to
improve optimization performance by using machine learning to select
the best-performing algorithm for the particular problem being solved.
However, doing so requires the ability to describe the landscape of opti-
mization problems using numerical features, which is a difficult task. In
this work, we analyze the synergies and complementarity of recently pro-
posed feature sets TransOpt and Deep ELA, which are based on deep-
learning, and compare them to the commonly used classical ELA fea-
tures. We analyze the correlation between the feature sets as well as how
well one set can predict the other. We show that while the feature sets
contain some shared information, each also contains important unique
information. Further, we compare and benchmark the different feature
sets for the task of automated algorithm selection on the recently pro-
posed affine black-box optimization problems. We find that while classi-
cal ELA is the best-performing feature set by itself, using selected fea-
tures from a combination of all three feature sets provides superior per-
formance, and all three sets individually substantially outperform the
single best solver.

Keywords: Black-box Optimization · Exploratory Landscape
Analysis · Automated Algorithm Selection · Deep Learning

1 Introduction

It is well known that an optimization algorithm’s performance depends heav-
ily on the specific problem to be solved. Therefore, choosing the most suitable
algorithm for a given problem is crucial to achieve good optimization results.
Automating this task, known as Automated Algorithm Selection (AAS [28]), has
long been of interest to the research community. A prerequisite of the AAS task
is the representation of optimization problems in terms of numerical features
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 137–153, 2024.
https://doi.org/10.1007/978-3-031-70068-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_9&domain=pdf
http://orcid.org/0000-0002-1750-9060
http://orcid.org/0000-0002-7032-1489
http://orcid.org/0000-0002-2723-0821
http://orcid.org/0000-0002-4981-3227
http://orcid.org/0000-0002-9788-8282
https://doi.org/10.1007/978-3-031-70068-2_9

138 M. Seiler et al.

which can be used as input to various machine learning (ML) models to predict
the algorithms’ performances. In recent years, the development of Exploratory
Landscape Analysis (ELA [22]), a method of transforming samples of an opti-
mization problem into informative landscape feature, has shown promising results
for these tasks [1,18]. However, ELA has shown certain flaws, such as a large
correlation between the individual features, costly computation times, a lack of
robustness and expressiveness of some of the features [27], as well as a lack of gen-
eralizability to problem sets outside of the widely used Black Box Optimization
Benchmark (BBOB [14]) [19,26,35].

Recently, novel problem sets were proposed on which these features can be
further evaluated, e.g. for the AAS task [11,24,33,36], as well as innovative
methods for computing landscape features supposed to solve the inherent draw-
backs of classical ELA features [6,29,31]. In this paper, we focus on two recently
proposed approaches that utilize deep learning to learn landscape features auto-
matically. These two approaches are TransOpt [6] and Deep Exploratory Land-
scape Analysis (Deep ELA [29]) which we compare with each other and also
with classical ELA on a recently proposed set of Affine BBOB problems [37],
which consists of linear combinations of the 24 widely used single objective opti-
mization problems from the BBOB suite. Thereby, we compare classical ELA
features and learned features on novel optimization problems that classical ELA
was not specifically designed for. We split this analysis into two parts:

First, we compare the features themselves, by analyzing their correlation and by
using ML to determine if one set of features is predicative of the other. The
goal is to understand the complementarity of these features, and the amount
of new information that is captured by them.

Second, we examine how these features can be used for AAS, and specifically
whether combining all of these feature sets and conducting feature selection
outperforms only using a single set.

2 Background

In the following, we briefly describe the differences between the three considered
feature sets and provide an improvement to Deep-ELA which is the overall fourth
considered feature set. In general, we consider two types of feature sets, classical
(human-designed) (see Sect. 2.1) and learned feature sets (see Sect. 2.2).

2.1 Classical Exploratory Landscape Analysis

For Automated Algorithm Selection (AAS), it is essential to have a method
for characterizing the optimization problem’s landscape quantitatively, which
machine learners can leverage. In current research, the extraction of ELA fea-
tures is typically used. Pioneered by Mersmann et al. [22], ELA enables the
automated extraction of low-level ELA features that directly relate to the high-
level characteristics of a problem, like its (multi-)modality or its landscape’s

Learned Features vs. Classical ELA on Affine BBOB Functions 139

ruggedness. ELA features can be derived from a relatively small set of problem
samples. Typically, a sample size of 50d, or for enhanced stability, 250d, is used.
We use the flacco [17] R-library to compute classical ELA features as follows:

Basic features provide simple information about the sample set, such as the
number of observation and their minimum and maximum boundaries [18].

Dispersion features compare the distribution of the full sample set to the dis-
tribution of a subset containing samples with the highest fitness scores [20].

y-Distribution features, such as skewness or kurtosis, indicate descriptive statis-
tics of the fitness values’ distribution [22].

Levelset features train discriminant analysis models to predict whether the fit-
ness value of each sample falls above or below a specific quantile of all fitness
values. The mean misclassification errors are used as features [18].

Meta-Model features are based on trained linear or quadratic models’ perfor-
mance metrics (e.g. R2 score) [22].

Information Content features measure certain landscape characteristics, such
as smoothness and ruggedness, based on statistic summarization gained from
a series of random walks [23].

Nearest Better Clustering feature describes the relation between a set of
nearest neighbors (based on their location in the decision space) and a set of
nearest ‘better’ neighbors (based on their objective value) [16].

Principal Component Analysis features are derived from dimensionaltiy
reduction by PCA [18].

In total, we obtain 93 features for each problem instance. Further, we excluded
all cost-related features as these are meaningless for the characterization of opti-
mization landscapes. In some rare cases, the computation of ELA features results
in NaN or Inf values. Instead of removing all features that contain a single obser-
vation with either NaN or Inf values, we simply mean-imputed these values.

2.2 Learned Features

Of particular interest in the current research are feature-free approaches that
utilize deep learning to create alternative problem representations (see e.g. [6,29–
31]). In the following, we particularly address the fundamental idea of TransOpt
features [6] and Deep Exploratory Landscape Analysis (Deep ELA [29]).

TransOpt Features (proposed by Cenikj et al. [6].) are obtained by train-
ing a transformer-based model on the supervised learning task of predicting
the performances of twelve different configurations of Particle Swarm Optimiza-
tion (PSO [15]) algorithms. The inputs to the transformer [34] are a raw set
of candidate solutions and their respective objective values. These samples are
generated using Latin Hypercube Sampling (LHS [21]) and a sample size of 50d,
where d is the decision space’s dimensionality. The model follows a transformer
encoder architecture, producing representations of the samples which are then
fed to a regression head, producing a numerical indicator of the performance of

140 M. Seiler et al.

each of the algorithms. Further, the models are trained on a problem portfolio
generated using the random function generator introduced in [33]. A separate
model is trained for each problem dimensionality. 2 638 resp. 2 696 functions are
used to train the 3d resp. 10d model. To generate representations of the affine
problems, we remove the regression head (last layers of the TransOpt model)
and simply make a forward pass of the samples of the affine problems through
the trained transformer architecture to obtain their embeddings.

Deep Exploratory Landscape Analysis. (Deep ELA) was proposed by Seiler
et al. [29]. The authors designed also a transformer encoder that takes a set of
candidate solutions as input and outputs a feature vector that (supposedly)
uniquely describes the landscape. The models were trained on 250 000 000 ran-
domly generated optimization problems—containing single- as well as multi-
objective problems based on an approach very similar to the one proposed by
van Stein [33]. The training routine was designed as a self-supervised learning
task as outlined by Chen et al. [8]. The main advantage of this approach is that
there is no need for manual or computationally expensive labeling.

In this work, we slightly updated the Deep-ELA approach. Although the pre-
dicted feature vector is guaranteed to be invariant to the order of the candidate
solutions, the feature vectors may slightly fluctuate depending on permutations
of the decision space, i.e. (x1, x2, x3) will not necessarily yield the same output
as (x3, x2, x1). To account for this, we perform not only a single forward pass to
compute the feature vectors but ten individual forward passes with ten different
random permutations of the decision space to compensate for small fluctuations
of the feature vectors. Afterwards, we take the arithmetic mean of the ten feature
vectors. We will indicate the Deep-ELA variant as proposed by Seiler et al. [29]
as Deep-ELA (v1.0) and our, updated variant of it as Deep-ELA (v1.1).

3 Experimental Setup and Methodology

Black-Box Optimization Problems. We reuse most of the data from previous
related studies [5] to enable directly comparing results. We generate samples of
the affine problem instances using LHS [21] in the range [-5,5] with a sample size
of 50d. To enable a fair feature comparison, we use the same set of samples to
calculate the classical ELA, TransOpt, and Deep ELA features.

We create affine BBOB recombinations using the initial five instances from
each of the 24 BBOB problem classes [37]. This process involved merging
instances from varying classes that share the same instance identifiers. For exam-
ple, the first instance of the first problem class is combined with the first instances
of the other 23 problem classes. We need to highlight here that instances with
different instance identifiers from different problem classes are not combined to
keep the total number of generated instances manageable. To be more specific,
we used the following formula to combine two objectives:

Ff1,f2(X) = exp
(
α · log(f1(X − x∗

1) − y∗
1) + (1 − α) · log(f2(X − x∗

2) − y∗
2)

)
.

Learned Features vs. Classical ELA on Affine BBOB Functions 141

Here, f1, f2 are the two optimization functions and y∗
1,y

∗
2 their true optimal

solutions, and x∗
1,x

∗
2 the locations of the true solutions in the decision space. α

is the recombination weight. The recombination is performed with α values of
0.25, 0.50, and 0.75 for all pairs of problem instances. This setup results in 8 280
generated problem instances; 24 ·23 possible recombinations, with three different
α values, and five instances. The 24 different functions and their five instances
were taken from the BBOB Suite. Further, we considered the 3-dimensional and
the 10-dimensional case for all 8 280 functions, resulting in 16 560 instances in
total.

Fig. 1. Signal to Noise Ratio of the different feature sets. Metrics were created sepa-
rately for 3d (a) and 10d (b) data.

Algorithm Performance and Performance Metric. The algorithm portfo-
lio contains Differential Evolution (DE [32]), Genetic Algorithm (GA [7]), Par-
ticle Swarm Optimization (PSO [15]), and Evolutionary Strategy (ES [2]), exe-
cuted with their default configuration as specified in pymoo [3] (Version 0.6.0).
All algorithms use LHS to construct the initial population. The population size
is set to 50d, where d is the decision space’s dimensionality. The algorithms are
executed on the affine problems in a fixed-budget scenario at budgets of 10, 30,
and 50 iterations. For a 10d problem, a budget of 50 iterations is equivalent to
a total of 5 000 function evaluations. Last, we perform ten executions of each
algorithm on all problem instances.

To measure the algorithm performance, we consider a custom performance
metric that was originally proposed by Cenikj et al. [5]. Most metrics used to
measure algorithm selection performance are either time- or trial-based. While
the former utilizes i.e. CPU run time or CPU flops, the latter utilizes i.e.
the number of function evaluations. Examples are Penalized Average Runtime
10 (PAR10) or Expected Run Time (ERT). The task of algorithm selection is
then to select the algorithm that is expected to solve a given instance the quick-
est. Yet a major downside of these metrics is their treatment of unsuccessful
runs. Not every algorithm is feasible to solve every given instance within a given
time budget. Hence, the underlying metric is—de facto—bi-objective. Yet, as

142 M. Seiler et al.

machine learners are most often trained on single-objective loss functions, failed
and successful runs have to be factored into a single score in some way or another
which is often unintuitive and may cause scores to be not fully commensurable
to one another.

In our setup, we prioritize a quality-based measure. Instead of selecting the
quickest solver, we select the solver that finds the best solution (in comparison
to the other algorithms) within a given budget. Thus, we used a different per-
formance metric which uses the best-found solution: the Normalized Precision
(NP [5]). It scales the range between the best algorithm’s best-found solution
and the worst algorithm’s best-found solution between zero and one. This makes
comparisons between the algorithms straightforward as the VBS is always zero
which is also the lower bound. Formally, the NP score can be defined as

NPa =
ŷa − min ŷ

max ŷ − min ŷ

where ŷ = {ŷ1, ŷ2, . . . , ŷr} is a set of the r algorithms’ best-found solutions and
ŷa is the best-found solution of algorithm a. For each of the 8 280 functions, we
sampled ten initial candidate solutions with ten different seeds, giving us ten
repetitions per instance. The size of this initial set is 150 (3d) and 500 (10d).
These initial sets are evaluated for all 8 280 instances, for 3d as well as 10d, sep-
arately. This guarantees equal samples for all feature sets. Afterwards, the four
feature sets were created: (1) classical ELA, (2) TransOpt, (3) Deep ELA (v1.0),
and (4) Deep ELA (v1.1). These feature sets are the foundation for the following

Fig. 2. Spearman Correlation between Deep ELA (v1.1) on the x-axis and classical
ELA on the y-axis for the d = 3 data. Values on the top (right) show the maximal
absolute correlation per column (row).

Learned Features vs. Classical ELA on Affine BBOB Functions 143

two studies: (1) we conducted an unsupervised study to compare the four differ-
ent feature sets to one another, and (2) we performed an automated algorithm
selection study using the feature sets separately as well as in conjunction.

Comparison of the Feature Sets. In the first part of our experiments, we per-
form two studies that assess the similarity of the feature sets used in this paper.
In the first study, we examine the Spearman correlation between each pair of
feature sets. In the second study, we train a Support Vector Machine (SVM [9])
for each feature pair that uses the first feature set to predict the features of the
second set. The Spearman correlation is calculated using the library scipy [38]
using default parameters. The SVM models are trained using the default set-
tings of the Python library scikit-learn [25], but with a linear kernel, 10 000
maximal iterations, and five-fold cross-validation. Additionally, Recursive Fea-
ture Elimination [13] implemented by scikit-learn is used to determine which
features from each feature set contribute the most. As SVMs are affected by
different ranges, all features are scaled to a range of (0, 1) before training.

Fig. 3. Spearman Correlation between TransOpt on the x-axis and Deep ELA (v1.1)
on the y-axis for the d = 3 data. Values on the top (right) show the maximal absolute
correlation per column (row).

Algorithm Selection Study. Further, we considered two learners for the algo-
rithm selector: k Nearest Neighbor (kNN [10]), and Random Forest (RF [4]).
After some initial testing, we settled with k = 15 for the kNN and 250 trees for
the random forest. Other than that, the learned were used with their default
configuration as implemented in scikit-learn. Input features were min-max
normalized for the kNN but left as they are for the random forest.

144 M. Seiler et al.

Fig. 4. Detailed results of the feature selection experiments showing feature importance
for each predicted feature, with Deep ELA (v1.1) features (x-axis) used to predict
classical ELA features (y-axis)

All selectors were trained on a multi-regression task, predicting the per-
formance of each of the four algorithms. Afterward, the algorithm with the
lowest predicted regret is selected. To compute the performance scores, we aver-
aged the best-found solution over all ten repetitions per instance to account for
stochasticity. We trained the two selectors on all four feature sets with ten-fold
cross-validation and sequential forward feature selection (SFFS), whereby the
cross-validation is the inner loop and the feature selection is the outer one. This
way, all learners within an iteration contain the same set of features.

4 Results

Comparison of the Feature Sets. First, we had a look at the Signal-to-Noise
(StN) ratio between the different datasets (see Fig. 1):

RStN =
(

s2
between

s2
within

)

Learned Features vs. Classical ELA on Affine BBOB Functions 145

where sbetween is the observed standard deviation of a single feature across dif-
ferent functions while swithin is the observed standard deviation of a single fea-
ture across different instances of a single function. So generally speaking, the
StN-ratio captures both the desired stability of a feature within instances of a
function and its effectiveness in differentiating between functions, aiming for a
balance that highlights features with both low within-function variance and high
between-function variance.

Our findings are that classical ELA contains both features with the low-
est and the highest StN-ratio. Hence, TransOpt as well as Deep ELA features
contain fewer noisy features but also fewer highly descriptive features. Next, we
found a small improvement between the default Deep ELA features (as proposed
by Seiler et al. [29]) and our improved variant; indicating that the multiple-
sampling strategy slightly improves the stability of the Deep-ELA features. On
the other hand, it demonstrates that Deep ELA features are already very stable
to dimensional augmentations. Last, we found that TransOpt features have the
lowest average StN-ratio. This indicates that their stability across instances of
the same function is low in comparison to instances across different functions.
However, TransOpt features were not explicitly trained to remain stable across
different instances of the same function, but are instead trained to have similar
representations of problems where algorithms perform similarly.

Next, Figs. 2 and 3 show the results of the correlation analysis. Precisely,
Fig. 2 shows the Spearman correlation between the Deep ELA features and the
classical ELA features, with the numbers along the rows and columns represent-
ing the maximum absolute correlation measured in that specific row and column.
To make it easier to examine the maximum correlation, we sort the columns of
the table by the maximum column correlation. We only include the results of
the experiments that were performed on 3d data, as the experiments on 10d
achieved very similar results.

Figure 2 depicts the correlation between Deep ELA (v1.1) and classical ELA
features. We can see that there is some correlation between the two feature
sets and that about half of the Deep ELA features have an absolute correlation
above 0.5 to at least a single classical ELA feature. However, the other half of the
Deep ELA features exhibit a lower correlation. Similar results were observed with
the correlation between the TransOpt and the classical ELA features. Further,
Fig. 3 shows the correlation between the Deep ELA and the TransOpt features.
The results are somewhat similar to Fig. 2 (classical vs. Deep ELA), with some
features being heavily correlated. However, the majority of the features show
a lower degree of correlation. This demonstrates that while the feature sets
examined in this paper are not entirely distinct, all three still contain features
that are not heavily correlated with the others, which indicates complementarity.

As correlation can only show us pairwise similarity of features, we perform
an additional study to further analyze the similarity of the feature sets. We train
SVMs, each using one feature set to predict the features of a different set, with
a separate model for each predicted feature. The evaluation metric used for each
model is its root Mean Squared Error (rMSE) divided by the predicted feature’s

146 M. Seiler et al.

Fig. 5. Detailed results of the feature selection experiments showing feature importance
for each predicted feature, with TransOpt features (x-axis) used to predict Deep ELA
(v1.1) features (y-axis). Note that to make them more readable, the values are capped
to the region of (−0.06, 0.06)

standard deviation. Due to this, a value of one indicates performance equivalent
to a baseline model that always predicts the mean of the target feature while
values below one indicate that the model outperforms the baseline. Hence, we can
assume that if the value is below 1, the input feature set is likely to contain similar
information. Table 1 shows the aggregated mean results of each feature set, with
the rows representing the training set and the columns representing the testing
set. We can observe that the best results are achieved when using one Deep ELA
version to predict the other, which results in an rMSE of 0.47 or 0.59. This is an
expected outcome given the similarity of the two feature sets and shows us what
accuracy should be expected when comparing two heavily correlated feature sets.
Other models perform worse, achieving normalized rMSE scores of around 0.8 to
0.9, but still below 1, except for TransOpt features. When examining the results
in more detail, the worse performance of the TransOpt models can be explained
by poor performance on a small number of outlier features. This further shows
that all the feature sets contain at least some supplementary features.

Table 1. Mean rMSE normalized by the standard deviation, with rows representing
the training feature set and columns representing the testing feature set

Classical ELA Deep ELA (v1.0) Deep ELA (v1.1) TransOpt

Classical ELA – 1.0 0.92 0.70

Deep ELA (v1.0) 0.93 – 0.47 0.86

Deep ELA (v1.1) 0.93 0.59 – 0.86

TransOpt 1.3 1.64 1.39 –

Figure 4 and 5 contain more detailed results of the feature prediction experi-
ments. Specifically, they show the feature importance assigned by recursive fea-
ture elimination for each predicted feature, as well as the achieved rMSE on each

Learned Features vs. Classical ELA on Affine BBOB Functions 147

Fig. 6. Results of the algorithm selection study. Selectors that share the same rank are
stochastically tied to one another. We used the robust ranking technique as presented
by Fawcett et al. [12] with α = 0.1 and 100 000 repetitions. The median performance
is shown on the x-axis.

feature. Figure 4 shows these results when the Deep ELA (v1.1) features are used
to predict the classical ELA features. We can see that the feature importance is
fairly well distributed with a couple of exceptions. Looking at the rMSE for each
feature, we can also see that the Deep ELA features are relatively well-suited to
predicting most classical ELA features. However, there are a couple of outliers
where the model performs extremely poorly.

Figure 5 shows comparable results. The feature importance is evenly dis-
tributed, and while the overall rMSE is worse than in the previous figure, there
are still noticeable outliers where the model performs worse than the baseline.
After examining the data, most (but not all) of the outliers in this figure occur
in Deep ELA features that contain very little variance. Since the performance is
normalized by the standard deviation, this penalizes such features more harshly,
which could explain the relatively poor performance. However, it is also worth
noting that, in the algorithm selection study presented in the following chapter,
these features are often selected as being highly informative, which substantiates
the synergy of these Deep ELA features and the TransOpt features.

Algorithm Selection Study. As explained in the methodology of this paper,
we choose to execute our algorithm selection study on two different data sets
(3d and 10d). The results can be found in Fig. 6. In both scenarios, all algo-
rithm selectors provide significantly better performance than the SBS but are
still significantly worse than the VBS. Generally speaking, we find that the
hybrid selectors, making use of all three feature sets, significantly outperform
the other selectors (see Fig. 6 (a,b)). Contrary to the 10d case, classical ELA is
stochastically tied to the hybrid selectors on the 3d dataset. Further, the com-
bination of TransOpt and Deep ELA features significantly outperforms both
feature sets on their own in the 3d scenario (see Fig. 6 (a)).

148 M. Seiler et al.

Fig. 7. This figure depicts how often a certain algorithm of four total algorithms was
selected by one of the algorithm selectors. Again, these metrics were derived separately
for the 3d-case and the 10d-case.Please note the log-scaling.

Therefore, our findings are that classical ELA features still provide the most
distinct features for algorithm selection, followed by Deep ELA and TransOpt
features. Yet, both learned feature sets demonstrate great performance as all
selectors outperform the SBS. Further, the best performances were shown by
the hybrid models taking all feature sets into account. This indicates that both
learned feature sets cover certain characteristics that classical ELA features miss.

Next, we analyzed which algorithm was selected by which selector and how
often. The results can be found in Fig. 7. The figure reveals that the VBS, as
expected, selects from the algorithm portfolio, the most diversely. The SBS, by
definition, only selects a single solver. All algorithm selectors select the SBS the
most often—and, in particular, more often than the VBS does. Of the trained
algorithm selectors, those trained on classical ELA are most diverse in selecting
algorithms. This indicates again that classical ELA features still contain the most
relevant information for algorithm selection. Still, both TransOpt and Deep ELA
contain sufficient information to distinguish between the different algorithms.

Interestingly, all selectors provide more diverse selections in the 10d scenario
in comparison to the 3d. This may be because the algorithms GA and PSO are
similar as often selected by the VBS. This is contrary to the 3d case where the
ES algorithm is selected by far the most often by the VBS. Hence, it may be
easier for the selectors to utilize the algorithm portfolio if all algorithms in the
portfolio are about equally as important.

Subsequently, we analyzed the number of selected features that were required
to achieve the best performance. In Fig. 8, we show the performance of each
algorithm selector on the y-axis and the number of selected features during
the forward pass at the x-axis. To better indicate the optimum, we stop at
the optimal number of selected features. First of all, when comparing Fig. 8 (a)
and (b) as well as (c) and (d) to one another, it becomes apparent that the
hybrid models achieve better performance with a lower number of features in
comparison to the selectors that are trained solely on separate feature sets. This
again demonstrates that every feature set contains highly descriptive features
that are very important to the algorithm selection task.

Learned Features vs. Classical ELA on Affine BBOB Functions 149

Fig. 8. Performance versus number of selected features of all algorithm selectors during
the sequential forward feature selection process. Each depicted line symbolizes a feature
selection run and stops at the optimum. Please note that here the mean performance
is depicted.

Fig. 9. Selected features of each algorithm selector based on a random forest. Colors
represent the same selectors as depicted in Fig. 8.

150 M. Seiler et al.

Thereafter, we took a closer look at which features were selected exactly. The
selected features for every random forest-based algorithm selector are depicted
in Fig. 9. Many of the selected learned features for the separate selectors are
not included in the hybrid models. In fact, the best-performing selector for the
10d data, ELA & TransOpt & Deep ELA (v1.1), only considers four TransOpt
and a single Deep ELA (v1.1) feature but also twelve classical ELA features. On
the other hand, the stochastically tied performing selector, ELA & TransOpt &
Deep ELA (v1.0), considers more than twice the number of features. However,
this might be just due to stochastic variations in the feature selection process
as the latter selector also provides matching performance with a lower number
of features (see Fig. 8 (d)). Another reason for the low number of selected Deep
ELA features may lie in the findings of our correlation study. Many ELA features
are highly correlated to the Deep ELA features and may be removed due to
describing similar characteristics. The most important classical ELA features of
the hybrid selectors are basic, dispersion, meta, and for the 3d case also
PCA-based features. This indicates that neither TransOpt nor Deep ELA covers
similar characteristics.

5 Conclusion

We showed that all three feature sets, i.e., classical ELA and the two deep
learning-based variants, contain relevant and unique information. This is why
the hybrid algorithm selectors, utilizing all three sets, require the fewest number
of features while providing the best algorithm selection performance. While the
different feature sets contain to some degree shared information, both in terms of
correlation and feature predictions, nevertheless, they also contain information
that is unique to each feature set. Further, we could demonstrate that those
Deep ELA features that were difficult to predict using TransOpt features are
important add-ons to the TransOpt features within the AAS Study.

We also observed that classical ELA features are, generally speaking, slightly
superior in comparison to learned features. Yet, learned features do provide
promising performance. Their main advantage lies in the fact that no manual
crafting of new feature sets is required. Instead, a large foundation model learns
all the relevant information by itself. This may provide easy scalability as with
the adaption and tuning of the training routine, better foundation models can
be trained and, thereby, may surpass the superiority of classical ELA features.
Learned features may also prove particularly useful for optimization scenarios
where human expertise for feature design is scarce. Rather than comparing hand-
designed features with learned ones, as we have done in work, we expect to
see future studies using learned features to design “human-readable” ones, for
domains where hand-designed features are lacking.

Acknowledgments. The third author acknowledges support by the Slovenian
Research Agency: research core funding No. P2-0098, young researcher grant No. PR-
12393 to GC and project No. J2-4460.

Learned Features vs. Classical ELA on Affine BBOB Functions 151

References

1. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm con-
figuration of CMA-ES with limited budget. In: Proceedings of the 19th Annual
Conference on Genetic and Evolutionary Computation (GECCO), pp. 681–688.
ACM (2017)

2. Beyer, H., Schwefel, H.: Evolution strategies - a comprehensive introduction. Nat.
Comput. 1(1), 3–52 (2002). https://doi.org/10.1023/A:1015059928466

3. Blank, J., Deb, K.: Pymoo: multi-objective optimization in python. IEEE Access
8, 89497–89509 (2020)

4. Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001)
5. Cenikj, G., Petelin, G., Eftimov, T.: A cross-benchmark examination of feature-

based algorithm selector generalization in single-objective numerical optimization.
Swarm Evol. Comput. 87, 101534 (2024). https://doi.org/10.1016/j.swevo.2024.
101534, https://www.sciencedirect.com/science/article/pii/S2210650224000725

6. Cenikj, G., Petelin, G., Eftimov, T.: Transoptas: transformer-based algorithm selec-
tion for single-objective optimization (2024). https://doi.org/10.1145/3638530.
3654191, in Press

7. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past,
present, and future. Multimedia Tools Appl. 80(5), 8091–8126 (2020). https://
doi.org/10.1007/s11042-020-10139-6

8. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision
transformers (2021)

9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
10. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-

ory 13(1), 21–27 (1967)
11. Dietrich, K., Mersmann, O.: Increasing the diversity of benchmark function sets

through affine recombination. In: Rudolph, G., Kononova, A.V., Aguirre, H., Ker-
schke, P., Ochoa, G., Tušar, T. (eds.) Parallel Problem Solving from Nature - PPSN
XVII, pp. 590–602. Springer International Publishing, Cham (2022). https://doi.
org/10.1007/978-3-031-14714-2 41

12. Fawcett, C., Vallati, M., Hoos, H.H., Gerevini, A.E.: Competitions in AI – robustly
ranking solvers using statistical resampling (2023)

13. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. 46, 389–422 (2002)

14. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion benchmarking 2009: noiseless functions definitions. Research Report RR-6829,
INRIA (2009). https://hal.inria.fr/inria-00362633

15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995).
https://doi.org/10.1109/ICNN.1995.488968

16. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures
by means of exploratory landscape analysis. In: Proceedings of the 17th Annual
Conference on Genetic and Evolutionary Computation (GECCO), pp. 265–272
(2015)

17. Kerschke, P., Trautmann, H.: The R-package FLACCO for exploratory landscape
analysis with applications to multi-objective optimization problems. In: Proceed-
ings of the IEEE Congress on Evolutionary Computation (CEC), pp. 5262–5269.
IEEE (2016)

https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1016/j.swevo.2024.101534
https://doi.org/10.1016/j.swevo.2024.101534
https://www.sciencedirect.com/science/article/pii/S2210650224000725
https://doi.org/10.1145/3638530.3654191
https://doi.org/10.1145/3638530.3654191
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/978-3-031-14714-2_41
https://doi.org/10.1007/978-3-031-14714-2_41
https://hal.inria.fr/inria-00362633
https://doi.org/10.1109/ICNN.1995.488968

152 M. Seiler et al.

18. Kerschke, P., Trautmann, H.: Comprehensive feature-based landscape analysis of
continuous and constrained optimization problems using the R-package flacco. In:
Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M. (eds.)
Applications in Statistical Computing. SCDAKO, pp. 93–123. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25147-5 7

19. Kostovska, A., et al.: Per-run algorithm selection with warm-starting using
trajectory-based features. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke,
P., Ochoa, G., Tušar, T. (eds.) Parallel Problem Solving from Nature – PPSN XVII:
17th International Conference, PPSN, 2022, pp. 46–60. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-14714-2 4

20. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strat-
egy. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation (GECCO), pp. 477–484 (2006)

21. Menč́ık, J.: Latin hypercube sampling. In: Mencik, J. (ed.) Concise Reliability for
Engineers, chap. 16. IntechOpen, Rijeka (2016). https://doi.org/10.5772/62370

22. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation (GECCO), pp. 829–836 (2011)

23. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: Exploratory landscape analysis of con-
tinuous space optimization problems using information content. IEEE Trans. Evol.
Comput. 19(1), 74–87 (2014)

24. Muñoz, M.A., Smith-Miles, K.: Generating new space-filling test instances for con-
tinuous black-box optimization. Evol. Comput. (ECJ) 28(3), 379–404 (2020)

25. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

26. Petelin, G., Cenikj, G.: How far out of distribution can we go with ELA features
and still be able to rank algorithms? In: 2023 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), pp. 341–346 (2023)

27. Renau, Q., Dréo, J., Doerr, C., Doerr, B.: Expressiveness and robustness of land-
scape features. In: Proceedings of the 21st Annual Conference on Genetic and
Evolutionary Computation (GECCO) Companion, pp. 2048–2051. ACM (2019)

28. Rice, J.R.: The algorithm selection problem. In: Advances in Computers, vol. 15
(1976)

29. Seiler, M.V., Kerschke, P., Trautmann, H.: Deep-ELA: deep exploratory land-
scape analysis with self-supervised pretrained transformers for single- and multi-
objective continuous optimization problems. Evol. Comput. J. arXiv preprint
arXiv:2401.01192 (2024). https://arxiv.org/abs/2401.01192

30. Seiler, M.V., Prager, R.P., Kerschke, P., Trautmann, H.: A collection of deep
learning-based feature-free approaches for characterizing single-objective contin-
uous fitness landscapes. In: Proceedings of the 24th Annual Conference on Genetic
and Evolutionary Computation (GECCO) (2022)

31. van Stein, B., Long, F.X., Frenzel, M., Krause, P., Gitterle, M., Bäck, T.: DoE2Vec:
deep-learning based features for exploratory landscape analysis. In: Silva, S.,
Paquete, L. (eds.) Proceedings of the 25th Annual Conference on Genetic and
Evolutionary Computation (GECCO) Companion, pp. 515–518. ACM (2023)

32. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

33. Tian, Y., Peng, S., Zhang, X., Rodemann, T., Tan, K.C., Jin, Y.: A recommender
system for metaheuristic algorithms for continuous optimization based on deep

https://doi.org/10.1007/978-3-030-25147-5_7
https://doi.org/10.1007/978-3-031-14714-2_4
https://doi.org/10.5772/62370
http://arxiv.org/abs/2401.01192
https://arxiv.org/abs/2401.01192
https://doi.org/10.1023/A:1008202821328

Learned Features vs. Classical ELA on Affine BBOB Functions 153

recurrent neural networks. IEEE Trans. Artif. Intell. 1(1), 5–18 (2020). https://
doi.org/10.1109/TAI.2020.3022339

34. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

35. Vermetten, D., Ye, F., Bäck, T., Doerr, C.: MA-BBOB: A problem gener-
ator for black-box optimization using affine combinations and shifts. CoRR
abs/2312.11083 (2023)

36. Vermetten, D., Ye, F., Bäck, T., Doerr, C.: MA-BBOB: many-affine combinations
of BBOB functions for evaluating AutoMl approaches in noiseless numerical black-
box optimization contexts. arXiv preprint arXiv:2306.10627 (2023)

37. Vermetten, D., Ye, F., Doerr, C.: Using affine combinations of BBOB problems for
performance assessment. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pp. 873–881. GECCO 2023, Association for Computing Machin-
ery, New York, NY, USA (2023). https://doi.org/10.1145/3583131.3590412

38. Virtanen, P., et al.: SciPy 1.0 Contributors: SciPy 1.0: fundamental algorithms for
scientific computing in Python. Nat. Methods 17, 261–272 (2020). https://doi.org/
10.1038/s41592-019-0686-2

https://doi.org/10.1109/TAI.2020.3022339
https://doi.org/10.1109/TAI.2020.3022339
http://arxiv.org/abs/2306.10627
https://doi.org/10.1145/3583131.3590412
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

Hybridizing Target- and SHAP-Encoded
Features for Algorithm Selection

in Mixed-Variable Black-Box Optimization

Konstantin Dietrich1,2(B) , Raphael Patrick Prager3 , Carola Doerr4 ,
and Heike Trautmann5,6

1 Big Data Analytics in Transportation, TU Dresden, Dresden, Germany
konstantin.dietrich@tu-dresden.de

2 ScaDS.AI, Dresden, Germany
3 Data Science: Statistics and Optimization, University of Münster,

Münster, Germany
raphael.prager@wi.uni-muenster.de

4 Sorbonne Université, CNRS, LIP6, Paris, France
carola.doerr@lip6.fr

5 Machine Learning and Optimisation, Paderborn University, Paderborn, Germany
heike.trautmann@uni-paderborn.de

6 Data Management and Biometrics Group, University of Twente,
Enschede, Netherlands

Abstract. Exploratory landscape analysis (ELA) is a well-established
tool to characterize optimization problems via numerical features. ELA
is used for problem comprehension, algorithm design, and applications
such as automated algorithm selection and configuration. Until recently,
however, ELA was limited to search spaces with either continuous or dis-
crete variables, neglecting problems with mixed variable types. This gap
was addressed in a recent study that uses an approach based on target-
encoding to compute exploratory landscape features for mixed-variable
problems.

In this work, we investigate an alternative encoding scheme based on
SHAP values. While these features do not lead to better results in the
algorithm selection setting considered in previous work, the two differ-
ent encoding mechanisms exhibit complementary performance. Combin-
ing both feature sets into a hybrid approach outperforms each encod-
ing mechanism individually. Finally, we experiment with two different
ways of meta-selecting between the two feature sets. Both approaches
are capable of taking advantage of the performance complementarity of
the models trained on target-encoded and SHAP-encoded feature sets,
respectively.

Keywords: Mixed-Variable Optimisation · SHAP · Automated
Algorithm Selection

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 154–169, 2024.
https://doi.org/10.1007/978-3-031-70068-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_10&domain=pdf
http://orcid.org/0000-0002-5383-7475
http://orcid.org/0000-0003-1237-4248
http://orcid.org/0000-0002-4981-3227
http://orcid.org/0000-0002-9788-8282
https://doi.org/10.1007/978-3-031-70068-2_10

Hybridizing TE and SH Features for AS in Mixed-Variable BBO 155

1 Introduction

Exploratory landscape analysis (ELA), also referred to as fitness landscape anal-
ysis, has shown to be a powerful tool to characterize the landscape of continuous
black-box optimization problems [17]. This type of problems lacks a closed-form
representation and does not provide any gradient information to exploit.

In a plethora of studies, ELA’s usefulness has been demonstrated; either to
better understand the behavior of an algorithm during its optimization pro-
cess [11,15], to determine the degree of multi-modality, global structure or other
structural properties of an optimization landscape [17,31], or to use ELA as a
means in automated algorithm selection [7,9,21,33] and configuration [3,5,25].
Despite this popularity, ELA has neither been disseminated to other research
domains, nor is it really used by practitioners. We hypothesize that one major
caveat is the limitation to the purely continuous space. In fact, many black-box
optimization problems exhibit a mixed-search space, where the search space
can be an arbitrary mixture of continuous, integer, and categorical decision
variables. This type of problems is often referred to as mixed-variable problem
(MVP) [14,23]. While there have been successful attempts to extend ELA to the
binary or mixed-integer space [26,27], these works still do not consider categor-
ical decision variables.

This has been addressed in a recent study by [30]. The authors propose a
methodology which allows the computation of ELA features for black-box prob-
lems with mixed search spaces. This methodology is evaluated in an automated
algorithm selection setting where several algorithms are benchmarked on a set
of hyperparameter optimization (HPO) problems as important representatives
of the MVP domain. Thereafter, ELA features are used to automatically select
an appropriate algorithm out of the portfolio for any given problem instance.
Thereby, they demonstrate that their developed methodology is able to discrimi-
nate between problem instances. The results show that this approach is superior
compared to relying on any single algorithm out of the portfolio. Their pro-
posed methodology contains a variety of different steps of which one pertains to
the transformation of categorical variables into continuous ones. The considered
transformations are one-hot encoding (as a baseline) and target-encoding [18].

The contribution of this study is that we extend the work of [30] by intro-
ducing a different encoding method based on SHAP (SHapley Additive exPla-
nations) values [16]. These values have the advantage that they can represent
the features additive contribution to the prediction. In doing so the categorical
features are encoded on a ‘per observation’-basis while taking into account the
interactions to all other contributing features. In this scenario an observation
is a single row of data containing various features (input variables) and their
corresponding target values (output variable). We use the same experimental
settings as [30] to ensure a fair comparison and highlight the merits as well as
the caveats of our transformation variant. Our devised method does not out-
perform the existing results of [30] across all considered problem instances, yet
it performs well in certain areas. A combination or what we call hybridization
of both encoding methods produces a superior performance than any encoding

156 K. Dietrich et al.

method achieves on its own. Leveraging two sophisticated approaches to com-
bine both encoding methods, we manage to improve the automatic algorithm
selection substantially.

2 Mixed-Variable Black-Box Optimization

Many optimization problems and HPO problems in particular have a mixed
search space. Meaning, the search space of these problems is constituted by a
mixture of continuous (Xcont), integer (Xint), and categorical decision variables
(Xcat). The latter type poses two challenges for the optimization community
especially. First, categorical decision variables do not possess any inherent order
relation. Furthermore, Xint and Xcat can impose hierarchical/conditional struc-
ture onto other continuous decision variables. In other words, a specific instance
of a given categorical decision variable can govern the domain of Xcont. In [30],
the authors purposefully ignore these constraints in their preprocessing scheme
for ELA feature computation. They make the case that the infeasible regions
of the search space (reached by ignoring these constraints) are n-dimensional
hyperplanes with a constant objective value in the direction of the decision vari-
ables with the violated constraint. This information is exploited in their feature
generation process. It is important to note that the constraints are only relaxed
in the ELA feature generation process and are still in place when algorithms are
applied to solve the problem in question.

Hence, we adopt the simplified formal representation of an MVP of [30]:

min f(Xcont,Xint,Xcat)
w.r.t. Xcont ∈ R

ncont

Xint ∈ Z
nint

Xcat ∈ Z
ncat

s.t. g(Xcont,Xint,Xcat) = 0
h(Xcont,Xint,Xcat) ≤ 0,

(1)

where f denotes the objective function with its respective equality constraints
g and inequality constraints h. With that, we define the decision space of our
MVP as X = (Xcont,Xint,Xcat) and the objective space is denominated as Y.

3 Problem Representation

3.1 Exploratory Landscape Analysis

Black-box problems in general do not offer any insight into their landscape
and what structures they are composed of. To provide the means to distin-
guish between and characterize different continuous single-objective black-box

Hybridizing TE and SH Features for AS in Mixed-Variable BBO 157

Fig. 1. General procedure of ELA feature generation. Based on the initial design several
feature sets can be computed. The feature set ‘meta model’ fits the several linear and
quadratic models and uses model coefficients as well as the adjusted R2 as features.

optimization problems, exploratory landscape analysis (ELA) has been devel-
oped [17]. ELA encompasses several different techniques to quantify the land-
scape of a black-box problem with numerical surrogates. These range from sum-
mary statistics as well as model coefficients to distance-based metrics. The afore-
mentioned calculations are based on a so-called ‘initial design’ S which essentially
is a small sample of the search space X and the corresponding objective values
Y. The size of this initial design usually depends linearly upon the dimension-
ality, D, of a given problem instance and a common choice is 50D. An overview
of the general procedure of ELA feature generation is depicted in Fig. 1.

Two prominent software packages exist to calculate ELA features, namely
the R package flacco [10] and the Python package pflacco [29]. These software
packages also include the advances made since the inception of ELA, i.e., they
also include feature sets proposed over the last decade such as the works of [8,20].
In this study, we use the same ELA feature sets as used by [30], i.e. y-distribution,
meta model, dispersion, and information content. Note that we adhere to the
recommendation of normalizing the objective space prior to feature computation
[28] in order to ensure shift and scale invariance.

The original work pertaining to ELA features covered several feature sets of
which two are used in this study. These are meta model and y-distribution with
nine and three features respectively. The feature set meta model fits a linear
and quadratic model (with and without interactions) to the initial design where
the model coefficients and the model quality serve as individual features. This
provides insight about the degree of linearity and convexity of a given prob-
lem instance. The feature set y-distribution, on the other hand, only focuses
on the objective value distribution of the initial design. In particular, the kur-
tosis and skewness are measured [17]. The dispersion feature set consists of
16 features. It segments the objective values of the initial design into differ-
ent subsets based on varying quantile levels, such as 10% and 25%. Within each
subset, measurements are taken for both mean and median distances in the deci-

158 K. Dietrich et al.

sion space. This analysis provides valuable insights into the distribution of local
optima, indicating whether they are concentrated in specific regions or dispersed
throughout the landscape [15]. Five features are part of information content.
To derive this feature set, a sequence of random walks is performed across the
initial design. At each step, comparisons are drawn between the current obser-
vation and the subsequent one. These comparisons yield diverse metrics aimed
at delineating the landscape’s attributes, encompassing aspects of smoothness,
ruggedness, and neutrality [20]. Identical to information content, the feature set
nearest better clustering includes five features that are metrics and ratios
computed between two different sets of distances. One of these sets consists of
distances of each observation to its nearest neighbor whereas the other set covers
distances between observation and its nearest better neighbor [8].

3.2 Preprocessing Scheme Based on Target-Encoding

In [30], the authors developed a preprocessing scheme comprising several steps
applied to the initial design S. One of these concerns the representation of cate-
gorical variables with real-valued numbers. In particular, two encoding methods,
namely one-hot encoding and target-encoding (TE) [18], were contrasted with
each other. The authors recommend the usage of TE as it performed compara-
tively better than one-hot encoding and requires less computation time.

TE originates from the machine learning (ML) community and is typically
used to encode categorical variables for learners incapable of processing these
types of variables [18]. TE measures the influence of a given category of a cate-
gorical variable on the target in question, which in [30] is modeled as the objective
value Y of the initial design S. For a given categorical variable Xi and corre-
sponding specific category j ∈ Xi, TE computes the arithmetic mean of the
objective values Y and a subset of Yj ⊆ Y which only contains objective values
where Xi = j. A weighted mean is calculated based on these two averages and
this new value j′ replaces the category j. One can think of j′ as a value which
measures the average deviation from the arithmetic mean of Y for a category j.

3.3 SHAP-Encoding

Even though [30] achieve promising results based on TE the sole purpose of the
method was to transform any categorical variable to a numerical value without
adding new dimensions. Thus, TE does not capture the variable’s effect for
individual observations. Rather, it aggregates the mean effect of every feasible
category of that variable on the chosen target and replaces the categories with
the resulting numerical value. Every distinct category of a categorical variable is,
therefore, assigned the same static real-valued number across all its occurrences
in the data set. A more nuanced approach can be achieved using SHapley Additive
exPlanations (SHAP) [16]. SHAP is a unified framework for the interpretation
of ML model predictions and is based on Shapley values [32]. Shapley values
were first introduced in the context of cooperative game theory as a means of
quantifying the average contribution of every team member in a coalition game.
This is done by playing the game in all possible coalitions of team members

Hybridizing TE and SH Features for AS in Mixed-Variable BBO 159

and averaging over the difference in the outcome before a team member joins
and after the member has joined a coalition. This accounts for all interaction
effects between the different players and leads to desirable properties like local
accuracy, missingness and consistency [16]. The SHAP framework transfers this
approach to the ML domain by conceptualizing every observation in a dataset
as a game. For instance, in the case of tabular data, this means that every row in
the dataset is a distinct game while every feature value in that row can be viewed
as a player. The game outcome corresponds to the prediction of the ML model
of interest. The Shapley values can than be calculated according to Eq. 2 [16] by

φi(f, x) =
∑

z′⊆x′

|z′|!(M − |z′| − 1)!
M !

[fx(z′) − fx(z′ \ i)] . (2)

Here, φi is the Shapley value for the feature value expressed by feature i within
the observation x (e.g. tabular data row) while being subject to the ML model f .
M denotes the number of features in the dataset, x′ is the simplified input which
is commonly used by explanation models and can be mapped to the original input
by any hx(x′) = x. Finally, z′ ∈ {0, 1}M denotes the number of features that are
part of the respective coalition. In practice, ML models usually exhibit static
architectures. This means the number of input features cannot be arbitrarily
varied. To overcome this hurdle every feature that is not part of a coalition
instance is sampled randomly from all values exhibited by it within the entire
dataset. The idea is to randomize the feature and, thus, make it lose its predictive
power. The SHAP framework also provides several solutions for the NP-hardness
of the Shapley value calculation exhibited by Eq. 2. The current default relies
on antithetic sampling which considers an entire permutation of all features
in forward and reverse direction [19]. Thus, SHAP allows to calculate Shapley
values even for a large number of features. This provides a local (for a single
observation) and additive quantization of the contribution of every feature to the
deviation from the expected value. Here, the expected value is the prediction if
no feature is part of the coalition. As SHAP values are synonymous to Shapley
values applied in the ML domain, we refer to them as SHAP values. In this
work, we train a ML model on the initial design S of ELA where the input of
the model is the sample of decision space X and corresponding objective values
Y . For each individual observation in X, we now compute the SHAP values of
all categorical decision variables on the prediction (i.e., the objective value) of
the model. We then replace every category in this specific observation with the
respective SHAP values. This process is repeated until every observation in X
is iterated over and all non-numeric values are replaced.

4 Experimental Setup

4.1 Benchmark Problems

We use HPO problems as representatives of the in general broader class of MVP
problems which also e.g. prominently comprises engineering applications such as
aircraft design [2,35] and design of induction motors [13]. The HPO problem set

160 K. Dietrich et al.

Table 1. Overview of available scenarios in YAHPO Gym, the search space, the num-
ber of problem instances per scenario and information whether the search domain is
hierarchical or not.

Scenario Search Space (cont, int, cat) # Instances H

rbv2_glmnet 3D: (2, 0, 1) 115 –
rbv2_rpart 5D: (1, 3, 1) 117 –
rbv2_aknn 6D: (0, 4, 2) 118 –
rbv2_svm 6D: (3, 1, 2) 106 �
iaml_ranger 8D: (2, 3, 3) 4 �
rbv2_ranger 8D: (2, 3, 3) 119 �
iaml_xgboost 13D: (10, 2, 1) 4 �
rbv2_xgboost 14D: (10, 2, 2) 119 �

is provided by the ’Yet Another Hyperparameter Optimization Gym’ (YAHPO
Gym) [24] benchmark. All considered HPO problems are classification tasks and
associated with a specific learner, its respective hyperparameters that need to
be tuned and final metric which represents quality of the learner on this given
training task. In the context of YAHPO Gym, a scenario comprises several HPO
problems for a specific learner. The different problems within a scenario are
instantiated using various datasets sourced from OpenML [34], with the objective
metric being the misclassification error, which we aim to minimize.

For the sake of comparison, we use the same subset of scenarios as the authors
of [30]. These are presented in Table 1, which delineates the dimensions of the
search space and the distribution of continuous, integer, and categorical deci-
sion variables. In total, this encompasses 702 individual problem instances. It is
essential to emphasize that the instances within a scenario may not necessarily
share similar levels of difficulty or overall landscape characteristics. Factors such
as the presence of multiple peaks or the unimodality of the fitness landscape are
contingent not only upon the scenario but also the specific dataset employed.
Thus, the categorization outlined in Table 1 serves solely for illustrative purposes
and should not be considered as indicative of problem similarity.

4.2 Algorithm Portfolio

The performance data of our algorithm portfolio was provided by the authors
of [30] which benefits comparability. The circumstances under which this data
was created are briefly described in the following. SMAC3 [12], Optuna [1],
pymoo [4], and random search (RS) were compared on the previously described
benchmark functions. The allotted budget of each algorithm amounts to 100D
function evaluations where D denotes the problem dimensionality. Each algo-
rithm is executed on each problem instance of YAHPO Gym 20 times. The run-
time of these 20 repetitions of an algorithm until a predefined target is reached
is aggregated into a single value called expected running time (ERT) [6].

Hybridizing TE and SH Features for AS in Mixed-Variable BBO 161

A target can be perceived as a threshold from which ontowards we deem
the achieved results satisfactory. In this particular setting, YAHPO Gym mod-
els HPO problems with an underlying classification task. The chosen metric to
optimize for is the misclassification error. In theory, the best performance is
achieved with a misclassification error of zero. However, in practice this might
not be reachable as this is constrained by the data set, the chosen ML model and
the box-constraints for its hyperparameters. Hence, [30] determine an individual
target for each problem instance. This target is calculated by (1) concatenat-
ing all optimizer traces of the four algorithms (including their 20 repetitions),
(2) ordering the objective values in ascending order, and (3) selecting the 0.01-
quantile of the objective values. Thereby, the target is chosen in a manner that it
is still challenging for all four algorithms to achieve but simultaneously guaran-
tees that at least one algorithm is able to solve each individual problem instance.

4.3 Exploratory Landscape Feature Generation

While we use the data provided by [30] for the target-encoded ELA features, we
generate the ELA feature values based on our proposed SHAP-encoding by using
the Python package pflacco [29]. The initial design S is generated uniformly
at random in the feasible domain of each problem, with a sample size of 50D.
Again, D represents the dimensionality of any given problem instance. Since the
calculation of SHAP values for a single prediction has a complexity of O(2N), we
make use of the PermutationExplainer from the Python package provided with
the SHAP publication [16]. This is the current default Explainer of the package
and employs antithetic sampling to calculate the SHAP values [19]. The ML
model, which serves as basis to calculate the respective SHAP values, is a random
forest with a default configuration of the Python package scikit-learn [22].

After replacing each non-numeric value in the initial design S with its cor-
responding SHAP value, we normalize each decision variable and the objective
value of a given initial design independently, constraining them within the inter-
val [0, 1] as recommended in [28,30]. Each set of ELA features is calculated 20
times for a given problem instance to produce more robust results.1

4.4 Construction of Algorithm Selectors

Our approach conceptualizes the AAS [7] scenario as a multi-class classification
problem. The ELA features serve as input for the AS model while the class label
is determined by the best-performing algorithm (lowest ERT value) for each par-
ticular instance. We construct two AAS models, one trained on target-encoded
and one trained on SHAP-encoded ELA features. It is pertinent to mention that
our dataset encompasses a total of 14, 040 observations for each encoding vari-
ant, resulting from the generation of ELA features from 20 different samples per

1 Corresponding source code and results can be found on https://github.com/konsdt/
PPSN-SHAP-TE-ELA.

https://github.com/konsdt/PPSN-SHAP-TE-ELA
https://github.com/konsdt/PPSN-SHAP-TE-ELA

162 K. Dietrich et al.

problem instance (of which there are 702). The class label per instance remains
consistent across these 20 repetitions.

For the sake of comparability, we use the same ML model as used by [30],
i.e., a random forest provided by the Python package scikit-learn [22].

We assess the model through a 10-fold cross-validation approach, ensuring
that all repetitions of a specific problem instance are grouped within a single fold.
This strategy prevents the dispersion of repetitions across multiple folds, which
could otherwise result in instances being both trained and tested simultaneously.
Such an arrangement helps maintain the integrity of the evaluation process,
minimizing potential biases and ensuring robustness in our analysis.

As delineated below, the two models exhibit complementary behavior,
prompting us to subsequently propose two strategies that capitalize on this syn-
ergy.

5 Results

Fig. 2. Performance of both algorithm selectors. The x-axis shows the relERT values
of the SH model whereas the y-axis shows the relERT values of the TE model. Points
on the grey line exhibit (nearly) identical relERT values for both models. Points above
the grey line represent instances where the SH model produces a better performance.
Points below the grey line represent the other case. (Color figure online)

The comparison of our SHAP value based algorithm selector (SH model) con-
trasted against the target-encoded based algorithm selector (TE model) shows
a very similar performance between both models as reflected by the TE and
SH columns in Table 2. A closer look into the performance distribution compart-
mentalized into the respective YAHPO Gym scenarios provides a more insightful
view. This is shown in Fig. 2. The figure depicts the performances of both mod-
els for any given problem instance where the x-coordinate is determined by the
relERT value of the SH model and the y-coordinate by the relERT value of the

Hybridizing TE and SH Features for AS in Mixed-Variable BBO 163

TE model respectively. Points on the gray line represent instances where the
performance of both models is either identical or very similar. The relERT val-
ues are determined by dividing all ERT values of a single problem instance by
the ERT value of the virtual best solver (VBS). The VBS embodies a theoret-
ical algorithm selector that unfailingly selects the optimal algorithm from our
portfolio for every instance.

Again, we can discern that the distribution and consequently summary statis-
tics like the mean performance of the models are similar. Yet, we can also observe
that there are a multitude of problem instances where the SH model excels while
the TE model exhibits a poor performance and vice versa. For example, this
dichotomy is present in the scenario rbv2_svm, where points in the bottom left
show this behavior. At the same time there are also points in the top left and
bottom right corner. Especially, the latter contribute significantly to the com-
plementarity of both models since in these cases one of the models manages to
select the VBS while the other selects the worst solver from the portfolio.

Fig. 3. Illustration of our two suggested approaches to capitalize on the complemen-
tary of the two AAS strategies. The meta model classifier utilizes ELA features derived
from SHAP values and TE for each problem instance. With a binary target variable
representing either the TE or SH model based on better prediction performance, the
classifier selects the appropriate algorithm selector. Subsequently, the chosen selector
utilizes ELA features specific to its encoding type and selects an algorithm from the
portfolio. Alternatively, the prediction confidence approach relies on comparing predic-
tion probabilities from independent AAS models, with the higher probability indicating
greater confidence in the prediction.

Even after careful and rigorous analysis we cannot identify the reasons
that lead to this dichotomous state. Nevertheless, exploiting this complemen-
tary behavior of both encoding methods produces an overall better result. The

164 K. Dietrich et al.

full potential of hybridizing both encoding variants can be seen in the column
‘Hybrid’ in table Table 2. The values shown there are determined by always
selecting the superior algorithm between the two predicted by the TE and the
SH model. Looking at the relERT averaged over all problem instances we see
that even the hybrid approach still performs 10.82 times worse than the vir-
tual best solver (VBS) of the selected portfolio. To bring this into context we
also report the relERT values of the single best solver (SBS) which, as already
reported in [30], is SMAC3. In agreement with [30] we see that algorithm selection
exhibits a large improvement over the general selection of a single solver for all
problems. Even though there remains room for improvement the hybridization
is a substantial advancement over the individual approaches as it bears 40.42%
performance increase over the SH model and 39.49% over the TE model. To
leverage this relationship we suggest two approaches which are conceptualized
in Fig. 3. In the first approach that can be seen in the top of Fig. 3, we utilize
an additional ML model which is responsible for determining which of the two
algorithm selectors to use. We call this new model ‘meta model’.

The ‘meta model’ approach is based on a random forest classifier that receives
both, the ELA features based on SHAP values and the ELA features based on
TE for every problem instance respectively. The target variable has two classes,
and can either be the TE model or the SH model, depending on which was able
to predict the better solver for the problem. It then decides which of the two
algorithm selectors it should use. Thereafter, the chosen algorithm selector uses
only the ELA features according to its respective encoding type and chooses an
appropriate algorithm out of the portfolio.

The second approach relies solely on the comparison of prediction probabili-
ties between the two independent AS models. We evaluate both selectors at the
same time and trust the prediction which exhibits a higher prediction proba-
bility. Doing so, we interpret the prediction probability as prediction confidence
of the respective model and thus denote this approach as ‘Confidence’. For a
multiclass random forest classifier the predicted probabilities for each class of an
input sample are determined by averaging the predicted probabilities across all
trees within the forest. In each individual tree, the class probability is calculated
as the proportion of samples belonging to the same class within a leaf node. A
high-level representation of that concept is illustrated in the bottom of Fig. 3. We
asses both approaches using 10-fold cross validation and the results are shown in
the columns labeled ‘Meta’ and ‘Confidence’ of Table 2. The highlighted values
mark the best selection strategy for the respective scenario. We find that the
prediction confidence approach performs the best across all problem instances.
When examining individual scenarios, the selection method relying on prediction
confidence is outperformed by the alternative meta-model approach in only two
cases. In the two instances where its performance aligns with the meta-model
approach, there is little to no potential for enhancement as the SBS equals or
nearly equals the VBS.

To further illustrate how well both approaches perform we lean on the idea
of relERT calculation. Since the values in the ‘Hybrid’ column of Table 2 result

Hybridizing TE and SH Features for AS in Mixed-Variable BBO 165

Table 2. Performance of the different approaches which is measured as the arithmetic
mean of the relERT value. Highlighted values indicate the approaches that performed
best for a given setting. The column ‘Hybrid’ is not considered since it represents a
virtual best encoding choice.

Scenario
Instances ×

samples
SBS TE SH Hybrid Meta Confidence

rbv2_glmnet 2 120 558.45 50.90 47.05 29.08 45.35 44.90

rbv2_rpart 2380 28.96 1.66 3.11 1.39 1.76 2.20

rbv2_aknn 2 360 4.54 2.77 3.29 2.15 2.32 2.85

rbv2_svm 80 330.86 19.18 15.80 4.89 14.39 10.47

iaml_ranger 2 300 53.85 40.63 51.20 37.99 40.63 45.92

rbv2_ranger 80 1.02 1.01 1.01 1.01 1.01 1.01

iaml_xgboost 2 340 1.00 1.00 1.00 1.00 1.00 1.00

rbv2_xgboost 2 380 127.87 32.44 38.48 25.57 32.36 26.30

All 14 040 169.19 17.88 18.16 10.82 16.18 14.68

Table 3. Performance of the different approaches which is measured as the arithmetic
mean of the relERT normalized with respect to the VBE given by the ‘Hybrid’ column.

Scenario
Instances ×

samples
TE SH Hybrid Meta Confidence

rbv2_glmnet 2 120 22.50 17.95 1.00 16.31 16.89

rbv2_rpart 2380 1.28 2.72 1.00 1.37 1.82

rbv2_aknn 2 360 1.62 2.15 1.00 1.18 1.71

rbv2_svm 80 15.28 11.90 1.00 10.50 7.36

iaml_ranger 2 300 3.64 14.21 1.00 3.64 8.93

rbv2_ranger 80 1.00 1.00 1.00 1.00 1.00

iaml_xgboost 2 340 1.00 1.00 1.00 1.00 1.00

rbv2_xgboost 2 380 7.88 13.92 1.00 7.78 1.73

All 14 040 8.01 8.17 1.00 6.20 4.99

from always choosing the best feature encoding strategy we consider it to be
the ‘virtual best encoding’ (VBE). Hence, we normalize all relERT values
by dividing with the VBE values. The resulting values are shown in Table 3.
Continuing this analogy, the ‘single best encoding’ (SBE) from the two
compared encoding methods is target-encoding. We refrain from showing the
SBS column in Table 3 since it reveals no additional relevant information. In
total, the prediction confidence approach is able to close the gap between SBE

166 K. Dietrich et al.

and VBE by 43.10%. The meta model also achieves an overall improvement over
the SBE but this only amounts to a gap closure of 25.84%.

6 Conclusion

Landscape analysis has been used in a variety of studies with different objectives
and scopes over the last decade. However, it has been largely limited to either the
continuous or combinatorial optimization domain. Recent advances of [26,27,30]
have iteratively extended this to the domain of mixed-variable problems. One of
the main contributions of [30] is the proposition to transform categorical vari-
ables into continuous representations. This is achieved by employing techniques
such as one-hot encoding and target-encoding.

In our work, we extend this particular component by introducing SHAP val-
ues as an alternative encoding method to transform categorical into continuous
values. We demonstrate the merits of our encoding variant in an automated algo-
rithm selection setting and compare our results with the results of [30]. While
we cannot determine any substantial difference between the algorithm selector
based on the SHAP-encoding and the one based on target-encoding, we show
that both encoding methods are performance complementary and achieve a much
better performance when switching between them. We propose two strategies to
hybridize both encoding methods. One devised approach uses a meta model
that decides which subsequent algorithm selector to use. The other compares
the prediction probabilities of the AS models trained on both encodings and
interprets them as prediction confidence. Both approaches are able to substan-
tially improve the existing results based on target-encoding. In our setting these
results are considered the single best encoding while the hybridization of both
discussed encodings is considered the virtual best encoding. While the meta
model closes the gap between both by 25.84%, the prediction confidence method
is able to achieve a substantial improvement with a gap closure of 43.10%.

Despite this advancement, there remains room for improvement which
becomes especially clear when considering that the relERT value of the vir-
tual best encoding is still quite high with 10.82. At the forefront of research
questions unsolved is, what the underlying mechanisms are which lead to the
performance complementary behavior of these two encoding variants. Reveal-
ing these will foster our understanding and will help us to incorporate a more
sophisticated encoding mechanism directly into the ELA feature calculation. We
also plan to further investigate if different ML models during SHAP value cal-
culation can change the expressiveness of the SHAP-encoded features and will
also extend our scope to MVP problems beyond the so far considered subclass
of HPO problems.

Acknowledgements. This work was realized with the financial support of ANR
project ANR-22-ERCS-0003-01 and of CNRS Sciences informatiques project IOHpro-
filer.

Hybridizing TE and SH Features for AS in Mixed-Variable BBO 167

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (2019)

2. Barjhoux, P.J., Diouane, Y., Grihon, S., Bettebghor, D., Morlier, J.: Mixed variable
structural optimization: toward an efficient hybrid algorithm. In: Schumacher, A.,
Vietor, T., Fiebig, S., Bletzinger, K.U., Maute, K. (eds.) Advances in Structural and
Multidisciplinary Optimization, pp. 1880–1896. Springer International Publishing,
Cham (2018). https://doi.org/10.1007/978-3-319-67988-4_140

3. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm configu-
ration of CMA-ES with limited budget. In: Proceedings of Genetic and Evolution-
ary Computation Conference (GECCO), pp. 681–688. ACM (2017). https://doi.
org/10.1145/3071178.3071343

4. Blank, J., Deb, K.: pymoo: multi-objective optimization in Python. IEEE Access
8, 89497–89509 (2020)

5. Guzowski, H., Smolka, M.: Configuring a hierarchical evolutionary strategy using
exploratory landscape analysis. In: Silva, S., Paquete, L. (eds.) Proceedings of
Genetic and Evolutionary Computation Conference (GECCO), Companion, pp.
1785–1792. ACM (2023). https://doi.org/10.1145/3583133.3596403

6. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2010: experimental setup. Research Report RR-7215, INRIA (Mar
2010). https://inria.hal.science/inria-00462481

7. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019). https://doi.
org/10.1162/evco_a_00242

8. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: detecting funnel structures
by means of exploratory landscape analysis. In: Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, pp. 265–272. GECCO ’15,
Association for Computing Machinery, New York, NY, USA (2015). https://doi.
org/10.1145/2739480.2754642

9. Kerschke, P., Trautmann, H.: Automated algorithm selection on continuous black-
box problems by combining exploratory landscape analysis and machine learning.
Evol. Comput. 27(1), 99–127 (2019). https://doi.org/10.1162/evco_a_00236

10. Kerschke, P., Trautmann, H.: Comprehensive feature-based landscape analysis of
continuous and constrained optimization problems using the R-package flacco. In:
Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M. (eds.)
Applications in Statistical Computing. SCDAKO, pp. 93–123. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25147-5_7

11. Vermetten, D., et al.: Per-run algorithm selection with warm-starting using
trajectory-based features. In: Rudolph, G., Kononova, A.V., Aguirre, H., Ker-
schke, P., Ochoa, G., Tušar, T. (eds.) Parallel Problem Solving from Nature -
PPSN XVII, pp. 46–60. Springer International Publishing, Cham (2022). https://
doi.org/10.1007/978-3-031-14714-2_4

https://doi.org/10.1007/978-3-319-67988-4_140
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/3583133.3596403
https://inria.hal.science/inria-00462481
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1145/2739480.2754642
https://doi.org/10.1145/2739480.2754642
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1007/978-3-030-25147-5_7
https://doi.org/10.1007/978-3-031-14714-2_4
https://doi.org/10.1007/978-3-031-14714-2_4

168 K. Dietrich et al.

12. Lindauer, M., et al.: SMAC3: a versatile bayesian optimization package for hyper-
parameter optimization. J. Mach. Learn. Res. 23, 1–9 (2022). https://www.jmlr.
org/papers/volume23/21-0888/21-0888.pdf

13. Liuzzi, G., Lucidi, S., Piccialli, V., Villani, M.: Design of induction motors using
a mixed-variable approach. Comput. Manage. Sci. 2(3), 213–228 (2005). https://
doi.org/10.1007/s10287-005-0024-2

14. Lucidi, S., Piccialli, V., Sciandrone, M.: An algorithm model for mixed variable
programming. SIAM J. Optim. 15(4), 1057–1084 (2005). https://doi.org/10.1137/
S1052623403429573

15. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy.
In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 477–484. GECCO 2006, Association for Computing Machinery, New
York, NY, USA (2006). https://doi.org/10.1145/1143997.1144085

16. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30,
pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-
a-unified-approach-to-interpreting-model-predictions.pdf

17. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, pp. 829–836. GECCO 2011, Association
for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/
2001576.2001690

18. Micci-Barreca, D.: A preprocessing scheme for high-cardinality categorical
attributes in classification and prediction problems. SIGKDD Explor. Newsl. 3(1),
27–32 (2001). https://doi.org/10.1145/507533.507538

19. Mitchell, R., Cooper, J., Frank, E., Holmes, G.: Sampling permutations for shapley
value estimation. J. Mach. Learn. Res. 23(1), 1–46 (2022)

20. Muñoz Acosta, M.A., Kirley, M., Halgamuge, S.K.: Exploratory landscape analysis
of continuous space optimization problems using information content. IEEE Trans.
Evol. Comput. (TEVC) 19(1), 74–87 (2015). https://doi.org/10.1109/TEVC.2014.
2302006

21. Muñoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-
box continuous optimization problems: a survey on methods and challenges. Inf.
Sci. 317, 224–245 (2015). https://doi.org/10.1016/j.ins.2015.05.010, https://www.
sciencedirect.com/science/article/pii/S0020025515003680

22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

23. Pelamatti, J., Brevault, L., Balesdent, M., Talbi, E.G., Guerin, Y.: How to deal
with mixed-variable optimization problems: an overview of algorithms and for-
mulations. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, K.U., Maute,
K. (eds.) Advances in Structural and Multidisciplinary Optimization, pp. 64–82.
Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-
319-67988-4_5

24. Pfisterer, F., Schneider, L., Moosbauer, J., Binder, M., Bischl, B.: YAHPO Gym -
an efficient multi-objective multi-fidelity benchmark for hyperparameter optimiza-
tion. In: Guyon, I., Lindauer, M., van der Schaar, M., Hutter, F., Garnett, R.
(eds.) Proceedings of the First International Conference on Automated Machine
Learning. Proceedings of Machine Learning Research, vol. 188, pp. 3/1–39. PMLR
(2022). https://proceedings.mlr.press/v188/pfisterer22a.html

https://www.jmlr.org/papers/volume23/21-0888/21-0888.pdf
https://www.jmlr.org/papers/volume23/21-0888/21-0888.pdf
https://doi.org/10.1007/s10287-005-0024-2
https://doi.org/10.1007/s10287-005-0024-2
https://doi.org/10.1137/S1052623403429573
https://doi.org/10.1137/S1052623403429573
https://doi.org/10.1145/1143997.1144085
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/507533.507538
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.1016/j.ins.2015.05.010
https://www.sciencedirect.com/science/article/pii/S0020025515003680
https://www.sciencedirect.com/science/article/pii/S0020025515003680
https://doi.org/10.1007/978-3-319-67988-4_5
https://doi.org/10.1007/978-3-319-67988-4_5
https://proceedings.mlr.press/v188/pfisterer22a.html

Hybridizing TE and SH Features for AS in Mixed-Variable BBO 169

25. Pikalov, M., Mironovich, V.: Automated parameter choice with exploratory land-
scape analysis and machine learning. In: Krawiec, K. (ed.) Proceedings of Genetic
and Evolutionary Computation Conference (GECCO), Companion, pp. 1982–1985.
ACM (2021). https://doi.org/10.1145/3449726.3463213

26. Pikalov, M., Mironovich, V.: Parameter tuning for the (1 + (λ, λ)) genetic algo-
rithm using landscape analysis and machine learning. In: Jiménez Laredo, J.L.,
Hidalgo, J.I., Babaagba, K.O. (eds.) EvoApplications 2022. LNCS, vol. 13224, pp.
704–720. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02462-7_44

27. Prager, R.P., Trautmann, H.: Investigating the viability of existing exploratory
landscape analysis features for mixed-integer problems. In: Proceedings of the
Companion Conference on Genetic and Evolutionary Computation, pp. 451–454.
GECCO 2023 Companion, Association for Computing Machinery, New York, NY,
USA (2023). https://doi.org/10.1145/3583133.3590757

28. Prager, R.P., Trautmann, H.: Nullifying the inherent bias of non-invariant
exploratory landscape analysis features. In: Correia, J., Smith, S., Qaddoura, R.
(eds.) Appl. Evol. Comput. Springer International Publishing, Cham (2023)

29. Prager, R.P., Trautmann, H.: Pflacco: Feature-based landscape analysis of con-
tinuous and constrained optimization problems in Python. Evol. Comput., 1–25
(2023). https://doi.org/10.1162/evco_a_00341

30. Prager, R.P., Trautmann, H.: Exploratory landscape analysis for mixed-variable
problems. CoRR arXiv preprint arXiv:2402.16467 (2024). https://arxiv.org/abs/
2402.16467, under revision with IEEE Transactions on Evolutionary Computation

31. Seiler, M.V., Prager, R.P., Kerschke, P., Trautmann, H.: A collection of deep
learning-based feature-free approaches for characterizing single-objective contin-
uous fitness landscapes. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pp. 657–665. Association for Computing Machinery, New York,
NY, USA (2022). https://doi.org/10.1145/3512290.3528834

32. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.)
Contributions to the Theory of Games II, pp. 307–317. Princeton University Press,
Princeton (1953)

33. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv. 41(1) (2009). https://doi.org/10.1145/1456650.
1456656

34. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in
machine learning. SIGKDD Explor. 15(2), 49–60 (2013). https://doi.org/10.1145/
2641190.2641198

35. Venter, G., Sobieszczanski-Sobieski, J.: Multidisciplinary optimization of a trans-
port aircraft wing using particle swarm optimization. Struct. Multidiscip. Optim.
26(1), 121–131 (2003). https://doi.org/10.1007/s00158-003-0318-3

https://doi.org/10.1145/3449726.3463213
https://doi.org/10.1007/978-3-031-02462-7_44
https://doi.org/10.1145/3583133.3590757
https://doi.org/10.1162/evco_a_00341
http://arxiv.org/abs/2402.16467
https://arxiv.org/abs/2402.16467
https://arxiv.org/abs/2402.16467
https://doi.org/10.1145/3512290.3528834
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1007/s00158-003-0318-3

iMOPSE: a Comprehensive Open Source
Library for Single- and Multi-objective

Metaheuristic Optimization

Konrad Gmyrek , Pawe�l B. Myszkowski(B) , Micha�l Antkiewicz ,
and �Lukasz P. Olech

Faculty of Information and Communication Technology, Wroc�law University of
Science and Technology, Wroc�law, Poland

{konrad.gmyrek,pawel.myszkowski,michal.antkiewicz}@pwr.edu.pl,
lukasz.piotr.olech@gmail.com

Abstract. The Intelligent Multi-Objective Problem Solving Environ-
ment (iMOPSE) is a robust open-source C++ library designed to
tackle NP-hard optimization problems. It hosts a suite of multi-objective
optimization algorithms, including state-of-the-art NSGA-II, MOEA/D,
SPEA2, or NTGA2, complemented by a set of single-objective optimiza-
tion metaheuristics such as Genetic Algorithms, Differential Evolution,
Ant Colony Optimization, Tabu Search, Simulated Annealing, and Par-
ticle Swarm Optimization. One of iMOPSE’s notable strengths lies in its
ability to handle classical NP-hard problems with constraints, ranging
from the Traveling Salesman and Traveling Thief to Capacitated Vehicle
Routing and Multi-Skill Resource-Constrained Project Scheduling Prob-
lems. Its flexible encoding mechanism adeptly manages different prob-
lems and facilitates the utilization of specialized operators. Moreover,
iMOPSE offers pre-configured problem instances and method setups,
along with a suite of tools for data collection, visualization, and analy-
sis, bolstering its efficacy for rigorous research and optimization result
interpretation. iMOPSE also provides extensive customization options,
enabling researchers to explore and research various optimization meth-
ods and scenarios effectively. Its user-friendly interface streamlines setup
procedures through intuitive input parameters and configuration files,
ensuring accessibility across Windows and Unix-based operating systems.
Together, these features position iMOPSE as a comprehensive solution
for addressing real-world optimization challenges.

Keywords: Optimisation · Multi-Objective Optimization ·
Metaheuristic · NP-hard problems · Software Library

1 Introduction

Over the years, the field of metaheuristic optimization has significantly evolved,
propelled by the escalating complexity of real-world challenges. Within this land-
scape, the introduction of the iMOPSE C++ library contributes to the develop-
ment of optimization methods and enhances the transparency of research in two
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 170–184, 2024.
https://doi.org/10.1007/978-3-031-70068-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_11&domain=pdf
http://orcid.org/0009-0000-7206-3674
http://orcid.org/0000-0003-2861-7240
http://orcid.org/0000-0002-6249-4507
http://orcid.org/0000-0001-9510-626X
https://doi.org/10.1007/978-3-031-70068-2_11

iMOPSE: Library for Single- and Multi-objective Optimization 171

ways. First, it enriches the field of metaheuristic single- and multi-objective opti-
mization by supplying a repository of problem instances and established tech-
niques, facilitating comparative studies and experimentation. Second, it empow-
ers the broader community by providing easy access to a suite of state-of-the-art
methods and NP-hard combinatorial optimization problems ready for imme-
diate application. This dual role of iMOPSE, as an open-source library, fur-
thers research in metaheuristic optimization and provides access to sophisticated
problem-solving tools, playing a vital role in the collective progress of this field.

This paper aims to present the core principles and contributions of iMOPSE,
highlighting its potential role in metaheuristic optimization and its relevance to
the current demands of research in this field.

At its core, iMOPSE serves as a solution to the demand for an accessible
suite of optimization methods designed to solve complex NP-hard combinato-
rial problems frequently encountered in real-world scenarios, such as scheduling,
routing, and resource allocation challenges. Consequently, it stands as a compre-
hensive toolkit that bridges the gap between theoretical exploration and practical
application in problem-solving.

A fundamental aspect of iMOPSE’s design is its emphasis on scalability and
extensibility. The library’s architecture has been developed to be highly adapt-
able, meeting a variety of scenarios. This versatility is crucial for researchers
who need to tailor their approaches to specific problem characteristics and con-
straints. iMOPSE’s flexible structure makes it a useful tool for research, as it
allows for easy experimentation, comparison, and analysis of different methods
within the metaheuristic field.

The rest of the article is structured as follows. In Sect. 2 a list of alterna-
tive, publicly available tools and libraries is given. The investigated iMOPSE
architecture is shortly defined in Sect. 3. Next Sect. 4 contains a description of
supportive utils and tools useful in research. The Sect. 5 describes a case study of
iMOPSE usage – the application of a multi-objective method to a selected NP-
hard Traveling Thief Problem. Lastly, the paper is concluded in Sect. 6, where
we discuss further development planned for the iMOPSE library.

2 Related Work

In recent years, the field of metaheuristic optimization has seen notable advance-
ments, resulting in the emergence of various libraries and frameworks, each
crafted to cater to the specific requirements of diverse optimization problems.
These tools, created across various programming languages, offer distinct fea-
tures and capabilities to suit different research and practical needs. Among them,
iMOPSE specializes in targeting certain problems and applications empowered
by the usage of flexible encoding mechanisms. It allows iMOPSE to provide solu-
tions that are finely tuned to the unique challenges of certain types of optimiza-
tion scenarios. Below, we highlight selected libraries (developed and regularly
updated – last in 2024), showcasing their features.

Opt4J [16] is a Java-based framework renowned for its modular approach. It
primarily focuses on evolutionary algorithms and multi-objective optimization,

172 K. Gmyrek et al.

making it a go-to choice for problems that require evolutionary computation.
Its Java implementation offers a familiar environment for a large segment of
developers, contributing to its popularity and extensive use in academic research
[11]. Opt4J implements several classic metaheuristics like Simulated Annealing
(SA), Tabu Search (TS), or Differential Evolution (DE), and benchmarks like
ZDT, and DTLZ. One of the standout features of Opt4J is its graphical user
interface, which assists in both the configuration of optimization parameters
and the visualization of the optimization process. Furthermore, Opt4J is open
source and available under the MIT license, which allows for broad usage and
modifications by the community.

Metaheuristics.jl [4] implemented in Julia programming language is noted
for its high performance, comparable to C, making it well-suited for complex
problems and numerical computations. This Julia-based implementation attracts
a niche audience proficient in Julia, as it offers a robust array of features that ben-
efit optimization tasks across various applications. The library includes a range of
metaheuristic algorithms such as Genetic Algorithm (GA), DE, Particle Swarm
Optimization (PSO), or Artificial Bee Colony (ABC). It also supports advanced
multi-objective algorithms like Multi-objective Evolutionary Algorithm Based
on Decomposition (MOEA/D) or Non-dominated Sorting Genetic Algorithm
(NSGA-II) and includes quality measures like InvertedGenerationalDistance
(IGD) and HyperV olume (HV). While Metaheuristics.jl includes implemen-
tations of several standard test problems like ZDT and DTLZ, which serve as
benchmarks for performance evaluation, it is important to note that these test
problems are somewhat limited. Users looking to tackle other types of problems
will need to implement these manually, which adds an extra layer of complexity
when using the library for diverse optimization challenges. The framework is reg-
ularly updated and its modular structure, integration of various metaheuristic
algorithms, and constant updates facilitate the optimization of complex multi-
objective and constrained problems.

jMetal [3] is a prominent Java-based library utilized extensively in evolu-
tionary algorithm research. Renowned for its broad array of multi-objective opti-
mization algorithms, primarily focused on NSGA-II and MOEA/D, which under-
scores its appeal within the academic community focused on exploring multi-
objective optimization scenarios. The library’s commitment to a Java-based
ecosystem has significantly contributed to its popularity among researchers, pro-
viding a stable and familiar development environment. The library supports
classic optimization challenges like the TSP, additionally including a selection of
multi-objective continuous problems, such as those found in benchmark datasets
like dtls or the CEC’15 competition. jMetal′s design facilitates extensive exper-
imentation and research in evolutionary algorithms, and the library’s robust fea-
tures and ongoing updates ensure it remains at the forefront of technology in
this specialized field.

PyGMO (Python Parallel Global Multi-objective Optimizer) [6] is recog-
nized for its robust implementation in both Python and C++, making it partic-
ularly appealing for complex, large-scale optimization problems. Supported by

iMOPSE: Library for Single- and Multi-objective Optimization 173

the European Space Agency, PyGMO is utilized extensively in aerospace engi-
neering, among other fields that demand high-performance optimization solu-
tions. It is renowned for facilitating global multi-objective optimization with
a focus on continuous problems. The library includes a comprehensive array
of optimization methods, with more than 15 optimization methods primarily
encompassing single-objective PSO and DE. Additionally, it supports classic
multi-objective algorithms such as the Strength Pareto Evolutionary Algorithm
(SPEA2), NSGA-II, and MOEA/D. PyGMO′s repository of problems covers
a broad spectrum from single- to multi-objective scenarios, incorporating both
constrained and unconstrained environments.

Platypus (Multi-objective Optimization in Python) [5] is a Python library
designed for solving multi-objective optimization problems, acclaimed for its
user-friendliness and adaptability. It supports various evolutionary algorithms,
including NSGA-II, NSGA-III, MOEA/D, and SPEA2, making it highly versa-
tile for different optimization needs. The library’s intuitive interface integrates
seamlessly with Python’s extensive data science tools, enhancing its usability in
academic and practical contexts. The focus of Platypus primarily lies on contin-
uous optimization problems and includes features for constraint handling, which
broadens its applicability across various domains needing sophisticated opti-
mization solutions. Its straightforward design is particularly appreciated within
the Python community, appealing to users who require a combination of effi-
ciency and ease of use in their optimization tasks. For developers and researchers
interested in utilizing Platypus for their multi-objective optimization needs, the
library presents a reliable and powerful tool that leverages Python’s capabilities
to address complex optimization challenges effectively.

Pymoo [12] pymoo is another Python-based framework, which has gained
attention for its comprehensive support for multi-objective optimization. It offers
a variety of state-of-the-art algorithms for multi-objective problems, including
genetic algorithms and evolutionary strategies. The library is designed with
usability and flexibility in mind, making it a good choice for both academic
research and industry applications. Pymoo′s continuous updates and active
development community reflect its relevance and adaptability to the evolving
needs in the field of optimization. Similarly to the Platypus library, Pymoo also
supports constraint handling and focuses on continuous problems.

PyMetaheuristic [7] is a Python library focused on metaheuristic opti-
mization algorithms, known for its simplicity and ease of use. It caters to users
seeking implementations of popular algorithms. The library encompasses a vari-
ety of algorithms, including SA, GA, and PSO. These are suitable for a broad
range of optimization challenges. pyMetaheuristic′s approachable Python-based
design lowers the barrier to entry, making it accessible for those familiar with
Python, and is particularly beneficial for rapid prototyping and experimentation
in diverse optimization scenarios.

Table 1 provides a comparative overview of the mentioned metaheuristic opti-
mization libraries, highlighting some of their features. We present general char-
acteristics of each framework to sum up related work sections and provide back-

174 K. Gmyrek et al.

ground for comparison. This comparative overview highlights a unique focus on
special types of problems.

Table 1. Comparative Overview of Optimization Libraries and Frameworks

Library Visual. Impl. Opt. Problems

Opt4J GUI Java MO/SO Benchmark (zdt,
dltz, knapsack), 6 in
total

Metaheuristics.jl No Julia MO/SO Benchmark (zdt, dltz)/
Combinatorial, over 20

jMetal No Java MO/SO Benchmark (CEC2021,
zcat), TSP, over 20

PyGMO No Python/C++ MO/SO Benchmark (CEC2014,
WFG), over 20

Platypus Yes Python MO Benchmark (zdt,
dltz),

over 20 Pymoo Yes Python MO/SO Benchmark, Global
Optimization, over 20

PyMetaheuristic No Python SO Test Functions,
User-defined, over 20

iMOPSE Yes C++, adds in
Python)

MO/SO Scheduling/Combinatorial
MS-RCPSP, cVRP,
TSP, TTP, 5 in total

The main motivation of the iMOPSE library is to provide a tool versa-
tile and accessible enough to adapt to various optimization scenarios, particularly
focusing on NP-hard problems with constraints. It aims to provide a compre-
hensive toolkit for researchers and practitioners, enabling efficient exploration of
different optimization methods and scenarios.

2.1 iMOPSE in Comparison

iMOPSE focuses itself on the competitive landscape of optimization libraries
by specifically tailoring its features to handle complex NP-hard problems, which
frequently have direct real-world applications. Unlike many other libraries that
primarily focus on problems operating within continuous domains, iMOPSE is
capable of working with binary, continuous, and permutational-based problems.
This flexibility is largely due to its versatile encoding system, adept at managing
diverse optimization challenges, and its modular architecture that allows inte-
gration of state-of-the-art algorithms with various problem types through
the use of specialized operators. These operators are crucial for customizing the
library’s approach to unique problem sets, enhancing its utility across varied

iMOPSE: Library for Single- and Multi-objective Optimization 175

optimization scenarios. This robust architectural foundation allows iMOPSE to
adapt effectively across a broad spectrum of optimization tasks, positioning it
as a standout choice for those needing advanced problem-solving capabilities.

Additionally, the architecture of iMOPSE features extensibility as well
as utilities such as archive utils, clustering utils, and experiment logger utils,
which simplify the management and analysis of optimization experiments. These
tools enhance the library’s functionality and user-friendliness, making it an ideal
choice for both novice and experienced users in the field of optimization.

Furthermore, iMOPSE supports this technical prowess with practical tools
and resources that other libraries often lack. It includes ready-to-use instances
for included problems, comprehensive tutorials, and straightforward usage
through parameters and configuration files, making it user-friendly even for those
new to optimization. Additional tools for data collection, analysis, validation,
and visualization are incorporated, providing a holistic approach to optimization
projects.

The choice of C++17 as the foundation ensures that iMOPSE benefits
from fast calculations and rapid prototyping capabilities, distinguishing it from
Python-based libraries in terms of performance efficiency. This makes iMOPSE
particularly appealing for projects where speed and performance are critical.

In summary, iMOPSE offers a complete set of tools that aligns well with
the capabilities of other leading optimization libraries, while placing a particular
emphasis on specific aspects of optimization, tailoring its features to meet unique
challenges within this field. Featuring a combination of advanced algorithms,
specialized operators, and a design that supports users, it serves as a reliable
resource for both academic research and practical implementations in the field of
metaheuristic optimization. In the following sections, we will describe iMOPSE’s
features in more detail to present its capabilities and further support our claims.

3 iMOPSE the Main Idea and Architecture

iMOPSE comprises two primary C++ projects: the main optimizer and pareto-
Analyzer. In this section, we’ll delve into the main optimizer’s architecture to
provide a clearer understanding of iMOPSE’s capabilities.

The architecture of the optimizer is designed with a focus on modularity,
comprising two primary modules: the method module and the problem mod-
ule, along with additional utilities (see Fig. 1). The method module contains
an Operators submodule. This structure is delineated by interfaces that ensure
flexibility and modularity. The utilization of the Problem interface of the most
generic Method interface allows to incorporate other optimization algorithms.

Method Module: This module is the core of iMOPSE’s functionality, housing
the various optimization algorithms initialized from simple configuration files.
It is designed to be extensible, allowing for the easy addition of new methods
or enhancement of existing ones. The Operators submodule within this mod-
ule includes a range of operators that manage neighborhoods, mutations, and

176 K. Gmyrek et al.

Fig. 1. The iMOPSE general schema.

crossovers, which are integral to the functioning of different optimization meth-
ods.

Problem Module: Contains the implementation of different optimization
problems loaded from problem instance files. Each problem in iMOPSE adheres
to a Problem interface, ensuring that it can be seamlessly integrated with the
methods module. This setup allows for a wide variety of problems, from simple
to NP-hard, to be addressed using the toolkit. The Problem interface includes
two key methods: Evaluate and an Encoding getter. These methods enable the
creation and manipulation of individuals using various operators, as well as
their subsequent evaluation. This functionality is essential for effective problem-
solving in the framework.

iMOPSE: Library for Single- and Multi-objective Optimization 177

Each method and problem instance is created in the corresponding factory
class, thus facilitating efficient organization and management of resources. The
factory classes are responsible for the acquisition and management of the neces-
sary components, ensuring that each part of the system is appropriately initial-
ized and configured.

3.1 Implemented Solving Methods and Operators

To make the iMOPSE library useful for researchers, we implemented several
state-of-the-art metaheuristics for single- and multi-objective optimization as
well as specialized operators, which will be described in this section.

In the basic version of iMOPSE, several metaheuristics for single-objective
optimization are implemented, such as trajectory-based SA and TS, swarm-
based Ant Colony Optimization and PSO but also evolutionary population-based
methods GA and DE. Moreover, DE is implemented as a hybrid DEGR [18]
with a greedy heuristic applied to the Multi-Skill Resource-Constrained Project
Scheduling Problem (MS-RCPSP).

In the iMOPSE library multi-objective optimization evolutionary-based
state-of-the-art methods are implemented, such as NSGA-II [14], MOEA/D [21],
SPEA2 [22] and Non-Dominated Tournament Genetic Algorithm – NTGA2 [19].
These methods are known as effective in solving multi-objective NP-hard prob-
lems with constraints, such as the Traveling Thief Problem and MS-RCPSP [19].
Additionally, in the iMOPSE library, some experimental methods have been
included, such as balanced B-NTGA [8] and gene-level adaptation aB-NTGA
[9].

Some of the implemented metaheuristics utilize specialized operators to
exploit and explore the solution landscape effectively for various problems. In
iMOPSE, there are implemented neighborhood operators (for TS or SA), muta-
tions (like RandomBit, ReverseFlip, GaussMutation), or crossovers (e.g., Order-
ing Crossover OX, Cycle Crossover CX).

To direct metaheuristic in a global search, especially for evolutionary com-
putation, selection operators are needed – random (semi-blind, without selec-
tion pressure, as reference), as well as classic tournament or gapSelection [19]
for multi-objective optimization. Moreover, a predefined set of representations,
operators, and selections could be easily extended as the iMOPSE library C++
interfaces are given for implementation.

3.2 Implemented Problems

In this section, we explore the problems implemented in the iMOPSE, detail-
ing their specific representations and encodings, which are crucial for effective
problem-solving. For metaheuristics, a specialized representation (or solution
format) is essential to enable an effective search within the solution space.
In iMOPSE, three primary types of representations are utilized: permutation,
binary, as well as integer- and real-coded, accommodating the unique require-
ments of various NP-hard problems. All listed problems are recognized for their
NP-hard nature.

178 K. Gmyrek et al.

The Travelling Salesman Problem (TSP) is a classic optimization chal-
lenge, the goal is to determine the shortest possible route that visits each city in a
given list exactly once. The problem adheres to constraints, chiefly ensuring that
no city is visited more than once. It is tackled as a single-objective optimization
task, where the measure of success is the tour’s length – shorter tours signify
better fitness. The TSP uses a permutational solution representation, where the
solution is expressed as a sequence, or permutation, of indexes of cities to visit.
iMOPSE contains a popular TSPLIB instance set ready for experimentation.

The Traveling Thief Problem (TTP) [13] combines TSP with the Knap-
sack problem, making it more complex and reflecting real-world problems. It
can be either single-objective, focusing on maximizing the profit of the collected
items minus the traveling cost multiplied by the renting ratio (TTP1) [13], or
multi-objective, considering both the profit and the total weight of the knapsack
(TTP2) [13]. Users can apply the single-objective method in multi-objective
problems by providing objective weights for fitness aggregation. TTP is charac-
terized by a mixed representation; it combines a permutational segment for the
order in which cities are visited and a binary segment to handle decisions about
which items to pick up in each city. This hybrid encoding effectively captures
the dual nature of routing and packing in TTP. iMOPSE is equipped with basic
benchmark TTP instances of TTP (e.g. berlin52, eil51).

The Multi-Skill Resource-Constrained Project Scheduling Problem
(MS-RCPSP))[17] is a fundamental scheduling challenge in project manage-
ment, aimed at completing a set of projects in the shortest possible time while
adhering to resource limitations and project dependencies. The MS-RCPSP
extends the classic RCPSP by allowing activities to be performed by resources
equipped with specific skills, thus close to real-world project scheduling chal-
lenges and increasing the complexity of the problem. The constraints include
the availability of resources and precedence relations between activities. Objec-
tives encompass total project duration, cost, average cash flow, skill overuse, and
resource utilization. The MS-RCPSP can be considered as a single-objective opti-
mization problem (e.g., using a weighted sum of cost and duration of the final
schedule) [18], a multi-objective opt. (e.g., balancing duration versus cost), or a
many-objective opt. with five objectives [8,19]. The MS-RCPSP in the iMOPSE
library is implemented twice using two different encodings: permutational or
real-coded. These encodings represent the diverse approaches utilized to man-
age the complexities of the MS-RCPSP, complemented by the use of a greedy
schedule builder specifically designed for this problem. For more detailed infor-
mation, we direct readers to the iMOPSE documentation [2]. This flexibility
in encoding effectively accommodates the intricacies of scheduling tasks while
considering multiple skills and resource constraints. iMOPSE provides a diverse
set of 265 instances for the MS-RCPSP, generated using the iMOPSE generator
with varying parameters to showcase constraint influences. These instances are
categorized into groups offering different complexities and characteristics.

The Capacitated Vehicle Routing Problem (cVRP) [1] is a complex
optimization challenge that involves planning routes for a fleet of vehicles to

iMOPSE: Library for Single- and Multi-objective Optimization 179

deliver goods or services to a set of customers, starting and ending at a cen-
tral depot. Each customer has a specific demand that must be met without
exceeding the carrying capacity of any vehicle. The primary goal of the cVRP
is to minimize the total distance traveled by all vehicles while ensuring that
each customer’s demand is fulfilled and each customer is visited exactly once. In
addition to the basic constraints of vehicle capacity and mandatory single visits
per customer, the cVRP often incorporates other operational challenges such as
time windows within which the customers must be served, varied vehicle fuel
capacities, and sometimes even different vehicle types, each with its own cost
and capacity implications. Currently, the fitness of a solution is evaluated based
on the total distance of all routes; however, while our current model focuses
solely on distance, it will be extended in the future to include additional objec-
tives. These may include optimizing for factors such as fuel consumption, driver
hours, and vehicle wear and tear, which would not only reduce operational costs
but also address environmental concerns and regulatory compliance. The cVRP
employs multiple permutational sections in its representation of each vehicle’s
route. This allows for the optimization of multiple routes simultaneously, ensur-
ing that each customer’s demand is met without exceeding vehicle capacities.
For cVRP iMOPSE offers instances from CVRPLIB [1] instance set.

Moreover, iMOPSE’s modular architecture enables easy extension by other
optimization problems, e.g., the Job Shop Scheduling Problem (JSP). With its
flexible design and support for diverse problem domains, iMOPSE can seam-
lessly integrate additional problems, enhancing its applicability across various
optimization challenges.

4 Additional iMOPSE Tools

Apart from various utility classes that are described in detail in documentation
[2], iMOPSE offers additional tools for visualization, validation, and analysis. In
this section, we highlight incorporated tools.

4.1 iMOPSE Input Parameters and Configurations

The iMOPSE executable is tailored for the efficient handling of optimization
problems, requiring specific input parameters for its execution. The following
outlines the necessary inputs and additional capabilities:

– Parameters: Parameters for running the iMOPSE executable:
1. Method Configuration Path: A path pointing to the method configu-

ration file. Each method defines data needed for configuration, although
they often share similarities like population size.

2. Problem Name: The name of the optimization problem being
addressed.

3. Problem Instance Path: The path to the problem instance file.
4. Output Path: The directory path where the output, including logs and

results, will be stored.

180 K. Gmyrek et al.

5. Number of Runs (Optional, default=1): Users can specify the num-
ber of runs for the given configuration.

6. Seed(Optional, default=0): Users can set a seed value, thus enabling
the reproduction of experiments. If the number of runs is greater than
one, the first run starts with the provided seed, and each subsequent seed
is incremented by one per run.

This structure ensures comprehensive input management and flexible exe-
cution, accommodating various optimization needs and scenarios. The more
detailed instructions are accessible from the iMOPSE documentation.

4.2 Pareto Analyzer

iMOPSE includes a subproject named ParetoAnalyzer, which plays a crucial role
in the analysis and comparison of multiple multi-objective optimization results
across examined methods. This tool is designed to be used after conducting
experiments and is thus not included in the optimizer project. The main features
of the discussed tool include:

– Calculation of True Pareto Front: In multi- and many-objective opti-
mization, the output of each method is a set of non-dominated points. The
True Pareto Front (TPF) could be defined as a set of all non-dominated solu-
tions and can be considered the best available Pareto Front Approximation
(PFA). However, in practical real-world problems, TPF is usually unknown.
The Pareto Analyzer tool calculates this TPF using results generated by all
runs of all compared methods.

– Nadir Point Calculation: The tool determines the Nadir Point, which is a
point with the worst possible values for all objectives.

– Pareto Visualization: With the use of a Python script for the visualization
part, it offers capabilities to visualize specified PFA in comparison, providing
a clear and intuitive understanding of the optimization outcomes (see Fig. 2).

– Quality Measures for MO: The tool is equipped with code for the calcu-
lation of various metrics that are essential for evaluating the quality of the
PFA, including InvertedGenerationalDistance (IGD), HyperV olume (HV),
Pareto Front Size (PFS), and Purity. These measures assess convergence,
diversity, volume coverage, and the proportion of non-dominated solutions in
the PFA, respectively.

In summary, ParetoAnalyzer complements the iMOPSE by providing tools
for the analysis and evaluation of multi-objective optimization results. It facil-
itates visualization and quantification of the effectiveness of optimization algo-
rithms, aiding researchers and practitioners in making informed decisions.

4.3 Python Scripts

Python scripts in iMOPSE are designed to enhance scientific research. While
designed as ready-to-use tools for common tasks, they offer users the flexibility
to analyze their results in a preferred way, assisting with common tasks.

iMOPSE: Library for Single- and Multi-objective Optimization 181

The msrcpsp solution visualizer tool validates and visualizes MS-RCPSP
solutions, aiding comprehension and refinement of optimization methods.
For multi-objective optimization researchers, multi-objective visualizer elu-
cidates trade-offs between competing objectives, while single-objective
visualizer offers a graphical overview of fitness values. The automated
experiments script streamlines concurrent execution of iMOPSE, providing
a simple way to run multiple different experiments.

These scripts enhance the efficiency and insightfulness of experiments, enrich-
ing the quality and depth of research within iMOPSE. Planned integration with
the main C++ codebase will further bolster the software’s robustness and scal-
ability for broader scientific applications.

5 A Case Study: Conducting Experiments with iMOPSE

In this case study, we utilize the iMOPSE library for a comparative analysis
between two multi-objective evolutionary algorithms: NTGA2 and MOEA/D.
The investigation focused on the ”eil51 n150 uncorr 01” instance from the eil52
instance set of the TTP. The experimental configurations (setup) for both
the MOEAD and B-NTGA methods were set up using the configuration files
presented in Listings 1.1, 1.2, and 1.3:

1 ../../ configurations/methods/MOEAD/MOEAD_TTP.cfg

2 TTP2

3 ../../ configurations/problems/TTP/eil51/eil51_n150_uncorr_01.

ttp

4 ../ experiments/MOEAD/eil51_n150_uncorr_01/

5 10

6 0

Listing 1.1. Configuration for MOEAD

1 ../../ configurations/methods/BNTGA/BNTGA_TTP.cfg

2 TTP2

3 ../../ configurations/problems/TTP/eil51/eil51_n150_uncorr_01.

ttp

4 ../ experiments/BNTGA/eil51_n150_uncorr_01/

5 10

6 0

Listing 1.2. Configuration for BNTGA

1 MethodName BNTGA

2 GenerationLimit 1000

3 Crossover TTP_OX_SX 0.7, 0.7

4 Mutation TTP_Reverse_Flip 0.5 0.5

5 PopulationSize 50

6 GapSelection 40

Listing 1.3. Selected B-NTGA Configuration File

182 K. Gmyrek et al.

Each algorithm was applied to the defined MS-RCPSP instance for ten
repeated experiments, initialized with a seed value set to 0. The results were
captured as PFA, illustrating the trade-offs between the objectives.

For Result Analysis, the iMOPSE framework saved the PFAs after each
experiment and run. Subsequently, paretoAnalyzer was used to calculate the
’True’ PFA and the associated metrics. The configurations for this process are
illustrated in Listings 1.4 and 1.5:

1 ../../ optimizer/experiments/MOEAD

2 ../../ optimizer/experiments/BNTGA

Listing 1.4. Pareto Analyzer Configuration File (config.cfg)

1 ../ config.cfg

2 eil51_n150_uncorr_01

3 ../

Listing 1.5. Pareto Analyzer Parameters

Pareto Analyzer saved merged PFAs for each method as well as the ‘True’
PFA. These fronts can be visualized using the multi-objective visualizer (see
Listing. 1.6) script by providing the paths to the generated merged PFA files.
The relevant Python code snippet for this task is shown below.

The PFAs results compare the performance of MOEA/D and B-NTGA algo-
rithms for the “eil51 n150 uncorr 01” instance: B-NTGA (HV = 0.85655 and
IGD = 0.00062), MOEA/D (HV = 0.67808 and IGD = 0.00943). B-NTGA
achieves higher HV and lower IGD than MOEA/D, indicating superior PFA
quality. Overall, these findings suggest that B-NTGA outperforms MOEA/D in
terms of PFA quality in this instance.

1 paths = [’../ paretoAnalyzer/MOEAD_merged.csv’,

2 ’../ paretoAnalyzer/BNTGA_merged.csv’]

Listing 1.6. Python Code for Visualizing Pareto Fronts

Figure 2 presents the visual comparison of merged PFA for MOEA/D
and B-NTGA. The B-NTGA algorithm, represented in orange, demonstrates
a broader spread across the objective space, indicating a diverse set of solutions.
Conversely, the MOEA/D, shown in blue, presents a more concentrated cluster-
ing of solutions. Overall, B-NTGA appears to have an advantage over MOEA/D
when considering the diversity of the solutions and the extent of the coverage of
the PFA.

6 Summary and Future Works

The iMOPSE library presented in this paper is implemented as an open-source
C++ programming framework to support the metaheuristic research commu-
nity – for researchers, students, and practitioners. The main functionalities of

iMOPSE: Library for Single- and Multi-objective Optimization 183

Fig. 2. Comparison of PFAs for MOEAD and B-NTGA [TTP eil51 n150 uncorr 01]

the iMOPSE library are connected to reproducible research with metaheuristics
applied to solve single and multi-objective NP-hard problems.

The first version of the iMOPSE library includes commonly used metaheuris-
tics, implementations of classical NP-hard problems, and additional utilities use-
ful in research data analysis. Moreover, other programmers could easily extend
the library – new methods and problems can be easily added. Together with
various smaller improvements, we plan to incorporate other metaheuristics, like
Bee Colony Optimisation or Genetic Programming, that are effective in NP-hard
problem optimization. Also, the set of MOEA methods could be extended by θ-
DEA [20] or HyPE [10]. To support metaheuristics in effective global searching,
some local search or heuristics could be added – e.g. specific for the cVRP prob-
lem – to make the method more effective and/or build hybrid or hyper-heuristic
approaches.

In the next version of iMOPSE other optimization problems could be
included (e.q., JSP or Quadratic Assignment Problem) as well as continuous
problems (e.g., to solve CEC competitions). In the first version of iMOPSE
natural metaheuristic parallelism is not used – we also want to include it in
the next version. Moreover, not only a multi-thread computation but also a
GPU-based computation of metaheuristics should be considered to speed up
computations.

Last but not least, a promising direction of iMOPSE is the utils module
extension, where we plan to implement extra tools to support reproducible
research, such as Taguchi’s Design of Experiments procedure, Grey relational
analysis, and various statistical tests. Finally, we plan to support solving many-
objective optimization problems (i.e. 3+ obj., like MS-RCPSP [8]) by effectively
calculating quality measures [15] and visualization methods for PFA with 3+
objectives.

184 K. Gmyrek et al.

References

1. cvrp instances. http://vrp.galgos.inf.puc-rio.br/
2. imopse library [github]. https://github.com/imopse/iMOPSE
3. jmetal. https://jmetal.readthedocs.io/
4. Metaheuristics.jl. https://github.com/jmejia8/Metaheuristics.jl
5. Platypus. https://github.com/Project-Platypus/Platypus
6. pygmo. https://esa.github.io/pygmo/
7. pymetaheuristic. https://pypi.org/project/pymetaheuristics/
8. Antkiewicz, M., Myszkowski, P.B.: Balancing pareto front exploration of non-

dominated tournament genetic algorithm (b-ntga) in solving multi-objective np-
hard problems with constraints. Inf. Sci. 667, 102400 (2024)

9. Antkiewicz, M., Myszkowski, P.B., Gmyrek, K., Olech,�L.P.: Gene-level adaptation
in balanced non-dominated tournament genetic algorithm (ab-ntga) applied to ver-
satile multi-stage weapon-target assignment problem. In: Genetic and Evolutionary
Computation Conference, GECCO 2024 (2024)

10. Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-
objective optimization. Evol. Comput. 19(1), 45–76 (2011)

11. Belli, F., Tuglular, T., Ufuktepe, E.: Unifying behavioral and feature modeling for
testing of software product lines. Int. J. Softw. Eng. Knowl. Eng. (2023)

12. Blank, J., Deb, K.: pymoo: multi-objective optimization in python. IEEE Access
8, 89497–89509 (2020)

13. Bonyadi, M.R., Michalewicz, Z., Barone, L.: The travelling thief problem: the first
step in the transition from theoretical problems to realistic problems. In: 2013
IEEE Congress on Evolutionary Computation, pp. 1037–1044 (2013)

14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

15. Laszczyk, M., Myszkowski, P.B.: Survey of quality measures for multi-objective
optimization: construction of complementary set of multi-objective quality mea-
sures. Swarm Evol. Comput. 48, 109–133 (2019)

16. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4J - a modular framework
for meta-heuristic optimization. In: Proceedings of the Genetic and Evolutionary
Computing Conference (GECCO 2011), Dublin, Ireland, pp. 1723–1730 (2011)

17. Myszkowski, P.B., Laszczyk, M.: Investigation of benchmark dataset for many-
objective multi-skill resource constrained project scheduling problem. Appl. Soft
Comput. 127, 109253 (2022)

18. Myszkowski, P.B., Olech, �LP., Laszczyk, M., Skowroński, M.E.: Hybrid differential
evolution and greedy algorithm (degr) for solving multi-skill resource-constrained
project scheduling problem. Appl. Soft Comput. 62, 1–14 (2018)

19. Myszkowski, P., Laszczyk, M.: Diversity based selection for many-objective evolu-
tionary optimisation problems with constraints. Inf. Sci. 546, 665–700 (2021)

20. Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation-based evolutionary
algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(1), 16–
37 (2016)

21. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

22. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evo-
lutionary algorithm. ETH Zurich, Computer Eng. Netw. Lab. 103 (2001)

http://vrp.galgos.inf.puc-rio.br/
https://github.com/imopse/iMOPSE
https://jmetal.readthedocs.io/
https://github.com/jmejia8/Metaheuristics.jl
https://github.com/Project-Platypus/Platypus
https://esa.github.io/pygmo/
https://pypi.org/project/pymetaheuristics/

Understanding the Importance
of Evolutionary Search in Automated
Heuristic Design with Large Language

Models

Rui Zhang1 , Fei Liu1 , Xi Lin1 , Zhenkun Wang2 , Zhichao Lu1(B) ,
and Qingfu Zhang1(B)

1 Department of Computer Science, City University of Hong Kong,
Hong Kong, China

{fliu36-c,xi.lin}@my.cityu.edu.hk, luzhichaocn@gmail.com,

qingfu.zhang@cityu.edu.hk
2 School of System Design and Intelligent Manufacturing, Southern University

of Science and Technology, Shenzhen, China
wangzk3@sustech.edu.cn

Abstract. Automated heuristic design (AHD) has gained considerable
attention for its potential to automate the development of effective
heuristics. The recent advent of large language models (LLMs) has paved
a new avenue for AHD, with initial efforts focusing on framing AHD as
an evolutionary program search (EPS) problem. However, inconsistent
benchmark settings, inadequate baselines, and a lack of detailed com-
ponent analysis have left the necessity of integrating LLMs with search
strategies and the true progress achieved by existing LLM-based EPS
methods to be inadequately justified. This work seeks to fulfill these
research queries by conducting a large-scale benchmark comprising four
LLM-based EPS methods and four AHD problems across nine LLMs
and five independent runs. Our extensive experiments yield meaningful
insights, providing empirical grounding for the importance of evolution-
ary search in LLM-based AHD approaches, while also contributing to the
advancement of future EPS algorithmic development. To foster accessi-
bility and reproducibility, we have fully open-sourced our benchmark and
corresponding results.

Keywords: Automated heuristic design · evolutionary program
search · large language model · evolutionary computation

1 Introduction

Automated heuristic design (AHD) aims to automatically select, refine, or con-
struct effective heuristics, thereby obviating the necessity for rich domain exper-
tise traditionally required in manual heuristic design [1–3]. Considerable effort
has been dedicated to employing machine learning techniques for AHD [4–6].
Among them, genetic programming (GP) [7] is one of the most widely used

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 185–202, 2024.
https://doi.org/10.1007/978-3-031-70068-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_12&domain=pdf
http://orcid.org/0009-0006-5532-0310
http://orcid.org/0000-0001-6719-0409
http://orcid.org/0000-0001-5298-6893
http://orcid.org/0000-0003-1152-6780
http://orcid.org/0000-0002-4618-3573
http://orcid.org/0000-0003-0786-0671
https://doi.org/10.1007/978-3-031-70068-2_12

186 R. Zhang et al.

Fig. 1. An illustration of the LLM-based EPS paradigm, with respect to the GP-based
paradigm (top section), for automated heuristic design.

techniques for handling AHD tasks, owing to its flexible representation and effi-
cacy across various domains [3,8–10]. However, GP necessitates specifying a set
of permissible primitives and mutation operations, which unfortunately are non-
trivial and problem-dependent [11].

Recently, the advent of large language models (LLMs) has introduced novel
tools for AHD. Preliminary endeavors have been made to model AHD as a pro-
gram search problem, employing LLMs to aid the solution (i.e., heuristics) gener-
ation and optimization process within an evolutionary framework. For instance,
FunSearch [12] evolves heuristics for mathematical problems that outperform
existing solutions on cap set and admissible set problems [13]. EoH [14] and
ReEvo [15] evolve heuristics for combinatorial optimization (CO) problems and
consequently outperform existing AHD methods on traveling salesman problems
(TSPs) [16] and online bin packing (OBP) problems [17].

These methodologies essentially adopt a canonical paradigm, referred to as
LLM-based Evolutionary Program Search (EPS) in this work, that comprises the
following key aspects: (i) candidate solutions (i.e., heuristics) are represented as
executable computer programs, also referred to as codes; (ii) an evolutionary
computation (EC) paradigm is used to evolve toward better programs; and (iii)
LLMs are used as the main engine for driving the search, i.e., creating new pro-
grams, introducing variations to existing programs, etc. A pictorial illustration
of this paradigm is provided in Fig. 1.

Despite a steady stream of promising empirical results, we have noticed
three issues: (i) Inconsistent benchmark settings, where existing LLM-based EPS
methods exhibit variations in initialization, termination criteria, and choice of
LLMs; (ii) Inadequate baselines, where existing LLM-based EPS methods were

Understanding the Importance of Evolutionary Search in AHD with LLMs 187

primarily evaluated against random search or simple heuristics derived through
human intuitions; (iii) Lack of detailed analysis on the relative contribution of
each component (e.g., choice of LLMs, prompt and search strategies, etc.) to the
overall success achieved by existing LLM-based EPS methods.

To address these issues, we first develop a simple yet effective EPS baseline,
dubbed (1+1)-EPS, taking inspiration from (1+1)-ES [18] and few-shot prompt-
ing [19]; and we design a unified benchmark setup comprising four LLM-based
EPS methods (three existing methods and our baseline), four AHD problems,
and nine different LLMs. Then, curated experiments are designed around the
following two research queries: ① the necessity of coupling LLMs with search
strategies for AHD, and ② the current progress made by existing LLM-based
EPS methods on AHD. Detailed analyses are subsequently carried out for new
knowledge and insights.

Key Takeaways: Through extensive experiments, we find that:

◦ The inherent generative capability of LLMs alone is insufficient, providing an
empirical justification for coupling LLMs with a search mechanism, i.e., the
LLM-based EPS paradigm, for tackling AHD problems effectively (Sect. 4.1).

◦ The performance of existing LLM-based EPS methods varies significantly
across different AHD problems and LLM choices, suggesting more diverse
benchmarks and applications are needed to establish a better understanding
of this emergent paradigm for AHD (Sect. 4.2).

We summarize the primary contributions of this work as below:

1. Large-scale benchmark. This work examines all existing LLM-based EPS
methods along with the proposed baseline on four AHD problems under a
canonical benchmark setting. Each compared method is evaluated over nine
LLM choices and five independent runs.

2. Insights and implications for future research. With extensive results,
we provide the empirical grounding for the necessity of LLM-based EPS for
AHD and suggestions for future EPS algorithmic development.

3. Fair and reproducible evaluation. We open-source the implementations
of all compared LLM-based EPS methods, AHD problems, and interface to
both open- and closed-source LLMs at https://github.com/zhichao-lu/llm-
eps to foster future development.

2 Background

Automated Heuristic Design (AHD) is also known as hyper-heuristics [1,
2,20], aiming to search over a space of heuristics rather than the solutions to a
specific problem directly. Most of the AHD approaches incorporate a learning
mechanism [4,21], such as reinforcement learning [5], Bayesian learning [6], case-
based reasoning [22], and evolutionary computation methods [23–26].

In particular, genetic programming (GP) [7] has emerged as a promising
approach to automate the design of heuristics. In essence, GP maintains a set

https://github.com/zhichao-lu/llm-eps
https://github.com/zhichao-lu/llm-eps

188 R. Zhang et al.

of computer programs in the form of trees, instructions, graphs, etc., where
better programs are evolved through genetic operations, such as crossover and
mutation. GP-based AHD approaches have been applied in a number of differ-
ent application domains, such as combinatorial optimization [27–29], schedul-
ing [3,9], among other areas [30,31]. Although GP-based AHD approaches have
achieved promising results, they are often criticized for the need to explicitly
specify the function sets and primitive sets, which are not trivial and problem-
dependent [11]. A more in-depth discussion of the connection between GP and
the methods studied in this work is provided in Appx. §A.

Large Language Models (LLMs) typically refer to deep neural networks
with billions or even trillions of model parameters, built upon the Transformer
architecture [32]. The input query to LLMs can be any sequence of texts, such
as natural language, codes, mathematical expressions, etc. As output, the LLM
also provides a sequence of texts in response to the input query.

With the exponential growth in model size and training data, LLMs have
improved at an impressive pace in the recent past [19,33], leading to ground-
breaking performance across a wide range of tasks [34–37]. Notably, the synergy
between LLMs and evolutionary computation (EC) has been successfully applied
to solve various optimization problems, such as prompt optimization [38,39],
algorithm design [40–42], and neural architecture search [43], to name a few.
Through the lens of EC, LLMs can be viewed as an intelligent variation oper-
ator [44], yielding more diverse and novel offspring compared to conventional
means, such as genetic operators, differential evolution, or particle swarm [45,46].
This has in turn translated to promising results in various domains [47–49].

Table 1. Existing LLM-based EPS methods for AHD along with the baseline, (1+1)-
EPS, proposed in this work.

Method Prompt Strategy LLM Search Strategy

FunSearch [12] Few-shot prompting [19] Codey [50], StarCoder [51] Island model with re-starts

EoH [14] CoT [52] GPT-3.5 [19], Gemini Pro,
DeepSeek [53],
CodeLlama [54]

GA

ReEvo [15] CoT [52] + Reflection [19] 2×GPT-3.5 [19] GA

(1 + 1)-EPS (our baseline) One-shot prompting LLMs in Table 2 (1 + 1)-ES

Existing LLM-based EPS Methods exhibit variations mainly in the follow-
ing three aspects: (i) search strategy, (ii) prompt strategy, and (iii) choice of
LLMs. An overview comparison is provided in Table 1. Readers are referred to
Appx. §A for elaborated descriptions.

From the perspective of search strategy, many existing EPS methods [14,15]
adopt the standard genetic algorithm (GA) framework, where a population of
randomly initialized heuristics is made gradually better through genetic opera-
tors (i.e., crossover and mutation) and elitist selection [55]. Sophisticated mod-
ifications (to the standard GA framework) have also been tried, in particular,

https://github.com/zhichao-lu/llm-eps
https://github.com/zhichao-lu/llm-eps

Understanding the Importance of Evolutionary Search in AHD with LLMs 189

FunSearch introduces an island model (in the form of multiple distinct popula-
tions) with a re-start mechanism to promote diversity among individuals [12].

From the perspective of prompt strategy, FunSearch [12] adopts a simple
strategy, i.e., few-shot prompting where the LLM outputs are conditioned on a
few provided examples of heuristics [19]. More sophisticated strategies, typically
variants of the chain of thought prompting (CoT) [52], have been adopted in the
subsequent works. In particular, EoH [14] leverages linguistic descriptions of the
heuristics (referred to as thoughts) and develops five different prompt strategies
to balance the exploration and exploitation aspects of the evolutionary search;
ReEvo [15] applies the reflection technique [56] to verbalize trends from past
high-performant individuals into prompts.

From the choice of LLM perspective, most existing EPS methods are solely
evaluated with closed-source LLMs (e.g., GPT-3.5 [19] and Codey [50]) except
FunSearch which is also evaluated with an open-source LLM, i.e., StarCoder
[51]. In addition, ReEvo [15] uses two LLMs – one for generating prompts and
the other one for generating heuristics.

3 Preliminaries

In this section, we describe the experimental setup in terms of benchmark prob-
lems, baselines, and choices of LLMs, among other settings.

Benchmark Problems. We consider three types of applications for AHD.
① Admissible Set (AS) [13] is a variation of the cap set problem from math-

ematics [57]. Formally, admissible set problems, denoted as A(n,w), are collec-
tions of vectors in {0, 1, 2}n that satisfy: (1) Each vector has the same number
w of non-zero elements but a unique support. (2) For any three distinct vectors
there is a coordinate in which their three respective values are {0, 1, 2}, {0, 0, 1},
or {0, 0, 2}. The objective of the admissible set problem is to maximize the size
of the set while fulfilling all the aforementioned criteria. In this work, we set
n = 15 and w = 10, i.e., A(15, 10), to be consistent with prior works [12].

② Online Bin Packing (OBP). The objective of bin packing problems is to
allocate a collection of items with varying sizes into the fewest possible bins of
fixed capacity of C. We consider the online scenario where items are packed
as they arrive, in contrast to the offline scenario where all items are known
beforehand. In this work, we consider two widely used datasets for OBP: the
OR dataset [58] and the Weibull dataset [59]. To guide various LLM-based EPS
methods in designing heuristics, we use 20 instances where each comprises 250
items with sizes sampled from [20, 100] for the OR dataset [12]; and we use five
instances where each comprises 5K items with sizes sampled from a Weibull
distribution of f(45, 3) for the Weibull dataset [12,60]. The capacity C of each
bin is set to 150 and 100 for OR and Weibull datasets, respectively.

③ Traveling Salesman Problem (TSP) aims to find the shortest route to
visit all the given locations once and return to the starting location [16]. It is
considered one of the most important CO problems and a widely used test bed

190 R. Zhang et al.

for heuristic design approaches. We use a set of 64 TSP100 instances [61] where
the coordinates of locations to be visited are randomly sampled from [0, 1] to
guide the compared LLM-based EPS methods in designing heuristics [15,60].

Baseline. An adequate baseline is essential for understanding the relative
improvements made by the various methods (at least empirically). Existing
LLM-based EPS methods were mostly compared against random search (i.e.,
uniform sampling) or simple heuristics1 based on human intuitions, yielding
promising performance across diverse problems. However, we argue that a more
adequate baseline beyond random search and intuitive heuristics is needed for a
meaningful and representative comparison. To this end, inspired by the (1+1)-
ES [18], we develop a simple EPS baseline, dubbed (1+1)-EPS. The pseudocode
of the proposed baseline is provided in Algorithm 1. Given its simplistic design
in both the search and prompt strategies, we envision that (1 + 1)-EPS should
simulate the lower bound of the performance of the EPS paradigm.

Algorithm 1: (1 + 1)-EPS
Input : fLLM: a LLM,

hT: a template heuristic,
T : max. # of gens.

1 hbest ← hT // initialize the best
heuristic (found so far) to hT.

2 sbest ← evaluate(hbest) // evaluate
the performance score of hbest.

3 while t < T do
4 prompts ←

One-shot prompting(h) //create
inputs to fLLMby converting h to
prompts via one-shot prompt
engineering.

5 h ← fLLM(prompts) // create a
heuristic via a LLM.

6 s ← evaluate(h) // evaluate the
performance of h.

7 if s < sbest then
8 // update the best heuristic

found so far and its score.
hbest ← h, sbest ← s

9 end

10 end
11 Return hbest, sbest

One-shot Prompting

Idea: Create input prompts
(h) by providing the best
heuristic (hbest) found so
far as an example.

E.g.: The shaded texts below
are prompts created for an
online bin packing problem.

def hbest(

item: float ,

bins: list) -> list:

priority = </> #

omitted for

brevity

return priority

def h(
item: float ,

bins: list) -> list:

priority = <...to be

filled by a LLM

...>

return priority

Choice of LLMs. We consider a diverse set of LLMs to investigate the impact
of the choice of LLMs on the AHD performance. We include five open-source
1 For instance, an intuitive heuristic for an OBP problem could be “place the item in

the first bin with available capacity remaining”.

Understanding the Importance of Evolutionary Search in AHD with LLMs 191

Table 2. Overview of the LLMs evaluated in this work. We use performance on
“HumanEval” [62] and “MMLU” [63] to indicate the capabilities of LLMs on code
and general knowledge, respectively. Both metrics are greater the better.

Model #P Specialized for Code Open Source HumanEval (↑) [62] MMLU (↑) [63]

UniXcoder [64] 0.3B ✕ � – –

StarCoder [51] 15.5B � � 33.6% –

CodeLlama [54] 7B � � 34.8% 42.1%

34B � � 48.8% 53.1%

DeepSeek-Coder [53] 6.7B � � 66.1% 34.6%

33B � � 69.2% 39.5%

GPT-3.5 [19] – ✕ ✕ 60.3% 70.0%

GPT-4 [33] 1.76T ✕ ✕ 76.5% 86.4%

Claude 3 Opus [65] 137B ✕ ✕ 84.9% 86.8%

LLMs that were fine-tuned on code-related tasks and three closed-source LLMs
developed for general purposes. In particular, we consider the most powerful
LLM currently available, i.e., Claude 3 Opus [65], and the most capable open-
source LLM for coding tasks, i.e., DeepSeek-Coder [53]. For completeness, we
also include the most powerful coding language model prior to the LLM era,
i.e., UniXcoder [64]. Table 2 provides an overview of the considered LLMs. For
open-source LLMs, we deploy these models locally on a server with 16 NVIDIA
V100 GPU cards; while for closed-source LLMs, we rely on the respective APIs
provided by OpenAI and Anthropic to get responses.

Evaluation Metric. To evaluate the AHD performance, we report the mean
relative distance (or gap) in performance, Δd, of the obtained heuristic with
respect to the performance of the best-known performance, mathematically as
follows.

Δd = 100% × 1
Np

Np∑

p=1

1
Nm

Nm∑

m=1

(−1)Ip(Mp,m − M∗
p)

M∗
p

where Np is the number of compared problems, Nm is the number of considered
LLMs, Mp,m is the performance of a heuristic for the p-th problem with m-th
LLM. M∗

p is the best-known performance for the p-th problem. And Ip is one
if a higher value indicates better performance for the p-th problem (i.e., for
maximization problems) and zero otherwise (i.e., for minimization problems).

Other Settings. We initialize all compared methods with the respective tem-
plate heuristic on each problem. The details of the template heuristics are pro-
vided in Appx. §C. For EoH [60], we fill the remaining of the initial popula-
tion with randomly generated heuristics. For both EoH [60] and ReEvo [15], we
increase the population size as well as maximum number of evaluations. We per-
form ablation studies on this in Appx. §B. Table 3 summarizes the benchmark
hyper-parameter settings.

https://github.com/zhichao-lu/llm-eps
https://github.com/zhichao-lu/llm-eps

192 R. Zhang et al.

4 Experimental Results and Analyses

4.1 Performance of Standalone LLMs on AHD

Motivation. Standalone LLMs have consistently showcased exceptional per-
formance across a diverse array of AI applications, reaching a point where the
research community has come to expect impressive results from them on new
and challenging tasks. To this end, we wonder whether the inherent generative
capability of LLMs alone (without coupling with an evolutionary search mech-
anism) would suffice for AHD tasks. In this work, we attempt to answer this
question from the following two angles.

Table 3. Summary of benchmark settings.

Description of Setting Value

Maximum number of function evaluations (#FE) 10,000

Population size (for EoH and ReEvo) 100

of islands, # of samples per prompt (for FunSearch) 10, 4

Number of independent runs per experiment 5

Maximum evaluation time for each heuristic (to cope with invalid heuristics, such as infinite loops) 50 s (TSP); 20 s (others)

4.1.1 Angle I: Impact of Query Budget

Experimental Design. Firstly, we aim to validate the performance of stan-
dalone LLMs on AHD problems under different query budgets, i.e., maximum
of queries allowed to be sent to LLMs. Given an AHD problem, we provide
the problem context along with the template heuristic (i.e., fT in Algorithm 1)
as prompts to a LLM, and we ask it to keep generating new heuristics until
query budgets are exhausted. Note that we do not proactively check for dupli-
cate heuristics simply because no effective tools for functionality-level duplicate
detection are readily available.

Results. Figure 2 depicts the aggregated performance (i.e., mean Δd over four
AHD problems) of the heuristics generated by standalone GPT-3.5 with various
query budgets. We also include the performance of the heuristics obtained by
our baseline (1 + 1)-EPS as a reference. Due to space constraints, more detailed
results on individual AHD problems with different LLMs are discussed elsewhere.

Our analysis reveals that while the performance of standalone LLMs on
AHD problems generally improves with increasing query budgets, several critical
observations emerge:

◦ There remains a significant gap between the performance of heuristics gen-
erated by standalone LLMs and the best-known performance (indicated by
Δd = 0, i.e., x-axis in Fig. 2), even with a substantial query budget of 100,000.

◦ Although there is a steady improvement in the mean performance of the
top-ranked heuristics, the performance of the best individual heuristics (rep-
resented by the lower bars of the boxes) shows minimal enhancement as query
budgets increase.

https://github.com/zhichao-lu/llm-eps

Understanding the Importance of Evolutionary Search in AHD with LLMs 193

Fig. 2. Box plot comparison on the performance of the top-{(a) 5‰, (b) 1%} heuris-
tics generated by GPT-3.5 under various query budgets. The performance is measured
as the relative distance to the best-known optimum (Δd) aggregated over four AHD
problems and five independent runs. Lower Δd indicates better performance. The per-
formance of the simple baseline (1+1)-EPS with GPT-3.5 under a small query budget
of 500 is also provided as a reference.

◦ Standalone LLMs are highly ineffective2 on AHD problems, even when
granted an order of magnitude more queries.

In summary, these observations suggest that merely increasing the number
of attempts by a standalone LLM is insufficient for effectively addressing AHD
problems. This underscores the need to integrate LLMs with search methods to
enhance their efficacy in AHD contexts.

4.1.2 Angle II: Impact of More Capable LLMs

Experimental Design. Next, we attempt to understand the relationship
between LLMs’ capacity and their performance on AHD problems. In this work,

2 The ineffectiveness is in the sense that a simple EPS baseline achieves better mean
performance with much lower variances than standalone LLMs with an order of
magnitude more query budget, as depicted in Fig. 2.

194 R. Zhang et al.

Fig. 3. Box plot comparison on the performance of the top-5‰ heuristics generated
by LLMs with varying capacities under 10,000 query budgets. We group LLMs into
two categories: (1) LLMs specialized for coding tasks (with background shaded in)
and (2) general-purpose LLMs (with background shaded in). Then, the LLMs are
arranged in the order of ascending model size within each group. The color scale of the
boxes corresponds with the scores on HumanEval [62]. The performance is measured
as the relative distance to the best-known optimum (Δd) aggregated over four AHD
problems and five independent runs. Lower Δd indicates better performance. The per-
formance of the simple baseline (1 + 1)-EPS with CodeLlama-7B is also provided as a
reference.

Table 4. The performance of the top-1 heuristics generated by LLMs with varying
capacities. The performance is measured as the relative distance to the best-known
optimum (Δd) aggregated over four AHD problems and five independent runs. Lower
Δd indicates better performance.

UniXcoder DeepSeek -6.7B CodeLlama -7B StarCoder 15.5B DeepSeek -33B CodeLlama -34B GPT-3.5 Claude 3 Opus GPT-4

9.15% 4.24% 4.32% 4.21% 4.59% 4.48% 4.31% 4.63% 4.44%

we consider the model size (in terms of # of parameters), the coding perfor-
mance (in terms of HumanEval scores [62]), and the general performance across
many tasks (in terms of MMLU scores [63]) as proxy indicators for measuring a
LLM’s capacity. A diverse set of nine different LLMs is considered, with more
details provided in Table 2. Specifically, given an AHD problem, we provide the
problem context along with the template heuristic (i.e., fT in Algorithm 1) as
prompts to a LLM, and we ask it to keep generating new heuristics until the
query budget of 10,000 is exhausted.

Results. Figure 3 depicts the aggregated performance (i.e., mean Δd over four
AHD problems) of the heuristics generated by LLMs with varying capacities. We
also include the performance of the heuristics obtained by our baseline (1 + 1)-
EPS with CodeLlama-7B (i.e., a small-capacity LLM) as a reference. In addition,
we provide the performance of the top-1 heuristics generated by various LLMs
in Table 4. Constrained by space, more elaborated results on individual AHD
problems with different thresholds on filtering top heuristics are provided in
Appx. §B. Evidently, we make the following observations:

https://github.com/zhichao-lu/llm-eps

Understanding the Importance of Evolutionary Search in AHD with LLMs 195

◦ LLMs with more capacity (i.e., more # of model parameters, better
HumanEval and MMLU scores) do not necessarily lead to better performance
on AHD problems.

◦ LLMs fine-tuned for coding tasks (i.e., the group with background shaded in
) are not statistically better than general purpose LLMs (i.e., the group

with background shaded in).
◦ Standalone LLMs with large overall model capacity are still highly ineffective3

on AHD problems.
◦ Conventional LLMs, i.e., variants of BERT [66] such as UniXcoder [64], are

significantly inferior to modern LLMs (e.g., GPTs) on AHD problems.

In summary, the above observations suggest that simply importing more
capable LLMs is insufficient for tackling AHD problems, reinforcing the need to
integrate LLMs with search methods to enhance their efficacy in AHD contexts.

4.1.3 Summary and Implications

Observations from the previous sections have converged to a consensus that
the inherent generative capability of LLMs alone is insufficient for AHD
problems, which holds true under increased query budget (Sect. 4.1.1 Angle I)
and model capacity (Sect. 4.1.2 Angle II), suggesting the necessity of coupling
LLMs with a search strategy to tackle AHD problems effectively.

Given the modular yet flexible framework, we believe that the LLM-based
EPS paradigm, synergizing LLMs with an evolutionary search strategy,
is a meaningful approach to addressing the general AHD problems.

4.2 Performance of Existing LLM-Based EPS Methods on AHD

We decompose our investigations into the following two angles to establish an
empirical understanding of the progress made by the existing LLM-based EPS
methods on AHD.

4.2.1 Angle I: Relative Improvements over Adequate Baseline

Motivation. Existing LLM-based EPS methods incorporate a variety of com-
plications in the search and the prompt components (see Sect. 2 for more details).
The relative improvements contributed by these modifications are primarily eval-
uated against random search or simple heuristics derived through human intu-
itions. On the one hand, whether the observed improvements over these naive
baselines meaningfully capture the advancement in algorithmic design remains
questionable; while on the other hand, the general utility of the enhancements
introduced by various EPS methods also remains to be further evaluated.
3 The ineffectiveness is in the sense that a low-capacity LLM coupled with a simple

EPS baseline significantly standalone LLMs with orders of magnitude more model
capacities (e.g., GPT-4 and Claude 3 Opus), as depicted in Fig. 3.

196 R. Zhang et al.

Fig. 4. Convergence curve comparison on the performance of the top-1 heuristics
achieved by various EPS methods. The mean relative distances to the best-known
optimum (Δd) averaged over five independent runs are denoted with markers, while
the standard deviations of Δd are shown with the shaded regions.

Experimental Design. We benchmark existing LLM-based EPS methods (i.e.,
FunSearch [12], EoH [60], and ReEvo [15]) against the proposed baseline (1+1)-
EPS on four AHD problems with seven LLMs4. We repeat each experiment five
times with different random seeds. All other benchmark settings are identical to
those described in Sect. 3 unless otherwise specified.

Results. Figure 4 compares the aggregated performance (i.e., mean Δd over
seven LLMs and five independent runs) among existing EPS methods and the
proposed baseline on four AHD problems. Evidently, we observe that:

◦ Performance varies significantly across different problems for all existing
LLM-based EPS methods, with no single method demonstrating consistent
superiority.

◦ Specifically, the EoH method consistently outperforms all others in the TSP
problem throughout the search process, while the simple baseline (1+1)-EPS
shows competitive performance, except in the OBP (Weibull) problem.

4 We exclude UniXcoder and StarCoder from Table 2 as they are mainly designed for
code completion, which are not compatible with EoH and ReEvo that also require
comprehension of natural languages.

Understanding the Importance of Evolutionary Search in AHD with LLMs 197

Fig. 5. Radar plot comparison on the performance of the top-1 heuristics achieved
by various EPS methods with different choices of LLMs. The radius of each vertex is
calculated by the mean relative distances to the best-known optimum (Δd) averaged
over five independent runs; hence, a smaller radius/enclosed area indicates better per-
formance. We use “CL” and “DS” to denote the CodeLlama and DeepSeek models,
respectively.

These empirical findings suggest that there may not be universally effective
and efficient LLM-based EPS method for all AHD problems, reinforcing the
applicability of the “no free lunch” (NFL) theorem to AHD.

4.2.2 Angle II: Dependency on the Choice of LLMs

Motivation. Existing LLM-based EPS methods are typically evaluated using
only one particular choice of LLMs [15,60,67]. This raises uncertainty regarding
the extent to which performance enhancements suggested by these methods can
be applied to other LLM choices. Compounding this issue, the predominant LLM
utilized in these EPS methods, i.e., GPT-3.5, is closed-source in nature. Should
the efficacy of existing EPS methods hinge significantly on closed-source LLMs,
the geographically restricted access to APIs may impede future development
built upon these methods.

198 R. Zhang et al.

Experimental Design. The experimental setup is identical to those described
in Sect. 4.2.1, except on the utilization of different LLMs. In this case, we do not
aggregate experiments across various LLMs. Instead, we aim to directly compare
the performance under different LLM choices for each EPS method.

Results. Figure 5 compares the final performance of various EPS methods under
different LLMs across four AHD problems. From this comparison, we draw two
main observations:

◦ There are significant variances in performance attributable to the choice of
LLM for all EPS methods, with the notable exception of the OBP (OR)
problem where this variance is marginal.

◦ Specifically, the EoH method shows stable and robust performance on the
TSP problem across all LLMs, whereas the (1 + 1)-EPS’s performance varies
considerably due to its greedy nature.

These findings underscore the dependence of EPS methods’ performance on
the specific LLMs employed.

4.2.3 Summary and Implications

The empirical observations from previous sections jointly suggest that the LLM-
based EPS algorithmic development is still in the early stages. We hypothe-
size that more diverse benchmarks and applications are needed to establish a
better understanding of this emergent paradigm for AHD. Nevertheless, these
preliminary results also prompt us to (i) rethink the general efficacy of vari-
ous components (such as prompt engineering and search strategy) within the
overall paradigm, (ii) consider incorporating domain knowledge to LLM-based
EPS algorithm design, and (iii) use a variety of LLMs to gain a more robust
evaluation of the performance of EPS methods.

5 Conclusion

This work presents a large-scale benchmark study comprising all existing LLM-
based EPS methods along with a new proposed baseline and four AHD problems
over (up-to) nine different LLMs and five independent runs. Based on the anal-
yses from multiple comparison angles, we reveal novel insights into the necessity
and the current progress of the LLM-based EPS paradigm for AHD. On top of
them, we summarize a few tangible implications for future research directions for
LLM-based EPS, along with the fully released source codes for fostering future
development.

Understanding the Importance of Evolutionary Search in AHD with LLMs 199

Acknowledgements. The work described in this paper was supported by the
Research Grants Council of the Hong Kong Special Administrative Region, China
(GRF Project No. CityU11215622), the National Natural Science Foundation of China
(Grant No. 62106096), the Natural Science Foundation of Guangdong Province (Grant
No. 2024A1515011759), the National Natural Science Foundation of Shenzhen (Grant
No. JCYJ20220530113013031).

Disclosure of Interests. The authors have no competing interests to declare that are

relevant to the content of this article.

References

1. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64, 1695–1724 (2013)

2. Stützle, T., López-Ibáñez, M.: Automated design of metaheuristic algorithms. In:
Handbook of Metaheuristics, pp. 541–579 (2019)

3. Wu, X., Consoli, P., Minku, L., Ochoa, G., Yao, X.: An evolutionary hyper-heuristic
for the software project scheduling problem. In: International Conference on Par-
allel Problem Solving from Nature (2016)

4. Chen, T., et al.: Learning to optimize: a primer and a benchmark. J. Mach. Learn.
Res. 23(189), 1–59 (2022)

5. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: Practice and Theory of Automated Timetabling (2001)

6. Mockus, J.: Application of bayesian approach to numerical methods of global and
stochastic optimization. J. Global Optim. 4, 347–365 (1994)

7. Koza, J.R.: Genetic programming as a means for programming computers by nat-
ural selection. Stat. Comput. 4, 87–112 (1994)

8. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-662-04726-2

9. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Survey on genetic programming and
machine learning techniques for heuristic design in job shop scheduling. IEEE
Trans. Evol. Comput. 28(1), 147–167 (2024)

10. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Importance-aware genetic program-
ming for automated scheduling heuristics learning in dynamic flexible job shop
scheduling. In: International Conference on Parallel Problem Solving from Nature
(2022)

11. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genet. Program. Evol. Mach. 11(3), 339–363 (2010)

12. Romera-Paredes, B., et al.: Mathematical discoveries from program search with
large language models. Nature 625(7995), 468–475 (2024)

13. Tao, T., Vu, V.H.: Additive Combinatorics. Cambridge University Press, Cam-
bridge (2006)

14. Liu, F., et al.: Evolution of heuristics: towards efficient automatic algorithm design
using large language model. In: International Conference on Machine Learning
(2024)

15. Ye, H., Wang, J., Cao, Z., Song, G.: Reevo: large language models as hyper-
heuristics with reflective evolution. arXiv preprint arXiv:2402.01145 (2024)

16. Matai, R., Singh, S.P., Mittal, M.L.: Traveling salesman problem: an overview of
applications, formulations, and solution approaches. Travel. Salesman Prob. The-
ory Appl. 1(1), 1–25 (2010)

https://doi.org/10.1007/978-3-662-04726-2
http://arxiv.org/abs/2402.01145

200 R. Zhang et al.

17. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)
18. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv preprint arXiv:1604.

00772 (2016)
19. Brown, T., et al.: Language models are few-shot learners. Adv. Neural Inf. Process.

Syst. (2020)
20. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A

Classification of Hyper-heuristic Approaches. In: Gendreau, M., Potvin, J.Y. (eds.)
Handbook of Metaheuristics. International Series in Operations Research & Man-
agement Science, vol. 146, pp. 449–468. Springer, Boston (2010)

21. He, X., Zhao, K., Chu, X.: Automl: a survey of the state-of-the-art. Knowl.-Based
Syst. 212, 106622 (2021)

22. Burke, E.K., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling
problems. J. Sched. 9, 115–132 (2006)

23. Ross, H.-L. F.P., Corne, D.: A promising hybrid GA/heuristic approach for open-
shop scheduling problems. In: European Conference on Artificial Intelligence (1994)

24. Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving
heuristically driven schedule builder. Evol. Comput. 6(1), 61–80 (1998)

25. Terashima-Maŕın, H., Flores-Alvarez, E., Ross, P.: Hyper-heuristics and classifier
systems for solving 2d-regular cutting stock problems. In: Annual Conference on
Genetic and Evolutionary Computation (2005)

26. Rodŕıguez, J.V., Petrovic, S., Salhi, A.: A combined meta-heuristic with hyper-
heuristic approach to the scheduling of the hybrid flow shop with sequence depen-
dent setup times and uniform machines. In: Multidisciplinary International Con-
ference on Scheduling: Theory and Applications. MISTA: Paris, France (2007)

27. Burke, E.K., Hyde, M.R., Kendall, G.: Evolving bin packing heuristics with genetic
programming. In: International Conference on Parallel Problem Solving from
Nature (2006)

28. Duflo, G., Kieffer, E., Brust, M.R., Danoy, G., Bouvry, P.: A GP hyper-heuristic
approach for generating tsp heuristics. In: 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (2019)

29. Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem
heuristics: leading methods, implementations and latest advances. Eur. J. Oper.
Res. 211(3), 427–441 (2011)

30. Drechsler, R., Becker, B.: Learning heuristics by genetic algorithms. In: ASP-
DAC’95/CHDL’95/VLSI’95 with EDA Technofair (1995)

31. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of produc-
tion scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124
(2015)

32. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. (2017)
33. Achiam, J., et al.: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023)
34. Zhao, W.X., et al.: A survey of large language models. arXiv preprint

arXiv:2303.18223 (2023)
35. Tian, H., et al.: chatgpt the ultimate programming assistant–how far is it?. arXiv

preprint arXiv:2304.11938 (2023)
36. Yu, C., Liu, X., Tang, C., Feng, W., Lv, J.: GPT-NAS: neural architecture search

with the generative pre-trained model. arXiv preprint arXiv:2305.05351 (2023)
37. Zhang, S., Gong, C., Wu, L., Liu, X., Zhou, M.: Automl-GPT: automatic machine

learning with gpt. arXiv preprint arXiv:2305.02499 (2023)
38. Zhou, Y., et al.: Large language models are human-level prompt engineers. arXiv

preprint arXiv:2211.01910 (2022)

http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2304.11938
http://arxiv.org/abs/2305.05351
http://arxiv.org/abs/2305.02499
http://arxiv.org/abs/2211.01910

Understanding the Importance of Evolutionary Search in AHD with LLMs 201

39. Wang, X., et al.: Promptagent: strategic planning with language models enables
expert-level prompt optimization. arXiv preprint arXiv:2310.16427 (2023)

40. Zelikman, E., Lorch, E., Mackey, L., Kalai, A.T.: Self-taught optimizer (stop):
recursively self-improving code generation. arXiv preprint arXiv:2310.02304 (2023)

41. Liu, S., Chen, C., Qu, X., Tang, K., Ong, Y.-S.: Large language models as evolu-
tionary optimizers. arXiv preprint arXiv:2310.19046 (2023)

42. Liu, F., et al.: Large language model for multi-objective evolutionary optimization.
arXiv preprint arXiv:2310.12541 (2023)

43. Chen, A., Dohan, D., So, D.: EvoPrompting: language models for code-level neural
architecture search. Adv. Neural Inf. Process. Syst. (2024)

44. Meyerson, E., et al.: Language model crossover: variation through few-shot prompt-
ing. arXiv preprint arXiv:2302.12170 (2023)

45. Hemberg, E., Moskal, S., O’Reilly, U.-M.: Evolving code with a large language
model. arXiv preprint arXiv:2401.07102 (2024)

46. Yang, C., et al.: Large language models as optimizers. arXiv preprint
arXiv:2309.03409 (2023)

47. Guo, Q., et al.: Connecting large language models with evolutionary algorithms
yields powerful prompt optimizers. arXiv preprint arXiv:2309.08532 (2023)

48. Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C., Stanley, K.O.: Evolution
through large models (2022)

49. Wu, X., Wu, S.-H., Wu, J., Feng, L., Tan, K.C.: Evolutionary computation in the
era of large language model: survey and roadmap. arXiv preprint arXiv:2401.10034
(2024)

50. Code models overview (2023)
51. Li, R., et al.: Starcoder: may the source be with you!. arXiv preprint arXiv:2305.

06161 (2023)
52. Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language mod-

els. Adv. Neural Inf. Process. Syst. (2022)
53. Guo, D., et al.: Deepseek-coder: when the large language model meets pro-

gramming–the rise of code intelligence. arXiv preprint arXiv:2401.14196 (2024)
54. Roziere, B., et al.: Code llama: open foundation models for code. arXiv preprint

arXiv:2308.12950 (2023)
55. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
56. Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., Yao, S.: Reflexion: language

agents with verbal reinforcement learning. Adv. Neural Inf. Process. Syst. (2024)
57. Grochow, J.: New applications of the polynomial method: the cap set conjecture

and beyond. Bull. Am. Math. Soc. 56(1), 29–64 (2019)
58. Beasley, J.E.: Or-library: distributing test problems by electronic mail. J. Oper.

Res. Soc. 41(11), 1069–1072 (1990)
59. Castiñeiras, I., De Cauwer, M., O’Sullivan, B.: Weibull-based benchmarks for bin

packing. In: International Conference on Principles and Practice of Constraint
Programming (2012)

60. Liu, F., et al.: An example of evolutionary computation+ large language model
beating human: design of efficient guided local search. arXiv preprint arXiv:2401.
02051 (2024)

61. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!.
arXiv preprint arXiv:1803.08475 (2018)

62. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021)

63. Hendrycks, D., et al.: Measuring massive multitask language understanding. arXiv
preprint arXiv:2009.03300 (2020)

http://arxiv.org/abs/2310.16427
http://arxiv.org/abs/2310.02304
http://arxiv.org/abs/2310.19046
http://arxiv.org/abs/2310.12541
http://arxiv.org/abs/2302.12170
http://arxiv.org/abs/2401.07102
http://arxiv.org/abs/2309.03409
http://arxiv.org/abs/2309.08532
http://arxiv.org/abs/2401.10034
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2401.02051
http://arxiv.org/abs/2401.02051
http://arxiv.org/abs/1803.08475
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2009.03300

202 R. Zhang et al.

64. Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., Yin, J.: UniXcoder: unified cross-
modal pre-training for code representation. In: Annual Meeting of the Association
for Computational Linguistics (2022)

65. Anthropic. The claude 3 model family: Opus, sonnet, haiku (2024)
66. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep

bidirectional transformers for language understanding. In: Conference of the North
American Chapter of the Association for Computational Linguistics (2019)

67. Ma, Y.J., et al.: Eureka: human-level reward design via coding large language
models. In: International Conference on Learning Representations (2024)

Numerical Optimization

Warm Starting of CMA-ES
for Contextual Optimization Problems

Yuta Sekino(B), Kento Uchida, and Shinichi Shirakawa

Yokohama National University, Yokohama, Japan
sekino-yuta-cs@ynu.jp, {uchida-kento-fz,shirakawa-shinichi-bg}@ynu.ac.jp

Abstract. Several practical applications of evolutionary computation
possess objective functions that receive the design variables and exter-
nally given parameters. Such problems are termed contextual optimiza-
tion problems. These problems require finding the optimal solutions
corresponding to the given context vectors. Existing contextual opti-
mization methods train a policy model to predict the optimal solution
from context vectors. However, the performance of such models is lim-
ited by their representation ability. By contrast, warm starting methods
have been used to initialize evolutionary algorithms on a given prob-
lem using the optimization results on similar problems. Because warm
starting methods do not consider the context vectors, their performances
can be improved on contextual optimization problems. Herein, we pro-
pose a covariance matrix adaptation evolution strategy with contextual
warm starting (CMA-ES-CWS) to efficiently optimize the contextual
optimization problem with a given context vector. The CMA-ES-CWS
utilizes the optimization results of past context vectors to train the mul-
tivariate Gaussian process regression. Subsequently, the CMA-ES-CWS
performs warm starting for a given context vector by initializing the
search distribution using posterior distribution of the Gaussian process
regression. The results of the numerical simulation suggest that CMA-
ES-CWS outperforms the existing contextual optimization and warm
starting methods.

Keywords: contextual optimization · warm starting · covariance
matrix adaptation evolution strategy · Gaussian process regression ·
initialization

1 Introduction

In practical applications of evolutionary algorithms, the evaluation value of the
given objective function is often determined using the design variables and exter-
nally given parameters. These optimization problems are referred to as contex-
tual optimization problems and require finding the optimal solution correspond-
ing to the given external parameter, called context vector. Contextual optimiza-
tion problems arise in many applications, such as the optimization of the con-
troller model of a robot for target motion [2,4] and nuclear fusion control using
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 205–220, 2024.
https://doi.org/10.1007/978-3-031-70068-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_13&domain=pdf
https://doi.org/10.1007/978-3-031-70068-2_13

206 Y. Sekino et al.

plasma states as context vectors [6]. For example, in the controller model of robot
locomotion task [2], the target locomotion speed and the locomotion direction
are possible choices of the context vector, and the objective of optimization is
to design a controller model that realizes the locomotion of the robot with the
target speed.

Various contextual optimization methods have been proposed to efficiently
optimize these contextual optimization problems [1,3,13]. These methods solve
contextual optimization problems by training the policy model that receives the
context vector and predicts the corresponding optimal solution. To reduce the
training cost of the policy model in contextual optimizations, several studies [3,4]
have focused on the update rules of the covariance matrix adaptation evolution
strategy (CMA-ES) [11], which employs a multivariate Gaussian distribution as
the sampling distribution and iteratively updates the distribution parameters.
The contextual CMA-ES [3] extends the update rules of the CMA-ES to update
the policy model. Notably, because many contextual optimization methods use
linear models as the policy model, their ability to predict the optimal solution
is limited.

Meanwhile, warm starting methods have been used to start the optimization
of evolutionary algorithms from a good state on a given problem. The warm
starting methods initialize the evolutionary algorithm using the optimization
results on similar problems [14,18]. For example, the warm starting CMA-ES
(WS-CMA-ES) initializes the multivariate Gaussian distribution using the set of
superior solutions achieved in the optimization of a given similar task. However,
the existing warm starting methods do not consider the context vectors. We
are of the view that the performance of warm starting methods on contextual
optimization problems can be improved using the information of context vectors.
A related idea was introduced in the contextual bandit problems [19], which
utilize a dataset consisting of a set of context vectors provided in advance by
experts and a set of reward vectors for each action.

In this study, we propose the CMA-ES with contextual warm starting (CMA-
ES-CWS) to efficiently obtain the optimal solution corresponding to a given
context vector. CMA-ES-CWS requires the best solutions corresponding to some
context vectors achieved in past optimizations. Given the optimization results for
past context vectors, CMA-ES-CWS trains the multi-output Gaussian process
regression (GPR) to predict the optimal solution from the context vector. Next,
CMA-ES-CWS performs warm starting for a newly obtained context vector by
initializing the search distribution using the predictive distribution of the GPR.

We evaluate the performance of the CMA-ES-CWS using the benchmark
functions and control task of the robot arm. In the experiment with benchmark
functions, we transform the search space of existing benchmark functions based
on the context vector. Experimental results show that, with nonlinear and noisy
transformations, CMA-ES-CWS can obtain the optimal solution corresponding
to the given context vector more efficiently than the contextual CMA-ES and
WS-CMA-ES. In addition, we confirm that the performance of CMA-ES-CWS

Warm Starting of CMA-ES for Contextual Optimization Problems 207

is improved by increasing the amount of past optimization results. Further, we
evaluate the performance of CMA-ES-CWS in robot control tasks.

2 Preliminaries

2.1 CMA-ES

The CMA-ES is a probabilistic model-based black-box continuous optimiza-
tion method using the multivariate Gaussian distribution N (

m, σ2C
)

which
is parameterized by mean vector m(t) ∈ R

N , covariance matrix C(t) ∈ R
N×N ,

and step-size σ(t) ∈ R>0.
In each iteration, the CMA-ES generates λ solutions x〈1〉, · · · ,x〈λ〉 from the

Gaussian distribution as

z〈i〉 ∼ N (0, I) , y〈i〉 =
√

C(t)z〈i〉 and x〈i〉 = m(t) + σ(t)y〈i〉 . (1)

Next, the CMA-ES computes the ranking of the solutions on the objective func-
tion. We denote the index of the i-th best solution as i :λ.

Next, the CMA-ES updates two evolution paths: pc ∈ R
N and pσ ∈ R

N .
These evolution paths are initialized as p

(0)
σ = p

(0)
c = 0. The CMA-ES computes

two weighted sums, namely, Δz =
∑μ

i=1 wiz
〈i:λ〉 and Δy =

∑μ
i=1 wiy

〈i:λ〉 of μ
best solutions, to update the evolution paths as

p(t+1)
σ = (1 − cσ)p(t)

σ +
√

cσ(2 − cσ)μeff · Δz (2)

p(t+1)
c = (1 − cc)p(t)

c + h(t+1)
σ

√
cc(2 − cc)μeff · Δy , (3)

where cσ, cc ∈ (0, 1] are accumulation factors, and μeff = (
∑μ

i=1 w2
i)−1 is the

variance effective selection mass. The Heaviside function hσ ∈ {0, 1} is set to
hσ = 1 when it satisfies

‖p
(t+1)
σ ‖

√
1 − (1 − cσ)2(t+1)

<

(
1.4 +

2
N + 1

)
χN , (4)

where χN =
√

N
(
1 − 1

4N + 1
21N2

)
denotes the approximated value of E[‖N

(0, I)‖].
Finally, the CMA-ES updates the distribution parameters. The update rule

of the mean vector is given as

m(t+1) = m(t) + cmσ(t)Δy , (5)

where the learning rate cm ∈ (0, 1] is usually set as cm = 1. The update of
the covariance matrix consists of the rank-μ update and the rank-one update.
The rank-μ update uses the weighted sum of the μ best solutions, whereas the

208 Y. Sekino et al.

rank-one update uses the evolution path pc. The update rule of the covariance
matrix is given by

C(t+1) =
(
1 + (1 − h(t+1)

σ)c1cc(2 − cc)
)

C(t)

+ cμ

μ∑

i=1

wi

(
y〈i:λ〉

(
y〈i:λ〉

)T

− C(t)

)

︸ ︷︷ ︸
rank-μ update

+ c1

(
p(t+1)

c

(
p(t+1)

c

)T

− C(t)

)

︸ ︷︷ ︸
rank-one update

, (6)

where cμ, c1 ∈ (0, 1] denote the learning rates. The update rule of the step-size
is given as

σ(t+1) = σ(t) exp

(
cσ

dσ

(
‖p

(t+1)
σ ‖
χN

− 1

))

, (7)

where dσ ∈ R>0 denotes the damping factor. The CMA-ES has well-tuned rec-
ommended settings for each hyperparameter, as shown in [9,10].

The initial distribution parameters m(0),C(0), and σ(0) significantly influence
the optimization performance. However, because the precise general-purpose
method to determine these important hyperparameters does not exist, they are
manually set (or sometimes manually tuned) for the target problem.

2.2 Multi-output Gaussian Process Regression

The GPR is a non-parametric regression method, which expresses the prediction
using the posterior distribution of the function following a Gaussian process. The
Gaussian process is a function g of the distribution whose evaluation values at
arbitrary n points Dn = {xi}n

i=1 follow the multivariate Gaussian distribution
N (0,K).

The prediction of GPR uses the conditional distribution of the multivari-
ate Gaussian distribution. We denote sample x, mean vector μ, and covariance
matrix Σ as

x =
(

xa

xb

)
, μ =

(
μa

μb

)
, Σ =

(
Σa,a Σa,b

Σb,a Σb,b

)
. (8)

Then, the distribution of xb conditioned on xa is given by a multivariate Gaus-
sian distribution with mean vector μb|a and covariance matrix Σb|a as

μb|a = μb + Σb,aΣ−1
b,b (xb − μb) and Σb|a = Σb,b − Σb,aΣ−1

a,aΣa,b . (9)

Here, we consider the multi-output GPR that predicts a function g with L
outputs. In this case, the vector gn = (g(x1)T, · · · , g(xn)T)T ∈ R

Ln that consists
of evaluation values at points in Dn follows the (Ln)-dimensional multivariate
Gaussian distribution whose covariance matrix is given by the Gram matrix
KL(Dn) ∈ R

(Ln)×(Ln). There are several methods to construct the Gram matrix

Warm Starting of CMA-ES for Contextual Optimization Problems 209

for multi-output GPR. We use the linear model of coregionalization (LMC) [12].
The LMC introduces Q matrices B1, · · · ,BQ ∈ R

L×L and Q kernels k1, · · · , kQ

and computes the Gram matrix as

KL(Dn) =
Q∑

q=1

K(Dn; kq) ⊗ Bq =
(

KL(Dn−1) K∗
KT

∗ K∗∗

)
, (10)

where the operation ⊗ is the Kronecker product, and K∗ ∈ R
Ln×L and K∗∗ ∈

R
L×L are components of the decomposition of the Gram matrix. The covariance

matrix K(Dn; kq) using the kernel function kq : RN × R
N → R is given by

K(Dn; kq) =

⎛

⎜
⎝

kq(x1,x1) · · · kq(xn,x1)
...

...
kq(x1,xn) · · · kq(xn,xn)

⎞

⎟
⎠ . (11)

The LMC computes the predictive distribution of the function output at xn as
a L-dimensional multivariate Gaussian distribution N (μ(xn),Σ(xn)), where

μ(xn) = KT
∗ (KL(Dn−1))

−1
gn−1 (12)

Σ(xn) = K∗∗ − KT
∗ (KL(Dn−1))

−1
K∗ . (13)

In the prediction of LMC, the d-th element of the function output g(xn) can
be interpreted as the weighted sum of QR Gaussian processes with Q kernels as

(g(x))d =
Q∑

q=1

R∑

r=1

ar
d,qu

r
q(x) , (14)

where ur
q : RN → R is the sample from the Gaussian process with kernel kq.

Coefficient ar
d,q ∈ R is set such that as to satisfy (Bq)d,d′ =

∑R
r=1 ar

d,qa
r
d′,q.

3 Problem Definition

We consider a contextual optimization problem whose objective function f(x,α)
is determined by context vector α ∈ R

Nα . The objective of the contextual opti-
mization problem is to obtain an optimal solution corresponding to the given
context vector.

Objective of Existing Contextual Optimization Methods: The existing contextual
optimization methods [7,8,13] aim to train the policy model πw to predict the
optimal solution x∗(α) from the context vector α. Their target is to obtain the
optimal parameter w∗ of policy model that minimizes the expected objective
function value under the distribution pα of the context vector as

w∗ = arg min
w∈W

∫

x

∫

α

pα(α)πw (x | α)f(x;α)dαdx . (15)

210 Y. Sekino et al.

Algorithm 1. CMA-ES with contextual warm-starting (CMA-ES-CWS)
Input: Pairs of context and best solution found previously D = {(α1, x

best
1), · · · ,

(αMprev , xbest
Mprev)}

Input: Target context vector αnew

1: Compute the mean vector μ(αnew) and covariance matrix Σ(αnew) of the predictive
distribution using (12) and (13).

2: Set initial distribution parameters to m(0) = μ(αnew), C(0) = I, and σ(0) =
clip(

√
Tr(Σ(αnew))/N, σmin, σmax).

3: Run CMA-ES with the initial distribution parameters m(0), σ(0), C(0).

There are different scenarios of the training in contextual optimization: one
scenario is contextual policy search [7,13] where the optimizer receives the con-
text vectors stochastically generated, and another is the active contextual policy
search [8], where the optimizer can determine the context vector.

Objective of this Study: Different from the objective of the existing contextual
optimization methods, the objective of this study is to achieve efficient opti-
mization of objective function f(x;αnew) for x after we receive a target context
vector αnew. The optimal solution corresponding to a target context vector αnew

is formulated as

x∗(αnew) = arg min
x∈RN

f(x;αnew) . (16)

In this study, the domain of design variables x is the continuous space R
N .

We assume that Mprev best solutions xbest
1 , · · · ,xbest

Mprev
for context vectors

α1, · · · ,αMprev are obtained in advance.

4 Proposed Method: CMA-ES-CWS

In this study, we propose CMA-ES with contextual warm-starting (CMA-ES-
CWS), which introduces warm starting for contextual optimization problems
to CMA-ES. The CMA-ES-CWS utilizes optimization results for past context
vectors to train the multi-output GPR. Subsequently, it performs warm starting
for a given context vector by initializing the sampling distribution using the
predictive distribution of the GPR. Algorithm 1 shows the pseudocode of CMA-
ES-CWS.

4.1 Predictive Distribution for Optimal Solution

The CMA-ES-CWS utilizes Mprev pairs of context vector and optimization result
D = {(α1,x

best
1), · · · (αMprev ,x

best
Mprev

)} to predict the distribution of the optimal
solution x∗

new corresponding to a newly given context vector αnew. The multi-
output GPR represents the predictive distribution using a multivariate Gaussian
distribution as

p(x∗
new | αnew,D) = N (μ(αnew),Σ(αnew)) . (17)

Warm Starting of CMA-ES for Contextual Optimization Problems 211

We use LMC to compute the predictive distribution. We apply three kernels
for the computation of the Gram matrix in (11): linear kernel k1, radial basis
function (RBF) kernel k2, and Matern 5/2 kernel k3 as

k1(x,x′) = σ2
1xTx′ (18)

k2(x,x′) = σ2
2 exp

(
−1

2
(r2(x,x′))2

)
(19)

k3(x,x′) = σ2
3

(
1 +

√
5r3(x,x′) +

5
3
(r3(x,x′))2

)
exp

(
−

√
5r3(x,x′)

)
, (20)

where σq ∈ R>0 and �q,i ∈ R>0 are hyperparameters. The RBF and Matern
5/2 kernels are functions of rq ∈ R>0 for q = 2, 3 defined as rq(x,x′) =√∑N

i=1 (xi − x′
i)2/�2q,i. Matrix Bq is determined using hyperparameters ar

q ∈
R

N and κ ∈ R>0 as

Bq =
R∑

r=1

ar
q(a

r
q)

T + κI . (21)

We set R = 1. These hyperparameters of each kernel are optimized through
marginal likelihood maximization.1

4.2 Warm Starting Using Predictive Distribution

The CMA-ES-CWS uses the mean vector μ(αnew) and covariance matrix
Σ(αnew) of the predictive distribution to obtain the initial values of the proba-
bility distribution parameters as follows:

m(0) = μ(αnew) (22)

σ(0) = clip

(√
Tr(Σ(αnew))

N
,σmin, σmax

)

(23)

C(0) = I (24)

where clip(a, b, c) = min{max{a, b}, c} and σmin = 10−2, σmax = 2. This clip-
ping prevents the inefficient optimization caused by a too small initial step-size.
The CMA-ES-CWS uses these initial values to search for the optimal solution
x∗(αnew) through CMA-ES.

Note that CMA-ES-CWS does not use the covariance matrix Σ(αnew) of
the predictive distribution to initialize the covariance matrix C in CMA-ES.
This is because the appropriate distribution shape in CMA-ES depends on the
functional shape of the objective function rather than the location of the optimal
solution, whereas the predictive distribution given by the multiple-output GPR
uses only information of the best solution, not the functional shape.

1 Gpy 1.10.0 [17] was used to implement the proposed method.

212 Y. Sekino et al.

5 Experiment Using Benchmark Functions

In this section, we present the result of the performance evaluation of CMA-
ES-CWS using benchmark functions. In Sect. 5.3, we compare the CMA-ES-
CWS with existing methods using benchmark functions. In Sect. 5.4, we verify
the relationship between the number of past optimization results Mprev and
performance of CMA-ES-CWS.

5.1 Comparative Methods

Contextual CMA-ES: Contextual CMA-ES [3] is a contextual optimization
method that uses the update rules of CMA-ES. As a traditional problem setting
of contextual optimization described in Sect. 3, contextual CMA-ES assumes
that the context vector is given randomly before generating a solution.

The contextual CMA-ES trains a policy model to predict the optimal solution
corresponding to the context vector α. It predicts the optimal solution using the
linear model m(t)(α) = A(t)ϕ(α) with parameter A ∈ R

N×Nϕ , where ϕ : Nα →
Nϕ determines the context features. In our experiment, we set ϕ(α) = (αT, 1)T

and Nϕ = N +1, in accordance with the settings in reference [3]. The contextual
CMA-ES acquires the policy model by repeatedly generating samples from the
Gaussian distribution N (m(α), σ2C) and updating the parameters A, σ, and
C. The mean vector of Gaussian distribution is gained from the predictions of
the linear model.

WS-CMA-ES: Warm starting CMA-ES (WS-CMA-ES) [14] uses the evaluated
solution set obtained in the optimization of a similar task to initialize CMA-ES
for a newly given target task. It uses the best Kγ = �γK	 solutions x1, · · · ,xKγ

out of the K solutions obtained in a similar task to compute the promising
distribution for the target task as

p(x) =
1

Kγ

Kγ∑

i=1

N (xi, α
2I) , (25)

where γ = 0.1 and α = 0.1. The WS-CMA-ES optimizes the target task from a
Gaussian distribution that has the smallest Kullback-Leibler divergence from the
promising distribution. The mean vector and covariance matrix of this Gaussian
distribution are analytically given as follows:

m∗ =
1

Kγ

Kγ∑

i=1

xi and Σ∗ = α2I +
1

Kγ

Kγ∑

i=1

(xi − m∗)(xi − m∗)T (26)

The WS-CMA-ES initializes the Gaussian distribution to satisfy m(0) = m∗

and (σ(0))2C(0) = Σ∗. Note that WS-CMA-ES does not consider the existence
of context vectors.

Warm Starting of CMA-ES for Contextual Optimization Problems 213

Table 1. Definitions of benchmark functions

No. Name Definition

1 Sphere f1(y) =
∑N

i=1 y2
i

2 Rosenbrock f2(y) =
∑N−1

i=1

(
100(yi+1 − y2

i)
2 + (1 − yi)

2
)

3 Easom f3(y) = − cos(y1) cos(y2) exp(−((y1 − π)2 + (y2 − π)2)) + 1

5.2 Experimental Setting

The experimental setting partially followed the setting used in [3]. We used the
benchmark functions f(x;α) = fi(φj(x;α)) constructed by applying a context
vector dependent transformation φj(x, α) to the existing black-box continuous
benchmark function fi. Table 1 shows the definitions of benchmark functions.

The sphere function is a unimodal benchmark function that is easy to opti-
mize. The Rosenbrock function is an ill-scale and non-separable benchmark func-
tion that requires covariance matrix adaptation to fit the function landscape. The
Easom function has many shallow local optima and requires starting optimiza-
tion with initial distribution around the optimal solution. In this experiment,
we set the number of dimensions to N = 20 for the sphere and Rosenbrock
functions, and N = 2 for the Easom function. We used three transformations
depending on the context vector as follows:

– Linear Shift: φ1(x;α) = x − Gα
– Nonlinear Shift: φ2(x;α) = x − G(α ◦ α)
– Noisy Shift: φ3(x;α) = x − Gα + ε2N

Each element of constant matrix G ∈ R
N×Nα was assigned according to the

standard normal distribution N (0, 1) and shared in the optimizations for the
target and previously appeared Mprev context vectors. Note that operation ◦
is an element-wise product of vectors and ε = 0.25. Noise vector N ∈ R

N was
generated from the multivariate standard normal distribution N (0, I) every
time the context vector was given. For every context, these functions have a
unique global minimum whose evaluation value is zero. We set the number of
dimensions for the context vector to Nα = 2 and the number of optimization
results for warm starting to Mprev = 10.

Because CMA-ES-CWS uses the past optimization results, we pre-optimized
Mprev problems corresponding to Mprev = 10 context vectors generated on
[−2, 2]Nα uniformly at random. For these pre-optimizations, we ran CMA-ES
with the initial step-size, and covariance matrix was given by σ(0) = 2 and
C(0) = I. The initial mean vector was given on [−1, 1]N uniformly at random.
The maximum number of evaluations was 1 × 104 for the sphere and Easom
functions, and 4×104 for the Rosenbrock function. We restarted CMA-ES when
the maximum eigenvalue of σ2C was less than 10−10 and terminated the opti-
mization when the best evaluation value was less than 10−8 or the number of
evaluations reached its maximum value.

214 Y. Sekino et al.

The contextual CMA-ES was evaluated using the model obtained in pre-
optimization. In pre-optimization, the context vector was given on [−2, 2]Nα

uniformly at random before generating each solution. For a fair comparison with
CMA-ES-CWS, the maximum number of evaluations was Mprev × 104 for the
sphere and Easom functions and 4Mprev × 104 for the Rosenbrock function.

For each of the objective functions corresponding to Mprev context vectors,
the initialization of WS-CMA-ES was performed with the set of solutions that
were generated on [−2, 2]N uniformly at random. For a fair comparison with
CMA-ES-CWS, the number of solutions was 1 × 104 for the sphere and Easom
functions and 4 × 104 for the Rosenbrock function. To select a similar task from
Mprev tasks, we measured the Euclid distances between the target and Mprev

context vectors and selected the task corresponding to the nearest context vector
to the target context vector.

We also ran CMA-ES for comparison with CMA-ES-CWS. The initial step-
size and covariance matrices were given as σ(0) = 2 and C(0) = I, and the initial
mean vector was given on [−1, 1]N uniformly at random. Target context vector
αnew was given on [−2, 2]Nα uniformly at random. We regarded an optimization
as successful when the best evaluation value on the objective function f(x;αnew)
corresponding to this context vector was less than 10−8. We performed 20 inde-
pendent trials for each experimental setting.

5.3 Experimental Result

Figures 1 shows the transitions of the best evaluation values on each benchmark
function. To evaluate the multi-output GPR in CMA-ES-CWS, we presented the
evaluation value for the mean vector of the predictive distribution. The contex-
tual CMA-ES and the multi-output GPR in CMA-ES-CWS do not require an
additional optimization for the target context vector. Note that these evaluation
values were not plotted for values less than 10−8.

First, comparing the performance of CMA-ES-CWS with those of CMA-
ES and WS-CMA-ES, CMA-ES-CWS consistently outperformed these meth-
ods under all setting. Particularly on the Rosenbrock function, CMA-ES-CWS
reached the target evaluation value with approximately 1/4 of number of the
evaluations of CMA-ES and WS-CMA-ES. The WS-CMA-ES exhibited no sig-
nificant advantage over CMA-ES and increased the upper quartile range for
the Easom function. From these results, we confirmed the effectiveness of warm
starting in CMA-ES-CWS using the context vector.

Next, comparing the performance of CMA-ES-CWS with that of the con-
textual CMA-ES, the performance of CMA-ES-CWS in the initial iteration was
better than that of the contextual CMA-ES when the nonlinear and noisy shifts
were applied. This is because the contextual CMA-ES utilized a linear model
whereas CMA-ES-CWS used the multiple-output GPR that can capture non-
linear relationships. With the linear shift, the initial evaluation value of CMA-
ES-CWS was significantly worse than these model outputs. This is because the
lower bound on the initial step-size in (23) gave a relatively large initial value
when compared with the distance between the initial mean vector and optimal

Warm Starting of CMA-ES for Contextual Optimization Problems 215

Fig. 1. Transitions of best evaluation values on the sphere, Rosenbrock, and Easom
functions. We plot the medians and interquartile ranges. Dash lines show the evaluation
values for outputs of the policy model in contextual CMA-ES and multi-output GPR
in CMA-ES-CWS. Note that the evaluation values less than 10−8 are not plotted.

Fig. 2. Transitions of the best evaluation values with various past optimization results
Mprev. We plotted the medians and interquartile ranges of 20 trials on the sphere
function.

216 Y. Sekino et al.

solution. On the Rosenbrock function with the linear shift, the evaluation value
for the mean vector of the predictive distribution was not less than 10−8 because
of the failure of pre-optimizations.

Finally, we compared the results of CMA-ES-CWS for various shift types. On
the sphere function, the linear shift required fewer evaluations than the nonlinear
and noisy shifts. With the Rosenbrock function, the number of evaluations did
not change significantly regardless of which transformation was applied. Note
that the CMA-ES-based methods must adapt the covariance matrix to fit the
landscape of the Rosenbrock function. For all transformations, CMA-ES-CWS
achieved the initial distribution that required a small number of evaluations for
covariance matrix adaptation on the Rosenbrock function.

5.4 Effect of Number of Pre-optimizations

We evaluated the performance of CMA-ES-CWS on the sphere function with
various numbers of pre-optimizations Mprev(Mprev = 5, 10, 15, 20). Other exper-
iment settings were the same as in Sect. 5.2. Figure 2 shows the transitions of
the best evaluation values. We also plotted the result of the CMA-ES to con-
sider the case where no pre-optimization result was obtained. With the linear
shift, the optimization performance did not change regardless of the number
of pre-optimizations; because, owing to the lower bound on the initial step-
size in (23), the initial step-size was set to a large value such that the per-
formance differences in initial mean vectors were disappeared. When applying
the nonlinear shift, the optimization performance improved as the number of
pre-optimizations increased. Particularly, with Mprev = 5, the optimization per-
formance was the same as that of CMA-ES. For problems with nonlinear depen-
dencies on context vectors, CMA-ES-CWS may be more effective with a larger
number of pre-optimization results. Finally, focusing on the results with the noisy
shift, although the optimization performance dropped slightly when Mprev = 5,
almost the same optimization performance was observed with various numbers
of pre-optimizations. Because the results with the noisy shift were worse than
the results with the linear shift, CMA-ES-CWS cannot deal with the noise even
with a large number of pre-optimization results. Developing new noise handling
capabilities for warm starting in noisy contextual optimization is a future work.

6 Evaluation Experiment in Robot Control Task

6.1 Experimental Setting

We used two robot control tasks provided by OpenAI Gym [5,16],

– FetchPush-v2: Control the robot arm to push a box to a target position.
– FetchSlide-v2: Control the robot arm to slide a box to a target position

that is out of reach for the arm.

Warm Starting of CMA-ES for Contextual Optimization Problems 217

Fig. 3. Images of FetchSlide-v2 and FetchPush-v2 and comparison results

Following reference [15], we considered a trajectory parameter space to reduce
the number of dimensions of the problem. The objective of optimization was to
designate the parameters that determine the trajectory of the arm. The trajec-
tory comprised two movements: putting the arm close to the box and sliding
the arm to move the box. The trajectory was determined using coordinates
x1,x2 ∈ R

2. The first point x1 determined where to put the arm, whereas the
second point x2 determined where to slide the arm from the first position to
push or slide the box. The maximum amount of movement for each time step
was set to (1,1,1), whereas OpenAI Gym set time step to 1/25th of a second.
The simulator calculated the arm trajectory with the above limits.

We prepared two trajectory parameter spaces: point and angle designa-
tion spaces. In point designation space, there were four design variables that
determined points x1 and x2. The ranges of design variables were set as
x1,x2 ∈ [−0.2, 0.2]2 for FetchPush and x1 ∈ [−0.2, 0] × [−0.2, 0.2] and x2 ∈
[0, 0.4] × [−0.4, 0.4] for FetchSlide. The angle designation space contained three
design variables, point x2, and additional parameter θ that determined the angle
for approaching to the box. The point x1 was set on the circle with the radius
0.07 around the initial box position and determined using parameter θ. The
ranges of the three design variables were set as θ ∈ [0, 2π] and x2 ∈ [−0.2, 0.2]2

for FetchPush and θ ∈ [0, π] and x2 ∈ [0, 0.4] × [−0.4, 0.4] for FetchSlide. We
used the final distance between the box and the target position as the evalu-
ation value in each task. When the design variable was out of the range, we
computed the evaluation value using the design variable clipped into the range
and, as a penalty, added the sum of the Euclidean distances from the range to
the evaluation value.

218 Y. Sekino et al.

In this experiment, we used four-dimensional context vector α ∈ R
4. The

first two dimensions determined the initial position of the box and other dimen-
sions determined the target position. We set the range of the context vector to
[−0.15, 0.15]4 for FetchPush and [−0.1, 0.1]2 × [−0.3, 0.3]2 for FetchSlide.

The number of pre-optimizations was Mprev = 10. The maximum number
of evaluations in each pre-optimization was 5 × 102 for CMA-ES-CWS, CMA-
ES, and WS-CMA-ES. For a fair comparison, we set the maximum number of
evaluations for contextual CMA-ES to 5Mprev×102. Other experimental settings
were the same as in the experiment using benchmark functions in Sect. 5.

6.2 Experimental Result

Figure 3 shows the transitions of the best evaluation values for the two tasks.
Note that these best evaluation values included penalty, and we confirmed that
only CMA-ES and WS-CMA-ES included penalty until approximately 100 eval-
uations, whereas other methods did not include the penalty.

In all settings, CMA-ES-CWS consistently outperformed other methods. Par-
ticularly, in the FetchPush task, CMA-ES-CWS significantly performed better
than did the other methods. It is evident that CMA-ES and WS-CMA-ES started
optimizations from out of the range for the design variables, and these methods
consumed evaluations to generate solutions in the range. By contrast, CMA-ES-
CWS could start the optimization from in the range for the design variables.
We can confirm that the warm starting of CMA-ES-CWS was also effective in
robotic tasks.

7 Conclusion

In this study, we proposed CMA-ES-CWS, which incorporates a warm starting
for contextual optimization problems. The CMA-ES-CWS uses a multi-output
GPR to compute the predictive distribution of the optimal solution correspond-
ing to a newly given context vector from the best solutions corresponding to
previously given context vectors. Subsequently, it initializes the sampling dis-
tribution of CMA-ES using the predictive distribution. Based on experimental
results using benchmark functions, we confirmed that CMA-ES-CWS exhibited
better performance than that of the contextual CMA-ES and WS-CMA-ES when
applying nonlinear or noisy transformations of the search space. In addition,
the CMA-ES-CWS outperformed also the other methods in the robot control
tasks. In future, we will extend CMA-ES-CWS to discrete and mixed-integer
optimization methods by introducing Bayesian estimation using discrete prob-
ability distributions. The development of a reasonable initialization method for
the covariance matrix is also planned.

Warm Starting of CMA-ES for Contextual Optimization Problems 219

References

1. Abdolmaleki, A., Lau, N., Paulo Reis, L., Neumann, G.: Contextual stochastic
search. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Con-
ference Companion, GECCO 2016 Companion, pp. 29–30. Association for Com-
puting Machinery, New York (2016). https://doi.org/10.1145/2908961.2909012

2. Abdolmaleki, A., Lau, N., Reis, L.P., Peters, J., Neumann, G.: Contextual policy
search for generalizing a parameterized biped walking controller. In: 2015 IEEE
International Conference on Autonomous Robot Systems and Competitions, pp.
17–22 (2015). https://doi.org/10.1109/ICARSC.2015.43

3. Abdolmaleki, A., Price, B., Lau, N., Reis, L.P., Neumann, G.: Contextual covari-
ance matrix adaptation evolutionary strategies. In: Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 1378–
1385 (2017). https://doi.org/10.24963/ijcai.2017/191

4. Abdolmaleki, A., Simões, D., Lau, N., Reis, L.P., Neumann, G.: Contextual direct
policy search. J. Intell. Rob. Syst. 96(2), 141–157 (2019). https://doi.org/10.1007/
s10846-018-0968-4

5. Brockman, G., et al.: Openai gym (2016)
6. Char, I., et al.: Offline contextual Bayesian optimization. In: Wallach, H., Larochelle,

H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural
Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

7. Deisenroth, M.P., Neumann, G., Peters, J.: A survey on policy search for robotics
(2013). https://doi.org/10.1561/2300000021

8. Fabisch, A., Metzen, J.H.: Active contextual policy search. J. Mach. Learn. Res.
15(97), 3371–3399 (2014). http://jmlr.org/papers/v15/fabisch14a.html

9. Hansen, N.: The CMA evolution strategy: a tutorial. CoRR arxiv:1604.00772
(2016)

10. Hansen, N., Auger, A.: Principled design of continuous stochastic search: from
theory to practice. In: Borenstein, Y., Moraglio, A. (eds.) Theory and Principled
Methods for the Design of Metaheuristics. NCS, pp. 145–180. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-33206-7 8

11. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions
in evolution strategies: the covariance matrix adaptation. In: Proceedings of
IEEE International Conference on Evolutionary Computation, pp. 312–317 (1996).
https://doi.org/10.1109/ICEC.1996.542381

12. Journel, A., Huijbregts, C.: Mining Geostatistics. Academic Press, London (1978)
13. Kupcsik, A., Deisenroth, M., Peters, J., Neumann, G.: Data-efficient generaliza-

tion of robot skills with contextual policy search. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 27, no. 1, pp. 1401–1407 (2013). https://
doi.org/10.1609/aaai.v27i1.8546

14. Nomura, M., Watanabe, S., Akimoto, Y., Ozaki, Y., Onishi, M.: Warm starting
CMA-ES for hyperparameter optimization. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 35, no. 10, pp. 9188–9196 (2021). https://doi.
org/10.1609/aaai.v35i10.17109

15. Pinsler, R., Karkus, P., Kupcsik, A., Hsu, D., Lee, W.S.: Factored contextual policy
search with bayesian optimization. In: 2019 International Conference on Robotics
and Automation (ICRA), pp. 7242–7248 (2019). https://doi.org/10.1109/ICRA.
2019.8793808

16. Plappert, M., et al.: Multi-goal reinforcement learning: challenging robotics envi-
ronments and request for research (2018)

https://doi.org/10.1145/2908961.2909012
https://doi.org/10.1109/ICARSC.2015.43
https://doi.org/10.24963/ijcai.2017/191
https://doi.org/10.1007/s10846-018-0968-4
https://doi.org/10.1007/s10846-018-0968-4
https://doi.org/10.1561/2300000021
http://jmlr.org/papers/v15/fabisch14a.html
http://arxiv.org/abs/1604.00772
https://doi.org/10.1007/978-3-642-33206-7_8
https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.1609/aaai.v27i1.8546
https://doi.org/10.1609/aaai.v27i1.8546
https://doi.org/10.1609/aaai.v35i10.17109
https://doi.org/10.1609/aaai.v35i10.17109
https://doi.org/10.1109/ICRA.2019.8793808
https://doi.org/10.1109/ICRA.2019.8793808

220 Y. Sekino et al.

17. The GPy authors: GPy: a gaussian process framework in python (2012). http://
github.com/SheffieldML/GPy

18. Watanabe, S., Awad, N., Onishi, M., Hutter, F.: Speeding up multi-objective
hyperparameter optimization by task similarity-based meta-learning for the tree-
structured Parzen estimator. In: International Joint Conference on Artificial Intel-
ligence (2023)

19. Zhang, C., Agarwal, A., Iii, H.D., Langford, J., Negahban, S.: Warm-starting con-
textual bandits: robustly combining supervised and bandit feedback. In: Proceed-
ings of the 36th International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 97, pp. 7335–7344. PMLR (2019)

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

A Potential Function for a Variable-Metric
Evolution Strategy

Stephan Frank(B) and Tobias Glasmachers

Fakultät für Informatik, Institut für Neuroinformatik, Ruhr-Universität Bochum,
Bochum, Germany

{stephan.frank,tobias.glasmachers}@ini.rub.de

Abstract. This paper works towards an analysis of a variable-metric
evolution strategy by means of drift analysis. Drift analysis has been
effective for proving convergence and analyzing the runtime of a simple
(1+1)-ES. We make a first step towards including covariance matrix
adaptation (CMA). To this end, we develop a novel class of poten-
tial functions for the (1+1)-CMA-ES optimizing two-dimensional con-
vex quadratic functions. We leverage invariances to efficiently sample a
representative space of states. We use simulations to gain an empirical
estimate of the expected minimal drift induced by the candidate potential
function and to tune potential function parameters. Our results indicate
that the tuned potential function is negative and uniformly bounded
away from zero, which yields linear convergence.

1 Introduction

Variable metric evolution strategies like the covariance matrix adaptation evo-
lution strategy (CMA-ES) [8,9,11] are among the best performing methods for
difficult black-box optimization problems [3,7]. However, due to their random-
ized nature and the lack of convergence guarantees, they are sometimes consid-
ered unreliable heuristics. The lack of analytical convergence guarantees can be
a barrier to the adoption of state-of-the-art methods like CMA-ES. Even though
the developers of such algorithms have a good understanding of how the methods
will perform on a problem, it can be difficult to convey this understanding to
practitioners. We therefore believe that developing theoretical performance guar-
antees is an important line of research. On that route, we pursue theory-guided
empirical analysis as an intermediate goal.

Runtime analysis of evolutionary algorithms is a well-established field [16].
It is very well developed for optimization in discrete domains, where nearly all
recent results were established by means of drift analysis techniques [12,13]. The
desire to understand the optimization behavior of evolution strategies is not new
[4]. In recent years, there was significant progress in transferring drift techniques
to the analysis of continuous optimization [1,2,5,10,14,15]. We witnessed an
impressive generalization in terms of problems, starting from the simple sphere
function and arriving at large function classes like all strongly convex functions
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 221–235, 2024.
https://doi.org/10.1007/978-3-031-70068-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_14&domain=pdf
http://orcid.org/0009-0008-0112-6023
http://orcid.org/0000-0003-1886-1696
https://doi.org/10.1007/978-3-031-70068-2_14

222 S. Frank and T. Glasmachers

with Lipschitz gradient. However, in terms of algorithms, only rather simplistic
evolution strategies without covariance matrix adaptation (CMA) were analyzed.
While being quite flexible in principle, the apparent challenge of the drift-based
approach is to identify a suitable potential function. The present paper is con-
cerned with the question of how to design a suitable potential for a variable
metric ES.

In the present paper, we aim to make progress towards analyzing variable-
metric evolution strategies by means of drift. We believe that analyzing conver-
gence through empirical means and the help of drift analysis can be valuable in
addition to the traditional method of using analytical proofs. The natural first
step in the analysis is the quest for a Lyapunov potential capturing the quite
involved algorithm dynamics sufficiently well. We propose to address the prob-
lem of designing a suitable potential function with an iterative method based on
empirical analysis. Our approach can lead to a better understanding of potential
functions and guide the development of analytical proofs, by allowing for piece-
wise advancements on potential functions, supported by empirical performance
data. The approach can be adapted rather easily to a wide range of algorithms
and objective functions, expanding the range of problems for which runtime and
convergence guarantees can be established.

Algorithms. Our general methodology is not bound to a specific algorithm. It
can hence be applied, e.g., to a fully fledged state-of-the-art implementation
of CMA-ES. Instead, we use a simplified version of the (1+1)-CMA-ES [9] as
outlined in Algorithm 1. This is a natural choice if we wish to leverage existing
results, since the literature on analyzing evolution strategies with drift is focused
on elitist selection algorithms.

Algorithm 1: Simplified variant of (1+1)-CMA-ES
Input: d ∈ N, f : Rd → R, m ∈ R

d, σ > 0, ccov ∈ (0, 1]
ptarget =

2
11

while stopping condition not met do

z ∼ N (0, C)
x ← m + σ · z

if f(x) ≤ f(m) then

m ← x ; psucc ← 1 ; C ← (1 − ccov) · C + ccov · (Az)(Az)T

else
psucc ← 0

σ ← σ · exp
(

1
d

· (psucc−ptarget
1−ptarget

)
)

A Potential Function for a Variable-Metric Evolution Strategy 223

Contributions. In this paper, we make the following contributions:

– We propose an experimental methodology supporting the design of a potential
function capturing the dynamics of a variable-metric evolution strategy.

– We introduce the target step size of the (1+1)-CMA-ES as a key concept for
constructing a suitable potential function.

– Based on the target step size, we define a potential function.
– We provide systematic empirical evidence for the suitability of the novel

potential function. At the same time, we are in the position to highlight
its weak spots, which might need to be addressed in future work.

Taking the above together, we provide a drift potential function that potentially
can give rise to an analysis of the optimization behavior of a variable metric ES.

2 Theoretical Background

This section introduces the necessary background. First, we give a brief bird’s
eye introduction to drift analyses and its challenges. We then turn to invariance
properties of CMA-ES, which are instrumental to the design of a Lyapunov
potential.

2.1 Drift Analysis

Drift analysis goes back to Hajek [6]. It was later adapted to the specific needs
of runtime analysis of randomized search heuristics [12,13]. The general idea
of a drift theorem is to connect a statement about the expected single-step
reduction of a potential function to the expected number of steps it takes to
reduce the potential to a target value. Drift is a powerful concept, since the
analysis is reduced to statements about the single-step behavior of the algorithm.
Furthermore, drift theorems are not limited to expected values – they can also
bound quantiles and hence control the tails of the runtime distribution. For
further details, we refer the interested reader to [12,13].

Applying a drift argument amounts to the following steps: we define a poten-
tial function φ, show that the algorithm exhibits a certain type of expected
progress with respect to that potential, and apply a drift theorem to turn the
stepwise progress into a runtime bound. Let S denote the state space of the
algorithm, st the sequence of algorithm states, and φ : S → R the potential. In
the simplest case, the expected progress E[φ(st+1) − φ(st)|st = s] is bounded
from below by a negative constant −b. If the progress is also bounded (or its
tails controlled in a suitable way), then the so-called additive drift applies, yield-
ing an expected runtime of E[T] ≤ a

b + const, where a = φ(s0) − φtarget is the
potential difference to be crossed and T is the so-called first hitting time of the
event φ(sT) ≤ φtarget.

Defining a suitable potential function is an art, not a science. The job of the
potential is to capture progress of the algorithm across the whole state space S.
For an evolution strategy, this is a non-trivial task because even elitist algorithms
make nearly no progress if the step size is either much too small or much too

224 S. Frank and T. Glasmachers

large, or if the covariance matrix is unsuitable. Then with high probability,
the algorithm adapts its distribution parameters towards more suitable values,
hence bringing them closer to the regime where progress towards the optimum
is achieved. Strategy adaptation does not yield immediate progress in terms of
objective function improvement, but rather in terms of the potential to achieve
such improvements in the future. Therefore, a suitable potential function needs
to capture not only the goal of minimizing the objective function when the step
size is well adapted, but also the goal of adapting step size and covariance matrix
towards a regime where this is the case. We will discuss a corresponding potential
function design in Sect. 3.

Compared with a simple (1+1)-ES, this task is considerably harder when
covariance matrix adaptation is involved. The ability to adapt the covariance
matrix has the benefit of gaining invariance to affine transformations, which
yields more general results in terms of the class of objective functions covered.
The price to pay is that it takes away some symmetries, which increases the
dimension of the normalized state. Moreover, CMA interacts with step size adap-
tation in non-trivial ways. However, depending on the tightness of the resulting
bound, we may or may not need to capture all of these dependencies in a poten-
tial function.

2.2 Invariances

The goal of this section is to reduce the dimension of the state space. We will
describe the reduced space by means of a normal form with easy-to-interpret
state variables. The reduction also makes sampling a grid of states feasible.

We consider the (1+1)-CMA-ES with parameters (m,C) of its multi-variate
Gaussian sampling distribution N (m,C),1 optimizing an objective function f :
R

d → R. The parameters (m,C) and the objective function f define a state of
the algorithm, in the sense that this information determines the distribution of
successor states. Therefore, we pack them into the tuple θ = (m,C, f). Given a
state θ, we denote the state after a single iteration of (1+1)-CMA-ES as θ′ =
(m′, C ′, f). The following definition captures the invariance properties of the
(1+1)-CMA-ES algorithm:

Definition 1. We say that two tuples θ1 = (m1, C1, f1) and θ2 = (m2, C2, f2)
are equivalent, and we write θ1 ∼T θ2, if there exist an affine transforma-
tion T (x) = Ax + b and a strictly monotonically increasing function h : R

→ R such that it holds
1. m2 = T (m1) = Am1 + b, (affine invariance, mean)
2. C2 = AT C1A, (affine invariance, covariance matrix)
3. f2 = h ◦ f1 ◦ T−1. (strictly monotone fitness transformations)

1 Under slight misuse of notation, we incorporate the step size into the covariance
matrix at this point, writing C instead of σ2C from now on. The parameter σ is
re-introduced in the normal form, see equation (1).

A Potential Function for a Variable-Metric Evolution Strategy 225

In other words, given a representative θ = (m,C, f) of an equivalence class, then
all other members of that class are of the form (Am + b, AT CA, h ◦ f ◦ T−1).
The following lemma clarifies how the definition relates to invariance:

Lemma 1. Consider a sequence of points x1, . . . , xn ordered by their f1-
ranking: f1(x1) ≤ f1(x2) ≤ · · · ≤ f1(xn). Then the transformed points y1 =
T (x1), . . . , yn = T (xn) have an equivalent f2-ranking, i.e., it holds f2(y1) ≤
f2(y2) ≤ · · · ≤ f2(yn).

Proof. The proof amounts to plugging the definition into the formulas of the
lemma. We obtain f2(yk) = f2(T (xk)) = h(f1(T−1(T (xk)))) = h(f1(xk)) and
we note that h does not change the ranking. ��

Plugging properties (1) and (2) of the definition into the PDF of the multi-
variate normal distribution yields the same result as the transformation theorem
for densities applied to T . Hence, the PDFs are simply transformed into each
other by means of T . Together with the above lemma, this implies that perform-
ing a step from θ1 to θ′

1 and the three-step sequence of transforming θ1 into θ2,
performing a step from θ2 to θ′

2, and finally transforming θ′
2 back into θ′

1, yield
the same result if the same randomness is used, and the same distributions in
any case. In short: if we understand the algorithm dynamics starting in θ1 then
the insight immediately transfers to θ2 and to the whole equivalence class.

We use this notion of invariance in two different ways, namely to formulate
a potential that respects invariances, and for efficient sampling. In both cases,
the goal is to reduce the number of cases for the subsequent analysis. This is
achieved by analyzing only one state per equivalence class.

From now on, we consider a general convex quadratic objective, unction
f(x) = 1

2 (x − x∗)T H(x − x∗) + c with optimizer x∗, Hessian H, and optimal
value c. This case is of great interest, since it is a second order approximation of a
local optimum of a twice continuously differentiable objective function. The first
application of invariance is to simplify f . We can set c = 0 since the offset does
not impact the ranking. Setting T (x) = Ax+ b with A = H−1/2 and b = −Ax∗,
we see that (m,C, f) is equivalent to (Am + b, ACAT , s), where s(x) = 1

2‖x‖
is the sphere function. In other words, in order to understand the optimization
behavior of a variable-metric evolution strategy on all convex quadratic objective
functions, it suffices to consider the sphere function, as long as we consider
general initial conditions. This greatly simplifies the task of designing a drift
potential.

The remaining invariances are known as rotation and scale invariance. They
refer to transformations for which A is a scaled orthogonal matrix and b is zero.
Since the objective function is fixed, we write θ = (m,C) in the following, with Θ
forming the space of all algorithm states. For the two-dimensional case, we define
a section through the quotient space Θ/ ∼T . Equivalently, it can be considered a
normal form for states. First of all, we use the scaling degree of freedom to turn m
into a unit vector. We then use the rotation degree of freedom to diagonalize the
covariance matrix C. By swapping the axes of the coordinate system and flipping
the axes individually, we can transform m to the form m = (cos(α), sin(α)) with

226 S. Frank and T. Glasmachers

α ∈ [0, π/2]. Furthermore, we can decompose the (diagonal) covariance matrix
into scale and shape components. Hence, without loss of generality, we can write
all relevant states in the form

m =
(
cos(α)
sin(α)

)
C = σ2

(
κ 0
0 1

κ

)
(1)

with normalized step size σ > 0, approach angle α ∈ [0, π/2], and eccentricity
κ ≥ 1 encoding the shape of the distribution. An algorithm for transforming any
state into the normal form is found in the online supplement2.

3 Construction of a Lyapunov Potential Function

To construct a potential function that yields drift everywhere in the state space,
each part of the algorithm’s actions needs to be rewarded. By design (elitism),
the distribution mean never moves away from the optimum. This ensures that the
algorithm will never lose progress in terms of distance to the optimum. However,
for increasingly bad parameter settings (too small or large σ or too large κ) the
progress rate quickly approaches zero. In order to avoid vanishing drift, we want
the potential function to account for the quality of the strategy parameters. We
design building blocks for such a function in the following.

3.1 Target σ

For each setting of α and κ we define a target σ. The meaning of the target is
that the algorithm adjusts the parameter towards this value while (artificially)
keeping the other parameters fixed. This does not mean that the target value
is optimal in terms of optimization progress; instead it reflects the adaptation
actually performed by the algorithm. We denote the target as a function σ∗(α, κ).
We omit the parameters in the following.

3.2 Potential Function

Our potential function is defined in terms of the normal form:

V (θ) = V (m,κ, σ) = log(||m||)
(1)

+ v1 · |log(κ)|
(2)

+ v2 · fκ

(∣∣∣log (σ

σ∗
)∣∣∣)

(3)

fκ(x) =

⎧⎨
⎩
1 − exp

(
−s · log

(
x

wκ

)2
)

if x ≥ w(κ), s = 1
100 , wκ = 1 + log(κ)

10

0 else

2 https://github.com/RUB-INI-Theory-of-Machine-Learning/
EmpiricalDriftAnalysis/blob/main/Empirical_Drift_Analysis___Supplements.
pdf.

https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/blob/main/Empirical_Drift_Analysis___Supplements.pdf
https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/blob/main/Empirical_Drift_Analysis___Supplements.pdf
https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/blob/main/Empirical_Drift_Analysis___Supplements.pdf

A Potential Function for a Variable-Metric Evolution Strategy 227

Here, v1, v2 > 0 are tuning parameters to be determined later. There are
three dimensions in which the CMA-ES can make progress, namely the distance
to the optimum m, the eccentricity of the matrix κ, and the (normalized) step
size σ. Those dimensions are taken care of in the potential function separately:

m: The term log(||m||) describes optimization progress by finding a point that
is closer to the optimum. For “well-adapted” parameters of the algorithm, it
should make significant expected progress in this sense. We refer to this term
as the log(||m||)-term.

κ: The second term of the potential function determines progress by adjusting
the eccentricity κ towards the minimal eccentricity of 1, encoding an isotropic
distribution. We refer to this term as the κ-term.

σ: The third term of the potential function measures progress by adjusting
the step size σ towards the stable step size σ∗. The term should become
dominant if σ is far away from σ∗. We refer to this term as the σ-term. The
activation function fκ asymptotically approaches the identity, but it is flat
in a neighborhood of zero, with a differentiable transition (see Fig. 1).

4 Experiments

This section describes the experimental setup to gain empirical data on two
types of quantities: the target step size and a lower bound of the expected drift
of the potential function.

4.1 Target Step Size

To obtain values for the target step size σ∗, we conduct the following experiment:
First we prepare a lattice of 64 linearly spaced α-values from 0 to π/2 and 2048
geometrically spaced κ-values from 1 to 2000. Then, for every point on the
lattice, we transform the normal form into the parameter form (σ is set to 1
in the beginning) and initialize the algorithm with this state. We then conduct
a step of the algorithm and transform the resulting state back into the normal
form, however, omitting the rescaling to |m| = 1, and resetting α and κ to their
initial value. After 50,000 iterations for reaching the limit distribution we record
σ for further 1,000,000 iterations. In the end we compute the geometric mean
of the recorded values. We end up with a lattice of target step sizes σ∗. For
parameters that are not on the grid, we compute σ∗ with bilinear interpolation.

4.2 Drift Experiments

We perform three experiments, one where the focus lies on understanding the
drifts of the potential function around sensible values for (α, κ, σ) and the other
two, with a much wider but less dense grid for investigating the potential func-
tion’s boundary behaviour, i.e., when σ or κ approach ∞ or σ approaches 0.

228 S. Frank and T. Glasmachers

Sampling Parameters. We define a grid for each parameter (α, κ, σ) and
combine those into a three-dimensional product grid. The parameters for the
dense grid are shown in Table 1 and for the wide grids (κ-grid, σ-grid) in Table
2. We then take each of these states and perform a Monte-Carlo simulation to
obtain the expected value of the drift at that point.

Table 1. Dense Grid κ

param. range steps spacing

α [0, π/2] 24 linear
κ [1, 10] 128 logarithmic
σ [0.1, 10] 256 logarithmic

Table 2. Wide Grids (κ-grid, σ-grid)

param. range steps (κ/σ) spacing

α [0, π/2] 12/12 linear
κ [1, 1000] 512/24 logarithmic
σ [0.01, 100] 24/512 logarithmic

Significance and Precision. Since we work with a fixed number of random
samples to estimate the drift, we are interested in the quality of those estima-
tions. To that end we perform a one-sided t-test. Let d denote the (observed)
population mean. For a fixed candidate precision ε, the null hypothesis is that
the distributions of d and d+ ε are overlapping, while the alternative hypothesis
is that d + ε is significantly larger than d. We then perform a golden-section
search to find a value of ε where the t-test returns a p-value of at most 0.001.
This establishes a 99.9% confidence that the observed drifts are not smaller than
the precision ε. However, due to multiple testing, this does not imply that the
overall confidence is 99.9%. In the dense grid run, we evaluate 786, 432 samples,
out of which we would statistically expect the null hypothesis to be true for
approximately 787.

Potential Function Parameters. To determine the optimal weights v1, v2 of
the second and third term in the potential function we used CMA-ES. We used
the sum of the experimentally obtained drift-values and the precision-values as
drift-values and optimized for the largest drift-value to be minimal, i.e., for the
gap between uniform drift and zero to be maximal.

5 Results

In this section, we show our empirical results. We start with the target step size
σ∗. Following that, we analyze the results of the dense grid dataset (Table 1).
Finally, we present the results of the wide grid experiments (Table 2) to examine
the boundary behaviour.

5.1 Target Parameters

In Fig. 2 we present the target step size σ∗ for 64 linearly spaced values of α
between 0 and π/2. We notice significant differences with respect to the approach
angle α, and a decreasing trend for growing eccentricity κ.

A Potential Function for a Variable-Metric Evolution Strategy 229

5.2 Drift Analysis

We observe that the difference between close α values is small, indicating that
the drift is continuous. Furthermore, it is also monotonic for the most part. For
that reason, we will only present the extreme cases of α = 0 and α = π/2 in
the following figures, as this provides a sufficient impression of the results. The
plots do not include the precision values added to them, since these are always
at least two orders of magnitude smaller than the drift values. The plots of the
full data as well as the precision values can be examined in the supplementary
material.3

Fig. 1. Graphs of the “activation” func-
tion fκ for κ ∈ {1, 10, 100, 1000,
10000}, from left to right.

Fig. 2. Graphs of Target Sigma, as a Func-
tion Functions of the Remaining Parame-
ters.

Figure 3 shows the legend used for the following heatmap plots. The color
scale of each plot is scaled to the minimum and maximum drift for that plot.
A blue color indicates negative values, i.e., positive drift (desirable), while red
color indicates positive values, i.e., negative drift (undesirable). Values close to
0 appear white.

Fig. 3. The Heatmap Scale

3 https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalys
is/tree/main/plots.

https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/tree/main/plots
https://github.com/RUB-INI-Theory-of-Machine-Learning/EmpiricalDriftAnalysis/tree/main/plots

230 S. Frank and T. Glasmachers

Weights. The resulting weights from the CMA-ES optimization for the drift
terms differ for each experiment, however v1 = 1.7 and v2 = 3.14 prove to yield
good results across all datasets. All following plots use these weights.

The Log(||m||)-Term-Optimization Progress. We first present the result
of the overall drift from the dense grid run. We see that for α = 0 the overall drift
is positive. Furthermore, for large values of κ we notice that for 0.05 < σ < 1
a region with especially large drift emerges. For α = π/2 we also see an overall
positive drift with slightly larger drift values for very small κ values and 0.3 <
σ < 1. The minimal drift (gap to zero) in this dataset is ≈ −0.00198 (Fig. 4).

Fig. 4. The log(||m||)-term Progress

However, we notice for both α values and for increasing σ values decreasing
drift, while for very small σ the drift diminishes. Since the goal of (additive)
drift analysis is to find a potential function that provides a lower bound on the
drift, this trend defeats that purpose. Therefore we will now look at the results
where the σ-term of the potential function is added.

Adding the σ-term – Behaviour on the Boundaries. The σ-term of the
potential function rewards progress for changing the σ value towards σ∗. Figure 5
shows the drift of the σ-term in isolation.

We notice a large red strip in the results where the drift is negative. This
corresponds to the target σ values. When the algorithm’s σ parameter is already
at or very close to the target value σ∗ then any change results in negative drift.

The negative drift around σ∗ stems from a moving target problem. Even
though the algorithm adapts its σ parameter towards σ∗, in the new algorithm
state that value has changed (because α and κ were adapted by the algorithm).
This effect is present everywhere, however in the cases where the drift becomes
negative this effect is so strong that it dominates the otherwise favourable σ
adaptation of the algorithm. We used a filter fk in this term to alleviate this
effect. Although the effect is still present, it produces far less negative drift than
without the filter.

A Potential Function for a Variable-Metric Evolution Strategy 231

Fig. 5. Sigma Progress

Fig. 6. Drift of the log(||m||)-term and the σ-term combined. Note that this graph
shows a larger grid to present the problematic areas.

Besides that, we also witness that for large values of σ the σ-term shows a
stable drift. In Fig. 6 we see the combined drift of the log(||m||)-term and the
σ-term. In Fig. 7 we plotted the influence of the σ term on the overall drift. We
notice that for large σ the third term dominates the overall drift. This is what
we hoped to see, as this counteracts the diminishing drift of the log(||m||)-term.
This also makes sense from the perspective of an ES, since the search distribution
is misaligned and needs to improve. The same effect can be observed for small σ
in the bottom left corner, where the moving target problem does not dominate
the drift. In Fig. 6a and 6b, we see that for large α, large κ and small σ the drift
from the first term is not large enough to make up for the negative drift of the
third term. Because of that the κ-term is necessary, which we will add next.

Adding the κ-term – Fixing Moving Targets. In Fig. 8 we present the drift
for the κ-term in isolation. Similar to the negative drifts for the σ-term, there
also exist regions with negative drift. Since this term only gratifies the eccentric-

232 S. Frank and T. Glasmachers

Fig. 7. The Sigma Influence in a Percentile View. The influence is the drift of the σ-
term divided by the sum of the absolute values of the log(||m||)-term and the σ-term.

ity to become smaller, naturally there are configurations where the algorithm has
negative drift. This is due to the fact that for small α and reasonable σ the algo-
rithm is making better progress by becoming more eccentric. When κ becomes
exceedingly large the algorithm does not profit from eccentricity anymore and
is inclined to make κ smaller. For large α this point is reached for smaller κ.
Furthermore, when κ = 1 the algorithm can only get worse. This corresponds
the red regions on the bottom left.

Fig. 8. Kappa Progress

The Final Result-Adding It All Together. We now add the κ term to see
the drift of the complete potential function, which is shown in Fig. 9. For small
α we continue to see a region with strong drift for larger κ and σ < 1. Overall we
see a moderate amount of drift everywhere, and no regions with negative drift.
The minimal drift value for the complete potential function is ≈ −0.0063 which

A Potential Function for a Variable-Metric Evolution Strategy 233

is three times as much as the minimal drift value of just the log(||m||)-term in
the same region of the state space.

Fig. 9. The Drift of the Complete Potential Function V (θ)

5.3 Asymptotic Behaviour

Even though we observed an improved drift for extreme values of κ and σ, there
is still a small decrease visible as the parameters become more extreme. We
believe that this trend will saturate such that we can guarantee a lower bound
for the drift. In Figs. 10 and 11 we present the result of the experiments that
probe deeper into the parameter space (Table 2).

Fig. 10. The Drift for a Single κ along the σ Axis

We leave Fig. 10 for visual inspection to the reader. However, we believe to
identify the asymptotic behaviour of the drift. Even though in Fig. 10b towards
smaller σ the drift is decreasing, we suspect that if the experiment had an even
wider grid, we would observe a behaviour similar to the one in Fig. 10a.

234 S. Frank and T. Glasmachers

Fig. 11. The Drift for a Single σ along the κ Axis

Figure 11a displays increasing drifts for most α and at least stable drifts
for some α, while Fig. 11b shows decreasing drifts at σ = 100 and at least
suggests an asymptotic behaviour towards large κ. A more detailed investigation
of asymptotic effects needs better noise handling, and will be subject to future
work.

6 Conclusion

We have filled a gap in the analysis of evolution strategies by proposing a drift
potential function for a variable metric evolution strategy. In general, designing
a potential for drift analysis is a difficult task. Our function involves an auxiliary
function, namely target states of the scale parameter σ of the search distribution,
which is interesting to investigate in its own right. Our empirical analysis shows
that the novel potential works well in the sense that it yields negative drift
everywhere, and that it is bounded away from zero.

Naturally, our result has limitations. We consider only two-dimensional
search spaces since our sampling-based approach scales badly to higher dimen-
sions. While Monte Carlo simulations leave space for random effects, our huge
sample size yields high confidence. Inter- and extrapolation from a fixed parame-
ter grid may induce inaccuracies. However, the smoothness of all observed effects
indicates that the grid is well-chosen, and that our results do indeed generalize—
at least qualitatively—to the full continuous and unbounded state space.

Although our study is empirical in nature we believe that it can serve three
distinct goals: it increases the trust into the reliability of variable metric evolution
strategies like CMA-ES, it enhances our understanding of their behavior, and
it paves the way for an actual mathematical convergence proof based on drift
arguments.

A Potential Function for a Variable-Metric Evolution Strategy 235

References

1. Akimoto, Y., Auger, A., Glasmachers, T.: Drift theory in continuous search spaces:
expected hitting time of the (1+1)-ES with 1/5 success rule. In: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 801–808 (2018)

2. Akimoto, Y., Auger, A., Glasmachers, T., Morinaga, D.: Global linear convergence
of evolution strategies on more than smooth strongly convex functions. SIAM J.
Optim. 32(2), 1402–1429 (2022)

3. Bennet, P., Doerr, C., Moreau, A., Rapin, J., Teytaud, F., Teytaud, O.: Nevergrad:
black-box optimization platform. ACM SIGEVOlution 14(1), 8–15 (2021)

4. Beyer, H.-G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001).
https://doi.org/10.1007/978-3-662-04378-3

5. Correa, C.R., Wanner, E.F., Fonseca, C.M.: Lyapunov design of a simple step-
size adaptation strategy based on success. In: Handl, J., Hart, E., Lewis, P.R.,
López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp.
101–110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_10

6. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with
applications. Adv. Appl. Probab. 14(3), 502–525 (1982)

7. Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31
algorithms from the black-box optimization benchmarking BBOB-2009. In: Pro-
ceedings of the 12th Annual Conference Companion on Genetic and Evolutionary
Computation, pp. 1689–1696 (2010)

8. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

9. Igel, C., Suttorp, T., Hansen, N.: A computational efficient covariance matrix
update and a (1+1)-CMA for evolution strategies. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), vol. 1, pp. 453–460 (2006)

10. Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for con-
tinuous optimization. Theoret. Comput. Sci. 379(3), 329–347 (2007)

11. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.:
Learning probability distributions in continuous evolutionary algorithms-a com-
parative review. Nat. Comput. 3(1), 77–112 (2004)

12. Lehre, P.K., Witt, C.: General drift analysis with tail bounds. arXiv preprint
arXiv:1307.2559 (2013)

13. Lengler, J.: Drift analysis. In: Theory of Evolutionary Computation: Recent Devel-
opments in Discrete Optimization, pp. 89–131 (2020)

14. Morinaga, D., Akimoto, Y.: Generalized drift analysis in continuous domain: linear
convergence of (1+ 1)-ES on strongly convex functions with lipschitz continuous
gradients. In: Proceedings of the 15th ACM/SIGEVO Conference on Foundations
of Genetic Algorithms, pp. 13–24 (2019)

15. Morinaga, D., Fukuchi, K., Sakuma, J., Akimoto, Y.: Convergence rate of the (1+
1)-evolution strategy on locally strongly convex functions with lipschitz continuous
gradient and their monotonic transformations. Technical Report arXiv:2209.12467,
arXiv.org (2022)

16. Oliveto, P.S., Yao, X.: Runtime analysis of evolutionary algorithms for discrete
optimization. In: Theory of Randomized Search Heuristics: Foundations and
Recent Developments, pp. 21–52. World Scientific (2011)

https://doi.org/10.1007/978-3-662-04378-3
https://doi.org/10.1007/978-3-319-45823-6_10
http://arxiv.org/abs/1307.2559
http://arxiv.org/abs/2209.12467
http://arxiv.org/abs/org

CMA-ES for Discrete and Mixed-Variable
Optimization on Sets of Points

Kento Uchida1(B), Ryoki Hamano2, Masahiro Nomura2, Shota Saito1,3,
and Shinichi Shirakawa1

1 Yokohama National University, Yokohama, Japan
{uchida-kento-fz,shirakawa-shinichi-bg}@ynu.ac.jp, saito-shota-bt@ynu.jp

2 CyberAgent, Inc., Shibuya, Japan
{hamano ryoki xa,nomura masahiro}@cyberagent.co.jp

3 SKILLUP NeXt Ltd., Chiyoda, Japan

Abstract. Discrete and mixed-variable optimization problems have
appeared in several real-world applications. Most of the research on
mixed-variable optimization considers a mixture of integer and con-
tinuous variables, and several integer handlings have been developed
to inherit the optimization performance of the continuous optimization
methods to mixed-integer optimization. In some applications, acceptable
solutions are given by selecting possible points in the disjoint subspaces.
This paper focuses on the optimization on sets of points and proposes
an optimization method by extending the covariance matrix adaptation
evolution strategy (CMA-ES), termed the CMA-ES on sets of points
(CMA-ES-SoP). The CMA-ES-SoP incorporates margin correction that
maintains the generation probability of neighboring points to prevent
premature convergence to a specific non-optimal point, which is an effec-
tive integer-handling technique for CMA-ES. In addition, because mar-
gin correction with a fixed margin value tends to increase the marginal
probabilities for a portion of neighboring points more than necessary, the
CMA-ES-SoP updates the target margin value adaptively to make the
average of the marginal probabilities close to a predefined target proba-
bility. Numerical simulations demonstrated that the CMA-ES-SoP suc-
cessfully optimized the optimization problems on sets of points, whereas
the naive CMA-ES failed to optimize them due to premature conver-
gence.

Keywords: CMA-ES · discrete optimization · mixed-variable
optimization · adaptation

1 Introduction

Mixed-variable optimization methods have been actively developed due to the
significant demand in real-world applications. Most of the existing works have
focused on mixed-integer optimization problems that contain both continuous
and integer variables. One of the major approaches is applying integer handlings
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 236–251, 2024.
https://doi.org/10.1007/978-3-031-70068-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-70068-2_15

CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points 237

to powerful continuous optimization methods to address integer variables [9,10,
14]. For example, the reference [9] focused on the covariance matrix adaptation
evolution strategy (CMA-ES) [13] and proposed the CMA-ES with margin by
incorporating the margin correction. The margin correction uses a margin that
is a lower bound of the marginal probabilities for integer variables and prevents
premature convergence caused by the original update of the CMA-ES. These
integer handlings consist of coordinate-wise operations for each integer variable.

However, because the integer handling assumes the set of possible values are
given on grid space, they cannot be applied to other kinds of sets of possible
values. For example, when optimizing the location for the construction of wind
turbines [2], the user makes a set of possible locations (pairs of latitude and
longitude) and requests an optimizer to select the best location from the set. In
this case, the existing integer handling cannot be applied. In addition, when opti-
mizing both the location and forms of winds that are represented by continuous
variables, this problem is formulated as a mixed-variable optimization problem.
We term this problem structure as an optimization problem on the sets of points,
and we formulate this problem as an optimization problem on the search space
consisting of several subspaces. Each subspace contains multiple possible points
where the objective function value can be computed. In mixed-variable opti-
mization, some of the subspace is treated as continuous space. The optimization
problems on the sets of points have been found in several real-world applications
such as design optimization of vehicle [15,16] and facility layout optimization [8].
We note that the naive CMA-ES fails to optimize such optimization problems
on the sets of points, which will be observed in our experimental results.

Fig. 1. Illustration of the search space and the optimization process of CMA-ES-SoP on
the two-dimensional Ellipsoid function. The acceptable solutions are depicted as blue
points. The red and magenta points are the optimum and closest points, respectively.
The CMA-ES-SoP uses the Voronoi diagram to encode the samples and adjust the
margin value. (Color figure online)

In this paper, we tailor the CMA-ES for optimization on the sets of points
and propose CMA-ES-SoP (CMA-ES on sets of points). Figure 1 shows the con-
ceptual image of the optimization with the CMA-ES-SoP. The CMA-ES-SoP
incorporates three handlings: sample encoding, margin correction, and margin

238 K. Uchida et al.

adaptation. In the encoding process, the samples generated from a multivari-
ate Gaussian distribution are projected to the closest points to the samples.
In the margin correction, the covariance matrix is modified to maintain the
marginal generation probability beyond the mid-points between the mean vec-
tor and neighboring points in the Voronoi diagram above the margin. Finally,
to prevent an unnecessary increase of marginal probabilities after the margin
adaptation, the margin is adjusted so that the average of marginal probabilities
is maintained close to the target value for the margin.

We evaluated the performance of CMA-ES-SoP using numerical simulations
with benchmark functions. In the experiment with discrete optimization on sets
of points, the CMA-ES-SoP successfully optimized the benchmark functions with
high probability, while the CMA-ES failed to optimize them. In the experiment
with mixed-variable optimization, the CMA-ES-SoP outperformed the CMA-ES
in most functions, especially in high-dimensional problems.

Notations. The functions Φcdf : R → (0, 1) and Φppf : (0, 1) → R are the
cumulative density function of the standard normal distribution N (0, 1) and
the inverse function of Φcdf called the percentile point function, respectively.
We denote the concatenation of n vectors v1, · · · ,vn as Concat(v1, · · · ,vn) =
(vT

1 , · · · ,vT
n)T.

2 Related Works

Evolutionary Algorithms for Discrete Optimization: Integer optimization, which
is the optimization of integer variables, is a related problem to the optimization
on sets of points. Several evolutionary algorithms (EAs) have been developed for
integer optimization. The coordinate-wise mutation is a widely-used approach for
integer optimization [6,7]. Particularly, (1+1)-EA with self-adjusting mutation
is a promising method with theoretical guarantee [7]. Although there are several
other approaches, including binary encoding [19] and the probabilistic model-
based approach [4], there is no approach that can directly be applied to the
optimization on sets of points.

The optimization problem with categorical variables is another topic for
EAs [1,5]. As the points in the set can be treated as categories, these methods
can be applied to the optimization on sets of points. However, as the positional
relationship between points is not addressed, the optimization performance is
limited. In addition, these EAs cannot deal with mixed-variable optimization
problems containing both discrete and continuous variables.

Integer Handling for Mixed-Integer Optimization: Another related work is opti-
mization methods for mixed-integer optimization. Several powerful optimization
methods have been developed by introducing integer handlings to powerful con-
tinuous optimization methods such as the CMA-ES. The study [10] injects the
integer mutation vector into the generation process of candidate solutions in the
CMA-ES. The CMA-ES with margin [9] incorporates the margin correction to

CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points 239

maintain the marginal probabilities associated with the integer variables above
a certain value. The DX-NES-ICI [14] leaps the elements of the mean vector
corresponding to integer variables to overcome the performance deterioration of
CMA-ES with margin when the evaluation value is more influenced by contin-
uous variables than integer variables. Although these are powerful methods for
mixed-integer optimization problems, they do not adequately handle scenarios
involving a mix of continuous variables and variables on a set of points.

3 Baseline Algorithm: CMA-ES

CMA-ES [13] is a powerful black-box optimization method on continuous space.
The CMA-ES employs a multivariate Gaussian distribution as a sampling dis-
tribution of the candidate solutions and updates the distribution parameters to
generate better solutions. The multivariate Gaussian distribution is parameter-
ized by the mean vector m ∈ R

N , the step-size σ ∈ R>0, and the covariance
matrix C ∈ R

N×N . The CMA-ES also employs two evolution paths pc ∈ R
N

and pσ ∈ R
N that are initialized to zero vectors.

The update procedure of the CMA-ES is as follows. First, the CMA-ES
generates λ solutions x〈1〉, · · · ,x〈λ〉 as

z〈i〉 ∼ N (0, I) , y〈i〉 =
√

C(t)z〈i〉 , and x〈i〉 = σ(t)y〈i〉 + m(t) . (1)

Subsequently, the generated solutions are evaluated on the objective function f :
R

N → R to be optimized. We denote the index of the i-th best solution as i :λ.
Next, the CMA-ES updates the evolution paths as

p(t+1)
σ = (1 − cσ)p(t)

σ +
√

cσ(2 − cσ)μeff ·
μ∑

i=1

wiz
〈i:λ〉 (2)

p(t+1)
c = (1 − cc)p(t)

c + h(t+1)
σ

√
cc(2 − cc)μeff ·

μ∑

i=1

wiy
〈i:λ〉 , (3)

where {wi}μ
i=1 are predefined positive weights, cσ, cc ∈ R>0 are the accumulation

rates of the evolution paths, and μeff = (
∑μ

i=1 w2
i)−1 is the variance effective

selection mass. The Heaviside function h
(t+1)
σ ∈ {0, 1} becomes h

(t+1)
σ = 1 if and

only if it satisfies:

‖p(t+1)
σ ‖

√
1 − (1 − cσ)2(t+1)

<

(
1.4 +

2
N + 1

)
χN , (4)

where χN =
√

N
(
1 − 1

4N + 1
21N2

)
is the approximated value of the expectation

E[‖N (0, I)‖]. Otherwise, it becomes h
(t+1)
σ = 0.

240 K. Uchida et al.

Finally, the CMA-ES updates the distribution parameters of the multivariate
Gaussian distribution as

m(t+1) = m(t) + cm

μ∑

i=1

wi

(
x〈i:λ〉 − m(t)

)
(5)

σ(t+1) = σ(t) exp

(
cσ

dσ

(
‖p(t+1)

σ ‖
χN

− 1

))

(6)

C(t+1) =
(
1 + δ(h(t+1)

σ)
)
C(t) + c1

(
p(t+1)

c

(
p(t+1)

c

)T

− C(t)

)

+ cμ

μ∑

i=1

wi

(
y〈i:λ〉

(
y〈i:λ〉

)T

− C(t)

)
,

(7)

where cm, c1, cμ ∈ R>0 are the learning rates, dσ ∈ R>0 is the damping factor,
and δ(h) = (1 − h)c1cc(2 − cc). The CMA-ES has well-tuned default values for
all hyperparameters. Details are available in the literature [11,12].

4 Target Problem

In this study, we consider the search space X ⊆ R
N consisting of K subspaces as

X = S1 × · · · × SK . (8)

In discrete optimization problems on sets of points, each subspaces Sk ⊆ R
Nk is

given by sets of Lk points, i.e., Sk = {sk,1, · · · , sk,Lk
}, where N =

∑K
k=1 Nk. We

assume that the sets of points are accessible for the optimization methods. The
candidate solutions are constructed by selecting points from subspaces. In mixed-
variable optimization problems, a part of search space is given by the continuous
space, and other space is given by sets of points, i.e., X = S1×· · ·×SK−1×R

Nco .
Such problems can be found in applications of system design and manufactur-

ing. For example, in the design optimization of vehicle [15,16], the optimization
is sometimes performed by selecting available parts of machines. In the optimiza-
tion of position for constructing wind turbines [2], the potential places can be
listed in advance, and the optimal place is selected from the listed possible places.
Additionally, when optimizing both the position and form of the wing, which is
controlled by continuous variables, the problem becomes a mixed-variables opti-
mization problem. Similar problem structures can also be found in facility layout
problems [8] and location-routing problems [18].

As well on the mixed-integer optimization problems, the naive CMA-ES usu-
ally fails to optimize the optimization on the sets of points. This is because
the original update rule of the CMA-ES leads to premature convergence around
non-optimal points, as observed in our experimental results shown in Sect. 6.

CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points 241

5 Proposed Method: CMA-ES-SoP

We propose a novel variant of the CMA-ES for optimization on sets of points,
termed CMA-ES-SoP. The CMA-ES-SoP encodes the samples generated from
the multivariate Gaussian distribution to obtain the candidate solution on the
search space. After updating the distribution parameters, the CMA-ES-SoP cor-
rects the covariance matrix C(t+1) to maintain the generation probability beyond
the mid-points from the neighboring points above the margin value α(t). In addi-
tion, we adapt the margin value α

(t)
k ∈ R>0 to prevent an unnecessary increase

of the marginal probabilities for a part of neighboring points. Algorithm 1 shows
the pseudo-code of the CMA-ES-SoP.

5.1 Sample Encoding

The CMA-ES-SoP transforms the samples x〈1〉, · · · ,x〈λ〉 generated from the
multivariate Gaussian distribution into the candidate solutions on the search
space. For the elements x

〈i〉
k of x〈i〉 corresponding to the k-th subspace, the

closest points Enck(x〈i〉
k) in Sk are selected as a part of encoded candidate

solution, where Enck : RNk → Sk is defined as

Enck(xk) = arg min
s∈Sk

‖xk − s‖ . (9)

Then, the encoded candidate solution x̃〈i〉 = Concat(Enc1(x
〈i〉
1), · · · ,

EncK(x〈i〉
K)) is evaluated on the objective function. The closest point is deter-

mined by the Voronoi region containing the corresponding elements of sample
x

〈i〉
k on the subspace.

Fig. 2. Illustration of margin correction in CMA-ES-SoP. The orange and green square
points in the center figure represent the neighboring point and mid-point, respectively.
The gray and violet ellipses in the center figure correspond to the covariance matri-
ces of the multivariate Gaussian distribution before and after a single step of margin
correction, respectively. (Color figure online)

242 K. Uchida et al.

Algorithm 1 . CMA-ES on Sets of Points
Input: The objective function f : RN → R and subspaces S1, · · · , SK .
Input: Initial distribution parameters m(0),C(0), σ(0).
Input: Hyperparameters αtarget = 1/(λN) and β = 1 + 1/N .

1: Initialize the margin value as α
(0)
k = αtarget.

2: while termination condition is not met do
3: for i = 1, · · · , λ do
4: Generate x〈i〉 from the multivariate Gaussian distribution using (1).
5: Encode x〈i〉 to x̃〈i〉 by concatenating the nearest points as (9).
6: Evaluate x̃〈i〉 on the objective function f .
7: end for
8: Update m(t),C(t), σ(t) using the update rules (5), (6), and (7) with samples

x〈1〉, · · · ,x〈λ〉 before encoding.
9: for k = 1, · · · , K do

10: Compute the neighboring points Sneighbor
k to the mean vector in k-th subspace.

11: for sneighbor
k,b ∈ Sneighbor

k do

12: Compute the marginal probability p
(t+1)
k,b in (12).

13: if p
(t+1)
k,b < α

(t)
k then

14: Correct C(t+1) by margin correction with α
(t)
k as (15).

15: end if
16: end for
17: Adjust the margin α

(t)
k using the probabilities p

(t+1)
k,1 , · · · , p

(t+1)

k,B(t+1) as (16).

18: end for
19: t ← t + 1
20: end while

5.2 Margin Correction

The margin correction aims to maintain the generation probability of neigh-
boring points above the margin value to prevent early convergence. Because
the exact computation of generation probability over a non-linearly constrained
region is intractable, we develop our margin correction with an alternative tail
probability. Figure 2 shows an example of margin correction.

We consider the closest point sclose
k = Enck(m(t+1)

k) to the mean vector on
the k-th subspace. We then compute the neighboring points around sclose

k on the
Voronoi diagram as

Sneighbor
k = {sneighbor

k,1 , · · · , sneighbor

k,B
(t+1)
k

} ⊆ Sk , (10)

where B
(t+1)
k is the number of neighboring points. With a neighboring point

sneighbor
k,b , the mid-point smid

k,b between the mean vector m
(t+1)
k and sneighbor

k,b is
computed as

smid
k,b =

m
(t+1)
k + sneighbor

k,b

2
. (11)

CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points 243

Then, we consider the marginal distribution along the direction smid
k,b −m

(t+1)
k

to compute the alternative tail probability to exact generation probability. We
aim to maintain the generation probability p

(t+1)
k,b beyond the mid-point on the

marginal distribution above the margin value α
(t)
k . The generation probability is

computed as

p
(t+1)
k,b = Φcdf

(
−d

(t+1)
k,b

)
, (12)

where d
(t+1)
k,b is the Mahalanobis distance between smid

k,b and m
(t+1)
k on the k-th

subspace as

d
(t+1)
k,b =

∥∥∥∥∥

√(
C(t+1)

)−1

· ξ
(t+1)
k,b

∥∥∥∥∥
(13)

with a vector ξ
(t+1)
k,b defined by two zero vectors 0ant

k and 0post
k with the lengths

of
∑k−1

j=1 Nj and
∑K

j=k+1 Nj as

ξ
(t+1)
k,b = Concat

(

0ant
k ,

(
smid

k,b − m
(t+1)
k

σ(t+1)

)

,0post
k

)

. (14)

When pk,b is smaller than α
(t)
k , the covariance matrix is modified to

C(t+1) ← C(t+1) +
(d(t+1)

k,b)2 − (γ(t)
α)2

(d(t+1)
k,b)2(γ(t)

α)2
· ξ

(t+1)
k,b

(
ξ
(t+1)
k,b

)T

, (15)

where γ
(t)
α = Φppf(1 − α

(t)
k). This modification maintains the Mahalanobis dis-

tance d
(t+1)
k,b at most γ

(t)
α , which ensures p

(t+1)
k,b ≥ α

(t)
k (see Appendix A). We

note that ξ
(t+1)
k,b can contain a non-zero value on the elements corresponding to

k-th subspace, and the margin correction does not change the variance on other
subspaces. The CMA-ES-SoP shuffles the neighboring points before each margin
correction and applies the correction for each neighboring point in turn.

5.3 Margin Adaptation

In the margin correction explained in the previous subsection, a single step in
the correction of the covariance matrix in Eq. (15) may increase the marginal
probabilities for other neighboring points more than necessary. To prevent the
performance deterioration due to such unnecessary increase of the marginal prob-
abilities, we adjust the margin value α

(t)
k so that the average of probabilities

p
(t+1)
k,1 , · · · , p

(t+1)

k,B
(t+1)
k

on marginal distribution is maintained close to the target

margin value αtarget. We realize this adjustment by employing the update rule
for α

(t)
k given by

244 K. Uchida et al.

α
(t+1)
k =

⎧
⎨

⎩
α

(t)
k /β if αtarget ≤ 1

B
(t+1)
k

∑B
(t+1)
k

b=1 p
(t+1)
k,b

β · α
(t)
k otherwise

. (16)

We set the target margin value and the increasing and decreasing factor as
αtarget = 1/(Nλ) and β = 1 + 1/N , respectively. We note the target margin
value follows the reference [9].

Fig. 3. Transitions of the best evaluation values on the discrete optimization prob-
lems with (Nk, Lk) = (2, 10). We plot the median and interquartile ranges over 25
independent trials.

6 Experiment

We evaluated the optimization performance of the CMA-ES-SoP on the discrete
optimization problems on the sets of points in Sect. 6.2 and the mixed-variable
optimization problems in Sect. 6.3. The code of the CMA-ES-SoP will be made
available at https://github.com/CyberAgentAILab/cmaes [17].

6.1 Experimental Setting

We prepared four benchmark functions as follows:

– Sphere: f(x) =
∑N

i=1 x2
i

– Ellipsoid: f(x) =
∑N

i=1

(
1000

i−1
N−1 xi

)2

https://github.com/CyberAgentAILab/cmaes

CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points 245

Table 1. Success rate (SR) and SP1 in discrete optimization on sets of points.

Problem Setting Method Sphere Ellipsoid Rosenbrock

SR SP1 SR SP1 SR SP1

Nk = 2
Lk = 10

N = 10 CMA-ES 0.20 1410.0 0.00 – 0.24 1069.4

CMA-ES-SoP1.00 1611.2 0.96 1406.6 0.96 1282.1

N = 20 CMA-ES 0.00 – 0.00 – 0.00 –

CMA-ES-SoP1.00 3811.6 1.00 5002.5 1.00 6043.6

N = 30 CMA-ES 0.00 – 0.00 – 0.00 –

CMA-ES-SoP1.00 9456.1 1.00 12291.4 0.96 12534.9

Nk = 5
Lk = 40

N = 10 CMA-ES 0.32 277.3 0.12 805.5 0.44 78.5

CMA-ES-SoP1.00 213.2 1.00 541.6 1.00 134.8

N = 20 CMA-ES 0.00 – 0.00 – 0.04 4800.0

CMA-ES-SoP1.00 765.6 1.00 4431.3 0.96 1679.6

N = 30 CMA-ES 0.00 – 0.00 – 0.00 –

CMA-ES-SoP1.00 2107.28 1.00 7458.6 1.00 2667.2

– Reversed Ellipsoid: f(x) =
∑N

i=1

(
1000

N−i
N−1 xi

)2

– Rosenbrock: f(x) =
∑N−1

i=1

(
100(xi+1 − x2

i)
2 + (xi − 1)2

)

Sphere, Ellipsoid, and Rosenbrock are well-known benchmark functions. We
added Reversed Ellipsoid for comparison with Ellipsoid, which deepens our dis-
cussions in mixed-variable optimization.

The sets of points Sk was given by Lk − 1 samples generated from the uni-
form distribution on [−5, 5]Nk . We then added the optimal solution of bench-
mark functions to Sk. We performed two settings for Nk and Lk as (Nk, Lk) ∈
{(2, 10), (5, 40)}. We varied the total number of dimensions as N = 10, 20, 30.

We ran the naive CMA-ES explained in Sect. 3 (with the sample encoding
in Sect. 5.1) as a comparative method. We also compared the CMA-ES-SoP
without the margin adaptation, in which α

(t)
k = αtarget was fixed for all iterations.

For both CMA-ES and CMA-ES-SoP, the initial mean vector m(0) was given
uniformly at random on [1, 5]N . The initial covariance and step-size were given by
C(0) = I and σ(0) = 2, respectively. We terminated the optimization when one of
the following four conditions was met: 1) the successful condition was satisfied,
2) the number of evaluations reached N × 104, 3) the minimum eigenvalue of
(σ(t))2C(t) was updated less than 10−30, or 4) a numerical error occurred.

6.2 Experimental Result in Discrete Optimization on Sets of Points

First, we show the results with the discrete optimization problems on sets of
points. In this setting, the search space consisted of K = N/Nk sets of points.

246 K. Uchida et al.

Fig. 4. Transitions of the best evaluation values on the discrete optimization prob-
lems with (Nk, Lk) = (5, 40). We plot the median and interquartile ranges over 25
independent trials.

Fig. 5. Transitions of margins for each subspace. They were observed in a typical trial
of the CMA-ES-SoP on discrete 20-dimensional optimization problems.

We regarded a trial as successful when the optimal solution was found. We ran
25 independent trials on Sphere, Ellipsoid, and Rosenbrock for each setting.

Figures 3 and 4 show the transitions of the best evaluation values with
(Nk, Lk) = (2, 10) and (Nk, Lk) = (5, 40), respectively. We observed that the
CMA-ES-SoP successfully optimized all benchmark problems while the CMA-
ES often stagnated on all benchmark functions. Note that the optimization of
the CMA-ES is usually terminated due to a too small eigenvalue of the covari-
ance matrix on the search distribution. We consider that the margin correction
in CMA-ES-SoP prevented such premature convergence. We also observed that
margin adaptation improved the optimization performance for high-dimensional

CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points 247

problems. Figure 5 shows the transition of the margins in a typical trial. We can
see that the dynamics of the margin change depending on the function, sub-
space dimension, and number of data, highlighting the importance of margin
adaptation.

Table 1 shows the success rates and SP1 values computed with 25 trials.
SP1 is the average number of evaluations over successful trials divided by the
success rate [3]. We can see that the success rates of the CMA-ES-SoP were
significantly better than those of the CMA-ES in all problem settings. Focusing
on SP1, however, the CMA-ES was superior to the CMA-ES-SoP on some low-
dimensional problems. We note that, although the CMA-ES failed to optimize
in most of trials, it sometimes quickly converged to the optimum solution.

Fig. 6. Transitions of the best evaluation values on the mixed-variable optimization
problems with (Nk, Lk) = (2, 10). We plot the median and interquartile ranges over 25
independent trials.

6.3 Experimental Result in Mixed-Variable Optimization

Next, we show the results with the mixed-variable optimization problems. In
this setting, we set the number of sets of points as Nset = �N/Nk/2�. In this
experimental setting, the search space of the first NsetNk design variables was
given by the sets of points, while the remaining NK = N − NsetNk design
variables were treated as continuous variables. We regarded a trial as successful
when the best evaluation value reached 10−4. We ran 25 independent trials on
Sphere, Ellipsoid, and Reversed Ellipsoid for each setting.

248 K. Uchida et al.

Fig. 7. Transitions of the best evaluation values on the mixed-variable optimization
problems with (Nk, Lk) = (5, 40). We plot the median and interquartile ranges over 25
independent trials.

Figures 6 and 7 show the transitions of the best evaluation values with
(Nk, Lk) = (2, 10) and (Nk, Lk) = (5, 40), respectively. On 20- and 30-dimens-
ional problems, the CMA-ES-SoP outperformed the CMA-ES. In contrast, the
CMA-ES was sometimes competitive or superior to the CMA-ES-SoP on the
10-dimensional problems. We note the number of possible points for discrete
variables was significantly low on the 10-dimensional problems, which was 100
when (Nk, Lk) = (2, 10) and 40 when (Nk, Lk) = (5, 40). This is why the CMA-
ES could find the optimum points on the sets of points and showed competitive
and superior performance compared to the CMA-ES-SoP. As well as the result in
the previous subsection, the margin adaptation improved the optimization per-
formance on high-dimensional problems. Because we did not tune the increasing
and decreasing factor β, tuning it may improve the optimization performance.

Table 2 shows the success rates and SP1 values computed with 25 trials. In
addition to the discrete optimization in the previous subsection, we can see that
the success rates of CMA-ES-SoP were significantly higher compared to CMA-
ES in all problem settings. In addition, the CMA-ES-SoP achieved smaller SP1
values than that of CMA-ES under all settings on Sphere and Reversed Ellipsoid.
On Ellipsoid, however, the CMA-ES was sometimes better than the CMA-ES-
SoP with respect to SP1. We consider the following reason: when optimizing
the Ellipsoid by the CMA-ES, the variance corresponding to the continuous
variables converged faster than the variance corresponding to the discrete vari-
ables. Therefore, unlike on the other functions, the premature convergence of
the CMA-ES in discrete subspace was relatively prevented.

CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points 249

Table 2. Success rate (SR) and SP1 in mixed-variable optimization.

Problem Setting Method Sphere Ellipsoid Reversed Ellipsoid

SR SP1 SR SP1 SR SP1

Nk = 2
Lk = 10

N = 10 CMA-ES 0.72 2120.3 0.84 3075.9 0.00 –

CMA-ES-SoP 1.00 1567.2 1.00 3652.8 1.00 3605.6

N = 20 CMA-ES 0.28 11448.9 0.28 22646.9 0.00 –

CMA-ES-SoP 1.00 3632.6 1.00 10402.5 1.00 14764.8

N = 30 CMA-ES 0.04 120750.0 0.12 101188.8 0.00 –

CMA-ES-SoP 1.00 6444.4 1.00 25319.2 1.00 26569.7

Nk = 5
Lk = 40

N = 10 CMA-ES 0.52 2871.3 0.40 5455.0 0.08 29687.5

CMA-ES-SoP 1.00 1594.0 0.92 12787.3 0.92 7545.3

N = 20 CMA-ES 0.04 19837.5 0.04 44300.0 0.00 –

CMA-ES-SoP 0.96 3835.4 0.76 78968.1 0.84 57559.8

N = 30 CMA-ES 0.04 119700.0 0.12 238000.0 0.00 –

CMA-ES-SoP 1.00 6890.8 0.48 355264.5 0.64 185078.9

7 Conclusion

We have proposed an extension of the CMA-ES for discrete and mixed-variable
optimization problems on sets of points. The proposed CMA-ES-SoP contains
three additional steps: sample encoding, margin correction, and margin adapta-
tion. In the sample encoding, the samples generated from multivariate Gaussian
distribution are mapped to the closest points in the subspaces. In the margin
correction, the updated covariance matrix C(t+1) is modified to maintain the
marginal generation probability p

(t+1)
k,b above the margin α

(t)
k . Finally, in the

margin adaptation, the margin is adjusted so that the average of marginal prob-
abilities is maintained close to the target value αtarget. The numerical simulation
showed the efficiency of CMA-ES-SoP in discrete and mixed-variable optimiza-
tions on sets of points.

In our experiment, we used the benchmark functions extended from the
benchmarks for continuous optimization. As the benchmark functions for opti-
mization on sets of points are not well-structured, developing suitable benchmark
functions is one of our future works. Moreover, because the step-size adaptation
in the CMA-ES assumes the optimization in continuous space, we will develop
an efficient step-size adaptation for optimization on sets of points in the future.

A Ensuring Margin by Modification of Covariance

In the following, we omit the iterators for short, e.g. we denote ξ
(t+1)
k,b as ξk,b.

According to the Sherman-Morrison formula, the inverse matrix of modified

250 K. Uchida et al.

covariance matrix in Eq. (15) is given by

C−1 = C̄
−1 − ζ · C̄−1

ξk,bξ
T
k,bC̄

−1

1 + ζ · ξT
k,bC̄

−1
ξk,b

, (17)

where C̄ is the covariance matrix before the margin correction, and ζ =
(d2

k,b − γ2
α)/d2

k,b/γ2
α. Considering the relation d2

k,b = ξT
k,bC̄

−1
ξk,b, the squared

Mahalanobis distance after the margin correction is given by

ξT
k,bC

−1ξk,b = ξT
k,bC̄

−1
ξk,b −

ζ ·
(
ξT
k,bC̄

−1
ξk,b

)2

1 + ζ · ξT
k,bC̄

−1
ξk,b

= d2
k,b − ζ · d4

k,b

1 + ζ · d2
k,b

. (18)

Then, substituting ζ = (d2
k,b − γ2

α)/d2
k,b/γ2

α shows ξT
k,bC

−1ξk,b = γ2
α. Finally,

remaining that Φppf is the inverse function of Φcdf and γα = Φppf(1 − αk) =
−Φppf(αk), we have pk,b = αk after the margin correction.

References

1. Akimoto, Y., Shirakawa, S., Yoshinari, N., Uchida, K., Saito, S., Nishida, K.: Adap-
tive stochastic natural gradient method for one-shot neural architecture search. In:
Proceedings of the 36th International Conference on Machine Learning (ICML),
vol. 97, pp. 171–180 (2019)

2. Andrew Ning, S., Damiani, R., Moriarty, P.J.: Objectives and constraints for wind
turbine optimization. J. Solar Energy Eng. 136(4), 041010 (2014). https://doi.org/
10.1115/1.4027693

3. Auger, A., Hansen, N., Perez Zerpa, J.M., Ros, R., Schoenauer, M.: Experimental
comparisons of derivative free optimization algorithms. In: Vahrenhold, J. (ed.)
SEA 2009. LNCS, vol. 5526, pp. 3–15. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02011-7 3

4. Ben Jedidia, F., Doerr, B., Krejca, M.S.: Estimation-of-distribution algorithms for
multi-valued decision variables. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 230–238. Association for Computing Machinery, New
York (2023). https://doi.org/10.1145/3583131.3590523

5. Berny, A.: Linear representation of categorical values. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pp. 119–120.
Association for Computing Machinery, New York (2021). https://doi.org/10.1145/
3449726.3459513

6. Doerr, B., Doerr, C., Koetzing, T.: The right mutation strength for multi-valued
decision variables. In: Proceedings of the Genetic and Evolutionary Computation
Conference 2016, pp. 1115–1122. Association for Computing Machinery, New York
(2016). https://doi.org/10.1145/2908812.2908891

7. Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation strengths for
multi-valued decision variables. Algorithmica 80(5), 1732–1768 (2018). https://
doi.org/10.1007/s00453-017-0341-1

8. Drira, A., Pierreval, H., Hajri-Gabouj, S.: Facility layout problems: a survey. Annu.
Rev. Control. 31(2), 255–267 (2007). https://doi.org/10.1016/j.arcontrol.2007.04.
001

https://doi.org/10.1115/1.4027693
https://doi.org/10.1115/1.4027693
https://doi.org/10.1007/978-3-642-02011-7_3
https://doi.org/10.1007/978-3-642-02011-7_3
https://doi.org/10.1145/3583131.3590523
https://doi.org/10.1145/3449726.3459513
https://doi.org/10.1145/3449726.3459513
https://doi.org/10.1145/2908812.2908891
https://doi.org/10.1007/s00453-017-0341-1
https://doi.org/10.1007/s00453-017-0341-1
https://doi.org/10.1016/j.arcontrol.2007.04.001
https://doi.org/10.1016/j.arcontrol.2007.04.001

CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points 251

9. Hamano, R., Saito, S., Nomura, M., Shirakawa, S.: CMA-ES with margin: lower-
bounding marginal probability for mixed-integer black-box optimization. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 639–647.
Association for Computing Machinery, New York (2022). https://doi.org/10.1145/
3512290.3528827

10. Hansen, N.: A CMA-ES for mixed-integer nonlinear optimization. Research Report
RR-7751, INRIA (2011). https://inria.hal.science/inria-00629689

11. Hansen, N.: The CMA evolution strategy: a tutorial. CoRR abs/1604.00772 (2016)
12. Hansen, N., Auger, A.: Principled design of continuous stochastic search: from

theory to practice. In: Borenstein, Y., Moraglio, A. (eds.) Theory and Principled
Methods for the Design of Metaheuristics. NCS, pp. 145–180. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-33206-7 8

13. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions
in evolution strategies: the covariance matrix adaptation. In: Proceedings of
IEEE International Conference on Evolutionary Computation, pp. 312–317 (1996).
https://doi.org/10.1109/ICEC.1996.542381

14. Ikeda, K., Ono, I.: Natural evolution strategy for mixed-integer black-box optimiza-
tion. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 831–838. Association for Computing Machinery, New York (2023). https://doi.
org/10.1145/3583131.3590518

15. Kohira, T., Kemmotsu, H., Akira, O., Tatsukawa, T.: Proposal of benchmark
problem based on real-world car structure design optimization. In: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, pp. 183–184.
Association for Computing Machinery (2018). https://doi.org/10.1145/3205651.
3205702

16. Laumanns, M., Laumanns, N.: Evolutionary multiobjective design in automotive
development. Appl. Intell. 23(1), 55–70 (2005). https://doi.org/10.1007/s10489-
005-2372-6

17. Nomura, M., Shibata, M.: Cmaes: A Simple yet Practical Python Library for CMA-
ES. arXiv preprint arXiv:2402.01373 (2024)

18. Prodhon, C., Prins, C.: A survey of recent research on location-routing problems.
Eur. J. Oper. Res. 238(1), 1–17 (2014). https://doi.org/10.1016/j.ejor.2014.01.005

19. Rothlauf, F.: Binary representations of integers and the performance of selectore-
combinative genetic algorithms. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G.,
Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp.
99–108. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7 10

https://doi.org/10.1145/3512290.3528827
https://doi.org/10.1145/3512290.3528827
https://inria.hal.science/inria-00629689
https://doi.org/10.1007/978-3-642-33206-7_8
https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.1145/3583131.3590518
https://doi.org/10.1145/3583131.3590518
https://doi.org/10.1145/3205651.3205702
https://doi.org/10.1145/3205651.3205702
https://doi.org/10.1007/s10489-005-2372-6
https://doi.org/10.1007/s10489-005-2372-6
http://arxiv.org/abs/2402.01373
https://doi.org/10.1016/j.ejor.2014.01.005
https://doi.org/10.1007/3-540-45712-7_10

Natural Gradient Interpretation
of Rank-One Update in CMA-ES

Ryoki Hamano1(B), Shinichi Shirakawa2, and Masahiro Nomura1

1 CyberAgent, Inc., Shibuya, Japan
{hamano ryoki xa,nomura masahiro}@cyberagent.co.jp

2 Yokohama National University, Yokohama, Japan
shirakawa-shinichi-bg@ynu.ac.jp

Abstract. The covariance matrix adaptation evolution strategy (CMA-
ES) is a stochastic search algorithm using a multivariate normal dis-
tribution for continuous black-box optimization. In addition to strong
empirical results, part of the CMA-ES can be described by a stochastic
natural gradient method and can be derived from information geomet-
ric optimization (IGO) framework. However, there are some components
of the CMA-ES, such as the rank-one update, for which the theoretical
understanding is limited. While the rank-one update makes the covari-
ance matrix to increase the likelihood of generating a solution in the
direction of the evolution path, this idea has been difficult to formulate
and interpret as a natural gradient method unlike the rank-μ update. In
this work, we provide a new interpretation of the rank-one update in the
CMA-ES from the perspective of the natural gradient with prior distri-
bution. First, we propose maximum a posteriori IGO (MAP-IGO), which
is the IGO framework extended to incorporate a prior distribution. Then,
we derive the rank-one update from the MAP-IGO by setting the prior
distribution based on the idea that the promising mean vector should
exist in the direction of the evolution path. Moreover, the newly derived
rank-one update is extensible, where an additional term appears in the
update for the mean vector. We empirically investigate the properties of
the additional term using various benchmark functions.

Keywords: Covariance Matrix Adaptation Evolution Strategy ·
Natural Gradient · Information Geometric Optimization

1 Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) [10,13,16] is
recognized as a state-of-the-art derivative-free stochastic algorithm for black-
box continuous optimization problems. The CMA-ES proceeds the optimization
by repeatedly sampling from the multivariate normal distribution and updating
the distribution parameters such as the mean vector, the covariance matrix, and
the step-size. Despite the small number of hyperparameters to be tuned, the
CMA-ES shows high performance for non-linear, ill-conditioned, or multimodal
problems [15,21].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 252–267, 2024.
https://doi.org/10.1007/978-3-031-70068-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_16&domain=pdf
https://doi.org/10.1007/978-3-031-70068-2_16

Natural Gradient Interpretation of Rank-One Update in CMA-ES 253

In addition to its empirical success, the CMA-ES has attractive theoretical
properties, such as its relationship to the natural gradient method. The update
of the distribution parameters in the CMA-ES can be partially described by the
stochastic natural gradient ascent [3]. In fact, the pure rank-μ update CMA-
ES is an instance of information geometric optimization (IGO) [20], a unified
framework for probabilistic model-based black-box optimization algorithms.

However, the theoretical understanding of the other components of the CMA-
ES, such as the rank-one update, is limited. The rank-one update makes the
covariance matrix to increase the likelihood of generating a solution in the direc-
tion of the evolution path, which accumulates the updating direction of the
mean vector. Li and Zhang [18] discuss that the evolution path cancels opposite
update directions of the mean vector and the rank-one update term with the
evolution path serves as momentum term for the covariance matrix. However,
unlike the rank-μ update, these ideas of the rank-one update have been difficult
to formulate and interpret based on natural gradients.

In this work, we provide a new interpretation of the rank-one update in the
CMA-ES from the perspective of the natural gradient with prior distribution.
To this end, we first propose maximum a posterioiri IGO (MAP-IGO), which
is the IGO framework extended to incorporate a prior distribution. The MAP
estimation approach has provided new interpretations or extensions to exist-
ing methods, such as regularization in linear regression [8] and reinforcement
learning [2,23]. Then, we derive the rank-one update from the MAP-IGO with
the prior distribution set based on the idea that the promising mean vector
should exist in the direction of the evolution path. Moreover, the newly derived
rank-one update is extensible, where an additional term, we call momentum
update, appears in the update for the mean vector depending on the setting of
the prior distribution. We propose the CMA-ES with the momentum update
as maximum a posteriori CMA-ES (MAP-CMA) and empirically investigate its
properties using various benchmark functions.

The remainder of this paper is organized as follows. Section 2 shows back-
ground of this study, which is needed in the rest of the paper. In Sect. 3, we
propose the MAP-IGO and derive the update rule when the multivariate nor-
mal distribution and the normal-inverse-Wishart distribution are applied to the
MAP-IGO. In Sect. 4, we provide a new interpretation of the rank-one update in
the CMA-ES and propose the MAP-CMA. Section 5 shows experimental results
for the MAP-CMA on benchmark functions. Section 6 concludes the paper with
future work.

2 Preliminaries

2.1 CMA-ES

The covariance matrix adaptation evolution strategy (CMA-ES) generates multi-
ple solutions in each iteration from the multivariate normal distribution N (m(t),

(σ(t))2C(t)). To generate candidate solutions from the distribution, the CMA-
ES updates the distribution parameter, the mean vector m(t) ∈ R

N , and the

254 R. Hamano et al.

covariance matrix (σ(t))2C(t) ∈ R
N×N . This update partially corresponds to

the natural gradient ascent in the parameter space, which is the steepest ascent
with respect to the Fisher metric [4]. We will describe information geometric
optimization [20], a framework that generalizes this natural gradient ascent step,
in Sect. 2.2. This section introduces the well-known CMA-ES variant, (μ/μw, λ)-
CMA-ES, minimizing the objective function f(x).

In the t-th iteration, the λ candidate solutions xi (i = 1, . . . , λ) are gener-
ated as

yi ∼ N (0,C(t)) , (1)

xi = m(t) + σ(t)yi . (2)

The mean vector m(t) is updated as

m(t+1) = m(t) + cm

λ∑

i=1

wi(xi:λ − m(t)) , (3)

where cm is the learning rate for the mean vector, and wi is the weight that
holds

∑μ
i=1 wi = 1, w1 ≥ w2 ≥ · · · ≥ wμ > 0, wj = 0 (j = μ + 1, . . . , λ). The

index of the i-th best sample is denoted as i :λ.
The CMA-ES employs the two evolution paths1.

p(t+1)
σ = (1 − cσ)p(t)

σ +
√

cσ(2 − cσ)μwC(t)− 1
2

λ∑

i=1

wiyi:λ , (4)

p(t+1)
c = (1 − cc)p(t)

c +
√

cc(2 − cc)μw

λ∑

i=1

wiyi:λ , (5)

where μw = 1/
∑μ

i=1 w2
i , cσ and cc are cumulative rates.

The covariance matrix C(t) is updated as

C(t+1) ← C(t) + c1

(
p(t+1)

c p(t+1)
c

� − C(t)
)

︸ ︷︷ ︸
rank-one update

+ cμ

λ∑

i=1

wi

(
yi:λy�

i:λ − C(t)
)

︸ ︷︷ ︸
rank-μ update

, (6)

where c1 and cμ are the learning rates for the rank-one update and the rank-μ
update, respectively.

The step-size σ(t) is updated as

σ(t+1) ← σ(t) exp

(
cσ

dσ

(
‖p

(t+1)
σ ‖

E[‖N (0, I)‖]
− 1

))
, (7)

where dσ is a damping factor. The expected norm E[‖N (0, I)‖] is practically
approximated by

√
N

(
1 − 1

4N + 1
21N2

)
. The CMA-ES that only employs the

mean vector update and the rank-μ update is called pure rank-μ update CMA-
ES [16].
1 The CMA-ES sometimes employs the indicator function hσ to prevent evolution

path p(t)
c from rapidly lengthening.

Natural Gradient Interpretation of Rank-One Update in CMA-ES 255

2.2 Information Geometric Optimization

Information geometric optimization (IGO) [20] is a unified framework of proba-
bilistic model-based black-box optimization algorithms. Given a family of proba-
bility distributions {Pθ} on X parameterized by θ ∈ Θ, the IGO transforms the
original problem into the maximization of the expected value of Jθ(t) : Θ → R.
The function Jθ(t) depends on the current distribution parameter θ(t) and is
defined as the expectation of the utility function W f

θ(t)(x) over pθ (x), i.e.,

Jθ(t)(θ) =
∫

W f

θ(t)(x)pθ (x)dx . (8)

The utility function W f

θ(t)(x) is defined based on the quantiles of f under the
current distribution. This approach provides invariance under increasing trans-
formations of the objective function. Let q�

θ (x) = Prx′∼pθ
(f(x′) ≤ f(x)) and

w : [0, 1] → R be a non-increasing function. Assuming that the probability of
having the same evaluation value for different samples is 0, the utility function
W f

θ(t)(x) is defined as w(q�
θ(t)(x)). See [20] for the definition of W f

θ(t)(x) when
this assumption is not satisfied.

The IGO maximizes Eq. (8) by natural gradient ascent. The natural gradient
∇̃θJθ(t)(θ) is given by the product of the inverse of Fisher information matrix
and the vanilla gradient, namely, F−1(θ)∇θJθ(t)(θ). Then, the natural gradient
∇̃θJθ(t)(θ) is calculated as follows:

∇̃θJθ(t)(θ) =
∫

W f

θ(t)(x)∇̃θ (ln pθ (x))pθ (x)dx . (9)

In the black-box setting, Eq. (9) cannot be computed analytically, hence the
natural gradient of Jθ(t)(θ) at θ = θ(t) is approximated by the Monte Carlo
estimation using λ samples x1, . . . ,xλ generated from Pθ(t) as

∇̃θJθ(t)(θ)
∣∣∣
θ=θ(t)

≈ 1
λ

λ∑

i=1

ŵi ∇̃θ ln pθ (xi:λ)
∣∣∣
θ=θ(t)

, (10)

where ŵi is the ranking-based utility value that can be regarded as the estimation
value of W f

θ(t)(xi). Introducing the learning rate η, we obtain the update rule.

θ(t+1) = θ(t) + η
λ∑

i=1

ŵi

λ
∇̃θ ln pθ (xi:λ)

∣∣∣
θ=θ(t)

. (11)

The IGO framework recovers the pure rank-μ update CMA-ES when the family
of normal distributions is applied, and the population-based incremental learn-
ing (PBIL) [7] when the family of Bernoulli distributions is applied.

3 Maximum a Posteriori IGO

In this section, we propose maximum a posteriori IGO (MAP-IGO), which is the
IGO framework extended to incorporate a prior distribution in a principled way.

256 R. Hamano et al.

Furthermore, we apply the multivariate normal distribution and the normal-
inverse-Wishart distribution, which is the conjugate prior distribution of the
multivariate normal distribution, to the MAP-IGO.

3.1 Introducing Prior Information to IGO

First, we rewrite the existing IGO objective in the form of maximum likelihood
(ML) estimation. Then, we further rewrite the ML estimation in the form of the
maximum a posteriori (MAP) estimation.

Equivalence of IGO Objective to ML Estimation. To rewrite the existing IGO
objective in the form of the ML estimation, we introduce a binary event Rθ(t) ∈
{0, 1} where it holds p(Rθ(t) = 1|x) ∝ W f

θ(t)(x), inspired by [1,2,23]. It should
be noted that Rθ(t) = 1 depends on the current distribution parameter θ(t).
Intuitively, the probability p(Rθ(t) = 1|x) ∝ W f

θ(t)(x) is larger when x has
a better objective function value than solutions sampled from pθ(t) . Here, we
consider the marginal distribution of the event Rθ(t) = 1 over θ.

p(Rθ(t) = 1|θ) =
∫

p(Rθ(t) = 1|x)pθ (x)dx . (12)

The important thing here is that the maximization of the IGO objective can be
rewritten in the form of the ML estimation as follows:

argmax
θ∈Θ

Jθ(t)(θ) = argmax
θ∈Θ

p(Rθ(t) = 1|θ) . (13)

MAP Estimation Instead of ML Estimation. Equation (13) allows us to consider
the optimization of the IGO objective as a kind of ML estimation. Then, we can
introduce the prior distribution into the IGO by taking the approach of the MAP
estimation [8]. To that end, we calculate the posterior distribution by using the
Bayes’ theorem as follows:

p(θ|Rθ(t) = 1) ∝ p(Rθ(t) = 1|θ)p(θ) , (14)

where p(θ) is the prior distribution. We note that the prior distribution p(θ)
can be set at each time depending on the current parameter θ(t). The resulting
framework, MAP-IGO, estimates θ as the mode of the posterior distribution:

argmax
θ∈Θ

ln p(θ | Rθ(t) = 1) = argmax
θ∈Θ

ln p(Rθ(t) = 1 | θ) + ln p(θ) . (15)

3.2 Natural Gradient Update for MAP-IGO

To optimize Eq. (15) using the natural gradient ascent, we calculate the natural
gradient of ln p(Rθ(t) = 1 | θ) + ln p(θ). We assume that

∫
W f

θ(t)(x)pθ (x)dx(=

Natural Gradient Interpretation of Rank-One Update in CMA-ES 257

∫ 1

0
w(q)dq) = 0 holds in this work2. First, the natural gradient ∇̃θ ln p(Rθ(t) =

1 | θ) can be calculated as follows:

∇̃θ ln p(Rθ(t) = 1 | θ)

= ∇̃θ ln
∫

W f

θ(t)(x)pθ (x)dx (16)

=
1

∫
W f

θ(t)(x)pθ (x)dx
∇̃θ

∫
W f

θ(t)(x)pθ (x)dx (17)

=
1

∫
W f

θ(t)(x)pθ (x)dx

∫
W f

θ(t)(x)∇̃θ (ln pθ (x))pθ (x)dx . (18)

According to [20],
∫

W f

θ(t)(x)pθ(t)(x)dx is constant and always equal to the

average weight
∫ 1

0
w(q)dq. Then, the natural gradient Eq. (18) at θ = θ(t) can

be approximated by Monte Carlo estimation as follows, as with the original IGO
framework:

1
1
λ

∑λ
i=1 ŵi

· 1
λ

λ∑

i=1

ŵi ∇̃θ ln pθ (xi:λ)
∣∣∣
θ=θ(t)

. (19)

Note that
∫

W f

θ(t)(x)pθ(t)(x)dx =
∫ 1

0
w(q)dq ≈ 1

λ

∑λ
i=1 ŵi. Finally, using the

natural gradient of ln p(θ) at θ = θ(t), the updated parameter θ(t+1) is given as
follows:

θ(t+1) = θ(t) + η

(
λ∑

i=1

ŵi∑λ
j=1 ŵj

∇̃θ ln pθ (xi:λ)
∣∣∣
θ=θ(t)

+ ∇̃θ ln p(θ)
∣∣∣
θ=θ(t)

)
(20)

When we apply the multivariate normal distribution to the probability distribu-
tion and the normal-inverse-Wishart distribution, which is the conjugate prior
of the multivariate normal distribution, to the prior distribution, we can derive
the pure rank-μ update CMA-ES that can incorporate prior information. In
addition, when we apply the family of Bernoulli distributions to the probability
distribution and the family of beta distributions, where the beta distribution is
the conjugate prior of the Bernoulli distribution, to the prior distribution, we
can derive the PBIL that can incorporate prior distribution.

3.3 Natural Gradient for Normal-Inverse-Wishart Distribution

We apply the multivariate normal distribution to pθ (x) and the normal-
inverse-Wishart distribution to p(θ). The normal-inverse-Wishart distribution is
defined by

2 It should be noted that while the assumption
∫ 1

0
w(q)dq �= 0 usually holds in the

CMA-ES, some instances of IGO, such as compact genetic algorithm [17], do not
satisfy this. We will not pursue this limitation in depth as our focus is on the CMA-
ES.

258 R. Hamano et al.

p(θ) = N
(

m | δ,
1
γ

C

)
W−1(C | Ψ , ν) . (21)

In the normal-inverse-Wishart distribution, the multivariate normal distribution
is given as

N
(

m | δ,
1
γ

C

)
=

(γ

2π

)N
2 |C|− 1

2 exp
(
−γ

2
(m − δ)�C−1(m − δ)

)
,

where δ ∈ R
N and γ > 0. The inverse-Wishart distribution is given as

W−1(C | Ψ , ν) =
|Ψ | ν

2

2
νN
2 ΓN

(
ν
2

) |C|− ν+N+1
2 exp

(
−1

2
Tr

(
ΨC−1

))
,

where ΓN (·) is the multivariate gamma function, ν > N − 1, and Ψ ∈ R
N×N is

a positive define matrix.
We derive the natural gradient of the log-likelihood of the normal-inverse-

Wishart distribution over the parameter space of pθ (x). Let θ = [m�, vec(C)�]�,
where vec(C) represents the matrix C rearranged into a column vector. The
vanilla gradient of the log-likelihood of p(θ) is given as follows:

∇θ ln p(θ) =

⎡

⎢⎣
−γC−1(m − δ)

1
2
vec

(
γC−1(m − δ)(m − δ)�C−1

−(ν + N + 2)C−1 + C−1ΨC−1
)

⎤

⎥⎦ (22)

According to [3], the Fisher information matrix F (θ) with respect to the multi-
variate normal distribution parameter and its inverse matrix are, respectively,

F (θ) =
[

C−1 0
0 1

2C−1 ⊗ C−1

]
and F−1(θ) =

[
C 0
0 2C ⊗ C

]
,

where ⊗ is the Kronecker product. Hence, the natural gradient of the log-
likelihood of p(θ) is calculated as follows:

∇̃θ ln p(θ) =
[−γ(m − δ)

vec
(
γ(m − δ)(m − δ)� + Ψ − (ν + N + 2)C

)
]

(23)

3.4 Update Rules for MAP-IGO with Multivariate Normal
Distribution

From [3], the natural gradient of the log-likelihood of pθ (x) is calculated as

∇̃θ ln pθ (x) =
[

(x − m)
vec

(
(x − m)(x − m)� − C

)
]

. (24)

Natural Gradient Interpretation of Rank-One Update in CMA-ES 259

Let wi = ŵi/(
∑λ

j=1 ŵj) for short, and we obtain the update rule from Eq. (20).

m(t+1) = m(t) + cm

(
λ∑

i=1

wi(xi:λ − m(t)) −γ(m(t) − δ)

)
(25)

C(t+1) = C(t) + cμ

(
λ∑

i=1

wi

(
(xi:λ − m(t))(xi:λ − m(t))� − C(t)

)

+γ(m(t) − δ)(m(t) − δ)�+ Ψ − (ν + N + 2)C(t)

) (26)

Shaded terms are differences from the original pure rank-μ update and
represent terms corresponding to the natural gradient of the log-likelihood of
the prior distribution.

4 Interpretation of the Rank-One Update with Prior
Distribution

In the previous section, we introduced the MAP-IGO to incorporate prior distri-
bution into the IGO framework, and derived the update rules of the MAP-IGO in
which the multivariate normal distribution and the normal-inverse-Wishart dis-
tribution are applied. In this section, we demonstrate that the rank-one update
can be derived from the MAP-IGO by setting the prior distribution based on
the idea that the promising mean vector should exist in the direction of the evo-
lution path. In addition, we discuss the interpretation to the parameter setting
of the prior distribution used to derive the rank-one update.

4.1 Derivation of the Rank-One Update

To confirm that we can derive the rank-one update from the MAP-IGO and
reproduce the update rule of the CMA-ES, we first introduce the step-size
σ(t) into the update rule of the MAP-IGO. By replacing C(t) with (σ(t))2C(t),
Eq. (26) results in the following:

C(t+1) = C(t)+ cμ

(
λ∑

i=1

wi

((
xi:λ − m(t)

σ(t)

)(
xi:λ − m(t)

σ(t)

)�
− C(t)

)

+γ

(
m(t) − δ

σ(t)

)(
m(t) − δ

σ(t)

)�
+

Ψ

(σ(t))2
− (ν + N + 2)C(t)

) (27)

Next, we set the parameters δ, γ,Ψ of the normal-inverse-Wishart distribution.
When the expected update direction of the mean vector is obtained as the evo-
lution path p

(t+1)
c , the promising mean vector can be considered to exist at

m(t)+rσ(t)p
(t+1)
c with r > 0. In this situation, we can set δ = m(t)+rσ(t)p

(t+1)
c ,

260 R. Hamano et al.

Algorithm 1: Single update in the MAP-CMA

1: given m(t) ∈ R
N , σ(t) ∈ R+, C(t) ∈ R

N×N , p
(t)
σ ∈ R

N , p
(t)
c ∈ R

N

2: for i = 1, . . . , λ do
3: yi ∼ N (0,C(t))
4: xi ← m(t) + σ(t)yi

5: end for
6: p

(t+1)
σ ← (1 − cσ)p(t)

σ +
√

cσ(2 − cσ)μwC(t)− 1
2 ∑λ

i=1 wiyi:λ

7: p
(t+1)
c ← (1 − cc)p

(t)
c +

√
cc(2 − cc)μw

∑λ
i=1 wiyi:λ

8: m(t+1) ← m(t) + cm

(
∑λ

i=1 wi(xi:λ − m(t)) +
c1

rcμ
σ(t)p(t+1)

c

)

9: C(t+1) ← C(t) + c1

(
p

(t+1)
c p

(t+1)
c

�− C(t)

)
+ cμ

∑λ
i=1 wi

(
yi:λy�

i:λ − C(t)
)

10: σ(t+1) ← σ(t) exp
(

cσ

dσ

(‖p(t+1)
σ ‖

E[‖N (0,I)‖] − 1
))

which results from the fact that the expected value of the mean vector in the
normal-inverse-Wishart distribution is given by δ. To match the coefficients in
Eq. (6) and Eq. (27), we set

γ =
c1

r2cμ
and Ψ =

(
ν + N + 2 − c1

cμ

)
(σ(t))2C(t) . (28)

Therefore, we obtain the update rule of the mean vector and covariance matrix.

m(t+1) = m(t) + cm

(
λ∑

i=1

wi(xi:λ − m(t)) +
c1

rcμ
σ(t)p

(t+1)
c

)
(29)

C (t+1) = C (t) +cμ

(
λ∑

i=1

wi

(
yi:λy�

i:λ − C (t)
)
+

c1

cμ

(
p
(t+1)
c p

(t+1)
c

�− C (t)

))
(30)

We note that yi:λ = (xi:λ −m(t))/σ(t) as defined in Eq. (2). While the rank-

one update of the covariance matrix is reproduced, the term cmc1
rcμ

σ(t)p
(t+1)
c

appears in the mean vector update rule. As r approaches infinity, Eq. (29)
converges to the original update rule of CMA-ES shown in Eq. (3), whose
interpretation is discussed in Sect. 4.2. When r takes a finite value, the term
cmc1
rcμ

σ(t)p
(t+1)
c can be interpreted as a kind of momentum, which is used in

gradient descent methods. We call this additional term momentum update in
this study. In fact, Li and Zhang [18] show that the evolution path accumulates
natural gradients with respect to the mean vector and acts as a momentum
under stationary condition. They also show that the outer product of the evolu-
tion path serves as a rank-one momentum term for the covariance matrix. Our

Natural Gradient Interpretation of Rank-One Update in CMA-ES 261

Fig. 1. The prior distribution with respect to the mean vector N
(
m | δ, 1

γ
C

)
, where

δ and 1
γ
C are indicated by the orange star and ellipse, respectively. Since δ = m(t) +

rσ(t)p(t+1)
c and 1

γ
∝ r2, multiplying r by a constant r′ > 1 corresponds to expanding

N
(
m | δ, 1

γ
C

)
by r′ times around m(t).

interpretation suggests that the rank-one update with the momentum update is
more rational than the original rank-one update in that it is derived in terms
of natural gradients. In addition, it can be said that the momentum update is
conducive to achieving the goal of the rank-one update, which is to generate a
solution in the direction of the evolution path.

Algorithm 1 shows the single-update procedure of the CMA-ES with the
momentum update, named maximum a posterior CMA-ES (MAP-CMA). In
this study, the MAP-CMA employs the cumulative step-size adaptation, which
differs from the CMA-ES only by the momentum update, the shaded term. The
effect of the momentum update with finite r is investigated in Sect. 5.

4.2 Interpretation for the Setting of the Prior Distribution

In the normal-inverse-Wishart distribution, δ and γ are the expected value and
global variance of the mean vector, respectively. Multiplying r by a constant
r′ > 1 corresponds to the affine transformation of expanding the prior distri-
bution with respect to the mean vector by r′ times around m(t) as shown in
Fig. 1. Thus, as r increases, the prior distribution with respect to the mean
vector N

(
m | δ, 1

γ C
)

approaches a non-informative prior distribution. Then,
as r increases, the effect of the prior distribution on the mean vector update
decreases.

5 Experiments

In the previous section, we derived the rank-one update by setting the prior
distribution. Moreover, we showed that it is extensible by setting r to a finite
value and proposed MAP-CMA, a CMA-ES equipped with it. In this section, we
investigate the behavior of the MAP-CMA varying r. The code of MAP-CMA
will be made available at https://github.com/CyberAgentAILab/cmaes [19].

https://github.com/CyberAgentAILab/cmaes

262 R. Hamano et al.

Table 1. Benchmark functions to be minimized.

Name Definition

Sphere f(x) =
∑N

i=1 x2
i

Ellipsoid f(x) =
∑N

i=1 106 i−1
N−1 x2

i

Cigar f(x) = x2
1 +

∑N
i=2 106x2

i

Rosenbrock f(x) =
∑N−1

i=1

(
100(x2

i − xi+1)2 + (xi − 1)2
)

Ackley f(x) = 20−20 exp
(
−0.2

√
1
N

∑N
i=1x

2
i

)
+e−exp

(
1
N

∑N
i=1 cos(2πxi)

)

Rastrigin f(x) = 10N +
∑N

i=1

(
x2

i − 10 cos(2πxi)
)

5.1 Experimental Setting

The benchmark functions are summarized in Table 1. The initial mean vector
m(0) was drawn uniform randomly from [a, b]N for each trial, and the initial
step-size σ(0) was given by (b − a)/2, where (a, b) was given by (1, 5) for Sphere,
Ellipsoid, Cigar, and Rastrigin, (−2, 2) for Rosenbrock, (1, 30) for Ackley. The
initial covariance matrix C(0) was given by an identity matrix.

In the CMA-ES, cm was set to 1. In the MAP-CMA, cm was set to 1/(1 +
c1/(cμr)) ensuring cm + cmc1/(rcμ) = 1. The population size λ of the CMA-ES
and MAP-CMA was set to 4+�3 ln N� for Sphere, Ellipsoid, Cigar, Rosenbrock,
and Ackley, and for Rastrigin, it was set to {700, 1400, 2100, 2800} for dimensions
{10, 20, 40, 80} so that the success rate for the CMA-ES was sufficiently high,
referring to [15]. The other hyperparameters of the CMA-ES and MAP-CMA
were set to those in [14, Table 2].

Each trial was terminated and regarded as a success if the best evaluation
value reached less than 10−10. Each trial was terminated and regarded as a
failure if any of the following conditions were met: the number of evaluations
reached more than 106N ; the minimum eigenvalue of (σ(t))2C(t) became less
than 10−30. For each setting, the 100 independent trials were conducted.

5.2 Results and Discussion

Table 2 shows the success rate and SP1 [5] over 100 independent trials. We note
that the SP1 index is defined as the average evaluation counts in successful trials
divided by the success rate. The behavior of the MAP-CMA approaches that of
the CMA-ES as r increases. When r is too small and the effect of the old samples
accumulated in the evolution path is too large, the momentum update in the
MAP-CMA tends to have a negative effect on optimization. When r = N , the
MAP-CMA is superior to the CMA-ES for Rosenbrock and competitive for the
other functions. Figure 2 shows the transitions of the best evaluation value on the
100 independent trials. While the difference in performance between the CMA-
ES and the MAP-CMA is slight for Sphere, Ellipsoid, Cigar, and Rastrigin,

Natural Gradient Interpretation of Rank-One Update in CMA-ES 263

Table 2. Success rate (SR) and SP1 over 100 independent trials.

Function N CMA-ES MAP-CMA
r = 1 r =

√
N r = N

SR SP1 SR SP1 SR SP1 SR SP1

Sphere 10 1.00 1787 1.00 2399 1.00 1961 1.00 1824
20 1.00 3329 1.00 5034 1.00 3617 1.00 3366
40 1.00 6276 1.00 10719 1.00 6705 1.00 6322
80 1.00 11568 1.00 24518 1.00 12246 1.00 11658

Ellipsoid 10 1.00 6078 1.00 6888 1.00 6215 1.00 6050
20 1.00 18906 1.00 21486 1.00 18984 1.00 18853
40 1.00 68401 1.00 74256 1.00 67205 1.00 68056
80 1.00 265855 1.00 284614 1.00 259434 1.00 264651

Cigar 10 1.00 4423 1.00 5623 1.00 4768 1.00 4506
20 1.00 8693 1.00 12314 1.00 9256 1.00 8787
40 1.00 16976 1.00 26003 1.00 17738 1.00 17068
80 1.00 31951 1.00 58000 1.00 33227 1.00 32098

Rosenbrock 10 0.93 6972 0.91 7039 0.91 6825 0.94 6802
20 0.90 24015 0.80 24152 0.92 20599 0.91 22824
40 0.93 87489 0.76 80442 0.89 77235 0.94 82818
80 0.91 354686 0.80 258692 0.92 287489 0.91 344089

Ackley 10 0.97 3719 0.73 6734 0.94 4248 0.96 3964
20 0.95 6946 0.60 17122 0.96 7555 0.96 6991
40 1.00 12143 0.31 69112 0.98 13318 1.00 12316
80 1.00 21974 0.00 - 0.91 25775 0.99 22314

Rastrigin 10 0.99 50781 1.00 50113 0.98 50722 0.97 51602
20 1.00 167412 1.00 168168 1.00 167748 1.00 168196
40 1.00 606858 0.99 620722 1.00 610302 1.00 608874
80 1.00 2110892 1.00 2127692 1.00 2096612 1.00 2106244

the MAP-CMA improves the best evaluation values more efficiently than the
CMA-ES for Rosenbrock.

Figure 3 shows the transition of the mean vector when optimizing Rosen-
brock with N = 20. The initial mean vector and step-size were given as
m(0) = (1, . . . , 1) and σ(0) = 1, respectively. Once the mean vector reaches near
the origin, it moves to (1, . . . , 1). At this stage, the momentum update in the
mean vector update allows the MAP-CMA to move the mean vector faster than
the CMA-ES. This result suggests that the MAP-CMA can be more efficient
than the CMA-ES when the required mean vector moves are large.

264 R. Hamano et al.

0 2000
Evaluation Count

10−8

10−5

10−2

101

B
es
t
Ev

al
ua
tio

n
Sphere

0 10000 20000
Evaluation Count

10−13

10−7

10−1

105

Ellipsoid

0 5000
Evaluation Count

10−7

10−3

101

105

109
Cigar

0 10000 20000
Evaluation Count

10−7

10−3

101

105

B
es
t
Ev

al
ua
tio

n

Rosenbrock

0 2500 5000
Evaluation Count

10−8

10−5

10−2

101
Ackley

CMA-ES MAP-CMA (r = N)

0 100000
Evaluation Count

10−9

10−6

10−3

100

103
Rastrigin

Fig. 2. Transitions of best evaluation value for N = 20 over 100 independent trials.

When optimizing Ackley with the MAP-CMA, the optimization stalls in
some trials. This stagnation may be due to the effect of past samples [22], which
is an issue to be investigated in the future.

Fig. 3. Transition of mean vector in one typical trial of optimizing Rosenbrock with
N = 20.

Natural Gradient Interpretation of Rank-One Update in CMA-ES 265

6 Conclusion

We provided a new interpretation of the rank-one update in the CMA-ES from
the perspective of the natural gradient with prior distribution. We firstly pro-
posed maximum a posteriori IGO (MAP-IGO), which is the IGO framework
extended to incorporate a prior distribution, and derived the update rules of
the MAP-IGO in which the multivariate normal distribution and the normal-
inverse-Wishart distribution are applied. Then, we derived the rank-one update
from the MAP-IGO by setting the prior distribution based on the idea that
the promising mean vector should exist in the direction of the evolution path.
Furthermore, the newly derived rank-one update is extensible, and we proposed
maximum a posterior CMA-ES (MAP-CMA), a CMA-ES equipped with it. The
mean update rule in the MAP-CMA has an additional term containing the evo-
lution path, which can be interpreted as a momentum term as discussed in [18]
and we call this additional term momentum update in this study. Experimental
results showed that the MAP-CMA is better than the CMA-ES in optimizing
functions that require a lot of mean vector moves, such as Rosenbrock.

In this study, the coefficients of the prior distribution were set so that the
derived rank-one update matched that of the original CMA-ES. However, there
is room for adjustment of these coefficients and the current hyperparameters of
the MAP-CMA because some trials stagnate in the multimodal function. The
detailed investigation of these settings is future work. In addition, it is important
to research the effectiveness of momentum update in the CMA-ES with restart
strategies [6,11] or integer handling [9,12]. Furthermore, the MAP-IGO can set
the parameter of the prior distribution other than the idea of the rank-one
update, and it is also possible to derive the PBIL that can handle the prior
distribution by applying the Bernoulli and Beta distributions. The discovery of
new knowledge and the improvement of algorithms based on these techniques
are also important future works.

References

1. Abdolmaleki, A., Price, B., Lau, N., Reis, L.P., Neumann, G.: Deriving and improv-
ing CMA-ES with information geometric trust regions. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 657-664.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/
3071178.3071252

2. Abdolmaleki, A., Springenberg, J.T., Tassa, Y., Munos, R., Heess, N., Riedmiller,
M.: Maximum a posteriori policy optimisation. In: International Conference on
Learning Representations (2018)

3. Akimoto, Y., Nagata, Y., Ono, I., Kobayashi, S.: Bidirectional relation between
CMA evolution strategies and natural evolution strategies. In: Parallel Problem
Solving from Nature, PPSN XI, pp. 154–163 (2010)

4. Amari, S.I., Nagaoka, H.: Methods of Information Geometry, vol. 191 (2000)
5. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing pop-

ulation size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp.
1769–1776. IEEE (2005)

https://doi.org/10.1145/3071178.3071252
https://doi.org/10.1145/3071178.3071252

266 R. Hamano et al.

6. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popula-
tion size, vol. 2, pp. 1769–1776 (2005). https://doi.org/10.1109/CEC.2005.1554902

7. Baluja, S.: Population-based incremental learning: a method for integrating genetic
search based function optimization and competitive learning (1994). https://api.
semanticscholar.org/CorpusID:14799233

8. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol.
4. Springer, Heidelberg (2006)

9. Hamano, R., Saito, S., Nomura, M., Shirakawa, S.: CMA-ES with margin: lower-
bounding marginal probability for mixed-integer black-box optimization. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO 2022,
pp. 639-647. Association for Computing Machinery, New York (2022). https://doi.
org/10.1145/3512290.3528827

10. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions
in evolution strategies: the covariance matrix adaptation. In: Proceedings of
IEEE International Conference on Evolutionary Computation, pp. 312–317 (1996).
https://doi.org/10.1109/ICEC.1996.542381

11. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function
testbed. In: Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers, GECCO 2009,
pp. 2389-2396. Association for Computing Machinery, New York (2009). https://
doi.org/10.1145/1570256.1570333

12. Hansen, N.: A CMA-ES for mixed-integer nonlinear optimization (2011)
13. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv preprint arXiv:1604.

00772 (2016)
14. Hansen, N., Auger, A.: Principled design of continuous stochastic search: from the-

ory to practice, pp. 145–180 (2014). https://doi.org/10.1007/978-3-642-33206-7 8
15. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test

functions. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 29

16. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol. Comput. 11(1), 1–18 (2003). https://doi.org/10.1162/106365603321828970

17. Harik, G., Lobo, F., Goldberg, D.: The compact genetic algorithm. IEEE Trans.
Evol. Comput. 3(4), 287–297 (1999). https://doi.org/10.1109/4235.797971

18. Li, Z., Zhang, Q.: What does the evolution path learn in CMA-ES? In: Parallel
Problem Solving from Nature – PPSN XIV, pp. 751–760 (2016)

19. Nomura, M., Shibata, M.: cmaes: a simple yet practical python library for CMA-
ES. arXiv preprint arXiv:2402.01373 (2024)

20. Ollivier, Y., Arnold, L., Auger, A., Hansen, N.: Information-geometric optimization
algorithms: a unifying picture via invariance principles. J. Mach. Learn. Res. 18(1),
564–628 (2017)

21. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms
and comparison of software implementations. J. Global Optim. 56, 1247–1293
(2013)

https://doi.org/10.1109/CEC.2005.1554902
https://api.semanticscholar.org/CorpusID:14799233
https://api.semanticscholar.org/CorpusID:14799233
https://doi.org/10.1145/3512290.3528827
https://doi.org/10.1145/3512290.3528827
https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.1145/1570256.1570333
https://doi.org/10.1145/1570256.1570333
http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
https://doi.org/10.1007/978-3-642-33206-7__8
https://doi.org/10.1007/978-3-540-30217-9_29
https://doi.org/10.1162/106365603321828970
https://doi.org/10.1109/4235.797971
http://arxiv.org/abs/2402.01373

Natural Gradient Interpretation of Rank-One Update in CMA-ES 267

22. Shirakawa, S., Akimoto, Y., Ouchi, K., Ohara, K.: Sample reuse in the covariance
matrix adaptation evolution strategy based on importance sampling. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
pp. 305–312 (2015)

23. Song, H.F., et al.: V-mpo: on-policy maximum a posteriori policy optimization for
discrete and continuous control. In: International Conference on Learning Repre-
sentations (2020). https://openreview.net/forum?id=SylOlp4FvH

https://openreview.net/forum?id=SylOlp4FvH

Avoiding Redundant Restarts
in Multimodal Global Optimization

Jacob de Nobel1 , Diederick Vermetten1(B) , Anna V. Kononova1 ,
Ofer M. Shir2 , and Thomas Bäck1

1 LIACS, Leiden University, Leiden, The Netherlands
d.l.vermetten@liacs.leidenuniv.nl

2 Tel-Hai College and Migal Institute, Upper Galilee, Israel

Abstract. Näıve restarts of global optimization solvers when operating
on multimodal search landscapes may resemble the Coupon’s Collector
Problem, with a potential to waste significant function evaluations bud-
get on revisiting the same basins of attractions. In this paper, we assess
the degree to which such “duplicate restarts” occur on standard multi-
modal benchmark functions, which defines the redundancy potential of
each particular landscape. We then propose a repelling mechanism to
avoid such wasted restarts with the CMA-ES and investigate its efficacy
on test cases with high redundancy potential compared to the standard
restart mechanism.

Keywords: numerical optimization · multimodal landscapes · CMA-ES

1 Introduction

Finding an effective balance between exploring the domain and exploiting
promising regions is one of the primary challenges when designing any itera-
tive optimization heuristic, being subject to an underlying hard conflict. This
design choice is especially important in multimodal search landscapes, where
premature convergence leads to poor overall performance.

Because of its challenging nature, a large number of algorithms have been
developed for multimodal optimization [22], yet consisting of two main branches
with different goals—(i) niching methods [24], whose target is adjusted from
locating the globally optimal solution to finding a wider set of high-quality
optima, and (ii) “upgraded global solvers”, which still target a single global
optimum, but are better equipped to handle multimodality (see, e.g., [3,9]).

While niching methods offer multiple approaches to treating such multimodal
landscapes, primarily in promoting population diversity, these practices are usu-
ally not transferred to global optimization for various reasons (for instance, since
focusing on solution diversity can hamper performance by slowing down conver-
gence). Instead, global solvers often rely on rebalancing the search from global
to local over time, e.g., by adjusting step sizes in evolutionary algorithms. To

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 268–283, 2024.
https://doi.org/10.1007/978-3-031-70068-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_17&domain=pdf
http://orcid.org/0000-0003-1169-1962
http://orcid.org/0000-0003-3040-7162
http://orcid.org/0000-0002-4138-7024
http://orcid.org/0000-0002-8257-5160
http://orcid.org/0000-0001-6768-1478
https://doi.org/10.1007/978-3-031-70068-2_17

Avoiding Redundant Restarts in Multimodal Global Optimization 269

prevent convergence to sub-optimal solutions in these methods, restart mecha-
nisms can be utilized to reset the algorithm’s state, essentially starting a new
optimization process by using the remaining function evaluation budget. This
process is usually independent of the previous trajectory but can update the
algorithm’s strategy parameters, such as the population size within CMA-ES.

However promising a restart scheme can be, it still carries the potential to
encounter the equivalent of the Coupon Collector’s Problem, which is rooted
in the retrials’ näıvity. Given q unique coupons, the expected number of trials
needed to collect them all, with replacement, is q ·Hq (with Hq :=

∑q
t=1

1
t being

the qth-harmonic number). Similarly, in the context of multimodal optimization,
a straightforward approach of iteration can be used to locate sequentially mul-
tiple peaks in the landscape by means of an iterative local search (ILS) [14].
If the procedure is blind to any information accumulated throughout previous
runs, and it sequentially restarts stochastic search processes, the ambition to
hit a different peak in every run resembles the collector’s hope to obtain all the
coupons in only q trials. Overall, it is likely to encounter redundancy, and the
number of expected iterations is then increased by a factor. A redundancy
factor can be derived if the peaks are of equal height (an equi-fitness landscape,
i.e., the probability to converge into any of the q peaks is uniform and equal to
1/q), simply by normalizing the expected number of trials with respect to q -
that is an overall redundancy factor of Hq [24]. Importantly, when dropping the
equi-fitness assumption, this factor is expected to increase.

Mind should be given to this analogy and to the actual target of the “col-
lector”: the careful reader must note that a global multimodal solver is not
necessarily concerned with “collecting” all the optima (as in niching), since it
is targeted at attaining only the best (i.e., picking only the “top coupon”). At
the same time, when operating in a black-box fashion, the global quality of such
optima is often undecidable. Therefore, the “collector” has no choice but to start
a campaign of iterative restarts.

The idea of “avoiding duplicates” is a fundamental concept in heuristic search
(e.g., the classical Tabu Search [5]), and even in statistical sampling (e.g., the
conditioned Latin Hypercube Sampling that produces sampling designs while
avoiding redundancy by accounting for external information [16]). To investigate
this idea in the context of multimodal optimization, we propose an alternative
restart strategy in the context of the renowned CMA-ES algorithm.

We provide the necessary background, especially concerning basins of attrac-
tion of local optima and an illustrative motivation, in Sect. 2, and identify the
potential evaluation redundancy problem caused by restarts in global optimiza-
tion. Then, we analyze the extent of this redundancy phenomenon on standard
continuous landscapes, which motivates our proposal for an alternative restart
strategy (Sect. 3). We propose and benchmark a restart strategy that integrates
ideas from multimodal optimization, specifically repelling subpopulations in nich-
ing, with the existing restart practices of CMA-ES. This new algorithm, the
CMA-ES with repelling restarts (RR-CMA-ES), is introduced in Sect. 4. This
method is benchmarked on a wide set of problems, which shows that while

270 J. de Nobel et al.

wasted evaluations from “duplicate” restarts can be avoided, the precise meth-
ods to achieve this potential must be carefully calibrated to prevent deteriorating
performance on some types of landscapes (Sect. 5). Conclusions and future work
are discussed in Sect. 6.

2 Preliminaries and Problem Formulation

2.1 Basins of Attraction in Global Optimization

We consider the global optimization challenge of a single-objective, continuous
minimization problem; the aim is to identify a single solution x∗ ∈ X ⊆ R

d from
the feasible region X , which minimizes a given objective function f(x) : X → R:

x∗ = arg min
x∈X

f(x) (1)

When the convexity property does not hold for f [4], it is often the case that
other candidate solutions x� �= x∗ minimize certain neighborhoods of radii ε,
and thus each forms a local minimum:

∃ε > 0 ∀x ∈ X : ‖x − x�‖ < ε ⇒ f(x�) ≤ f(x)

x∗ is called the global optimizer. Accordingly, the process of global optimiza-
tion [27] is considered successful when it concludes with locating it while escap-
ing local optimizers x� (also referred to as traps). Next, we would like to define
the attraction basin of an optimizer (denoted as x̂, being either local or global),
following [27] (alternative definitions exist - see, e.g., [2]). Given the standard
Gradient Descent Algorithm [4], which is defined by its variation step from iter-
ation i to i + 1 (with σ(i) being the step-size),

x(i + 1) := x(i) − σ(i) · ∇f (x(i)) , (2)

we denote its initial search-point x(0) := x0. The following set of points is
defined whenever the limit limi→∞ x(i) exists:

Ω =
{
x ∈ R

d
∣
∣
∣x(0) = x ∧ x(i)|i≥0 satisfies (2) ∧ lim

i→∞
x(i) exists

}
(3)

Then, given an optimizer x̂, we define its region of attraction using Ω:

A(x̂) =
{
x ∈ Ω

∣
∣
∣x(0) = x ∧ x(i)|i≥0 satisfies (2) ∧ lim

i→∞
x(i) = x̂

}
(4)

Finally, and most importantly, the basin of x̂ is the maximal level set that is
fully contained in A(x̂).

We are particularly interested in addressing this global optimization chal-
lenge within black-box optimization, where the analytical form of the objective
function f is unknown to the solver and is thus treated as a black box, which,
upon receiving input, yields a (continuous) output.

Avoiding Redundant Restarts in Multimodal Global Optimization 271

2.2 CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10] is a state-
of-the-art method for single objective black-box optimization. The CMA-ES is
a stochastic method that evolves a population of candidate solutions x to an
optimization problem f : R

d → R. To guide the search, it uses a parameter-
ized multivariate normal distribution N (m, σC). The defining feature of the
CMA-ES is that it can adapt the parameters of its mutation distribution to an
arbitrary shape during optimization to guide the search. This makes it invariant
to linear transformations of the search space and underpins its effectiveness on
non-separable and ill-conditioned problems.

2.3 Restart Mechanisms

Restarts are commonly employed to prevent premature convergence in opti-
mization algorithms. A whole class of algorithms relies on restart mechanisms to
adapt local search methods to global optimization problems, dubbed as Iterative
Local Search (ILS) [14]. While ILS is mostly prevalent in discrete domains, tech-
niques for continuous domains such as Multi-Level Single Linkage (MLSL) [23]
have shown promising performance on commonly used benchmark problems [21].
While restart methods are common in combination with local search, they can
also be applied to more global optimizers, such as evolutionary algorithms. In its
simplest form, for the CMA-ES, restarting involves resetting its mutation distri-
bution to a standard multivariate normal distribution and setting the center of
mass m to a new location u.a.r. whenever local restart criteria have been met.
Additionally, the algorithm’s parameters can be altered to change its behavior
following a restart, of which the most well-known strategies are IPOP [3] and
BIPOP [6]. The IPOP-CMA-ES increases its population size by a factor of 2 on
every consecutive restart. The BIPOP-CMA-ES alternates between two regimes;
the first uses an increased population size and a larger value for the initial step
size σ0, while the second uses a smaller population size and σ0. While other
restart strategies have been proposed [13,17], IPOP and BIPOP remain among
the most commonly used methods.

2.4 Motivation

While the aforementioned restart mechanisms have been shown to be effective
on multimodal problems [6], no inherent method is implemented to ensure a sub-
sequent restart does not converge to the same basin of attraction. By restarting
u.a.r. it could very well be possible that several runs will be drawn to the same
attractor. When this happens, the restart effectively spends more of the evalu-
ation budget to potentially find an already identified solution. If this could be
avoided by ensuring each consecutive restart only explores a previously unvisited
region of the search space, we could potentially save a portion of the evaluation
budget.

272 J. de Nobel et al.

Fig. 1. A single run of the CMA-ES with a simple u.a.r. restart strategy (σ0 = 2),
optimizing a modified version of the Himmelblau function (fmh, see Eq. 5). Every
restart is visualized as a line, which shows the trace followed by the CMA-ES, where
the circle shows the start of the trace and the star shows the finally obtained solution.
The restart that converges to the global optimum is shown in green, and restarts
converging to a new local optimum are shown in yellow. The traces in red show restarts
that converge to local optima, which have already been found during previous restarts
(yellow). (Color figure online)

Consider the example shown in Fig. 1, which shows a single run of the CMA-
ES with a simple restart strategy solving a modified version of the 2-dimensional
Himmelblau function:

fmh(x) = (x2
1 + x2 − 11) + (x1 + x2

2 − 7)2 + min{0.01, ||x − x∗||2} (5)

Here, x∗ is the location of the global optimum, and || · ||2 denotes the Euclidean
norm. From the figure, we can observe that the CMA-ES restarts several times
during the optimization process. Only during one of the restarts does the CMA-
ES converge to the global optimum (green trace), while the other three local
optima are found during other restarts. Notably, it can be observed that a con-
siderable number of restarts are converging to local optima that have already
been identified (red traces). In fact, this is the case for eight out of twelve restarts
for this specific run. If we had been able to avoid revisiting previously found
optima, considerable savings to the evaluation budget could have been realized.
While one might argue that this is just a bad run or that a change to the initial
σ could avoid this type of behavior, we aim to demonstrate in the next section
that this is not the case.

2.5 Repelling Subpopulations

The CMSA with Repelling Subpopulations (RS-CMSA) [1] has been proposed as
a niching strategy that uses a number of parallel subpopulations to find multiple

Avoiding Redundant Restarts in Multimodal Global Optimization 273

local optima in multimodal optimization. Our approach is inspired by the RS-
CMSA, but it focuses on avoiding repeatedly sampling points in the basin of
attraction of a local optimum that the algorithm has already identified. The
overall goal is to make the CMA-ES more sample-efficient for the goal of finding
a single best solution (i.e., the best local optimum approximation, given a budget
B of function evaluations), rather than multiple solutions representing different
local optima (i.e., multiple niches). The underlying methods, such as the usage
of the Hill-Valley heuristic, restarts, and tabu regions, are inspired by the RS-
CMSA.

2.6 Hill-Valley Function as a Boolean Heuristic

The Hill-Valley function HV(xi,xj , f) ∈ {0, 1}, listed as Algorithm 1, introduced
as a part of the multinational EA [28], can be used as a heuristic to determine
whether two points xi and xj belong to the same basin of attraction [15]. It
calculates the objective function value for a maximum of Nt = 10 points on a
line drawn between xi and xj . If any of these points are of a higher objective
function value, assuming minimization, a hill is assumed to be present between
xi and xj , which then do not share a basin of attraction.

Algorithm 1. Hill-Valley test HV(xi,xj , f)
Require: xi ∈ R

d,xj ∈ R
d, Nt ∈ N, f : Rd → R

for k ∈ 1, . . . , Nt do
xtest = xi + k

Nt+1
(xj − xi)

if max{f(xi), f(xj)} ≤ f(xtest) then
return 0

end if
end for
return 1

3 The Potential Gain of Avoiding Redundant Restarts

3.1 Defining the Redundancy Measure

Motivated by the redundancy factor mentioned earlier in the context of the
Coupon’s Collector Problem, we would like to define a measure that quantifies
the gain potential for having effective restarts. The trials of the Coupon’s Collec-
tor must be adapted to the notion of restarts and to account for the global opti-
mum, which constitutes the “top priority coupon” when following the analogy.
To this end, we define the restarts’ redundancy factor as the proportion of func-
tion evaluations spent by duplicate restarts (different restarts that converged to
a basin of attraction that was previously visited). This calculation excludes func-
tion evaluations spent within the global basin (regardless of being duplicates),

274 J. de Nobel et al.

denoted as x∗ – and it accumulates such function evaluations and normalizes
them by the total budget. With r denoting the current number of restarts, hav-
ing the current restart converging to a point x(r), we use red(x(r)) ∈ {0, 1} to
determine whether the restart is redundant, relying on an oracle that answers
the boolean query sameBasin() indicative of two points sharing a basin of the
function f :

red(x(r)) :=
[
¬sameBasin(x∗,x(r), f))

]
∧

⎡

⎣
∨

1≤k<r

sameBasin(x(k),x(r), f)

⎤

⎦ (6)

Importantly, the previously defined Hill-Valley heuristic may approximate the
boolean query sameBasin(), and will play this role in our implementation.

We then define the restarts’ redundancy factor as the normalized accumu-
lated redundancy of a given set of restarts:

RRF
({

x(r)
}R

r=1

)

:=
∑R

r=1 red(x(r))b(r)

B
, (7)

where b(r) is the number of function evaluations spent by a restart, R is the total
number of completed restarts, and B is the total budget of function evaluations
spent. Importantly, this factor accounts for a given set of restarts rather than
measuring a search algorithm/mechanism (i.e., an implicit algorithmic measure).

3.2 Numerical Assessment of Expected Redundancy Factors

We analyze the CMA-ES with three different restart strategies for several bench-
mark functions to identify the potential performance gains from avoiding dupli-
cated restarts in global optimization. We compare a naive restart strategy
(labeled ‘RESTART’) alongside the popular IPOP and BIPOP restart strategies.
Each strategy places the center of mass m uniformly at random in the domain
on each restart and uses saturation for bound correction. The remaining settings
of CMA-ES are left as default in the modCMA package [19]. For each benchmark
function, we perform 100 independent runs. In addition to logging the perfor-
mance trajectories with IOHexperimenter [20], we log the center of mass and
the number of evaluations used each time a restart is triggered. Based on this
information, we can use Eq. 7 to calculate the RRF for a given experiment.

BBOB. We benchmark on the noiseless, single-objective BBOB suite [8]. Orig-
inally proposed as part of the COCO benchmarking platform [7], this set of 24
continuous optimization problems has been one of the last decade’s most com-
monly used benchmarks for iterative optimization heuristics. For completeness,
we perform our redundancy analysis on all 24 BBOB functions, even though a
relatively large fraction consists of unimodal problems or problems with strong
global structures where we don’t expect to see any redundant restart. We run
each problem for dimensionality d ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 20} for 10 instances.

Avoiding Redundant Restarts in Multimodal Global Optimization 275

Fig. 2. Boxplot showing the fraction of the total budget spent by restarts converging
to a previously visited basin of attraction, the RRF (Eq. 7). All 24 objective functions
from the BBOB benchmark are aggregated over all dimensions and instances for each
tested restart strategy.

Figure 2 shows the RRF for each function, aggregated over all dimensions,
runs, and instances for each of the three restart strategies. From the figure,
as expected, most redundant restarts occur in functions f21–f24, multimodal
functions with weak global structure. We expect this is related to the weak
structure since the chance we go to any given optima over one of the others
should be related to the ‘direction’ of the function’s global structure. Since there
is no global structure and several local optima of equal height, we would be
equally likely to end up in any of them randomly.

The other functions showing some redundancy in Fig. 2 are f3, f4, f15 and
f19, which also exhibit some multimodality. Notably, f7 is an interesting outlier,
which, due to its plateauing landscape, causes several restarts for the ‘RESTART’
strategy to be classified as redundant. Figure 3 provides a closer look at the
functions with any redundant restarts, specifically showing the relation between
dimensions for the ‘RESTART’ strategy. Here we can observe that for some
functions, such as f19 and f22, the RRF seems to increase with dimension; the
opposite is true for functions f3 and f4.

CEC 2013. While the overall potential to be gained from avoiding dupli-
cated restarts is limited on the BBOB suite, we still see relatively large values
in some multimodal problems. As such, we extend our setup to the CEC’13
suite [11], which is designed specifically for multimodal optimization. We mul-
tiply each function with -1 to enable minimization. To transform the functions
to global optimization problems, we select one of the existing global optima
to turn into the only global one by adding a norm of distance as follows:
f ′(x) = −f(x) + min(0.01, ‖x − x∗‖2). Given this ”globalization“ procedure,
we create 10 instances of each of the 16 CEC problems (where each problem
has a predefined dimensionality). The remainder of the setup is equivalent to
the one used for the BBOB problems. The resulting redundancy factors are

276 J. de Nobel et al.

Fig. 3. The average Relative Redundancy Factor over all instances for the CMA-ES
using the ‘RESTART’ strategy for the BBOB functions with any redundant restarts.
The grid shows the RRF (Eq. 7) per dimension and function individually.

Fig. 4. Fraction of budget which could be saved by avoiding convergence to redundant
regions of the search space in subsequent restarts (as defined in Eq. 6), for 16 functions
from the CEC 2013 benchmark, aggregated over all instances for runs with the CMA-
ES using different restart strategies.

plotted in Fig. 4, from which we observe that most problems defined for multi-
modal optimization show significant potential for saving redundant evaluations.
We also observe that the distribution for IPOP is much wider and has a higher
mean than the other methods. This happens because the population sizes are
increased, leading to individual redundant runs containing a larger fraction of
the total budget. This also occurs to a lesser extent in BIPOP since the larger
population sizes are interleaved with low population size restarts.

Avoiding Redundant Restarts in Multimodal Global Optimization 277

Algorithm 2. RR-CMA-ES
Require: σ0 ∈ R, γ ∈ R, f : Rd → R

1: T ← ∅ � Tabu point archive
2: r ← 0
3: while not happy do
4: σ ← σ0, C ← I, m ∼ U(lb, ub)
5: while not any restart conditions do
6: X ← ∅, nrej ← 0
7: while |X | < λ do
8: x ← m + N (0, σC)
9: if (∀T ∈ T : Δrej(x,T , γ, nrej) = 0) then � Check if x can be accepted

10: X ← X ∪ {x}
11: else
12: nrej ← nrej + 1 � Increase rejection count for m
13: end if
14: end while
15: F ← evaluate(X) � Evaluate all offspring
16: cmaUpdate(X , F ,m, σ,C) � Continue the regular CMA-ES procedure
17: end while
18: r ← r + 1
19: T ← T ∪ {m} � Add m to the tabu point archive
20: end while

4 Combating the Redundancy: Repelling CMA-ES

Based on the RS-CMSA [1], which uses the concept of repelling subpopulations
in a niching context, we introduce a CMA-ES with repelling restarts (RR-CMA-
ES). Building on the standard restart strategies, the algorithm’s idea is to define
regions in the space where the CMA-ES cannot sample, as they were already
visited during previous restarts. It maintains a set of tabu points T , see Sect. 4.1,
which describe a region. To determine the shape and size of this rejection region,
we use the ideas from the RS-CMSA [1] and use the current covariance matrix
C and step size σ. The size of the region is unique for each tabu point and
controlled by δ(T). Algorithm 2 gives a general overview of the method.

4.1 Tabu Points

The CMA-ES samples λ points at every generation g. In the RR-CMA-ES, each
newly sampled point x is tested against the archive T of tabu points before
being accepted for evaluation (line 9). A tabu point defines a location in the
search space where the optimizer is not allowed to go. While initially imagined
for combinatorial optimization, for the continuous spaces the CMA-ES deals
with, it defines a hyper-ellipsoid centered around a point where the optimizer
cannot sample. Specifically, a tabu point T consists of a triplet (xT , f(xT), nT),
where xT is the location in the search space with f(xT) its corresponding fitness
and nT being the number of times the CMA-ES has converged to T during

278 J. de Nobel et al.

previous restarts. During sampling, a tabu point T rejects a newly sampled
point x according to the following boolean query (Δrej ∈ {0, 1}):

Δrej(x,T , γ, nrej) =
(

dm(x,xT ,C−1)
σ

< γnrejδ(T)
)

(8)

Here, dm denotes the Mahanolobis distance metric, scaled by the current covari-
ance matrix C and step size σ, and δ(T) denotes the rejection radius around
the tabu point T . To avoid stagnation, a shrinkage factor 0 < γ < 1 is applied
to δ(T) with nrej denoting the number of times a point has been rejected in the
current generation. Then, for every newly sampled point x, it is accepted if and
only if:

∀T ∈ T : Δrej(x,T , γ, nrej) = 0 (9)

4.2 Restarting

Upon every restart r, the archive T is updated with the converged center of mass
m. Using the Hill Valley HV routine, we check whether m has converged to a new
basin of attraction. If the restart converged to a new basin of attraction, that is
HV(m,xT , f) = 0,∀T ∈ T , the new tabu point (m, f(m), 1) gets added to the
archive. If the restart converged to a point that is already present in T , nT gets
increased by 1, and if f(m) < f(xT), (m, f(m), nT) replaces (xT , f(xT), nT).

4.3 Search Space Coverage

We define a coverage factor c, which controls the ratio of the total volume of
the search space S =

∏d
i=1(ubi − lbi) that is covered by the repelling regions

of all tabu points. Intuitively, 1
c denotes the maximal proportion of S, which is

unavailable for the CMA-ES to sample. This is divided amongst all tabu points,
where points with a higher nT cover a larger part of this volume. Then, for each
tabu point, the volume of the repelling region, normalized for σ0 is:

V (T) = nT S

cσ0R
(10)

where R denotes the total number of restarts. This is used to calculate the
rejection radius:

δ(T) = V (T)
1
d
Γ (d

2 + 1)
1
d

√
π

(11)

where d denotes the dimensionality and Γ (·) the gamma function.

5 Proof-of-Concept: Repelling CMA-ES in Action

To illustrate the workings of the RR-CMA-ES, we benchmark several versions
with redundancy factors ranging from 2 to 1000 on both the BBOB and CEC’13
functions. We perform 50 independent runs on each of the 10 instances used in

Avoiding Redundant Restarts in Multimodal Global Optimization 279

Fig. 5. Distribution of redundant function evaluation over the BBOB functions where
redundant restarts were found in Sect. 3.2, i.e., f3, f3, f15, f19, f21, f22, f23 and f24, sep-
arated by problem dimensionality. The CMA-ES with the ‘RESTART’ strategy is com-
pared to the RR-CMA-ES, with different coverage factors c.

Sect. 3.2 and compare the results to the original CMA-ES. In this section, we
use the versions with the default restart mechanism, but the IPOP and BIPOP
results are available in our reproducibility repository [18]. To gauge whether the
repelling strategy prevents duplicate restarts from occurring, we perform the
same expected redundancy factor calculation from Eq. 7 on the runs from the
RR-CMA-ES and visualize the results in Fig. 5. From this figure, we can see
that on average, the RR-CMA-ES with the lowest coverage factor (the largest
repelling regions) quite effectively prevents different restarts from converging to
the same basins.

We can perform the same redundancy-based comparisons for the CEC func-
tions, where in Fig. 6, we see how the potential changes when the repelling strat-
egy is used. From this figure, we can see that the impact of the repelling regions is
even larger than that of the BBOB problems, but with large variations between
the different functions. However, the relation to the coverage factor seems con-
sistent, with a lower factor leading to fewer redundant restarts.

Given the promising reduction in redundant evaluations, we look at the per-
formance of the considered algorithm variants. In Fig. 7, we show the empirical
cumulative distribution plot1 for both the BBOB and CEC benchmarks. We use
bounds 102 and 10−8 with log-scaling between them to be consistent with the
common COCO setup [7]. This figure shows no difference between these meth-
ods in the early search stage (since no restarts have been triggered yet). Overall,
repelling results in a slight performance drop for the BBOB benchmark, while
performance increases for the CEC benchmark. Looking at individual functions
for the BBOB benchmark (see Fig. ??), we can observe that while for some func-
tions, the RR-CMA-ES shows lower performance than its standard counterpart,
this is not always the case. An important aspect to note is that on functions with

1 This ECDF is based on the empirical attainment function, equivalent to infinite
targets for the standard ECDF [12].

280 J. de Nobel et al.

Fig. 6. Distribution of redundant function evaluation over the CEC’13 functions, only
function with any redundant restarts for CMA-ES-RESTART are shown. The CMA-ES
with the ‘RESTART’ strategy is compared to the RR-CMA-ES, with different coverage
factors c.

Fig. 7. Aggregated ECDF of the EAF for both the BBOB and CEC benchmarks, shown
for the ‘standard’ (c = 0) CMA-ES using a RESTART, IPOP, and BIPOP strategy,
and the RR-CMA-ES with coverage factors c of 2.0 and 5.0.

Fig. 8. ECDF of the different versions of RR-CMA-ES compared to the original CMA-
ES, for selected BBOB functions (in dimensionality 10) where potential improvement
was observed (see Fig. 2).

Avoiding Redundant Restarts in Multimodal Global Optimization 281

a clear global structure, such as F4, the repelling regions might adversely affect
convergence, as shown in Fig. 8a. For other functions, such as F22, where the dis-
tribution of the local optima is more uniform, the repelling strategy has a clear
benefit in performance. Thus, a balance between preventing redundant restarts
and avoiding steering the search away from regions near the global optimum has
to be found.

6 Conclusions and Future Work

In this paper, we reflected that global optimization of multimodal problems is an
area where current optimization algorithms can still be improved in light of an
evident redundancy of restart mechanisms. When independent restarts converge
to the same local optima, these essentially waste function evaluations could be
prevented by more effectively guiding the search in subsequent restarts.

Our proposed repelling-based restart method for CMA-ES shows a slight
performance improvement over the default restart mechanisms for specific cases
and reduces redundant convergence for the BBOB functions. For the multimodal
CEC functions specifically, the method shows a large reduction of redundant
restarts compared to a standard restart strategy.

Further research into the precise ways of avoiding these redundancies is still
required. In particular, the rejection criteria of the tabu regions could be modified
to incorporate information about the fitness values found in this region to handle
global structure better.

The tabu regions’ shapes could also be formed based on the converged covari-
ance matrix at the point or slightly before the restart is triggered to potentially
better capture the precise basin shape. Furthermore, extended practices such as
regularization could also be exercised to remedy numerical issues and to obtain
a more accurate structure (see, e.g., [25]), relying on the theoretical relation of
the ESs’ covariance matrix and the landscape local Hessian [26].

In addition to more effectively preventing a restart from converging to a
known basin of attraction, one could also utilize the information from prior
restarts to more intelligently select the new location and initial parameterization
of new restarts. In comparison to, e.g., MLSL, starting points could be selected
based on which regions of the domain have already been sampled, which would
also cause the repelling mechanism to trigger less often during the initial phase
of the restarted run.

In the context of global optimization, the explicit criteria used to trigger a
restart mechanism also play a large role in the algorithm’s performance. Depend-
ing on the optimization goal, restarting more frequently and exploiting the best-
attained basins of attraction using a local search method with a small fraction
of the total budget might be worthwhile.

282 J. de Nobel et al.

References

1. Ahrari, A., Deb, K., Preuss, M.: Multimodal optimization by covariance matrix
self-adaptation evolution strategy with repelling subpopulations. Evol. Comput.
25(3), 439–471 (2017). https://doi.org/10.1162/evco a 00182

2. Antonov, K., Botari, T., Tukker, T., Bäck, T., van Stein, N., Kononova, A.V.: New
solutions to Cooke triplet problem via analysis of attraction basins. In: Kress, B.C.,
Czarske, J.W. (eds.) Digital Optical Technologies 2023, vol. 12624, p. 126240T.
International Society for Optics and Photonics, SPIE (2023). https://doi.org/10.
1117/12.2675836

3. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing pop-
ulation size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp.
1769–1776 (2005). https://doi.org/10.1109/CEC.2005.1554902

4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York (2004)

5. Glover, F., Laguna, M.: Tabu search. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook
of Combinatorial Optimization, pp. 2093–2229. Springer, Boston (1998). https://
doi.org/10.1007/978-1-4613-0303-9 33

6. Hansen, N.: Benchmarking a bi-population CMA-ES on the BBOB-2009 function
testbed. In: Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers, pp. 2389–2396
(2009)

7. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO:
a platform for comparing continuous optimizers in a black-box setting. Optim.
Methods Softw. 36(1), 114–144 (2021)

8. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion benchmarking 2009: noiseless functions definitions. Technical report, RR-6829,
INRIA (2009). https://hal.inria.fr/inria-00362633/document

9. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test
functions. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 29

10. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

11. Li, X., Engelbrecht, A., Epitropakis, M.G.: Benchmark functions for CEC’2013 spe-
cial session and competition on niching methods for multimodal function optimiza-
tion. RMIT University, Evolutionary Computation and Machine Learning Group,
Australia, Technical report (2013)

12. López-Ibáñez, M., Vermetten, D., Dreo, J., Doerr, C.: Using the empirical attain-
ment function for analyzing single-objective black-box optimization algorithms.
arXiv preprint arXiv:2404.02031 (2024)

13. Loshchilov, I., Schoenauer, M., Sebag, M.: Alternative restart strategies for CMA-
ES. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012. LNCS, vol. 7491, pp. 296–305. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32937-1 30

14. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and
applications. In: Handbook of Metaheuristics, pp. 129–168 (2019)

15. Maree, S.C., Alderliesten, T., Thierens, D., Bosman, P.A.N.: Real-valued evolu-
tionary multi-modal optimization driven by hill-valley clustering. In: Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 857–
864. Association for Computing Machinery, New York (2018). https://doi.org/10.
1145/3205455.3205477

https://doi.org/10.1162/evco_a_00182
https://doi.org/10.1117/12.2675836
https://doi.org/10.1117/12.2675836
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1007/978-1-4613-0303-9_33
https://hal.inria.fr/inria-00362633/document
https://doi.org/10.1007/978-3-540-30217-9_29
http://arxiv.org/abs/2404.02031
https://doi.org/10.1007/978-3-642-32937-1_30
https://doi.org/10.1145/3205455.3205477
https://doi.org/10.1145/3205455.3205477

Avoiding Redundant Restarts in Multimodal Global Optimization 283

16. Minasny, B., McBratney, A.B.: A conditioned latin hypercube method for sampling
in the presence of ancillary information. Comput. Geosci. 32(9), 1378–1388 (2006).
https://doi.org/10.1016/j.cageo.2005.12.009

17. Nishida, K., Akimoto, Y.: Benchmarking the PSA-CMA-ES on the BBOB noiseless
testbed. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pp. 1529–1536 (2018)

18. de Nobel, J., Shir, O., Vermetten, D., Kononova, A.V., Bäck, T.: Reproducibility
files and additional figures (2024). https://doi.org/10.5281/zenodo.10997200

19. de Nobel, J., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: Tuning as a means
of assessing the benefits of new ideas in interplay with existing algorithmic mod-
ules. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pp. 1375–1384 (2021)

20. de Nobel, J., Ye, F., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: Iohexperi-
menter: benchmarking platform for iterative optimization heuristics. Evol. Com-
put. 1–6 (2024)

21. Pál, L.: Benchmarking a hybrid multi level single linkagealgorithm on the BBOB
noiseless testbed. In: Proceedings of the 15th Annual Conference Companion on
Genetic and Evolutionary Computation, pp. 1145–1152 (2013)

22. Preuss,M.:MultimodalOptimizationbyMeans ofEvolutionaryAlgorithms.Natural
Computing Series, Springer (2015). https://doi.org/10.1007/978-3-319-07407-8

23. Rinnooy Kan, A., Timmer, G.T.: Stochastic global optimization methods part i:
clustering methods. Math. Program. 39, 27–56 (1987)

24. Shir, O.M.: Niching in evolutionary algorithms. In: Rozenberg, G., Baeck, T., Kok,
J.N. (eds.) Handbook of Natural Computing, pp. 1035–1069. Springer, Heidel-
berg (2012). http://www.springer.com/computer/theoretical+computer+science/
book/978-3-540-92909-3. https://doi.org/10.1007/978-3-540-92910-9 32

25. Shir, O.M., Roslund, J., Whitley, D., Rabitz, H.: Efficient retrieval of landscape
hessian: forced optimal covariance adaptive learning. Phys. Rev. E 89, 063306
(2014). https://doi.org/10.1103/PhysRevE.89.063306

26. Shir, O.M., Yehudayoff, A.: On the covariance-hessian relation in evolution strate-
gies. Theoret. Comput. Sci. 801, 157–174 (2020). https://doi.org/10.1016/j.tcs.
2019.09.002

27. Törn, A., Zilinskas, A.: Global Optimization. Lecture Notes in Computer Science,
vol. 350. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-50871-6

28. Ursem, R.: Multinational evolutionary algorithms. In: Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp.
1633–1640 (1999). https://doi.org/10.1109/CEC.1999.785470

https://doi.org/10.1016/j.cageo.2005.12.009
https://doi.org/10.5281/zenodo.10997200
https://doi.org/10.1007/978-3-319-07407-8
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-92909-3
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-92909-3
https://doi.org/10.1007/978-3-540-92910-9_32
https://doi.org/10.1103/PhysRevE.89.063306
https://doi.org/10.1016/j.tcs.2019.09.002
https://doi.org/10.1016/j.tcs.2019.09.002
https://doi.org/10.1007/3-540-50871-6
https://doi.org/10.1109/CEC.1999.785470

LB+IC-CMA-ES: Two Simple
Modifications of CMA-ES to Handle

Mixed-Integer Problems

Tristan Marty1,2 , Nikolaus Hansen2(B) , Anne Auger2 , Yann Semet1 ,
and Sébastien Héron1

1 Thales Research and Technology, Palaiseau, France
2 Inria and CMAP, Ecole Polytechnique, IP Paris, Palaiseau, France

nikolaus.hansen@inria.fr

Abstract. We present LB+IC-CMA-ES, a variant of CMA-ES that han-
dles mixed-integer problems. The algorithm uses two simple mechanisms
to handle integer variables: (i) a lower bound (LB) on the variance of inte-
ger variables and (ii) integer centering (IC) of variables to their domain
middle depending on their value. After presenting the algorithm, we eval-
uate the different variants ensuing from these modifications on the BBOB
mixed-integer testbed and compare the performance with the recently
introduced CMA-ES with margin.

Keywords: mixed-integer optimization · CMA-ES · Evolution
Strategies

1 Introduction

Mixed-integer optimization problems appear commonly in applications. Apply-
ing a continuous optimizer, for example the CMA-ES algorithm [5], as is to
mixed-integer problems often leads to premature convergence of the integer coor-
dinates on the wrong plateau. For this reason, different variants of CMA-ES
have been proposed in recent years to handle mixed-integer problems, including
CMA-ES with margin for the (μ/μw, λ)-CMA-ES [3] and also for the (1 + 1)-
CMA-ES [14]. In order to prevent stagnation, the CMA-ES with margin sets
lower bounds on the marginal probabilities to mutate integer variables. Other
Evolution Strategies to handle mixed-integer problems include DX-NES-ICI [10]
which has been designed specifically for mixed-integer problems where contin-
uous variables are more decisive than integer ones, or MIESs [11] that uses a
different mutation operator for non-continuous variables.

In this context, we build on a version of CMA-ES that bounds the variance
of integer coordinates from below [12]. First, we propose a theoretically moti-
vated setting of the lower bound. Second, we introduce the centering of mutated
integer variable values to the middle of the integer plateau. This latter mecha-
nism usually introduces a bias on the sample population average for which we
consequently correct.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 284–299, 2024.
https://doi.org/10.1007/978-3-031-70068-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_18&domain=pdf
http://orcid.org/0009-0003-0163-796X
http://orcid.org/0000-0001-7788-4906
http://orcid.org/0009-0008-0912-2764
http://orcid.org/0009-0006-7164-2475
http://orcid.org/0000-0002-7275-4173
https://doi.org/10.1007/978-3-031-70068-2_18

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 285

The paper is organized as follows. Section 2 presents CMA-ES and the two
modifications introduced to improve the performance on mixed-integer problems.
Section 3 illustrates the impact of both mechanisms by showing single runs on an
ill-conditioned ellipsoid function with some integer variables. Section 4 assesses
the performance of the different variants on the mixed-integer BBOB testbed
as well as on functions with varying fraction of integer variables and Sect. 5
concludes the paper.

2 Two Simple Modifications of CMA-ES to Handle
Mixed-Integer Problems

We describe the CMA-ES algorithm for numerical minimization of a function
f : RN → R and our two modifications to handle mixed-integer problems.

When given a mixed-integer function f(x) where some coordinates of x
belong to Z and other coordinates belong to R, we denote by SZ the index
set of integer coordinates and SR the index set of real coordinates. The cardi-
nality of SZ equals Nint = |SZ| and we have N = |SZ| + |SR|. Then, xi ∈ Z for
i ∈ SZ and xi ∈ R for i ∈ SR. We define the function

int[.] : R → Z, x �→ �x + 1/2� (1)

yielding the “integer value” of x ∈ R. When we apply a continuous algorithm
to a mixed-integer function, we apply int[.] to each integer coordinate before we
evaluate f .

2.1 CMA-ES

The (μ/μw, λ)-CMA-ES samples λ solutions x at each iteration t distributed
according to a multivariate normal distribution x

(t)
i ∼ N (m(t), (σ(t))2D(t)

C(t)D(t)) where m(t) ∈ R
N represents the incumbent mean solution. The covari-

ance matrix of the sampling distribution is decomposed into three parts: (i)
the overall step-size σ(t); (ii) the covariance matrix C(t) containing informa-
tion about the sensitivity in some principal axes; (iii) the diagonal matrix D(t)

introduced in [1] to scale the distribution in the given coordinate system.
For sampling λ solutions, we transform samples from an isotropic normal

distribution, z(t)
i ∼ N (0, I), using D(t) and C(t),

y
(t)
i =

√
C(t)z

(t)
i ; x

(t)
i = m(t) + σ(t)D(t)y

(t)
i for i = 1, . . . , λ , (2)

where
√
C(t) is symmetric and positive definite. The candidate solutions are

ranked according to their objective function f . The index i :λ, as defined by the
next equation, refers to the ith solution when ordered by their f -value,

f(x(t)
1:λ) ≤ f(x(t)

2:λ) ≤ . . . ≤ f(x(t)
λ:λ) . (3)

286 T. Marty et al.

The new mean is a weighted recombination of the sorted solutions

m(t+1) = m(t) + σ(t)D(t)

μ∑

i=1

wiyi:λ (4)

with μ = �λ/2� and wi ∝ log((λ + 1)/2) − log(i) such that
∑μ

i=1 wi = 1.

Step-Size. The parameter σ(t) is updated using the length of a so-called evolu-
tion path, p(t+1)

σ ∈ R
N . The step size is increased if ‖p(t+1)

σ ‖ is larger than the
expected length of a standard normally distributed random vector and decreased
if it is smaller, specifically

p(t+1)
σ = (1 − cσ)p(t)

σ +
√

cσ(2 − cσ)μeffC(t)−
1
2

μ∑

i=1

wiyi:λ (5)

σ(t+1) = σ(t) exp

(
cσ

dσ

(
‖p(t+1)

σ ‖
E (‖N (0, I)‖)

))

, (6)

where cσ determines the decay of p and, by default, cσ = μeff+2
N+μeff+5 with μeff =

1/
∑

i w2
i and the step-size damping dσ = 1 + 2max

(
0,

√
μeff−1
N+1 − 1

)
+ cσ.

Covariance Matrix. Finally, the covariance matrix C(t) is updated with both
rank-one and rank-μ updates, the latter of which makes use of negative weights.
Like for the step size update, the covariance matrix update relies on an evolution
path updated as

p(t+1)
c = (1 − cc)p(t)

c + hσ

√
cc(2 − cc)μeff

μ∑

i=1

wiyi:λ , (7)

where hσ prevents a rapid increase of variances in C(t) when the step-size is
already increasing, for example in the first iterations, and reads

hσ =

{
1 if ‖p(t+1)

σ ‖2

1−(1−cσ)2t < 2N(1 + 2
N+1)

0 otherwise
. (8)

Given the weights w1 ≥ w2 ≥ . . . ≥ wμ > 0 ≥ wμ+1 ≥ wλ [6, Appendix A], we
introduce

w◦
i =

⎧
⎨

⎩

wi if wi ≥ 0
wi

N

‖
√

C(t)−1yi:λ‖2
otherwise . (9)

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 287

To guaranty positive definiteness, we further scale down the negative weights
when necessary [1, Sec 3.2]. The covariance matrix update then reads:

C(t+1) =

(

1 + c1(1 − hσ)cc(2 − cc) − c1 − cμ

λ∑

i=1

wi

)

C(t)

+ c1p
(t+1)
c (p(t+1)

c)� + cμ

λ∑

i=1

w◦
i yi:λy

�
i:λ . (10)

Learning rates and the cumulation parameter are set to c1 = 2
(N+1.3)2+μeff

,

cμ = min
(
1 − c1, 2μeff+1/μeff−1.75

(N+2)2+μeff

)
and cc = 4+μeff/N

N+4+2μeff/N .

The diagonal matrix D(t) is not updated here but will be utilized to set a
lower bound for integer variables.

2.2 Lower Bounding the Standard Deviation on Integer Coordinates

Applying CMA-ES as presented in the previous section to mixed-integer func-
tions can lead to premature convergence of integer variables at a nonoptimal
value when their standard deviation gets much smaller than 1/2. As the step-
size converges to zero, also the probability to sample a solution with a different
integer value converges to zero and the variable is trapped. This behavior can be
observed in Figure 3a which shows the coordinates of the mean m(t) during the
optimization of a 30-dimensional mixed-integer ellipsoid function. We observe
that four integer variables converge to a nonoptimal value.

To prevent the premature convergence of integer coordinates, we impose a
lower bound, σLB, on their standard deviation by updating the diagonal matrix
D(t). Let · j,j denote the jth diagonal element of a matrix. We define

σ
(t)
std(j) = σ(t)D(t)

j,j

√
C(t)

j,j for j = 1, . . . , N , (11)

and update the diagonal matrix right before Eq. (2) as

D(t)
j,j ←

max
(
σLB, σ

(t)
std(j)

)

σ(t)

√
C(t)

j,j

for j ∈ SZ (12)

which changes D(t)
j,j only when σ

(t)
std(j) < σLB and ensures that σ

(t)
std(j) ≥ σLB.

Setting the Lower-Bound. The choice of σLB indirectly controls the minimal
mutation rate of integer variables. In order to allow the mutation rate to be small
enough to not disrupt the optimization of continuous variables, we propose the
lower bound

σLB = min
(μeff

N
, 0.2

)
. (13)

288 T. Marty et al.

We estimate the effect of σLB on the mutation rate (the proportion of candi-
date solutions which is on a different integer plateau than the mean) based on the
following simulation. We optimize the one-dimensional function x �→ �x + 1/2�2

with a fixed step-size starting at x = 0 and record at each iteration the fraction
of solutions which are outside of [−0.5, 0.5]. The average is taken between iter-
ation 3t0 and max(100 t0, 104/2) or at most 107, where t0 is the first iteration
with one mutation, i.e., with one candidate solution sampled outside [−0.5, 0.5].
The mutation rate, p1, is shown in Fig. 1 for different step-sizes and different
population sizes.

Fig. 1. Fraction of mutated individuals per iteration versus the step-size of the sample
distribution for different population sizes.

The mutation rate can be well approximated by p1 ≈ σ/μeff/2 when σ < 0.1.
This dependency on μeff is somewhat surprising, because the speed of the random
walk is proportional to 1/

√
μeff.

We now derive (13). Let pN denote the probability that at least one integer
coordinate of a solution is mutated (integer-different from the mean) and λEC

denote the effective continuous population size, that is, the average number of
solutions that are unaffected from integer mutations (that have in all integer
coordinates the same integer value as the mean). Given that Δf → 0 in the
continuous subspace when σ → 0, f -changes induced by an integer mutation
dominate the f -values when σ is small. Therefore, to ensure progress in the
continuous subspace, we want several solutions to be unaffected from integer
mutations.

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 289

We have the following equations

p1 ≈ σ

2μeff
if σ < 0.1 (14)

pN ≈ p1 × Nint if pN ≤ 1/2 or σ � μeff/Nint (15)
λEC ≈ λ(1 − pN) (16)

λEC � γ
Nint

N
+

N − Nint

N
λ if Nint < N (17)

Equation (14) follows from Fig. 1. Equation (15) approximates, when p1 is
small, 1 − pN = (1 − p1)Nint assuming independence. Equation (16) approxi-
mates the unaffected population size, λEC. Equation (17) gives a heuristic lower
bound for λEC, where γ represents the smallest reasonable population size for
the continuous subspace (when Nint is close to N).

Combining the first two and the last two equations yields, respectively,

pN ≈ σNint

2μeff
and pN � Nint

N

(
1 − γ

λ

)
, (18)

and combining these gives an upper bound for the step-size

σ � 2μeff

N

(
1 − γ

λ

)
and σ � 4μeff

3N
for γ � λ/3 . (19)

Equation (19) reveals the largest step-size that presumably allows for an effective
search in the continuous subspace and is hence an upper bound for σLB.

Fig. 2. Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of f -evaluations, divided by dimension (FEvals/DIM) for the 51 tar-
gets 10[−8..2] in dimension 40. (Legend: algorithm IC-LBx0.25, IC-LBx0.5, IC-LBx1,
IC-LBx2, IC-LBx4 are CMA-ES with integer centering and a lower bound defined
σLB = min

(
αµeff

N
, 0.2

)
where α takes respectively the values 0.25, 0.5, 1, 2, and 4)

To evaluate the validity of (13), we run LB-CMA-ES on the bbob-mixint
testbed [13] with lower bound σLB = min

(
αμeff

N , 0.2
)

for α ∈ 0.25, 0.5, 1, 2, 4.

290 T. Marty et al.

Figure 2 shows some exemplary results on two functions in dimension 40. On the
separable ellipsoid, more difficult target values are reached about twice as fast
with α = 1 as with the other tested values (p ≈ 10−4.5). We observe the same
behavior on the 40D sphere function (p ≈ 10−3.5, not shown). On the linear
slope in dimension 40, larger values for α are generally faster: with α = 1, we
reach the more difficult targets two times slower than with α ∈ 2, 4 (p ≈ 10−3.5)
but at least 3 times faster than with α ∈ 0.5, 0.25 (p ≈ 0.02). A lower bound
which is two times larger than Eq. 13 but still clipped at 0.2 has mostly similar
performance but is more at risk to disrupt convergence.

2.3 Integer Centering

When σ
(t)
std(j) is small, a successful integer mutation will often have little effect

because its value is likely to be close to the original integer value and because the
impact of a single solution on the mean update diminishes with increasing pop-
ulation size. To mitigate these effects, we set successfully mutated values to the
center of the integer interval. Furthermore, we aim to maintain the unweighted
“unselected” average taken over the μ best sampled solutions.

Let (.)j denote the j-th coordinate of a vector, let Iμ = {1:λ, . . . , μ:λ} denote

the index set of the μ best solutions from (3), and for i ∈ Iμ let x
(t−)
i = x

(t)
i

from (2). Before applying Eq. (4), we set

(x(t)
i)j ← int

[
(x(t−)

i)j

]
if int

[
(x(t−)

i)j

]
�= int

[
(m(t))j

]
, (20)

for i ∈ Iμ and j = 1, . . . , N . That is, we apply integer centering to (x(t)
i)j if it

has a different integer value than the mean.
The centering of the candidate solutions introduces a bias,

b
(t)
j =

∑

i∈Iμ

(
(x(t)

i)j − (x(t−)
i)j

)
forj = 1, . . . , N . (21)

To compensate for this bias, we set for i ∈ Iμ and j = 1, . . . , N

(x(t)
i)j ← (x(t−)

i)j + 11(i, j)αjΔij (22)

such that αj ≤ 1 minimizes b
(t)
j , where Δij = int

[
(x(t−)

i)j

]
− (x(t−)

i)j and

11(i, j) =

⎧
⎨

⎩
1 if int

[
(x(t)

i)j

]
= int

[
(m(t))j

]
and b

(t)
j Δij < 0

0 otherwise
. (23)

That is, when (x(t)
i)j has not been centered yet, we move it by αj towards its

centered version, given this move reduces the bias (21).
These modifications do not change the f -value of the solutions, that is,

f(x(t)
i) = f(x(t−)

i), hence they do not change (3). The y
(t)
i from (2) are reas-

signed according to (20) and (22).
All our code is based on the cma Python package, commit 334abfc.

https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma/commit/334abfca441a2cc5d6db548dc9328fc15edde3c4

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 291

3 Single Runs of the Different Variants

To illustrate the effect of the above modifications, some optimization runs are
shown in Fig. 3. All graphs result from the optimization of the 30-dimensional
mixed-integer ellipsoid function (see caption). We desire the continuous variables
to linearly converge to the optimum at zero and the integer variables to end up
in [−0.5, 0.5].

Without integer handling (Fig. 3a), integer variables get stuck after about
1400 iterations where four variables assume a nonoptimal value. Because the
step size converges to zero, they will not change their final position anymore.

When the standard deviations are lower bounded according to Sect. 2.2, inte-
ger variables cannot get anymore stuck and end up in the optimal interval
[−0.5, 0.5] where their behavior resembles a bounded random walk (Fig. 3b).
With integer centering only, variables appear to move more swiftly before iter-

Fig. 3. Evolution of the mean, m(t), of CMA-ES with default population size λ = 14

on the 30-dimensional ellipsoid function felli(x) =
∑N

i=1 106 i−1
N−1 x2

i where variables with
even/odd index are continuous/integer and plotted in dashed/solid, respectively. Initial
mean and step-size are m(0) = (2, ..., 2) and σ(0) = 0.1, respectively. Integer variable
values in [−0.5, 0.5] are optimal.

292 T. Marty et al.

ation 1000, however, two integer variables still get stuck at a nonoptimal value
(Fig. 3c). The effect of combining lower bound and integer centering appears
to be additive (Fig. 3d): integer variables appear to move more swiftly, and all
integer variables reach the optimal interval within about 800 iterations.

4 Performance Assessment

We assess the impact of lower bounding the standard deviations of integer
variables and of integer centering on the 24 functions of the bbob-mixint
testbed [13]. The functions are benchmarked in dimensions 5, 10, 20, 40 and 80
where 20% of these variables are continuous and the rest are integer, 20% with
arity 2, 4, 8 and 16, respectively. The k-ary variables take values between 0 and
k−1. For each function, 51 target f -values are defined as fopt +Δf where fopt is
the minimal function value and Δf = 10k with k = 2, 1.8, . . . ,−8. The number
of function evaluations to reach each target is then recorded.

As the objective function remains constant for integer values smaller than
0 and larger than k, we bound their search domain to [−1/2, k + 1/2]. Contin-
uous variables are not bounded. Boundaries are handled by adding a penalty
term to the objective function [9] with the cma.BoundPenalty class. The initial
coordinate-wise standard deviation is set to one fifth of the bounded range and
to 10/5 = 2 for continuous variables.

We benchmark all four combinations with and without LB and/or IC,
referred to as base-CMA, LB-CMA, IC-CMA and LB+IC-CMA. All tested vari-
ants use IPOP-CMA-ES [2]: if a termination condition is met before the allowed
budget is exhausted, we restart CMA-ES with doubled population size. The ter-
mination conditions tolflatfitness and tolfunhist are changed from their
default values to 5 and 0, respectively.

We compare our variants with two previously benchmarked algorithms: CMA-
ES-pycma, with some basic integer handling [13] and CMA-ES with margin
(CMA-ESwM) which, similar to LB+IC-CMA, modifies coordinate-wise standard
deviations and the mean vector to ensure a minimal marginal probability of
exploring new integer variables [3,4].

Empirical runtime distributions [7] are shown by function groups in Fig. 4
and for each function in Figs. 5 and 6.1 Mentioned p-values are computed within
the COCO platform [8] and represent the result of a ranksum test.

First we investigate the effect of the lower bound. The LB-CMA algorithm
takes at least 10 times less functions evaluations than base-CMA for solving the
target Δf = 10−7 on the separable ellipsoid f2 in dimension 10, 20, 40 and
80 (p ≈ 10−4.5). Also, LB-CMA reaches the target Δf = 10−7 at least 5 times
faster than base-CMA on the 80D functions f1, f5, f12, f13 (p ≈ 0.02 for f12,
p ≈ 10−2.5 for f13, p ≈ 10−3.5 for f5 and p ≈ 10−4.5 for f1). On the other hand
base-CMA does not reach any target faster than LB-CMA. Introducing a lower

1 All data and a code example can be found at https://trmarty.github.io/LB-IC-
CMA-ES-data/.

https://cma-es.github.io/apidocs-pycma/cma.constraints_handler.BoundPenalty.html
https://trmarty.github.io/LB-IC-CMA-ES-data/
https://trmarty.github.io/LB-IC-CMA-ES-data/

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 293

bound on the standard deviations mostly improves the behavior of the algorithm
on unimodal functions.

Next, we examine the effect of integer centering. The IC-CMA reaches the
target Δf = 10−7 at least twice as fast as base-CMA on the 80D functions f2,
f14, f18 (p ≈ 0.02 for f18, p ≈ 10−2.5 for f14 and p ≈ 10−4.5 for f2). However,
base-CMA solves function f15 eight times and function f24 four times out of 15
whereas IC-CMA never succeeds.

With both lower bound and integer centering (LB+IC-CMA), the number of
functions evaluations to reach the target 10−7 is reduced by a factor 4 compared
to LB-CMA on the 80D functions f14, f17 and f18 (p ≈ 10−2.5 for f18, p ≈
10−3.5 for f17 and p ≈ 10−4.5 for f14). However, LB-CMA optimizes f24 up to
the final target while LB+IC-CMA does not even reach the easy target of Δf =
10. Overall, LB+IC-CMA has lower runtimes than the base-CMA in dimension
80 on functions f1, f2, f12, f13, f14, f17 and f19 at the expense of not solving
the multimodal functions f15 and f24.

Finally, the LB+IC-CMA-ES algorithm is compared with CMA-ES with mar-
gin. The target Δf = 10−7 is reached faster with LB+IC-CMA than with CMA-
ESwM on functions f8 and f24 in dimension 5, f1, f2, f8, f12, f14, f17 in
dimension 10, f1, f2, f7, f12, f13, f15 and f17 in dimension 20, f1, f2, f7,
f12 and f13 in dimension 40 and on functions f2, f12, f17 and f18 in dimen-
sion 80 (p < 0.05 for all functions). On the other hand, CMA-ESwM is 2, 4 and
10 times faster on the linear slope f5 in dimension 20, 40 and 80, respectively
(10−5 < p < 10−3) which has its optimum on the boundary of the domain.
Removing the boundary handling speeds up LB+IC-CMA by a factor of three
to hit the last target Δf = 10−8 (p ≈ 10−5).

In all other cases, both algorithms have similar performance. In summary,
LB+IC-CMA performs better than CMA-ESwM on 24 of 120 functions and worse
on three.

Table 1. Final population size in dimension 40 and 80 for functions with at least one
successful trial and one restart.

function id min med max

f1, 80D 17 34 34

f2, 40D 15 15 30

f2, 80D 34 34 34

f5, 40D 15 15 30

f5, 80D 34 34 68

f7, 40D 120 240 960

function id min med max

f12, 40D 15 15 30

f12, 80D 17 17 34

f13, 40D 15 15 30

f13, 80D 17 17 34

f14, 40D 15 15 60

f14, 80D 17 17 34

function id min med max

f15, 40D 60 120 240

f17, 40D 15 30 30

f17, 80D 34 68 136

f18, 40D 15 30 120

f18, 80D 68 136 272

f21, 40D 15 30 480

f21, 80D 34 34 136

Table 1 shows final population sizes for functions with at least one successful
run and at least one restart in dimensions 40 and 80 (11 functions). The default

294 T. Marty et al.

Fig. 4. Bootstrapped empirical cumulative distributions of the number of f -evaluations
divided by dimension for 51 targets with target precision in 10[−8..2] for all functions
and subgroups in 40-D. The performance of CMA-ESwM on the moderate function
group is negatively affected by missing data on f9.

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 295

Fig. 5. Empirical cumulative distributions of simulated (bootstrapped) runtimes, mea-
sured in number of f -evaluations divided by dimension, for the 51 targets 10[−8..2] in
dimension 40.

296 T. Marty et al.

Fig. 6. Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of f -evaluations divided by dimension, for the 51 targets 10[−8..2] in
dimension 40.

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 297

population size is 15 and 17 in dimension 40 and 80, respectively, and with
IPOP each restart doubles the population. Hence, the final population size also
implies the number of conducted restarts. The largest population sizes can be
observed on the step ellipsoid function f7 (up to 960). In dimension 80, LB+IC-
CMA often restarts even on the sphere function f1. Apparently, the tolfun
termination condition triggers too early in larger dimension.

Fig. 7. Average number of function evaluations to solve the 40D sphere and ellipsoid
function up to f = 10−10 with LB+IC-CMA, plotted versus the number of integer
variables. Results are for the mean m(t) in the continuous (orange) and the integer
(green) subspace and for the best solution on the overall mixed-integer problem (blue).
The number of successful runs out of 10 is given too. (Color figure online)

Finally, Fig. 7 shows average runtimes versus the percentage of integer vari-
ables on the sphere function and the ellipsoid function (see Fig. 3) with a condi-
tioning of 106 in dimension 40. A run is successful if the best solution reaches the
target value of 10−10. On the sphere integer function (Fig. 7a), problems with
at least one continuous variable are solved within 7000 to 11 000 evaluations.
Adding only few integer variables to this continuous problem does not increase
the evaluation time by much (×1.1 between 0 and 4 integer variables), how-
ever adding a few continuous variables to an integer-only problem has a much
larger impact (×10 between 40 and 36 integer variables). The ellipsoid function
(Fig. 7b) is harder to solve. With increasing number of integer variables, the suc-
cess rate falls below 100% and with 36 integer variables, the success rate drops to
10%. The integer-only and continuous-only problems takes around 3500 evalua-
tions to find the optimum which is approximately 10 times faster than all other
mixed problems that are solved with a probability larger than 50%. With 20%
continuous variables, the BBOB benchmark represents comparatively difficult
problems in terms of fraction of integer variables.

5 Summary and Conclusion

We propose two comparatively simple modifications of CMA-ES to improve the
performance of the algorithm on problems with (some) integer variables. First,

298 T. Marty et al.

we derived a lower bound for the standard deviation of integer coordinates which
depends on the dimension of the problem and the population size. The bound
aims to be low enough to preserve a large enough effective population size in the
continuous subspace. Second, we move successfully mutated integer variables to
the center of their integer interval to adopt good mutations of integer variables
more swiftly.

The lower bound greatly reduces the runtime of CMA-ES on functions f1,
f2, f5, f12 and f13 of the bbob-mixint suite [13]. Additional integer centering
leads to faster convergence on functions f14, f17 and f18, however also to a
performance degradation on the multimodal functions f19 and f24 and, in higher
dimension, on f15. The cause of this degradation remains unclear. We suspect
that restarts on f1 and f7 lead to unnecessary performance impediments too.
The LB+IC-CMA-ES compares overall favorably to the CMA-ES with margin
[4], especially on functions f2 and f12 in dimension 10–80 and on eight other
functions depending on the dimension.

Many BBOB mixed-integer multimodal functions remain unsolved by the
current algorithms. The proposed variant, LB+IC-CMA-ES, however improves
over previous versions and is a comparatively simple new baseline to compare
with.

References

1. Akimoto, Y., Hansen, N.: Diagonal acceleration for covariance matrix adaptation
evolution strategies. Evol. Comput. 28(3), 405–435 (2020)

2. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing pop-
ulation size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp.
1769–1776. IEEE (2005)

3. Hamano, R., Saito, S., Nomura, M., Shirakawa, S.: Benchmarking CMA-ES with
margin on the bbob-mixint testbed. In: Proceedings of the Genetic and Evolution-
ary Computation Conference Companion, pp. 1708–1716 (2022)

4. Hamano, R., Saito, S., Nomura, M., Shirakawa, S.: CMA-ES with margin: lower-
bounding marginal probability for mixed-integer black-box optimization. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 639–647
(2022)

5. Hansen, N.: A CMA-ES for mixed-integer nonlinear optimization. INRIA research
report, RR-7751 (2011)

6. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv preprint
arXiv:1604.00772 (2016)

7. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO:
a platform for comparing continuous optimizers in a black-box setting. Optim.
Methods Softw. 36(1), 114–144 (2021)

8. Hansen, N., et al.: COmparing Continuous Optimizers: numbbo/COCO on Github
(2019). https://doi.org/10.5281/zenodo.2594848

9. Hansen, N., Niederberger, A.S., Guzzella, L., Koumoutsakos, P.: A method for
handling uncertainty in evolutionary optimization with an application to feedback
control of combustion. IEEE Trans. Evol. Comput. 13(1), 180–197 (2008)

http://arxiv.org/abs/1604.00772
https://doi.org/10.5281/zenodo.2594848

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 299

10. Ikeda, K., Ono, I.: Natural evolution strategy for mixed-integer black-box optimiza-
tion. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 831–838 (2023)

11. Li, R., et al.: Mixed integer evolution strategies for parameter optimization. Evol.
Comput. 21(1), 29–64 (2013)

12. Marty, T., Semet, Y., Auger, A., Héron, S., Hansen, N.: Benchmarking CMA-ES
with basic integer handling on a mixed-integer test problem suite. In: Proceed-
ings of the Companion Conference on Genetic and Evolutionary Computation, pp.
1628–1635 (2023)

13. Tušar, T., Brockhoff, D., Hansen, N.: Mixed-integer benchmark problems for single-
and bi-objective optimization. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 718–726 (2019)

14. Watanabe, Y., Uchida, K., Hamano, R., Saito, S., Nomura, M., Shirakawa, S.:
(1+1)-CMA-ES with margin for discrete and mixed-integer problems. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, pp. 882–890 (2023)

Bayesian- and Surrogate-Assisted
Optimization

Performance Comparison
of Surrogate-Assisted Evolutionary
Algorithms on Computational Fluid

Dynamics Problems

Jakub Kůdela(B) and Ladislav Dobrovský

Institute of Automation and Computer Science, Faculty of Mechanical Engineering,
Brno University of Technology, Brno, Czech Republic

jakub.kudela@vutbr.cz, dobrovsky@fme.vutbr.cz

Abstract. Surrogate-assisted evolutionary algorithms (SAEAs) are
recently among the most widely studied methods for their capability to
solve expensive real-world optimization problems. However, the devel-
opment of new methods and benchmarking with other techniques still
relies almost exclusively on artificially created problems. In this paper,
we use two real-world computational fluid dynamics problems to com-
pare the performance of eleven state-of-the-art single-objective SAEAs.
We analyze the performance by investigating the quality and robustness
of the obtained solutions and the convergence properties of the selected
methods. Our findings suggest that the more recently published meth-
ods, as well as the techniques that utilize differential evolution as one
of their optimization mechanisms, perform significantly better than the
other considered methods.

Keywords: Expensive optimization · evolutionary algorithm ·
surrogate model · computational fluid dynamics · benchmarking

1 Introduction

The field of evolutionary computation (EC) has produced a multitude of pivotal
evolutionary (or metaheuristic) algorithms (EAs) [30], such as genetic algorithm
(GA) [45], evolutionary strategy (ES) [4], differential evolution (DE) [55], or
particle swarm optimization (PSO) [27], that were used to solve a wide range
of different optimization problems [7,18]. However, these standard EAs usually
require a large number of objective/constraint function evaluations to find sat-
isfactory solutions, which severely limits their utility for solving expensive real-
world problems [22]. In applications such as aerodynamic design, computational
fluid dynamics (CFD), or finite element method analysis, a single function evalu-
ation requires running expensive computations that may take several minutes to
several hours [34]. The need for such high-fidelity simulations imposes a practical
limit on the number of designs that may be considered during optimization.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 303–321, 2024.
https://doi.org/10.1007/978-3-031-70068-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_19&domain=pdf
http://orcid.org/0000-0002-4372-2105
http://orcid.org/0000-0002-7186-7213
https://doi.org/10.1007/978-3-031-70068-2_19

304 J. Kůdela and L. Dobrovský

The interest in computationally expensive optimization has increased sub-
stantially in the past few years [34]. Perhaps the first widely known example
of such problems was presented in [24] where the two applications were in inte-
grated circuit design and in the automotive industry. Since then, there have been
numerous applications of optimization for such expensive problems, especially in
the field of CFD. A multi-objective shape optimization of aerofoils (accounting
for low-drag and high-lift) was investigated in [46]. A CFD-based shape opti-
mization problem that aimed to minimize the mass of beams under structural
constraints was presented in [38]. In a heat exchanger design, a multi-objective
formulation (that maximized heat flux and minimized pressure drop) was pro-
posed in [16]. More recent applications are concerned with CFD-based geometry
optimization problems, such as the minimization of pressure differences in pipes
[12] and ducts [11], and in ship hydrodynamic optimization [54], or in multiob-
jective ship hull design [8].

One of the approaches for solving these computationally expensive prob-
lems is to construct surrogate models (also called meta-models) to assist the
EAs. Such surrogate models are generally constructed using historical data to
approximate and predict the landscape of the objective function, with a negli-
gible computational cost. These types of algorithms are called data-driven EAs
[22] or surrogate-assisted EAs (SAEAs) [42]. Depending on whether real func-
tion evaluations can be performed during the optimization process, SAEAs can
be further divided into two categories: offline SAEAs and online SAEAs [22].
The offline SAEAs prioritize building the most suitable surrogate model based
on available historical data to predict the position of the optimal solution [59].
In contrast to the offline SAEAs, the online SAEAs work by effectively sampling
candidate solutions that will be evaluated on the real expensive function, and
then update the corresponding surrogate models and populations in the process
of optimization [22].

The majority of SAEAs are constructed on the basis of standard EAs and
are organically combined with surrogate models for predicting expensive real
function evaluations [65]. Various EAs, such as GA [68], DE [42], or PSO [63]
have been successfully used in SAEAs and, in recent years, there has been a mul-
titude of SAEAs proposed in the literature. However, to develop these methods
and compare them with other SAEAs, most authors rely almost exclusively on
artificially created problems.

As EC methods in general (as SAEAs in particular) are difficult to analyze
analytically, the majority of the reasoning about their utility is done by bench-
marking [19]. Throughout the years, many different benchmark sets and func-
tions were introduced in journal articles [17,33], but the most widely-used ones
were developed for competitions (and special sessions) on black-box optimiza-
tion at two high-profile conferences, the Genetic and Evolutionary Computation
Conference (GECCO), and the IEEE Congress on Evolutionary Computation
(CEC). However, the use of these benchmark sets is not without critique, with
some authors voicing their concern about the artificial nature of these problems
[47] and advocating for benchmarking EAs on real-world problems instead [58].

Performance Comparison of SAEAs on CFD Problems 305

Notable exceptions are the recent works on comparing low-budget methods on
the OpenAI Gym [49] and on the EXPObench library [5].

Although there are numerous applications of SAEAs, the authors of these
applications generally develop custom codes for the problems. As many of these
applications are proprietary, the authors are often reluctant to release the source
codes [14]. This means that despite having numerous published successful appli-
cations of SAEAs, it is generally difficult to use the simulators for benchmarking
different methods. The SAEA community is now actively looking for real-world
computationally expensive problems that can serve as benchmarks. The vast
majority of published SAEAs algorithms that are not tied to a specific applica-
tion are benchmarked on a handful of problems (such as the Ellipsoid, Rosen-
brock, Ackley, and Griewank functions) from the CEC competitions [10,40].
However, these are only pseudo-expensive problems, i.e. problems that are inex-
pensive in nature and use artificial delays or restrictions on the number of func-
tion evaluations to mimic the expensive problems [14].

This lack in the availability of real-world-based benchmark sets of expensive
problems for SAEAs spurred the creation of the CFD suite presented first at
the PPSN XV conference [14]. The problems in this suite focus on designing
different mechanisms, using CFD to evaluate the performances of the candidate
geometries in a fluid environment. Other places to find computationally expen-
sive problems that are well-suited for benchmarking are the GECCO Industrial
Challenge Competitions, with one of them focusing on CFD problems [51], while
others aimed at a hospital planning application [3,50]. These industrial problems
were used to benchmark parallel SAEA methods in [52], but a thorough com-
putational comparison of the state-of-the-art SAEAs on such problems was still
missing.

In this paper, we aim to fill this research gap by benchmarking state-of-the-
art single-objective SAEAs on the CFD problems from the suite [14]. As the
representative methods, we selected eleven SAEAs that were recently published
either in high-profile journals or conferences and were developed on similar test
problems (in terms of dimensions and available function evaluations). We ana-
lyze the performance of the selected SAEAs by investigating the quality and
robustness of the best-found solutions and their convergence properties. In the
analysis, we follow the recently published guidelines for comparing EAs [37]. For
the sake of replicability of the findings [2,28], the codes for all the methods used
in the computational comparison, and the code used to run the CFD experiments
are made publicly available in the Zenodo repository [31].

The rest of this paper is organized as follows. Section 2 introduces the frame-
work of surrogate-assisted optimization. In Sect. 3 we describe the two CFD
problems used for the computational comparisons. Section 4 contains a brief dis-
cussion of the selected state-of-the-art SAEAs. Section 5 reports on the results
of the computational comparisons. Section 6 concludes the paper and discusses
implications and future work.

306 J. Kůdela and L. Dobrovský

Algorithm 1. Prototypical structure of a surrogated-assisted optimization
method [26].

Require: budget B, surrogate model M , acquisition function A
Initialize x(1) randomly and an empty set H
for m = 1 : B do

y(m) ← f(x(m))
H ← H ∪ {(x(m), y(m))}
M ← fit surrogate model using H
x(m+1) ← argmaxxA(M, x)

end for
return best found (x∗, y∗) ∈ H

2 Surrogate-Assisted Optimization

In this paper, we consider the class of so-called black-box optimization prob-
lems, where the objective function f : RD → R has no closed-form expression
and only obtainable information about f come from observing its output when
evaluating f(x) given some input (decision variable) x ∈ R

D. The prototypical
box-constrained black-box optimization problem has the following form

minimize f(x)

subject to x ∈ R
D (1)

li ≤ xi ≤ ui, i = 1, . . . , D,

where li, ui are the lower and upper bounds on the decision variable xi, respec-
tively. The evaluation of y = f(x) is assumed to be computationally expensive
(i.e., requiring running time-consuming CFD simulations). This implies that we
are mostly interested in finding good (and not necessarily optimal) solutions to
(1) in a reasonable amount of time. We approach this by setting a limited budget
B for the number of available calls of f .

One of the possible approaches for this class of problems is to utilize a so-
called surrogate model, which can be thought of as an auxiliary function M
that we use to approximate the objective function f . The surrogate model
should be cheaper to evaluate than the original black-box function f and is
usually constructed using the evaluation history (m already evaluated points)
H = {(x(1), y(1)), . . . , (x(m), y(m))}. Kriging (also known as Gaussian Process)
models and Radial Basis Functions (RBFs) are among the most widely used
approaches for generating surrogate models [34]. Other techniques that are also
used with SAEAs are polynomial response surface methods [29] and support
vector machines [43], with various different techniques also considered [6,44,67].
It was found that the Kriging models outperform other surrogates in solving low-
dimensional optimization problems, while RBFs are the more efficient surrogates
for solving high-dimensional optimization problems [15].

The main purpose of the surrogate model is to predict the next promising
points for evaluation, which is typically also guided by an acquisition function

Performance Comparison of SAEAs on CFD Problems 307

A(M,x). This function predicts how promising a new point x is, balancing the
trade-off of exploration (the search in regions where the surrogate model displays
high levels of uncertainty) and exploitation (the search near already evaluated
points that resulted in low objective values). The prototypical structure of a
surrogate-assisted optimization method is shown in Algorithm 1. Most SAEAs
initialize the population by evaluating a fixed number of points selected by the
Latin Hypercube Sampling method [20].

3 Selected Problems

As the performance of a given engineering design in a fluid environment usu-
ally cannot be evaluated analytically, we often resort to various numerical CFD
approximations. These CFD computations require the solution of a set of Par-
tial Differential Equations (PDEs) describing the physics of the flow of the fluid,
which is typically approached using finite volume (and similar) methods. There
are numerous software products available that can perform these calculations.
One of the most used open-source options is the C++ code OpenFOAM [60].
Both of the selected problems, described in greater detail in [14] and [52], use
OpenFOAM for the CFD simulation. The problem geometries generated from
the optimization variables are transformed into sterolithography (STL) files and
imported into this OpenFOAM framework [13]. Similar setup was recently used
in [5], but with a completely different set of algorithms used for the comparison.

3.1 PitzDaily

The separation of flows, reattachment, and recirculation are all phenomena com-
monly observed in various engineering applications. Such features are usually
undesirable [14]. The first CFD problem is based on an experimental study by
Pitz and Daily [48] (hence the name), which features a so-called “backward-
facing step”, that is often used as a simplified prototype for studying the flow
phenomena mentioned above. In such a geometry (which can be found in Fig. 3
under the “PitzDaily boundary” label), the flow separates at the edge of the
step and creates a recirculation zone. Afterward, the flow reattaches at a dis-
tance beyond this step. This case study has been used as a benchmark case for
the accuracy testing of different CFD methodologies.

One of the undesirable characteristics of a flow is head losses. We can describe
this quantity (the mechanical energy loss factor ζ) as the energy that is trans-
formed to a form which can no longer be used in the operation of an energy-
producing, conducting, or consuming system (for instance because of the fric-
tional losses, or dissipation due to turbulence) [14]. The energy loss factor ζ of
a given design can be defined as the total pressure difference between the inflow
and outflow of the mechanism (taken relative to the kinetic energy at the inflow)

ζ = 2
ρU2

in

[
1

Ain

∫
in

Pt,in(u · n)dAin − 1
Aout

∫
out

Pt,out(u · n)dAout

]

308 J. Kůdela and L. Dobrovský

Fig. 1. Example of the Catmull-Clark subdivision curve. S0 are the original control
points, S1 is the approximation of C after one iteration, S5 is the visually smooth curve
after five iterations.

where ρ is the density of the fluid, Uin is the inflow velocity, A is the cross-
sectional area, Pt is the total pressure, u · n describes the velocity component
normal to the boundary, and subscripts “in” and “out” indicate the inflow and
outflow boundaries. The primary objective of this problem is to minimize the
energy loss ζ by changing the geometry of the design.

The standard procedure to create such geometry would be to use some
Computer-Aided Design (CAD) software. The problem is that automatically
altering designs using CAD is very challenging. Therefore, we generally resort
to different parametric representations of the parts of the original CAD geome-
try. We can then generate new geometries by changing the parameters of such
representation.

For the PitzDaily problem, we use the Catmull-Clark subdivision curves [9]
to alter the boundary wall. In this method, the curve C is parameterized by a
sequence of n vertices (or control points) S0 = 〈v1, . . . , vn〉. In each iteration, a
mid-point between adjacent vertices is inserted, and the positions of the vertices
are adjusted, generating a larger sequence. From the practical perspective, only a
few iterations of these subdivisions are necessary for a visually smooth curve (see
Fig. 1) exportable in the STL format. In this paper, the iteration limit was set
to five. We chose the positions of five control points of the Catmull-Clark curve
in 2D as the decision vector (see Fig. 3), resulting in an optimization problem
with 10 variables.

3.2 Electrostatic Precipitator

The Electrostatic Precipitator (ESP) is a real-world problem from industrial
optimization that was first proposed in [52]. The ESP is one of the crucial
components in gas cleaning systems used in combustion power plants (or simi-
lar industries) to remove solid particles from gas streams (pollution reduction).
Figure 2 shows a schema of such a system.

To control the flow of the gas flow through the different separation zones
(where the removal of particles from the exhaust gases occurs) a gas distribution
system (GDS) is needed. If there were no GDS used (or the system was not well

Performance Comparison of SAEAs on CFD Problems 309

Fig. 2. ESP with 3 separation zones (left) and GDS mounted in the inlet hood of an
ESP (right) [51].

configured), the fast inlet gas stream would run through the separation zones,
resulting in low separation efficiencies. For the efficient operation of the EPS, the
GDS must have a good configuration. In our case, the GDS has 49 slots, which
can be configured with baffles (metal plates mounted at an angle to the flow of
the gas), blocking plates (block the gas stream), or perforated plates (slow down
and partially block the gas stream).

In total, there are 8 different options available for each of the 49 configurable
slots (decision variables), resulting in a solution space of roughly 1044 possibil-
ities. Even though this problem is discrete in nature, it has been shown in [26]
that continuous SAEAs are well-suited to solve it. The ESP problem was also
the focus of the GECCO 2020 Industrial Challenge [51].

4 Selected Methods and Experimental Setup

For the selection and comparison of representative SAEAs, we followed the
guidelines published in [37]. The selected methods were all recently developed
algorithms that were published either in high-profile journals (such as IEEE
Transactions on Cybernetics, IEEE Transactions on Evolutionary Computation,
Information Sciences, etc.) or conferences (such as GECCO). All of the methods
were also trained on similar dimensions (between 10 and 100, which covers the
range of our two CFD problems), using a similar computational budget.

Table 1 shows a brief overview of the SAEAs selected for the computational
comparison in chronological order. We can find that the most used surrogate

310 J. Kůdela and L. Dobrovský

Table 1. SAEAs selected for computational comparison. The “Real?” column shows
if the method was evaluated on real-world problems.

Method name Year Ref. Surrogate Optimization Real?

model method

SHPSO 2018 [63] RBF PSO N

SSL-A-PSO 2018 [57] RBF PSO N

GORS-SSLPSO 2019 [62] RBF PSO N

MS-MTO 2020 [41] RBF MTO N

TL-SSLPSO 2020 [61] RBF PSO Y

BiS-SAHA 2021 [53] RBF PSO, DE Y

IKAEA 2021 [64] Kriging DE N

SAMSO 2021 [39] RBF TLBO, PSO N

TS-DDEO 2021 [66] RBF PSO, DE N

ESA 2022 [65] RBF DE N

LSADE 2022 [35] RBF, Lipschitz DE, SQP N

model was RBF, and the most utilized EAs were PSO and DE. Only two of
the selected methods were tested on real-world problems, with the rest relying
purely on artificially created ones. However, these two real-world problems were
not computationally expensive (both used analytical expressions in the formu-
lations).

Another common feature of all of the selected methods was that they had
their respective codes publicly available, making it possible for verification of
the presented results as well as for conducting additional computational com-
parisons. The implementation of the selected SAEAs, as well as the important
information about their parametrization, and the implementation of the CFD
problems, can be found in a public Zenodo repository [31].

4.1 Experimental Setup

The selected SAEAs were implemented in MATLAB R2022b and the experi-
ments were run on a workstation with 3.7 GHz AMD Ryzen 9 5900X 12-Core
processor and 64 GB RAM. As the selected SAEAs are stochastic methods, each
of them was run 24 times (efficiently using the 12-core machine) on the two CFD
problems, in order to get statistically representative results and provide a solid
basis for algorithmic comparison. To give context to the results, we also imple-
mented a simple random search (RS) routine. The function evaluation budget
was set to B = 1,000 in both cases. For both problems, the time needed for
the evaluation of the objective function (i.e., running the CFD simulations) was
approximately 30 s.

Performance Comparison of SAEAs on CFD Problems 311

5 Results and Discussion

5.1 PitzDaily Results

The results of the computations (statistics of the 24 independent runs) on the
PitzDaily problem (with D = 10) are summarized in Table 2. The Catmull-Clark
curve of the best solution (i.e., the best design shape) found by any method (in
this case, ESA) and a randomly generated solution as well as the flowfield (CFD)
simulations for these designs are shown in Fig. 3 (these were generated using the
ParaView software). On the best-found design, we can observe a much smoother
transition of u from one boundary to the other, resulting in a lower value of the
energy loss factor ζ.

Based on the statistics shown in Table 2, the best methods for the PitzDaily
problem were ESA, LSADE, IKAEA, and TS-DDEO. A different insight can be found
when looking at the convergence plots of average best-found solutions of the
methods shown in Fig. 4. Here, we find that LSADE, ESA, and TS-DDEO were able
to find good solutions faster than the other considered SAEAs. These three
are among the most recently proposed methods (in Fig. 4, the convergence of
methods published after 2021 is shown as a dashed line). As Fig. 4 shows only
the average performance of the selected SAEAs, we also boxplots of the solutions
found in the 24 runs with two different budgets B = 500 and B = 1,000, that are
shown in Fig. 5. Here, we can find that LSADE had a very good performance on
both budgets that was somewhat worsened by a single run for which the method
was not able to find a good solution. Also, the TS-DDEO method showed only
a marginal improvement upon SHPSO (its base method), which was among the
best-performing methods for this problem, despite being the oldest one.

Table 2. Statistics of the 24 runs of the selected SAEAs on the PitzDaily model. The
best three methods in each category are highlighted in bold.

Method Min Mean Median Max Std Rank

RS 8.59E-02 9.26E-02 9.24E-02 9.63E-02 3.19E-03 11.71

SHPSO 8.03E-02 8.31E-02 8.34E-02 8.61E-02 1.62E-03 5.50

SSL-A-PSO 8.06E-02 8.46E-02 8.31E-02 9.34E-02 3.21E-03 5.96

GORS-SSLPSO 8.08E-02 8.62E-02 8.52E-02 9.42E-02 3.26E-03 8.63

MS-MTO 8.31E-02 8.62E-02 8.52E-02 9.47E-02 3.04E-03 9.08

TL-SSLPSO 8.28E-02 8.45E-02 8.32E-02 9.35E-02 2.90E-03 6.04

BiS-SAHA 8.31E-02 8.52E-02 8.42E-02 9.14E-02 2.27E-03 8.50

IKAEA 7.95E-02 8.28E-02 8.30E-02 8.88E-02 2.31E-03 4.17

SAMSO 8.00E-02 8.38E-02 8.33E-02 8.99E-02 1.79E-03 6.17

TS-DDEO 7.98E-02 8.29E-02 8.30E-02 8.79E-02 1.67E-03 4.50

ESA 7.94E-02 8.23E-02 8.27E-02 8.56E-02 1.98E-03 4.08

LSADE 7.95E-02 8.24E-02 8.31E-02 9.13E-02 2.48E-03 3.67

312 J. Kůdela and L. Dobrovský

Fig. 3. Random design (top) and best-found design (bottom) for the PitzDaily problem
(left), flowfield (CFD) simulations of these designs (right).

Fig. 4. Convergence of the average best-found value of the selected SAEAs on the
PitzDaily problem.

Fig. 5. Boxplots of the solutions of the SAEAs on the PitzDaily problem with B = 500
(left) and B = 1000 (right).

To perform a solid statistical comparison of the selected algorithms on the
PitzDaily problem, we followed the guidelines published in [37]. First, we used
the Friedman test to find if significant differences are present among all the
algorithms on the B = 500 and B = 1,000 budgets (the Friedman ranks of
the methods for B = 1,000 are shown in Table 2). The p-values for this test
were 1.16E-18 (and 1.50E-12 when omitting RS) for B = 500 and 2.37E-21
(and 6.46E-13 when omitting RS) for B = 1,000. As all these p-values values

Performance Comparison of SAEAs on CFD Problems 313

were much lower than the recommended confidence level α = 0.05, we can state
that there are statistically significant differences between the selected SAEAs.
Furthermore, we utilized the Wilcoxon signed-rank test to find if there exist
statistically significant differences between the best algorithm (in this case, the
LSADE algorithm with the lowest Friedman rank) and the other SAEAs. Once the
pairwise p-values were obtained, we applied the Holm-Bonferroni [21] correction
method which counteracts the effect of multiple comparisons by controlling the
family-wise error rate [1]. The results of the analysis are presented in Table 3.
For the B = 500 budget, there were 6 methods that tied with LSADE as the
best-performing ones. For the B = 1,000 budget, the list of the methods that
tied with LSADE changed - TL-SSLPSO and SAMSO dropped, while SHPSO entered.
Forming a union of these two lists, we find that four methods (SSL-A-PSO, IKAEA,
TS-DDEO, and ESA) were found to be as good as LSADE on the PitzDaily problem.
Four of these five methods were proposed after 2021, and also four of the five
utilize DE in some capacity (in both cases, the exception was SSL-A-PSO).

Table 3. Statistical analysis of the comparison of the selected SAEAs on the PitzDaily
problem.

B = 500 B = 1,000

LSADE vs. p p∗ LSADE vs. p p∗

SHPSO 2.46E-03 1.72E-02 SHPSO 8.65E-02 3.46E-01✗

SSL-A-PSO 1.91E-02 9.57E-02✗ SSL-A-PSO 1.10E-02 5.50E-02✗

GORS-SSLPSO 8.05E-05 6.44E-04 GORS-SSLPSO 8.05E-05 7.25E-04

MS-MTO 2.67E-05 2.67E-04 MS-MTO 2.35E-05 2.35E-04

TL-SSLPSO 2.78E-02 1.11E-01✗ TL-SSLPSO 6.64E-03 3.99E-02

BiS-SAHA 5.61E-05 5.05E-04 BiS-SAHA 3.96E-04 3.17E-03

IKAEA 4.55E-02 1.37E-01✗ IKAEA 3.46E-01 8.71E-01✗

SAMSO 1.10E-02 6.60E-02✗ SAMSO 2.46E-03 1.72E-02

TS-DDEO 1.23E-01 2.32E-01✗ TS-DDEO 2.90E-01 8.71E-01✗

ESA 1.16E-01 2.32E-01✗ ESA 8.19E-01 8.19E-01✗

p: p-value computed by the Wilcoxon text
p∗: p-value corrected with the Holm-Bonferroni procedure
✗: statistical differences do not exist with significance level α = 0.05

5.2 ESP Results

The results of the computations on the ESP problem (with D = 49) are summa-
rized in Table 4. Unfortunately, we do not have an expressive way of visualizing
the best-found solution to the ESP problem (this time, found by IKAEA), in the
same way that we had for the PitzDaily problem in the form of Fig. 3. Based
on the statistics shown in Table 4, the best methods for the ESP problem were
TL-SSLPSO, IKAEA, SAMSO, and BiS-SAHA.

314 J. Kůdela and L. Dobrovský

The convergence plot, shown in Fig. 6, displays some interesting patterns.
There were four methods (BiS-SAHA, GORS-SSLPSO, TL-SSLPSO, and LSADE) that
got relatively good solutions in a very short amount of function calls (approxi-
mately at B = 200). However, apart from TL-SSLPSOwhich was the best method
overall, the three other methods stagnated and got overtaken by IKAEA and
SAMSO roughly at B = 500. Another thing to note is that the SSL-A-PSO method,
which performed relatively well on the PitzDaily problem, was the worst of the
selected SAEAs on the ESP by a large margin. Similarly to the PitzDaily case,
we can find that the more recent methods dominated the older ones (apart from
TL-SSLPSO).

The boxplots of the solutions found in the 24 runs with the two budgets
(B = 500 and B = 1,000) are shown in Fig. 7. We can observe that for the
ESP problem many methods, such as LSADE, IKAEA, MS-MTO, GORS-SSLPSO, and
SSL-A-PSO, had a problem of premature convergence (not being able to improve
upon a bad solution found at the B = 500 budget). This may be explained by the
difficulty these continuous SAEAs face on the discrete problems. Interestingly,
the two methods with the most robust performance at the B = 1,000 budget,
TL-SSLPSO and SAMSO, were not the ones that were able to find the overall
best solutions (these were IKAEA, LSADE, and BiS-SAHA). Also, in this case, the
improvement of TS-DDEO over its base method (SHPSO) was substantial.

Table 4. Statistics of the 24 runs of the selected SAEAs on the ESP model. The best
three methods in each category are highlighted in bold.

Method Min Mean Median Max Std Rank

RS 1.05E+00 1.16E+00 1.16E+00 1.28E+00 6.46E-02 10.92

SHPSO 9.19E-01 1.02E+00 1.01E+00 1.18E+00 6.02E-02 6.92

SSL-A-PSO 9.56E-01 1.12E+00 1.11E+00 1.28E+00 9.25E-02 9.92

GORS-SSLPSO 9.21E-01 1.04E+00 1.00E+00 1.19E+00 8.41E-02 7.50

MS-MTO 8.89E-01 1.00E+00 9.88E-01 1.16E+00 8.15E-02 6.04

TL-SSLPSO 8.92E-01 9.59E-01 9.37E-01 1.12E+00 6.27E-02 3.83

BiS-SAHA 8.84E-01 9.79E-01 9.63E-01 1.14E+00 6.54E-02 4.96

IKAEA 8.63E-01 9.74E-01 9.78E-01 1.11E+00 6.17E-02 4.75

SAMSO 8.89E-01 9.66E-01 9.65E-01 1.14E+00 5.04E-02 4.63

TS-DDEO 9.14E-01 9.82E-01 9.72E-01 1.11E+00 4.85E-02 5.58

ESA 9.13E-01 1.01E+00 1.01E+00 1.12E+00 7.38E-02 6.46

LSADE 8.78E-01 1.01E+00 1.01E+00 1.17E+00 6.63E-02 6.50

As with the PitzDaily problem, we also used the Friedman test to find if
significant differences are present among all the algorithms on the B = 500 and
B = 1,000 budgets. The p-values for this test were 7.51E-15 (and 6.06E-09 when
omitting RS) forB = 500 and 9.13E-15 (and 3.75-08 when omitting RS) for

Performance Comparison of SAEAs on CFD Problems 315

Fig. 6. Convergence of the average best-found value of the selected SAEAs on the ESP
problem.

Fig. 7. Boxplots of the solutions of the SAEAs on the ESP problem with B = 500
(left) and B = 1000 (right).

Table 5. Statistical analysis of the comparison of the selected SAEAs on the ESP
problem.

B = 500 B = 1,000

TL-SSLPSO vs. p p∗ TL-SSLPSO vs. p p∗

SHPSO 4.97E-05 4.47E-04 SHPSO 1.37E-03 1.24E-02

SSL-A-PSO 3.88E-05 3.88E-04 SSL-A-PSO 3.88E-05 3.88E-04

GORS-SSLPSO 1.29E-02 2.80E-02 GORS-SSLPSO 1.84E-03 1.48E-02

MS-MTO 9.32E-03 2.80E-02 MS-MTO 7.65E-02 3.82E-01✗

BiS-SAHA 1.45E-04 1.01E-03 BiS-SAHA 1.99E-01 5.96E-01✗

IKAEA 1.29E-02 2.59E-02 IKAEA 4.58E-01 6.35E-01✗

SAMSO 4.68E-03 2.34E-02 SAMSO 3.17E-01 6.35E-01✗

TS-DDEO 9.19E-04 5.51E-03 TS-DDEO 8.14E-02 3.82E-01✗

ESA 9.07E-05 7.25E-04 ESA 2.78E-02 1.67E-01✗

LSADE 6.64E-03 2.66E-02 LSADE 1.64E-02 1.15E-01✗

p: p-value computed by the Wilcoxon text
p∗: p-value corrected with the Holm-Bonferroni procedure
✗: statistical differences do not exist with significance level α = 0.05

316 J. Kůdela and L. Dobrovský

B = 1,000. All these p-values were much lower than the confidence level α = 0.05,
so we can state that there are statistically significant differences between the
selected SAEAs on the ESP problem. The results of the Wilcoxon signed-rank
test between the method with the lowest rank (in this case TL-SSLPSO) and the
remaining methods are presented in Table 5. These results show the dominance of
TL-SSLPSO on the B = 500 budget. However, there was no statistically significant
difference found between TL-SSLPSO and seven other methods on the B = 1,000
budget.

5.3 Aggregate Results

Combining the results of the PitzDaily and ESP problems, we can find the fol-
lowing patterns in the performance of the selected SAEAs. On very low budgets
(approximately B = 200), the LSADE and GORS-SSLPSO algorithms were among
the best methods in both cases. However, after this budget, GORS-SSLPSO seemed
to stagnate, while LSADE was able to find further improvements. On the B = 500
budget, the situation was much more nuanced. Here, LSADE, ESA, TS-DDEO, and
TL-SSLPSO were the best methods for the PitzDaily problem, while TL-SSLPSO
dominated the ESP problem. Moreover, both ESA and TS-DDEO had relatively
poor performance on the ESP for the B = 500 budget. On the B = 1,000 bud-
get, the performance of many of the selected SAEAs relatively equalized, and
their convergence seemed to have mostly plateaued. For both PitzDaily and ESP
problems, LSADE, ESA, TS-DDEO, and IKAEA were tied for the spot of the best-
performing method (based on the Wilcoxon test). The common features of these
methods are their age (as they were all published after 2021), and the fact that
they use DE as one of the mechanisms for optimization.

6 Conclusions

Comparing SAEAs on real-world problems instead of artificially created ones is
still extremely rare. In this paper, we performed a computational comparison of
eleven recently published state-of-the-art single-objective SAEAs on two CFD
problems. The aggregate results of the computational comparisons showed that
the overall best-performing methods (considering the quality and robustness of
the obtained solution as well as their convergence properties) were LSADE, ESA,
TS-DDEO, and IKAEA. All four of these methods were among the most recent
ones (published after 2021), used DE as one of the mechanisms for optimization,
and were published in the most high-profile journals (IEEE Transactions on
Cybernetics, IEEE Transactions on Evolutionary Computation, and Information
Sciences). We hope that these findings will help researchers faced with solving
expensive optimization problems in the selection of appropriate methods. We
also hope that the authors developing new SAEAs will use the results presented
in this paper (and data and code available in the Zenodo repository [31]) for
benchmarking.

Performance Comparison of SAEAs on CFD Problems 317

In further research, we will focus on comparisons of SAEAs with the
DIRECT-type approaches [23,56], which are also popular for solving computa-
tionally expensive problems. Another line of research lies in finding other good
real-world applications, such as in hospital planning [3], inverse heat transfer [36]
or robotics [25,32], that can be used for benchmarking SAEAs. Lastly, bench-
marking multiobjective SAEAs (and finding appropriate real-world benchmark
sets) is also one of the possible research directions.

Acknowledgments. This work was supported by the project IGA BUT No. FSI-S-
23-8394 “Artificial intelligence methods in engineering tasks” and by the project (no.
24-12474S) “Benchmarking derivative-free global optimization methods” funded by the
Czech Science Foundation.

Disclosure of interest statement. The authors declare no conflicts of interest.

References

1. Aickin, M., Gensler, H.: Adjusting for multiple testing when reporting research
results: the bonferroni vs holm methods. Am. J. Public Health 86(5), 726–728
(1996)

2. Bäck, T.H., et al.: Evolutionary algorithms for parameter optimization-thirty years
later. Evol. Comput. 31(2), 81–122 (2023)

3. Bartz-Beielstein, T., Rehbach, F., Mersmann, O., Bartz, E.: Hospital capacity plan-
ning using discrete event simulation under special consideration of the covid-19
pandemic. arXiv preprint arXiv:2012.07188 (2020)

4. Beyer, H.G., Schwefel, H.P.: Evolution strategies-a comprehensive introduction.
Nat. Comput. 1, 3–52 (2002)

5. Bliek, L., Guijt, A., Karlsson, R., Verwer, S., de Weerdt, M.: Benchmarking
surrogate-based optimisation algorithms on expensive black-box functions. Appl.
Soft Comput. 147, 110744 (2023)

6. Bliek, L., Verwer, S., de Weerdt, M.: Black-box combinatorial optimization using
models with integer-valued minima. Ann. Math. Artif. Intell. 89, 639–653 (2021)

7. Bujok, P., Lacko, M., Kolenovsky, P.: Differential evolution and engineering prob-
lems. Mendel 29(1), 45–54 (2023)

8. Campana, E.F., et al.: A multi-objective direct algorithm for ship hull optimization.
Comput. Optim. Appl. 71, 53–72 (2018)

9. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topo-
logical meshes. In: Seminal Graphics: Pioneering Efforts that Shaped the Field,
pp. 183–188 (1998)

10. Chen, Q., Liu, B., Zhang, Q., Liang, J., Suganthan, P., Qu, B.: Problem definitions
and evaluation criteria for CEC 2015 special session on bound constrained single-
objective computationally expensive numerical optimization. Technical report,
Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China
and Technical Report, Nanyang Technological University (2014)

11. Daniels, S., Rahat, A., Fieldsend, J., Everson, R., et al.: Automatic shape opti-
misation of the turbine-99 draft tube. In: 12th OpenFOAM Workshop, Exeter.
OpenFOAM (2017)

http://arxiv.org/abs/2012.07188

318 J. Kůdela and L. Dobrovský

12. Daniels, S., Rahat, A., Tabor, G., Fieldsend, J., Everson, R.: Shape optimisation
using computational fluid dynamics and evolutionary algorithms. In: 11th Open-
FOAM Workshop, Portugal. OpenDOAM (2016)

13. Daniels, S., Rahat, A., Tabor, G., Fieldsend, J., Everson, R.: A review of shape
distortion methods available in the OpenFOAM® framework for automated design
optimisation. In: Nóbrega, J.M., Jasak, H. (eds.) OpenFOAM®, pp. 389–399.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-60846-4 28

14. Daniels, S.J., Rahat, A.A.M., Everson, R.M., Tabor, G.R., Fieldsend, J.E.: A suite
of computationally expensive shape optimisation problems using computational
fluid dynamics. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete,
L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 296–307. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99259-4 24

15. Dı́az-Manŕıquez, A., Toscano, G., Coello Coello, C.A.: Comparison of metamodel-
ing techniques in evolutionary algorithms. Soft. Comput. 21, 5647–5663 (2017)

16. Foli, K., Okabe, T., Olhofer, M., Jin, Y., Sendhoff, B.: Optimization of micro heat
exchanger: CFD, analytical approach and multi-objective evolutionary algorithms.
Int. J. Heat Mass Transf. 49(5–6), 1090–1099 (2006)

17. Garćıa-Mart́ınez, C., Gutiérrez, P.D., Molina, D., Lozano, M., Herrera, F.: Since
CEC 2005 competition on real-parameter optimisation: a decade of research,
progress and comparative analysis’s weakness. Soft. Comput. 21, 5573–5583 (2017)

18. Gong, W., Liao, Z., Mi, X., Wang, L., Guo, Y.: Nonlinear equations solving with
intelligent optimization algorithms: a survey. Complex Syst. Model. Simul. 1(1),
15–32 (2021)

19. Hellwig, M., Beyer, H.G.: Benchmarking evolutionary algorithms for single objec-
tive real-valued constrained optimization-a critical review. Swarm Evol. Comput.
44, 927–944 (2019)

20. Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation of uncer-
tainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81(1), 23–69 (2003)

21. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat.
65–70 (1979)

22. Jin, Y., Wang, H., Chugh, T., Guo, D., Miettinen, K.: Data-driven evolutionary
optimization: an overview and case studies. IEEE Trans. Evol. Comput. 23(3),
442–458 (2018)

23. Jones, D.R., Martins, J.R.: The direct algorithm: 25 years later. J. Global Optim.
79(3), 521–566 (2021)

24. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13, 455–492 (1998)

25. Juricek, M., Parak, R., Kudela, J.: Evolutionary computation techniques for path
planning problems in industrial robotics: a state-of-the-art review. Computation
11(12), 245 (2023)

26. Karlsson, R., Bliek, L., Verwer, S., de Weerdt, M.: Continuous surrogate-based opti-
mization algorithms are well-suited for expensive discrete problems. In: Baratchi,
M., Cao, L., Kosters, W.A., Lijffijt, J., van Rijn, J.N., Takes, F.W. (eds.)
BNAIC/Benelearn 2020. CCIS, vol. 1398, pp. 48–63. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76640-5 4

27. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE
(1995)

28. Kononova, A.V., Vermetten, D., Caraffini, F., Mitran, M.A., Zaharie, D.: The
importance of being constrained: dealing with infeasible solutions in differential
evolution and beyond. Evol. Comput. 32(1), 3–48 (2024)

https://doi.org/10.1007/978-3-319-60846-4_28
https://doi.org/10.1007/978-3-319-99259-4_24
https://doi.org/10.1007/978-3-030-76640-5_4

Performance Comparison of SAEAs on CFD Problems 319

29. Krithikaa, M., Mallipeddi, R.: Differential evolution with an ensemble of low-
quality surrogates for expensive optimization problems. In: 2016 IEEE Congress
on Evolutionary Computation (CEC), pp. 78–85. IEEE (2016)

30. Kudela, J.: A critical problem in benchmarking and analysis of evolutionary com-
putation methods. Nat. Mach. Intell. 4(12), 1238–1245 (2022)

31. Kudela, J.: Zenodo repository: performance comparison of surrogate-assisted evo-
lutionary algorithms on computational fluid dynamics problems (2023). https://
doi.org/10.5281/zenodo.8201977

32. Kudela, J., Juř́ıček, M., Parák, R.: A collection of robotics problems for bench-
marking evolutionary computation methods. In: Correia, J., Smith, S., Qaddoura,
R. (eds.) EvoApplications 2023. LNCS, vol. 13989, pp. 364–379. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30229-9 24

33. Kudela, J., Matousek, R.: New benchmark functions for single-objective optimiza-
tion based on a zigzag pattern. IEEE Access 10, 8262–8278 (2022)

34. Kudela, J., Matousek, R.: Recent advances and applications of surrogate models for
finite element method computations: a review. Soft. Comput. 26(24), 13709–13733
(2022)

35. Kudela, J., Matoušek, R.: Combining Lipschitz and RBF surrogate models for high-
dimensional computationally expensive problems. Inf. Sci. 619, 457–477 (2023)

36. Kudela, J., Zalesak, M., Charvat, P., Klimes, L., Mauder, T.: Assessment of the
performance of metaheuristic methods used for the inverse identification of effective
heat capacity of phase change materials. Expert Syst. Appl. 238, 122373 (2024)

37. LaTorre, A., Molina, D., Osaba, E., Poyatos, J., Del Ser, J., Herrera, F.: A prescrip-
tion of methodological guidelines for comparing bio-inspired optimization algo-
rithms. Swarm Evol. Comput. 67, 100973 (2021)

38. Leary, S.J., Bhaskar, A., Keane, A.J.: A derivative based surrogate model for
approximating and optimizing the output of an expensive computer simulation.
J. Global Optim. 30, 39–58 (2004)

39. Li, F., Cai, X., Gao, L., Shen, W.: A surrogate-assisted multiswarm optimization
algorithm for high-dimensional computationally expensive problems. IEEE Trans.
Cybern. 51(3), 1390–1402 (2020)

40. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria
for the CEC 2014 special session and competition on single objective real-parameter
numerical optimization. Computational Intelligence Laboratory, Zhengzhou Uni-
versity, Zhengzhou China and Technical Report, Nanyang Technological University,
Singapore, vol. 635, no. 2 (2013)

41. Liao, P., Sun, C., Zhang, G., Jin, Y.: Multi-surrogate multi-tasking optimization
of expensive problems. Knowl.-Based Syst. 205, 106262 (2020)

42. Liu, B., Zhang, Q., Gielen, G.G.: A gaussian process surrogate model assisted
evolutionary algorithm for medium scale expensive optimization problems. IEEE
Trans. Evol. Comput. 18(2), 180–192 (2013)

43. Loshchilov, I., Schoenauer, M., Sebag, M.: Comparison-based optimizers need
comparison-based surrogates. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 364–373. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 37

44. Luo, J., Chen, L., Li, X., Zhang, Q.: Novel multitask conditional neural-network
surrogate models for expensive optimization. IEEE Trans. Cybern. 52(5), 3984–
3997 (2020)

45. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

https://doi.org/10.5281/zenodo.8201977
https://doi.org/10.5281/zenodo.8201977
https://doi.org/10.1007/978-3-031-30229-9_24
https://doi.org/10.1007/978-3-642-15844-5_37

320 J. Kůdela and L. Dobrovský

46. Naujoks, B., Willmes, L., Bäck, T., Haase, W.: Evaluating multi-criteria evolution-
ary algorithms for airfoil optimisation. In: Guervós, J.J.M., Adamidis, P., Beyer,
H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol.
2439, pp. 841–850. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45712-7 81

47. Piotrowski, A.P.: Regarding the rankings of optimization heuristics based on
artificially-constructed benchmark functions. Inf. Sci. 297, 191–201 (2015)

48. Pitz, R., Daily, J.: An experimental study of combustion the turbulent struc-
ture of a reacting shear layer formed at a rearward-facing step. Technical report,
NASA Contractor Report 165427, University of California, Berkeley, California,
USA (1981)

49. Raponi, E., Rakotonirina, N.C., Rapin, J., Doerr, C., Teytaud, O.: Optimizing
with low budgets: a comparison on the black-box optimization benchmarking suite
and openai gym. IEEE Trans. Evol. Comput. (2023)

50. Rehbach, F., Rebolledo, M., , Bartz-Beielstein, S.C.T.: GECCO 2021 indus-
trial challenge: optimization of a simulation model for a capacity and resource
planning task for hospitals under special consideration of the covid-19 pan-
demic (2021). https://www.th-koeln.de/informatik-und-ingenieurwissenschaften/
gecco-2021-industrial-challenge-call-for-participation 82086.php. Accessed 20 Mar
2023

51. Rehbach, F., Rebolledo, M., Bartz-Beielstein, T.: GECCO 2020 industrial
challenge: optimizing expensive computational fluid dynamics simulations
(2020). https://www.th-koeln.de/informatik-und-ingenieurwissenschaften/gecco-
challenge-2020 72989.php. Accessed 20 Mar 2023

52. Rehbach, F., Zaefferer, M., Stork, J., Bartz-Beielstein, T.: Comparison of parallel
surrogate-assisted optimization approaches. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1348–1355 (2018)

53. Ren, Z., Sun, C., Tan, Y., Zhang, G., Qin, S.: A bi-stage surrogate-assisted hybrid
algorithm for expensive optimization problems. Complex Intell. Syst. 7, 1391–1405
(2021)

54. Serani, A., et al.: Ship hydrodynamic optimization by local hybridization of deter-
ministic derivative-free global algorithms. Appl. Ocean Res. 59, 115–128 (2016)

55. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

56. Stripinis, L., Kůdela, J., Paulavičius, R.: Benchmarking derivative-free global opti-
mization algorithms under limited dimensions and large evaluation budgets. IEEE
Trans. Evol. Comput. (2024)

57. Sun, C., Jin, Y., Tan, Y.: Semi-supervised learning assisted particle swarm opti-
mization of computationally expensive problems. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 45–52 (2018)

58. Tzanetos, A., Dounias, G.: Nature inspired optimization algorithms or simply vari-
ations of metaheuristics? Artif. Intell. Rev. 54, 1841–1862 (2021)

59. Wang, H., Jin, Y., Sun, C., Doherty, J.: Offline data-driven evolutionary opti-
mization using selective surrogate ensembles. IEEE Trans. Evol. Comput. 23(2),
203–216 (2018)

60. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to compu-
tational continuum mechanics using object-oriented techniques. Comput. Phys.
12(6), 620–631 (1998)

61. Yu, H., Kang, L., Tan, Y., Sun, C., Zeng, J.: Truncation-learning-driven surrogate
assisted social learning particle swarm optimization for computationally expensive
problem. Appl. Soft Comput. 97, 106812 (2020)

https://doi.org/10.1007/3-540-45712-7_81
https://doi.org/10.1007/3-540-45712-7_81
https://www.th-koeln.de/informatik-und-ingenieurwissenschaften/gecco-2021-industrial-challenge-call-for-participation_82086.php
https://www.th-koeln.de/informatik-und-ingenieurwissenschaften/gecco-2021-industrial-challenge-call-for-participation_82086.php
https://www.th-koeln.de/informatik-und-ingenieurwissenschaften/gecco-challenge-2020_72989.php
https://www.th-koeln.de/informatik-und-ingenieurwissenschaften/gecco-challenge-2020_72989.php

Performance Comparison of SAEAs on CFD Problems 321

62. Yu, H., Tan, Y., Sun, C., Zeng, J.: A generation-based optimal restart strategy for
surrogate-assisted social learning particle swarm optimization. Knowl.-Based Syst.
163, 14–25 (2019)

63. Yu, H., Tan, Y., Zeng, J., Sun, C., Jin, Y.: Surrogate-assisted hierarchical particle
swarm optimization. Inf. Sci. 454, 59–72 (2018)

64. Zhan, D., Xing, H.: A fast kriging-assisted evolutionary algorithm based on incre-
mental learning. IEEE Trans. Evol. Comput. 25(5), 941–955 (2021)

65. Zhen, H., Gong, W., Wang, L.: Evolutionary sampling agent for expensive prob-
lems. IEEE Trans. Evol. Comput. 27(3), 716–727 (2022)

66. Zhen, H., Gong, W., Wang, L., Ming, F., Liao, Z.: Two-stage data-driven evolution-
ary optimization for high-dimensional expensive problems. IEEE Trans. Cybern.
53(4), 2368–2379 (2021)

67. Zhou, Y., He, X., Chen, Z., Jiang, S.: A neighborhood regression optimization algo-
rithm for computationally expensive optimization problems. IEEE Trans. Cybern.
52(5), 3018–3031 (2020)

68. Zhou, Z., Ong, Y.S., Nair, P.B., Keane, A.J., Lum, K.Y.: Combining global and
local surrogate models to accelerate evolutionary optimization. IEEE Trans. Syst.
Man Cybern. Part C (Appl. Rev.) 37(1), 66–76 (2006)

Balancing Between Time Budgets
and Costs in Surrogate-Assisted

Evolutionary Algorithms

Cedric J. Rodriguez1(B) , Peter A. N. Bosman2 , and Tanja Alderliesten1

1 Leiden University Medical Center, 2300 RC Leiden, The Netherlands
{c.j.rodriguez,t.alderliesten}@lumc.nl

2 Centrum Wiskunde and Informatica, 1090 GB Amsterdam, The Netherlands
peter.bosman@cwi.nl

Abstract. For many real-world multi-objective optimisation problems,
function evaluations are computationally expensive, resulting in a lim-
ited budget of function evaluations that can be performed in practice. To
tackle such expensive problems, multi-objective surrogate-assisted evo-
lutionary algorithms (SAEAs) have been introduced. Often, the perfor-
mance of these EAs is measured after a fixed number of function eval-
uations (typically several hundreds) and complex surrogate models are
found to be the best to use. However, when selecting an SAEA for a real-
world problem, the surrogate building time, surrogate evaluation time,
function evaluation time, and available optimisation time budget should
be considered simultaneously. To gain insight into the performance of
various surrogate models under different conditions, we evaluate an EA
with and without four surrogate models (both complex and simple) for a
range of optimisation time budgets and function evaluation times while
considering the surrogate building and surrogate evaluation times. We
use 55 bbob-biobj benchmark problems as well as a real-world prob-
lem where the fitness function involves a biomechanical simulation. Our
results, on both types of problems, indicate that a larger hypervolume
can be obtained with SAEAs when a function evaluation takes longer
than 0.384 s (on the hardware we used). While we confirm that state-
of-the-art complex surrogate models are mostly the best choice if up to
several hundred function evaluations can be performed, we also observe
that simple surrogate models can still outperform non-surrogate-assisted
EAs if several thousand function evaluations can be performed.

Keywords: Expensive optimisation · Surrogate-Assisted Evolutionary
Algorithms · Real-world problems · Biomechanical simulations

1 Introduction

Function evaluations of real-world multi-objective (MO) optimisation problems
are often computationally expensive, costing multiple seconds to several hours.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 322–339, 2024.
https://doi.org/10.1007/978-3-031-70068-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_20&domain=pdf
http://orcid.org/0000-0002-6136-1438
http://orcid.org/0000-0002-4186-6666
http://orcid.org/0000-0003-4261-7511
https://doi.org/10.1007/978-3-031-70068-2_20

Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 323

While evolutionary algorithms (EAs) are known to be effective at optimizing MO
problems, they typically require well over a hundred thousand function evalu-
ations to get (near-)optimal solutions (for non-trivial problems). This is not
feasible for many expensive real-world problems. For this reason, MO surrogate-
assisted EAs (SAEAs) have been introduced [20] in which many of the expensive-
to-evaluate objective functions are replaced with quick-to-evaluate models (sur-
rogates). The surrogate is typically built on all expensive function evaluations
performed so far and is continuously updated during optimisation.

MO SAEAs, such as K-RVEA [10], AB-SAEA [35], CSEA [25], MOEA/D-
EGO [39], or ADSAPSO [24], are often evaluated on DTLZ [13] benchmark
problems with a fixed function evaluation budget (typically a few hundred). The
efficacy of these SAEAs in scenarios that permit a “medium” budget of thou-
sands of function evaluations has not been thoroughly investigated. Moreover,
the time required for building and evaluating surrogate models is often not con-
sidered. This places non-surrogate-assisted EAs increasingly at a disadvantage as
the expensiveness of function evaluations decreases, making it hard to assess the
value of a surrogate model. For real-world problems, where optimisation time is
frequently a limiting factor, it is crucial to assess surrogate models across various
total optimisation time budgets instead of solely based on function evaluations.

SAEAs have been used for various real-world problems [19], e.g., energy-
efficient design [6,8,14,23,33,36,38], motor manufacturing [29,31], ship design
[1,17], automobile design [2,30,34], satellite design [28], antenna design [21,37,
41], and energy and power [16]. In these works, total optimisation time is often
disregarded as comparisons are performed at a fixed number of function eval-
uations or generations, possibly overestimating the general practical usability
of SAEAs compared to non-surrogate-assisted EAs. Some works do provide the
total optimisation time of different algorithms [23,28,36] and others do consider
different optimisation time budgets [37]. No previous work has, however, varied
both the optimisation time budget and the function evaluation time to system-
atically evaluate the performance of SAEAs for real-world problems.

We therefore emphasize comparing surrogate models under different total
optimisation time budgets, following the strategy in [42], where surrogates based
on Gaussian processes and polynomial regression were compared across varied
time budgets. This however concerned single-objective optimisation, whereas we
focus on MO optimisation which changes the balance between optimisation time
and (surrogate) evaluation time budgets. By varying both the total optimisation
time and the function evaluation time, we aim to cover the full spectrum of
scenarios encountered in real-world applications, offering a more comprehensive
evaluation of MO SAEAs so as to ultimately consider the following question:
Given a spectrum of function evaluation times and optimisation time budgets,
should an MO SAEA be considered and if yes, what type of surrogate model
should be used?

The remainder of this paper is organized as follows: the MO SAEA and
the surrogate models considered are described in Sect. 2. Our methodology and
experimental setup are described in Sects. 3 and 4, respectively. In Sect. 5, the

324 C. J. Rodriguez et al.

results on the benchmark problems are presented. In the Sects. 6 and 7, we apply
the methodology to a real-world application. Finally, we present our conclusions
in Sect. 8.

2 Background

2.1 MO SAEA

The MO SAEA that we consider is outlined in Algorithm 1. This algorithm
is similar to [27] where each objective is modelled by a separate surrogate. In
the initialization phase, a set of solutions is sampled using Latin Hypercube
Sampling (LHS). These solutions are then evaluated using the expensive (true)
function, and are subsequently used to build an initial surrogate model. The gen-
erational process can be decomposed into an inner cycle and an outer cycle. In
the inner cycle, a population is initialized that contains all solutions previously
evaluated with the true function. Selection and variation operators are applied,
and offspring solutions are evaluated using the surrogate model instead of the
true function. When the maximum number of surrogate evaluations for an inner
cycle is reached, the inner cycle is terminated. All surrogate-evaluated solutions
are then considered in the outer cycle as potential candidate solutions for eval-
uation with the true function. The most promising solutions are then selected
as described in Sect. 4.2 and evaluated using the true function. Subsequently, a
surrogate model is rebuilt based on all true-evaluated solutions so far, and the
next iteration of the inner cycle commences.

Algorithm 1 . MO SAEA
Input: N = Number of initial solutions; FE true

max = maximum number of true
function evaluations; FE surrogate

max = maximum number of surrogate
evaluations in each inner cycle; μ = number of new selected solutions
in the outer cycle

Output: A = Archive of all true evaluated solutions

1: Initialize population P of size N using random sampling
2: Evaluate all solutions in P using the true function
3: Initialize archive A of all true evaluated solutions with all solutions in P
4: Set number of true function evaluations FE true to N
5: while FE true < FE true

max do � Outer Cycle
6: Build surrogate model M based on A
7: Continue to optimize P using surrogate � Inner Cycle

model M in EA with FE surrogate
max

8: Select μ solutions from all surrogate evaluated solutions
9: Evaluate μ selected solutions with true function

10: FE true = FE true + μ
11: Add true evaluated solutions to archive A
12: end while
13: Return A

Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 325

2.2 Surrogates

We consider two commonly adopted surrogates of varying complexity as well as
two surrogates that are not considered often, but are of very low complexity.

Gaussian Processes. The most popular surrogate, and often considered to be
state-of-the-art for expensive optimisation, is Gaussian process regression (e.g.,
Kriging, also much used in Bayesian optimisation) [35]. It is defined as follows:

ŷkriging(x) = β + rT (x)R−1(y − F (β, x)β) (1)

where β are the coefficients, R is the correlation matrix between all the training
samples, rT (x) represents the correlation vector between the solution x and the
training samples, y represents the fitness values of the training set of solutions,
and F (β, x) is the regression model. [10] This surrogate model requires maxi-
mizing a likelihood function for the hyperparameters which is computationally
expensive.

Radial Basis Functions. This surrogate is a weighted aggregation of basis
functions Ψ(·):

ŷrbf(x) =
n∑

i=1

wiΨi,j (2)

In this paper, we utilize Gaussian radial basis functions, where the cen-
tre of each Gaussian corresponds to each solution that the surrogate model is
built upon. The influence of each basis function is calculated using the squared
Euclidean distance from the point being evaluated, i.e., Ψi,j = e−γd2

i,j where di,j

represents the Euclidean distance between the i-th and j-th solutions, and γ
is a scalar that determines the spread of the basis functions. The weights are
determined through generalized linear regression, which involves computing the
pseudo-inverse of the Ψ matrix. [7] This is much faster than what is needed to
build the Kriging model.

K-Nearest Neighbours Linear Regression. We also consider a simpler sur-
rogate that leverages linear regression. The local structure of the problem land-
scape is however captured by using only the k-nearest neighbours (knn) of the
solution of interest.

ŷlr-knn(x) = mode {yi | (xi, yi) ∈ Nearestk(x,D)} (3)

where D is the training dataset consisting of pairs (xi, yi), where xi are the deci-
sion vectors and yi are the fitness values. The function Nearestk(x,D) returns the
decision vectors and the fitness values of k-nearest neighbours using Euclidean
distance in the decision space of x in D. The mode function determines the
desired interpolation function between these neighbours. This model, we use
linear regression as the interpolation function defined as:

326 C. J. Rodriguez et al.

ŷlr-knn(x) = β0 +
D∑

q=1

βqxq (4)

where β0 is the intercept, βq are the coefficients (slopes) in each problem dimen-
sion, D is the number of problem dimensions, and xq are the decision variables.

Nearest Neighbour. Finally, we also consider one of the simplest surrogates
- solely considering the nearest neighbour. This surrogate model is defined as:

ŷnn(x) = Nearest(x,D) (5)

where D is the training dataset and the function Nearest(x,D) returns the fitness
of the nearest neighbour of x in D in terms of Euclidean distance in decision
space.

2.3 Reference Vector Guided EA

The baseline MOEA that we use in this work, is a Reference Vector Guided
Evolutionary Algorithm (RVEA) [9]. In RVEA, offspring solutions are generated
using simulated binary crossover [11] and polynomial mutation, comparable to
what is used in other MOEAs like NSGA-III [12]. The selection of the parent
population for the subsequent generation of offspring, is performed using a tech-
nique known as angle penalized distance, which is guided by reference vectors.
RVEA is often used within a surrogate-assisted approach, including some state-
of-the-art expensive optimisation approaches for MO optimisation [10,35], which
is why we consider this EA here as well.

2.4 MAMaLGaM

For the real-world application, we additionally consider an estimation-of-distri-
bution algorithm (EDA), in particular iMAMaLGaM-X with a multivariate joint
Gaussian distribution [4]. In part, this is because an EDA can be considered a
different type of model-based EA, but also, this algorithm was previously used to
optimize a simpler version of the real-world problem [26] that we also consider in
this work. In iMAMaLGaM-X, solutions are selected from the parent population
and elitist archive, and are organized into a user-defined number of clusters (K).
A Gaussian distribution is estimated and adaptively scaled for each cluster, from
which new offspring solutions are sampled. For more details, see [4].

3 Methodology

To get insights into the impact of the computational expensiveness of the true
fitness function as well as the computational expensiveness associated with the

Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 327

surrogate model, we run EAs and SAEAs using benchmark problems. For bench-
mark problems, the true function evaluation time is in the order of milliseconds
and is thus negligible. We use this fact to subsequently estimate the time an
algorithm would have taken if the true fitness function had been more expen-
sive.

To this end, for each combination of problem instance and algorithm, we
run an optimisation process. After each true function evaluation FEtrue, the
measured execution time tmFE−1 is recorded. Because the time taken to evaluate
a benchmark problem is negligible, the execution time tmFE−1 represents time
taken by the algorithm in between true function evaluations. For EAs, this is
the time required for variation and selection and for SAEAs, this is the time for
surrogate building and optimisation using the surrogate model.

We can now estimate the total optimisation time t̂FE of an algorithm using

t̂FE = tmFE−1 + δFE (6)

where the execution time tmFE−1 is the surrogate building time and surrogate
evaluation time, FE is the number of true function evaluations and δ is the true
function evaluation time.

In this paper, we consider δ = 0.0001 · 2i minutes for i ∈ {0, 1, . . . , 20} and a
total optimisation time budget of 16 · 2j minutes for j ∈ {0, 1, . . . , 11}.

4 Experimental Setup

In this section, we describe the considered benchmark problems, algorithm set-
tings used, and details regarding how we analysed the results.

4.1 Benchmark Problems

We consider the bi-objective bbob functions (bbob-biobj) [5] with 20 continu-
ous problem variables from the coco framework [18]. We only consider the first
instance of the 55 problems, since we are not exploring rotation and translational
invariances of algorithms. Each bbob-biobj problem is composed of a pair-wise
combination of 10 single objective bbob functions. The algorithms are initial-
ized in the default coco ranges: −100 to 100. The termination criteria are set
to 10, 000 true function evaluations or a maximum runtime of 3 days, whichever
comes first. We execute 15 repeats per optimisation. A high-performance com-
puting cluster is used, composed of AMD EPYC 7H12 nodes, each containing 2
GB of memory and 64 cores with a 2.6GHz clock speed per node. Octave version
7.3.0 and the coco framework [18]1 are used to perform all experiments.

1 https://github.com/numbbo/coco.

https://github.com/numbbo/coco

328 C. J. Rodriguez et al.

4.2 Algorithm Settings

In this work, we evaluate four SAEAs where two SAEAs utilise state-of-the-
art surrogates, namely Kriging from [10] and rbf from [22] as implemented in
[32]. We also introduce two quick-to-compute surrogates namely nn and lrknn as
described in Sect. 2.2. As a baseline, we also consider rvea without any surrogate
assistance. This leads to five different algorithms in total: kriging-rvea, rbf-rvea,
nn-rvea, lrknn-rvea, and rvea.

All algorithms start with an initial population of 32 solutions, sampled using
LHS. Each repeat is completely independent, using a different seed number. This
is the first multiple of 16 (available parallel cores for the real-world application)
larger than the problem’s dimension of 20. After a surrogate optimisation cycle of
2000 surrogate evaluations using rvea, for all SAEA variants except kriging-rvea,
the potential solutions for true evaluation are determined by pre-selecting the
non-dominated solutions in terms of the surrogate fitness values. For Kriging, we
utilise the acquisition function for the pre-selection as was described in [35] and
was implemented for Bayesian optimisation in the PlatEMO framework [32]. This
acquisition function prioritizes solutions with uncertain fitness estimation at the
beginning of the optimisation and solutions with good fitness estimations at the
end of the optimisation. This is reported in [35] to provide higher hypervolume
on the DTLZ [13] and UF [40] bi-objective benchmark problems compared to
[10]. As suggested in [35], we also use an archive management method for the
Kriging surrogate, limiting the archive size to 320 solutions.

For all SAEA variants, we then randomly select μ solutions from this pre-
selection. In this work, we have used μ = 1 so that the model is updated
as frequently as possible (every new true evaluation). Finally, rvea is used as
implemented by [9] in PlatEMO [32]. In this implementation, the parameter α
prioritizing convergence is set to 100, 000 and the population size is set to 32.

For the lrknn surrogate, k = 32 is used to fit a linear slope through the
training samples at the beginning of the optimisation and to capture the local
structure of the problem landscape at the end of the optimisation. Finally, nn-
rvea has no additional parameters to set.

4.3 Evaluation of Results

For each (estimated) optimisation time budget and expensive function evaluation
time, the two algorithms are selected that exhibit the highest and second-highest
median hypervolume over the 15 repeats on a bbob-biobj problem. The refer-
ence point is set to [1, 1], as suggested by [18]. We also evaluate whether there
is a statistically significant difference between the hypervolume of the best and
second-best performing algorithms using a Wilcoxon test. When considering 55
bbob-biobj problems, 12 optimisation time budgets, and 21 expensive function
evaluation times, this leads to 13,860 statistical tests. We consider statistical
significance to be p ≤ 0.05 and correct this using the Bonferroni correction.
To get an aggregated view of an algorithm’s performance over all bbob-biobj
problems, we estimate, for each combination of optimisation time budget and

Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 329

expensive function evaluation time, the frequency that a particular algorithm
has been selected as the best-performing algorithm.

5 Results on Benchmark Problems

The best performing algorithms on the bbob-biobj problems 1 to 19 are visu-
alised using a heatmap, see Fig. 1. The bbob-biobj problems 20 to 55 can be
found in the Supplementary Material2. Because the first 32 function evalua-
tions correspond to the initial randomly sampled solutions in the population, we
shaded the regions where the total optimisation time is smaller than 32 times
the function evaluation time. The regions with high optimisation times and low
function evaluation times are also shaded because due to the termination criteria
of 10,000 evaluations, no data was gathered for this region.

It can be observed in Fig. 1 and Fig. 2 that rvea typically has the highest
median hypervolume for function evaluation times below 0.0064 min (0.384 s).
Furthermore, rvea only has a higher median hypervolume if the total optimisa-
tion time is below 32 min. This is mostly due to the limit of 10,000 evaluations.
If this budget was set larger, rvea is expected to also outperform all other algo-
rithms for the longer total optimisation times.

As expected, the current state-of-the-art surrogate models such as kriging
and rbf lead to higher median hypervolumes obtained with the SAEA for smaller
budgets of function evaluations, which corresponds to the left-upper envelope of
the graphs, see Fig. 2. In particular, for each row on the diagonal of the left-
upper envelope, the first three columns represent up to 80 function evaluations.
Interestingly, for some bbob-biobj problems (e.g., 7, 8, 13, 15) in Fig. 1, rvea
still obtained a higher median hypervolume in these regions. A likely reason for
this is that the considered surrogates are not effective at modelling the problem
with such a limited number of function evaluations. Finally, and interestingly, on
almost all problems the use of “simple” surrogate models in our SAEA, i.e., nn-
rvea and lrknn-rvea, obtains a higher median hypervolume for “medium”-range
expensive settings in which up to 10,000 function evaluations can be performed,
with 10,000 evaluations corresponding to the bottom-right envelope in Fig. 2.
Only in a few cases does rvea become the dominating algorithm again when
10,000 evaluations are used.

6 Real-World Application: A Biomechanical Simulation

While the bbob-biobj problems are certainly of importance and value, they
may still differ from a real-world application in which a true expensive, and
often complex, optimisation problem needs to be solved.

We therefore also consider a real-world optimisation problem in this work
that is computationally demanding: biomechanical simulation optimisation for
the purpose of deformable medical image registration in radiation treatment of

2 https://zenodo.org/records/10992139.

https://zenodo.org/records/10992139

330 C. J. Rodriguez et al.

BBOB-BIOBJ 1 BBOB-BIOBJ 2 BBOB-BIOBJ 3 BBOB-BIOBJ 4

BBOB-BIOBJ 5 BBOB-BIOBJ 6 BBOB-BIOBJ 7 BBOB-BIOBJ 8

BBOB-BIOBJ 9 BBOB-BIOBJ 10 BBOB-BIOBJ 11 BBOB-BIOBJ 12

BBOB-BIOBJ 13 BBOB-BIOBJ 14 BBOB-BIOBJ 15 BBOB-BIOBJ 16

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

BBOB-BIOBJ 17

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

BBOB-BIOBJ 18

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Algorithms
rvea
krig-rvea
rbf-rvea
lrknn-rvea
nn-rvea

Optimisation time budget [minutes]

Fu
nc

tio
n

ev
al

ua
tio

n
tim

e
[m

in
ut

es
]

BBOB-BIOBJ 19

0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576
0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576
0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576
0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576
0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576

Fig. 1. Heatmap per bbob-biobj problem, visualising the algorithm with the highest
median hypervolume given an optimisation time and function evaluation time. The
white dots indicate if there is a statistical difference between the best and second-best
performing algorithm.

Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 331

0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Algorithms
rvea
krig-rvea
rbf-rvea
lrknn-rvea
nn-rvea

Optimisation time budget [minutes]

Fu
nc

tio
n

ev
al

ua
tio

n
tim

e
[m

in
ut

es
]

Fig. 2. Heatmap per algorithm, where a higher colour intensity indicates, given an
optimisation time and function evaluation time, a higher frequency of highest median
hypervolume over all bbob-biobj problems.

cervical cancer. In radiation treatment, multiple medical images of the same
patient are acquired, see Fig. 3. Given that organs in the pelvic region are highly
deformable for various reasons, there is often an inherent mismatch between the
shapes of organs in any pair of medical images. Deformable image registration
is aimed at finding the physically correct spatial mapping between two medical
image pairs to transfer spatial information, such as dosimetric data.

In this work, we consider a biomechanical approach to deformable image
registration in which the organs in one image are contoured by a medical pro-
fessional and are subsequently used to construct a mesh representation that can
be used inside a finite element method (FEM) simulation. Tissue characteris-
tics, particularly related to elasticity, are adhered to different parts of the mesh.
Subsequently, forces are defined that are applied to specific regions in the mesh.
A FEM simulation then adjusts the mesh nodes according to the forces applied.
Consequently, the underlying organ contours are deformed.

The optimisation task consists of finding free simulation parameters such that
FEM simulation results in a mesh transformation that ensures the transformed
organ contours are aligned with those in the second image. Each function evalu-
ation necessitates a full FEM simulation, which is a computationally expensive
operation.

In this work, we focus on the deformable image registration of 3D pelvic com-
puted tomography (CT) scans for patients undergoing external beam radiation

332 C. J. Rodriguez et al.

Initial medical image

Organ
mismatch

Initial contours
and mesh

Transformed mesh
and contours

Second medical image

Organ
match

Mesh
transform

Contouring
 & meshing

Body

Bladder

Cervix-Uterus

Bones

Body

Bladder

Cervix-Uterus

Bones

Mesh

Fig. 3. An illustrative representation of deformable image registration, where the top
two images represent medical images of the same patient with a difference in bladder
volume and the bottom two images depict the contoured organs overlayed with the
finite element method mesh that is deformed to align the two images.

treatment for cervical cancer. The treatment planning involves acquiring two 3D
CT scans: one with an empty bladder and another with a full bladder. In the
following section, we provide an overview of the process. For more details, we
refer the interested reader to the Supplementary Material.

Contouring and Mesh Generation. Initially, a 3D CT scan with an empty
bladder is used for contouring important structures such as the body, bladder,
bones, cervix-uterus, bowel, and rectum. Subsequently, the contoured images
are converted into triangular surface meshes for each organ, which are then inte-
grated into a unified tetrahedral mesh for each patient. Each tetrahedron within
this mesh is associated with a specific organ, facilitating a detailed anatomical
representation of the patient with an empty bladder.

Mesh Transformation Biomechanical FEM Simulation. The organs in
the empty bladder scan are deformed according to the FEM simulation. To opti-
mize the match between the so-deformed organs and those in the full bladder CT
scan, the parameters corresponding to various forces to be applied to the mesh
are optimized. Specifically, 19 continuous simulation parameters are considered.

Organ Comparison. To determine the quality of the resulting FEM-based
deformation, we utilize the Dice similarity coefficient (DSC) score [15]. The DSC
score evaluates the overlap between the two volumes, with scores ranging from 0
(no volumetric overlap) to 1 (perfect volumetric overlap). However, relying solely
on DSC scores could still result in large and unrealistic organ deformations.
Therefore, a second objective, namely deformation energy, is considered that is

Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 333

related to the magnitude of the resulting deformation. Specifically, this measure
quantifies the energy required for organ deformation, calculated in Joules by
summing the energy needed to deform each tetrahedral element in the patient’s
mesh based on its biomechanical properties. This bi-objective approach ensures
that we obtain results representing different trade-offs between accurate organ
registration and physical realism in the deformation process which can subse-
quently be inspected by a medical professional so as to ultimately decide which
deformation is the preferred one to use.

Problem Settings, Algorithm Settings and Result Evaluation. Opti-
mizing biomechanical simulations for seven patients involves stopping at either
10, 000 simulations or after five days. Since this function evaluation time is not
negligible compared to the surrogate optimisation time, we directly record the
time duration of the surrogate optimisation cycles (excluding the function eval-
uation times). We run 16 simulations in parallel using 16 cores and repeat each
optimisation 10 times. The same algorithms are used as in Sect. 4.2 as well as
iMAMaLGaM-X. The settings for iMAMaLGaM-X are based on the guidelines
in literature [3], except for the population size, which is set to 32 (equal to rvea).
A high-performance computing system is used, composed out of nodes, each con-
taining 2 GB of memory per core and 16-128 Intel E5/Gold series cores. The opti-
misation uses Octave version 7.3.0 and the simulation uses SOFA3 v.21.12. The
results are evaluated using the same procedure as in Sect. 4.3. The hypervolume
is calculated using the reference point of [0, 5000], which has been established
empirically.

7 Results on Real-World Application

The best performing algorithms are visualised per patient using a heatmap, see
Fig. 4. Here, we see, similar to the benchmarks, that rvea performs best for a
function evaluation time under 0.0064 min (0.384 s). Furthermore, kriging and
rbf surrogates seem to only show a benefit for very small evaluation budgets.
Interestingly, iMAMaLGaM-X is consistently effective for intermediate evalua-
tion budgets which constitutes a large portion of the heatmap and the use of the
nn surrogate in RVEA is best around the 10,000 evaluations budget limits. No
statistically significant differences were found.

The average simulation in the experiments took approximately 48 s. With
16 parallel cores, this results in an effective simulation time of 3 s (0.05 min).
Figures 4 and 5 indicate that, for this function evaluation time and optimisa-
tion budget of 4 h (240 min), nn-rvea leads to the highest hypervolume on all 7
patients. Nevertheless, the border to iMAMaLGaM-X and rvea often is one block
away, meaning that a slight change in function evaluation time or optimisation

3 https://github.com/sofa-framework/sofa.

https://github.com/sofa-framework/sofa

334 C. J. Rodriguez et al.

0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576
Patient 1 Patient 2 Patient 3 Patient 4

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576
Patient 5

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Patient 6

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Patient 7

Algorithms
rvea
krig-rvea
rbf-rvea
lrknn-rvea
nn-rvea
iMAMaLGaM-X

Optimisation time budget [minutes]

Fu
nc

tio
n

ev
al

ua
tio

n
tim

e
[m

in
ut

es
]

Fig. 4. Heatmap per patient, visualising the algorithm with the highest median hyper-
volume given an optimisation time and function evaluation time.

budget, could change the best choice of optimizer. For example, say we expect
the simulation to increase in simulation time due to increased simulation com-
plexity. This would mean, although nn-rvea shows a higher hypervolume now, it
could then be better to select iMAMaLGaM-X as optimizer for this real-world
application. When looking at the approximation front for Patient 1 in Fig. 6,
we see that both nn-rvea and iMAMaLGaM-X, find evenly distributed solutions
along the front with good DSCs of up to 0.8.

While results for different patients do not differ hugely, for different evalu-
ation budgets and different patients, sometimes different algorithms appear as
the best choice. The general approach presented in this work can therefore not
be used to make patient-specific recommendations about the best SAEA to use,
but rather gives generic insight into which algorithms are of interest for a cer-
tain total optimisation budget (i.e., a pre-selection). However, if desired, further
refinement of algorithm selection could be done using (online) landscape analysis
of both the true and surrogate fitness landscapes, as for instance in [27].

Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 335

0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

0.0001
0.0002
0.0004
0.0008
0.0016
0.0032
0.0064
0.0128
0.0256
0.0512
0.1024
0.2048
0.4096
0.8192
1.6384
3.2768
6.5536

13.1072
26.2144
52.4288

104.8576

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Optimisation time budget [minutes]

Fu
nc

tio
n

ev
al

ua
tio

n
tim

e
[m

in
ut

es
]

rvea krig-rvea rbf-rvea lrknn-rvea nn-rvea iMAMaLGaM+X

Fig. 5. Heatmap per algorithm, where a higher colour intensity indicates a higher
frequency of highest median hypervolume over all patients.

Initial Medical Image Mesh generation Second Medical Image Approx. Pareto front

Fig. 6. optimisation process and results of patient 1, where pink visualizes the deformed
bladder and cervix-uterus corresponding to the solution with the highest DSC score
after optimisation.

8 Conclusions

In this work, we addressed a mostly overlooked aspect of different types of time
considerations in evaluating multi-objective surrogate-assisted evolutionary algo-
rithms (MO SAEAs), by incorporating surrogate building and surrogate evalua-
tion times alongside true function evaluation times and total optimisation time
budgets. We compared four surrogate models across 55 benchmark problems
and a real-world medical application. We demonstrated that MO EAs seemed
to be more effective than MO SAEAs for functions that have an evaluation time
that is shorter than 0.384 s. Of course, this particular number is strongly related
to the used hardware and types of surrogate models and their implementation.

336 C. J. Rodriguez et al.

However, the approach used here is a general one that can be repeated on other
hardware and with different implementations within a different context (e.g.,
with more parallel computing power) to obtain problem- and computational-
setup specific results if need be.

Our results showed that while state-of-the-art surrogate models like Kriging
and radial basis functions excel up to several hundred function evaluations, sim-
pler models such as nearest neighbour and linear regression emerge as effective
options in case more function evaluations can be performed (i.e., less expen-
sive problems or larger available computational power/budget). This work also
motivates that more research should be done on reducing surrogate building and
evaluation time (especially as the number of training samples increase) or the
use of sparse surrogate models.

Acknowledgments. The research is part of the research programme Open Technol-
ogy Programme with project number 15586, which is financed by the Dutch Research
Council (NWO), Elekta (Elekta Solutions AB, Stockholm, Sweden), and Xomnia (Xom-
nia B.V., Amsterdam, The Netherlands). Further, the work is co-funded by the public-
private partnership allowance for top consortia for knowledge and innovation (TKIs)
from the Ministry of Economic Affairs.

Disclosure of Interests. All authors are involved in one or more projects supported

by Elekta AB, Stockholm, Sweden. Elekta had no involvement in the study design, the

data collection, analysis and interpretation, or the writing of the paper.

References

1. Ayob, A.F.M., Ray, T., Smith, W.F.: Beyond hydrodynamic design optimization
of planing craft. J. Ship Prod. 27(1), 1–13 (2011)

2. Bhattacharjee, D., Ghosh, T., Bhola, P., Martinsen, K., Dan, P.K.: Data-driven
surrogate assisted evolutionary optimization of hybrid powertrain for improved fuel
economy and performance. Energy 183, 235–248 (2019)

3. Bosman, P.A.: On empirical memory design, faster selection of Bayesian factor-
izations and parameter-free gaussian EDAs. In: Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation, pp. 389–396 (2009)

4. Bosman, P.A.: The anticipated mean shift and cluster registration in mixture-
based EDAs for multi-objective optimization. In: Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, pp. 351–358 (2010)

5. Brockhoff, D., Auger, A., Hansen, N., Tušar, T.: Using well-understood single-
objective functions in multi-objective black-box optimization test suites. Evol.
Comput. 30(2), 165–193 (2022)

6. Chegari, B., Tabaa, M., Simeu, E., Moutaouakkil, F., Medromi, H.: Multi-objective
optimization of building energy performance and indoor thermal comfort by com-
bining artificial neural networks and metaheuristic algorithms. Energy Build. 239,
110839 (2021)

7. Chen, G., et al.: A radial basis function surrogate model assisted evolutionary algo-
rithm for high-dimensional expensive optimization problems. Appl. Soft Comput.
116, 108353 (2022)

Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 337

8. Chen, X., Yang, H.: Integrated energy performance optimization of a passively
designed high-rise residential building in different climatic zones of china. Appl.
Energy 215, 145–158 (2018)

9. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5),
773–791 (2016)

10. Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted
reference vector guided evolutionary algorithm for computationally expensive
many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 129–142 (2016)

11. Deb, K., Agrawal, R.B., et al.: Simulated binary crossover for continuous search
space. Complex Syst. 9(2), 115–148 (1995)

12. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

13. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Proceedings of the 2002 Congress on Evolutionary Compu-
tation. CEC 2002 (Cat. No. 02TH8600), vol. 1, pp. 825–830. IEEE (2002)

14. Dhariwal, J., Banerjee, R.: An approach for building design optimization using
design of experiments. Build. Simul. 10, 323–336 (2017)

15. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology
26(3), 297–302 (1945)

16. Dong, Q., Wang, C., Peng, S., Wang, Z., Liu, C.: A many-objective optimization
for an eco-efficient flue gas desulfurization process using a surrogate-assisted evo-
lutionary algorithm. Sustainability 13(16), 9015 (2021)

17. Habib, A., Singh, H.K., Ray, T.: A multiple surrogate assisted evolutionary algo-
rithm for optimization involving iterative solvers. Eng. Optim. 50(9), 1625–1644
(2018)

18. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a
platform for comparing continuous optimizers in a black-box setting. Optim. Meth-
ods Softw. 36, 114–144 (2021). https://doi.org/10.1080/10556788.2020.1808977

19. He, C., Zhang, Y., Gong, D., Ji, X.: A review of surrogate-assisted evolutionary
algorithms for expensive optimization problems. Expert Syst. Appl. 119495 (2023)

20. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

21. Koziel, S., Bekasiewicz, A.: Scalability of surrogate-assisted multi-objective opti-
mization of antenna structures exploiting variable-fidelity electromagnetic simula-
tion models. Eng. Optim. 48(10), 1778–1792 (2016)

22. Li, J., Wang, P., Dong, H., Shen, J.: Multi/many-objective evolutionary algorithm
assisted by radial basis function models for expensive optimization. Appl. Soft
Comput. 122, 108798 (2022)

23. Li, K., Pan, L., Xue, W., Jiang, H., Mao, H.: Multi-objective optimization for
energy performance improvement of residential buildings: a comparative study.
Energies 10(2), 245 (2017)

24. Lin, J., He, C., Cheng, R.: Adaptive dropout for high-dimensional expensive mul-
tiobjective optimization. Complex Intell. Syst. 8(1), 271–285 (2022)

25. Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based
surrogate-assisted evolutionary algorithm for expensive many-objective optimiza-
tion. IEEE Trans. Evol. Comput. 23(1), 74–88 (2018)

https://doi.org/10.1080/10556788.2020.1808977

338 C. J. Rodriguez et al.

26. Rodriguez, C.J., de Boer, S.M., Bosman, P.A., Alderliesten, T.: Bi-objective opti-
mization of organ properties for the simulation of intracavitary brachytherapy
applicator placement in cervical cancer. In: Medical Imaging 2023: Image-Guided
Procedures, Robotic Interventions, and Modeling, vol. 12466, pp. 114–125. SPIE
(2023)

27. Rodriguez, C.J., Thomson, S.L., Alderliesten, T., Bosman, P.A.: Temporal true
and surrogate fitness landscape analysis for expensive bi-objective optimisation.
arXiv preprint arXiv:2404.06557 (2024)

28. Shi, R., Liu, L., Long, T., Wu, Y., Wang, G.G.: Multidisciplinary modeling and sur-
rogate assisted optimization for satellite constellation systems. Struct. Multidiscip.
Optim. 58, 2173–2188 (2018)

29. Silva, R.C., Li, M., Rahman, T., Lowther, D.A.: Surrogate-based MOEA/D for
electric motor design with scarce function evaluations. IEEE Trans. Magn. 53(6),
1–4 (2017)

30. Su, S., Li, W., Li, Y., Garg, A., Gao, L., Zhou, Q.: Multi-objective design opti-
mization of battery thermal management system for electric vehicles. Appl. Therm.
Eng. 196, 117235 (2021)

31. Taran, N., Ionel, D.M., Dorrell, D.G.: Two-level surrogate-assisted differential evo-
lution multi-objective optimization of electric machines using 3-D FEA. IEEE
Trans. Magn. 54(11), 1–5 (2018)

32. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evo-
lutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–87
(2017)

33. Tresidder, E., Zhang, Y., Forrester, A.: Acceleration of building design optimisation
through the use of kriging surrogate models. Proc. Build. Simul. Optim. 2012, 1–8
(2012)

34. Wang, N., Li, C., Li, W., Chen, X., Li, Y., Qi, D.: Heat dissipation optimization
for a serpentine liquid cooling battery thermal management system: an application
of surrogate assisted approach. J. Energy Storage 40, 102771 (2021)

35. Wang, X., Jin, Y., Schmitt, S., Olhofer, M.: An adaptive Bayesian approach to
surrogate-assisted evolutionary multi-objective optimization. Inf. Sci. 519, 317–
331 (2020)

36. Xu, W., Chong, A., Karaguzel, O.T., Lam, K.P.: Improving evolutionary algorithm
performance for integer type multi-objective building system design optimization.
Energy Build. 127, 714–729 (2016)

37. Yu, M., Li, X., Liang, J.: A dynamic surrogate-assisted evolutionary algorithm
framework for expensive structural optimization. Struct. Multidiscip. Optim.
61(2), 711–729 (2020)

38. Zemella, G., De March, D., Borrotti, M., Poli, I.: Optimised design of energy effi-
cient building façades via evolutionary neural networks. Energy Build. 43(12),
3297–3302 (2011)

39. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization
by MOEA/D with gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–
474 (2009)

40. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S., et al.: Multi-
objective optimization test instances for the CEC 2009 special session and compe-
tition. University of Essex, Colchester, UK and Nanyang technological University,
Singapore, special session on performance assessment of multi-objective optimiza-
tion algorithms, technical report, vol. 264, pp. 1–30 (2008)

http://arxiv.org/abs/2404.06557

Balancing Between Time Budgets and Costs in Surrogate-Assisted EAs 339

41. Zhang, Z., Chen, H.C., Cheng, Q.S.: Surrogate-assisted quasi-newton enhanced
global optimization of antennas based on a heuristic hypersphere sampling. IEEE
Trans. Antennas Propag. 69(5), 2993–2998 (2020)

42. Zhou, Z., Ong, Y.S., Nguyen, M.H., Lim, D.: A study on polynomial regression and
gaussian process global surrogate model in hierarchical surrogate-assisted evolu-
tionary algorithm. In: 2005 IEEE Congress on Evolutionary Computation, vol. 3,
pp. 2832–2839. IEEE (2005)

An Adaptive Approach to Bayesian
Optimization with Setup Switching Costs

Stefan Pricopie1(B) , Richard Allmendinger1 , Manuel López-Ibáñez1 ,
Clyde Fare2, Matt Benatan3, and Joshua Knowles1

1 Alliance Manchester Business School, University of Manchester, Manchester, UK
stefan.pricopie@postgrad.manchester.ac.uk

2 IBM Research, Daresbury, UK
3 Sonos, London, UK

Abstract. Black-box optimization methods typically assume that eval-
uations of the black-box objective function are equally costly to evaluate.
We investigate here a resource-constrained setting where changes to cer-
tain decision variables of the search space incur a higher switching cost,
e.g., due to expensive changes to the experimental setup. In this scenario,
there is a trade-off between fixing the values of those costly variables or
accepting this additional cost to explore more of the search space. We
adapt two process-constrained batch algorithms to this sequential prob-
lem formulation, and propose two new methods—one cost-aware and one
cost-ignorant. We validate and compare the algorithms using a set of 7
scalable test functions with different switching-cost settings. Our pro-
posed cost-aware parameter-free algorithm yields comparable results to
tuned process-constrained algorithms in all settings we considered, sug-
gesting some degree of robustness to varying landscape features and cost
trade-offs. This method starts to outperform the other algorithms with
increasing switching cost. Our work expands on other recent Bayesian
Optimization studies in resource-constrained settings that consider a
batch setting only. Although the contributions of this work are relevant to
the general class of resource-constrained problems, they are particularly
relevant to problems where adaptability to varying resource availability
is of high importance.

Keywords: Bayesian Optimization · Switching costs · Expensive
optimization

1 Introduction

In expensive black-box optimization problems, some decision variables may be
more costly to change than others, leading to different evaluations that have
different costs depending on which decision variables are changed. For exam-
ple, in the automotive or electronics manufacturing industries, whenever a new
product is needed, a retooling of the production line is implemented [25]. A line
switch can delay production time due to an idle period and lead to additional
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 340–355, 2024.
https://doi.org/10.1007/978-3-031-70068-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_21&domain=pdf
http://orcid.org/0000-0003-4071-756X
http://orcid.org/0000-0003-1236-3143
http://orcid.org/0000-0001-9974-1295
http://orcid.org/0000-0001-8112-6112
https://doi.org/10.1007/978-3-031-70068-2_21

An Adaptive Approach to Bayesian Optimization 341

setup costs from any specialized labor employed for instrument recalibration,
equipment cleaning, or replacement of consumables. A switching cost is encoun-
tered every time there is a change in the setup. In such settings, frequent setup
changes are prohibitive as the cumulative switching cost between setups will
rapidly increase, limiting the number of evaluations possible.

In several problems, we see that the history of the optimization process influ-
ences the cost and available resources. While in Bayesian Optimization (BO) it
is typical to allow decision variables to be changed freely between iterations, this
scenario does not fully capture the logistical constraints of real-world applica-
tions: the cost of changing any decision variable is not always the same.

It is expected that for any changes made throughout the optimization process,
particularly in dynamic or time-dependent problems, some penalty is incurred,
whether that is an increase in time, cost, resource use, or any other variables
involved. Examples include heat treatment scheduling [26], robot design [19],
molecular discovery [21] or path-based problems in environmental sciences [7].
In such problems, the history of the most recent evaluation(s) makes certain
neighboring points cheaper to evaluate than others, thus making exploitation
cheap and exploration expensive.

Similar scenarios are encountered in problems around chemical processing
plants [3] and biopharmaceutical production [6] when there is a change in for-
mula, in food processing facilities changing between recipes [15], or during large
construction projects with multiple completion phases [1]. The same issues are
also encountered in supply chain logistics when there is a need for a reconfigu-
ration of the distribution network, a change of transport mode, or an inventory
uncertainty driven by supply levels [5].

Our work was motivated by such restrictions in experiments involving phys-
ical resources that are usually limited and often influence the optimization cost
and the overall process.

In many optimization problems, we can distinguish two types of costs:

(i) an evaluation cost, which can be fixed or variable depending on the problem
formulation; and

(ii) a setup cost, which involves the preparation before the evaluation.

Although there has been substantial research on homogeneous and heterogeneous
evaluation costs [17,22,26], there has been little research on setup costs and
bottlenecks arising from performing physical evaluations. The main decision then
becomes when and how often a switch to a cost-associated decision variable
should happen given the optimization time, the number of resources used, and
the improvement in the quality of the solution achieved.

An example of such resource-constrained BO was proposed by Vellanki et al.
[26] in the form of process-constrained batch optimization. Their experimental
setup imposes constraints on batch construction by only allowing batches that
share the same values for some decision variables. In this paper, we are extend-
ing their formulation to a generalized form by transforming the batches into a
sequential problem. Since we are looking at sequential rather than batch set-
tings, the resource constraints are affected by previous evaluations throughout

342 S. Pricopie et al.

the search space, which is not the case in the batch setting, where the constraint
affects only the respective batch. We also soften their constraint by allowing
switches with a penalty associated with them. The formulation of Vellanki et al.
[26] can then be seen as a particular case of our problem where the switching
cost is +∞, even though the cost is not specifically modeled in their case.

The overarching research question addressed in this paper is whether there
are good adaptive and/or parameter-free strategies that an optimizer can use
to choose between evaluating cheaply (by reusing the same setup as before) and
changing the setup altogether for a more expensive evaluation. Every change in
a new setup will incur a switching cost, and we wish to be robust to different
relative switching costs.

The main contributions of the paper are:

1. We extend the optimization problem proposed in [26] from a batch-
constrained formulation to a sequential one to allow for broader general-
izability. Our formulation is resource-aware by penalizing frequent changes
performed in the costly dimensions and considers the setup cost for more
thorough optimization.

2. We show how the optimization process is affected by both the setup and the
evaluation cost. Ignoring either of the two can lead to suboptimal convergence
with respect to the overall cost of optimization.

3. We adapt the two resource-unaware algorithms proposed by Vellanki et al. [26]
for batch constraints to resource-aware sequential settings. Additionally, we
propose two new algorithms for this problem, an Expected Improvement per
Unit Cost (EIPU) and a Probabilistic Reuse BO.

4. We show that previously proposed solutions require restricting the optimiza-
tion to several evaluations per setup. The choice of this number is nontrivial
and depends on the setup cost and the dimensionality of the problem.

The rest of this work is organized as follows. In Sect. 2 we review the related
work. The problem setting is formally introduced in Sect. 3. In Sect. 4 we describe
the algorithms used, with the experimental setup given in Sect. 5 together with
the results of the experiments. Finally, we discuss any limitations and directions
for future research in Sect. 6.

2 Related Work

Our research builds on the academic literature of process-constrained BO, and
more specifically on studies that consider cost, for example, per evaluation or
setup, as part of their objective function. While the literature around BO is
extensive [8,10,27], there is not an equal focus on those BO applications that
use a non-fixed cost. The cost per evaluation has been a relatively more pop-
ular research problem, both in the multi-fidelity [14,23,24] and single-fidelity
space [2,17,20]. With regard to incurring a switching cost for new setups, we have
identified several articles that are directly related to our research [7,19,20,22,26].

An Adaptive Approach to Bayesian Optimization 343

Snoek et al. [22]’s seminal paper emphasized BO’s potential on hyperparam-
eter tuning in neural networks while being the first to bring to the attention the
problem of cost in optimization. Whenever there is an expensive optimization
problem, the assumption is usually that this cost is fixed. Nevertheless, the cost
per evaluation in neural networks is proportional to the internal batch size of
a neural network training or other hyperparameters such as learning epochs.
Snoek et al. [22] introduced the EI per second, later referred to as EI per unit
cost (EIPU) [18], aimed at addressing the heterogeneity of training costs. How-
ever, this does not address the setup costs that arise from any changes in the
model architecture such as the number of layers of the model or loading and
preprocessing of new data, which require a full reinitialization of the model.

Liao et al. [19] extends Vellanki et al. [26]’s batch construction, where batches
need not be constrained to a single setup and can be parallelized. In this case
multiple batches are running in parallel, which constrains the optimization pro-
cess based on the setup cost of n number of machines (robots in this case) for a
while. Since morphologies are expensive and take a lot of time to produce, the
goal of the paper is to evaluate multiple morphologies (microrobots) in paral-
lel and optimize their unconstrained decision parameters (here controllers) while
minimizing cost (how many morphologies are produced). Similarly to Vellanki et
al. [26], their algorithms are optimized against the number of new setups and do
not account for evaluation costs, which means that the only difference between
a higher batch and a lower batch is computational cost.

To our knowledge, Lin et al. [20] are the first to introduce the idea of switching
costs in the context of BO in a continuous space. They partition the search
space into disjoint tiles. The cost of the changes is then measured when the
optimization process jumps from one tile to another. Raising similar issues to this
problem is also the work presented by Folch et al. [7]. While both papers discuss
the scenario where the cost of optimization arises between evaluations, Folch et
al. [7] considers the case where the cost is the distance between evaluations, thus
making (proximal) exploitation cheaper and (distal) exploration more expensive.

Our problem differs from previous research in a couple of ways. Firstly, we
are considering a sequential setting rather than a batch one. We motivate this
choice because not all optimization processes allow for parallel batch evaluations.
Moreover, by evaluating sequentially, we can see the effect of reusing the same
setup on performance at a more granular level as algorithms have greater control
over when to change or switch a setup. This also addresses the issue of choosing
an appropriate batch size for the experiments, either fixed or adaptive, without
a priori knowledge. Secondly, we soften the hard constraint used in the previous
papers, meaning that one can evaluate outside of the search space of the current
setup by switching it, but at the cost of a penalty, i.e., a switching cost.

3 Problem Setup

This paper considers expensive optimization problems on f : X → R where the
domain X ⊆ R

d can be broken down into costly and cheap dimensions. More

344 S. Pricopie et al.

formally, X = Xcheap × Xcostly is the Cartesian product of Xcheap ⊆ R
dcheap and

Xcostly ⊆ R
dcostly with d = dcheap + dcostly being the dimensions of X , Xcheap

and Xcostly respectively. We notate x =
[
xcheap xcostly

]
where x ∈ X , xcheap ∈

Xcheap and xcostly ∈ Xcostly to differentiate between the cheap and costly spaces.
We then model the cost function c : X × X → R as:

c(xt,xt−1) =

{
cswitch if xt

costly �= xt−1
costly,

1 otherwise.
(1)

where xt =
[
xt

cheap xt
costly

]
is the tth function evaluation and cswitch ∈ [1,∞).

We refer to a setup change or a switch when xt
costly �= xt−1

costly. For example,
when cswitch = 5, it is 5 times more expensive to switch than to reuse the
same setup. When cswitch = 1, it is equivalent to the traditional optimization
problem. Intuitively, cswitch is the penalty multiplier to change the setup for a
new experiment.

In the example shown in Fig. 1 the black dot is the last evaluation and the
square is the best next point to evaluate, which is on the line, meaning that the
same setup applies and there is no new cost associated with the move. However,
evaluating at the red square, which is the best next point to evaluate, is within
a different setup, hence the function evaluation will have a new setup cost.

Fig. 1. Example of a d = 2 problem with dcostly = 1. The x-axis and y-axis represent
the cheap and costly dimensions, respectively. The dotted line is the set of evaluations
that use the current setup. The squares are the candidate points and the dot is the
last evaluation.

In Fig. 2 we use a two-dimensional synthetic test function, X = [−4, 8] ×
[−4, 8] ⊂ R

2 with Xcostly = {x1 ∈ [−4, 8]} and Xcheap = {x2 ∈ [−4, 8]}, to
show the behavior of a solution method in the cases of setup switching costs.
Depending on the next chosen point to evaluate, the algorithm can select a point
which incurs an evaluation cost. For example, in evaluation policy 1, there is a
switching cost associated to every move made, while in the evaluation policy
2, there are 3 moves that do not have a switching cost associated since the
same setup is reused. This type of scenario then raises the question of whether
the algorithm can find an optimal trade-off between the costs associated with a
switch and the quality of the solution found.

An Adaptive Approach to Bayesian Optimization 345

Fig. 2. Maximization problem on synthetic function with axes x1 and x2 representing
the expensive and cheap dimensions in the search space respectively. The grey dots
represent the initial starting points, which are randomly selected. The red and blue
lines then denote two evaluation strategies. The red line represents a strategy where
the algorithm changes the setup at each evaluation, while the strategy represented by
the blue line uses the same setup for evaluations 2, 3, 5, and 8. The second evaluation
policy performs 9 evaluations, while the first policy performs only 6 due to its costly
evaluations. Reusing the same setup allows for more total evaluations at the expense
of fewer evaluations performed across the costly dimension x1. (Color figure online)

4 Methodology

We are interested in characterizing the trade-off between evaluating the cheap
dimensions for more evaluations and evaluating the costly dimensions for less.
We investigate whether it is possible to find an optimal p∗ value (or range), where
p is the probability of re-using a setup and hence evaluating a new solution that
keeps the values of the costly dimensions without incurring a switching cost. We
analyze four algorithms capable of tackling this problem, in addition to a classic
BO that ignores the switching cost.

The first new algorithm that we propose is pReuseBO. This algorithm keeps
the value of the expensive decision variables with probability p ∈ [0, 1] inde-
pendently at every time step. In Fig. 2 we illustrate one run of this algorithm
with p = 0.1, which on average would lead to 1 out of 10 points being cheaply
evaluated, and incur a switching cost for the remaining 9.

The difference in our problem to previous research (e.g., [26]) is that instead
of batches, we treat the problem sequentially. Once we choose an optimal point

346 S. Pricopie et al.

Algorithm 1. Initialization for Periodic Switching BO Nested
1: Input: f , X = Xcheap × Xcostly, n initial “costly” points, periodicity length k
2: Select unique “costly” points {x1

costly, . . . ,x
n
costly}, each to be used k times

3: Initialize a set of n · k unique “cheap” points {xt
cheap}n·k

t=1

4: Define the initial points xt =
[
xt
cheap x

�t/k�
costly

]
for t = 1, . . . , n · k

5: Evaluate f at each xt to get yt = f(xt) for t = 1, . . . , n · k
6: Form the complete dataset D = {(xt, yt)}n·k

t=1

7: Return D

to evaluate by looking at the entire search space, we automatically evaluate it
without creating a batch with variations. Since we evaluate a single point, we
constraint the costly dimensions for k−1 number of evaluations, that is, the setup
is changed only after every k evaluations. Here, k represents the periodicity to
which an event happens and is graphically presented in Fig. 3. In other words,
the algorithm keeps the same setup for k − 1 steps out of k. This is different
to batching because we refit the Gaussian Process (GP) after each evaluation.
One possible approach is to maintain the value of the costly dimensions with
probability 1 − p or change them with probability p (and pay the switch cost).
Another possible approach is to maintain the value of the costly dimensions for
k evaluations, then change them (and pay the switch cost) and perform another
k evaluations only changing the cheap dimensions. The parameter k is a simpler
planning strategy than the parameter p. We expect that setting k = 1

1−p will
produce a similar behavior on average.

Fig. 3. Periodic switching of k. The costly decision variables are changed only every k
evaluations.

We adapted two algorithms proposed by Vellanki et al. [26] to our problem.
The first algorithm is a sequential version of the pc-BO-basic, here referred to as
Periodic Switching BO (PSBO). In the original algorithm (pc-BO-basic), a batch
would be constructed by choosing the first point freely as the best found by the
chosen acquisition function, then iteratively adding optimal points constrained
to the costly decision variables of the first point until the batch is complete.
Here in PSBO, we simply allow changes to xcostly after each k evaluations. We
also substituted their chosen acquisition functions UCB and PSD (also known
as Pure Exploration) for EI as the former functions can be too exploratory [4].

An Adaptive Approach to Bayesian Optimization 347

Algorithm 2. Periodic Switching BO Nested
1: Input: Initial dataset D, t = |D| � From Algorithm 1
2: while stopping criteria not met do
3: if t mod k = 0 then
4: Dcostly =

{(
xi
costly,max

{
y | (

[xcheap,xi
costly], y

) ∈ D
}) | i = 1, . . . , t/k

}
5: Train GPcostly using the dataset Dcostly

6: xcostly = arg max
x∈Xcostly

αcostly(x;Dcostly) � Choose new costly variables

7: end if
8: Train GP using the dataset D
9: xt+1

cheap = arg max
x∈Xcheap

α(x;D | xcostly) � Condition on last costly variables

10: Evaluate yt+1 = f([xt+1
cheap,xcostly])

11: Update D with ([xt+1
cheap,xcostly], yt+1)

12: t = t + 1 � Increment iteration counter
13: end while

The second algorithm is PSBO Nested, shown in Algorithm 2, which is
adapted from the original pc-BO-nested in Vellanki et al. [26] designed for batch
into sequential. The nested approach uses two separate BO algorithms, one for
the costly space only and one for the entire space, running concomitantly. This
process also requires a special initialization presented in Algorithm 1. The key
difference between the two algorithms is in the retraining of the model after each
step (see lines 8–12) rather than in batch and in the conditional retraining of
costly GP followed by changing the costly decision variables after each k steps
(see line 3). And, like in PSBO, we used EI for consistency.

We also propose an adaptation of the EI per unit cost (EIPU) to the patho-
logical case where the cost function is discontinuous. As we are incorporating
cost, and since we want to compare the penalty incurred while evaluating out-
side of the initial setup, we want to adapt the EIPU. Unlike previous methods
used for this problem type, this is the first algorithm that is cost-aware. In a
traditional sense, EI is a continuous function, which matches the general for-
mulation of cost in the literature as continuous. However, in our case, cost is a
discontinuous function (Eq. 1). To address this we perform two acquisition opti-
mizations within the same iteration. This will produce two candidate points for
the next evaluation: (i) a candidate point that changes a costly dimension and
hence incurs a switching cost and (ii) a candidate point that only changes cheap
dimensions and hence without having a switching cost. The algorithm will then
discount the EI of the two points by their respective cost and the best point is
chosen. When we discount the cost we are considering the cost cooling strategy
EI-cool(x) := EI(x)

c(x)γ , where γ is the decay parameter where γ = (B − Bt)/B, t

is the iteration number, B is the total budget, and Bt is the budget used up to
time step t [18]. This cost cooling strategy lessens the impact of the cost model
with the advance of iterations, allowing for more costly evaluations to escape
local optimum.

348 S. Pricopie et al.

5 Experiments

We run two sets of experiments: (i) finding the best p value across the different
dimensions and switching costs using pReuseBO (Subsect. 5.2), and (ii) com-
paring the four algorithms’ performance (Subsect. 5.3). The experimental setup
corresponding only to a particular experiment will be explained subsequently in
each respective subsection.

Table 1. Test functions considered in this study and their settings. For each function
we considered the dimensions d ∈ {2, 3, 4}. For Ackley, Griwewank, and Salomon, their
original domain is cropped as shown in the table, such that the optimal point was not
in the centre of the domain.

Functions Symmetrical Domain per dimension d

Ackley Yes [−15, 30]

Griewank Yes [−300, 600]

Levy No [−10, 10]

Michalewicz No [0, π]

Rosenbrock No [−5, 10]

Salomon Yes [−50, 100]

Schwefel Yes [−500, 500]

5.1 Experimental Setup

Both sets of experiments are run on scalable test problems, shown in Table 1, of
dimension d ∈ {2, 3, 4}. We choose to show the performance of the algorithms
over the above test functions because the dimensionality of the problem has a
direct impact on the algorithm behavior and the optimal hyperparameters. This
argument will be empirically validated in the following sections. Many scalable
functions are symmetrical, but we include non-symmetrical test functions as they
better capture the complexities of real-world applications.

The following configurations are considered:

2D: 1 cheap & 1 costly;
3D: 1 cheap & 2 costly OR 2 cheap & 1 costly;
4D: 1 cheap & 3 costly OR 2 cheap & 2 costly OR 3 cheap & 1 costly;

The costly dimensions are randomly selected across 20 independent runs for
robustness until the termination criteria is met. Randomizing the costly dimen-
sions helps control asymmetries in the impact of dimensionalities for the non-
symmetrical test functions, which is suitable for the generability of the paper,
as opposed to arbitrarily fixing some dimensions across all runs. The values of p
that we chose to test are between [0, 1] inclusive with a step of 0.05 leading to

An Adaptive Approach to Bayesian Optimization 349

21 possible values. The value of the switching cost is reflective of how expensive
an evaluation becomes when switching the setup relative to the existing one at
the moment of evaluation. For example, a switching cost of 2 means that chang-
ing the setup would make the next evaluation twice as expensive as it would
be by maintaining the same setup. In this paper, we set the possible values for
the switching cost at {1, 2, 4, 8, 16} for the first set of experiments to compare
against a classical optimization problem, and {2, 4, 8, 16, 32} for the second set
of experiments to analyze the effect of higher costs.

Our budget is referenced in terms of cost because we want to be able to
benchmark cost-efficient algorithms with classical BO. All experiments have a
low budget of N = 10d units of cost, where d is the dimension of the problem,
once the initial random sample has been evaluated. Therefore, algorithms can
perform between N evaluations at the lower end, when switching at each iteration
which is the case for traditional BO, and N · cswitch evaluations at the higher
end when no switching is performed and the algorithm reuses only the last setup
from the initialization, such as when p = 1 for pReuseBO.

All the BO algorithms ran in this paper use GP surrogates with Matérn
5/2 kernel and Automatic Relevance Determination (ARD) as recommended by
Snoek et al. [22]. We optimise the EI acquisition function with L-BFGS-B with
10 restarts and 2048 raw samples. For EIPU we optimise the acquisition function
twice to get the two candidate points.

To evaluate the performance of the algorithms, we use the GAP measure,
which is defined as GAP = (yi − y0)/(y∗ − y0), assuming maximization of the
objective function f without loss of generality, where yi is the maximum observed
objective function value within a single run, y∗ is the true optimal (maximum)
value of f , and y0 is the objective function value of the initial starting point,
which is the same for all algorithms solving the same problem [11–13,16]. GAP
should be maximized and can be thought of as the inverse of the normalized
regret and is preferred as it allows for generalizability in algorithm performance
across multiple test functions.

5.2 Optimal Probability Value

We analyze the performance of different fixing probabilities p to maximize the
value of the objective function in a set budget. Figure 4 shows that an increase
in the switching cost leads to an increase in p∗. A higher switching cost means
a greater trade-off between exploring the costly dimension and performing more
total evaluations. As p increases, the algorithm performance diverges. High p
values corresponding to frequent reusability perform better in high-cost settings
but hinder performance in low-cost settings.

The optimal p∗ decreases with an increase in the costly dimensionality
(Fig. 4). The result is expected as the importance of exploring the costly dimen-
sion becomes higher when the number of such dimensions increases. The gain
from performing more frequent switches in this scenario is greater, while the loss
incurred from not exploring the lower number of cheap dimensions is low.

350 S. Pricopie et al.

Fig. 4. Left: The mean GAP performance (and 95% CI) of the method pReuseBO
plotted against 21 values of p, where GAP = 1 means that the optimal solution was
found, for 20 independent runs and averaged over the 7 test functions with 4 dimensions
and 1 costly dimension. The approximately equivalent k for Periodic Switching is shown
on the x-axis. The dotted line shows the effect of p averaged over all the switching
costs to highlight its steady increase in performance followed by its sharp decline.
Right: The median of the highest performing p parameters for each problem and costly
dimensionality setting plotted against switch cost. p is much more sensitive to tune with
respect to different values of switch cost in the problems with high dimensionality and
low costly dimensionality.

The lower the value of p the closer the behavior of the algorithm is to the
standard BO. The performance of p in the context of switching cost is expected
to decrease quickly since there is no trade-off, i.e., one evaluation on the costly
dimension is changed for one evaluation on the cheaper dimension. This can be
a reasonable trade-off for smaller values of p, although it is unlikely to produce
a significant effect on performance. However, with increasing p, there will be a
steady decrease in returns and the importance of exploring the costly dimension
becomes higher. On the other hand, an increase in the switching cost results in a
higher trade-off for exchanging one expensive evaluation for multiple cheap ones.

5.3 Algorithms Performance

The algorithms performance is shown in Table 2. The experiments shown in this
table are from the 4D-1 setting. We have chosen this configuration based on
the results obtained over the p analysis (see Fig. 4). These have shown that
the optimal choice of reusing or switching a setup is most sensitive in high-
dimensional, low expensive dimensionality settings.

We are most interested in comparing the parameter-free EI per unit cost with
multiple instances of the other algorithms. Whenever there is a reference to “best”
of an algorithm, we mean the manually tuned configuration of the algorithm that
led to the best performance in terms of GAP. The findings show that despite
using tuned versions of the other algorithms, these do not outperform the results
obtained by the EIPU in high switching costs scenarios. In low cost settings EIPU
behaves close to BO and is outperformed by pReuseBO and PSBO.

An Adaptive Approach to Bayesian Optimization 351

Table 2. Algorithm comparison for the 7 test functions, over the 5 algorithms of inter-
est. (Tuned) pReuseBO, (Tuned) PSBO, and (Tuned) PSBO Nested are the configura-
tions who yielded the best performance in terms of GAP over 5 tested configurations
for parameter tuning. The algorithm with the highest GAP is bolded the second best
is highlighted in light grey.

Switch Problem BO pReuseBO EIPU PSBO PSBO Nested
Cost (Tuned) (Tuned) (Tuned)

2 ackley 0.886344 0.920431 0.903437 0.877309 0.760876
2 griewank 0.991388 0.992109 0.991953 0.992834 0.976825
2 levy 0.993641 0.994666 0.995413 0.996521 0.989614
2 michalewicz 0.855549 0.921913 0.893882 0.904125 0.741281
2 rosenbrock 0.999413 0.999773 0.999623 0.999728 0.999205
2 salomon 0.868022 0.894309 0.869581 0.898732 0.837132
2 schwefel 0.714171 0.788107 0.789711 0.784081 0.704648
4 ackley 0.886344 0.928764 0.906928 0.899564 0.773149
4 griewank 0.991388 0.992437 0.992114 0.993251 0.980942
4 levy 0.993641 0.995714 0.996914 0.996546 0.990014
4 michalewicz 0.855549 0.950820 0.934351 0.927506 0.760070
4 rosenbrock 0.999413 0.999957 0.999950 0.999934 0.999686
4 salomon 0.868022 0.917669 0.906176 0.913210 0.877922
4 schwefel 0.714171 0.818559 0.814713 0.815333 0.726128
8 ackley 0.886344 0.931443 0.929409 0.907566 0.773149
8 griewank 0.991388 0.992783 0.991681 0.994011 0.981282
8 levy 0.993641 0.997101 0.996722 0.996798 0.991616
8 michalewicz 0.855549 0.960074 0.983750 0.943899 0.760070
8 rosenbrock 0.999413 0.999969 0.999992 0.999973 0.999892
8 salomon 0.868022 0.925928 0.919973 0.916355 0.878876
8 schwefel 0.714171 0.822432 0.845480 0.823618 0.762085
16 ackley 0.886344 0.931443 0.932147 0.907566 0.773149
16 griewank 0.991388 0.993453 0.992587 0.994011 0.981353
16 levy 0.993641 0.997101 0.998516 0.997608 0.993175
16 michalewicz 0.855549 0.970236 0.987241 0.977924 0.764227
16 rosenbrock 0.999413 0.999987 0.999999 0.999992 0.999922
16 salomon 0.868022 0.937830 0.910404 0.924830 0.905518
16 schwefel 0.714171 0.840700 0.867731 0.827956 0.772887
32 ackley 0.886344 0.931443 0.921927 0.907566 0.773149
32 griewank 0.991388 0.993453 0.992818 0.994011 0.987995
32 levy 0.993641 0.997158 0.998989 0.997608 0.993679
32 michalewicz 0.855549 0.972642 0.986060 0.980103 0.764227
32 rosenbrock 0.999413 0.999993 0.999999 0.999992 0.999961
32 salomon 0.868022 0.945250 0.941213 0.927371 0.905611
32 schwefel 0.714171 0.842070 0.902302 0.827956 0.774452

352 S. Pricopie et al.

In Table 2 we highlighted the first two algorithms with the highest GAP
achieved. In the case of switching cost 2, EIPU is outperformed for all test
functions by BO Random and PSBO. However, its performance increase in com-
parison to the other algorithms is evident starting with a switching cost of 4.
The EIPU outperforms the other algorithms starting with a switching cost of 8
for the Schwefel test function. Nonetheless, for a switch cost of 16, it performs
best in 4 out of the 7 test function and second best in 1 of them. Similarly, for
the highest switching cost of 32, it performs best in 4 out of 7 cases and second
best in 2 of them.

Since pReuseBO and PSBO are manually tuned, for matter of reference, we
have also compared the results obtained from their untuned equivalent. With-
out configuring the parameters of the other two methods, EIPU outperforms
the untuned variants in almost all cases with a switching cost higher than 2.
Generally, as switching cost increases, EIPU performs better as it is adaptable,
exploiting good setups more. Compared to the other algorithms, the cost-aware
EI switches a setup only when the current one does not yield large enough
improvements. The other algorithms switch following a predetermined sequence
by p or k.

We observe that in a cost-aware sequential setting, PSBO does perform better
than PSBO nested in any of our test functions. This is in contrast to the findings
obtained by Vellanki et al. [26] who have shown that PSBO nested is the better
algorithm in batch settings. The difference in performance is caused by the fact
that the GPcostly (line 5 of Algorithm 2), which determines the values in the
expensive dimensions, does not train well long term over the best found points
for each setup. Therefore the algorithm will progress for a while but then plateau
since the dimensionality reduction will prohibit the algorithm from finding the
best point. Our results seem more consistent with the results from Ghadimi
and Wang [9], which look at bi-level optimization methods where there is an
inner and an outer loop problem. The authors highlight that a large number of
iterations is required for nested algorithms to perform well.

6 Conclusion

In this paper, we have looked at a generalizable version of cost-aware problems in
light of the limitations encountered in real-world experiments requiring physical
resources. We have analyzed the behavior of multiple algorithms when a setup
switch is associated with a cost and shown that the choice of switching through-
out an optimisation process is non-trivial. This number is primarily influenced
by the total dimensionality of the problem in relation to the number of costly
dimensions, and the cost associated with each switch.

We have adapted a number of algorithms that can be used to solve the above
class of problems. The parameter-free EIPU algorithm proposed as one of the
solution methods was shown to yield comparable results with other finely tuned
algorithms used in process-constrained BO problems. The practical impact of
these algorithms can help reduce the cost of optimization processes in several
fields, from automotive to biopharmaceutical settings.

An Adaptive Approach to Bayesian Optimization 353

A potential extension of the work presented in this paper comes from the
inherent characteristic of BO being only interested in finding the next best point
to evaluate. In our case, before evaluating the next point we want to know both
how good that point is and its evaluation cost. In other words, analyzing an
evaluation point is done through an aggregate between cost and value. It thus
becomes important for BO to understand the overall quality of a certain setup
before committing to it. A potential solution worth pursuing is the analysis of
the performance lookahead-based heuristics, which take into consideration how
good a setup might be and design BO algorithms that are less greedy.

References

1. Aslam, M., Baffoe-Twum, E., Saleem, F.: Design changes in construction projects
– causes and impact on the cost. Civil Eng. J. 5(7), 1647–1655 (2019). https://doi.
org/10.28991/cej-2019-03091360. ISSN 2476-3055

2. Astudillo, R., Jiang, D., Balandat, M., Bakshy, E., Frazier, P.: Multi-step bud-
geted bayesian optimization with unknown evaluation costs. In: Advances in Neu-
ral Information Processing Systems, vol. 34, pp. 20197–20209. Curran Associates,
Inc. (2021)

3. Behr, A., et al.: New developments in chemical engineering for the production of
drug substances. Eng. Life Sci. 4(1), 15–24 (2004). https://doi.org/10.1002/elsc.
200406127. ISSN 1618-0240, 1618-2863

4. De Ath, G., Everson, R.M., Rahat, A.A.M., Fieldsend, J.E.: Greed is good: explo-
ration and exploitation trade-offs in Bayesian optimisation. ACM Trans. Evol.
Learn. Optim. 1(1), 1–22 (2021). https://doi.org/10.1145/3425501. ISSN 2688-
299X, 2688-3007

5. Dev, N.K., Shankar, R., Gunasekaran, A., Thakur, L.S.: A hybrid adaptive deci-
sion system for supply chain reconfiguration. Int. J. Prod. Res. 54(23), 7100–7114
(2016). https://doi.org/10.1080/00207543.2015.1134842. ISSN 0020-7543, 1366-
588X

6. Eberle, L.G., Sugiyama, H., Schmidt, R.: Improving lead time of pharmaceutical
production processes using Monte Carlo simulation. Comput. Chem. Eng. 68, 255–
263 (2014). https://doi.org/10.1016/j.compchemeng.2014.05.017. ISSN 00981354

7. Folch, J.P., et al.: SnAKe: Bayesian Optimization with Pathwise Exploration
(2022). arXiv:2202.00060. https://doi.org/10.48550/arXiv.2202.00060

8. Frazier, P.I., Wang, J.: Bayesian optimization for materials design. In: Lookman,
T., Alexander, F.J., Rajan, K. (eds.) Information Science for Materials Discovery
and Design. SSMS, vol. 225, pp. 45–75. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-23871-5_3

9. Ghadimi, S., Wang, M.: Approximation Methods for Bilevel Programming (2018).
arXiv:1802.02246

10. Griffiths, R.R., Hernández-Lobato, J.M.: Constrained Bayesian optimization for
automatic chemical design using variational autoencoders. Chem. Sci. 11(2), 577–
586 (2020). https://doi.org/10.1039/C9SC04026A. ISSN 2041-6520, 2041-6539

11. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic
black-box systems via sequential kriging meta-models. J. Glob. Optim. 34(3), 441–
466 (2006). https://doi.org/10.1007/s10898-005-2454-3. ISSN 1573-2916

https://doi.org/10.28991/cej-2019-03091360
https://doi.org/10.28991/cej-2019-03091360
https://doi.org/10.1002/elsc.200406127
https://doi.org/10.1002/elsc.200406127
https://doi.org/10.1145/3425501
https://doi.org/10.1080/00207543.2015.1134842
https://doi.org/10.1016/j.compchemeng.2014.05.017
http://arxiv.org/abs/2202.00060
https://doi.org/10.48550/arXiv.2202.00060
https://doi.org/10.1007/978-3-319-23871-5_3
https://doi.org/10.1007/978-3-319-23871-5_3
http://arxiv.org/abs/1802.02246
https://doi.org/10.1039/C9SC04026A
https://doi.org/10.1007/s10898-005-2454-3

354 S. Pricopie et al.

12. Jiang, S., Chai, H., Gonzalez, J., Garnett, R.: BINOCULARS for Efficient, Non-
myopic Sequential Experimental Design (2019). https://doi.org/10.48550/arXiv.
1909.04568. https://github.com/shalijiang/bo

13. Jiang, S., Malkomes, G., Converse, G., Shofner, A., Moseley, B., Garnett, R.: Effi-
cient nonmyopic active search. In: Proceedings of the 34th International Conference
on Machine Learning (ICML 2017), Proceedings of Machine Learning Research,
vol. 70, pp. 1714–1723 (2017)

14. Kandasamy, K., Dasarathy, G., Oliva, J., Schneider, J., Póczos, B.: Gaussian pro-
cess bandit optimisation with multi-fidelity evaluations. In: Advances in Neural
Information Processing Systems (NeurIPS 2016), vol. 29, pp. 992–1000 (2016)

15. Kopanos, G.M., Puigjaner, L., Georgiadis, M.C.: Resource-constrained production
planning in semicontinuous food industries. Comput. Chem. Eng. 35(12), 2929–
2944 (2011). https://doi.org/10.1016/j.compchemeng.2011.04.012. ISSN 00981354

16. Lam, R., Willcox, K., Wolpert, D.H.: Bayesian optimization with a finite budget: an
approximate dynamic programming approach. In: Advances in Neural Information
Processing Systems, vol. 29. Curran Associates, Inc. (2016)

17. Lee, E.H., Eriksson, D., Perrone, V., Seeger, M.: A nonmyopic approach to cost-
constrained Bayesian optimization. In: Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence, pp. 569–577 (2021)

18. Lee, E.H., Perrone, V., Archambeau, C., Seeger, M.: Cost-aware Bayesian Opti-
mization (2020). arXiv:2003.10870. https://doi.org/10.48550/arXiv.2003.10870

19. Liao, T., et al.: Data-efficient learning of morphology and controller for a micro-
robot. In: 2019 International Conference on Robotics and Automation (ICRA),
Montreal, QC, Canada, pp. 2488–2494. IEEE (2019). https://doi.org/10.1109/
ICRA.2019.8793802. ISBN 978-1-5386-6027-0

20. Lin, C.H., Miano, J.D., Dyer, E.L.: Bayesian optimization for modular black-box
systems with switching costs. In: Proceedings of the Thirty-Seventh Conference on
Uncertainty in Artificial Intelligence, pp. 1024–1034. PMLR (2021). ISSN: 2640-
3498

21. Pricopie, S., et al.: Expensive optimization with production-graph resource con-
straints: a first look at a new problem class. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 840–848. Association for Comput-
ing Machinery, New York (2022). https://doi.org/10.1145/3512290.3528741. ISBN
978-1-4503-9237-2

22. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Proceedings of the 25th International Conference on Neu-
ral Information Processing Systems, Advances in Neural Information Processing
Systems, vol. 4, pp. 2951–2959. Morgan Kaufmann Publishers, Inc., Lake Tahoe,
USA (2012)

23. Song, J., Chen, Y., Yue, Y.: A general framework for multi-fidelity Bayesian opti-
mization with gaussian processes. In: Proceedings of the Twenty-Second Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 3158–3167. PMLR
(2019). ISSN: 2640-3498

24. Swersky, K., Snoek, J., Adams, R.P.: Multi-task Bayesian optimization. In:
Advances in Neural Information Processing Systems, vol. 26. Curran Associates,
Inc. (2013)

25. Teunter, R., Kaparis, K., Tang, O.: Multi-product economic lot scheduling problem
with separate production lines for manufacturing and remanufacturing. Eur. J.
Oper. Res. 191(3), 1241–1253 (2008). https://doi.org/10.1016/j.ejor.2007.08.003.
ISSN 03772217

https://doi.org/10.48550/arXiv.1909.04568
https://doi.org/10.48550/arXiv.1909.04568
https://github.com/shalijiang/bo
https://doi.org/10.1016/j.compchemeng.2011.04.012
http://arxiv.org/abs/2003.10870
https://doi.org/10.48550/arXiv.2003.10870
https://doi.org/10.1109/ICRA.2019.8793802
https://doi.org/10.1109/ICRA.2019.8793802
https://doi.org/10.1145/3512290.3528741
https://doi.org/10.1016/j.ejor.2007.08.003

An Adaptive Approach to Bayesian Optimization 355

26. Vellanki, P., et al.: Process-constrained batch Bayesian optimisation. In: Advances
in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

27. Zhang, Y., Apley, D.W., Chen, W.: Bayesian optimization for materials design
with mixed quantitative and qualitative variables. Sci. Rep. 10(1), 4924 (2020).
https://doi.org/10.1038/s41598-020-60652-9. ISSN 2045-2322

https://doi.org/10.1038/s41598-020-60652-9

Re-examining Supervised Dimension
Reduction for High-Dimensional Bayesian

Optimization

Quanlin Chen1 , Jing Huo1 , Yiyu Chen1 , Tianyu Ding2 ,
Yang Gao1(B) , Dong Li3 , and Xu He3

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

quanlinchen@smail.nju.edu.cn, {huojing,gaoy}@nju.edu.cn,
yiyuiii@foxmail.com

2 Applied Sciences Group, Microsoft, Redmond, WA 98034, USA
tianyuding@microsoft.com

3 Noah’s Ark Laboratory, Huawei 518129, Shenzhen, China
{lidong106,hexu27}@huawei.com

Abstract. Bayesian optimization (BO) has been broadly applied to
optimize expensive-to-evaluate black-box functions, but it is still chal-
lenging to scale BO to high dimensions while retaining sample efficiency.
A solution in the existing literature is to assume that there exists a
lower-dimensional structure for objective functions and learn the lower-
dimensional embedding via supervised dimension reduction. For exam-
ple, BO based on Sliced Inverse Regression (SIR) directly uses SIR to dis-
cover the intrinsic lower-dimensional structure of the objective function.
However, the assumption of SIR leads to a mismatch in BO, and maxi-
mizing a high-dimensional acquisition function also leads to its poor per-
formance. To reduce the mismatch between dimension reduction methods
and BO, we introduce Kernel Dimension Reduction (KDR) and mani-
fold KDR to BO. Furthermore, to improve the performance of acquisition
functions, we construct a constrained low-dimensional acquisition func-
tion, where the constraint is constructed by the inverse mapping from
the central subspace back to the original space using a batch of Gaus-
sian Process models. We verify empirically that tackling these two issues
improves the performance of methods based on supervised dimension
reduction on a wide range of problems.

Keywords: Bayesian optimization · High-dimensional Bayesian
optimization · Black-box optimization · Dimensionality reduction

1 Introduction

Many science and engineering tasks can be abstracted as black-box optimiza-
tion. Moreover, their objective functions are expensive to evaluate. Bayesian

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 356–373, 2024.
https://doi.org/10.1007/978-3-031-70068-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_22&domain=pdf
http://orcid.org/0009-0002-3789-7627
http://orcid.org/0000-0002-8504-455X
http://orcid.org/0000-0001-7186-7371
http://orcid.org/0000-0001-8445-4330
http://orcid.org/0000-0002-2488-1813
http://orcid.org/0000-0002-8800-1483
http://orcid.org/0000-0002-7700-2341
https://doi.org/10.1007/978-3-031-70068-2_22

Re-examining Supervised Dimension Reduction 357

optimization (BO) has been broadly applied to optimize these expensive-to-
evaluate black-box functions, because of its sampling efficiency, such as neural
architecture search [33], hyperparameters tuning [13], vehicle design [2], and so
on. The sampling efficiency of BO results from its surrogate models and acquisi-
tion functions, where surrogate models can estimate the objective function more
cheaply and acquisition functions (AF) can select candidate points by balancing
exploration and exploitation.

Although BO has achieved good performance in these applications with low
dimensions, it is still challenging to scale BO to high dimensions due to the curse
of dimensionality [29]. Specifically, the accuracy of surrogate models decreases
severely in high-dimensional space, and the computational complexity of maxi-
mizing acquisition functions is exponential in dimensions [17]. Hence, most suc-
cessful applications of BO are in D (D ≤ 20) dimensions [8].

There are some methods proposed to extend BO to high-dimensional spaces.
Most of the existing works make additional assumptions about the objective
function. The first assumption is that there exists a lower-dimensional struc-
ture for objective functions, and then the low-dimensional embedding is learned
[20,44]. The second assumption is that there exists an additive structure for
objective functions, and then the additive structures are learned [17]. However,
these assumptions are too restrictive for these methods to be widely used in real
applications. What’s more, several works impose no additional assumptions but
directly improve the high-dimensional BO [7,27,30]. However, these methods
cannot be scaled to too high dimensions. Hence, it is still an open problem to
scale BO to high-dimensional spaces.

In this paper, we study the methods based on the lower-dimensional assump-
tion, and in particular, we re-examine prior works utilizing supervised dimension
reduction methods for learning low-dimensional embeddings (SIR-BO [44]). The
sliced inverse regression (SIR) is attractive because it could automatically learn
the low-dimensional embedding given a moderate amount of data. However,
SIR assumes that the input covariate X has an elliptical distribution, which
leads to a mismatch of BO. Another limitation of SIR-BO is that it is diffi-
cult to achieve optimal points, because of directly maximizing high-dimensional
acquisition functions. Our goal is to tackle these two limitations and improve
the performance of methods based on sufficient dimension reduction. The con-
tributions of this paper are:

– We provide new results identifying why SIR-BO has poor performance.
Firstly, we show that the mismatch between BO and SIR leads to poor
performance of SIR. Secondly, the poor performance results from directly
maximizing high-dimensional acquisition functions.

– To reduce the mismatch between BO and dimension reduction methods, we
leverage kernel dimension reduction (KDR [9]) and manifold KDR [26] to get
the projection matrix which requires no assumptions on the distribution of
input covariates.

– To improve the performance when optimizing acquisition functions, we max-
imize the low-dimensional constrained acquisition function. Its constraint is

358 Q. Chen et al.

constructed by the inverse mapping using a batch of Gaussian Process mod-
els. Then it is easier for the acquisition function to discover better candidate
points.

– We show empirically that our methods outperform a wide range of high-
dimensional BO methods on several synthetic and real-world problems,
including different kinds of synthetic functions and real-world problems. The
experimental results show empirically that we have identified several impor-
tant issues that affect the performance of BO methods based on supervised
dimension reduction.

2 Related Work

In the realm of high-dimensional BO, there are generally three kinds of methods.
The first kind of method assumes that there exists a lower-dimensional struc-
ture for objective functions. This kind of method typically contains three main
stages: producing a low-dimensional embedding, performing standard BO in this
low-dimensional space, and projecting found optimal points back to the original
space. In REMBO [41], the low-dimensional embedding is achieved by using a
random projection matrix. But many points produced by REMBO are outside
the box bounds of the original space and they need to be clipped to the facet of
the box, which results in a harmful distortion. Subsequently, several techniques
are proposed to fix this problem [1,20]. In addition, the random low-dimensional
embedding can be also achieved by randomized hashing functions [25,28]. The
advantage of the hashing functions is that they can easily map candidate points
back to the original space, avoiding clipping to facets of box bounds. Some works
achieve linear embeddings based on learning. For example, SIR-BO achieves the
projection matrix by using SIR, SI-BO [5] learns the projection matrix by low-
rank matrix recovery, and [10] learns the projection matrix by maximizing the
marginal likelihood of Gaussian process regression. Besides, some works achieve
the nonlinear embedding based on VAE [11,23], but they need much more sam-
ples. Apart from producing an embedding, a few works select a subset of the
dimensions and perform standard BO [19,21,35].

The second kind of method assumes that there exists an additive structure
for the objective function, and the objective function can be decomposed into the
sums of several low-dimensional functions. The additive objective function can
be modeled by additive GPs [17]. With the additive GPs, the acquisition func-
tion based on GPs is also additive which can be maximized more efficiently to
avoid the curse of dimensions. However, the true additive structure still remains
challenging to learn. Several works propose to learn the underlying additive
structure from the training data. For example, [40] assigns input variables into
several groups by the Dirichlet process. [32] models the interactions between
input variables using a dependency graph and learns the structure of the depen-
dency graph from a few samples. The dependency graph can be used to assign
input variables to overlapping groups. [12] restricts the dependency graph to a
tree to reduce the computational complexity of maximizing acquisition functions.

Re-examining Supervised Dimension Reduction 359

Except for data-driven decompositions, RDUCB [46] learns a random tree-based
decomposition to reduce the mismatch between the objective function and addi-
tive GPs.

The third kind of method directly improves high-dimensional BO, such as
TuRBO [7] and EBO [39] based on local search, BO based on partitioning the
whole space [18,38,42], better initialization method for AF [30,45], and so on.

3 Background

3.1 Bayesian Optimization

Bayesian optimization considers an optimization problem maxx∈X f(x) where f
is a black-box and derivative-free function, and the feasible set X is a hyper-
rectangle. BO is a sequential model-based approach, consisting of two main
components: a surrogate model and an acquisition function. The surrogate
model is used to model the objective function, and the acquisition function
based on the surrogate model is used to decide where to sample next. Typi-
cally, we leverage Gaussian Process (GP) regression as the surrogate model [31],
f ∼ GP(m(·), k(·, ·)) with mean function m(·) and a kernel k(·, ·). More specif-
ically, GP assumes that evaluations of any finite number sampling point x1:n

have a joint Gaussian distribution, f ∼ N (m(x1:n),K(x1:n,x1:n)). Under this
assumption, given training data Dn = {x1:n,y1:n} and any new point x∗, the
joint distribution is given by

[
y1:n

f(x∗)

]
∼ N

([
m(x1:n)
m(x∗)

]
,

[
K(x1:n,x1:n) + σ2

nI k(x1:n,x∗)
k(x∗,x1:n) k(x∗,x∗),

])

where σ2
n is the variance of Gaussian noise added to the observations. It fol-

lows from the Sherman-Morrison-Woodbury formula that the posterior normal
distribution for f(x∗) is given by f(x∗)|Dn,x∗ ∼ N (μn(x∗), σ2

n(x∗)) where

μn(x∗) = m(x∗) + k(x∗,x1:n)(K(x1:n,x1:n) + σ2
nI)−1(y1:n − m(x1:n))

σ2
n(x∗) = k(x∗,x∗) − k(x∗,x1:n)(K(x1:n,x1:n) + σ2

nI)−1k(x1:n,x∗)

Under that posterior, an acquisition function can be constructed to specify
the utility of sampling points. In this paper, we use Expected Improvement (EI
[15]) as the acquisition function. EI is defined as

EI(x | Dn) = E[max{f(x) − f∗, 0}]

where f∗ := maxy1:n, f(x) ∼ N (μn(x), σ2
n(x)). And then the next sample point

is given by maximizing the acquisition function, xn+1 ∈ arg maxx∈X EI(x). After
obtaining xn+1, the objective function at this point will be evaluated. Then the
process proceeds to the next iteration.

360 Q. Chen et al.

3.2 Kernel Dimension Reduction

Kernel Dimension Reduction (KDR) [9] is one of the methods for sufficient
dimension reduction whose aim is to find the sufficient subspace S such that
Y ⊥⊥ X | ΠSX, where X is the input covariate and Y is its response. Its main
advantage is that it requires no assumptions on the distribution of X or the
conditional distribution of Y |ΠSX.

To begin with, KDR defines the cross-covariance operator of (X,Y) to char-
acterize the correlations between X and Y , and then defines the conditional
covariance operator ΣY Y |X to characterize the conditional independence Y ⊥⊥
X | ΠSX. Under the conditional covariance operator, if ΣY Y |B�

1 X ≥ ΣY Y |B�
2 X ,

then B�
2 X captures more dependency between X and Y than B�

1 X. Hence, the
conditional covariance operator results in a criterion of dimension reduction, i.e.

B∗ = arg min
B

ΣY Y |B�X .

In practice, the empirical cross-covariance operator is estimated by Σ̂YX :=
K̂YK̂X, where K̂X and K̂Y are the centered Gram matrices of training data
x1:n and y1:n, respectively. And the empirical conditional covariance operator is
estimated by Σ̂YY|B�X = K̂Y(K̂B�X + nεnIn)−1. Using the trace to evaluate
the partial order of self-adjoint operators, minimizing the empirical conditional
covariance operator is reduced to

minimize
B

Tr[K̂Y(K̂B�X + nεnIn)−1]

subject to B�B = I
(1)

3.3 Manifold KDR

Manifold KDR (MKDR) [26] extends KDR to nonlinear regression. To start with,
MKDR achieves nonlinear information via unsupervised manifold learning. Then
it performs KDR on manifolds.

Specifically, in this paper, we choose Diffusion Maps [4] and Geometric
harmonics [3] as the unsupervised manifold learning methods to get the m-
dimensional embedding U ∈ R

m×n for input covariates. MKDR approxi-
mates kernel function k via a linear map from the nonlinear embedding, i.e.
k(·,B�xi) ≈ Φui where Φ ∈ R

m×m. Under this approximation, the optimiza-
tion problem 1 is formulated as

minimize
Ω

Tr[K̂Y(U�ΩU + nεnIn)−1]

subject to Ω ≥ 0,

Tr(Ω) = 1.

(2)

where Ω := Φ�Φ, and Ω ≥ 0 means that Ω is a semi-definitive matrix. Accord-
ing to the representation theory, the projection of B�x on RKHS is k(·,B�x)
that is approximated by Φu. Hence, ΦU is an estimator of the nonlinear suffi-
cient subspace.

Re-examining Supervised Dimension Reduction 361

4 Challenges with SIR-BO

In this section, we discuss two issues that impact the performance of SIR-BO
[44].

A Mismatch Between SIR and BO. The mismatch means that the distribution
of data sampled by BO does not satisfy the assumptions of the dimensional-
ity reduction methods. More specifically, SIR [22] imposes an assumption on
conditional distribution P (Y |X), whose performance can be powerful if data
meets the assumption. However, if data violates the assumption, there is no
guarantee for SIR to find the sufficient space. More specifically, SIR makes the
assumption of linearity of conditional expectation, i.e. E[b�x|u�

1 x, . . . ,u�
d x] =

c0+c1u�
1 x+ · · ·+cqu�

d x, ∀b ∈ R
D. The linearity condition is equivalent to that

the distribution of X is elliptic (Condition 3.1 in [22]).
However, the distribution of X in BO does not follow an elliptic distribution.

Actually, the sampling points of BO are determined by the acquisition function,

xt+1 = arg max
x∈X

α(x | Dt).

By the convergence of BO [36], the sampling points usually are clustered in
one or several areas. Moreover, we also show this empirically, testing BO with
three acquisition functions (EI [15], UCB [36], PI [37]) on the Ackley function,
running each of them with 200 iterations. As shown in Fig. 1, the points produced
by BO with UCB and PI are clustered in one area, blatantly violating elliptic
symmetry. The sampling points of BO with EI are clustered in several areas,
which apparently do not follow an elliptic distribution. Hence, in practice, we
cannot expect the sampling points from BO will have an elliptic distribution.

Fig. 1. We test BO with three acquisition functions on the Ackley function respectively:
EI (left), PI (middle), and UCB (right).

The High-Dimensional Acquisition Functions with a Linear Subspace are Still
Difficult to be Maximized. After achieving a projection matrix B ∈ R

D×d, SIR-
BO constructs the acquisition function αd(B�x). Although the function αd(·) is
low-dimensional, the whole function is still high-dimensional. We will show this
as follows.

362 Q. Chen et al.

We fit a Gaussian Process model on the 2-dimensional Ackley function,
and construct three 2-dimensional acquisition functions: EI, PI, and UCB. We
also construct three 60-dimensional acquisition functions by mapping three 2-
dimensional acquisition functions to a 60-dimensional space using an orthogonal
matrix. We run the typical zero-order optimization method DIRECT [14] on
these 2-dimensional acquisition functions and 60-dimensional acquisition func-
tions, respectively. As shown in Fig. 2, DIRECT finds the optimal point in 2-
dimensional acquisition functions rapidly. However, it is difficult to find the opti-
mal point on 60-dimensional acquisition functions with a 2-dimensional linear
subspace.

Fig. 2. We run DIRECT on three 2-dimensional acquisition functions and three 60-
dimensional acquisition functions with 2-dimensional linear subspaces, showing optimal
values by each iteration averaged over 20 repeated runs.

5 Algorithm

We now describe how to tackle the two issues described in Sect.4. On the one
hand, we make use of KDR to learn the projection matrix B to estimate the
central subspace such that Y ⊥⊥ X | B�X. Note that KDR does not make
assumptions of the distribution of X, which is more appropriate to BO than SIR.
On the other hand, by adding the constraint −1 ≤ Bz ≤ 1 to the acquisition
function in the embedding space, we avoid maximizing the high-dimensional
acquisition function.

In addition, to discover nonlinear manifolds of objective functions, we also
combine MKDR and BO, where we use MKDR to achieve a nonlinear central
subspace M and construct a batch of GPs to map the central subspace back to
the original space, i.e. F−1 : M → X . Under the inverse mapping, we can add
the constraint −1 ≤ F−1(z) ≤ 1 to the acquisition function on the nonlinear
manifold, which avoids maximizing the high-dimensional acquisition function.

Re-examining Supervised Dimension Reduction 363

Bayesian optimization based on dimension reduction usually contains three
main procedures: producing a low-dimensional embedding, doing standard BO
in this low-dimensional space, and projecting up to the original space. We will
describe our methods following these three procedures.

5.1 Subspace Learning

Firstly, we consider that the objective function f has an effective linear subspace.

Definition 1 (Definition 1 in [41]). A function f : R
D → R is said to

have effective dimensionality d (d < D), if there exists a linear subspace T
of dimension d such that for all x� ∈ T ⊂ R

D and x⊥ ∈ T ⊥ ⊂ R
D, we have

f(x) = f(x� + x⊥) = f(x�), where T ⊥ denotes the orthogonal complement of
T . T is called the effective linear subspace of f .

Under this assumption, the following theorem shows that problems with an effec-
tive linear subspace can be solved via KDR.

Theorem 1. Given a function f : RD → R with an effective linear subspace T
and the projection matrix B of KDR, then for any x ∈ R

D, there exists a y ∈ R
d

such that f(x) = f(B�y).

Proof. Let T ∈ R
D×d be a matrix whose columns form an orthonormal basis

for T . Then for any x� ∈ T , there exists c ∈ R
d such that x� = Tc. It is

sufficient to show that there exists a y ∈ R
d such that B�y = Tc. Note that

(T�B�)(T�B�)� = I, hence T�B� is an invertible matrix. Then there exists
y such that T�B�y = c. Left multiplying both sides of the above equation by
T, it gets that B�y = Tc = x�.

The proof only requires the orthogonality of the projection matrix, and gets a
similar conclusion of REMBO. Moreover, since B learned by KDR is an estimator
of the central subspace, it leads to less mismatch between the actual objective
function and the surrogate model on central subspaces when f does not have
effective dimensionality.

Secondly, we consider that the objective function f has an effective smooth
manifold M of dimension d. Formally, we suppose that there exists a smooth
function fM : M → R such that ∀x ∈ R

D,∃y ∈ M, f(x) = fM(y). Although
manifold learning can bring the nonlinear information of manifold, yet the unsu-
pervised learning usually leads to a mismatch between the true manifold and
an estimated manifold. To reduce mismatches, we suppose there is a linear map
T from an estimated manifold M̂ to the true manifold M, and we try to find
this linear map. Next, we extend the Proposition 1 in [20] to the nonlinear case.
That is stationarity in a function with an effective smooth manifold implying
stationarity in the estimated manifold.

Proposition 1. Given a function on the true manifold is drawn from a GP with
an RBF kernel: fM ∼ GP(m(·); kRBF (·, ·)), and suppose there is a linear map

364 Q. Chen et al.

T from an estimated manifold M̂ to the true manifold M. Then for any pair of
points y and y′ in the estimated manifold M̂,

Cov[f(x), f(x′)] = σ2 exp
[
(y − y′)�Γ(y − y′)

]
where x,x′ in the ambient space are pre-images of y,y′ respectively, σ2 is the
kernel variance of fM, and Γ is a symmetric and positive definite matrix.

Proof. Under the assumption, we have f(x) = fM(Ty). Then the covariance
function is given by

Cov[f(x), f(x′)] = Cov
[
fM(Ty), fM(Ty′)

]
= σ2 exp

[
(Ty − Ty′)�D(Ty − Ty′)

]
= σ2 exp

[
(y − y′)�T�DT(y − y′)

]

where D = diag
(

1
2�21

, . . . , 1
2�2d

)
are inverse lengthscales of the RBF kernel. Let

Γ = T�DT. Since D is positive definite, Γ is symmetric and positive definite.

This proposition shows that an RBF kernel in the true manifold implies a Maha-
lanobis kernel in the estimated manifold. We apply the idea of manifold KDR
to fit the linear map T. Specifically, the diffusion map is applied to discover
an estimated manifold M̂. Then we model the linear map T as the dimension
reduction from the estimated manifold to the true manifold, and KDR is applied
to find this dimension reduction. Finally, the D is fit by maximizing the marginal
likelihood of GP with a Mahalanobis kernel in the estimated manifold.

5.2 Constrained Acquisition Function

The curse of dimensionality from acquisition functions (seen in Fig. 2) also leads
to the poor performance of SIR-BO. We can avoid this by maximizing acquisi-
tion functions in the low-dimensional subspace. However, note that the objective
function is restricted to box bounds, so we need to ensure sample points pro-
jected from the subspace are not outside the bounds. To do this, we need to add
additional constraints to acquisition functions in the low-dimensional subspace.

The Constrained Acquisition Function in a Linear Subspace. Firstly, we consider
that the low-dimensional subspace is linear. Since the projection matrix B is
orthogonal, its Moore-Penrose inverse is B�. Hence, we use B to project sample
points in the subspace to the original space. Then following [20], we impose the
linear constraint −1 ≤ By ≤ 1 to the acquisition function,

maximize
z∈Rd

α(z)

subject to − 1 ≤ Bz ≤ 1
(3)

where α(z) is an acquisition function defined in the low-dimensional subspace.
The above linearly constrained optimization problem can be solved via sequen-
tial quadratic programming (SQP) or interior-point methods [16]. We choose

Re-examining Supervised Dimension Reduction 365

interior-point methods to solve this problem instead of SQP, because SQP may
produce solutions that violate the linear constraint. We combine KDR and the
above constrained acquisition function into a new method for high-dimensional
BO, called KDR-BO, summarized in Algorithm 1.

The Constrained Acquisition Function on a Nonlinear Subspace. Secondly, we
consider that the low-dimensional subspace is nonlinear. To begin with, we
need to construct the inverse mapping from the subspace to the original space,
F−1 : M → X . Let F−1

1 , . . . , F−1
d : M → R are component functions of the

vector-valued function F−1. Since these component functions are independent,
we model each component function as an independent GP, and gather them in
batches to gather with independent hyperparameters.

Then we impose the nonlinear constraint −1 ≤ F−1(z) ≤ 1 on the acquisi-
tion function. In addition, taking account of prediction errors, a 95% Bayesian
credible interval, μ(z) ± 1.96 × σ(z) should be included in the box bound,

maximize
z∈Rd

α(z)

subject to μGPs(z) − 1.96σGPs(z) ≥ −1

μGPs(z) + 1.96σGPs(z) ≤ 1,

(4)

The above problem is a nonlinearly constrained optimization problem, which
can also be solved by interior-point methods and active-set SQP methods [16].
Here we choose interior-point methods to solve the above problem, because SQP
sometimes produces solutions violating the nonlinear constraint. We combine
MKDR and the above constrained acquisition function into a new method for
high-dimensional BO, called MKDR-BO, summarized in Algorithm 2.

Alternatively, [24] uses multi-task GPs to model the inverse mapping. How-
ever, since component functions are independent, there is no reason to model
correlations between the outputs by multi-task GPs.

The Initial Design for Constrained Acquisition Function. When maximizing con-
strained acquisition functions, the interior-point methods need to specify several
initial points. However, the low-dimensional subspace is R

d, in which it is dif-
ficult to select initial points. Hence, we firstly select random points in X , and
then transform them into the subspace. If the subspace is linear, then we directly
use the projection matrix B� to transform initial points into the subspace. If
the subspace is nonlinear, then we need to develop an out-of-sample method for
MKDR, with which we subsequently transform initial points into the manifold.
The out-of-sample method for MKDR is shown in Algorithm 3.

6 Benchmark Experiments

In this section, we evaluate our methods (KDR-BO, MKDR-BO) on a wide
range of benchmarks: 50-dimensional synthetic functions, a 36-dimensional Neu-
ral Architecture Search problem, a 180-dimensional Lasso tuning problem, and
a 124-dimensional vehicle design problem.

366 Q. Chen et al.

Algorithm 1: KDR-BO for linear embedding BO.
Input: n, T
Output: The sample points and their evaluations DT

1 D1 = {x1:n,y1:n} ← Randomly sample n points from the feasible set X and
then evaluate these points;

2 for t ← n to T do
3 B ← calculate kernel dimension reduction directions based on Eq. 1;
4 Build Gaussian process regression based on low-dimensional data

{z1:t = B�x1:t,y1:t};
5 z∗ ← maximize constrained acquisition function defined by Eq. 3 via

interior-point methods;
6 xt+1 = Bz∗ ← project the candidate point up to the original space;
7 yt+1 ← evaluate the candidate point;
8 Dt+1 ← Dt ∪ {xt+1, yt+1};

9 return DT

We compare our methods (KDR-BO, MKDR-BO) to a broad selection of
existing methods: linear embedding methods (REMBO, ALEBO, SIR-BO), non-
linear embedding methods (KSIR-BO [44]), BO using additive models (Add-GP-
UCB [17]), local search methods (TuRBO), and quasirandom search (Sobol). For
BO using embedding, we take d = 10 for these experiments. For Add-GP-UCB,
we take d = 4 for each group. We test all methods using 15 initial points. Our
code is available at https://github.com/qlchen2117/KDR-BO.

6.1 Synthetic Experiments

We consider the 50-dimensional Ackley function in the domain [−5, 10]50, the
50-dimensional Levy function in the domain [−5, 10]50, and the 50-dimensional
Griewank function in the domain [−300, 600]50. Each of these three functions
has many local minima and a global minimum that is suitable for testing global
optimization methods. Figure 3 shows that KDR-BO and MKDR-BO outper-
form other methods on the objective functions without additional structure. This
shows that the central subspaces learned by KDR or MKDR lead to less mis-
match between the actual objective function and the surrogate model on central
subspaces even if f does not have effective dimensionality. Runtime performance
analysis for synthetic experiments can be found in supplementary materials1.

6.2 Real-World Problems

Neural Architecture Search. We consider the problem of neural architecture
search (NAS) using models from NAS-Bench-101 [43]. The search space of neural
architectures consists of all directed acyclic graphs with V (V ≤ 7) nodes and
E(E ≤ 9) edges. Following [20], the above search space can be encoded to a
1 https://github.com/qlchen2117/KDR-BO.

https://github.com/qlchen2117/KDR-BO
https://github.com/qlchen2117/KDR-BO

Re-examining Supervised Dimension Reduction 367

Algorithm 2: MKDR-BO for nonlinear embedding BO.
Input: n, T
Output: The sample points and their evaluations DT

1 D1 = {x1:n,y1:n} ← Randomly sample n points from the feasible set X and
then evaluate these points;

2 for t ← n to T do
3 u1:t ← get nonlinear embeddings of x1:t by Diffusion Map;
4 Φ ← calculate kernel dimension reduction directions based on Eq. 2;
5 Build Gaussian process regression based on low-dimensional data

{z1:t = Φu1:t,y1:t};
6 z∗ ← maximize constrained acquisition function defined by Eq. 4 via

interior-point methods;
7 Build a batch of Gaussian process models based on {z1:t,x1:t};
8 xt+1 = μGPs(z

∗) ← project the candidate point up to the original space;
9 yt+1 ← evaluate the candidate point;

10 Dt+1 ← Dt ∪ {xt+1, yt+1};

11 return DT

Algorithm 3: The out-of-sample extension for MKDR
Input: Out-of-sample points {x′

1:m}
Output: The embeddings of out-of-sample points

1 u1:m ← get nonlinear embeddings of x′
1:m via Geometric harmonics;

2 Φ ← calculate kernel dimension reduction directions on training data based on
Eq. 2;

3 z1:m ← Φu1:m;
4 return z1:m

36-dimensional space [0, 1]15 ×{0, 1}21. The goal of optimization is to find archi-
tectures that maximize the testing accuracy on CIFAR-10. Figure 4 shows that
KDR-BO and MKDR-BO get higher accuracy than other embedding methods
or additive BO on NAS. TuRBO gets the best performance of all methods.

Weighted Lasso Tuning. We consider the problem of tuning the Lasso (Least
Absolute Shrinkage and Selection Operator) regression models. LassoBench [34]
is a set of benchmark problems to tune penalty terms for Lasso models. In
Lasso each regression coefficient corresponds to a penalty term, so the number
of hyperparameters equals the number of features in the dataset. We consider
tuning Lasso based on a 180-dimensional DNA dataset. The benchmark on DNA
data has 43 effective dimensions. Figure 4 shows that KDR-BO gets the best
performance of all methods on Lasso-DNA, and MKDR-BO also outperforms
other methods on Lasso-DNA. This shows that KDR-BO and MKDR-BO can
identify the effective subspaces of the Lasso problem rapidly.

368 Q. Chen et al.

Fig. 3. We compare KDR-BO and MKDR-BO to baseline methods on three 50-
dimensional functions, showing (Top row) optimal values by each iteration averaged
over 20 repeated runs, and (Bottom row) the distribution over the final optimal values
over 20 repeated runs.

Fig. 4. We compare KDR-BO and MKDR-BO to baseline methods on the NAS prob-
lem (D = 36), Lasso hyperparameter tuning (D = 180), and MOPTA vehicle design
(D = 124), showing (Top row) optimal values by each iteration averaged over 20
repeated runs, and (Bottom row) the distribution over the final optimal values over 20
repeated runs.

Re-examining Supervised Dimension Reduction 369

Vehicle Design. We consider the vehicle design problem with a soft penalty
defined in [6]. The goal is to minimize the mass of a vehicle with 124 design
variables describing materials, gauges, and vehicle shape. This results in a 124-
dimensional BO problem. Figure 4 shows that KDR-BO outperforms other linear
or nonlinear embedding methods on MOPTA08. TuRBO gets the best perfor-
mance of all methods. The good performance of Add-GP-UCB is particularly
interesting, because MOPTA08 has no additive structures and thus should be
challenging for BO based on additive models.

7 Conclusion

Our work highlights the importance of two basic requirements for BO based
on sufficient dimension reduction: (1) the assumption of the selected sufficient
dimension reduction method should follow the data distribution of BO; and (2)
it is necessary to construct a low-dimensional acquisition function, even though
the high-dimensional acquisition function has an effective subspace. To the first
point, we showed how data of BO violates the assumption of SIR, and we intro-
duced KDR and MKDR to BO to reduce the mismatch between dimension
reduction methods and BO. To the second point, to construct the constrained
low-dimensional acquisition function, we construct the constraint via the inverse
mapping from the central subspace back to the original space using a batch
of GPs. We verify empirically that tackling these two issues improves the poor
performance of SIR-BO and KSIR-BO on synthetic problems and real-world
problems.

While we have obtained good performance using GPs to construct the inverse
mapping, it is difficult to scale to much higher-dimensional input spaces or scale
to a larger scale due to the computational complexity of GPs. In the future, we
plan on extending MKDR-BO to higher-dimensional spaces and a larger scale.

Acknowledgments. This study was funded by Huawei-Nanjing University Technical
Cooperation Project (20221108058).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Binois, M., Ginsbourger, D., Roustant, O.: On the choice of the low-dimensional
domain for global optimization via random embeddings. J. Glob. Optim. 76(1),
69–90 (2020). https://doi.org/10.1007/S10898-019-00839-1

2. Candelieri, A., Perego, R., Archetti, F.: Bayesian optimization of pump operations
in water distribution systems. J. Glob. Optim. 71(1), 213–235 (2018). https://doi.
org/10.1007/S10898-018-0641-2

3. Coifman, R.R., Lafon, S.: Geometric harmonics: a novel tool for multiscale out-
of-sample extension of empirical functions. Appl. Comput. Harmon. Anal. 21(1),
31–52 (2006)

https://doi.org/10.1007/S10898-019-00839-1
https://doi.org/10.1007/S10898-018-0641-2
https://doi.org/10.1007/S10898-018-0641-2

370 Q. Chen et al.

4. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1),
5–30 (2006). https://doi.org/10.1016/j.acha.2006.04.006

5. Djolonga, J., Krause, A., Cevher, V.: High-dimensional gaussian process ban-
dits. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q.
(eds.) Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, pp. 1025–1033 (2013). https://proceedings.neurips.cc/paper/2013/hash/
8d34201a5b85900908db6cae92723617-Abstract.html

6. Eriksson, D., Jankowiak, M.: High-dimensional bayesian optimization with sparse
axis-aligned subspaces. In: de Campos, C.P., Maathuis, M.H., Quaeghebeur, E.
(eds.) Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial
Intelligence, UAI 2021, Virtual Event, 27-30 July 2021. Proceedings of Machine
Learning Research, vol. 161, pp. 493–503. AUAI Press (2021). https://proceedings.
mlr.press/v161/eriksson21a.html

7. Eriksson, D., Pearce, M., Gardner, J.R., Turner, R., Poloczek, M.: Scalable global
optimization via local bayesian optimization. In: Wallach, H.M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 5497–5508 (2019). https://proceedings.neurips.cc/paper/2019/hash/
6c990b7aca7bc7058f5e98ea909e924b-Abstract.html

8. Frazier, P.I.: A tutorial on bayesian optimization. CoRR arXiv:1807.02811 (2018)
9. Fukumizu, K., Bach, F.R., Jordan, M.I.: Kernel dimension reduction in regression.

Ann. Stat. 37(4), 1871–1905 (2009). http://www.jstor.org/stable/30243690
10. Garnett, R., Osborne, M.A., Hennig, P.: Active learning of linear embed-

dings for gaussian processes. In: Zhang, N.L., Tian, J. (eds.) Proceed-
ings of the Thirtieth Conference on Uncertainty in Artificial Intelligence,
UAI 2014, Quebec City, Quebec, Canada, July 23-27, 2014, pp. 230–239.
AUAI Press (2014). https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&
smnu=2&article_id=2458&proceeding_id=30

11. Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven con-
tinuous representation of molecules. ACS Cent. Sci. 4(2), 268–276 (2018)

12. Han, E., Arora, I., Scarlett, J.: High-dimensional bayesian optimization via tree-
structured additive models. In: Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Arti-
ficial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 7630–
7638. AAAI Press (2021).https://doi.org/10.1609/AAAI.V35I9.16933

13. Hvarfner, C., Stoll, D., Souza, A.L.F., Lindauer, M., Hutter, F., Nardi, L.: πbo: aug-
menting acquisition functions with user beliefs for bayesian optimization. In: The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net (2022). https://openreview.net/forum?
id=MMAeCXIa89

14. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without
the lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)

15. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998). https://doi.org/10.
1023/A:1008306431147

16. Jorge, N., Stephen, J.W.: Numerical Optimization. Spinger (2006). https://doi.
org/10.1007/978-0-387-40065-5

https://doi.org/10.1016/j.acha.2006.04.006
https://proceedings.neurips.cc/paper/2013/hash/8d34201a5b85900908db6cae92723617-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/8d34201a5b85900908db6cae92723617-Abstract.html
https://proceedings.mlr.press/v161/eriksson21a.html
https://proceedings.mlr.press/v161/eriksson21a.html
https://proceedings.neurips.cc/paper/2019/hash/6c990b7aca7bc7058f5e98ea909e924b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6c990b7aca7bc7058f5e98ea909e924b-Abstract.html
http://arxiv.org/abs/1807.02811
http://www.jstor.org/stable/30243690
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2458&proceeding_id=30
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2458&proceeding_id=30
https://doi.org/10.1609/AAAI.V35I9.16933
https://openreview.net/forum?id=MMAeCXIa89
https://openreview.net/forum?id=MMAeCXIa89
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5

Re-examining Supervised Dimension Reduction 371

17. Kandasamy, K., Schneider, J.G., Póczos, B.: High dimensional bayesian optimisa-
tion and bandits via additive models. In: Bach, F.R., Blei, D.M. (eds.) Proceed-
ings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015. JMLR Workshop and Conference Proceedings, vol. 37, pp.
295–304. JMLR.org (2015). http://proceedings.mlr.press/v37/kandasamy15.html

18. Kawaguchi, K., Kaelbling, L.P., Lozano-Pérez, T.: Bayesian optimization with
exponential convergence. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama,
M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pp. 2809–2817 (2015). https://proceedings.
neurips.cc/paper/2015/hash/0ebcc77dc72360d0eb8e9504c78d38bd-Abstract.html

19. Kirschner, J., Mutny, M., Hiller, N., Ischebeck, R., Krause, A.: Adaptive and
safe bayesian optimization in high dimensions via one-dimensional subspaces. In:
Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA. Proceedings of Machine Learning Research, vol. 97, pp. 3429–3438. PMLR
(2019). http://proceedings.mlr.press/v97/kirschner19a.html

20. Letham, B., Calandra, R., Rai, A., Bakshy, E.: Re-examining linear embeddings for
high-dimensional bayesian optimization. In: Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual (2020). https://proceedings.neurips.cc/paper/
2020/hash/10fb6cfa4c990d2bad5ddef4f70e8ba2-Abstract.html

21. Li, C., Gupta, S., Rana, S., Nguyen, V., Venkatesh, S., Shilton, A.: High dimen-
sional bayesian optimization using dropout. In: Sierra, C. (ed.) Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, pp. 2096–2102. ijcai.org (2017). https://
doi.org/10.24963/ijcai.2017/291

22. Li, K.C.: Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc.
86(414), 316–327 (1991). http://www.jstor.org/stable/2290563

23. Lu, X., González, J., Dai, Z., Lawrence, N.D.: Structured variationally auto-
encoded optimization. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018. Proceedings of Machine Learning Research, vol. 80,
pp. 3273–3281. PMLR (2018). http://proceedings.mlr.press/v80/lu18c.html

24. Moriconi, R., Deisenroth, M.P., Kumar, K.S.S.: High-dimensional bayesian opti-
mization using low-dimensional feature spaces. Mach. Learn. 109(9–10), 1925–1943
(2020). https://doi.org/10.1007/S10994-020-05899-Z

25. Nayebi, A., Munteanu, A., Poloczek, M.: A framework for bayesian optimiza-
tion in embedded subspaces. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Pro-
ceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA. Proceedings of Machine Learn-
ing Research, vol. 97, pp. 4752–4761. PMLR (2019). http://proceedings.mlr.press/
v97/nayebi19a.html

26. Nilsson, J., Sha, F., Jordan, M.I.: Regression on manifolds using kernel dimension
reduction. In: Ghahramani, Z. (ed.) Machine Learning, Proceedings of the Twenty-
Fourth International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-
24, 2007. ACM International Conference Proceeding Series, vol. 227, pp. 697–704.
ACM (2007). https://doi.org/10.1145/1273496.1273584

http://proceedings.mlr.press/v37/kandasamy15.html
https://proceedings.neurips.cc/paper/2015/hash/0ebcc77dc72360d0eb8e9504c78d38bd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/0ebcc77dc72360d0eb8e9504c78d38bd-Abstract.html
http://proceedings.mlr.press/v97/kirschner19a.html
https://proceedings.neurips.cc/paper/2020/hash/10fb6cfa4c990d2bad5ddef4f70e8ba2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/10fb6cfa4c990d2bad5ddef4f70e8ba2-Abstract.html
https://doi.org/10.24963/ijcai.2017/291
https://doi.org/10.24963/ijcai.2017/291
http://www.jstor.org/stable/2290563
http://proceedings.mlr.press/v80/lu18c.html
https://doi.org/10.1007/S10994-020-05899-Z
http://proceedings.mlr.press/v97/nayebi19a.html
http://proceedings.mlr.press/v97/nayebi19a.html
https://doi.org/10.1145/1273496.1273584

372 Q. Chen et al.

27. Oh, C., Gavves, E., Welling, M.: BOCK : Bayesian optimization with cylindrical
kernels. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 3865–
3874. PMLR (2018). http://proceedings.mlr.press/v80/oh18a.html

28. Papenmeier, L., Nardi, L., Poloczek, M.: Increasing the scope as you learn: adaptive
bayesian optimization in nested subspaces. In: Oh, A.H., Agarwal, A., Belgrave,
D., Cho, K. (eds.) Advances in Neural Information Processing Systems (2022).
https://openreview.net/forum?id=e4Wf6112DI

29. Powell, W.B.: A unified framework for stochastic optimization. Eur. J. Oper. Res.
275(3), 795–821 (2019). https://doi.org/10.1016/J.EJOR.2018.07.014

30. Rana, S., Li, C., Gupta, S., Nguyen, V., Venkatesh, S.: High dimensional bayesian
optimization with elastic gaussian process. In: Precup, D., Teh, Y.W. (eds.) Pro-
ceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017. Proceedings of Machine Learning
Research, vol. 70, pp. 2883–2891. PMLR (2017). http://proceedings.mlr.press/
v70/rana17a.html

31. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning.
Adaptive Computation and Machine Learning, MIT Press (2006). https://www.
worldcat.org/oclc/61285753

32. Rolland, P., Scarlett, J., Bogunovic, I., Cevher, V.: High-dimensional bayesian
optimization via additive models with overlapping groups. In: Storkey, A.J., Pérez-
Cruz, F. (eds.) International Conference on Artificial Intelligence and Statistics,
AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain.
Proceedings of Machine Learning Research, vol. 84, pp. 298–307. PMLR (2018).
http://proceedings.mlr.press/v84/rolland18a.html

33. Ru, B.X., Wan, X., Dong, X., Osborne, M.A.: Interpretable neural architecture
search via bayesian optimisation with weisfeiler-lehman kernels. In: 9th Inter-
national Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net (2021). https://openreview.net/forum?
id=j9Rv7qdXjd

34. Sehic, K., Gramfort, A., Salmon, J., Nardi, L.: Lassobench: a high-dimensional
hyperparameter optimization benchmark suite for lasso. In: Guyon, I., Lindauer,
M., van der Schaar, M., Hutter, F., Garnett, R. (eds.) International Conference on
Automated Machine Learning, AutoML 2022, 25-27 July 2022, Johns Hopkins Uni-
versity, Baltimore, MD, USA. Proceedings of Machine Learning Research, vol. 188,
pp. 2/1–24. PMLR (2022). https://proceedings.mlr.press/v188/sehic22a.html

35. Shen, Y., Kingsford, C.: Computationally efficient high-dimensional bayesian opti-
mization via variable selection. In: Faust, A., Garnett, R., White, C., Hutter, F.,
Gardner, J.R. (eds.) Proceedings of the Second International Conference on Auto-
mated Machine Learning. Proceedings of Machine Learning Research, vol. 224, pp.
15/1–27. PMLR (2023). https://proceedings.mlr.press/v224/shen23a.html

36. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Gaussian process optimiza-
tion in the bandit setting: no regret and experimental design. In: Fürnkranz, J.,
Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine
Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pp. 1015–1022. Omnipress
(2010). https://icml.cc/Conferences/2010/papers/422.pdf

37. Viana, F., Haftka, R.: Surrogate-based optimization with parallel simulations using
the probability of improvement. In: 13th AIAA/ISSMO Multidisciplinary Analysis
Optimization Conference, p. 9392 (2010)

http://proceedings.mlr.press/v80/oh18a.html
https://openreview.net/forum?id=e4Wf6112DI
https://doi.org/10.1016/J.EJOR.2018.07.014
http://proceedings.mlr.press/v70/rana17a.html
http://proceedings.mlr.press/v70/rana17a.html
https://www.worldcat.org/oclc/61285753
https://www.worldcat.org/oclc/61285753
http://proceedings.mlr.press/v84/rolland18a.html
https://openreview.net/forum?id=j9Rv7qdXjd
https://openreview.net/forum?id=j9Rv7qdXjd
https://proceedings.mlr.press/v188/sehic22a.html
https://proceedings.mlr.press/v224/shen23a.html
https://icml.cc/Conferences/2010/papers/422.pdf

Re-examining Supervised Dimension Reduction 373

38. Wang, L., Fonseca, R., Tian, Y.: Learning search space partition for black-box opti-
mization using monte carlo tree search. In: Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, Virtual (2020). https://proceedings.neurips.cc/paper/
2020/hash/e2ce14e81dba66dbff9cbc35ecfdb704-Abstract.html

39. Wang, Z., Gehring, C., Kohli, P., Jegelka, S.: Batched large-scale bayesian opti-
mization in high-dimensional spaces. In: Storkey, A.J., Pérez-Cruz, F. (eds.) Inter-
national Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-
11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain. Proceedings
of Machine Learning Research, vol. 84, pp. 745–754. PMLR (2018). http://
proceedings.mlr.press/v84/wang18c.html

40. Wang, Z., Li, C., Jegelka, S., Kohli, P.: Batched high-dimensional bayesian opti-
mization via structural kernel learning. In: Precup, D., Teh, Y.W. (eds.) Pro-
ceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017. Proceedings of Machine Learning
Research, vol. 70, pp. 3656–3664. PMLR (2017). http://proceedings.mlr.press/
v70/wang17h.html

41. Wang, Z., Hutter, F., Zoghi, M., Matheson, D., de Freitas, N.: Bayesian opti-
mization in a billion dimensions via random embeddings. J. Artif. Intell. Res. 55,
361–387 (2016). https://doi.org/10.1613/jair.4806

42. Wang, Z., Shakibi, B., Jin, L., de Freitas, N.: Bayesian multi-scale optimistic opti-
mization. In: Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014.
JMLR Workshop and Conference Proceedings, vol. 33, pp. 1005–1014. JMLR.org
(2014). http://proceedings.mlr.press/v33/wang14d.html

43. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: Nas-bench-
101: towards reproducible neural architecture search. In: Chaudhuri, K., Salakhut-
dinov, R. (eds.) Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Proceed-
ings of Machine Learning Research, vol. 97, pp. 7105–7114. PMLR (2019). http://
proceedings.mlr.press/v97/ying19a.html

44. Zhang, M., Li, H., Su, S.W.: High dimensional bayesian optimization via supervised
dimension reduction. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, pp. 4292–4298. ijcai.org (2019). https://doi.org/10.24963/ijcai.
2019/596

45. Zhao, J., Yang, R., QIU, S., Wang, Z.: Unleashing the potential of acquisition
functions in high-dimensional bayesian optimization. Trans. Mach. Learn. Res.
(2024). https://openreview.net/forum?id=0CM7Hfsy61

46. Ziomek, J.K., Bou-Ammar, H.: Are random decompositions all we need in high
dimensional bayesian optimisation? In: Krause, A., Brunskill, E., Cho, K., Engel-
hardt, B., Sabato, S., Scarlett, J. (eds.) International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA. Proceedings of
Machine Learning Research, vol. 202, pp. 43347–43368. PMLR (2023). https://
proceedings.mlr.press/v202/ziomek23a.html

https://proceedings.neurips.cc/paper/2020/hash/e2ce14e81dba66dbff9cbc35ecfdb704-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e2ce14e81dba66dbff9cbc35ecfdb704-Abstract.html
http://proceedings.mlr.press/v84/wang18c.html
http://proceedings.mlr.press/v84/wang18c.html
http://proceedings.mlr.press/v70/wang17h.html
http://proceedings.mlr.press/v70/wang17h.html
https://doi.org/10.1613/jair.4806
http://proceedings.mlr.press/v33/wang14d.html
http://proceedings.mlr.press/v97/ying19a.html
http://proceedings.mlr.press/v97/ying19a.html
https://doi.org/10.24963/ijcai.2019/596
https://doi.org/10.24963/ijcai.2019/596
https://openreview.net/forum?id=0CM7Hfsy61
https://proceedings.mlr.press/v202/ziomek23a.html
https://proceedings.mlr.press/v202/ziomek23a.html

Evolve Cost-Aware Acquisition Functions
Using Large Language Models

Yiming Yao1,2,3(B) , Fei Liu2,3 , Ji Cheng2,3 , and Qingfu Zhang2,3(B)

1 City University of Hong Kong (Dongguan), Dongguan 523000, China
yimingyao3-c@my.cityu.edu.hk

2 Department of Computer Science, City University of Hong Kong,
Hong Kong, China

{fliu36-c,J.Cheng}@my.cityu.edu.hk, qingfu.zhang@cityu.edu.hk
3 The City University of Hong Kong Shenzhen Research Institute, Shenzhen, China

Abstract. Many real-world optimization scenarios involve expensive
evaluation with unknown and heterogeneous costs. Cost-aware Bayesian
optimization stands out as a prominent solution in addressing these
challenges. To approach the global optimum within a limited budget
in a cost-efficient manner, the design of cost-aware acquisition func-
tions (AFs) becomes a crucial step. However, traditional manual design
paradigm typically requires extensive domain knowledge and involves a
labor-intensive trial-and-error process. This paper introduces EvolCAF,
a novel framework that integrates large language models (LLMs) with
evolutionary computation (EC) to automatically design cost-aware AFs.
Leveraging the crossover and mutation in the algorithmic space, Evol-
CAF offers a novel design paradigm, significantly reduces the reliance
on domain expertise and model training. The designed cost-aware AF
maximizes the utilization of available information from historical data,
surrogate models and budget details. It introduces novel ideas not pre-
viously explored in the existing literature on acquisition function design,
allowing for clear interpretations to provide insights into its behavior
and decision-making process. In comparison to the well-known EIpu and
EI-cool methods designed by human experts, our approach showcases
remarkable efficiency and generalization across various tasks, including
12 synthetic problems and 3 real-world hyperparameter tuning test sets.

Keywords: Cost-aware Bayesian optimization · Acquisition
functions · Large language models · Evolutionary computation

1 Introduction

Bayesian optimization (BO) is a powerful tool for solving expensive optimization
problems and has found wide application in many real-world scenarios [7,8,27,
32]. It typically employs a surrogate model to approximate the expensive function
and well-designed acquisition functions (AFs) to select potential solutions in
a sample-efficient manner. Popular acquisition functions include probability of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 374–390, 2024.
https://doi.org/10.1007/978-3-031-70068-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_23&domain=pdf
http://orcid.org/0009-0000-7069-6304
http://orcid.org/0000-0001-6719-0409
http://orcid.org/0000-0002-1123-6030
http://orcid.org/0000-0003-0786-0671
https://doi.org/10.1007/978-3-031-70068-2_23

Evolve Cost-Aware Acquisition Functions Using Large Language Models 375

improvement (PI) [15], expected improvement (EI) [25], upper confidence bound
(UCB) [31], knowledge gradient (KG) [6], etc.

Vanilla BO typically sets the number of evaluations as the budget constraint,
implicitly assuming a uniform evaluation cost in the design space [17]. However,
this is rarely the case in many real-world applications, leading to the concept of
cost-aware BO. For example, in hyperparameter optimization (HPO) tasks for
machine learning models, the costs with different hyperparameter configurations
may even differ in the order of magnitudes [17]. Under the budget constraint of
accumulated costs, approaching the global optimum is a challenge for traditional
AFs due to their unawareness of heterogeneous evaluation costs, which highlights
the importance of designing efficient cost-aware AFs.

Previous works have proposed several heuristics to take the cost information
into account [16,17,30]. Representative ones include EI per unit cost (EIpu) [30]
which divides EI by the cost function to promote solutions with both low cost
and high improvement, and EI-cool [17] that introduces the cost-cooling strategy
to make EIpu adapt to problems with expensive global optimum. Based on EIpu
and EI-cool, several enhanced approaches have been suggested [9,23,28]. How-
ever, designing these AFs typically necessitates significant involvement of domain
experts and extensive trial-and-error testing to refine and improve upon previous
methods. This manual design paradigm is labor-intensive and non-automated.
Furthermore, the information currently used to define cost-aware AFs is inade-
quate, as it only considers the EI metric and budget details while overlooking the
complete historical data, which severely restricts the exploration in the algorith-
mic space. Simply integrating the EI metric with budget information does not
inherently stimulate innovative ideas, thereby greatly limiting the performance
and generalization of the designed AFs. While some model-based methods have
been proposed to automatically learn AFs parameterized by neural networks
in meta-BO community [12,24,34], they often require substantial effort in com-
plex framework design and model training. Additionally, the resulting AFs are
represented by network parameters, leading to poor interpretability compared
to widely used AFs that have explicit mathematical expressions. Besides, these
methods are designed for problems with uniform costs and are not applicable to
many real-world applications with heterogeneous costs.

In the past three years, large language models (LLMs) have been widely
used in code generation [11,18,22], mathematical reasoning [29] and automatic
algorithm design [19,20]. While recent studies have explored the use of LLMs to
enhance vanilla BO [21,36], these approaches rely on querying LLMs to directly
suggest candidate solutions. The absence of a clearly defined search strategy
results in inadequate explainability. Moreover, whenever a new problem arises,
it needs to conduct a substantial number of queries for LLMs from scratch, which
can be expensive and impractical for real-world applications.

We propose a novel paradigm, named EvolCAF, which integrates LLMs in an
evolutionary framework to automatically design explicit AFs to enhance cost-
aware BO. Different from the existing works, it enjoys good automation and
explainability outperforming existing human-crafted methods. To the best of

376 Y. Yao et al.

our knowledge, this is the first attempt to utilize LLMs for automatic AF design
for Bayesian optimization. Our main contributions are as follows:

– We introduce EvolCAF, which integrates large language models (LLMs) with
evolutionary computation (EC) to automatically design cost-aware AFs. It
enables crossover and mutation in the algorithmic space to iteratively search
for elite AFs, significantly reducing the reliance on expert knowledge and
domain model training.

– We leverage EvolCAF to design a cost-aware AF that fully utilizes the avail-
able history information. Remarkably, the designed AF introduces novel ideas
that have not been explored in existing literature on acquisition function
design. The designed AF can be expressed explicitly, allowing for clear inter-
pretations to provide insights into its behavior and decision-making process.

– We evaluate the designed AF on diverse synthetic functions as well as prac-
tical hyperparameter optimization (HPO) problems. Compared to the pop-
ular EIpu and EI-cool methods designed by domain experts, our approach
demonstrates remarkable efficiency and generalization, which highlights the
promising potential in addressing many related real-world applications.

2 Background and Related Works

2.1 Background

In vanilla Bayesian optimization (BO), we consider finding the optimal solution
x∗ that maximizes the black-box objective function f : x∗ = arg maxx∈X f(x),
where X is a compact subset of R

d, we assume f : X → R is continuously
differentiable and expensive to evaluate.

Gaussian Processes. To approximate the expensive objective function, BO
typically employs a Gaussian process (GP) model [1] as the surrogate. A GP
is an infinite distribution over functions f specified by a prior mean function
μ(·) and covariance function k(·, ·): f(x) ∼ GPf (μ(x), k (x,x′)). Suppose in
iteration t, the historical data set Dt = {(xi, yi)}t

i=1 are obtained from the
observation model yi = f(xi) + εi with observation noise εi ∼ N (

0, σ2
ε

)
. Given

the test point x∗, the predictive distribution p(y|x∗,Dt) is also Gaussian with
mean μ(x∗) = Kx∗,X(KX,X + σ2

ε I)−1y and variance σ2(x∗) = k(x∗,x∗) −
Kx∗,X(KX,X + σ2

ε I)−1KX,x∗ , where y = [y1, y2, · · · , yt]
T are noisy output val-

ues observed from the latent functions f = [f(x1), f(x2), · · · , f(xt)]T at training
points X = [x1,x2, · · · ,xt]

T , KX,X = [k (xi,xj)]xi,xj∈X is the covariance matrix
and KX,x∗ = [k (xi,x∗)]xi∈X is the correlation vector for all training and test
points.

Evolve Cost-Aware Acquisition Functions Using Large Language Models 377

Acquisition Functions. The acquisition function (AF) defines a utility that
measures the benefit of evaluating an unknown point x. We denote the definition
of AF as α(x), which may contain the historical data set Dt, model information
μ(x), σ2(x), etc. One of the popular AFs is expected improvement (EI) [25],
which quantifies the expected amount of improvement over the current best
observation y∗ = maxi yi at a given point x in the search space:

αEI(x) = Ef(x)[[f(x) − y∗]+] = σ(x) h(
μ(x) − y∗

σ(x)
), (1)

where [·]+ is the max(0, ·) operation, h(z) = φ(z) + zΦ(z), φ and Φ are the
standard normal density and distribution functions, respectively.

2.2 Cost-Aware Bayesian Optimization

Problem Setting. In cost-aware Bayesian optimization, it is assumed that
evaluating the objective function is expensive. Additionally, the evaluation in
different regions will incur heterogeneous costs, the unknown cost function is
denoted as c(x). For every query xi, we can obtain the noisy observation yi with
cost zi = c(xi) + ηi, where ηi ∼ N (

0, σ2
η

)
. Similar to the objective function

f , the black-box cost function is modeled as a draw from the Gaussian process
c(x) ∼ GPc. We use the posterior predictive mean of GPc for calculating the
cost function as [23,30] do.

Given the historical data set D̄t = {(xi, yi, zi)}t
i=1 with t evaluated samples

and the limited total budget Btotal, we can only find a near-optimal solution with
the constraint of cumulative cost

∑T
i=1 zi ≤ Btotal, where T is the maximum

number of evaluated samples that satisfies the budget constraint. The general
framework followed by the vast majority of existing cost-aware BO methods
is shown in Algorithm 1, the main difference lies in the different definitions of
cost-aware AFs, which will be introduced below.

Algorithm 1. Cost-aware BO
Input:

Btotal: total budget, D̄t: initial data set with t evaluated samples
1: Initialize used budget Bused =

∑t
i=1 zi

2: Train objective and cost models GPf and GPc using D̄t

3: while Bused < Btotal do
4: Query candidate: xt+1 = arg maxx α(x)
5: Evaluate candidate: yt+1, zt+1 ← f(xt+1), c(xt+1)
6: Update data set D̄t+1 ← D̄t ∪ {(xt+1, yt+1, zt+1)}
7: Update models GPf and GPc using D̄t+1

8: Bused ← Bused + zt+1

9: t ← t + 1
10: end while
11: Total number of evaluated samples T ← t
Output: Best configuration arg max(xi,yi)∈D̄T

yi

378 Y. Yao et al.

EI per Unit Cost (EIpu). To balance the cost and quality of evaluations,
Snoek et al. [30] proposed EI per unit cost (EIpu), which normalizes the EI
metric by the cost function c(x):

αEIpu(x) =
αEI(x)
c(x)

. (2)

By using the cost function to penalize EI, EIpu tends to carefully select can-
didate points with low cost and high improvement, making the search process
cost-aware. Benefiting from the preference for cheaper regions, EIpu can be con-
sistently improved when the optimum is cheap to evaluate since higher EI and
lower cost are both encouraged. However, the preference becomes a drawback
when the optimum lies in the expensive regions of the design space, which is
common in many real-world applications. The cost penalty term prevents EIpu
from exploring near-optimal regions that are expensive to evaluate, experiments
have shown that sometimes EIpu performs even worse than EI [17].

EI-Cool. To alleviate the above problem, Lee et al. [17] introduced a cost-
cooling factor α in EIpu called EI-cool:

αEI−cool(x) =
αEI(x)
c(x)α

, (3)

where α = (Btotal−Bused)/(Btotal−Binit), Binit is the budget spent in evaluating
the initial sample points, Bused is the budget already used and Btotal is the given
total budget. As Bused increases from Binit to Btotal during the search process,
the factor α gradually decays from 1 to 0, resulting in the transition of EI-cool
from EIpu to EI. Intuitively, the cost-cooling strategy diminishes the significance
of the cost model as the budget is consumed, making EI-cool to operate in an
early and cheap, late and expensive fashion to encourage exploring expensive
regions when the remaining budget is tight.

Although EI-cool alleviates the problem of performance degradation when
searching for the expensive optimum, it always uses EIpu as the starting strategy,
which is not flexible and may not adapt well to different problems [23]. Besides,
previous analysis and experiments have shown that when the remaining budget
is gradually tight, although deemphasizing the cost can increase the likelihood of
exploring expensive regions, it is still possible to miss the optimum in high-cost
regions before the budget is exhausted [23], as the exploration or exploitation in
very cheap regions can still result in very large values of EI-cool metric, which
is called low-cost-preference weakness in [28].

Variants Based on EIpu and EI-Cool. Based on EIpu and EI-cool, some
improved methods have been proposed such as using a multi-armed bandit algo-
rithm to automatically select either EI or EIpu [23], developing more aggressive
methods to alleviate the low-cost-preference weakness of EI-cool [28], and cost-
aware EI based on Pareto optimality to achieve the trade-off between cost and

Evolve Cost-Aware Acquisition Functions Using Large Language Models 379

improvement [9]. It is evident that the design process typically requires sig-
nificant involvement of domain knowledge and extensive trial-and-error testing
based on the flaws of previous methods, which are labor-intensive and non-
automated. Besides, the existing AFs just combine the EI metric with budget
information in different ways, which severely restricts the exploration in the algo-
rithmic space and does not inherently foster the generation of innovative ideas,
so the performance and generalization are greatly limited.

2.3 Automatic Design for Acquisition Functions

In the meta-BO community, which focuses on meta-learning or learning to learn
to enhance vanilla BO [1,4,5,33], there has been research dedicated to automati-
cally generating efficient and generalizable AFs via a learning model. While these
works are not tailored for cost-aware contexts, we will review them to emphasize
the strengths and potential of our framework.

To learn a meta-acquisition function, Volpp et al. [34] replaced the hand-
designed AF with a neural network named neural acquisition function (NAF),
which is meta-trained on related source tasks by policy-based reinforcement
learning. Hsieh et al. [12] utilized a deep Q-network (DQN) as a surrogate dif-
ferentiable AF to achieve a few-shot fast adaptation of AFs. Maraval et al. [24]
introduced an end-to-end differentiable framework based on transformer archi-
tectures called neural acquisition process (NAP) to meta-learn acquisition func-
tions with the surrogate model jointly. Nevertheless, despite achieving promising
results, these model-based methods often demand substantial effort in framework
design and model training. Moreover, the resulting AFs are represented by net-
work parameters, resulting in poor interpretability compared to widely used AFs
that have explicit mathematical expressions.

3 EvolCAF: Evolve Cost-Aware Acquisition Functions
with LLMs

3.1 Framework

The proposed EvolCAF framework embraces the basic components of evolution-
ary computing (EC), including initialization, crossover, mutation, and popula-
tion management. In EvolCAF, each individual represents an acquisition func-
tion solving a branch of synthetic instances, which is represented with an algo-
rithm description and a code block implementation instead of an encoded vector
in traditional EC. During the evolution process, the initialization, crossover, and
mutation operations on the individuals are all performed by prompting LLM in
the algorithmic space. The entire process is completely automated without any
intervention from human experts.

Figure 1 illustrates the detailed flowchart of EvolCAF. At each generation,
we maintain a population of N AFs, each AF is evaluated on a set of synthetic
instances in a cost-aware BO loop to calculate the fitness value, which is the

380 Y. Yao et al.

Fig. 1. Flowchart of EvolCAF framework. The left box presents the evolution of cost-
aware AFs enabled by EvolCAF, wherein each individual in the population is an AF,
represented with an algorithm description and a code block implementation. The ini-
tialization, crossover, and mutation are facilitated by LLMs. The middle box shows the
cost-aware BO loop, each AF is evaluated on a set of synthetic instances to calculate
the optimal gap as its fitness value.

optimal gap between the true optimal value and the optimal value obtained by
the AF. After new individuals are added to the population, the worst individuals
are deleted according to the fitness values.

3.2 General Definition for Evolved AFs

The general definition for evolved cost-aware AFs can be formulated as follows:

αEvolCAF(x) = α(x;θdata,θmodel,θbudget)
= α(x;X,y,x∗, y∗, μ(x), σ(x), c(x), Bused, Btotal).

(4)

The inputs of cost-aware AFs incorporate three groups of information: (1) his-
torical data θdata={X,y,x∗, y∗}, (2) prediction and uncertainty provided by the
model θmodel={μ(x), σ(x)}, and (3) budget information during the optimization
θbudget={c(x), Bused, Btotal}. The first two groups include the data and model
information for searching with uncertainties, while the last group informs the
AF of the budget constraints in optimization. During the evolutionary process,
EvolCAF is encouraged to explore the algorithmic space to generate and refine
elite cost-aware AFs.

3.3 Prompt Engineering

The general format of prompt engineering used to inform LLMs consists of four
parts: (1) a general description of the task, (2) code instructions for implementing

Evolve Cost-Aware Acquisition Functions Using Large Language Models 381

Initialization Prompt

Task description:
Given a black-box maximization optimization problem with unknown heterogenous cost of

evaluation, suppose I have trained the surrogate and cost model based on the evaluated

samples, you need to create a totally new utility (different from the utilities in the literature)

that quantifies the benefit of the given unobserved test input and budget information in each

iteration.

Code instructions:
First, describe your algorithm idea and main steps in two sentences. The description must be

inside a brace.

Next, implement the algorithm in Python as a function named 'utility'.

This function should accept 10 inputs: 'train_x', 'train_y', 'best_x', 'best_y', 'test_x',

'mean_test_y', 'std_test_y', 'cost_ test_y', 'budget_used', 'budget_total'. The function should

return 1 output: 'utility_value'.

Input & Output interpretations:
The meanings of above inputs are: evaluated historical inputs and function values, the best

optimal solution and corresponding maximum function values so far, the unobserved test

input, the predicted mean and std of the function value at the unobserved test input, the cost

spent when observing the test input, the budget has been used and the total given budget,

respectively. The output is the utility value.

All the inputs and output are torch.tensor with dtype=torch.float64. The input sizes are

(n_train,dim), (n_train,1), (1,dim), (1), (n_test, dim), (n_test), (n_test), (n_test), (1), (1),

respectively. The output size is (n_test). Here n_train is the number of evaluated samples, dim

is the dimension of input variables, n_test is the number of test points.

Helpful hints:
You must make sure the size of returned output utility_value is (n_test), so pay attention to the

sizes of new variables you created in the code. You can use any mathematical operation on the

inputs, please try to be creative and make full use of the inputs information.

Crossover Prompt

Task description: Same as in initialization prompt.

I have two existing algorithms with their codes.

The first algorithm and the corresponding code are:

Algorithm description: …

Code: …

The second algorithm and the corresponding code are:

Algorithm description: …

Code: …

Please help me create a new algorithm that is totally different from the two algorithms but

can be motivated from them.

Code instructions: Same as in initialization prompt.

Input & Output interpretations: Same as in initialization prompt.

Helpful hints: Same as in initialization prompt.

Mutation Prompt

Task description: Same as in initialization prompt.

I have one algorithm with its code as follows.

Algorithm description: …

Code: …

Please assist me in creating a modified version of the algorithm provided.

Code instructions: Same as in initialization prompt.

Input & Output interpretations: Same as in initialization prompt.

Helpful hints: Same as in initialization prompt.

Fig. 2. Prompts used in EvolCAF for initialization, crossover, and mutation.

algorithms, including the function name, inputs and output, (3) interpretations
for the inputs and output, including their detailed meanings in our task, the
variable formats and dimensions implemented in the code, (4) helpful hints to
inform LLMs to generate executable codes and utilize input information as much
as possible to create novel ideas. Following the general format, in initialization,
we instruct LLMs to create a completely new AF to promote population diversity.
In crossover, we suggest combining the selected parent AFs to facilitate the
preservation of high-performing components in the following generations. While
in mutation, we aim to encourage the exploration of better AFs based on parent
AFs in the algorithmic space. The details of prompts for initialization, crossover,
and mutation are shown in Fig. 2.

4 Experimental Studies

4.1 Experimental Settings

Settings for AF Evolution. In the evolutionary process, EvolCAF maintains
10 AFs and evolves over 20 generations. We generate 1 offspring individual in
each generation based on 2 parent individuals, with the crossover probability set
to 1.0 and mutation probability set to 0.5. The GPT-3.5-turbo pre-trained LLM
is used for generating AFs.

To generate AFs that can be efficiently optimized, we set a time threshold of
60 s for completing the cost-aware BO loop, which serves as a selection pressure
together with the fitness value. Any AF that exceeds this time limit will be
automatically eliminated during the evolutionary process.

382 Y. Yao et al.

Settings for Cost-Aware BO. To calculate the fitness value, we evaluate
each evolved AF on 2D Ackley and 2D Rastrigin functions with 10 different
random seeds in the experimental design, resulting in a total of 20 instances. The
aim is to achieve improved generalization results across various initial surrogate
landscapes with an acceptable evaluation time during evolution, as the training
and inference of GP models on a large number of instances in each generation can
be expensive. The fitness value for each evolved AF is calculated by averaging
the optimal gaps obtained from the 20 instances.

To simulate the scenarios in many real-world applications, we carefully design
a cost function that is most expensive to evaluate at the global optimum x∗ of
the synthetic function, the formulation is similar to that used in [16] and can be
expressed as:

c(x) = exp (− ‖x − x∗‖2) , (5)

where each dimension of x and x∗ is normalized to [0,1]. In order to achieve
good results for the evolved AF given a small budget, we set the total budget
Btotal as 30 in the evolutionary process, indicating that the smallest number of
evaluations is 30, we will further verify the generalization using sufficient budget
in the following experiments. We initialize 2d random samples using experimental
design, where d is the dimension of the decision variable.

All BO methods are implemented using BoTorch [2]. In the BO loop,
the acquisition functions are optimized through multi-start optimization using
scipy’s L-BFGS-B optimizer, using 20 restarts seeded from 100 pseudo-random
samples through BoTorch’s initialization heuristic for efficient optimization.

4.2 Evolution Results

Figure 3 demonstrates the evolutionary process. In each generation, we maintain
10 AFs represented by blue dots. The mean and optimal fitness values of the
population are represented with orange and red lines, respectively. With a pop-
ulation size of 10 and 20 generations, the fitness value of the evolving AFs can
converge to a notably low level. The results show the capability of our framework
to automatically generate and evolve elite AFs.

Fig. 3. The evolutionary process of acquisition functions.

Evolve Cost-Aware Acquisition Functions Using Large Language Models 383

Figure 4 shows the optimal AF designed by EvolCAF with the minimum
fitness value, including a general description of the algorithmic idea in defining
the AF and a detailed code implementation. After converting the code into
easily understandable mathematical expressions, we observe that the optimal
AF consists of three parts:

αEvolCAF(x) = α1(x) + α2(x) + α3(x). (6)

Specifically, α1(x) combines a modified EI with uncertainty information:

α1(x) =[(μ(x) − y∗)Φ(z) +
√

σ2(x) + σ2(y) · φ(z)]·

(1 − log

√
σ2(x) + σ2(y)

σ2(y)
),

(7)

where z = μ(x)−y∗√
σ2(x)+σ2(y)

, φ and Φ are the standard normal density and dis-

tribution functions, respectively, σ2(y) represents the variance of the current
historical observations.

Similar to EI, α1(x) encourages searching regions close to the current best
observation with uncertainties. However, an improvement is that α1(x) also
incorporates the uncertainty of all historical observations rather than solely
focusing on the current best observation value and the uncertainty of the
unknown point x.

α2(x) mainly focuses on the current remaining budget and the cost of eval-
uating the unknown point x:

α2(x) = −Btotal − Bused

ec(x)
. (8)

It can be observed that α2(x) enables the optimization to focus on EI regard-
less of the cost when the remaining budget is tight, which is similar to the cost-
cooling strategy used in EI-cool. However, the difference is that α2(x) will not
only keep the optimization encouraging higher EI metrics but also promote the
exploration of expensive regions when there is a sufficient budget. This feature
addresses the low-cost-preference weakness in EI-cool, allowing for a more com-
prehensive search.

α3(x) considers the distance between the unknown inputs and historical
observed locations when optimizing AF:

α3(x) =
1
m

m∑

i=1

min
j

Aij , (9)

where Aij = dist(ui,vj) is the distance matrix, {ui}m
i=1 are multiple starting

points used in the efficient multi-start optimization scheme of BoTorch, vj is the
jth element in observed locations X. Therefore, α3(x) utilizes the information of
all the distances between the unobserved location in each optimization trajectory
and observed ones in the historical data set. When optimizing αEvolCAF(x),

384 Y. Yao et al.

Description
The new algorithm idea is to calculate the utility of each test input by incorporating the concept of uncertainty reduction through mutual information, where the focus

is on maximizing the information gain from the unobserved test input in relation to the learned surrogate model and the cost and budget constraints. It involves

adjusting the utility value based on the reduction in uncertainty, the cost of observation, the remaining budget, and the distance of the test input from the known

solutions, to provide an efficient and adaptive approach to prioritizing the evaluation of test inputs.

Code
import torch

import torch.distributions as tdist

def utility(train_x, train_y, best_x, best_y, test_x, mean_test_y, std_test_y, cost_test_y, budget_used, budget_total):

Calculate the expected improvement (EI) for each test input

with torch.no_grad():

z = (mean_test_y - best_y) / torch.sqrt(torch.pow(std_test_y, 2) + torch.pow(train_y.std(), 2))

ei = (mean_test_y - best_y) * tdist.Normal(0, 1).cdf(z) + torch.sqrt(torch.pow(std_test_y, 2) + torch.pow(train_y.std(), 2)) * tdist.Normal(0, 1).log_prob(z).exp()

Calculate the reduction in uncertainty through mutual information

with torch.no_grad():

mi = torch.max(torch.tensor(0), (torch.log(torch.pow(std_test_y, 2) + torch.pow(train_y.std(), 2)) - torch.log(torch.pow(train_y.std(), 2))) / 2)

Adjust the utility value based on the reduction in uncertainty, cost of evaluation, and remaining budget

utility_value = (ei * (1 - mi)) - torch.exp(-cost_test_y) * (budget_total - budget_used)

Calculate the distance of the test input from the known solutions

distance_to_known = torch.cdist(test_x, train_x)

Adjust the utility value based on the diversity and coverage of the unobserved test input space

diversity_coverage_factor = torch.mean(torch.min(distance_to_known, dim=1).values)

utility_value += diversity_coverage_factor

return utility_value

Fig. 4. Optimal acquisition function designed by EvolCAF. The results include a lin-
guistic description of the algorithmic idea, as well as a code implementation with
annotations, all the contents are produced by LLMs.

maximizing the average of the minimum distances contributed by α3(x) forces
the multi-start optimization away from explored regions.

The analyses above suggest that the designed AF can introduce novel ideas
that have not been previously explored in existing literature on acquisition func-
tion design. Benefiting from the evolution in the algorithmic space, the designed
AF can be expressed explicitly, allowing for clear interpretations to provide
insights into its behavior and decision-making process.

4.3 Evaluation of the Optimal Acquisition Function

Synthetic Problems. In this subsection, we evaluate the optimal AF on 12
different synthetic instances with different landscapes and input dimensions. We
define the cost functions according to Equation (5). As the evolution is conducted
within a total budget of 30, which is to enable the optimal AF to achieve better
results using a small budget, therefore, we also tested the generalization of the
optimal AF within a sufficient budget of 300. Each test instance is conducted
with 10 independent runs, the results are shown in Table 1.

Based on the experimental results, it can be observed that in the vast major-
ity of cases, the optimal AF achieves significantly better performance than EI
and other cost-aware AFs. The optimal AF demonstrates strong generalization
capabilities across unseen instances with diverse landscapes and sufficient bud-
get constraints. In addition to the promising performance, an interesting phe-
nomenon is that within a fixed budget, the optimal AF uses fewer evaluations
in most cases, which is more pronounced when the budget is sufficient.

Evolve Cost-Aware Acquisition Functions Using Large Language Models 385

Table 1. Means of optimal gaps (number of evaluated samples) obtained by different
AFs on all synthetic instances over 10 independent runs. The best mean result for each
row is highlighted in bold.

Test Instances Budget EI EIpu EI-cool EvolCAF

Ackley 2D 30 2.6600(40) 2.3302(40) 2.7369(40) 0.4277(34)

300 1.2295(395) 0.8582(399) 0.8317(399) 0.0505(306)

Rastrigin 2D 30 4.7425(41) 5.6155(41) 5.7754(40) 0.0511(34)

300 1.6656(410) 1.6678(408) 1.8518(408) 0.0046(306)

Griewank 2D 30 0.4875(35) 0.3384(36) 0.3374(36) 0.1762(33)

300 0.1305(323) 0.1195(323) 0.1360(323) 0.0361(307)

Rosenbrock 2D 30 1.2609(41) 2.3601(44) 2.2909(42) 0.0304(33)

300 0.0332(369) 0.0406(394) 0.0317(372) 0.0402(307)

Levy 2D 30 0.0056(38) 0.0098(38) 0.0116(38) 0.0013(33)

300 1.1517e-4(314) 5.9321e-5(316) 8.1046e-5(317) 3.7248e-4(307)

ThreeHumpCamel 2D 30 0.0483(39) 0.1182(40) 0.0710(39) 0.0007(33)

300 5.0446e-4(322) 7.4557e-4(326) 2.6392e-4(325) 7.5310e-4(306)

StyblinskiTang 2D 30 0.0286(41) 0.0233(42) 0.0266(41) 0.0071(33)

300 1.4420e-4(332) 1.8616e-4(339) 6.1798e-5(343) 2.0142e-3(306)

Hartmann 3D 30 5.6696e-5(40) 1.0364e-4(41) 4.6158e-5(40) 4.8127e-4(36)

300 1.8263e-5(420) 1.3089e-5(429) 9.0599e-6(432) 2.3656e-4(311)

Powell 4D 30 18.8892(48) 19.8281(51) 14.9481(49) 0.1285(38)

300 2.9839(376) 1.1173(395) 1.6806(391) 0.0136(316)

Shekel 4D 30 7.9123(48) 7.9210(49) 8.2132(48) 2.6367(39)

300 6.5193(545) 6.9044(545) 7.0135(551) 0.1993(315)

Hartmann 6D 30 0.0326(52) 0.0296(52) 0.0278(52) 0.0384(44)

300 0.0122(710) 0.0054(705) 0.0154(695) 0.0042(327)

Cosine8 8D 30 0.4723(48) 0.4738(48) 0.5351(48) 0.4357(53)

300 0.1707(532) 0.2364(533) 0.2779(527) 0.0148(342)

To verify the contribution of each component in the optimal AF, we further
display the performance of EvolCAF after removing each of the three compo-
nents, as shown in Table 2. It can be observed that removing α2(x), which takes
into account budget information, has the greatest impact on the final perfor-
mance of EvolCAF. Compared with EI, EIpu and EI-cool, the cost-aware AFs
that remove α1(x) or α3(x) can still achieve better results. The results indicate
the effectiveness and superiority of the designed acquisition function.

Hyperparameter Tuning Task. Here we evaluate the optimal AF on 3 prac-
tical hyperparameter tuning test sets to further validate the effectiveness of our
method. We utilize the surrogate benchmark implemented in JAHS-Bench-201
[3] to train a randomly generated neural network architecture with 2 continu-
ous and 4 categorical hyperparameters: learning rate in [10−3, 1], weight decay
in [10−5, 10−2], depth multiplier in {1, 3, 5}, width multiplier in {4, 8, 16}, res-
olution multiplier in {0.25, 0.5, 1.0}, and training epochs in {1, 2, ..., 200}. We

386 Y. Yao et al.

Table 2. Means of optimal gaps (number of evaluated samples) obtained by different
AFs on all synthetic instances over 10 independent runs. The best, second best, and
worst mean results for each row are highlighted with bold fonts, underlines, and shaded
background, respectively.

Test Instances Budget EI EIpu EI-cool w/o alpha1 w/o alpha2 w/o alpha3 EvolCAF

30 2.6600(40) 2.3302(40) 2.7369(40) 0.6422(34) 4.8046(40) 1.5008(33) 0.4277(34)

Ackley 2D 300 1.2295(395) 0.8582(399) 0.8317(399) 0.7301(308) 1.2677(345) 0.0501(305) 0.0505(306)

30 4.7425(41) 5.6155(41) 5.7754(40) 0.0746(34) 5.7126(42) 0.2648(33) 0.0511(34)

Rastrigin 2D 300 1.6656(410) 1.6678(408) 1.8518(408) 0.0842(308) 0.8550(383) 0.0157(306) 0.0046(306)

30 0.4875(35) 0.3384(36) 0.3374(36) 0.1913(34) 0.6671(36) 0.3535(33) 0.1762(33)

Griewank 2D 300 0.1305(323) 0.1195(323) 0.1360(323) 0.0522(308) 0.1954(324) 0.0598(306) 0.0361(307)

30 1.2609(41) 2.3601(44) 2.2909(42) 0.0399(33) 2.1626(39) 2.3467(33) 0.0304(33)

Rosenbrock 2D 300 0.0332(369) 0.0406(394) 0.0317(372) 0.0104(308) 0.0587(348) 1.8554(307) 0.0402(307)

30 0.0056(38) 0.0098(38) 0.0116(38) 0.0006(34) 0.0335(37) 0.0195(33) 0.0013(33)

Levy 2D 300 1.1517e-4(314) 5.9321e-5(316) 8.1046e-5(317) 0.0003(307) 0.0009(327) 0.0010(306) 3.7248e-4(307)

30 0.0483(39) 0.1182(40) 0.0710(39) 0.0006(34) 0.0940(38) 0.0188(33) 0.0007(33)

ThreeHumpCamel 2D 300 5.0446e-4(322) 7.4557e-4(326) 2.6392e-4(325) 0.0005(308) 0.0020(332) 0.0099(307) 7.5310e-4(306)

30 0.0286(41) 0.0233(42) 0.0266(41) 0.0136(33) 1.7123(41) 0.0713(33) 0.0071(33)

StyblinskiTang 2D 300 1.4420e-4(332) 1.8616e-4(339) 6.1798e-5(343) 0.0069(307) 0.0246(332) 0.0042(306) 2.0142e-3(306)

30 5.6696e-5(40) 1.0364e-4(41) 4.6158e-5(40) 0.0007(36) 0.1438(51) 0.0731(36) 4.8127e-4(36)

Hartmann 3D 300 1.8263e-5(420) 1.3089e-5(429) 9.0599e-6(432) 0.0004(311) 0.0124(446) 0.0005(311) 2.3656e-4(311)

30 18.8892(48) 19.8281(51) 14.9481(49) 0.1719(39) 36.0514(56) 4.3751(37) 0.1285(38)

Powell 4D 300 2.9839(376) 1.1173(395) 1.6806(391) 0.0205(316) 1.7473(450) 0.2997(317) 0.0136(316)

30 7.9123(48) 7.9210(49) 8.2132(48) 2.3629(39) 9.2281(60) 3.5714(37) 2.6367(39)

Shekel 4D 300 6.5193(545) 6.9044(545) 7.0135(551) 0.3430(316) 8.1076(554) 0.1583(313) 0.1993(315)

30 0.0326(52) 0.0296(52) 0.0278(52) 0.0343(44) 1.7641(83) 0.1305(42) 0.0384(44)

Hartmann 6D 300 0.0122(710) 0.0054(705) 0.0154(695) 0.0044(326) 0.4572(750) 0.0127(327) 0.0042(327)

30 0.4723(48) 0.4738(48) 0.5351(48) 0.4438(53) 1.5106(88) 0.6058(46) 0.4357(53)

Cosine8 8D 300 0.1707(532) 0.2364(533) 0.2779(527) 0.0161(343) 1.1518(755) 0.0425(347) 0.0148(342)

use ReLU [10] activations and stochastic gradient descent (SGD) optimizer, and
do not use trivial augment [26] for data augmentation in the training pipeline.
The hyperparameter tuning task is conducted on three different image classifi-
cation datasets: CIFAR-10 [14], Colorectal-Histology [13] and Fashion-MNIST
[35], we record the validation accuracy and total runtime as the observations of
the objective and evaluation cost for each candidate configuration, respectively.
For more details and implementation, please refer to [3].

Table 3 shows the results achieved by all AFs using different total runtimes
(denoted as C, in minutes) as budgets. It can be observed that the optimal AF
achieves the best results on CIFAR-10 and Fashion-MNIST datasets. In addition,
we demonstrate the results within 25 and 50 total evaluations (denoted as T)
when the total runtime is sufficient. It can be observed that the optimal AF can
achieve the best results in most cases, which further proves that our method is
still sample-efficient, while EIpu and EI-cool perform worse than EI.

To make a further illustration, we present the histograms of evaluation cost
frequency on CIFAR-10 data set with C=4000 as an example, as shown in Fig. 5.
It is evident that the majority of search frequencies of all cost-aware AFs are
concentrated in cheap regions. While EIpu and EI-cool demonstrate a greater
ability to explore expensive regions compared to EI, the optimal AF has the
potential to explore regions that are significantly more expensive than those
searched by EIpu and EI-cool, resulting in superior performance.

Evolve Cost-Aware Acquisition Functions Using Large Language Models 387

Table 3. Means (stds) of validation accuracies obtained by different AFs on all data
sets over 10 independent runs. The best mean result for each row is highlighted in bold.

Data Set Budget EI EIpu EI-cool EvolCAF

CIFAR-10 C=2000 0.6885(0.05) 0.6934(0.06) 0.6849(0.05) 0.7495(0.04)

C=4000 0.7975(0.03) 0.7951(0.04) 0.7721(0.03) 0.8002(0.03)

T=25 0.7065(0.06) 0.6765(0.08) 0.6744(0.08) 0.8030(0.04)

T=50 0.8394(0.03) 0.7980(0.07) 0.7744(0.08) 0.8351(0.02)

Colorectal-Histology C=1000 0.8883(0.04) 0.9140(0.01) 0.9125(0.02) 0.8901(0.02)

C=2000 0.9039(0.05) 0.9273(0.01) 0.9196(0.01) 0.9158(0.01)

T=25 0.8779(0.04) 0.8592(0.08) 0.8588(0.09) 0.9072(0.02)

T=50 0.9040(0.02) 0.8944(0.06) 0.8910(0.08) 0.9199(0.01)

Fashion-MNIST C=5000 0.9021(0.03) 0.9191(0.01) 0.9188(0.01) 0.9370(0.01)

C=10000 0.9238(0.02) 0.9318(0.01) 0.9355(0.008) 0.9425(0.007)

T=25 0.8986(0.03) 0.8711(0.06) 0.8730(0.06) 0.9349(0.01)

T=50 0.9218(0.02) 0.8810(0.06) 0.8928(0.05) 0.9445(0.002)

Fig. 5. Histograms of evaluation cost frequency collected in 10 independent runs on
CIFAR-10 data set with C=4000.

5 Conclusion

This paper introduces EvolCAF, a novel framework that integrates large lan-
guage models (LLMs) with evolutionary computation (EC) to automatically
design cost-aware AFs. Leveraging crossover and mutation in the algorithmic
space, EvolCAF offers a novel design paradigm that significantly reduces the
reliance on domain expertise and model training. The designed AF showcases
novel ideas not previously explored in the existing literature on AF design,
allowing for clear interpretations to provide insights into its behavior and

388 Y. Yao et al.

decision-making process. Compared to the well-known EIpu and EI-cool meth-
ods designed by human experts, our approach demonstrates remarkable efficiency
and generalization across various tasks, including 12 synthetic problems and 3
real-world hyperparameter tuning test sets. We have deployed our method to the
latest proposed automatic heuristic design platform named EoH [19], the source
code can be found in https://github.com/FeiLiu36/EoH/tree/main/examples/
user bo caf.

In future work, we expect that the EvolCAF framework can be well adapted
to other popular BO settings, such as high-dimensional BO, batch BO, multi-
objective BO. Furthermore, we are going to explore the integration of different
types of cost functions into the evolutionary process to enhance the robustness
of the designed AF.

Acknowledgments. The work described in this paper was supported by the
Research Grants Council of the Hong Kong Special Administrative Region, China
[GRF Project No. CityU-11215723], the Natural Science Foundation of China
(Project No: 62276223), and the Key Basic Research Foundation of Shenzhen, China
(JCYJ20220818100005011).

Disclosure of Interests. The authors declare that they have no known competing

interest that could appear to influence the work reported in this paper.

References

1. Bai, T., Li, Y., Shen, Y., Zhang, X., Zhang, W., Cui, B.: Transfer learning for
bayesian optimization: a survey. arXiv preprint arXiv:2302.05927 (2023)

2. Balandat, M., et al.: Botorch: a framework for efficient monte-carlo bayesian opti-
mization. Adv. Neural. Inf. Process. Syst. 33, 21524–21538 (2020)

3. Bansal, A., Stoll, D., Janowski, M., Zela, A., Hutter, F.: JAHS-bench-201: a foun-
dation for research on joint architecture and hyperparameter search. Adv. Neural.
Inf. Process. Syst. 35, 38788–38802 (2022)

4. Chen, Y., et al.: Learning to learn without gradient descent by gradient descent.
In: International Conference on Machine Learning, pp. 748–756. PMLR (2017)

5. Chen, Y., et al.: Towards learning universal hyperparameter optimizers with trans-
formers. Adv. Neural. Inf. Process. Syst. 35, 32053–32068 (2022)

6. Frazier, P.I., Powell, W.B., Dayanik, S.: A knowledge-gradient policy for sequential
information collection. SIAM J. Control. Optim. 47(5), 2410–2439 (2008)

7. Frazier, P.I., Wang, J.: Bayesian optimization for materials design. In: Lookman,
T., Alexander, F.J., Rajan, K. (eds.) Information Science for Materials Discovery
and Design. SSMS, vol. 225, pp. 45–75. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-23871-5 3

8. Garnett, R., Osborne, M.A., Roberts, S.J.: Bayesian optimization for sensor set
selection. In: Proceedings of the 9th ACM/IEEE International Conference on Infor-
mation Processing in Sensor Networks, pp. 209–219 (2010)

9. Guinet, G., Perrone, V., Archambeau, C.: Pareto-efficient acquisition functions for
cost-aware bayesian optimization. arXiv preprint arXiv:2011.11456 (2020)

10. Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.:
Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature 405(6789), 947–951 (2000)

https://github.com/FeiLiu36/EoH/tree/main/examples/user_bo_caf
https://github.com/FeiLiu36/EoH/tree/main/examples/user_bo_caf
http://arxiv.org/abs/2302.05927
https://doi.org/10.1007/978-3-319-23871-5_3
https://doi.org/10.1007/978-3-319-23871-5_3
http://arxiv.org/abs/2011.11456

Evolve Cost-Aware Acquisition Functions Using Large Language Models 389

11. Hemberg, E., Moskal, S., O’Reilly, U.M.: Evolving code with a large language
model. arXiv preprint arXiv:2401.07102 (2024)

12. Hsieh, B.J., Hsieh, P.C., Liu, X.: Reinforced few-shot acquisition function learning
for bayesian optimization. Adv. Neural. Inf. Process. Syst. 34, 7718–7731 (2021)

13. Kather, J.N., Weis, C.A., Bianconi, F., Melchers, S.M., Schad, L.R., Gaiser, T.,
Marx, A., Zöllner, F.G.: Multi-class texture analysis in colorectal cancer histology.
Sci. Rep. 6(1), 1–11 (2016)

14. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Technical report, University of Toronto (2009)

15. Kushner, H.J.: A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)

16. Lee, E.H., Eriksson, D., Perrone, V., Seeger, M.: A nonmyopic approach to cost-
constrained bayesian optimization. In: Uncertainty in Artificial Intelligence, pp.
568–577. PMLR (2021)

17. Lee, E.H., Perrone, V., Archambeau, C., Seeger, M.: Cost-aware bayesian opti-
mization. arXiv preprint arXiv:2003.10870 (2020)

18. Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C., Stanley, K.O.: Evolution
through large models. In: Banzhaf, W., Machado, P., Zhang, M. (eds.) Handbook of
Evolutionary Machine Learning. Genetic and Evolutionary Computation. Springer,
Singapore (2022). https://doi.org/10.1007/978-981-99-3814-8 11

19. Liu, F., Tong, X., Yuan, M., Lin, X., Luo, F., Wang, Z., Lu, Z., Zhang, Q.: Evolution
of heuristics: towards efficient automatic algorithm design using large language
model. In: Proceedings of International Conference on Machine Learning (2024)

20. Liu, F., Tong, X., Yuan, M., Zhang, Q.: Algorithm evolution using large language
model. arXiv preprint arXiv:2311.15249 (2023)

21. Liu, T., Astorga, N., Seedat, N., van der Schaar, M.: Large language models to
enhance bayesian optimization. arXiv preprint arXiv:2402.03921 (2024)

22. Liventsev, V., Grishina, A., Härmä, A., Moonen, L.: Fully autonomous program-
ming with large language models. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1146–1155 (2023)

23. Luong, P., Nguyen, D., Gupta, S., Rana, S., Venkatesh, S.: Adaptive cost-aware
bayesian optimization. Knowl.-Based Syst. 232, 107481 (2021)

24. Maraval, A., Zimmer, M., Grosnit, A., Bou Ammar, H.: End-to-end meta-bayesian
optimisation with transformer neural processes. In: Advances in Neural Informa-
tion Processing Systems, vol. 36 (2024)

25. Močkus, J.: On bayesian methods for seeking the extremum. In: Marchuk, G.I. (ed.)
Optimization Techniques 1974. LNCS, vol. 27, pp. 400–404. Springer, Heidelberg
(1975). https://doi.org/10.1007/3-540-07165-2 55

26. Müller, S.G., Hutter, F.: Trivialaugment: tuning-free yet state-of-the-art data aug-
mentation. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 774–782 (2021)

27. Negoescu, D.M., Frazier, P.I., Powell, W.B.: The knowledge-gradient algorithm
for sequencing experiments in drug discovery. Informs J. Comput. 23(3), 346–363
(2011)

28. Qian, W., He, Z., Li, L., Liu, X., Gao, F.: Cobabo: a hyperparameter search method
with cost budget awareness. In: 2021 IEEE 7th International Conference on Cloud
Computing and Intelligent Systems (CCIS), pp. 408–412. IEEE (2021)

29. Romera-Paredes, B., et al.: Mathematical discoveries from program search with
large language models. Nature 625(7995), 468–475 (2024)

http://arxiv.org/abs/2401.07102
http://arxiv.org/abs/2003.10870
https://doi.org/10.1007/978-981-99-3814-8_11
http://arxiv.org/abs/2311.15249
http://arxiv.org/abs/2402.03921
https://doi.org/10.1007/3-540-07165-2_55

390 Y. Yao et al.

30. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, vol.
25 (2012)

31. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimiza-
tion in the bandit setting: no regret and experimental design. arXiv preprint
arXiv:0912.3995 (2009)

32. Turner, R., et al.: Bayesian optimization is superior to random search for machine
learning hyperparameter tuning: Analysis of the black-box optimization challenge
2020. In: NeurIPS 2020 Competition and Demonstration Track, pp. 3–26. PMLR
(2021)

33. TV, V., Malhotra, P., Narwariya, J., Vig, L., Shroff, G.: Meta-learning for black-
box optimization. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis,
M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11907, pp. 366–
381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46147-8 22

34. Volpp, M., et al.: Meta-learning acquisition functions for transfer learning in
bayesian optimization. arXiv preprint arXiv:1904.02642 (2019)

35. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

36. Zhang, M.R., Desai, N., Bae, J., Lorraine, J., Ba, J.: Using large language models
for hyperparameter optimization. In: NeurIPS 2023 Foundation Models for Deci-
sion Making Workshop (2023)

http://arxiv.org/abs/0912.3995
https://doi.org/10.1007/978-3-030-46147-8_22
http://arxiv.org/abs/1904.02642
http://arxiv.org/abs/1708.07747

A Surrogate-Assisted Partial Optimization
for Expensive Constrained Optimization

Problems

Kei Nishihara(B) and Masaya Nakata

Yokohama National University, Yokohama, Kanagawa 2408501, Japan
nishihara-kei-jv@ynu.jp, nakata-masaya-tb@ynu.ac.jp

Abstract. Surrogate-assisted evolutionary algorithms (SAEAs) are
gradually gaining attention as a method for solving expensive opti-
mization problems with inequality constraints. Most SAEAs construct a
surrogate model for each objective/constraint function and then aggre-
gate approximation functions of constraints to estimate the feasibility
of unevaluated solutions. However, because of the aggregation, the dif-
ferences in the scales among constraints are ignored. Constraints with
smaller scales do not benefit from constraint handling techniques as much
as larger constraints, while the effects of handling constraints with larger
scales scatter to the other many constraints. This results in an inefficient
constraint optimization. Accordingly, this work proposes a new SAEA
that partially optimizes each objective/constraint, namely surrogate-
assisted partial optimization (SAPO). Solutions with better values of
objective/constraint are selected from the evaluated solutions as the par-
ent solutions and a focused objective/constraint is independently opti-
mized using surrogate models one by one. Experimental results reveal
the superiority of SAPO compared to the state-of-the-art SAEAs on a
single-objective optimization problem suite with inequality constraints
under an expensive optimization scenario.

Keywords: Surrogate-assisted Evolutionary Algorithm · Constrained
Optimization Problem · Expensive Optimization Problem · Radial
Basis Function Network · Differential Evolution

1 Introduction

Such as wind turbine structure optimization [19] and aerospace and automotive
design [17], expensive constrained optimization problems (ECOPs) can often be
seen in the real world. In ECOPs, the function evaluations (FEs) are computa-
tionally or financially expensive because time-consuming simulations or expen-
sive physical experiments are used as FEs [11]. Hence, finding an optimal and
feasible solution within a limited number of FEs is required when solving ECOPs.
Expensive single-objective optimization problems with inequality constraints are
focused in this work.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 391–407, 2024.
https://doi.org/10.1007/978-3-031-70068-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_24&domain=pdf
http://orcid.org/0009-0006-2610-9276
http://orcid.org/0000-0003-3428-7890
https://doi.org/10.1007/978-3-031-70068-2_24

392 K. Nishihara and M. Nakata

The formulation of an ECOP is as follows;

Minimize f(x),
s.t. gm(x) ≤ 0, m = 1, 2, . . . , M ,

xl
j ≤ x ≤ xu

j , j = 1, 2, . . . ,D ,
(1)

where x is a solution, f : RD → R is the expensive objective function, D is the
number of decision variables, gm : RD → R is the m-th expensive constraint of M
constraints, and xl

j and xu
j are the lower and upper values for the j-th decision

variable, respectively. The feasibility of a solution is judged by the degree of
constraint violation given by;

G(x) =
M∑

m=1

max (gm(x), 0) . (2)

The solution x is feasible when G(x) = 0, otherwise x is infeasible.
Surrogate-assisted evolutionary algorithms (SAEAs) have begun to be

applied to ECOPs [10]. SAEAs can save the consumption number of FEs by
prescreening candidate solutions to be evaluated using surrogate models of objec-
tive/constraints made by machine learning (ML) techniques [22].

Most SAEAs construct surrogate models for the objective and each constraint
in Eq. (1) and form a response surface set (RSS),

{
f̂(x), ĝ1(x), ĝ2(x), . . . , ĝM (x)

}

[30]. An RSS can determine the structure of each constraint and capture the char-
acteristics of the feasible region boundaries [28]. In the early study on SAEAs
with an RSS, Regis et al. [20,21,23] found the radial basis function network
(RBFN) [18] can accurately approximate each in an RSS to some extent and
work well with various optimizers. To obtain a more accurate RSS, ASAGA
[24] and SACOBRA-MQcubic [1] adaptively select ML model types, e.g., RBFN
and Kriging [15], and radial basis function (RBF) types in RBFN, respectively.
Miranda-Varela and Mezura-Montes conducted an empirical study on constraint
handling techniques using the original SA-DECV framework [16] with a k Near-
est Neighbor [4,9]-based RSS. SACCDE [31] divides its population into two by
the feasibility rule [5] as a constraint handling technique and selects solutions
for the mutation strategy of differential evolution (DE) [25] from both groups to
generate a variety of offspring solutions. An RSS is used to estimate the feasibil-
ity of offspring solutions. GLoSADE [28] constructs global and local surrogate
models with RSSs and optimizes them with DE and the interior-point method,
respectively. This global-local structure is also adopted in FMSADE [3] and SA-
TSDE [14]. FMSADE employs the offspring generation method of SACCDE in
the global search while SA-TSDE introduces a surrogate-based repair strategy
to obtain a feasible solution using an RSS. MPMLS [12] constructs multiple local
surrogate models with different penalty coefficients for the approximation of the
degree of constraint violation calculated by an RSS. This mechanism contributes
to maintaining a good population diversity [12].

Although these SAEAs create RSSs, prescreening of solutions is performed
based on the approximation of the degree of constraint violation Ĝ(x), computed

A Surrogate-Assisted Partial Optimization for ECOPs 393

in the manner of Eq. (2) as follows;

Ĝ(x) =
M∑

m=1

max (ĝm(x), 0) . (3)

Considering, however, Ĝ(x) is an aggregation of each ĝm(x), the errors between
ĝm(x) and its true constraint gm(x) accumulate in Ĝ(x). What is worse, failing
to account for the differences in scales between constraints hinders an effec-
tive handling of constraints. In other words, relying on only Ĝ(x) to estimate
the feasibility of x lacks efficiency and robustness because the approximation
accuracy and the effect of constraint handling techniques are highly affected
by the scales of ĝm(x) among different m. For example, the improvement of
unfulfilled constraints with small scales is prevented by other constraints with
large scales because optimization effects of Ĝ(x) less contribute to small-scaled
constraints. On the other hand, constraints with larger scales converge slowly
as the optimization effect scatters to the other many constraints. One way to
tackle this challenge is the normalization of constraints like in SACOBRA [2].
However, even if the normalization is performed, handling only Ĝ(x) works well
only when constraints are correlated with each other. Furthermore, in general,
obtaining feasible solutions becomes more difficult as the problem dimension
D increases [27]. Thereby, optimizing each ĝm(x) with a small number of FEs
becomes more important with the increase of D.

Accordingly, this work proposes an SAEA named surrogate-assisted par-
tial optimization (SAPO), which optimizes each objective/constraint in
turn. In other words, SAPO partially (independently) optimizes each objec-
tive/constraint while putting the other objective/constraints on hold. The RBFN
is used to construct an RSS. Unlike existing SAEAs, SAPO prescreens candi-
date solutions in terms of each approximated constraint ĝm(x) or objective f̂(x)
in an RSS in place of Ĝ(x). SAPO can obtain solutions specialized for each
ĝm(x) or f̂(x) and thus each gm(x) or f̂(x) can be optimized effectively. To
promote the entire optimization of the objective and constraints, SAPO selects
solutions with better objective and constraint values to form parent solutions
of DE. Thus, the solution diversity is kept high even if SAPO focuses on a cer-
tain objective/constraint and improves it. To the best of our knowledge, this is
the first attempt to directly utilize the approximated constraint ĝm(x) as the
criterion of solution prescreening. The partial optimization of the objective and
constraints can be a new constraint handling technique. This work empirically
demonstrates that this new technique improves the performance of SAEAs on
ECOPs because more feasible solutions are found with fewer FEs.

The remainder of this work is organized as follows. Section 2 introduces DE
and RBFN as the component techniques of SAPO. Section 3 provides the design
concept and the detailed algorithm of SAPO. Section 4 compares the perfor-
mance of SAPO with state-of-the-art SAEAs on the CEC 2017 constrained real-
parameter optimization benchmark suite [29] within an expensive scenario. In
Sect. 5, we show the effectiveness of our partial optimization as an ablation study.
Lastly, Sect. 6 concludes our work and discusses future directions.

394 K. Nishihara and M. Nakata

2 Preliminary

This section introduces DE as the optimizer of the objective and constraints.
Successively, RBFN as an ML technique for surrogate models is explained.

2.1 DE: Differential Evolution

DE is an evolutionary algorithm originally proposed for real-parameter bound-
constrained single-objective optimization problems. The optimization process of
DE consists of initialization, mutation, crossover, and solution selection, where
procedures from mutation to solution selection are repeated till the termination.

DE initializes its population P = {xi}Ni=1, where N is the population size.
Specifically, DE samples each solution xi = [xi,1, . . . , xi,D]T using a uniform
distribution within xi,j ∈ [xl

j , x
u
j]. The definition of xl

j and xu
j follows Eq. (1).

In the mutation procedure, a mutant solution vi = [vi,1, · · · , vi,D]T of each
xi, i.e., a parent solution, is produced using an employed mutation strategy.
To generate a variety of solutions, this work adopts two mutation strategies.
The rand/1 and best/1 strategies contribute to exploration and exploitation,
respectively. Definitions of these strategies are as follows;

rand/1 : vi = xr1 + F (xr2 − xr3), (4)
best/1 : vi = xbest + F (xr1 − xr2), (5)

where xr1 , xr2 , and xr3 are mutually exclusive solutions randomly selected from
P, also different from xi. The best solution xbest is a solution in P having the best
fitness value. A scaling factor F ∈ [0, 1] controls the contribution of differential
vectors (xr − xr′).

Next, DE generates a trial vector ui = [ui,1, · · · , ui,D]T as an offspring solu-
tion via a crossover strategy and crossover rate CR ∈ [0, 1]. We use the most
popular binomial crossover strategy given by;

ui,j =

{
vi,j , if rand(0, 1) ≤ CR or j = jrand ,
xi,j , otherwise,

(6)

where jrand is an integer randomly selected from [1,D] and rand(0, 1) is a uni-
formly sampled real random value in (0, 1).

Finally, ui is evaluated and the solution for the next generation is selected,
i.e., xi is replaced with ui if f(ui) ≤ f(xi) for minimization problems.

2.2 RBFN: Radial Basis Function Network

RBFN is a feed-forward neural network with a three-layer structure. We employ
the RBFN as an ML technique for the surrogate model because its construction
or prediction time is relatively short and the model accuracy is scalable to the
increase of problem dimension [7]. Let a training dataset (size n), vector of func-
tion values, and an RBF be {(xi, f(xi))}ni=1, f = [f(x1), f(x2), . . . , f(xn)]T,

A Surrogate-Assisted Partial Optimization for ECOPs 395

and φ(r), respectively. The cubic RBF φ(r) = r3 is used as it can establish a
fitness landscape that is more stable and exhibits improved convergence, thanks
to its ability to avoid ill-conditioning [26]. Note that RBFN can also be used to
approximate constraints by replacing f(x) with gm(x).

The approximation of f(x) for x can be formulated as follows;

f̂(x) =
n∑

i=1

λiφ (‖x − xi‖) + p(x), (7)

where p(x) = cTx + c0 (c ∈ R
D, c0 ∈ R) is regularization terms using a linear

polynomial function, and λi ∈ R is the i-th element of the weight vector λ =
[λ1, λ2, . . . , λn]T.

Three parameters λ, c, and c0 in Eq. (7) are obtained by solving the following
equation; [

Φ P
PT 0m

] [
λ
c′

]
=

[
f
0

]
, (8)

where Φ is the n × n matrix with φij = φ (|xi − xj |), P ∈ R
n×(D+1) is a matrix

whose i-th row is
[
1, xT

i

]
, 0m is a (D+1)×(D+1) matrix of zeros, c′ =

[
cT, c0

]T,
and 0 is a column vector of zeros whose length is (D + 1).

3 SAPO: Surrogate-Assisted Partial Optimization

This section starts by sharing the concept of SAPO and then explicates its
algorithm.

3.1 Concept

Different from existing SAEAs for ECOPs where all constraints are dealt with
in one bundle as the approximation of the degree of constraint violation,
SAPO addresses an objective/constraint one by one, namely a partial optimiza-
tion. This idea is inspired by the partial differential equation (PDE). Focusing on
one element in PDE improves the efficiency of structure analysis or optimization
[8,13]. That is, complex systems must be disassembled, and processed one by
one.

Going back to ECOPs, the partial optimization has advantages below;

– Solutions suitable to an objective/constraint function can be screened by
surrogate models. Compared to only using the approximation of the degree
of constraint violation, this mechanism has a clearer intent to improve each
function. Thus, the optimization efficiency for each function is enhanced.

– Solution diversity is kept high until the end of the search because SAPO has
multiple criteria to prescreen offspring solutions.

396 K. Nishihara and M. Nakata

Fig. 1. A diagram of SAPO.

Algorithm 1. SAPO
1: Initialize the archive A = {

(
xi, f(xi), {gm(x)}M

m=1

)
}Ninit
i=1 , FE = Ninit

2: while FE < FEmax do
3: for all Target Function ← {f, g1, g2, . . . , gM} do
4: for all Selection Criterion ← {f, g1, g2, . . . , gM} \ Target Function do
5: S ← Algorithm 2 (A, Selection Criterion, Target Function) // Selection
6: end for
7: P,D ← N, 5D solutions from S, respectively // Integration
8: U ← Generate offspring from P with DE Eqs. (4–6) // Generation
9: R ← Generate RSS using D with RBFN Eq. (7) // Generation

10: x∗ ← Algorithm 3 (U , R, Target Function) // Prescreening
11: Evaluate x∗ and add it to A, FE = FE + 1
12: end for
13: end while

– The partial optimization can handle the case where the scales among con-
straints are highly different. Unsatisfied constraints with relatively small
scales are also focused while they are likely to be ignored when only the
degree of constraint violation is used. Constraints with relatively large scales
are also improved with fewer FEs because they are exclusively considered.

To fully utilize the partial optimization idea and the solution diversity men-
tioned above, parent solutions are selected from top solutions in terms of the
objective/constraints that are not focused on now. Thus, SAPO can generate
and prescreen offspring solutions that improve a focused objective/constraint
from parent solutions with good values of the other objective/constraints.

3.2 Mechanism

Algorithm 1 provides the complete pseudocode of SAPO. The algorithm consists
of three procedures; 1) Initialization, 2) Selection and Integration of evaluated
solutions to obtain parent solutions and training dataset, and 3) Generation of
offspring solutions and an RSS and Prescreening of offspring solutions. After

A Surrogate-Assisted Partial Optimization for ECOPs 397

Algorithm 2. Selection
Input: Archive A, Objective/constraint as the selection criterion f or gm′ ,

Target objective/constraint to be optimized f or gm
Output: Selected and sorted set S
1: if f is the target to be optimized then
2: T1 ← Sort feasible solutions in A in ascending order of f
3: T2 ← Sort {x| x ∈ A ∧ gm′(x) ≤ 0 ∧ f(x) < f∗

fea} in ascending order of gm′

4: T3 ← Sort {x| x ∈ A ∧ gm′(x) ≤ 0 ∧ f(x) ≥ f∗
fea} in ascending order of f

5: T4 ← Sort {x| x ∈ A ∧ gm′(x) > 0 ∧ f(x) < f∗
fea} in ascending order of gm′

6: T5 ← Sort {x| x ∈ A ∧ gm′(x) > 0 ∧ f(x) ≥ f∗
fea} in ascending order of f

7: else if gm is the target to be optimized then
8: G ← {x| x ∈ A ∧ gm(x) > 0} // x that satisfy gm(x) need not be optimized
9: if f is the selection criterion then

10: T1 ← Sort {x| x ∈ G ∧ f(x) < f∗
fea} in ascending order of gm

11: T2 ← Sort {x| x ∈ G ∧ f(x) ≥ f∗
fea} in ascending order of f

12: else if gm′ is the selection criterion then
13: T1 ← Sort {x| x ∈ G ∧ gm′(x) ≤ 0 ∧ f(x) < f∗

fea} in ascending order of gm
14: T2 ← Sort {x| x ∈ G ∧ gm′(x) ≤ 0 ∧ f(x) ≥ f∗

fea} in ascending order of f
15: T3 ← Sort {x| x ∈ G ∧ gm′(x) > 0} in ascending order of gm′

16: end if
17: end if
18: S = [T1, T2, . . . , Tlast]

initialization, SAPO repeats 2) and 3) until the termination criteria are met.
Figure 1 shows the diagram of 2) and 3). For each generation, SAPO sets a
target objective/constraint to be optimized and this sequentially changes to the
next one, i.e., in the order of f, g1, g2, . . . , gM , f, g1, . . . and so on.

Initialization. Latin hypercube sampling is employed to sample Ninit points.
These points are evaluated with the objective and constraint functions.
SAPO creates an archive A = {

(
xi, f(xi), {gm(xi)}Mm=1

)
}Ninit
i=1 to store all eval-

uated solutions and their objective/constraint values.

Selection and Integration. This phase intends to extract good solutions from
the archive to prepare parent solutions and a training dataset for an RSS. Here,
we define f∗

fea as the best fitness value among feasible solutions in A. If there are
no feasible solutions in A, f∗

fea is set to ∞. Solutions satisfying f(x) < f∗
fea are

infeasible but may be useful in the optimization if their constraints are improved.
Thus these solutions are utilized below.

First, SAPO makes M sets of selected and sorted solutions, where M is
the number of constraints. Each set is generated corresponding to each objec-
tive/constraint except for the target objective/constraint. Note that each solu-
tion in A can be selected multiple times. The selecting and sorting method is
summarized in Algorithm 2.

398 K. Nishihara and M. Nakata

Algorithm 3. Prescreening
Input: Offspring solutions U = {xi}|U|

i=1, RSS R, Target objective/constraint f or gm
Output: Selected solution x∗

1: if f is the target then
2: Calculate Ĝ(x) values of ∀x ∈ U by Eq. (3) using R
3: F ← {x| x ∈ U ∧ Ĝ(x) = 0} // x estimated to be feasible

4: x∗ =

⎧
⎪⎨
⎪⎩

arg
x∈F

min f̂(x), F �= ∅

arg
x∈U

min Ĝ(x), otherwise

5: else if gm is the target then
6: G ← {x| x ∈ U ∧ ĝm(x) ≤ 0} // x that satisfy ĝm(x)

7: x∗ =

⎧
⎪⎨
⎪⎩
arg
x∈G

min f̂(x), G �= ∅

arg
x∈U

min ĝm(x), otherwise

8: end if

– When f is the target to be optimized, SAPO selects and sorts solutions for
each gm′ as Lines 1–6 of Algorithm 2. Let gm′ be a focused constraint as the
selection criterion in this phase. First, feasible solutions are selected from A
and sorted in ascending order of f and form T1. Next, xs that satisfy gm′ are
corrected. Among these solutions, ones that give f(x) < f∗

fea are preferred as
mentioned before. As gm′ is the criterion now, they are sorted with the gm′

values, forming T2. Then, xs that satisfy gm′ but give f(x) ≥ f∗
fea are used.

As they are inferior to x ∈ T2, the sorting order of T3 follows f values. Similar
procedures are performed to make T4 and T5 for xs that violate gm′ . Finally,
SAPO returns a set S by joining T1, T2, . . . , and T5 in this order.

– When gm is the target to be optimized, solutions that already satisfy gm
are ignored as they need not be optimized anymore, as shown in Line 8.
Solutions that violate gm are selected from A and consist of G. The remained
procedures are as Lines 9–15. If f is the selection criterion, solutions in G and
f(x) < f∗

fea are selected to utilize the possibility of improvement, forming T1.
However, sorting order follows the ascending order of the target constraint
gm as solutions in T1 lack feasibility. Next, solutions with f(x) ≥ f∗

fea form T2

where solutions are ordered with f values. An output set is S = [T1, T2]. On
the other hand, gm′ is taken into account when gm′ is the selection criterion.
The fulfillment of gm′ has the first priority. However, as gm′ ≤ 0 is enough, the
next priority becomes comparison with f∗

fea . Similarly, T1 and T2 are obtained.
Finally, solutions that violate gm′ are selected and sorted In increasing order
of the degree of violation of gm′ , forming S = [T1, T2, T3].

After gaining M sets of sorted solutions, they are integrated as follows. The
elements of each set are taken in order from the first one, let this be the parent
solution set P when there are N elements, and let this be the training dataset
D for constructing an RSS when its size becomes 5D.

A Surrogate-Assisted Partial Optimization for ECOPs 399

Generation and Prescreening. This phase begins by generating offspring
solutions and constructing an RSS. For the evolution of P, the mutation strate-
gies shown in Eqs. (4–5) and the crossover strategy in Eq. (6) are applied to P.
Note that the size of the offspring solution set U becomes double that of P, i.e.,
2N . To generate a variety of offspring solutions, P is copied, and two mutation
strategies are independently used for each P. Successively, an RSS is constructed
using RBFNs and D as presented in Eq. (7).

Finally, SAPO prescreens U in terms of the target objective/constraint. The
detailed procedures are indicated in Algorithm 3. When f is the target, the
feasibility rule is employed. Specifically, Ĝ(x) calculated by Eq. (3) using an RSS
estimates the feasibility of solutions in U . If there are expected to be feasible
solutions, the solution having the minimum f̂(x) is selected. Otherwise, the
solution having the minimum Ĝ(x) is chosen. When gm is the target, however,
solutions that satisfy ĝm(x) are esteemed. Among them, x having the minimum
f̂(x) is selected, denoting x∗. If no solution fulfills ĝm(x), the solution with the
least violation of ĝm(x) is selected. The selected solution is evaluated with the
expensive function, and it and its objective/constraint values are added to A.

4 Experiment

Through a comparison of performances between SAPO and SAEAs for ECOPs,
we evaluate the effectiveness of SAPO.

4.1 Experimental Design

We use the IEEE CEC 2017 constrained real-parameter optimization benchmark
suite [29]. Nine problems with inequality constraints are selected from the suite,
i.e., F1, F2, F4, F5, F12, F13, F20, F21, and F22. Note that F19 and F28 are
excluded although they are problems with inequality constraints as they have no
feasible solutions according to the problem definition [29]. The problem dimen-
sions are set to D ∈ {30, 50, 100} to evaluate the scalability of the performance
of SAPO against the increase of D. The other settings follow the regulation
of competition [29]. All experiments are done with Intel(R) Core(TM) i7-10700
(2.90GHz) CPU and 16 GB RAM.

Four state-of-the-art SAEAs, GLoSADE [28], FMSADE [3], MPMLS [12],
and SA-TSDE [14], are employed for the compared algorithms. All algorithms use
DE and RBFN, so we can fairly compare the performances. Note that GLoSADE,
FMSADE, and SA-TSDE adopt the interior point algorithm for the local search.
While these three SAEAs utilize global and local searches, MPMLS decomposes
the approximation of the degree of constraint violation Ĝ(x) using penalty coeffi-
cients. MPMLS and SAPO construct only local surrogate models. Consequently,
this work can investigate the impact of differences among global/local structures
and the deals of approximated constraints on the performance. Hyperparameter
settings of the compared algorithms follow the original papers [3,12,14,28]. For
SAPO, we set to Ninit = 100 for D ∈ {30, 50} and 200 for D = 100 so that

400 K. Nishihara and M. Nakata

Ninit > D. We also use N = 100, F = 0.5, and CR = 0.9, following the original
paper of DE [25], and kernel = cubic, one of the most popular RBFN kernels.

Following the original papers [3,12,14,28], the maximum number of FEs is
set to 3, 000. The performance is evaluated with the average fitness values of
feasible solutions obtained in 31 independent runs for each problem and average
ranks over nine problems. We apply the Wilcoxon rank-sum test with a signif-
icance level of 0.05 to check statistical significance. When reporting statistical
results, we use “+”, “−”, or “∼”, indicating the compared algorithm significantly
outperformed SAPO, significantly underperformed SAPO, or we cannot decide
that there is a significant difference, respectively. In case no feasible solution is
obtained within the observed number of FEs, a certain enough large fitness value
(1E+20) is assigned to the corresponding runs when computing statistical test
results and average ranks.

4.2 Result

Table 1 summarizes the average fitness values obtained at 3, 000 FEs for D ∈
{30, 50, 100}. SAPO derived six, six, and four best performances out of nine
problems in the order of D = 30, 50, and 100 and no worst performance. This
shows the robustness of SAPO over different problems, except for those on which
all algorithms failed in finding feasible solutions as shown in gray. This means the
partial optimization methodology proposed in this work contributed to steadily
improving the objective value while satisfying constraints on many types of prob-
lems. The average ranks shown at the bottom of Table 1 also demonstrate the
superiority of SAPO. Although the average rank slightly degrades as D increases,
each average rank is the best among the five algorithms for all D. Thus, the per-
formance of SAPO scales to the increase of problem dimension.

From a statistical point of view, the number of “+” indicating the superiority
of the compared algorithms is zero or one in all comparison pairs for all D. The
number of “−” indicating the inferiority of the compared algorithms is four and
seven at least and at most, respectively. Accordingly, the number of “−” is much
larger than that of “+” in all comparisons, where the maximum difference is seven
out of nine problems. The total results of 108 comparisons across the three types
of dimensions and the four compared algorithms are +/ − / ∼= 3/67/38. These
results clearly indicate the outstanding performance of SAPO.

It is worth noting that SAPO derived a much larger number of successful
runs. For example, SAPO succeeded in finding feasible solutions in all runs on
F12 (D ∈ {30, 50}) and F21 (D = 30) although some or all of the other algo-
rithms failed. Even if D increased and the difficulty of finding feasible solutions
became higher, SAPO obtained multiple successful runs on the same problems,
i.e., F12 (D = 100) and F21 (D = 50), while the other algorithms could not suc-
ceed in any run. MPMLS is the best algorithm except SAPO in terms of finding
feasible solutions with better objective values, e.g., on F12 and F20. This may
be because MPMLS employs a decomposition strategy of Ĝ(x), unlike other
SAEAs. However, SAPO contributed to obtaining more feasible solutions with
better objective value on problems not only with one constraint but also with

A Surrogate-Assisted Partial Optimization for ECOPs 401

Table 1. The average fitness values at 3, 000 function evaluations for D ∈ {30, 50, 100}.
The integers next to the problem name in brackets indicate the number of constraints.
The best and worst results among the five algorithms are highlighted in green bold
and pink italic, respectively. When some of the 31 runs failed in obtaining feasible
solutions, the number of successful runs, i.e., cases where an algorithm found at least
one feasible solution, is noted in brackets. When all algorithms could not find feasible
solutions, corresponding cells are highlighted in gray. Statistical test result “+”, “−”, or
“∼” indicates the compared algorithm significantly outperformed SAPO, significantly
underperformed SAPO, or we cannot see a significant difference, respectively.

a) D = 30

Problem (# cons) GLoSADE FMSADE MPMLS SA-TSDE SAPO

F1 (1) 9.557e+03 − 4.164e+04 − 2.499e+04 − 7.389e+03 − 5.400e+03

F2 (1) 4.032e+03 − (1) − 5.468e+03 − 3.070e+03 − 2.110e+03

F4 (2) 3.883e+02 − 4.060e+02 − 1.973e+02 ∼ 2.148e+02 − 1.888e+02

F5 (2) 4.178e+01 − 3.183e+02 − 2.895e+01 ∼ 5.707e+01 − 3.251e+01

F12 (2) 1.517e+02 − (0) − 1.559e+01 − (30) − 1.261e+01

F13 (3) (0) − (0) − (0) − (7) ∼ (7)

F20 (2) 9.801e+00 ∼ 1.002e+01 ∼ 9.589e+00 + 9.920e+00 ∼ 9.877e+00

F21 (2) (0) − (0) − (29) − (0) − 1.075e+01

F22 (3) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)

+/−/∼ 0/7/2 0/7/2 1/5/3 0/6/3 –

Ave. Rank 3.222 4.556 2.556 3.056 1.611

b) D = 50

Problem (# cons) GLoSADE FMSADE MPMLS SA-TSDE SAPO

F1 (1) 3.038e+04 − 1.064e+05 − 6.341e+04 − 3.852e+04 − 2.547e+04

F2 (1) 1.707e+04 − (0) − 2.087e+04 − 1.487e+04 − 1.056e+04

F4 (2) 6.819e+02 − 6.686e+02 − 4.574e+02 − 3.507e+02 − 3.100e+02

F5 (2) 2.444e+03 − (27) − 1.210e+02 − 1.879e+03 − 9.113e+01

F12 (2) (0) − (0) − 1.052e+02 − (0) − 1.429e+01

F13 (3) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)

F20 (2) 1.824e+01 ∼ 1.882e+01 ∼ 1.803e+01 ∼ 1.860e+01 ∼ 1.838e+01

F21 (2) (0) − (0) − (0) − (0) − (30)

F22 (3) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)

+/−/∼ 0/6/3 0/6/3 0/6/3 0/6/3 –

Ave. Rank 3.278 4.167 2.833 3.056 1.667

c) D = 100

Problem (# cons) GLoSADE FMSADE MPMLS SA-TSDE SAPO

F1 (1) 1.644e+05 ∼ 4.964e+05 − 2.352e+05 − 1.597e+05 ∼ 1.624e+05

F2 (1) 1.314e+05 − (0) − 9.185e+04 − 9.066e+04 − 7.763e+04

F4 (2) 1.491e+03 − 1.523e+03 − 1.257e+03 − 8.659e+02 − 7.750e+02

F5 (2) 4.271e+04 − (25) − 2.094e+03 − 2.385e+04 − 1.384e+03

F12 (2) (0) − (0) − (0) − (0) − (19)

F13 (3) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)

F20 (2) 4.007e+01 + 4.067e+01 ∼ 3.969e+01 + 4.113e+01 ∼ 4.093e+01

F21 (2) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)

F22 (3) (0) ∼ (0) ∼ (0) ∼ (0) ∼ (0)

+/−/∼ 1/4/4 0/5/4 1/5/3 0/4/5 –

Ave. Rank 3.278 3.944 2.833 2.833 2.111

402 K. Nishihara and M. Nakata

Table 2. Significant differences regarding findings for “+/ − / ∼” between SAPO and
state-of-the-art SAEAs. Statistical test result “+”, “−”, or “∼” indicates the compared
algorithm significantly outperformed SAPO, significantly underperformed SAPO, or
we cannot see a significant difference, respectively. In the comparisons between the
numbers of “+” and “−”, the larger numbers are highlighted in bold.

D FE GLoSADE FMSADE MPMLS SA-TSDE

300 0/3/6 0/4/5 0/3/6 1/1/7
500 0/5/4 0/5/4 0/3/6 2/1/6

30 1,000 0/6/3 0/6/3 0/5/4 1/3/5
2,000 0/7/2 0/7/2 1/7/1 0/5/4
3,000 0/7/2 0/7/2 1/5/3 0/6/3
300 0/3/6 1/3/5 0/3/6 2/2/5
500 0/3/6 0/4/5 0/3/6 2/1/6

50 1,000 0/5/4 0/5/4 0/5/4 2/2/5
2,000 0/6/3 0/7/2 0/6/3 0/5/4
3,000 0/6/3 0/6/3 0/6/3 0/6/3

D FE GLoSADE FMSADE MPMLS SA-TSDE

300 0/ 2/7 0/ 3/6 0/ 1/ 8 2/ 2/ 5
500 1/ 2/6 0/ 3/6 1/ 2/ 6 2/ 2/ 5

100 1,000 1/ 3/5 0/ 4/5 1/ 2/ 6 2/ 2/ 5
2,000 0/ 3/6 0/ 4/5 1/ 3/ 5 1/ 2/ 6
3,000 1/ 4/4 0/ 5/4 1/ 5/ 3 0/ 4/ 5
300 0/ 8/19 1/10/16 0/ 7/20 5/ 5/17
500 1/10/16 0/12/15 1/ 8/18 6/ 4/17

Total 1,000 1/14/12 0/15/12 1/12/14 5/ 7/15
2,000 0/16/11 0/18/ 9 2/16/ 9 1/12/14
3,000 1/17/ 9 0/18/ 9 2/16/ 9 0/16/11

multiple constraints. These results demonstrate the effectiveness of the partial
optimization methodology of SAPO, where each objective and constraint were
optimized directly and thus improved effectively. This methodology was also use-
ful for non-separable and rotated constraints like F2 and F5 as SAPO derived
good performances on them. Even if decision variables cannot be separated, the
objective and constraints can be optimized independently.

Furthermore, we show the results of Wilcoxon rank-sum tests at 300, 500,
1, 000, and 2, 000 FEs in addition to 3, 000 (baseline) FEs for D ∈ {30, 50, 100}
and their total number in Table 2 to evaluate the convergence performance of
SAPO. SAPO outperformed GLoSADE, FMSADE, and MPMLS on every num-
ber of FEs in the table, where the number of “+” indicating the superiority of
the compared SAEAs is at most one. Although SAPO was competitive with
SA-TSDE before 1, 000 FEs, “−” outnumbers “+” after 2, 000 FEs, indicating
that SAPO kept improving the objective/constraint towards 3, 000 FEs. This
tendency can be observed in every D and their total. Therefore, we can confirm
the scalability of the performance of SAPO to the increase in the number of FEs.

5 Discussion

5.1 Impact of the Partial Optimization

Unlike existing SAEAs where constraints are treated as only an aggregation of
constraints, SAPO partially optimizes each objective/constraint. This subsection
investigates the effectiveness of the partial optimization proposed in this work.
Here, we prepared three variants of SAPO.

1. Variant using Aggregation (VUA) This variant is the most similar to the
mechanism of existing SAEAs, which employs the feasibility rule [5] using
aggregation of constraints, instead of partial optimization. The feasibility

A Surrogate-Assisted Partial Optimization for ECOPs 403

rule is the representative constraint handling technique [12]. Specifically, this
variant selects and sorts solutions for parent solutions and the training dataset
of an RSS by Eq. (2) every time. Feasible solutions are preferentially selected
and sorted in ascending order of f(x). Then, infeasible solutions are sorted
in ascending order of G(x). DE offspring solutions and an RSS are generated
in the same manner as those of Sect. 3.2. Offspring solutions are prescreened
as Lines 2–4 in Algorithm 3. Comparison with this variant reveals the impact
of partial optimization.

2. Variant Targeting Objective (VTO) This variant sets only the objective
function as the target. Thus, solutions for DE parent solutions and the train-
ing dataset are selected and sorted from good constraints. Specifically, only
Lines 1–6 and Lines 1–4 are conducted in Algorithms 2 and 3, respectively.

3. Variant Targeting Constraints (VTC) This variant sets only the con-
straints as the target. Hence, M constraints are partially optimized, but solu-
tions are not screened to improve f(x). Only Lines 9–15 and Lines 5–7 are
conducted in Algorithms 2 and 3, respectively. VTO and VTC are prepared
to evaluate whether both the objective and constraints are needed or not as
the targets of the partial optimization.

The experimental design is similar to Sect. 4.1. Table 3 summarizes the results
of the Wilcoxon rank-sum test. Statistical sign “+”, “−”, or “∼” indicates the
variant significantly outperformed SAPO, significantly underperformed SAPO,
or we cannot say that there is a significant difference, respectively. In comparison
with VUA, SAPO outperformed VUA at D = 30. Specifically, the number of
“+”, indicating the superiority of VUA, is larger than that of “−”, indicating the
inferiority of VUA, with 300 FEs. As the feasibility rule devotes many resources
to feasible solutions [12], the objective value is improved in the very early phase
of the search once feasible solutions are obtained. However, in problems where
obtaining feasible solutions is difficult, the use of the constraint aggregation G(x)
or its approximation Ĝ(x) requires more FEs to improve constraint violation in
the feasibility rule. Thus, the performance of VUA stagnated and the number of
“−” outnumbers that of “+” after 1, 000 FEs. The same tendency is observed for
D ∈ {50, 100}. Although the difference in the number of “−” and “+” decreases as
D increases, SAPO outperformed VUA in total of all D. Thus, the effectiveness
of the partial optimization is confirmed.

In the comparison between SAPO and VTO, the performance of SAPO is
slightly better than that of VTO. A similar trend to the comparison between
SAPO and VUA is detected; the performance of VTO stagnated. Thus, partial
optimization of constraints is needed to keep improving the performance. On
the other hand, SAPO clearly outperformed VTC for all D. This indicates the
improvement of the objective values is necessary although the partial optimiza-
tion of constraints contributes to the improvement of each constraint. From these
two comparisons, we identified that both the objective and constraints should
be dealt with as the targets of the partial optimization.

404 K. Nishihara and M. Nakata

5.2 Impact of the Parallel Use of DE Mutation Strategies

SAPO uses both rand/1 and best/1 mutation strategies to produce a variety
of offspring solutions. This subsection evaluates the effectiveness of the parallel
use of two DE mutation strategies. We prepared two variants of SAPO; one uses
only rand/1 and the other uses only best/1. Note that these variants generate
2N offspring for fair comparison. Again, the experimental design is similar to
Sect. 4.1. Table 4 summarizes the results of the Wilcoxon rank-sum test. Statis-
tical test sign “+”, “−”, or “∼” denotes the variant significantly outperformed
SAPO, significantly underperformed SAPO, or we cannot determine that there
is a significant difference, respectively. From the table, SAPO outperformed the
variant with rand/1 as no “+”. indicating the superiority of the variant, are
observed. The single-use of rand/1 lacks the exploitation ability. The variant
with best/1 derived slightly better performance than SAPO in the early stage of
optimization while SAPO became slightly better at the end of the search. This
indicates the strong exploitation ability of best/1 but the diversity of offspring
solution should be maintained by adding rand/1.

Table 3. Significant differences regarding findings for “+/ − / ∼” between SAPO and
its variants for an ablation study on partial optimization.

D = 30 D = 50 D = 100 Total
FE VUA VTO VTC VUA VTO VTC VUA VTO VTC VUA VTO VTC

300 3/1/53/0/6 1/4/42/0/73/0/6 0/3/62/0/74/0/5 0/4/57/1/19 10/0/17 1/11/15
500 1/3/53/0/6 0/8/15/0/45/0/4 1/4/44/0/54/0/5 0/4/510/3/1412/0/15 1/16/10
1,000 0/5/4 0/5/4 0/8/14/0/54/0/5 0/6/36/0/34/0/5 0/6/310/5/128/5/14 0/20/7
2,000 0/5/4 0/4/5 0/8/12/1/62/2/5 0/7/22/1/62/1/6 0/7/2 4/7/16 4/7/16 0/22/5
3,000 0/5/4 0/3/6 0/8/1 0/3/6 0/3/6 0/6/3 1/3/5 1/2/6 0/6/3 1/11/15 1/8/18 0/20/7

Table 4. Significant differences regarding findings for “+/ − / ∼” between SAPO and
its variants for an ablation study on the DE mutation strategies.

D = 30 D = 50 D = 100 Total
FE rand/1 best/1 rand/1 best/1 rand/1 best/1 rand/1 best/1

300 0/4/5 0/1/8 0/3/6 2/0/7 0/2/7 1/0/8 0/9/18 3/1/23
500 0/5/4 0/2/7 0/3/6 2/1/6 0/3/6 0/0/9 0/11/162/3/22
1,000 0/6/3 1/1/7 0/5/4 2/1/6 0/4/5 0/2/7 0/15/123/4/20
2,000 0/7/2 0/1/8 0/6/3 1/1/7 0/4/5 0/2/7 0/17/10 1/4/22
3,000 0/6/3 0/3/6 0/6/3 1/3/5 0/5/4 1/3/5 0/17/10 2/9/16

A Surrogate-Assisted Partial Optimization for ECOPs 405

6 Conclusion

This work proposed an SAEA named surrogate-assisted partial optimization
(SAPO). SAPO selects and sorts solutions with good objective/constraint val-
ues to form parent solutions and then independently optimizes each objec-
tive/constraint one by one. In the experiment, SAPO derived significantly better
performance than existing SAEAs as SAPO dealt with each constraint effectively.
In the discussion, we showed our partial optimization methodology can find fea-
sible solutions with better objective values within a smaller number of FEs than
using only an approximation of constraint violation made by aggregation of con-
straint approximations, which is commonly used in existing SAEAs.

Future work includes an adaptive selection of the objective/constraint to
be optimized to improve the optimization efficiency. We are motivated to solve
the entire problem set of the CEC 2017 benchmark suite, including problems
with equality constraints. We will also extend SAPO for multi-objective ECOPs,
where surrogate models are constructed for independent objectives/constraints
or an aggregated function of all objectives/constraints [6].

Acknowledgments. This work was supported by JSPS KAKENHI under Grant No.
22KJ1409.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bagheri, S., Konen, W., Bäck, T.: Online selection of surrogate models for con-
strained black-box optimization. In: 2016 IEEE Symposium Series on Computa-
tional Intelligence (SSCI) pp. 1–8. IEEE (2016). https://doi.org/10.1109/SSCI.
2016.7850206

2. Bagheri, S., Konen, W., Emmerich, M., Bäck, T.: Self-adjusting parameter control
for surrogate-assisted constrained optimization under limited budgets. Appl. Soft
Comput. 61, 377–393 (2017). https://doi.org/10.1016/j.asoc.2017.07.060

3. Chu, S., Yang, Z., Xiao, M., Qiu, H., Gao, K., Gao, L.: Explicit topology opti-
mization of novel polyline-based core sandwich structures using surrogate-assisted
evolutionary algorithm. Comput. Methods Appl. Mech. Eng. 369, 113215 (2020).
https://doi.org/10.1016/j.cma.2020.113215

4. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-
ory 13(1), 21–27 (1967). https://doi.org/10.1109/TIT.1967.1053964

5. Deb, K.: An efficient constraint handling method for genetic algorithms. Com-
put. Methods Appl. Mech. Eng. 186(2), 311–338 (2000). https://doi.org/10.1016/
S0045-7825(99)00389-8

6. Deb, K., Roy, P.C., Hussein, R.: Surrogate Modeling Approaches for Multiobjective
Optimization: Methods, Taxonomy, and Results. Math. Comput. Appl. 26(1), 5
(2020). https://doi.org/10.3390/mca26010005

7. Díaz-Manríquez, A., Toscano, G., Coello Coello, C.A.: Comparison of metamodel-
ing techniques in evolutionary algorithms. Soft. Comput. 21(19), 5647–5663 (2017).
https://doi.org/10.1007/s00500-016-2140-z

https://doi.org/10.1109/SSCI.2016.7850206
https://doi.org/10.1109/SSCI.2016.7850206
https://doi.org/10.1016/j.asoc.2017.07.060
https://doi.org/10.1016/j.cma.2020.113215
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.3390/mca26010005
https://doi.org/10.1007/s00500-016-2140-z

406 K. Nishihara and M. Nakata

8. Evans, L.C.: Partial Differential Equations. American Mathematical Society (Mar
2022)

9. Fix, E., Hodges, J.L.: Discriminatory analysis - nonparametric discrimination:
small sample performance. Tech. Rep. ADA800391, University of California, Berke-
ley (1952)

10. He, C., Zhang, Y., Gong, D., Ji, X.: A review of surrogate-assisted evolutionary
algorithms for expensive optimization problems. Expert Syst. Appl. 217, 119495
(2023). https://doi.org/10.1016/j.eswa.2022.119495

11. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61–70 (2011). https://doi.org/10.1016/j.
swevo.2011.05.001

12. Li, G., Zhang, Q.: Multiple penalties and multiple local surrogates for expen-
sive constrained optimization. IEEE Trans. Evol. Comput. 25(4), 769–778 (2021).
https://doi.org/10.1109/TEVC.2021.3066606

13. Liu, R., Bianco, M.J., Gerstoft, P.: Automated partial differential equation iden-
tification. J. Acoust. Soc. Am. 150(4), 2364 (2021). https://doi.org/10.1121/10.
0006444

14. Liu, Y., Liu, J., Jin, Y., Li, F., Zheng, T.: A surrogate-assisted two-stage differen-
tial evolution for expensive constrained optimization. IEEE Trans. Emerg. Topics
Comput. 7(3), 715–730 (2023). https://doi.org/10.1109/TETCI.2023.3240221

15. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: DACE: a MATLAB kriging tool-
box. Tech. Rep. IMM-REP-2002-12, Informatics and Mathematical Modelling,
DTU (2002)

16. Miranda-Varela, M.E., Mezura-Montes, E.: Constraint-handling techniques in
surrogate-assisted evolutionary optimization. An empirical study. Appl. Soft Com-
put. 73, 215–229 (2018). https://doi.org/10.1016/j.asoc.2018.08.016

17. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computation-
ally expensive problems via surrogate modeling. AIAA J. 41(4), 687–696 (2003).
https://doi.org/10.2514/2.1999

18. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function net-
works. Neural Comput. 3(2), 246–257 (1991). https://doi.org/10.1162/neco.1991.
3.2.246

19. Preen, R.J., Bull, L.: Toward the coevolution of novel vertical-axis wind tur-
bines. IEEE Trans. Evol. Comput. 19(2), 284–294 (2015). https://doi.org/10.1109/
TEVC.2014.2316199

20. Regis, R.G.: Stochastic radial basis function algorithms for large-scale optimization
involving expensive black-box objective and constraint functions. Comput. Oper.
Res. (2011). https://doi.org/10.1016/j.cor.2010.09.013

21. Regis, R.G.: Evolutionary programming for high-dimensional constrained expen-
sive black-box optimization using radial basis functions. IEEE Trans. Evol. Com-
put. 18(3), 326–347 (2014). https://doi.org/10.1109/TEVC.2013.2262111

22. Regis, R.G.: A survey of surrogate approaches for expensive constrained black-box
optimization. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) WCGO 2019.
AISC, vol. 991, pp. 37–47. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-21803-4_4

23. Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black
box functions using radial basis functions. J. Global Optimiz. 31(1), 153–171
(2005). https://doi.org/10.1007/s10898-004-0570-0

https://doi.org/10.1016/j.eswa.2022.119495
https://doi.org/10.1016/j.swevo.2011.05.001
https://doi.org/10.1016/j.swevo.2011.05.001
https://doi.org/10.1109/TEVC.2021.3066606
https://doi.org/10.1121/10.0006444
https://doi.org/10.1121/10.0006444
https://doi.org/10.1109/TETCI.2023.3240221
https://doi.org/10.1016/j.asoc.2018.08.016
https://doi.org/10.2514/2.1999
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1109/TEVC.2014.2316199
https://doi.org/10.1109/TEVC.2014.2316199
https://doi.org/10.1016/j.cor.2010.09.013
https://doi.org/10.1109/TEVC.2013.2262111
https://doi.org/10.1007/978-3-030-21803-4_4
https://doi.org/10.1007/978-3-030-21803-4_4
https://doi.org/10.1007/s10898-004-0570-0

A Surrogate-Assisted Partial Optimization for ECOPs 407

24. Shi, L., Rasheed, K.: ASAGA: an adaptive surrogate-assisted genetic algorithm. In:
Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO), pp. 1049–1056. GECCO 2008, Association for Computing Machin-
ery, New York, NY, USA (2008). https://doi.org/10.1145/1389095.1389289

25. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optimiz. 11, 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

26. Wang, W., Liu, H.L., Tan, K.C.: A surrogate-assisted differential evolution algo-
rithm for high-dimensional expensive optimization problems. IEEE Trans. Cybern.
53(4), 2685–2697 (2023). https://doi.org/10.1109/TCYB.2022.3175533

27. Wang, Y., Li, J.P., Xue, X., Wang, B.C.: Utilizing the correlation between con-
straints and objective function for constrained evolutionary optimization. IEEE
Trans. Evol. Comput. 24(1), 29–43 (2020). https://doi.org/10.1109/TEVC.2019.
2904900

28. Wang, Y., Yin, D.Q., Yang, S., Sun, G.: Global and local surrogate-assisted differ-
ential evolution for expensive constrained optimization problems with inequality
constraints. IEEE Trans. Cybern. 49(5), 1642–1656 (2019). https://doi.org/10.
1109/TCYB.2018.2809430

29. Wu, G., Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation cri-
teria for the CEC 2017 competition on constrained real-parameter optimization.
Tech. rep., National University of Defense Technology, Changsha, Hunan, PR
China and Kyungpook National University, Daegu, South Korea and Nanyang
Technological University, Singapore, Technical Report, Singapore (2017)

30. Wu, Y., Yin, Q., Jie, H., Wang, B., Zhao, J.: A RBF-based constrained global
optimization algorithm for problems with computationally expensive objective and
constraints. Struct. Multidiscip. Optim. 58(4), 1633–1655 (2018). https://doi.org/
10.1007/s00158-018-1987-2

31. Yang, Z., Qiu, H., Gao, L., Cai, X., Jiang, C., Chen, L.: Surrogate-assisted
classification-collaboration differential evolution for expensive constrained opti-
mization problems. Inf. Sci. 508, 50–63 (2020). https://doi.org/10.1016/j.ins.2019.
08.054

https://doi.org/10.1145/1389095.1389289
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/TCYB.2022.3175533
https://doi.org/10.1109/TEVC.2019.2904900
https://doi.org/10.1109/TEVC.2019.2904900
https://doi.org/10.1109/TCYB.2018.2809430
https://doi.org/10.1109/TCYB.2018.2809430
https://doi.org/10.1007/s00158-018-1987-2
https://doi.org/10.1007/s00158-018-1987-2
https://doi.org/10.1016/j.ins.2019.08.054
https://doi.org/10.1016/j.ins.2019.08.054

Author Index

A
Ahrari, Ali 3
Alderliesten, Tanja 322
Alissa, Mohamad 121
Allmendinger, Richard 340
Antkiewicz, Michał 170
Auger, Anne 284

B
Bäck, Thomas 20, 87, 268
Benatan, Matt 340
Bosman, Peter A. N. 322

C
Cambier, Nicolas 53
Cenikj, Gjorgjina 137
Chen, Quanlin 356
Chen, Yiyu 356
Cheng, Ji 374
Coello, Carlos A. Coello 3

D
de Carlo, Matteo 53
de Lima, Allan 105
de Nobel, Jacob 268
Dietrich, Konstantin 154
Ding, Tianyu 356
Dobrovský, Ladislav 303
Doerr, Carola 20, 137, 154

E
Eiben, Guszti 53

F
Fare, Clyde 340
Ferrante, Eliseo 53
Frank, Stephan 221
Frenzel, Moritz 87

G
Galván, Edgar 105
Gao, Yang 356
Gitterle, Markus 87
Glasmachers, Tobias 221
Gmyrek, Konrad 170

H
Hamano, Ryoki 236, 252
Hansen, Nikolaus 284
Hart, Emma 70, 121
He, Xu 356
Héron, Sébastien 284
Huo, Jing 356

K
Knowles, Joshua 340
Kononova, Anna V. 36, 268
Krause, Peter 87
Kůdela, Jakub 303

L
Lengler, Johannes 20
Li, Dong 356
Lin, Xi 185
Liu, Fei 185, 374
Long, Fu Xing 87
López-Ibáñez, Manuel 340
Lu, Zhichao 185

M
Marty, Tristan 284
Myszkowski, Paweł B. 170

N
Nakata, Masaya 391
Nishihara, Kei 391
Nomura, Masahiro 236, 252

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 409–410, 2024.
https://doi.org/10.1007/978-3-031-70068-2

https://doi.org/10.1007/978-3-031-70068-2

410 Author Index

O
Olech, Łukasz P. 170

P
Prager, Raphael Patrick 154
Pricopie, Stefan 340

R
Renau, Quentin 70, 121
Reyes Fernández de Bulnes, Darian 105
Rodriguez, Cedric J. 322
Rusin, Dimitri 20
Ryan, Conor 105

S
Saito, Shota 236
Sarker, Ruhul 3
Seiler, Moritz 137
Sekino, Yuta 205
Semet, Yann 284
Shir, Ofer M. 268
Shirakawa, Shinichi 205, 236, 252
Sim, Kevin 121

Škvorc, Urban 137
Stein, Niki van 87

T
Thomson, Sarah L. 36
Trautmann, Heike 137, 154

U
Uchida, Kento 205, 236

V
van Diggelen, Fuda 53
van Stein, Niki 36
Vermetten, Diederick 20, 268

W
Wang, Zhenkun 185

Y
Yao, Yiming 374

Z
Zhang, Qingfu 185, 374
Zhang, Rui 185

	 Preface
	 Organization
	 Contents – Part II
	Benchmarking and Performance Measures
	Aggregated Partial Hypervolumes - An Overall Indicator for Performance Evaluation of Multimodal Multiobjective Optimization Methods
	1 Introduction
	2 Qualitative Analysis of Potential MMMOO Outcomes
	3 Critical Assessment of Existing Indicators
	4 Aggregated Partial Hypervolumes
	5 Descriptive Examples
	5.1 Example 1
	5.2 Example 2
	5.3 Example 3

	6 Summary and Conclusions
	References

	Empirical Analysis of the Dynamic Binary Value Problem with IOHprofiler
	1 Introduction
	1.1 Dynamic Environments
	1.2 Theory-Inspired Benchmarks
	1.3 Theoretical Results on the Benchmarks
	1.4 IOHprofiler

	2 Experimental Setup
	2.1 DBV in IOHexperimenter
	2.2 Used Algorithm
	2.3 Experimental Setup and Reproducibility

	3 Results
	3.1 Exploration of Used Algorithms
	3.2 Mutation in 1+1
	3.3 Adding Multiple Parents: Crossover
	3.4 Difficulty of the Search Stages
	3.5 HotTopic: Impact of Update Frequency

	4 Conclusions and Future Work
	References

	A Deep Dive Into Effects of Structural Bias on CMA-ES Performance Along Affine Trajectories
	1 Introduction
	2 Background
	2.1 Modular CMA-ES
	2.2 Structural Bias
	2.3 SHAP

	3 Structural Bias Classification
	3.1 Methodology
	3.2 Module Contributions to SB
	3.3 Limitations of Deep-BIAS and Mixed SB

	4 Effects of Structural Bias on Performance
	4.1 Affine Function Pairs
	4.2 Experimental Setup

	5 Results
	6 Conclusions
	References

	Automated Algorithm Selection and Configuration
	Emergence of Specialised Collective Behaviors in Evolving Heterogeneous Swarms
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Discussion
	6 Conclusion
	References

	Identifying Easy Instances to Improve Efficiency of ML Pipelines for Algorithm-Selection
	1 Introduction
	2 Related Work
	3 Motivation
	4 Methods
	4.1 Hardness Classifier
	4.2 Algorithm-Selection
	4.3 Saving and Re-allocating Budget

	5 Results
	5.1 Baselines
	5.2 Re-allocating Budget: Batch Setting
	5.3 Re-allocating Budget: Streaming Setting

	6 Conclusion
	References

	Landscape-Aware Automated Algorithm Configuration Using Multi-output Mixed Regression and Classification
	1 Introduction
	2 Related Work
	2.1 Automated Algorithm Configuration
	2.2 Black-Box Optimization Benchmarking
	2.3 Randomly Generated Functions
	2.4 Exploratory Landscape Analysis

	3 Methodology
	3.1 Selection of Appropriate RGF
	3.2 Multi-output Mixed Regression and Classification

	4 Experimental Setup
	4.1 Optimization Performance Metric
	4.2 Optimization Baseline

	5 Results
	5.1 Representativeness of Training Data
	5.2 Performance of Predicted Configurations

	6 Conclusions and Future Work
	References

	Feature Encapsulation by Stages in the Regression Domain Using Grammatical Evolution
	1 Introduction
	2 Background
	2.1 Evolutionary Computation
	2.2 Stacked Methods

	3 Feature Encapsulation by Stages
	4 Experimental Design
	4.1 Problems
	4.2 Grammatical Evolution

	5 Results and Discussion
	5.1 Statistical Tests
	5.2 Complexity of the Individuals

	6 Conclusions
	References

	Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Online Bin-Packing
	3.2 Data and Models
	3.3 Algorithm Details
	3.4 Experimental Protocol

	4 Results
	4.1 Effectiveness of the EA
	4.2 Quality of Evolved Adversarial Instances

	5 Analysis
	5.1 Path Towards Misclassification
	5.2 Insights Into How the Instances Change

	6 Where Are the Fragile Instances?
	7 Conclusions and Future Work
	References

	Learned Features vs. Classical ELA on Affine BBOB Functions
	1 Introduction
	2 Background
	2.1 Classical Exploratory Landscape Analysis
	2.2 Learned Features

	3 Experimental Setup and Methodology
	4 Results
	5 Conclusion
	References

	Hybridizing Target- and SHAP-Encoded Features for Algorithm Selection in Mixed-Variable Black-Box Optimization
	1 Introduction
	2 Mixed-Variable Black-Box Optimization
	3 Problem Representation
	3.1 Exploratory Landscape Analysis
	3.2 Preprocessing Scheme Based on Target-Encoding
	3.3 SHAP-Encoding

	4 Experimental Setup
	4.1 Benchmark Problems
	4.2 Algorithm Portfolio
	4.3 Exploratory Landscape Feature Generation
	4.4 Construction of Algorithm Selectors

	5 Results
	6 Conclusion
	References

	iMOPSE: a Comprehensive Open Source Library for Single- and Multi-objective Metaheuristic Optimization
	1 Introduction
	2 Related Work
	2.1 iMOPSE in Comparison

	3 iMOPSE the Main Idea and Architecture
	3.1 Implemented Solving Methods and Operators
	3.2 Implemented Problems

	4 Additional iMOPSE Tools
	4.1 iMOPSE Input Parameters and Configurations
	4.2 Pareto Analyzer
	4.3 Python Scripts

	5 A Case Study: Conducting Experiments with iMOPSE
	6 Summary and Future Works
	References

	Understanding the Importance of Evolutionary Search in Automated Heuristic Design with Large Language Models
	1 Introduction
	2 Background
	3 Preliminaries
	4 Experimental Results and Analyses
	4.1 Performance of Standalone LLMs on AHD
	4.2 Performance of Existing LLM-Based EPS Methods on AHD

	5 Conclusion
	References

	Numerical Optimization
	Warm Starting of CMA-ES for Contextual Optimization Problems
	1 Introduction
	2 Preliminaries
	2.1 CMA-ES
	2.2 Multi-output Gaussian Process Regression

	3 Problem Definition
	4 Proposed Method: CMA-ES-CWS
	4.1 Predictive Distribution for Optimal Solution
	4.2 Warm Starting Using Predictive Distribution

	5 Experiment Using Benchmark Functions
	5.1 Comparative Methods
	5.2 Experimental Setting
	5.3 Experimental Result
	5.4 Effect of Number of Pre-optimizations

	6 Evaluation Experiment in Robot Control Task
	6.1 Experimental Setting
	6.2 Experimental Result

	7 Conclusion
	References

	A Potential Function for a Variable-Metric Evolution Strategy
	1 Introduction
	2 Theoretical Background
	2.1 Drift Analysis
	2.2 Invariances

	3 Construction of a Lyapunov Potential Function
	3.1 Target
	3.2 Potential Function

	4 Experiments
	4.1 Target Step Size
	4.2 Drift Experiments

	5 Results
	5.1 Target Parameters
	5.2 Drift Analysis
	5.3 Asymptotic Behaviour

	6 Conclusion
	References

	CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points
	1 Introduction
	2 Related Works
	3 Baseline Algorithm: CMA-ES
	4 Target Problem
	5 Proposed Method: CMA-ES-SoP
	5.1 Sample Encoding
	5.2 Margin Correction
	5.3 Margin Adaptation

	6 Experiment
	6.1 Experimental Setting
	6.2 Experimental Result in Discrete Optimization on Sets of Points
	6.3 Experimental Result in Mixed-Variable Optimization

	7 Conclusion
	A Ensuring Margin by Modification of Covariance
	References

	Natural Gradient Interpretation of Rank-One Update in CMA-ES
	1 Introduction
	2 Preliminaries
	2.1 CMA-ES
	2.2 Information Geometric Optimization

	3 Maximum a Posteriori IGO
	3.1 Introducing Prior Information to IGO
	3.2 Natural Gradient Update for MAP-IGO
	3.3 Natural Gradient for Normal-Inverse-Wishart Distribution
	3.4 Update Rules for MAP-IGO with Multivariate Normal Distribution

	4 Interpretation of the Rank-One Update with Prior Distribution
	4.1 Derivation of the Rank-One Update
	4.2 Interpretation for the Setting of the Prior Distribution

	5 Experiments
	5.1 Experimental Setting
	5.2 Results and Discussion

	6 Conclusion
	References

	Avoiding Redundant Restarts in Multimodal Global Optimization
	1 Introduction
	2 Preliminaries and Problem Formulation
	2.1 Basins of Attraction in Global Optimization
	2.2 CMA-ES
	2.3 Restart Mechanisms
	2.4 Motivation
	2.5 Repelling Subpopulations
	2.6 Hill-Valley Function as a Boolean Heuristic

	3 The Potential Gain of Avoiding Redundant Restarts
	3.1 Defining the Redundancy Measure
	3.2 Numerical Assessment of Expected Redundancy Factors

	4 Combating the Redundancy: Repelling CMA-ES
	4.1 Tabu Points
	4.2 Restarting
	4.3 Search Space Coverage

	5 Proof-of-Concept: Repelling CMA-ES in Action
	6 Conclusions and Future Work
	References

	LB+IC-CMA-ES: Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems
	1 Introduction
	2 Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems
	2.1 CMA-ES
	2.2 Lower Bounding the Standard Deviation on Integer Coordinates
	2.3 Integer Centering

	3 Single Runs of the Different Variants
	4 Performance Assessment
	5 Summary and Conclusion
	References

	Bayesian- and Surrogate-Assisted Optimization
	Performance Comparison of Surrogate-Assisted Evolutionary Algorithms on Computational Fluid Dynamics Problems
	1 Introduction
	2 Surrogate-Assisted Optimization
	3 Selected Problems
	3.1 PitzDaily
	3.2 Electrostatic Precipitator

	4 Selected Methods and Experimental Setup
	4.1 Experimental Setup

	5 Results and Discussion
	5.1 PitzDaily Results
	5.2 ESP Results
	5.3 Aggregate Results

	6 Conclusions
	References

	Balancing Between Time Budgets and Costs in Surrogate-Assisted Evolutionary Algorithms
	1 Introduction
	2 Background
	2.1 MO SAEA
	2.2 Surrogates
	2.3 Reference Vector Guided EA
	2.4 MAMaLGaM

	3 Methodology
	4 Experimental Setup
	4.1 Benchmark Problems
	4.2 Algorithm Settings
	4.3 Evaluation of Results

	5 Results on Benchmark Problems
	6 Real-World Application: A Biomechanical Simulation
	7 Results on Real-World Application
	8 Conclusions
	References

	An Adaptive Approach to Bayesian Optimization with Setup Switching Costs
	1 Introduction
	2 Related Work
	3 Problem Setup
	4 Methodology
	5 Experiments
	5.1 Experimental Setup
	5.2 Optimal Probability Value
	5.3 Algorithms Performance

	6 Conclusion
	References

	Re-examining Supervised Dimension Reduction for High-Dimensional Bayesian Optimization
	1 Introduction
	2 Related Work
	3 Background
	3.1 Bayesian Optimization
	3.2 Kernel Dimension Reduction
	3.3 Manifold KDR

	4 Challenges with SIR-BO
	5 Algorithm
	5.1 Subspace Learning
	5.2 Constrained Acquisition Function

	6 Benchmark Experiments
	6.1 Synthetic Experiments
	6.2 Real-World Problems

	7 Conclusion
	References

	Evolve Cost-Aware Acquisition Functions Using Large Language Models
	1 Introduction
	2 Background and Related Works
	2.1 Background
	2.2 Cost-Aware Bayesian Optimization
	2.3 Automatic Design for Acquisition Functions

	3 EvolCAF: Evolve Cost-Aware Acquisition Functions with LLMs
	3.1 Framework
	3.2 General Definition for Evolved AFs
	3.3 Prompt Engineering

	4 Experimental Studies
	4.1 Experimental Settings
	4.2 Evolution Results
	4.3 Evaluation of the Optimal Acquisition Function

	5 Conclusion
	References

	A Surrogate-Assisted Partial Optimization for Expensive Constrained Optimization Problems
	1 Introduction
	2 Preliminary
	2.1 DE: Differential Evolution
	2.2 RBFN: Radial Basis Function Network

	3 SAPO: Surrogate-Assisted Partial Optimization
	3.1 Concept
	3.2 Mechanism

	4 Experiment
	4.1 Experimental Design
	4.2 Result

	5 Discussion
	5.1 Impact of the Partial Optimization
	5.2 Impact of the Parallel Use of DE Mutation Strategies

	6 Conclusion
	References

	Author Index

