
Michael Affenzeller · Stephan M. Winkler ·
Anna V. Kononova · Heike Trautmann ·
Tea Tušar · Penousal Machado ·
Thomas Bäck (Eds.)

LN
CS

 1
51

50

18th International Conference, PPSN 2024
Hagenberg, Austria, September 14–18, 2024
Proceedings, Part III

Parallel Problem Solving
from Nature – PPSN XVIII

Lecture Notes in Computer Science 15150
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Michael Affenzeller · Stephan M. Winkler ·
Anna V. Kononova · Heike Trautmann ·
Tea Tušar · Penousal Machado · Thomas Bäck
Editors

Parallel Problem Solving
from Nature – PPSN XVIII
18th International Conference, PPSN 2024
Hagenberg, Austria, September 14–18, 2024
Proceedings, Part III

Editors
Michael Affenzeller
University of Applied Sciences Upper Austria
Wels, Austria

Anna V. Kononova
Leiden University
Leiden, The Netherlands

Tea Tušar
Jožef Stefan Institute
Ljubljana, Slovenia

Thomas Bäck
Leiden University
Leiden, The Netherlands

Stephan M. Winkler
University of Applied Sciences Upper Austria
Hagenberg, Austria

Heike Trautmann
University of Paderborn
Paderborn, Germany

Penousal Machado
University of Coimbra
Coimbra, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-70070-5 ISBN 978-3-031-70071-2 (eBook)
https://doi.org/10.1007/978-3-031-70071-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-5692-5940
https://orcid.org/0000-0002-4138-7024
https://orcid.org/0000-0002-6495-006X
https://orcid.org/0000-0001-6768-1478
https://orcid.org/0000-0002-5196-4294
https://orcid.org/0000-0002-9788-8282
https://orcid.org/0000-0002-6308-6484
https://doi.org/10.1007/978-3-031-70071-2

Preface

Two years ago, in 2022, the international conference on Parallel Problem Solving from
Nature (PPSN) returned to where it all started in 1990, namely to Dortmund, Germany.
It was great to see that the community had overcome the pandemic and gathered with
more than 100 participants attending in person.

On the last day of the conference, during the closing ceremony, we got the chance
to propose the University of Applied Sciences Upper Austria (FH OÖ) as organizers
and the Softwarepark Hagenberg as the location for PPSN 2024. We were convinced
that FH OÖ as the (with respect to research and development) strongest university of
applied sciences in Austria could be the ideal choice as host for PPSN 2024, especially
as we presented the research group Heuristic and Evolutionary Algorithms Laboratory
(HEAL), one of the most active groups in evolutionary algorithms in Austria, as the core
group of the organization team. After some weeks, we were delighted to hear from the
steering committee that we were chosen as organizers and Hagenberg as the location for
this year’s edition of PPSN.

We are pleased that a record number of researchers followed our call by submitting
their papers for review. We received 294 submissions from which the program chairs
selected the top 101 after an extensive peer-review process, which corresponds to an
acceptance rate of 34.35%. Not all decisions were easy to make, but we benefited greatly
from the careful reviews provided by the international program committee. With an
average of 2.86 reviews per paper, most of the submissions received three reviews,
while some received two. This led to a total of 840 reviews. Thanks to these reviews, we
were able to decide about acceptance on a solid basis.

The papers included in these proceedings were assigned to 12 clusters, entitled
Combinatorial Optimization, Genetic Programming, Fitness Landscape Modeling and
Analysis, Benchmarking and Performance Measures, Automated Algorithm Selection
and Configuration, Numerical Optimization, Bayesian- and Surrogate-Assisted Opti-
mization, Theoretical Aspects of Nature-Inspired Optimization, (Evolutionary) Machine
Learning and Neuroevolution, Evolvable Hardware and Evolutionary Robotics, Multi-
objective Optimization and Real-World Applications which can hardly reflect, the true
variety of research topics presented in the proceedings at hand. Following the tradition
and spirit of PPSN, all papers were presented as posters. The eight poster sessions con-
sisting of 12 or 13 papers each were compiled orthogonally to the clusters mentioned
above to cover the range of topics as widely as possible. As a consequence, participants
with different interests would find some relevant papers in every session and poster
presenters were able to discuss related work in sessions different from their own.

As usual, the conference started with two days of workshops and tutorials (Saturday
andSunday), followed by three days of poster sessions and invited plenary talks (Monday
to Wednesday). We are delighted that three highly renowned researchers from up-and-
coming, related research fields accepted our invitation to give a keynote speech, which
was be the first item on the program over the three days of the conference.

vi Preface

Two of our keynote speakers are young professors at excellent academic institutions,
namely Oliver Schütze (Cinvestav-IPN, Mexico City) and Richard Küng (JKU Linz,
Austria); the third keynoter is a researcher at Google Deepmind, namely Bernardino
Romera-Paredes, with an equally impressive scientific record.

Needless to say, the success of such a conference depends on authors, reviewers, and
organizers. We are grateful to all authors for submitting their best and latest work, to
all the reviewers for the generous way they spent their time and provided their valuable
expertise in preparing these reviews, to the workshop organizers and tutorial presenters
for their contributions to enhancing the value of the conference, and to the local organizers
who helped to make PPSN XVIII happen.

Last but not least, wewould like to thank Softwarepark Hagenberg and theUniversity
of Applied Sciences Upper Austria for the donations.Weare grateful for the long-standing
support of Springer to this conference series. Finally, we thank the RISC Software and
Software Competence Center Hagenberg for providing financial backing.

July 2024 Michael Affenzeller
Stephan M. Winkler
Anna V. Kononova
Heike Trautmann

Tea Tušar
Penousal Machado

Thomas Bäck

Organization

General Chairs

Michael Affenzeller University of Applied Sciences Upper Austria,
Austria

Stephan Winkler University of Applied Sciences Upper Austria,
Austria

Honorary Chair

Hans-Paul Schwefel TU Dortmund, Germany

Program Committee Chairs

Heike Trautmann University of Paderborn, Germany
Tea Tušar Jožef Stefan Institute, Slovenia
Penousal Machado University of Coimbra, Portugal
Thomas Bäck Leiden University, Netherlands

Proceedings Chair

Anna V. Kononova Leiden University, Netherlands

Tutorials Chair

Fabricio Olivetti de França Federal University of ABC, Brazil

Workshops Chair

Roman Kalkreuth RWTH Aachen University, Germany

viii Organization

Publicity Chairs

Jan Zenisek University of Applied Sciences Upper Austria,
Austria

Christian Haider University of Applied Sciences Upper Austria,
Austria

Louise Buur University of Applied Sciences Upper Austria,
Austria

Technical Support Chairs

Oliver Krauss University of Applied Sciences Upper Austria,
Austria

Du Nguyen Duy Software Competence Center Hagenberg, Austria

Steering Committee

Thomas Bäck Leiden University, Netherlands
David W. Corne Heriot-Watt University, UK
Carlos Cotta University of Malaga, Spain
Kenneth De Jong George Mason University, USA
Gusz E. Eiben Vrije Universiteit Amsterdam, Netherlands
Bogdan Filipič Jožef Stefan Institute, Slovenia
Emma Hart Edinburgh Napier University, UK
Juan Julián Merelo Guervós University of Granada, Spain
Günter Rudolph TU Dortmund, Germany
Thomas P. Runarsson University of Iceland, Iceland
Robert Schaefer University of Krakow, Poland
Marc Schoenauer Inria, France
Xin Yao University of Birmingham, UK and SUSTech,

China

Keynote Speakers

Oliver Schütze CINVESTAV-IPN, Mexico
Bernardino Romera-Paredes Google DeepMind London, UK
Richard Küng Johannes Kepler University Linz, Austria

Organization ix

Program Committee

Michael Affenzeller University of Applied Sciences Upper Austria,
Austria

Hernán Aguirre Shinshu University, Japan
Imène Ait Abderrahim University of Djilali Bounaama Khemis Miliana,

Algeria
Youhei Akimoto University of Tsukuba, Japan
Richard Allmendinger University of Manchester, UK
Marie Anastacio Leiden University, Netherlands
Claus Aranha University of Tsukuba, Japan
Dirk Arnold Dalhousie University, Canada
Anne Auger Inria, France
Dogan Aydin Dumlupinar University, Turkey
Jaume Bacardit Newcastle University, UK
Heder Bernardino Federal University of Juiz de Fora, Brazil
Hans-Georg Beyer Vorarlberg University of Applied Sciences,

Austria
Martin Binder Ludwig Maximilian University of Munich,

Germany
Mauro Birattari Université libre de Bruxelles, Belgium
Bernd Bischl Ludwig Maximilian University of Munich,

Germany
Julian Blank Michigan State University, USA
Aymeric Blot University College London, UK
Peter Bosman Centrum Wiskunde & Informatica, Netherlands
Jakob Bossek University of Paderborn, Germany
Anton Bouter Centrum Wiskunde & Informatica, Netherlands
Jürgen Branke University of Warwick, UK
Dimo Brockhoff Inria, France
Alexander Brownlee University of Stirling, UK
Larry Bull University of the West of England, UK
Maxim Buzdalov Aberystwyth University, UK
Stefano Cagnoni University of Parma, Italy
Salvatore Calderaro Palermo University, Italy
Pedro Carvalho University of Aveiro, Portugal
Josu Ceberio University of the Basque Country, Spain
Ying-Ping Chen National Chiao Tung University, Taiwan
Francisco Chicano University of Malaga, Spain
Miroslav Chlebik University of Sussex, UK
Sung-Bae Cho Yonsei University, South Korea
Carlos Coello Coello CINVESTAV-IPN, Mexico

x Organization

Jordan Cork Jožef Stefan Institute, Slovenia
João Correia University of Coimbra, Portugal
Gabriel Cortês University of Coimbra, Portugal
Doğan Çörüş Kadir Has University, Turkey
Ernesto Costa University of Coimbra, Portugal
Carlos Cotta University of Malaga, Spain
António Cunha University of Minho, Portugal
Nguyen Dang St Andrews University, UK
Kenneth De Jong George Mason University, USA
Roy de Winter Leiden University, Netherlands
Kalyanmoy Deb Michigan State University, USA
Antonio Della Cioppa University of Salerno, Italy
Antipov Denis University of Adelaide, Australia
Bilel Derbel Université de Lille, France
André Deutz Leiden University, Netherlands
Konstantin Dietrich TU Dresden, Germany
Benjamin Doerr Ecole Polytechnique, France
Carola Doerr Sorbonne University, France
John Drake University of Leicester, UK
Rafał Dreżewski AGH University of Science and Technology,

Poland
Johann Dreo Pasteur Institute, France
Paul Dufossé ID Solutions Oncology, France
Tome Eftimov Jožef Stefan Institute, Slovenia
Theresa Eimer Leibniz University Hannover, Germany
Michael Emmerich Leiden University, Netherlands
Andries Engelbrecht University of Stellenbosch, South Africa
Anton Eremeev Dostoevsky Omsk State University, Russia
Richard Everson University of Exeter, UK
Pedro Ferreira University of Lisbon, Portugal
Antonino Fiannaca Italian National Research Council, Italy
Jonathan Fieldsend University of Exeter, UK
Bogdan Filipič Jožef Stefan Institute, Slovenia
Steffen Finck Vorarlberg University of Applied Sciences,

Austria
Marcus Gallagher University of Queensland, Australia
José García-Nieto University of Málaga, Spain
Mario Giacobini University of Torino, Italy
Kyriakos Giannakoglou National Technical University of Athens, Greece
Tobias Glasmachers Ruhr-Universität Bochum, Germany
Christian Grimme University of Münster, Germany

Organization xi

Alexander Hagg Bonn-Rhein-Sieg University of Applied Sciences,
Germany

Julia Handl University of Manchester, UK
Nikolaus Hansen Inria, France
Jin-Kao Hao University of Angers, France
Hans Harder Paderborn University, Germany
Emma Hart Edinburgh Napier University, UK
Verena Heidrich-Meisner CAU Kiel, Germany
Jonathan Heins TU Dresden, Germany
Carlos Henggeler Antunes University of Coimbra, Portugal
Carlos Ignacio Hernández

Castellanos
National Autonomous University of Mexico,

Mexico
Ishara Hewa Pathiranage University of Adelaide, Australia
Martin Holeňa Czech Academy of Sciences, Czechia
Andoni Irazusta Garrnendia University of the Basque Country, Spain
Hisao Ishibuchi Southern University of Science and Technology,

China
Christian Jacob University of Calgary, Canada
Domagoj Jakobović University of Zagreb, Croatia
Anja Jankovic RWTH Aachen University, Germany
Thomas Jansen Aberystwyth University, UK
Laetitia Jourdan Université de Lille, CRIStAL, CNRS, France
Bryant Julstrom St. Cloud State University, USA
Timo Kötzing Hasso Plattner Institute, Germany
Roman Kalkreuth RWTH Aachen University, Germany
George Karakostas McMaster University, Canada
Florian Karl Ludwig Maximilian University of Munich,

Germany
Ed Keedwell University of Exeter, UK
Pascal Kerschke TU Dresden, Germany
Marie-Eléonore Kessaci University of Lille, France
Ahmed Kheiri Lancaster University, UK
Wolfgang Konen TH Cologne, Germany
Lars Kotthoff University of Wyoming, USA
Oswin Krause University of Copenhagen, Denmark
Krzysztof Krawiec Poznan University of Technology, Poland
Martin S. Krejca Ecole Polytechnique, France
William B. Langdon University College London, UK
Manuel López-Ibáñez University of Manchester, UK
William La Cava Boston Children’s Hospital, USA
Algirdas Lancinskas Vilnius University, Lithuania
Yuri Lavinas University of Toulouse, France

xii Organization

Per Kristian Lehre University of Birmingham, UK
Johannes Lengler ETH Zurich, Switzerland
Markus Leyser TU Dresden, Germany
Ke Li University of Exeter, UK
Arnaud Liefooghe University of Lille, France
Giosuè Lo Bosco University of Palermo, Italy
Fernando Lobo University of Algarve, Portugal
Nuno Lourenço University of Coimbra, Portugal
Jose A. Lozano University of the Basque Country, Spain
Rodica Lung Babes-Bolyai University, Romania
Chuan Luo Peking University, China
Evelyne Lutton INRAE, France
Jessica Mégane University of Coimbra, Portugal
João Macedo University of Coimbra, Portugal
Mikel Malagón University of the Basque Country, Spain
Katherine Malan University of South Africa, South Africa
Vittorio Maniezzo University of Bologna, Italy
Valentin Margraf Ludwig Maximilian University of Munich,

Germany
Luis Martí Center Inria Chile, Chile
Jörn Mehnen University of Strathclyde, UK
Marjan Mernik University of Maribor, Slovenia
Olaf Mersmann Federal University of Applied Administrative

Sciences, Germany
Silja Meyer-Nieberg Bundeswehr University Munich, Germany
Efrén Mezura-Montes University of Veracruz, Mexico
Krzysztof Michalak Wroclaw University of Economics, Poland
Kaisa Miettinen University of Jyväskylä, Finland
Edmondo Minisci University of Strathclyde, UK
Gara Miranda Valladares University of La Laguna, Spain
Mustafa Misir Duke Kunshan University, China
Marco Montes de Oca EnFi Inc. and Northeastern University, USA
Hugo Monzón RIKEN, Japan
Mario Andrés Muñoz University of Melbourne, Australia
Boris Naujoks TH Cologne, Germany
Antonio J. Nebro University of Málaga, Spain
Ferrante Neri University of Surrey, UK
Aneta Neumann University of Adelaide, Australia
Frank Neumann University of Adelaide, Australia
Michael O’Neill University College Dublin, Ireland
Gabriela Ochoa University of Stirling, UK
Pietro S. Oliveto University of Sheffield, UK

Organization xiii

Una-May O’Reilly Massachusetts Institute of Technology, USA
José Carlos Ortiz-Bayliss Monterrey Institute of Technology and Higher

Education, Mexico
Patryk Orzechowski University of Pennsylvania, USA
Ender Özcan University of Nottingham, UK
Ben Paechter Edinburgh Napier University, UK
Gregor Papa Jožef Stefan Institute, Slovenia
Luís Paquete University of Coimbra, Portugal
Andrew J. Parkes University of Nottingham, UK
Sebastian Peitz Paderborn University, Germany
Kokila Kasuni Perera University of Adelaide, Australia
Stjepan Picek Radboud University, Netherlands
Martin Pilát Charles University, Czechia
Nelishia Pillay University of Pretoria, South Africa
Petr Pošík Czech Technical University in Prague, Czechia
Raphael Patrick Prager University of Münster, Germany
Oliver Preuß Paderborn University, Germany
Mike Preuss Leiden University, Netherlands
Michal Przewozniczek Wroclaw University of Science and Technology,

Poland
Chao Qian Nanjing University, China
Günther Raidl Vienna University of Technology, Austria
Elena Raponi Leiden University, Netherlands
Khaled Rasheed University of Georgia, USA
Alma Rahat Swansea University, UK
Piotr Ratuszniak Koszalin University of Technology, Poland
Tapabrata Ray University of New South Wales, Australia
Quentin Renau Edinburgh Napier University, UK
Riccardo Rizzo Harvard University, USA
Angel Rodriguez-Fernandez CINVESTAV-IPN, Mexico
Eduardo Rodriguez-Tello CINVESTAV-IPN, Mexico
Andrea Roli University of Bologna, Italy
Jeroen Rook University of Twente, Netherlands
Jonathan Rowe University of Birmingham, UK
Günter Rudolph TU Dortmund, Germany
Conor Ryan University of Limerick, Ireland
Saba Sadeghi Ahouei University of Adelaide, Australia
Daniela Santos Lutheran University of Brazil, Brazil
Frédéric Saubion University of Angers, France
Lennart Schäpermeier TU Dresden, Germany
Robert Schaefer AGH University of Science and Technology,

Poland

xiv Organization

Andrea Schaerf University of Udine, Italy
Larissa Schmid Karlsruhe Institute of Technology, Germany
Lennart Schneider Ludwig Maximilian University of Munich,

Germany
Marc Schoenauer Inria, France
Renzo Scholman Centrum Wiskunde & Informatica, Netherlands
Oliver Schuetze CINVESTAV-IPN, Mexico
Moritz Seiler Paderborn University, Germany
Bernhard Sendhoff Honda Research Institute Europe, Germany
Roman Senkerik Tomas Bata University, Czechia
Marc Sevaux University of South Brittany, France
Hadar Shavit RWTH Aachen University, Germany
Ofer Shir Tel-Hai College, Israel
Shinichi Shirakawa Yokohama National University, Japan
Moshe Sipper Ben-Gurion University of the Negev, Israel
Jim Smith University of the West of England, UK
Konstantin Sonntag Paderborn University, Germany
Giovanni Squillero Politecnico di Torino, Italy
Sebastian Stich CISPA Helmholtz Center for Information

Security, Germany
Catalin Stoean University of Craiova, Romania
Thomas Stützle Université libre de Bruxelles, Belgium
Mihai Suciu Babes-Bolyai University, Romania
Dirk Sudholt University of Sheffield, UK
Andrew Sutton University of Minnesota, USA
Urban Škvorc Paderborn University, Germany
Ricardo Takahashi Federal University of Minas Gerais, Brazil
Sara Tari University of the Littoral Opal Coast, France
Daniel Tauritz Auburn University, USA
Dirk Thierens Utrecht University, Netherlands
Kevin Tierney Bielefeld University, Germany
Renato Tinós University of São Paulo, Brazil
Marco Tomassini University of Lausanne, Switzerland
Alberto Tonda INRAE, France
Jamal Toutouh Massachusetts Institute of Technology, USA
Kento Uchida Yokohama National University, Japan
Ryan J. Urbanowicz University of Pennsylvania, USA
Niki van Stein Leiden University, Netherlands
Nadarajen Veerapen University of Lille, France
Filippo Vella National Research Council, Italy
Sébastien Verel University of the Littoral Opal Coast, France
Diederick Vermetten Leiden University, Netherlands

Organization xv

Anh Viet Do University of Adelaide, Australia
Adriano Vinhas University of Coimbra, Portugal
Markus Wagner University of Adelaide, Australia
Hanyang Wang Huawei Technologies, UK
Hao Wang Leiden University, Netherlands
Elizabeth Wanner CEFET, Brazil
Tobias Weber Otto von Guericke University Magdeburg,

Germany
Thomas Weise Hefei University, China
Marcel Wever Ludwig Maximilian University of Munich,

Germany
Darrell Whitley Colorado State University, USA
Dennis Wilson University of Toulouse, France
Carsten Witt Technical University of Denmark, Denmark
Man Leung Wong Lingnan University, Hong Kong, China
Kaifeng Yang University of Applied Sciences Upper Austria,

Austria
Shengxiang Yang De Montfort University, UK
Furong Ye Leiden University, Netherlands
Martin Zaefferer DHBW Ravensburg, Germany
Aleš Zamuda University of Maribor, Slovenia
Saúl Zapotecas-Martínez INAOE, Mexico
Christine Zarges Aberystwyth University, UK
Mengjie Zhang Victoria University of Wellington, New Zealand

Contents – Part III

Theoretical Aspects of Nature-Inspired Optimization

Self-adjusting Evolutionary Algorithms are Slow on a Class of Multimodal
Landscapes . 3

Johannes Lengler and Konstantin Sturm

Runtime Analysis of Evolutionary Diversity Optimization
on a Tri-Objective Version of the (LeadingOnes, TrailingZeros) Problem 19

Denis Antipov, Aneta Neumann, Frank Neumann, and Andrew M. Sutton

Sliding Window 3-Objective Pareto Optimization for Problems
with Chance Constraints . 36

Frank Neumann and Carsten Witt

Runtime Analysis of a Multi-valued Compact Genetic Algorithm
on Generalized OneMax . 53

Sumit Adak and Carsten Witt

Faster Optimization Through Genetic Drift . 70
Cella Florescu, Marc Kaufmann, Johannes Lengler, and Ulysse Schaller

Greedy Versus Curious Parent Selection for Multi-objective Evolutionary
Algorithms . 86

Denis Antipov, Timo Kötzing, and Aishwarya Radhakrishnan

How Population Diversity Influences the Efficiency of Crossover 102
Sacha Cerf and Johannes Lengler

Overcoming Binary Adversarial Optimisation with Competitive
Coevolution . 117

Per Kristian Lehre and Shishen Lin

Evolving Populations of Solved Subgraphs with Crossover and Constraint
Repair . 133

Jiwon Lee and Andrew M. Sutton

Analysis of Evolutionary Diversity Optimisation for the Maximum
Matching Problem . 149

Jonathan Gadea Harder, Aneta Neumann, and Frank Neumann

xviii Contents – Part III

Archive-Based Single-Objective Evolutionary Algorithms for Submodular
Optimization . 166

Frank Neumann and Günter Rudolph

Local Optima in Diversity Optimization: Non-trivial Offspring Population
is Essential . 181

Denis Antipov, Aneta Neumann, and Frank Neumann

Proven Runtime Guarantees for How the MOEA/D: Computes the Pareto
Front from the Subproblem Solutions . 197

Benjamin Doerr, Martin S. Krejca, and Noé Weeks

Ranking Diversity Benefits Coevolutionary Algorithms on an Intransitive
Game . 213

Mario Alejandro Hevia Fajardo and Per Kristian Lehre

On the Equivalence Between Stochastic Tournament and Power-Law
Ranking Selection and How to Implement Them Efficiently 230

Duc-Cuong Dang, Andre Opris, and Dirk Sudholt

Level-Based Theorems for Runtime Analysis of Multi-objective
Evolutionary Algorithms . 246

Duc-Cuong Dang, Andre Opris, and Dirk Sudholt

Runtime Analysis for State-of-the-Art Multi-objective Evolutionary
Algorithms on the Subset Selection Problem . 264

Renzhong Deng, Weijie Zheng, Mingfeng Li, Jie Liu, and Benjamin Doerr

WhenDoes the Time-Linkage Property HelpOptimization by Evolutionary
Algorithms? . 280

Mingfeng Li, Weijie Zheng, Wen Xie, Ao Sun, and Xin Yao

A First Running Time Analysis of the Strength Pareto Evolutionary
Algorithm 2 (SPEA2) . 295

Shengjie Ren, Chao Bian, Miqing Li, and Chao Qian

(Evolutionary) Machine Learning and Neuroevolution

Population-Based Algorithms Built on Weighted Automata 315
Gijs Schröder, Inge Wortel, and Johannes Textor

Automatic Brain Tumor Segmentation Using Convolutional Neural
Networks: U-Net Framework with PSO-Tuned Hyperparameters 333

Shoffan Saifullah and Rafał Dreżewski

Contents – Part III xix

Learning Discretized Bayesian Networks with GOMEA . 352
Damy M. F. Ha, Tanja Alderliesten, and Peter A. N. Bosman

Pareto-Informed Multi-objective Neural Architecture Search 369
Ganyuan Luo, Hao Li, Zefeng Chen, and Yuren Zhou

AVariable-Length Fuzzy Set Representation for Learning Fuzzy-Classifier
Systems . 386

Hiroki Shiraishi, Rongguang Ye, Hisao Ishibuchi, and Masaya Nakata

Evolvable Hardware and Evolutionary Robotics

Exploring Proprioceptive Feedback in the Evolution of Modular Robots 405
Babak Hosseinkhani Kargar, Karine Miras, and A. E. Eiben

Author Index . 419

Theoretical Aspects of Nature-Inspired
Optimization

Self-adjusting Evolutionary Algorithms
are Slow on a Class of Multimodal

Landscapes

Johannes Lengler and Konstantin Sturm(B)

Department of Computer Science, ETH Zürich, Zürich, Switzerland
{johannes.lengler,konstantin.sturm}@inf.ethz.ch

Abstract. The one-fifth rule and its generalizations are a classical
parameter control mechanism in discrete domains. They have also been
transferred to control the offspring population size of the (1, λ)-EA. This
has been shown to work very well for hill-climbing, and combined with a
restart mechanism it was recently shown by Hevia Fajardo and Sudholt
to improve performance on the multi-modal problem Cliff drastically.
In this work we show that the positive results do not extend to other
types of local optima. On the distorted OneMax benchmark, the self-
adjusting (1, λ)-EA is slowed down just as elitist algorithms because
self-adaptation prevents the algorithm from escaping from local optima.
This makes the self-adaptive algorithm considerably worse than good
static parameter choices, which do allow to escape from local optima
efficiently. We show this theoretically and complement the result with
empirical runtime results.

Keywords: evolutionary algorithm · comma selection · parameter
control · population size · one-fifth rule · fixed-target · runtime analysis

1 Introduction

Evolutionary algorithms (EAs) are a class of randomized optimization heuris-
tics that are popular because they are flexible and can be widely applied. It is
desirable for such general-purpose optimization algorithms to be as easy to use
as possible. Thus, an important goal in designing EAs is to reduce the number
of hyper-parameters that need to be set by the user. A convenient way is to
make the algorithms self-adjusting, i.e., to add mechanisms that dynamically
adapt the hyper-parameters in an automatic way. This approach has some other
advantages. Sometimes there is no static parameter setting which is optimal
throughout the whole optimization process, in which case self-adjusting mecha-
nisms can be superior [3,4,7].

A self-adaptation mechanism that has received increasing attention in recent
years is the one-fifth rule and its generalization, the (1 : s + 1)-rule. This is a
classical rule in the domain of continuous optimization [15], but in the last years

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 3–18, 2024.
https://doi.org/10.1007/978-3-031-70071-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-70071-2_1

4 J. Lengler and K. Sturm

it has also been successfully transferred to discrete domains [3,6,7,10–12], see
also the reviews in [2] and [6]. The (1 : s+1) rule may be used to control a hyper-
parameter that regulates the trade-off between efficiency and the success rate,
which is the probability of making an improvement in one generation. It defines a
target success rate, which is 1/s in the case of the (1 : s+1) rule. Then, whenever
a generation is successful it adapts the hyper-parameter to improve efficiency at
the cost of a smaller success rate. For unsuccessful generations, it adapts the
hyper-parameter in the other direction. Both adjustments are balanced in such
a way that the success rate is pushed toward the target success rate. Some
hyper-parameters for which this rule has been shown to work particularly well
are the step size in continuous optimization [13], the mutation rate in discrete
domains [4], and the offspring population size for hill-climbing tasks [6,11].

This work will focus on the offspring population size, specifically the SA-
(1, λ)-EA. The algorithm generates λ offspring from the same parent in each
generation, and proceeds the best offspring as parent for the next generation. It
adapts the offspring population size λ with the (1 : s + 1) rule, see Sect. 2 for
details. Recently, some very positive results could be shown for this algorithm.
Hevia Fajardo and Sudholt studied the SA-(1, λ)-EA on OneMax1, a bench-
mark in which progress gets harder during the optimization process. They could
show that for s ≤ 1, the (1 : s+1) rule automatically chooses and maintains the
optimal λ throughout optimization, ranging from constant λ at the beginning to
almost linear λ as the algorithm approaches the optimum. Kaufmann, Larcher,
Lengler, and Zou extended this result (for smaller s) to all monotonic functions,
showing that the SA-(1, λ)-EA shows optimal parameter control on every mono-
tonic function. These results show that the SA-(1, λ)-EA can be very successful
on hill-climbing tasks without local optima.

In principle, the (1, λ)-EA is also well-suited to deal with local optima. In fact,
the comma strategy allows the (1, λ)-EA to escape local optima by “forgetting”
the parent, other than its elitist counterpart (1 + λ)-EA, in which the parent
always competes for entering the next generation. Indeed, this makes the (1, λ)-
EA more efficient than the (1+λ)-EA in landscapes with planted local optima [9].
However, a priori the (1 : s + 1) rule is misaligned with this escaping option.
When the algorithm is stuck in a local optimum, the (1 : s + 1) rule starts
increasing the offspring population size, which is the correct behavior for hill-
climbing. However, this also increases the probability of producing a clone of the
parent among the offspring, in which case the algorithm mimics the behavior
of the plus strategy and loses its ability to escape local optima. When λ is of
logarithmic size or larger, the (1, λ)-EA degenerates into the (1 + λ)-EA. Thus,
we can not hope that the SA-(1, λ)-EA may be suited for local optima in its
standard form.

To avoid this problem, Hevia Fajardo and Sudholt proposed as a simple fix to
restart the offspring population size at λ = 1 whenever it exceeds some threshold
λmax. In a spectacular result for the notoriously hard benchmark Cliff, which

1 OneMax is defined on the hypercube {0, 1}n and assigns to each bit string x the
number of one-bits in x.

Self-adjusting Offspring Populations Size 5

features a large plateau of local optima, they could show that the SA-(1, λ)-EA
with resets optimizes cliff with O(n ln n) function evaluations, not substantially
slower than OneMax [7]. This is not only much better than any known perfor-
mance of elitist algorithms on Cliff, but it is also drastically faster than the
(1, λ)-EA with any static parameter λ, which needs time Ω(n3.98) even for opti-
mally chosen static λ [7]. These results gave hope that the SA-(1, λ)-EA with
resets may be able to provide optimal strategies for a wide range of fitness land-
scapes. Unfortunately, in this paper we show that this algorithm has some severe
limitations when the local optima are not clustered in form of a large cliff, but
rather scattered throughout the fitness landscape. While we do believe that the
SA-(1, λ)-EA with resets deserves its place in modern optimization portfolios,
our result shows that it is no panacea.

1.1 Our Result

We study the SA-(1, λ)-EA with resets on the distorted OneMax benchmark
disOM in a fixed-target setting. The function disOM is obtained from the One-
Max benchmark by increasing the fitness of each search point with some proba-
bility p by some value d > 1, thus planting local optima at random places of the
landscape. For the formal definition, see Sect. 2. We mostly take the parameters
of disOM from [9]; in fact, we even allow slightly more general parameters. In
particular, we choose p = ω(1/n ln n) to make sure that the algorithms encounter
distorted points during optimization, and we choose the fixed target in such a
way that the target can be reached efficiently with some static values of λ, see [9]
for a more thorough discussion.

In [9] it was shown that the (1 + λ)-EA is slowed down by a factor of 1/p,
yielding runtime Ω(n ln n/p). This can be substantial since 1/p may be an almost
linear factor. The algorithm is slowed down because the plus strategy is not able
to escape local optima and thus needs to hop from one local optimum to the next.
This makes it by a factor p harder to find an improvement since the algorithm
does not only need to create an offspring of larger OneMax value, but in addition
this offspring must be distorted. On the other hand, the (1, λ)-EA with static
λ is unaffected because it can efficiently escape from local optima and has the
same runtime O(n ln n) as for the corresponding OneMax problem.

We show that the SA-(1, λ)-EA with resets suffers the same performance
loss as the (1 + λ)-EA on disOM: it needs time Ω(n ln n/p) to reach the fitness
target. Thus, the self-adjusting mechanism costs performance and slows down
the algorithm by a factor of 1/p compared to the known runtime O(n log n) of
the (1, λ)-EA with static λ [9].

Theorem 1. Consider the SA-(1, λ)-EA with a resetting mechanism for the
offspring population size on disOM with p = ω(1/n ln n), d = Ω(ln n), and
λmax ≥ nΩ(1)/p. With high probability the algorithm takes Ω(n ln n/p) function
evaluations to reach a target fitness of n − k∗ for k∗ = n1−Ω(1).

6 J. Lengler and K. Sturm

We put this into context with the known results on the (1 + λ)-EA and the
(1, λ)-EA. The (1, λ)-EA with an optimal static λ is faster than both the self-
adjusting one and the (1 + λ)-EA in the specific setting presented in [9]. The
following Corollary summarizes these findings.

Corollary 2. Let k∗ = nΩ(1) ∩ n1−Ω(1), p = ω(1/(n ln n)), and assume that
there is a constant ε > 0 such that

p ≤ (k∗/n)1+ε. (1)

Finally, assume that d = Ω(ln n) with d ≤ k∗ and λmax = nΩ(1). Then w.h.p.
on disOM the number of evaluations to reach fitness at least n − k∗ is

1. Ω(n ln n/p) for the (1 + λ)-EA with any static λ ≥ 1,
2. Ω(n ln n/p) for the SA-(1, λ)-EA,
3. O(n ln n) for the (1, λ)-EA with a suitable static λ = Θ(ln n).

The difference is a factor of 1/p, which can be substantial, for example settings
with 1/p = Ω(n) are included. The conditions come directly from [9, Assump-
tion 1.4], and the third statement comes from [9, Theorem 1.1]. We note that
a sufficient condition for λ to make the (1, λ)-EA efficient was given in [9] as
λ which satisfy (1 + δ) loge/(e−1)(1/p) ≤ λ ≤ (1 − δ) loge/(e−1)(n/k∗) for an
arbitrary constant δ > 0.2

We further corroborate the theoretical findings with some empirical results,
which are presented in Sect. 5. Those show quite clearly an asymptotic of
Θ(n ln n/p) for the SA-(1, λ)-EA, indicating that our lower bound in Theorem 1
is tight. Moreover, they confirm the asymptotic statement from Corollary 2 that
the (1, λ)-EA with static λ is much faster than both the (1 + λ)-EA with static
λ and the SA-(1, λ)-EA.

We want to emphasize that we do not advertise abolishing self-adaptation
and returning to static parameter choices. While we show that there are regimes
in which the self-adjusting algorithm is slow, there are also other regimes where
static choices have disadvantages. In particular, if the target fitness is large (e.g.,
k∗ = 0) then there is no static λ which can reach the target fitness and at the
same time avoid being stuck in local optima for long. Thus, future research should
aim for alternatives which can avoid the downsides from both approaches. More-
over, for practical matters, general-purpose optimizers like EAs should always
be used as part of a portfolio of optimization techniques which does not hinge
on a single algorithm.

2 Notation and Preliminaries

General Notation. We write [n] := {1, ..., n}. Search points are denoted by
x = (x1, ..., xn) ∈ {0, 1}n, and the OneMax value is OM(x) :=

∑
i∈[n] xi. The

2 The authors of [9] comment that the second condition may not be necessary. For
more details on the parameters we refer to the discussion in [9].

Self-adjusting Offspring Populations Size 7

ZeroMax function is defined as ZM(x) := n −OM(x). We denote the all-one-
string by �1 = (1, ..., 1). For x, y ∈ {0, 1}n, the Hamming distance H(x, y) of x
and y is the number of positions i ∈ [n] such that xi �= yi. We denote the natural
logarithm of n by lnn. With high probability (w.h.p.) means with probability
1 − o(1) for n → ∞. For a real number a, we denote by 	a
 := 	a + 1/2� the
closest integer to a.

Distorted OneMax. The function is formally defined as disOM : {0, 1}n →
R≥0. We partition the search space {0, 1}n into two sets C and D of “clean”
and “distorted” points, respectively. For each x ∈ {0, 1}n we have x ∈ D with
probability p and x ∈ C otherwise, independently of the other points. We define
disOM as

disOM(x) := OM(x) +

{
d if x ∈ D,

0 otherwise.

The function was introduced in [9], where it was shown that plus strategies are
slowed down by a factor of 1/p, while comma strategies are not affected. Very
recently, it was shown that this effect is even more drastic when the height of
the distortion is drawn randomly for every distorted point, making the plus
strategies super-polynomially slow [14]. However, we will follow the setup in [9]
and use the same offset d for all distorted points.

Algorithms. We consider the SA-(1, λ)-EA with resets, which is identical to
the one presented in [7]. The algorithm is called self-adjusting as the offspring
population size λ is adapted in each generation. A fitness increase results in a
decrease of λ to λ/F for some F > 1. If the fitness stays the same or decreases,
the generation is called unsuccessful, and λ is increased to λ·F 1/s for some s > 0.
Throughout the paper we will assume that F, s are constant and 0 < s < 1. When
a sequence of s successful generations and a single unsuccessful one occur, the
final offspring population size is unchanged due to λ · (F 1/s)s · (1/F) = λ, which
follows the previously mentioned (1 : s+1)-success rule [13]. The “reset part” in
the algorithm’s name refers to the maximum offspring population size λmax we
impose. If a generation with λ = λmax is unsuccessful, the offspring population
size is reset to 1 instead of being increased further.

New offspring of a search point x are created by applying a standard bit
mutation: Each bit in x is being flipped independently with probability 1/n. We
consider a fixed target setting of n − k∗ following [9].

3 Properties of the SA-(1, λ)-EA

In this section, we provide a series of useful probability estimates, most of which
are not specific to our benchmark algorithm combination and may prove useful
in other settings as well.

We call an offspring a clone of the parent if it is an exact copy. The first lemma
provides bounds on (not) having a clone among the offspring. Similar versions
of the results can be found in the proof of [7, Lemma 4.5] and [6, Lemma 2.2].

8 J. Lengler and K. Sturm

Algorithm 1: Self-adjusting (1, λ) EA resetting λ for maximizing f to
target n − k∗.
Initialization: t = 0; choose x0 ∈ {0, 1}n uniformly at random and λ0 = 1;
Optimization: while f(xt) < n − k∗ do

Mutation: for i ∈ {1, ..., �λt�} do
yi

t ∈ {0, 1}n ← standard bit mutation(xt);

Selection: Let yt = arg max{f(y1
t), ..., f(y

�λt�
t)}, breaking ties uniformly at

random;
Update: xt+1 ← yt;
if f(xt+1) > f(xt) then λt+1 ← max{λt/F, 1};
if f(xt+1) ≤ f(xt) ∧ λt = λmax then λt+1 ← 1;
if f(xt+1) ≤ f(xt) ∧ λt �= λmax then λt+1 ← min{λF 1/s, λmax}; t ← t + 1;

Lemma 3. The probability of not having a clone of the parent among λt off-
spring is at least (1 − 1/e)λt . The probability of having at least one clone among
the offspring is at least exp (−en/(λt(n − 1))).

Proof. The probability that a single offspring is a clone is (1− 1/n)n. The prob-
ability that none of the offspring is a clone is therefore at least

(

1 −
(

1 − 1
n

)n)λt

≥
(

1 − 1
e

)λt

.

The probability of at least one clone is at least

1 −
(

1 −
(

1 − 1
n

)n)λt

≥ 1 −
(

1 − n − 1
en

)λt

≥ 1 − e−λt(n−1)/en

≥ 1 − 1
1 + λt(n − 1)/en

=
1

1 + en/(λt(n − 1))
≥ exp

(

− en

λt(n − 1)

)

.

�
The next result is more specific to disOM. It will allow us to argue that if each
generation has a distorted point among its offspring, the algorithm will not leave
the set of distorted points D.

Lemma 4. Let the size of the distortion be d = Ω(ln n). For any constant c > 0,
if any of the λ = nc offspring is distorted, with probability 1−n−ω(1) the accepted
offspring will also be distorted.

Proof. For a clean offspring to be accepted, its fitness must be larger than that
of the distorted point. Since d ∈ Ω(ln n), either the distorted or the clean point
must have Hamming distance Ω(ln n) to the parent. By [9, Lemma 3.3] the
probability of a single offspring satisfying this is n−Ω(ln ln n). With a union bound
over the nc offspring, the lemma follows. �

Self-adjusting Offspring Populations Size 9

A major complication in runtime analyses of algorithms on disOM is the fact
that the noise of the benchmark is frozen [9,14]. This means that when we sample
an offspring, we can not simply assume that it is distorted with probability p
since it may have been sampled earlier. The probability of having been sampled
may depend on the history of the run. This may seem like a technicality, but in
fact it may have a major impact on the resulting runtimes, see [9] for a discussion.
Following a technique invented in [14], we prove the following lemma to show
that enough neighbours of the current search point have not been queried yet
and thus provide “fresh randomness”.

Lemma 5. Consider any algorithm that creates offspring from previously visited
search points with standard bit mutation of mutation rate 1/n on any fitness
function. Assume the algorithm has created o(n3) offspring so far. Let x ∈ {0, 1}n

be any search point. Then the probability that a random offspring of x has not yet
been queried is Ω(1). In particular, for disOM the probability that this offspring
is distorted is Ω(p).

Proof. The probability of an offspring having a Hamming distance of exactly 3
to the parent is

(
n

3

)(
1
n

)3 (

1 − 1
n

)n−3

≥
(n

3

)3
(

1
n

)3 (

1 − 1
n

)n−1

≥ 1
27e

= Ω(1).

For a parent, there are
(
n
3

)
points in the three-neighborhood. Since we assumed

o(n3) points have been queried so far, each new offspring has not been sampled
before with probability Ω(1), conditional on having Hamming distance three to
the parent. Together, this implies that with probability Ω(1) each new offspring
has not been sampled before. The second claim follows immediately because a
search point that has not been sampled before is distorted with probability p. �
The final lemma enables us to contend that a significant drop in λ is unlikely in
certain settings. It is closely related to the Gambler’s Ruin Problem [5].

Lemma 6. Consider the SA-(1, λ)-EA on disOM in a state (x0, λ0) with λ0 ∈
[αF β−1, αF β), for some α ≥ 1 and β ∈ N. Suppose there is q > 0 and a
set X ⊆ {0, 1}n × [1, λmax] of states such that for any state (xt, λt) ∈ X, the
probability that the next generation is successful is at most q. Then the probability
that λ falls below α before either the algorithm leaves X or it increases λ to at
least αF β is at most (1/q − 2)/((1/q − 1)β+1 − 1).

Proof. We approach the problem from a random walk perspective and aim to
build a connection to the Gambler’s Ruin problem [5]. Let us define the states
S0, S1, ..., Sβ+1. The algorithm is in state Si if the current offspring population
size λt is in the interval [αF i−1, αF i), and xt is arbitrary in X. Notice that when
in Si, i consecutive successful generations reduce the offspring population size
from λt to λtF

−i < αF iF−i = α. Let Pi denote the probability of the algorithm
reaching the state S0 before leaving X or reaching Sβ+1. Clearly P0 = 1 and

10 J. Lengler and K. Sturm

Pβ+1 = 0. We proceed to compute Pi for 1 ≤ i ≤ β. We will pessimistically
assume that the algorithm does not leave the set X.

If the current state is Si and we encounter a successful generation, the algo-
rithm moves to Si−1. Conversely, if the generation is not successful λ is multiplied
by F 1/s resulting in a move to a state Sk with k > i. By the bound q on the
probability of successful generation, we can bound Pi recursively3 as

Pi ≤ qPi−1 + (1 − q)Pk.

Pessimistically assuming k = i+1 and equality, we obtain the classical recursion
for some upper bound P̃i ≥ Pi,

P̃i = qP̃i−1 + (1 − q)P̃i+1.

The above equation is the recursion for the Gambler’s Ruin Problem, which has
the following solution [5] for 0 < i ≤ β:

P̃i =
1 − ((1 − q)/q)β+1−i

1 − ((1 − q)/q)β+1
.

The lemma assumes the offspring population size is in the interval [αF β−1, αF β).
Thus, recalling Pβ represents the measure we are looking for:

Pβ ≤ P̃β =
1 − ((1 − q)/q)

1 − ((1 − q)/q)β+1
=

1/q − 2

(1/q − 1)β+1 − 1

�

4 Lower Runtime Bounds

In this section, we prove Theorem 1. The core idea is to show that the algorithm
must traverse a OneMax-interval I of size nε and that it requires Ω(n ln n/p)
evaluations to do so. The Ω(1/p) factor stems from the observation that the
algorithm will stay among the distorted points while crossing the interval.

To ensure that the algorithm stays among search points in D throughout the
interval I, we need to show that the algorithm enters it in a distorted point.
In light of this, we look at a preceding interval I ′ of Hamming distances to �1
and show that the algorithm reaches a state in I ′ such that the search point is
distorted and λ is at least logarithmic in size.

3 It could happen that the Pi are not increasing due to the set X, in which case
the bound may not hold. However, the recursion is correct if we replace Pi with
the minimal probability over all possible search spaces that satisfy the condition of
the lemma because those probabilities are increasing. We suppress this complication
from the proof.

Self-adjusting Offspring Populations Size 11

Lemma 7. Consider the SA-(1, λ)-EA with resets on disOM as in Theorem 1.
Let ε > 0 be a small constant such that λmax ≥ nε and k∗ + d ≤ n1−ε, and
let I ′ := [n1−ε/2, n1−ε/4] be an interval of Hamming distances to �1. Then with
high probability the algorithm will either make Ω(n ln n/p) evaluations before
reaching a search point of distance smaller than n1−ε/2 from �1, or it reaches a
state (xt, λt) where xt is in I ′ and distorted, and λt ≥ 6eF 16/ε ln n.

Proof. The lemma holds trivially if the algorithm takes Ω(n ln n/p) evaluations
to cross I ′. Going forward, we thus assume the algorithm makes o(n ln n/p)
evaluations. We show that w.h.p.,

(i) λ is increased to at least γ := 6eF 32/ε ln n in O(ln2 n) evaluations if the
algorithm stays in I ′,

(ii) if λ ≥ γ it will not drop below 6eF 16/ε ln n before entering a distorted point,
and

(iii) the algorithm makes Ω(n ln n) evaluations in consecutive generations in I ′.

From these three items, the lemma follows. By (i), λ is increased to γ in O(ln2 n)
evaluations. Once the algorithm has reached this offspring population size, w.h.p.
it will not drop below 6eF 16/ε ln n according to (ii). Together with (iii), this
implies Ω(n ln n)−O(ln2 n) = Ω(n ln n) evaluations are from states in which the
offspring population size is at least 6eF 16/ε ln n. By Lemma 5, each of these off-
spring have probability Ω(p) = ω(1/(n ln n)) to be distorted. Hence, the expected
number of distorted points among these offspring is Ω(p · n ln n) = ω(1). By
Lemma 4, such an offspring is accepted w.h.p..

It remains to prove the three items, starting with (i). Let λt be the cur-
rent offspring population size. Using a similar argumentation to the proof of
[7, Lemma 4.6], �s logF (γ/λt)
 consecutive unsuccessful generations are suffi-
cient to ensure an increase in the offspring populations size to at least γ. Using
	x
 ≤ 2x for x ≥ 1, the number of evaluations this requires is at most

�s logF (γ/λt)�∑

i=0

⌊
λtF

i/s
⌉

≤ 2λt

s logF (γ/λt)+1∑

i=0

F i/s

≤ 2λt

(
F 1/s

)s logF (γ/λt)+2 − 1
F 1/s − 1

≤ 2F 2/s

F 1/s − 1
γ = O(ln n).

To show that we only encounter unsuccessful generations until λ is increased
to the desired value, we show that w.h.p. none of the O(ln n) offspring increase
the fitness.

We first consider the case that no distorted offspring is created from a clean
parent. Let pimp be the probability of a single offspring increasing its fitness.
pimp ≤ n−ε/4, since at least one of the at most n1−ε/4 zero-bits must be flipped.
With a union bound over the O(ln n) offspring, the probability of this is O(ln n) ·
pimp = o(1).

We turn to the case in which the algorithm creates a distorted offspring from
a clean parent before λ is increased to at least γ. Assume the algorithm has just

12 J. Lengler and K. Sturm

jumped from a clean to a distorted point. Now, it either has to make another
such jump within the next O(ln n) evaluations, or w.h.p. the algorithm increases
λ to at least γ, using the same argumentation as before. For another jump,
the algorithm must first leave the set of distorted points D again. By showing
that with probability Ω(1) the algorithm will not leave D once entered, w.h.p.
after O(ln n) jumps from clean to distorted points, the algorithm increases the
offspring population size to at least γ. This process takes O(ln2 n) evaluations.

It remains to show that the algorithm will stay in the distorted points with
probability Ω(1). A sufficient condition is that each generation has a clone among
its offspring. With Lemma 3, the probability of this is at least

�s logF (γ/λt)�∏

i=0

exp
(

− en

λtF i/s(n − 1)

)

≥ exp

(

− en

(n − 1)

∞∑

i=0

F−i/s

)

≥ exp
(

− en

(n − 1)
1

1 − F−1/s

)

= Ω(1).

In order to show (ii), note that the offspring population size can drop below
ln n in two different ways. Either the algorithm encounters a reset by increasing
λ beyond λmax, or on the “natural way” by a series of successful generations
decreasing the offspring population size. We begin by showing that w.h.p. the
algorithm does not encounter a reset. For a reset, a generation with offspring pop-
ulation size λmax must be unsuccessful, and therefore, no offspring can increase
the OneMax-value. The probability of a single offspring y increasing the num-
ber of one-bits is at least ZM(y)/(en) ≤ n1−ε/4/(en) [6, Lemma 2.2]. Using that
λmax ≥ nε, the probability of this is at most

(

1 − n1−ε/4

en

)λmax

≤ exp
(

−λmax

enε/4

)

≤ exp
(

− nε

enε/4

)

= o
(
1/n3

)
.

Recall that we assumed the algorithm makes o(n ln n/p) evaluations. Hence, the
algorithm does not encounter a reset w.h.p..

It remains to show that λ does not “naturally” drop below 6eF 16/ε ln n. We
introduce the notion of a phase. A phase starts as soon as λ is reduced below γ
and ends if it is either increased back to at least γ or falls below 6eF 16/ε ln n.
We assume the algorithm does not sample a distorted point during a phase as
otherwise, the lemma follows immediately. We want to apply Lemma 6 with
α := 6eF 16/ε ln n and β := 16/ε. To bound the probability of a successful gen-
eration, notice that each generation creates at most γ offspring and the number
of zero-bits is at most n1−ε/4. With a union bound, the probability that a sin-
gle generation is successful is therefore at most γn1−ε/4/n = γn−ε/4 =: q. By
Lemma 6, the probability of a phase ending due to drop in λ below α is at most

1/q − 2

(1/q − 1)β+1 − 1
=

γ−1nε/4 − 2
(
γ−1nε/4 − 1

)16/ε+1 − 1
≤ nε/4

(
γ−1nε/4 − 1

)16/ε+1 − 1
.

Self-adjusting Offspring Populations Size 13

By choosing an appropriate small positive constant ξ such that ξ < (1−ε/4)ε/16,
this is at most

nε/4

(
γ−1nε/4 − 1

)16/ε+1 − 1
=

nε/4

(
nε/4−ξ(γ−1nξ) − 1

)16/ε+1 − 1

≤ nε/4

(
nε/4−ξ

)16/ε+1 − 1
≤ nε/4

(
nε/4−ξ

)16/ε
=

nε/4

n4−16ξ/ε
< n−3.

Since there are o(n ln n/p) evaluations and therefore also o(n ln n/p) phases,
w.h.p. no phase will result in a drop of λ below 6eF 16/ε lnn.

It remains to show (iii). All points in I ′ have fitness at most n−n1−ε/2 +d ≤
n−k∗. Therefore, the algorithm can not terminate before crossing the interval. If
the algorithm enters and leaves I ′ several times, we consider the last such time.
By [9, Lemma 3.3] the probability of an offspring having a Hamming distance
Ω(ln n) to its parent is n−Ω(ln ln n). Thus when the algorithm enters I ′, w.h.p. it
enters in a point xt such that ZM(xt) ≥ n1−ε/4 − O(ln n). From such a starting
point, even the (1 + 1)-EA on OneMax requires Ω(n ln n) evaluations to cross
I ′ [9, Theorem 3.6]. By the domination result [9, Theorem 3.5], the SA-(1, λ)-
EA with resets requires at least as many evaluations as the (1 + 1)-EA, hence
Ω(n ln n) evaluations to cross the interval. �
Having established that the algorithm enters the set of distorted points D with
at least logarithmic λ in I ′, we proceed to show that the algorithm will not leave
the set D before crossing the following interval I as well. We additionally show
that the algorithm becomes elitist, i.e., the fitness is not reduced throughout.

Lemma 8. Consider the SA-(1, λ)-EA with resets on disOM as in Theorem 1,
in particular, let δ be such that p ≥ nδ/λmax. Let ε > 0 be a small constant
such that k∗ + d ≤ n1−ε and ε ≤ δ/4. Let the current state (x0, λ0) satisfy
ZM(x0) ≤ n1−ε/4, x0 is distorted and λ0 ≥ 6eF 16/ε lnn. With high probability
the algorithm neither leaves the set of distorted points D nor decreases the fitness
in a single step until either the total number of evaluations is in Ω(n ln n/p), or
the distance to �1 is reduced to at most n1−ε.

Proof. If each generation has a clone among the offspring w.h.p. the algo-
rithm neither leaves D nor reduces the fitness by Lemma 4. To show that each
iteration has a clone, assume λ does not drop below 6e ln n. By Lemma 3, a
single generation does not have a clone among its offspring with probability at
most (

1 − n − 1
en

)6e ln n

≤ n−6(n−1)/n ≤ n−3.

Therefore, the probability of not having a clone among the first o(n ln n/p) gen-
erations is 1 − o(1) by a union bound.

It remains to show that λ does not drop below 6e ln n. We proceed almost
identically as in the proof of (ii) in Lemma 7. We start with the probability
of a reset. If pimp is the probability of a single offspring increasing the fitness

14 J. Lengler and K. Sturm

w.r.t. the parent, the probability of a single generation causing a reset is at most
(1 − pimp)λmax . For an offspring to increase the fitness it must both increase the
OneMax-value and be distorted. It might be tempting to bound the probability
of an offspring being distorted by p, but we need to mind that the noise is frozen.
Consequently, we do not get fresh randomness in each step. We circumvent the
problem in a similar fashion to Lemma 5.

There are
(
n1−ε

3

)
= Ω(n3−3ε) points in the three-neighborhood of the parent,

which additionally increase the OneMax-value by three. For sufficiently small ε
any such offspring is distorted with probability Ω(p) by an analogous reasoning
to Lemma 5. The probability of an offspring falling into this category is

(
n1−ε

3

)
1
n3

(

1 − 1
n

)n−3

≥
(

n1−ε

3n

)3 (

1 − 1
n

)n−1

≥ n−3ε

27e
= Ω(n−3ε).

Together this implies that pimp = Ω(pn−3ε). Leveraging the relationship p ≥
nδ/λmax ≥ n4ε/λmax, the probability of a reset in a single generation is at most

(1 − pimp)λmax ≤ exp
(

−Ω

(
n4ε

λmax
n−3ε

)

λmax

)

≤ exp (−Ω (nε)).

W.h.p. the algorithm will not encounter a reset during the o(n ln n/p) generations
for sufficiently small ε.

It remains to show that λ does not drop below 6e ln n as a consequence
of a “natural” reduction. Using an identical reasoning to the proof of (i) in
Lemma 7, with α := 6e ln n, β := 16/ε and q := (6eF 16/ε ln n)n−ε/4 ≤
(6eF 32/ε ln n)n−ε/4, it is clear that w.h.p. λ will not drop below 6e ln n. �
As a final step, it remains to show that the algorithm takes Ω(n ln n/p) evalua-
tions to cross the second interval I.

Lemma 9. Let ε > 0 be a small constant such that k∗ + d ≤ n1−ε. Consider
the SA-(1, λ)-EA with resets on disOM and the interval I := [n1−ε, n1−ε/2] of
Hamming distances to �1. If the algorithm neither leaves the set D of distorted
points nor decreases the fitness, then with high probability it takes Ω(n ln n/p)
evaluations to cross the interval I.

Proof. Due to the similar nature of the problem on hand, the following part is
closely related to the analysis of the lower bound of T plus in [9, Theorem 1.1].
We adopt the notion of a (1− p)-rejection run. Such a run differs from a regular
one in that each sampled search point is discarded with a probability 1 − p. We
show that for any state (xt, λt) of the algorithm on disOM, the probability of
increasing the fitness by r > 0 without leaving D is at most the probability of
increasing it by r in a (1 − p)-rejection run on OneMax.

Assume an offspring y satisfies OM(y) = OM(xt)+ r. If y has been sampled
before, it is not distorted as we assumed the algorithm does not decrease the
fitness, and therefore, it would have moved to the point the first time it was
sampled. Thus, y is not considered for selection with probability 1. On the other
hand, if y has not yet been sampled, it is distorted with probability p. Thus, it

Self-adjusting Offspring Populations Size 15

is not considered for selection with probability 1 − p. Summarizing, each point
increasing the fitness by r is not considered for selection with probability at least
1 − p. In other words, it is rejected with at least this probability.

It remains to show that a (1 − p)-rejection run of the algorithm on One-
Max takes Ω(n ln n/p) evaluations. By [9, Theorem 3.6] w.h.p. the (1 + 1)-EA
takes Ω(n ln (n1−ε/2/n1−ε)) = Ω(n ln n) evaluations to cross I. Hence a (1 − p)-
rejection run of the same algorithm takes Ω(n ln n/p) evaluations. By the dom-
ination result [9, Theorem 3.5] this implies that the same is true for a (1 − p)-
rejection run of the SA-(1, λ)-EA with resets on OneMax. �
We now bring everything together and prove Theorem 1.

Proof (of Theorem 1). Let ε > 0 be a small constant such that k∗+d ≤ n1−ε and
ε ≤ δ/4. Consider the intervals I ′ := [n1−ε/2, n1−ε/4] and I := [n1−ε, n1−ε/2]
of Hamming distances to �1. With high probability the initial search point of the
algorithm has a distance of at least n/3 to �1. It thus has to cross both intervals
to reach the target fitness of n − k∗. By [9, Lemma 3.3], the probability of an
offspring having Hamming distance at least c ln n to its parent is n−Ω(ln ln n).
Therefore, the algorithm will not increase the OneMax-value by Ω(ln n) in the
first o(n ln n/p) evaluations. As a result, the algorithm will jump over neither of
the two intervals (both have size ω(ln n)).

Let a trial be defined as a sequence of generations, which starts as soon as
the algorithm samples a search point in I ′ and ends if either

(i) the algorithm accepts an offspring y with ZM(y) > n1−ε/4, or
(ii) the algorithm accepts an offspring y with ZM(y) < n1−ε/2, or
(iii) the algorithm reaches a state (xt, λt) such that ZM(xt) ∈ I ′, xt is distorted

and λt ≥ 6eF 16/ε.

If a trial ends due to condition (i), with an analogous argumentation to before,
a new trial will start again w.h.p.. Under the assumption of a trial not ending
due to condition (i), by Lemma 7, w.h.p. the trial will end due to condition (iii),
or the number of evaluations is in Ω(n ln n/p), in which case the theorem would
follow immediately.

From such a state w.h.p. the algorithm will neither decrease the fitness nor
leave the set of distorted points D before either the total number of evaluations
is in Ω(n ln n/p) or the algorithm accepts an offspring y with ZM(y) < n1−ε, by
Lemma 8. This allows us to apply Lemma 9. To cross the interval I the algorithm
will require Ω(n ln n/p) evaluations, which concludes the proof. �
Corollary 2 puts our findings in context with [9]. Items (2) and (3) are direct
results of Theorem 1 and [9, Theorem 1.1] respectively. Even though (1) is similar
to the corresponding result in [9, Theorem 1.1], it is not a direct consequence.
We provide a brief proof sketch.

Proof (of Corollary 2 (1)). We define the same intervals I and I ′ as in the proof
of Theorem 1. Since even the (1 + 1)-EA takes Ω(n ln n) evaluations to cross I ′,
so does the (1, λ)-EA. With Lemma 5, among these offspring at least one is dis-
torted, which is also accepted w.h.p. by Lemma 4. Since no offspring among the

16 J. Lengler and K. Sturm

first o(n ln n/p) increases the Hamming distance by Ω(ln n), the algorithm will
not leave the set of distorted points D. To cross the second interval I, the algo-
rithm requires Ω(n ln n/p) evaluations with analogous reasoning to Lemma 9.

5 Experiments

We corroborate our theoretical results empirically with two sets of experiments4.
We theoretically showed a lower bound on the runtime T of the SA-(1, λ)-EA
with resets of Ω(n ln n/p), so we plot the normalized runtime T/((n ln n)/p) in
Fig. 1. We show the mean and the standard deviation for three problem sizes
with varying distortion probabilities p over 50 runs each. The remaining param-
eters stay unchanged. Indeed, for larger p, the curve is almost horizontal, which
suggests that the lower bound is tight and T = Θ(n ln n/p). For smaller p, the
runtime becomes irregular, showing that a lower bound on p as in Theorem 1 is
indeed necessary.

In Fig. 2, we compare the runtime behavior of the SA-(1, λ)-EA with resets,
the (1, λ)-EA, and the (1 + λ)-EA. This confirms that the (1, λ)-EA with static
λ is much faster than the two other algorithms.

Fig. 1. Normalized number of evaluations
required by the SA-(1, λ)-EA with resets
to optimize disOM for different distortion
probabilities p. We set d = ln n, k∗ = n0.4,
F = 1.5, s = 1, λmax = n ln n and average
over 50 runs each. The cutoff of 107 eval-
uations was never reached. Note that the
y-axis shows the number of evaluations T
multiplied by p/(n ln n) and is scaled log-
arithmically.

Fig. 2. We take the median over 50 runs
for the (1, λ)-EA, the (1 + λ)-EA and
the SA-(1, λ)-EA with resets. We set d =
ln n, k∗ = n0.4, λcom,plus = �1.5 ln n�
for the (1, λ)-EA and the (1 + λ)-EA,
p = (e/(e − 1))−λcom,plus , F = 1.5, s =
1, λmax = n ln n. We make a cutoff at
106 evaluations. We additionally plot the
curve n ln n/p for reference.

4 The code for the experiments can be found at https://github.com/kosturm/EAs-
on-Distorted-OneMax.

https://github.com/kosturm/EAs-on-Distorted-OneMax
https://github.com/kosturm/EAs-on-Distorted-OneMax

Self-adjusting Offspring Populations Size 17

6 Conclusion

We have investigated the SA-(1, λ)-EA with resets on disOM. While this algo-
rithm has been very successful on hill-cimbing tasks and on the multimodal
function Cliff, we have shown that this does not extend to the type of local
optima that disOM represents. We believe that it is worthwhile to explore the
algorithm on other theoretical benchmarks to understand better in which situ-
ations it is slowed down. Candidates include Hurdle, the recently introduced
benchmark BBFunnel [1], and the multimodal landscapes introduced by Jansen
and Zarges [8]. Moreover, it is important to explore other self-adaptation mech-
anisms that may provide alternatives to the resetting mechanism studied in this
paper and which may be able to keep the advantages of comma selection for
local optima of the type as in disOM.

Acknowledgements. This research was strongly influenced by the discussions at the
Dagstuhl seminars 22081 “Theory of Randomized Optimization Heuristics” and 23332
“Synergizing Theory and Practice of Automated Algorithm Design for Optimization”.

Disclosure of Interests. The authors have no competing interests.

References

1. Dang, D.C., Eremeev, A., Lehre, P.K.: Non-elitist evolutionary algorithms excel in
fitness landscapes with sparse deceptive regions and dense valleys. In: Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 1133–1141 (2021)

2. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimiza-
tion: provable performance gains through dynamic parameter choices. In: Theory
of Evolutionary Computation: Recent Developments in Discrete Optimization, pp.
271–321 (2020)

3. Doerr, B., Doerr, C., Lengler, J.: Self-adjusting mutation rates with provably opti-
mal success rules. Algorithmica 83(10), 3108–3147 (2021)

4. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates.
Algorithmica 83(4), 1012–1053 (2021)

5. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2,
vol. 81. Wiley, New York (1991)

6. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-elitist
evolutionary algorithms: why success rates matter. Algorithmica (2023)

7. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting offspring population sizes outper-
form fixed parameters on the cliff function. Artif. Intell. 328, 104061 (2024)

8. Jansen, T., Zarges, C.: Example landscapes to support analysis of multimodal
optimisation. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G.,
Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 792–802. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 74

9. Jorritsma, J., Lengler, J., Sudholt, D.: Comma selection outperforms plus selection
on onemax with randomly planted optima. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1602–1610. ACM, New York (2023)

https://doi.org/10.1007/978-3-319-45823-6_74

18 J. Lengler and K. Sturm

10. Kaufmann, M., Larcher, M., Lengler, J., Sieberling, O.: Hardest monotone func-
tions for evolutionary algorithms. In: Stützle, T., Wagner, M. (eds.) EvoCOP 2024.
LNCS, vol. 14632, pp. 146–161. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-57712-3 10

11. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes for
the (1, λ)-EA on monotone functions. Theoret. Comput. Sci. 979, 114181 (2023)

12. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Onemax is not the easiest function
for fitness improvements. Evol. Comput. 1–30 (2024)

13. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.:
Learning probability distributions in continuous evolutionary algorithms - a com-
parative review. Nat. Comput. 3, 77–112 (2004)

14. Lengler, J., Schiller, L., Sieberling, O.: Plus strategies are exponentially slower for
planted optima of random height. In: Proceedings of the Genetic and Evolutionary
Computation Conference (2024)

15. Rechenberg, I.: Evolutionsstrategien. In: Simulationsmethoden in der Medizin
und Biologie: Workshop, Hannover, 29 September–1 October 1977, pp. 83–114.
Springer, Heidelberg (1978)

https://doi.org/10.1007/978-3-031-57712-3_10
https://doi.org/10.1007/978-3-031-57712-3_10

Runtime Analysis of Evolutionary
Diversity Optimization on a Tri-Objective

Version of the (LeadingOnes,
TrailingZeros) Problem

Denis Antipov1(B) , Aneta Neumann1 , Frank Neumann1 ,
and Andrew M. Sutton2

1 Optimisation and Logistics, School of Computer and Mathematical Sciences,
University of Adelaide, Adelaide, Australia

{denis.antipov,aneta.neumann,frank.neumann}@adelaide.edu.au
2 University of Minnesota Duluth, Duluth, USA

amsutton@d.umn.edu

Abstract. Diversity optimization is a class of optimization problems in
which we aim to find a diverse set of good solutions. One of the fre-
quently used approaches to solve such problems is to use evolutionary
algorithms which evolve a desired diverse population. This approach is
called evolutionary diversity optimization (EDO).

In this paper, we analyse EDO on a 3-objective function LOTZk,
which is a modification of the 2-objective benchmark function (Leading-
Ones, TrailingZeros). We prove that the GSEMO computes a set of all
Pareto-optimal solutions in O(kn3) expected iterations. We also analyze
the runtime of the GSEMOD (a modification of the GSEMO for diversity
optimization) until it finds a population with the best possible diversity
for two different diversity measures, the total imbalance and the sorted
imbalances vector. For the first measure we show that the GSEMOD

optimizes it asymptotically faster than it finds a Pareto-optimal popu-
lation, in O(kn2 log(n)) expected iterations, and for the second measure
we show an upper bound of O(k2n3 log(n)) expected iterations. We com-
plement our theoretical analysis with an empirical study, which shows
a very similar behavior for both diversity measures that is close to the
theoretical predictions.

Keywords: Diversity optimization · Multi-objective optimization ·
Theory · Runtime analysis

1 Introduction

Computing a diverse set of high quality solutions has recently become an impor-
tant topic in the area of artificial intelligence and in particular in the field of
evolutionary computation [13–15]. Different approaches have been designed for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 19–35, 2024.
https://doi.org/10.1007/978-3-031-70071-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_2&domain=pdf
http://orcid.org/0000-0001-7906-096X
http://orcid.org/0000-0002-0036-4782
http://orcid.org/0000-0002-2721-3618
http://orcid.org/0000-0003-1295-6715
https://doi.org/10.1007/978-3-031-70071-2_2

20 D. Antipov et al.

using classical solvers in order to compute diverse sets of high quality solutions
for problems in the areas of planning [16] and satisfiability [25]. Such problems
are often met in practice, especially when there are some factors which are hard
to formalize, such as politics, ethics or aesthetics. In these cases the algorithm
user would prefer to have several different good solutions rather than one single
best solution to have an opportunity to choose among them. In practice this
problem arises in, e.g., optimization of a building floor plans [9] or in the cutting
problem [12].

In contrast to standard single-objective optimization, where the search is per-
formed in a space of potential solutions, diversity optimization works in a space
of sets of solutions and is usually also harder from a computation complexity
perspective [13]. This makes it natural to use evolutionary algorithms (EAs) for
solving such problems, since they are designed to evolve populations of solu-
tions. This approach is called the evolutionary diversity optimization (EDO).
Evolutionary diversity optimization aims at finding a set of solutions such that
(i) all solutions meet a given quality threshold and (ii) the set of solutions has
maximum diversity according to a chosen diversity measure.

In multi-objective problems, where the aim is to find a set of Pareto-optimal
solutions which are diverse in their fitness, there also might be a need in a diver-
sity of their genotype. E.g., in [17], the authors designed optimal mechanical
parts for different contexts, and the aim was to find a good design for each
context. To reach this goal, the authors of [17] used quality diversity (QD) app-
roach, which is closely related to EDO. Their work was an inspiration for a
further development of multi-objective QD algorithms in [27]. EDO would also
be useful in the setting of [17], since it allows to find a diverse Pareto-optimal
set, where for each balance between the main objectives the decision maker could
choose a good design for the context of their interest.

1.1 Related Work

Feature-based EDO approaches that seek to compute a diverse set of solutions
with respect to a given set of features have been carried out for evolving differ-
ent sets of instances of the traveling salesperson problem [10] as well as evolving
diverse sets of images [1]. For these computations a variety of different diver-
sity measures with respect to the given features such as the star discrepancy
measure [19] and the use of popular indicators from the area of evolutionary
multi-objective optimization [20] have been studied.

Classical combinatorial optimization problems for which EDO algorithms
have been designed to compute diverse sets of solutions include the traveling
salesperson problem [6,22,23], the traveling thief problem [24], the computation
of minimum spanning trees [4] and related communication problems in the area
of defense [21].

Establishing the theoretical foundations of evolutionary diversity optimiza-
tion in the context of runtime analysis is a challenging task as it involves the
understanding of population dynamics with respect to the given problem and

Runtime Analysis of EDO on LOTZk 21

used diversity measure. Initial studies have been carried out for classical bench-
mark problems in the area of evolutionary computation such as OneMax and
LeadingOnes [11]. For permutation problems such as the traveling salesper-
son problem and the quadratic assignment problem runtime bounds have been
provided on computing a maximal diverse set of permutation when there is no
restriction on the quality of solutions [6]. In the context of the optimization of
monotone submodular problems with a given constraint, results on the approxi-
mation quality of diversifying greedy approaches that result in diverse population
have been provided in [7,18].

In the domain of multi-objective optimization, EDO was studied in [8], where
it was shown that on the OneMinMax benchmark problem the GSEMOD can
compute a Pareto-optimal population with the best possible total Hamming
distance in O(n3 log(n)) expected iterations. It was assumed in [2] that this
runtime is actually O(n2 log(n)), and hence it is asymptotically the same as the
runtime needed for computing the whole Pareto front with classic multi-objective
EAs.

1.2 Our Contribution

We contribute to the rigorous analysis of EDO on multi-objective problems and
for the first time consider a 3-objective problem called LOTZk (formally defined
in the following section). This problem is a modification of the classic bi-objective
benchmark problem LOTZ with a significantly larger set of Pareto-optimal solu-
tions, the size of which is regulated with parameter k ≥ 2.

We perform a runtime analysis of a simple evolutionary multi-objective opti-
mizer GSEMOD, which optimizes diversity only when breaking ties between
individuals with the same fitness which compete for being included into the
population. We prove that the GSEMOD finds a Pareto-optimal population on
LOTZk in O(kn3) expected iterations. We also prove for two different diversity
measures the upper bounds on the expected time which it takes the GSEMOD

to find the optimal diversity starting from a Pareto-optimal population. For
one measure (called the total imbalance) this bound is O(kn2 log(n)), which is
smaller than the upper bound on the runtime until finding a Pareto-optimal
population. For the second diversity measure (called the sorted imbalances vec-
tor) we prove a weaker upper bound O(k2n3 log(n)). Our proofs are based on
a rigorous study of which individuals allow us to improve the diversity, and we
believe that similar arguments might be fruitful in the future theoretical studies
of EDO.

We also show empirically that it takes the GSEMOD a relatively short time to
find the optimal diversity after covering the whole Pareto front for both diversity
measures. This demonstrates the benefits of EDO approach and also suggests
that optimizing diversity via tie-breaking rules is an easy-to-implement and a
very effective method.

22 D. Antipov et al.

2 Preliminaries

In this paper we consider only pseudo-Boolean optimization, that is, our search
space is the set of bit strings of length n. We use the following notation. By [a..b]
we denote an integer interval {a, a + 1, . . . , b}. Bits of a bit string x of length n
are denoted by xi, where i ∈ [1..n]. We assume that x1 is the leftmost bit and
xn is the rightmost bit. For any non-negative integer i by 1i (or 0i) we denote
the all-ones (or all-zeros) bit string of length i. If i = 0, this is an empty string.
When we have a Boolean predicate A, we use Iverson bracket [A] to map this
Boolean value into {0, 1}.

Dominance. Given two points x and y and a k-objective function f =
(f1, . . . , fk) defined on these points, we say that x dominates y with respect
to f , if for all i ∈ [1..k] we have fi(x) ≥ fi(y) and there exists j ∈ [1..k] for
which fj(x) > fj(y). We write it as x � y.

2.1 GSEMOD

The Simple Evolutionary Multi-objective Optimizer (SEMO) is an evolutionary
algorithm for solving multi-objective problems. At all iterations this algorithm
keeps a population of non-dominated solutions. The SEMO is initialized with
a point from the search space chosen uniformly at random (u.a.r. for brevity).
In each iteration it chooses an individual from its current population u.a.r. and
mutates it. If the mutated offspring is not dominated by any individual in the
population, it is added to the population, and the individuals which are domi-
nated by this offspring are removed from the population.

The SEMO does not allow two individuals with the same fitness to be in the
population. A situation when a new offspring y is identical (in terms of fitness)
to some individual x in the population can be handled in different ways. Usu-
ally, y replaces x to enhance the exploration of the search space, since y is a
new individual, and x is an older one. This tie, however, can also be broken in
a way which improves some secondary objective. In this paper we are interested
in finding a diverse set of non-dominated solutions, so we can remove an indi-
vidual with the smallest contribution to the diversity. We call the SEMO which
optimizes a diversity measure D in such way the SEMOD.

This mechanism is similar to the tie-breaking rule in the (μ + 1) genetic
algorithm (GA) for the single-objective optimization described in [5]. There a
tie-breaking rule which optimized the diversity of the population allowed to use
crossover in a very effective way to escape local optima. This resulted into a
O(n log(n) + 2k) runtime on Jumpk benchmark, which is much smaller than
the Ω((n

k)
k) runtime of the most common mutation-based algorithms on that

problem. It was also much better than the long-standing O(nk−1) bound for
many classic crossover-based GAs, which has been improved only recently in [26]
to O(μn log(k)+4k/pc) (by showing that the (μ+1) GA diversifies its population
without additional mechanisms). We have a situation different from [5] and [26],
since diversity is our primary goal, and the fitness has a role of a constraint (that

Runtime Analysis of EDO on LOTZk 23

Algorithm 1: The Global SEMOD maximizing a multi-objective function
g and optimizing diversity measure D.
1 Choose x ∈ {0, 1}n uniformly at random;
2 P ← {x};
3 repeat
4 Choose x ∈ P uniformly at random;
5 Create y by flipping each bit of x with probability 1

n
;

6 if ∃w ∈ P : g(w) = g(y) then
7 if D((P ∪ {y}) \ {w}) is not worse than D(P) then
8 P ← (P ∪ {y}) \ {w};

9 else if � ∃w ∈ P : w � y then
10 P ← (P ∪ {y})\{z ∈ P | y � z};
11 until stop;

is, we want the solutions to be Pareto-optimal). However, since the diversity is
a measure of the whole population, but not of a single individual, such a tie-
breaking rule is a natural way to optimize it after finding a Pareto-optimal
population.

In literature, the SEMO which uses standard bit mutation to generate new
offspring is usually called the Global SEMO (GSEMO). Similarly, we call the
SEMOD with standard bit mutation the GSEMOD. The pseudocode of the
GSEMOD is shown in Algorithm 1.

2.2 Diversity Measures

In this paper we consider diversity measures which are based on the balance
between 1-bits and 0-bits in each position in the population. For each i ∈ [1..n]
we denote by n1(i) the number of individuals in the population, which have a
1-bit in position i. More formally, n1(i) =

∑
x∈P xi, where P is the population

of the GSEMOD. Similarly, by n0(i) we denote the number of 0-bits in position
i. We define the imbalance b(i) of position i as |n1(i) − n0(i)|. Intuitively, when
we have a large imbalance in position i, the population is too monotonous in
that position, hence the optimal diversity implies minimizing the imbalance of
each position.

Based on this observation we define two diversity measures. The first one is
called the total imbalance and it is equal to the sum of the imbalances of all
positions. Namely, we have D(P) =

∑n
i=1 b(i). The smaller this measure is, the

better the diversity.
The second measure is the sorted imbalances vector, which is defined by

vector D(P) = (b(σ(i)))ni=1, where σ is a permutation of positions [1..n] in
the descending order of their imbalances b(σ(i)). When comparing two popula-
tions of the same size, the one with a lexicographically smaller vector D(P) is
more diverse than another. We do not determine how to compare diversity of

24 D. Antipov et al.

populations of different sizes, since this comparison never occurs in GSEMOD,
and most of the other classic EAs have populations of a constant size.

We note that using the imbalances to estimate the diversity is also implicitly
used in the total Hamming distance, which was first shown in [28].

2.3 LOTZk Problem

In this paper we consider a classic benchmark bi-objective function
(LeadingOnes, TrailingZeros) (LOTZ for brevity), which is defined on a
space of bit strings of length n. We call n the problem size. The first objec-
tive LeadingOnes (LO for brevity) returns the length of the longest prefix
consisting only of 1-bits, more formally,

LeadingOnes(x) = LO(x) =
n∑

i=1

i∏

j=1

xj .

The second objective TrailingZeros (TZ for brevity) returns the length of the
longest suffix which consists only of 0-bits, namely

TrailingZeros(x) = TZ(x) =
n∑

i=1

n∏

j=n−i+1

(1 − xj).

These two objectives contradict each other, and for any bit string x we have
LO(x) +TZ(x) ≤ n.

The Pareto front of LOTZ consists of n+1 bit strings of form 1i0n−i, for all
i ∈ [0..n]. This means that the Pareto-optimal population has a fixed diversity.
To study the aspects of diversity optimization by the GSEMOD, we modify this
problem.

We introduce parameter k ∈ [0..n], and we say that all bit strings x which
have LO(x)+TZ(x) ≥ n−k do not dominate each other. We call such bit strings
and also their fitness values feasible.1 We note that there is no bit string x such
that LO(x) +TZ(x) = n − 1, for the following reason. Assume that LO(x) = i.
Then x has prefix 1i0, hence xi+1 = 0. If TZ(x) = n−1−LO(x) = n−1−i, then
x also has suffix 10n−1−i. Then xi+1 = 1, which contradicts with the requirement
on the prefix, hence we cannot have LO(x) +TZ(x) = n − 1.

To allow the GSEMOD handle our requirement on the non-domination
between feasible bit strings, we define LOTZk as a 3-objective problem

LOTZk(x) = (LO(x),TZ(x), h(LO(x) +TZ(x))),

where h : R �→ R is defined as

h(x) :=

{
0, if x < n − k,

n + 1 − x, if x ≥ n − k.

1 The illustration of the feasible fitness values can be found in the arXiv version of
this paper [3] (Fig. 1). We omit this illustration for reasons of space.

Runtime Analysis of EDO on LOTZk 25

From this definition it follows that for any x, y ∈ [0..n] we have

x > y ⇒
{

h(x) ≥ h(y), if y < n − k,

h(x) < h(y), if y ≥ n − k.

Consequently, if x dominates y in terms of LOTZ (that is, the first two
objectives) and both of them are feasible, then we have LO(x) + TZ(x) >
LO(y) + TZ(y), and hence the third objective is better for y. Hence, any pair
of feasible individuals do not dominate each other. Otherwise, if at least one of
the two bit strings is not feasible, then the additional objective does not affect
the domination relation.

Problem Statement. In this paper we study the behavior of the GSEMOD

on LOTZk for a variable parameter k. We aim at estimating the runtime of
the GSEMOD, that is, the number of iterations this algorithm performs until it
finds a population which has all feasible solutions in it, and also has the best
possible diversity. We note that such a population cannot contain any infeasible
solution, since each infeasible solution is dominated by at least some feasible
one, thus it cannot be accepted into the final population of the GSEMOD. As a
part of this problem, we also aim at estimating the time until the GSEMO finds
a Pareto-optimal population of the 3-objective LOTZk function.

3 Optimal Diversity

In this section we show the best possible diversity of a population which covers
the whole Pareto front of LOTZk (that is, which contains all feasible fitness
values). Although we will not derive a simple formula for the optimal vector
of imbalances for each position, we will show how the optimal diversity can be
computed. We will use the observations from this section in our runtime analysis
and also in our experiments to determine the moment when the algorithm finds
the optimal diversity.

Before discussing the optimal diversity, we show the following lemma which
estimates the population size of GSEMOD in different stages of the optimization.

Lemma 1. When the GSEMOD runs on LOTZk with k ≥ 2, before it finds the
first feasible solution, the population size is at most maxx∈P (LO(x) +TZ(x)) +
1 ≤ n − k. Once the GSEMOD finds a feasible solution, the population size is at
most μmax = nk − (k−2)(k+1)

2 ≤ nk. The size of any Pareto-optimal population
containing all feasible fitness values is also μmax.

Proof. Before we find a feasible solution, if we have two different individuals in
the population with the same LO value and different TZ values, then one of
them dominates another. By the definition of the GSEMOD, it is impossible.
It is also impossible to have two individuals with the same LO and TZ values.
Hence, in this stage of optimization we have at most one individual per each LO

value in the population. The number of different LO values in the population

26 D. Antipov et al.

is not greater than the maximum LO+TZ value in the population plus one. If
we do not have feasible solutions in the population, this value is always at most
n − k.

We now consider a situation when we have a feasible solution in the pop-
ulation. We cannot have two solutions with the same LO and TZ values in
the population. For each LO value � < n we can have at most min(k, n − �)
solutions with different TZ values in the population: either one infeasible solu-
tion x with TZ(x) < n − k − �, or a set of feasible solutions with TZ value in
[max(0, n−k − �)..(n− �)]\{n− �−1}. For � = n we can have only one solution,
which is 1n. Summing this up over all LO values, we obtain that the maximum
population size μmax is

μmax =
n−1∑

�=0

min(k, n − �) + 1 = k(n − k + 1) +
n−1∑

�=n−k+1

(n − �) + 1

= nk − k2 + k +
k(k − 1)

2
+ 1 = nk − (k − 2)(k + 1)

2
≤ nk.

This is the same as the total number of different feasible fitness values, thus
the maximum size of a Pareto-optimal population. 	

We now show how to compute the minimum imbalance in the following
Lemma.

Lemma 2. Consider a population, which covers all feasible fitness values of
LOTZ. For any position i ∈ [1..n] the minimum imbalance is

bopt(i) = max (|m0(i) − m1(i)| − m(i), δ) , (1)

where

– m0(i) is the number of individuals in the population which are guaranteed to
have a 0-bit in position i, and

m0(i) =
i(i − 1)

2
− [i > k + 1] · (i − k − 1)(i − k)

2
+ min(n − i + 1, k),

– m1(i) is the number of individuals in the population which are guaranteed to
have a 1-bit in position i, and

m1(i) =
(n − i + 1)(n − i)

2
− [i < n − k] · (n − k − i)(n − k − i + 1)

2
+ min(i, k),

– m(i) is the number of individuals in the population which can have any value
in position i, and

m(i) = min(k − 2, i − 1) · min(k − 2, n − i) − a(i)(a(i) + 1)
2

, where

a(i) := max(0,min(k − 3, i − 2, n − i − 1, n − k)),

Runtime Analysis of EDO on LOTZk 27

– δ is 1, if μmax is odd and 0, if μmax is even.

We omit the proof for reasons of space, and also since these computations
are quite straightforward.2 The most important outcome of Lemma 2 for our
theoretical investigation is that for each position i to have an optimal imbalance
b(i) = bopt(i) in this position in a Pareto-optimal population, we need to have a
particular number of 1-bits in position i among the m(i) individuals which can
have any value in position i.

With this observation we define M(i) as the set of feasible fitness values
which allow any value of bit in position i and we say that the i-th bit of an
individual of a Pareto-optimal population with fitness in M(i) is wrong, if it has
a majority (in the whole population) value of the bits in this position. Otherwise
it is right. Note that we use this notation only for the bits of individuals with
fitness in M(i). The following two lemmas show, how many wrong bits we have
in a position depending on its imbalance and how the wrong bits help us to
improve the imbalance. We omit the proofs for reasons of space.

Lemma 3. For any position i ∈ [1..n] the number of wrong bits in this position
is at least b(i)−bopt(i)

2 .

Lemma 4. Consider some arbitrary i ∈ [1..n] and a Pareto-optimal population
of LOTZk. If we have b(i) > bopt(i) and have m′(i) > 0 individuals in M(i)
with a wrong bit in position i, then replacing any of such individuals with the
same bit string, but with a different bit value in position i would reduce b(i) by
two. The probability that the GSEMOD does it in one iteration is at least m′(i)

ekn2 .

4 Runtime Analysis of Covering All Fitness Values

In this section we analyze the first stage of the algorithm, namely how it gets a
Pareto-optimal population which contains all feasible solutions. The main result
of this section is the following theorem. We note that although it is formulated
for the GSEMOD, the proof does not use the tie breaking rule in any of the
arguments, hence this upper bound also holds for the GSEMO.

Theorem 1. The expected runtime until the GSEMOD finds all feasible solu-
tions of LOTZk is O(kn3).

Proof. We split the analysis into three phases. The first phase is from the initial
population until we find a feasible solution. The second phase lasts until for each
LeadingOnes value we have at least one feasible solution in the population.
And the third phase lasts until we find all feasible solutions. We note that once
a feasible solution gets into a population of the GSEMOD, its fitness value will
always be present in the population, since this solution is never dominated by
any other solution.

2 The full version of this paper with all omitted proofs can be found at arXiv [3].

28 D. Antipov et al.

Phase 1: from initial solution to a feasible solution. Let Xt be maxx∈Pt
(LO(x)+

TZ(x)), where Pt is the population in the beginning of iteration t. During this
phase we have Xt < n − k and the phase ends as soon as we get Xt > n − k. We
also note that Xt never decreases with t, since for any two bit strings x, y it is
impossible for y to dominate x when LO(x) +TZ(x) > LO(y) +TZ(y), hence
any point x can be removed from the population only by accepting a point with
an equal or lager LO+TZ value.

To get Xt+1 > Xt after iteration t we can choose an individual x with the
maximum value of (LO(x)+TZ(x)) as a parent (or any such individual, if there
are more than one) and increase either its LO value by flipping the first 0-bit in
it (and not flipping any other bit) or its TZ value by flipping its last 1-bit (and
not flipping any other bit). Since we use standard bit mutation, the probability
to flip only one of two particular bits is at least 2

n (1− 1
n)

n−1 ≥ 2
en . By Lemma 1,

during this phase the population size in iteration t is at most Xt + 1, hence
the probability to choose such x as a parent is at least 1

Xt+1 . Therefore, the
probability to increase Xt is at least 2

en(Xt+1) > 2
en2 . Hence, for any value of Xt

the expected number of iterations until we get a larger Xt is less than en2

2 . To
get a feasible solution, we need to increase Xt at most n − k times, hence the
total expected time until we get a feasible solution is at most (n−k) · en2

2 < en3

2 .

Phase 2: finding a feasible solution for each LO value. In this phase we denote
by Ft ⊂ Pt the set of feasible solutions in the population and by Lt we denote the
set of different LO values which are present in Ft, that is, Lt = {LO(x)}x∈Ft

.
We estimate the expected time τ until we find a feasible bit string x with LO(x)
not in Lt. We distinguish two cases.

Case 1: max(Lt) < n. In this case we can choose an individual x from Ft with
the maximum LO value as a parent and flip its first 0-bit. This would create
an individual x′, which has TZ(x′) = TZ(x) and LO(x′) > LO(x), hence it is
feasible and it adds a new LO value to Lt. The probability to chose such an
individual is at least 1

nk , since the population size is at most nk by Lemma 1.
The probability to flip only one particular bit is 1

n (1 − 1
n)

n−1 ≥ 1
en . Hence, the

probability to extend Lt is at least 1
ekn2 , and τ ≤ ekn2 in this case.

Case 2: max(Lt) = n. In this case we have at least one LO value � /∈ Lt for
which we have (�+1) ∈ Lt. Consider an individual x ∈ Ft with LO(x) = �+1. If
there are several such individuals let x be the one with the largest TZ(x) value.

If TZ(x) > n−k−LO(x), then (LO(x)−1,TZ(x)) = (�,TZ(x)) is a feasible
fitness value. Hence, if we choose x as a parent and flip a 1-bit in position �+1,
then we get a feasible individual x′ with LO(x′) = � and TZ(x′) = TZ(x) (such
that LO(x′) +TZ(x′) ≥ n − k), which adds � to Lt. The probability to do that
(similar to the previous case) is 1

ekn2 , and therefore, τ ≤ ekn2.
If TZ(x) = n − k − LO(x), then if we just reduce LO value of x, we get an

infeasible individual. However, we can chose x as a parent and flip its last 1-bit.
This gives us an individual x′ with LO(x′) = LO(x) and TZ(x′) ≥ TZ(x) + 1.
Hence, this individual is feasible, and adding it into the population gives us an
individual which satisfies TZ(x′) > n − k − LO(x′) and LO(x′) = � + 1, hence

Runtime Analysis of EDO on LOTZk 29

after obtaining it we will need at most ekn2 expected iterations to add � to Lt,
as it has been shown in the previous paragraph. The probability to create such
x′ is at least 1

ekn2 , and expected runtime until it happens is at most ekn2. Hence,
in the worst scenario of Case 2 we have τ ≤ 2ekn2.

To get all LO values in Lt we need to extend Lt for at most n times, hence
the expected time of Phase 2 is at most 2ekn3.

Phase 3: covering all TZ values for each LO value. Consider some arbitrary
LO value � ∈ [0..n] and let S be a set of individuals x in the population with
LO(x) = �. We have two ways to extend S (that does not yet contain all possible
TZ values), which depend on the maximum TZ value s among individuals in S.

Case 1: s < n − �, then we can create a bit string with LO = i and TZ > s
by selecting the individual with LO = i and TZ = s (the probability of this
is at least 1

nk) and flip the last 1-bit in it without flipping any other bit (the
probability of this is at least 1

en). Hence, we create an individual with LO = �
and with an unseen TZ value with probability at least 1

ekn2 .

Case 2: s = n − � (which is the maximum TZ value for LO value �), then
we can create a bit string x with LO(x) = � and a new uncovered TZ value
j < n − � − 1 by selecting the individual with LO = � and TZ = s and flipping
a 0-bit in position n − � in it. The probability of this is at least 1

ekn2 .
We now consider 2ekn3 consecutive iterations. Let k′ be the number of

uncovered TZ values which are missing in S in the beginning of these itera-
tions. Note that k′ ≤ k ≤ n. The event when we create a bit string with an
uncovered TZ value for the fixed LO value � happens in each of the 2ekn3

iterations with probability at least 1
ekn2 until we cover all k′ uncovered TZ

values. Hence, the number of such events during these iterations dominates a
random variable X ∼ min(k′, Y), where Y ∼ Bin(2ekn3, 1

ekn2). During this
series of iterations we have less than k′ such events with probability at most
Pr[X ≤ k′] = Pr[Y ≤ k′] ≤ Pr[Y ≤ n]. Since E[Y] = 2n, by the Chernoff bound
the latter probability is at most

Pr
[

Y ≤
(

1 − 1
2

)

E[Y]
]

≤ exp
(

−
1
4E[Y]

3

)

= e−n/6.

By the union bound over all (n − 1) different LO values3 the probability that
after 2ekn3 iteration we have at least one such value with a non-covered TZ

value is at most (n − 1)e−n/12 = o(1). Hence, the expected number of such
phases of length 2ekn3 which we need to cover all feasible solutions is (1+o(1)).
Therefore, the expected time of Phase 4 is 2e(1 + o(1))kn3.

Summing up the expected times of each phase, we obtain that the expected
runtime is at most en3

2 + 2ekn3 + 2e(1 + o(1))kn3 = O(kn3). 	

3 We exclude values n and n − 1, for which we have only one feasible pair and hence
for those LO values all TZ values are covered after the second phase.

30 D. Antipov et al.

5 Runtime Analysis of Diversity Optimization

In this section we analyze how much time it takes the GSEMOD to find a
population with the optimal diversity after it has already found a population of
all feasible solutions. We start with the following theorem for the total imbalance
measure.

Theorem 2. Consider a run of the GSEMOD on LOTZk, which minimizes the
diversity measure D(P) =

∑n
i=1 b(i) and which starts with population P0 that

covers all feasible fitness values. Then the expected runtime until the GSEMOD

finds a population with the best possible diversity is O(kn2 log(n)).

Proof. Let Pt be a population of the GSEMOD in the beginning of iteration t
and let φt(i) be the difference between the imbalance of position i and its optimal
imbalance in Pt, that is, φt(i) := b(i)− bopt(i). Let also Φt :=

∑n
i=1 φt(n), which

we call the potential of the population in iteration t. Note that the potential
decreases strongly monotone with the diversity D(Pt) and hence no population
increasing the potential is accepted. When Φt = 0, it implies that all φt(i) = 0,
and therefore, population Pt has an optimal diversity. Therefore, to estimate the
runtime of the GSEMOD, we need to estimate the time until Φt becomes zero.

Note that for each i the imbalance of position i is defined by the i-th bits
of individuals with fitness in M(i), hence the maximum difference of b(i) and
bopt(i) is m(i) which by Lemma 2 is at most k2. Therefore, each φt(i) is at most
k2 and thus, Φt is at most nk2.

By Lemma 4, the probability to reduce φt(i) by two in one iteration is at
least m′(i)

ekn2 , where we recall that m′(i) is the number of wrong bits in position i.
By Lemma 3 we have m′(i) ≥ φt(i)

2 , hence the probability to reduce φt(i) by two
is at least φt(i)

2ekn2 . The probability to reduce Φt by two is at least the probability
that we reduce at least one φt(i) by two. Since the events considered in Lemma 4
are disjoint for different positions, we have

Pr[Φt − Φt+1 = 2] ≥
n∑

i=1

φt(i)
2ekn2

=
Φt

2ekn2
.

For each value Φt we reduce this value at most once. Conditional on Φt = s, the
probability to reduce it is at least s

2ekn2 , and the expected time until we reduce Φt

is at most 2ekn2

s . Since Φt can only take integer values from [1..nk2] before we find
the optimum, the total expected runtime until we find the optimal population
is at most the sum of the runtimes to reduce each of the possible values of Φt,
that is,

E[T] ≤
nk2
∑

s=1

2ekn2

s
≤ 2ekn2(ln(nk2) + 1) = O(kn2 log(n)).

	

Runtime Analysis of EDO on LOTZk 31

Note that Theorem 2 gives an upper bound which is asymptotically smaller
than the upper bound on the runtime until the GSEMOD finds all feasible solu-
tions, which by Theorem 1 is O(kn3), hence the expected runtime until the
GSEMOD finds a population of all feasible solutions with an optimal diversity
starting from a random bit string is also O(kn3).

The second diversity measure which we consider in this paper is the vector
of position imbalances sorted in descending order and which is to be minimized
lexicographically. For this diversity measure we show the following theorem.

Theorem 3. Consider a run of the GSEMOD on LOTZk, which starts with
population P0, which covers all feasible fitness values, and which minimizes diver-
sity measure D(P) = (b(σ(i)))ni=1, where σ is a permutation of positions [1..n]
in descending order of their imbalances. Then the expected runtime until the
GSEMOD finds a population with the best possible diversity is O(k2n3 log(n)).

We only sketch the proof for reason of space.4 We define the potential Φt of
the population at iteration t as the largest imbalance of a position, which has a
non-optimal imbalance. The maximum value of Φt is nk and we can show that
we decrease it in at most ekn2(ln(n) + 1) expected iterations, hence the total
expected runtime is O(k2n3 log(n)).

We note that when we optimize the diversity measured by the sorted imbal-
ances vector, the total imbalance might increase. This happens, when we decrease
the imbalance of some position i, but also increase imbalances of positions which
at the moment have smaller imbalances than position i. This situation resembles
optimization of the BinVal benchmark function with the (1+ 1) EA, for which
OneMax value can increase, but it does not slow down the optimization [29].
This analogy makes us optimistic that it takes much less time to optimize this
sorted imbalances vector than our upper bound in Theorem 3, and the results
of the experiments shown in the next section support this optimism. However,
the main problem with proving it is that imbalances can be changed in large
chunks, when we replace one individual with a one-bit mutation of another, but
not of itself.

6 Experiments

In this section we show the results of our empirical study. We run the GSEMOD

on LOTZk on different problem sizes and with different values of k. We used n ∈
{23, 24, 25, 26, 27} and for each n, except n = 27, we used k ∈ {2, 4, √n�, n

2 , n}.
For the largest n = 27 we used only k ∈ {2, 4, √n�}. We used both diversity
measures (the total imbalance and the sorted balances vector) and made 128
runs (this number gives us enough confidence in that the mean runtime does not
deviate too much from its expectation) of the GSEMOD for each parameter set-
ting and each diversity measure. In our experiments we do not initialize random
seed, that is, it was initialized with the timestamp at the moment of starting the
experiments.
4 The omitted proof is included in the full version of this paper at arXiv [3].

32 D. Antipov et al.

Fig. 1. The normalized runtimes of the GSEMOD when optimizing the total imbalance
diversity (on the left) and the sorted imbalances vector (on the right). The dashed lines
show the time until a Pareto-optimal population is found and the solid lines show the
time until an optimal diversity is obtained. All runtimes are normalized by kn3, which
is asymptotically the same as the upper bound shown in Theorem 1.

All plots in this section show the mean runtimes over 128 runs and they
have errorbars which indicate the standard deviation. All of them are normal-
ized by the upper bound from Theorem 1 on the time of the first phase of the
optimization, that is, by kn3.

6.1 Sum of Imbalances

The results of the runs when the GSEMOD minimized the sum of total imbal-
ances are shown in the left plot in Fig. 1. In this figure we see that all the
normalized runtimes (both the runtimes until we obtain a Pareto-optimal pop-
ulation, indicated by the dashed lines, and runtimes until the optimal diversity,
indicated by the solid lines) are decreasing, which suggests that the asymptotical
upper bound might be even smaller than O(kn3), but not by a large factor.

We observe that the runtime required by the algorithm to get an optimal
diversity after computing a Pareto-optimal population is small compared to the
runtime required to find a Pareto-optimal population for the first time. This
matches the ratio between the upper bounds shown in Theorems 1 and 3, how-
ever, we note that without a proof of the lower bound for the first stage (until
we cover the Pareto front) we cannot state that the runtime of the second stage
(that is, after finding a Pareto-optimal population) is a small fraction of the
total runtime.

Runtime Analysis of EDO on LOTZk 33

Also, note that for k = 2 both lines coincide. This is because for any fitness
pair (fLO, fTZ) such that fLO + fTZ = n − 2 there exists only one bit string
with this fitness, hence there exists a unique Pareto-optimal population, which
therefore has an optimal diversity.

6.2 Sorted Imbalances Vector

The results of the runs when the GSEMOD minimized the vector of imbalances,
sorted in descending order, are shown in the right plot in Fig. 1. In this figure
we see that all the normalized runtimes are decreasing, which suggests that the
asymptotical upper bound might be even smaller than O(kn3), but not by a large
factor. This also indicates that the upper bound on the diversity optimization
time given in Theorem 3 is not tight and in practice the runtime required for
diversity optimization is not larger than the runtime needed for finding a Pareto-
optimal population. For large values of k the runtime of diversity optimization
is even smaller than it is for the total imbalance.

7 Conclusion

In this paper, we have shown that optimizing diversity with EAs in a multi-
objective setting might be easy compared to the time needed for the computation
of the Pareto front. We showed that a simple tie-breaking rule implemented
into the GSEMO can effectively find the best possible diversity of a Pareto-
optimal population. This lines up with the result of [2] for the OneMinMax

problem, even though the main source of diversity improvements is different in
their setting (in [2] and also in [8] the proofs relied on two-bits flips which improve
the diversity). Our analysis is also the first one performed on a multi-objective
problem with more than two objectives, which demonstrates that evolutionary
algorithms can be effective within such a multi-dimensional domain, where the
main factor which slows down the optimization is usually a big size of the Pareto
front.

The results, however, raise a question, which diversity measures are the
fastest to optimize. As we see from our results, although the two considered
measures share the set of populations which have the optimal diversity, they
are optimized with the GSEMOD in different ways. In practice the difference
might be even larger, since the diversity is also optimized in the earlier stages
of optimization, that is, before we find a Pareto-optimal population, and this
difference might be of particular interest for using EDO in practice.

From theoretical perspective, it would be valuable to find the lower bounds
on the runtime of diversity optimization. In general, finding lower bounds for
multi-objective problems is already a challenging task. In EDO it is even more
complicated, since the diversity might be optimized also before we cover the
Pareto front. Thus, a very precise analysis of the multi-objective optimization
and diversity optimization in parallel is required. We are optimistic that studying
this problem might inspire new analysis methods for a broader class of multi-
objective problems.

34 D. Antipov et al.

Acknowledgements. This work has been supported by the Australian Research
Council through grants DP190103894 and FT200100536.

References

1. Alexander, B., Kortman, J., Neumann, A.: Evolution of artistic image variants
through feature based diversity optimisation. In: Genetic and Evolutionary Com-
putation Conference, GECCO 2017, pp. 171–178. ACM (2017)

2. Antipov, D., Neumann, A., Neumann, F.: Rigorous runtime analysis of diversity
optimization with GSEMO on OneMinMax. In: Foundations of Genetic Algo-
rithms, FOGA 2023, pp. 3–14. ACM (2023)

3. Antipov, D., Neumann, A., Neumann, F.: Runtime analysis of evolutionary diver-
sity optimization on the multi-objective (LeadingOnes, TrailingZeros) problem.
CoRR abs/2404.11496 (2024). https://arxiv.org/abs/2404.11496

4. Bossek, J., Neumann, F.: Evolutionary diversity optimization and the minimum
spanning tree problem. In: Genetic and Evolutionary Computation Conference,
GECCO 2021, pp. 198–206. ACM (2021)

5. Dang, D., et al.: Escaping local optima using crossover with emergent diversity.
IEEE Trans. Evol. Comput. 22(3), 484–497 (2018)

6. Do, A.V., Guo, M., Neumann, A., Neumann, F.: Analysis of evolutionary diversity
optimization for permutation problems. ACM Trans. Evol. Learn. Optim. 2(3),
11:1–11:27 (2022)

7. Do, A.V., Guo, M., Neumann, A., Neumann, F.: Diverse approximations for mono-
tone submodular maximization problems with a matroid constraint. In: Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2023, pp. 5558–5566.
ijcai.org (2023)

8. Doerr, B., Gao, W., Neumann, F.: Runtime analysis of evolutionary diversity max-
imization for OneMinMax. In: Genetic and Evolutionary Computation Conference,
GECCO 2016, pp. 557–564. ACM (2016)

9. Galle, P.: Branch & sample: a simple strategy for constraint satisfaction. BIT 29(3),
395–408 (1989)

10. Gao, W., Nallaperuma, S., Neumann, F.: Feature-based diversity optimization for
problem instance classification. Evol. Comput. 29(1), 107–128 (2021)

11. Gao, W., Neumann, F.: Runtime analysis for maximizing population diversity in
single-objective optimization. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2014, pp. 777–784. ACM (2014)

12. Haessler, R.W., Sweeney, P.E.: Cutting stock problems and solution procedures.
Eur. J. Oper. Res. 54, 141–150 (1991)

13. Hanaka, T., Kiyomi, M., Kobayashi, Y., Kobayashi, Y., Kurita, K., Otachi, Y.: A
framework to design approximation algorithms for finding diverse solutions in com-
binatorial problems. In: AAAI Conference on Artificial Intelligence, AAAI 2023,
pp. 3968–3976. AAAI Press (2023)

14. Hanaka, T., Kobayashi, Y., Kurita, K., Lee, S.W., Otachi, Y.: Computing diverse
shortest paths efficiently: A theoretical and experimental study. In: AAAI Confer-
ence on Artificial Intelligence, AAAI 2022, pp. 3758–3766. AAAI Press (2022)

15. Ingmar, L., de la Banda, M.G., Stuckey, P.J., Tack, G.: Modelling diversity of
solutions. In: AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 1528–
1535. AAAI Press (2020)

16. Katz, M., Sohrabi, S.: Reshaping diverse planning. In: AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, pp. 9892–9899. AAAI Press (2020)

https://arxiv.org/abs/2404.11496

Runtime Analysis of EDO on LOTZk 35

17. Makatura, L., Guo, M., Schulz, A., Solomon, J., Matusik, W.: Pareto gamuts:
exploring optimal designs across varying contexts. ACM Trans. Graph. 40(4),
171:1–171:17 (2021)

18. Neumann, A., Bossek, J., Neumann, F.: Diversifying greedy sampling and evolu-
tionary diversity optimisation for constrained monotone submodular functions. In:
Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 261–269.
ACM (2021)

19. Neumann, A., Gao, W., Doerr, C., Neumann, F., Wagner, M.: Discrepancy-based
evolutionary diversity optimization. In: Genetic and Evolutionary Computation
Conference, GECCO 2018, pp. 991–998. ACM (2018)

20. Neumann, A., Gao, W., Wagner, M., Neumann, F.: Evolutionary diversity opti-
mization using multi-objective indicators. In: Genetic and Evolutionary Computa-
tion Conference, GECCO 2019, pp. 837–845. ACM (2019)

21. Neumann, A., et al.: Diversity optimization for the detection and concealment of
spatially defined communication networks. In: Genetic and Evolutionary Compu-
tation Conference, GECCO 2023, pp. 1436–1444. ACM (2023)

22. Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Computing diverse sets
of high quality TSP tours by EAX-based evolutionary diversity optimisation. In:
Foundations of Genetic Algorithms, FOGA 2021, pp. 9:1–9:11. ACM (2021)

23. Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Entropy-based evolution-
ary diversity optimisation for the traveling salesperson problem. In: Genetic and
Evolutionary Computation Conference, GECCO 2021, pp. 600–608. ACM (2021)

24. Nikfarjam, A., Neumann, A., Neumann, F.: Evolutionary diversity optimisation for
the traveling thief problem. In: Genetic and Evolutionary Computation Conference,
GECCO 2022, pp. 749–756. ACM (2022)

25. Nikfarjam, A., Rothenberger, R., Neumann, F., Friedrich, T.: Evolutionary diver-
sity optimisation in constructing satisfying assignments. In: Genetic and Evolu-
tionary Computation Conference, GECCO 2023, pp. 938–945. ACM (2023)

26. Opris, A., Lengler, J., Sudholt, D.: A tight O(4k/pc) runtime bound for a (µ+1)
GA on Jumpk for realistic crossover probabilities. In: Genetic and Evolutionary
Computation Conference, GECCO 2024. ACM (2024, to appear)

27. Pierrot, T., Richard, G., Beguir, K., Cully, A.: Multi-objective quality diversity
optimization. In: Genetic and Evolutionary Computation Conference, GECCO
2022, pp. 139–147. ACM (2022)

28. Wineberg, M., Oppacher, F.: The underlying similarity of diversity measures used
in evolutionary computation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS,
vol. 2724, pp. 1493–1504. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45110-2_21

29. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Combin. Probab. Comput. 22(2), 294–318 (2013)

https://doi.org/10.1007/3-540-45110-2_21
https://doi.org/10.1007/3-540-45110-2_21

Sliding Window 3-Objective Pareto
Optimization for Problems with Chance

Constraints

Frank Neumann1(B) and Carsten Witt2

1 Optimisation and Logistics, School of Computer and Mathematical Sciences,
The University of Adelaide, Adelaide, Australia

frank.neumann@adelaide.edu.au
2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract. Constrained single-objective problems have been frequently
tackled by evolutionary multi-objective algorithms where the constraint
is relaxed into an additional objective. Recently, it has been shown that
Pareto optimization approaches using bi-objective models can be signif-
icantly sped up using sliding windows [16]. In this paper, we extend the
sliding window approach to 3-objective formulations for tackling chance
constrained problems. On the theoretical side, we show that our new slid-
ing window approach improves previous runtime bounds obtained in [15]
while maintaining the same approximation guarantees. Our experimental
investigations for the chance constrained dominating set problem show
that our new sliding window approach allows one to solve much larger
instances in a much more efficient way than the 3-objective approach
presented in [15].

Keywords: chance constraints · evolutionary algorithms ·
multi-objective optimization

1 Introduction

Multi-objective formulations have been widely used to solve single-objective opti-
mization problems. The initial study carried out by Knowles et al. [8] for the
H-IFF and the traveling salesperson problem shows that such formulations can
significantly reduce the number of local optima in the search space and uses the
term multi-objectivization for such approaches. Using multi-objective formula-
tions to solve constrained single-objective optimization problems by evolutionary
multi-objective optimization using the constraint as an additional objective has
shown to be highly beneficial for a wide range of problems [4,9,12]. Using the
constraint as an additional objective for such problems allows simple evolution-
ary multi-objective algorithms such as GSEMO mimic a greedy behaviour and as
a consequence allows us to achieve theoretically best possible performance guar-
antees for a wide range of constrained submodular optimization problems [17–
19]. Such approaches have been widely studied recently under the term Pareto
optimization in the artificial intelligence and machine learning literature [22].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 36–52, 2024.
https://doi.org/10.1007/978-3-031-70071-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_3&domain=pdf
http://orcid.org/0000-0002-2721-3618
http://orcid.org/0000-0002-6105-7700
https://doi.org/10.1007/978-3-031-70071-2_3

Sliding Window 3-Objective Pareto Optimization 37

In the context of problems with stochastic constraints, it has recently been
shown that 3-objective formulations where the given constraint is relaxed into
a third objective lead to better performance than 2-objective formulations that
optimize the expected value and variance of the given stochastic components
under the given constraint [14,15]. The experimental investigations for the
chance constrained dominating set problem carried out in [15] show that the 3-
objective approach is beneficial and outperforms the bi-objective one introduced
in [14] for medium size instances of the problem. However, it has difficulties
in computing even a feasible solution for larger graphs. In order to deal with
large problem instances we design a new 3-objective Pareto optimization app-
roach based on the sliding window technique for Pareto optimization recently
introduced in [16]. Using sliding window selection has been shown to scale up
the applicability of GSEMO type algorithms for the optimization of monotone
functions under general cost constraints. Here, at a given time step only solu-
tions with a fixed constraint value are chosen in the parent selection step. This
allows the algorithm to proceed with achieving progress in the same way as the
analysis for obtaining theoretical performance guarantees. It does so by dividing
the given function evaluation budget tmax equally among the different constraint
values starting with selecting individuals with the smallest constraint value at
the beginning and increasing it over time until it reaches that given constraint
bound at the end of the run. A positive effect is that the maximum population
size can be eliminated as a crucial factor in the given runtime bounds. Further-
more, experimental studies carried out in [16] show that the approach provides
major benefits when solving problems on graphs with up to 21,000 vertices.

Making the sliding window technique work requires one to deal with a poten-
tially large number of trade-off solutions even for a small number of constraint
values. We design highly effective 3-objective Pareto optimization approaches
based on the sliding window technique. Our theoretical investigations using run-
time analysis for the chance constrained problem under a uniform constraint
show that our approach may lead to a significant speed-up in obtaining all
required Pareto optimal solutions. In order to make the approach even more
suitable in practice, we introduce additional techniques that do not hinder the
theoretical performance guarantees, but provide additional benefits in applica-
tions. One important technique is to control the sliding window through an addi-
tional parameter a. Choosing a ∈]0, 1[allows the algorithm to move the sliding
window faster at the beginning of the optimization process and slow down when
approaching the constraint bound. This allows us to maintain the benefit of the
Pareto optimization approach including its theoretical performance guarantees
while focusing more on the improvement of already high quality solutions at the
end of the optimization run. The second technique that we incorporate is espe-
cially important for problems like the dominating set problem where a constraint
that is not fulfilled for most of the optimization process needs to be fulfilled at
the end. In order to deal with this, we introduce a parameter tfrac ∈ [0, 1] which
determines the fraction of time our sliding window technique is used. If after
tfrac · tmax steps a feasible solution has not been found yet, then in each step a

38 F. Neumann and C. Witt

solution from the population that is closest to feasible is selected in the parent
selection step to achieve feasibility within the last (1 − tfrac) · tmax steps.

This paper is structured as follows: in Sect. 2, we present the multi-objective
algorithms considered in this paper, in particular the 3-objective approach using
sliding window selection. Section 3 proves the improved runtime bounds for this
approach. Section 4 presents the empirical comparison of the different algorithms
on a large set of instances of the minimum dominating set problem. We finish
with some conclusions.

2 Algorithms

In this section, we define the algorithmic framework incorporating sliding win-
dow selection into two-objective optimization problems under constraints. It
combines the 3-objective problem formulation from [15], where the underlying
problem is 2-objective and a constraint is converted to a helper objective, with
the two-objective formulation from [16], where the problem is single-objective
and the constraint is converted to a helper objective and additionally undergoes
the so-called sliding window selection. More precisely, sliding window is based on
the observation that several problems under uniform constraints can be solved by
iterating over increasing constraint values and optimizing the actual objectives
for each fixed constraint value.

We consider an optimization problem on bit strings x ∈ {0, 1}n involving two
objective functions μ(x), v(x) : {0, 1}n → R+

0 and an integer-valued constraint
function c(x) : {0, 1}n → N with bound B, i. e., the only solutions satisfying
c(x) ≤ B are feasible. Our new approach called SW-GSEMO3D is shown in
Algorithm 1 (which will later be extended to Algorithm 4 explained below).
The sliding window selection in Algorithm 3 will be used as a module in SW-
GSEMO3D and choose from its current population P , which is the first parame-
ter of the algorithm. The idea is to select only from a subpopulation of constraint
values in a specific interval determined by the maximum constrained value B, the
current generation t, the maximum number of iterations of the algorithm tmax,
and further parameters. In the simplest case (where the remaining parameters
are set to a = 1, cmax = −1 and tfrac = 1), the time interval [1, tmax] is uniformly
divided into B time intervals in which only the subpopulation having constraint
values in the interval [�(t/tmax)B� − std, �(t/tmax)B� + std], where std ≥ 0 is a
deviation that allows selection from a larger interval, which is another heuristic
component investigated in Sect. 4. Moreover, as not all problems may benefit
from selecting according to the specific interval order, the calls to Algorithm 3
resort to selection from the interval [B − std, B] for the last (1− tfrac)tmax steps.
Finally, since making progress may become increasingly difficult for increasing
constraint values, the selection provides the parameter a which will allow time
intervals of varying length for the different constraint values to choose from. If
a < 1, the time allocated to choosing from a specific constraint value (inter-
val) increases with the constraint value. Lines 8–10 of the algorithm make sure
that solutions with too low constraint value (less than �), but not equaling the

Sliding Window 3-Objective Pareto Optimization 39

Algorithm 1: Sliding Window GSEMO3D (SW-GSEMO3D)
1 Choose initial solution x ∈ {0, 1}n;
2 Set t0 ← −1;
3 P ← {x};
4 Compute f(x) = (μ(x), v(x), c(x));
5 t ← 1;
6 μmin ← μ(x);
7 if μmin = 0 then
8 t0 ← t;

9 repeat
10 if (t0 = −1) ∧ (t ≤ tmax) then
11 x ← argmin{μ(z) | z ∈ P} (breaking ties arbitrarily)

12 else
13 x = sliding-selection(P, t − t0, tmax − t0, 0, B, 1, 1, −1);

14 Create y from x by mutation;
15 Compute f(y) = (μ(y), v(y), c(y));
16 if μ(y) < μmin then
17 μmin ← μ(y);

18 if (t0 = −1) ∧ (μmin = 0) then
19 t0 ← t;

20 if � w ∈ P : w � y then
21 P ← (P \ {z ∈ P | y � z}) ∪ {y};

22 t ← t + 1;
23 until t ≥ tmax;

parameter cmax are permanently removed from the population. Line 11 confines
the population to select from to the desired window of constraint values [�, h].
In case that no solution of those values exists, a uniform choice from the popula-
tion remaining after removal of individuals of too low constraint values is made.
Hence, even if there are no individuals with constraint values in the interval
[�, h], then lines 8–10 favor increasing constraint values.

In our theoretical studies, we focus on SW-GSEMO3D which uses sliding win-
dow selection with the default choices std = 0, tfrac = 1, a = 1 and cmax = −1.
It starts out with a solution chosen uniformly at random and is run on the bi-
objective optimization problem (μ(x), v(x)), both of which are minimized and
will correspond to expected value and variance of a chanced constrained opti-
mization problem further explained in Sect. 3. In particular, we assume μ(x) ≥ 0
for all x ∈ {0, 1}n and μ(0n) = 0, and accordingly for v(x). Following the
usual definitions in multi-objective optimization, we say that a solution x dom-
inates a solution y (x � y) iff c(x) ≥ c(y) ∧ μ(x) ≤ μ(y) ∧ v(x) ≤ v(y). Fur-
thermore, we say a solution x strongly dominates y (x
 y) iff x � y and
(μ(x), v(x), c(x)) �= (μ(x), v(x), c(x)).

40 F. Neumann and C. Witt

Algorithm 2: Standard-bit-mutation-plus(x)
1 y ← x;
2 repeat
3 Create y from x by flipping each bit xi of x with probability 1

n
.

4 until x
= y;
5 Return y;

Algorithm 3: sliding-selection(P, t, tmax, std,B, tfrac, a, cmax)
1 ĉ ← (ta/(tfrac · tmax)

a) · B;
2 if t ≤ (tfrac · tmax) then
3 � = �ĉ� − std;
4 h = ĉ� + std;

5 else
6 � = B − std;
7 h = B;

8 for x ∈ P do
9 if (c(x) < �) ∧ (c(x)
= cmax) ∧ (cmax
= −1) ∧ (|P | > 1) then

10 P ← P \ {x};

11 P̂ = {x ∈ P | � ≤ c(x) ≤ h};
12 if P̂ = ∅ then
13 P̂ ← P ;

14 Choose x ∈ P̂ uniformly at random;
15 Return x;

The SW-GSEMO3D starts out with a solution x ∈ {0, 1}n chosen by the
user, e. g., as the all-zeros string or uniformly at random. It works in two phases.
As long as the minimum μ-value of the population called μmin is positive, it
chooses a solution of this smallest μ-value, applies mutation, usually standard
bit mutation avoiding duplicates (Algorithm 2), and accepts the offspring into the
population if it is not strictly dominated by another member of the population.
All individuals that are weakly dominated by the offspring are then removed from
the population. In any case, the current population always consists of mutually
non-dominating solutions only. From the point of time t0 on where a solution x
satisfying μ(x) = 0 is found for the first time, the algorithm chooses from the
population using sliding window selection (see Algorithm 3) for the remaining
tmax − t0 steps. In Algorithm 3, the choice cmax = −1 implies that lines 8–10 do
nothing.

Algorithm 4 called Fast SW-GSEMO3D extends Algorithm 1 with heuristic
elements as follows. First of all, sliding window selection is called with user-
specified choices of std, tfrac and a as defined above. Moreover, it keeps track
of the maximum constraint value cmax found in the population (lines 24–25),
uses that in the sliding window selection and introduces a margin parameter ε

Sliding Window 3-Objective Pareto Optimization 41

Algorithm 4: Fast Sliding-Window GSEMO3D (Fast SW-GSEMO3D)
(Parameters: tmax, tfrac, std, a, ε)
1 Choose initial solution x ∈ {0, 1}n;
2 t0 ← −1, t ← 1, μmin ← μ(x), cmax ← −1;
3 P ← {x};
4 Compute f(x) = (μ(x), v(x), c(x));
5 if (c(x) > cmax) ∧ (c(x) ≤ B) then
6 cmax ← c(x);

7 if μmin = 0 then
8 t0 ← t;

9 repeat
10 t ← t + 1;
11 if (t0 = −1) ∧ (t ≤ tfrac · tmax) then
12 x ← argmin{μ(z) | z ∈ P}
13 else
14 if (t > tfrac · tmax) ∧ (cmax < B − ε) then
15 x ← argmax{c(z) | z ∈ P}
16 else
17 x = sliding-selection(P, t − t0, tmax − t0, std, B, tfrac, a, cmax);

18 Create y from x by mutation;
19 Compute f(y) = (μ(y), v(y), c(y));
20 if μ(y) < μmin then
21 μmin ← μ(y);

22 if (t0 = −1) ∧ (μmin = 0) then
23 t0 ← t;

24 if (c(y) > cmax) ∧ (c(y) ≤ B) then
25 cmax ← c(y);

26 if � w ∈ P : w � y then
27 P ← (P \ {z ∈ P | y � z}) ∪ {y};

28 until t ≥ tmax;

such that sliding window selection is only run until cmax = B − ε. Afterwards,
i. e., when the algorithm is close to the constraint boundary, making further
progress in the constraint value may be too difficult for sliding window selection.
Therefore, for the last (1 − tfrac)tmax steps, the algorithm chooses an individual
of maximum constraint value if cmax < B − ε holds. These heuristic elements
underlying the parameters std, tfrac, a and ε and the use of cmax in the sliding
window selection will show some empirical benefit in Sect. 4.

For the sake of completeness, we also define GSEMO, a classical multi-
objective optimization algorithm [5,10] that has inspired the developments of
Algorithms 1 and 4 and serves as a baseline in our experiments. It maintains
a population of non-dominating solutions of unbounded size, starting from a

42 F. Neumann and C. Witt

solution chosen uniformly at random, and creates one offspring per generation
by choosing an individual uniformly at random, applying standard bit mutation
avoiding duplicates, and accepting the offspring if it is not dominated by any
member of the population. Depending on the number of objectives used in the
experiments in Sect. 4, we will consider specific instances of the algorithm called
GSEMO2D and GSEMO3D as in [15].

3 Runtime Analysis of 3D Sliding Window Algorithm

In our theoretical study, we consider the chance constrained problem investigated
in [14] using rigorous runtime analysis, which is a major direction in the area
of theory of evolutionary computation [3,7,13]. Given a set of n items I =
{e1, . . . , en} with stochastic weights wi, 1 ≤ i ≤ n, we want to solve

min W subject to (Pr(w(x) ≤ W) ≥ α) ∧ (|x|1 ≥ k), (1)

where w(x) =
∑n

i=1 wixi, x ∈ {0, 1}n, and α ∈ [1/2, 1[. The weights wi are
independent random variables following a normal distribution N(μi, σ

2
i), 1 ≤

i ≤ n, where μi ≥ 1 and σi ≥ 1, 1 ≤ i ≤ n. We denote by μ(x) =
∑n

i=1 μixi the
expected weight and by v(x) =

∑n
i=1 σ2

i xi the variance of the weight of solution
x.

Algorithm 5: Global simple evolutionary multi-objective optimizer
(GSEMO)
1 Choose initial solution x ∈ {0, 1}n;
2 P ← {x};
3 repeat
4 Choose x ∈ P uniformly at random;
5 Create y from x by mutation;
6 if � w ∈ P : w � y then
7 P ← (P \ {z ∈ P | y � z}) ∪ {y};

8 until stop;

As stated in [14], the problem given in Equation (1) is equivalent to mini-
mizing

ŵ(x) = μ(x) + Kα

√
v(x), (2)

under the constraint that |x|1 ≥ k holds. Here, Kα denotes the α-fractional
point of the standard Normal distribution. Our algorithm can also be used to
maximize a given deterministic objective c(x) under a given chance constraint,
i. e.,

max c(x) subject to Pr(w(x) ≤ B) ≥ α. (3)

with w(x) =
∑n

i=1 wixi where each wi is chosen independently of the other
according to a Normal distribution N(μi, σ

2
i), and B and α ∈ [1/2, 1[are a given

Sliding Window 3-Objective Pareto Optimization 43

weight bound and reliability probability. Such a problem formulation includes
for example the maximum coverage problem in graphs with so-called chance
constraints [1,11], where c(x) denotes the nodes covered by a given solution
x and the costs are stochastic. Furthermore, the chance constrained knapsack
problem as investigated in [20,21] fits into this problem formulation.

In [15], the 3-objective formulation of chance-constrained optimization prob-
lems under a uniform constraint given in (1) was proposed. Let f3D(x) =
(μ(x), v(x), c(x)), where μ(x) and v(x) are the expected weight and variance,
respectively, as above, and c(x) is the constraint value of a given solution that
should be maximized. In our theoretical study, we focus on the case c(x) = |x|1,
which turns the constraint |x|1 ≥ k into the additional objective of maximiz-
ing the number of bits in the given bitstring. This 3-objective formulation was
introduced as an alternative model to the bi-objective model from [14], which
considers penalty terms for violating the constraint |x|1 ≥ k.

Based on the ideas for the 3-objective GSEMO from [15], we formulate the
following result for SW-GSEMO3D (Algorithm 1). The analysis is addition-
ally inspired by [16], where a bi-objective sliding windows approach for sub-
modular optimization was analyzed. Our theorem assumes an initialization with
the all-zeros string. If uniform initialization is used, SW-GSEMO3D neverthe-
less reaches the all-zeros string efficiently, as shown in a subsequent lemma
(Lemma 1).

The following theorem is based on the maximum population size P
(i)
max

observed in any of the sliding window intervals. Note that when running the
algorithm, the runtime for a given sliding window can be adapted to t

(i)
max =

P
(i)
maxn ln n during the run based on the observed value of P

(i)
max in order to guar-

antee the stated approximation result. Note that the previous result from [15]
showed an upper bound of O(n2Pmax), where Pmax is the overall maximum
population size observed in the run of the algorithm. If the largest P

(i)
max is sig-

nificantly smaller than Pmax, the following theorem gives a significantly stronger
upper bound.

Theorem 1. Let P
(i)
max denote the largest number of individuals with constraint

value i present in the population at all points in time where SW-GSEMO3D can
select such individuals, let t

(i)
max = P

(i)
maxn ln n and let tmax = 4enmaxn−1

i=0 t
(i)
max.

Then SW-GSEMO3D, initialized with 0n, computes a population which includes
an optimal solution for the problem given in Equation (1) (for any choice of k ∈
{0, . . . , n} and α ∈ [1/2, 1[) and Equation (3) (with c(x) = |x|1 for any choice of
B ∈ {0, . . . , n} and α ∈ [1/2, 1[) until time tmax = O(maxn−1

i=0 {P
(i)
max} · n2 log n)

with probability 1 − o(1).

Proof. Let Xk = {x ∈ {0, 1}n | |x|1 = k} be the set of all solutions having
exactly k elements. We show the following more technical statement S: the pop-
ulation P at time tmax will, with the probability bound claimed in the theorem,
contain for each α ∈ [1/2, 1[and k ∈ {0, . . . , n} a solution

xk
α = arg min

x∈Xk

{
μ(x) + Kα

√
v(x)

}
, (4)

44 F. Neumann and C. Witt

i. e., P ⊇ {xk
α | 0 ≤ k ≤ n, α ∈ [1/2, 1[}. By Theorem 4.3 in [15], such a

population contains the optimal solutions for any choice of α ∈ [1/2, 1[. Note
that not the whole set of Pareto optimal solutions is necessarily required.

To show statement S, we re-use the following definitions from [14]. Let λi,j =
σ2

j −σ2
i

(μi−μj)+(σ2
j −σ2

i)
for the pair of elements ei and ej of the given input where

σ2
i < σ2

j and μi > μj holds, 1 ≤ i < j ≤ n. The set Λ = {λ0, λ1, . . . , λ�, λ�+1}
where λ1, . . . , λ� are the values λi,j in increasing order and λ0 = 0 and λ�+1 = 1.
Moreover, we define the function fλ(x) = λμ(x) + (1 − λ)v(x) and also use it
applied to elements ei, i. e. fλ(ei) = λμi + (1 − λ)σ2

i .
As noted in [14], for a given λ and a given number k of elements to include, the

function fλ can be optimized by a greedy approach which iteratively selects a set
of k smallest elements according to fλ(ei). For any λ ∈ [0, 1], an optimal solution
for fλ with k elements is Pareto optimal as there is no other solution with at
least k elements that improves the expected cost or variance without impairing
the other. Hence, once obtained such a solution x, the resulting objective vector
f3D(x) will remain in the population for the rest of the run of SW-GSEMO3D.
Furthermore, the set of optimal solutions for different λ values only change at
the λ values of the set Λ as these λ values constitute the weighting where the
order of items according to fλ can switch [6,14].

We consider a λi ∈ Λ with 0 ≤ i ≤ �. Similarly to [6], we define λ∗
i =

(λi + λi+1)/2. The order of items according to the weighting of expected value
and variance can only change at values λi ∈ Λ and the resulting objective vectors
are not necessarily unique for values λi ∈ Λ. Choosing the λ∗

i -values in the
defined way gives optimal solutions for all λ ∈ [λi, λi+1] which means that we
consider all orders of the items that can lead to optimal solutions when inserting
the items greedily according to any fixed weighting of expected weights and
variances. In the following, we analyze the time until an optimal solution with
exactly k elements has been produced for fλ∗

i
(x) = λ∗

i μ(x)+(1−λ∗
i)v(x) for any

k ∈ {0, . . . , n} and any i ∈ {0, . . . , �}. Note that these λ∗
i values allow to obtain

all optimal solutions for the set of functions fλ, λ ∈ [0, 1].
For a given i, let the items be ordered such that fλ∗

i
(e1) ≤ · · · ≤ fλ∗

i
(ek) ≤

· · · ≤ fλ∗
i
(en) holds. An optimal solution for k elements and λ∗

i consists of k
elements with the smallest fλ∗

i
(ei)-value. If there are more than one element with

the value fλ∗
i
(ek) then reordering these elements does not change the objective

vector or fλ∗
i
-value.

Note that for k = 0 the search point 0n is optimal for any λ ∈ [0, 1]. Picking
an optimal solution with k elements for fλ∗

i
and inserting an element with value

fλ∗
i
(ek+1) leads to an optimal solution for fλ∗

i
with k + 1 elements. We call such

a step, picking the solution that is optimal for fλ∗
i

with k elements and inserting
an element with value fλ∗

i
(ek+1), a success. Assuming such a solution is picked,

the probability of inserting the element is at least (1/n)(1 − 1/n)n−1 ≥ 1/(en)
since it suffices that SW-GSEMO3D flips a specific bit and does not flip the rest.

We now consider a sequence of events leading to the successes for all val-
ues of k ∈ {0, . . . , n − 1} and all i ∈ {0, . . . , � − 1}. We abbreviate P ∗

max :=
maxn−1

j=0 P
(j)
max. By the assumption from the theorem, 0n, an optimal solution

Sliding Window 3-Objective Pareto Optimization 45

for k = 0, is in the population at time 0. Assume that optimal solutions with k
elements all for fλ∗

i
, where i ∈ {0, . . . , �}, are in the population P at time

τk := ktmax/n = 4eP ∗
maxkn ln n.

Then, by definition of the set P̂ of GSEMO3D, for any fixed i, such a solution
is available for selection up to time

τk+1 − 1 = (k + 1)tmax/n − 1 = 4eP ∗
max(k + 1)n ln n − 1

since �((k+1)tmax/n−1)/tmax)·n� = k. The size of the subset population that the
algorithm selects from during this period has been denoted by P

(k)
max. Therefore,

the probability of a success at any fixed value k and i is at least 1/(P (k)
maxen) from

time τk until time τk+1−1, i. e., for a period of 4eP ∗
maxn ln n ≥ 4eP

(k)
maxn ln n steps,

and the probability of this not happening is at most

(

1 − 1

P
(k)
maxen

)4eP (k)
maxn lnn

≤ 1
n4

.

The number � of different values of λ∗
i is at most the number of pairs of

elements and therefore at most n2. By a union bound over this number of values
and all k, the probability to have not obtained all optimal solutions for all fλ∗

i
,

where i ∈ {0, . . . , �}, and all values of k ∈ {0, . . . , B} by time tmax is O(1/n).
This shows the result for Equation (1). The result for (3) follows from the proof
of [15, Theorem 4.3]. �

Finally, as mentioned above, we consider a uniform choice of the initial indi-
vidual of SW-GSEMO3D and show that the time to reach the all-zeros string
is bounded by O(n log n) if the largest possible expected value μmax :=

∑n
i=1 μi

of an individual is polynomially bounded. Hence, this constitutes a lower-order
term in terms of the optimization time bound proved in Theorem 1 above. Even
if μmax is exponential like 2nc

for a constant c, the bound of the lemma is still
polynomial.

Lemma 1. Consider SW-GSEMO3D initialized with a random bit string. Then
the expected time until its population includes the all-zeros string for the first
time is bounded from above by O(n(log μmax + 1)).

Proof. We apply multiplicative drift analysis [2] with respect to the stochastic
process Xt := min{μ(x) | x ∈ Pt}, i. e., the minimum expected value of the
individuals of the population at time t. By definition, before the all-zeros string is
included in the population, SW-GSEMO3D chooses only individuals of minimum
μ-value for mutation. The current μ-value of an individual is the sum of the
expected values belonging to the bit positions that are set to 1. Standard-bit
mutation flips each of these positions to 0 without flipping any other bit with
probability at least (1/n)(1 − 1/n)n−1 ≥ 1/(en). Such steps decrease the μ-
value of the solution, which is therefore not dominated by any other solution
in the population and will be included afterwards. Hence, we obtain the drift
E(Xt − Xt+1 | Xt) ≥ Xt/(en). Using the parameter δ = 1/(en), X0 ≤ μmax

46 F. Neumann and C. Witt

and the fact that the smallest non-zero expected value of a bit is at least 1, we
apply the multiplicative drift theorem [2] and obtain an expected time of at most
ln(μmax)+1

δ = O(n(log μmax + 1)) to reach an individual with all zeros. �

4 Experiments

We carry out experimental investigations for the new sliding window approach
on the chance constrained dominating set problem and show where the new
approach performs significantly better than the ones introduced in [14,15].

We recall the chance-constrained dominating set problem. The input is given
as a graph G = (V,E) with n = |V | nodes and weights on the nodes. The goal
is to compute a set of nodes D ⊆ V of minimal weight such that each node of
the graph is dominated by D, i.e. either contained in D or adjacent to a node in
D. In our setting the weight wi of each node vi is chosen independently of the
others according to a normal distribution N(μi, σ

2
i). The constraint function c(x)

counts the number of nodes dominated by the given search point x. As each node
needs to be dominated in a feasible solution, x is feasible iff c(x) = n holds and
therefore work with the bound B = n in the algorithms. We start with an initial
solution x ∈ {0, 1}n chosen uniformly at random. We also investigate starting
with x = 0n for Fast SW-GSEMO3D (denoted as Fast SW-GSEMO3D0) in the
case of large graphs as this could be beneficial for such settings. We try to give
some explanation by considering how the maximal population size differs when
starting with a solution chosen uniformly at random or with 0n.

As done in [14,15], we consider the graphs cfat200-1, cfat200-2, ca-netscience,
ca-GrQc, and Erdos992 consisting of 200, 200, 379, 4158, and 6100 nodes respec-
tively, together with the following categories for choosing the weights. In the uni-
form setting each weight μ(u) is an integer chosen independently and uniformly
at random in {n, . . . , 2n}. The variance v(u) is an integer chosen independently
and uniformly at random in {n2, . . . , 2n2}. In the degree-based setting, we have
μ(u) = (n+deg(u))5/n4 where deg(u) is the degree of node u in the given graph.
The variance v(u) is an integer chosen independently and uniformly at random
in {n2, . . . , 2n2}. For these graphs, we use 10M (million) fitness evaluations for
each run. We also use the graphs ca-CSphd, ca-HepPh, ca-AstroPh, ca-CondMat,
which consist of 1882, 11204, 17903, 21363 nodes. They have already been inves-
tigated in [16] in the context of the maximum coverage problem. We examine the
same uniform random and degree-based setting as described before. We consider
1M fitness evaluations for these graphs in order to investigate the performance
on large graphs with a smaller fitness evaluation budget.

For our new sliding window algorithms we use tfrac = 0.9, std = 10, a =
0.5, ε = 0 based on some preliminary experimental investigations. Furthermore,
we consider 10M fitness evaluations for all algorithms and results presented in
Table 1 and 1M fitness evaluations for the instances in Table 2. For each setting,
each considered algorithm is run on the same set of 30 randomly generated
instances. We use the Mann-Whitney test to compute the p-value for algorithm

Sliding Window 3-Objective Pareto Optimization 47

Table 1. Results for stochastic minimum weight dominating set with different con-
fidence levels of α where α = 1 − β. Results after 10M fitness evaluations. p1: Test
GSEMO2D vs GSEMO3D, p2: Test GSEMO2D vs Fast SW-GSEMO3D, p3: Test
GSEMO3D vs Fast SW-GSEMO3D, p4: Fast GSEMO3D vs Fast SW-GSEMO3D0.
Penalty function value for run not obtaining a feasible solution is 1010 (applied to
GSEMO3D for graphs ca-GrQc and Erdos992)

Graph/
weight type

β
GSEMO2D [15] GSEMO3D [15] Fast SW-GSEMO3D Fast SW-GSEMO3D0

Mean Std Mean Std p1-value Mean Std p2-value p3-value Mean Std p4-value

cfat200-1/
uniform

0.2 3615 91 3599 79 0.544 3594 75 0.420 0.807 3598 74 0.767
0.1 3989 96 3972 80 0.544 3967 77 0.391 0.734 3971 79 0.745
0.01 4866 109 4845 86 0.535 4842 87 0.383 0.836 4846 90 0.784

1.0E-4 6015 126 5991 98 0.455 5989 101 0.412 0.894 5989 100 0.888
1.0E-6 6855 138 6832 108 0.605 6827 108 0.420 0.712 6825 107 0.848
1.0E-8 7546 147 7525 118 0.641 7517 115 0.455 0.723 7514 114 0.935
1.0E-10 8145 154 8125 125 0.751 8115 120 0.525 0.717 8112 120 0.853
1.0E-12 8680 159 8660 130 0.859 8651 126 0.615 0.790 8646 124 0.802
1.0E-14 9169 164 9148 133 0.842 9139 130 0.600 0.728 9133 128 0.830

cfat200-2/
uniform

0.2 1791 49 1767 32 0.049 1766 33 0.031 0.712 1765 33 0.971
0.1 2040 54 2016 37 0.074 2014 36 0.044 0.819 2013 37 0.824
0.01 2621 72 2593 51 0.162 2588 49 0.066 0.610 2587 50 0.912

1.0E-4 3381 97 3336 65 0.070 3334 66 0.061 0.836 3334 67 0.947
1.0E-6 3937 113 3880 71 0.044 3879 75 0.036 0.853 3879 76 0.994
1.0E-8 4394 124 4329 77 0.032 4328 79 0.027 0.853 4328 79 1.000
1.0E-10 4793 132 4720 82 0.028 4719 82 0.021 0.877 4718 82 1.000
1.0E-12 5149 139 5071 85 0.024 5069 85 0.020 0.888 5068 85 0.988
1.0E-14 5475 145 5391 88 0.020 5389 87 0.016 0.912 5389 87 0.994

ca-netscience/
uniform

0.2 33042 1289 33007 1023 0.712 32398 814 0.038 0.018 32399 861 0.976
0.1 34568 1302 34514 1028 0.745 33907 815 0.031 0.019 33908 865 0.988
0.01 38189 1334 38089 1040 0.848 37486 821 0.019 0.019 37489 874 0.941

1.0E-4 43012 1380 42846 1054 1.000 42248 841 0.011 0.020 42252 881 0.988
1.0E-6 46591 1415 46377 1065 0.824 45783 858 0.009 0.023 45786 888 0.882
1.0E-8 49557 1442 49303 1076 0.712 48712 870 0.008 0.021 48717 896 0.894
1.0E-10 52145 1465 51857 1087 0.615 51266 883 0.009 0.028 51275 906 0.935
1.0E-12 54467 1487 54150 1096 0.564 53557 894 0.007 0.028 53570 914 0.923
1.0E-14 56592 1507 56249 1105 0.487 55653 905 0.006 0.029 55670 923 0.912

ca-GrQc
/uniform

0.2 5646101 79194 9666938258 1824254292 0.000 4920986 45094 0.000 0.000 4924856 40968 0.756
0.1 5712770 79494 9666940921 1824239705 0.000 4983403 45308 0.000 0.000 4987255 41159 0.756
0.01 5871104 80213 9666947246 1824205061 0.000 5131640 45823 0.000 0.000 5135447 41621 0.790

1.0E-4 6082155 81182 9666955677 1824158882 0.000 5329219 46511 0.000 0.000 5332980 42256 0.767
1.0E-6 6238913 81909 9666961940 1824124582 0.000 5475970 47028 0.000 0.000 5479688 42740 0.779
1.0E-8 6369023 82517 9666967137 1824096113 0.000 5597768 47451 0.000 0.000 5601451 43151 0.802
1.0E-10 6482579 83051 9666971674 1824071266 0.000 5704069 47822 0.000 0.000 5707719 43516 0.779
1.0E-12 6584589 83534 9666975749 1824048945 0.000 5799561 48160 0.000 0.000 5803181 43848 0.767
1.0E-14 6677976 83978 9666979480 1824028511 0.000 5886980 48471 0.000 0.000 5890573 44156 0.767

Erdos992/
uniform

0.2 13716872 82588 10000000000 0 0.000 13482678 62860 0.000 0.000 13477560 55830 0.848
0.1 13842990 82789 10000000000 0 0.000 13607667 62812 0.000 0.000 13602550 55731 0.848
0.01 14142509 83278 10000000000 0 0.000 13904505 62706 0.000 0.000 13899386 55512 0.813

1.0E-4 14541754 83954 10000000000 0 0.000 14300178 62586 0.000 0.000 14295055 55242 0.790
1.0E-6 14838295 84474 10000000000 0 0.000 14594065 62512 0.000 0.000 14588938 55059 0.836
1.0E-8 15084429 84917 10000000000 0 0.000 14837996 62461 0.000 0.000 14832866 54917 0.836
1.0E-10 15299247 85313 10000000000 0 0.000 15050890 62423 0.000 0.000 15045759 54801 0.824
1.0E-12 15492221 85674 10000000000 0 0.000 15242138 62395 0.000 0.000 15237005 54703 0.836
1.0E-14 15668883 86011 10000000000 0 0.000 15417219 62375 0.000 0.000 15412085 54619 0.871

cfat200-1/
degree

0.2 4444 115 4387 6 0.001 4407 75 0.011 0.535 4398 55 0.779
0.1 4781 119 4721 9 0.003 4742 77 0.023 0.446 4733 56 0.790
0.01 5582 129 5512 16 0.004 5535 83 0.036 0.348 5526 61 0.819

1.0E-4 6650 143 6566 26 0.003 6592 91 0.035 0.287 6584 68 0.830
1.0E-6 7443 154 7349 34 0.003 7378 98 0.037 0.268 7369 74 0.830
1.0E-8 8101 163 7999 40 0.003 8029 103 0.041 0.268 8021 79 0.830
1.0E-10 8675 171 8567 45 0.003 8598 108 0.044 0.261 8590 84 0.865
1.0E-12 9191 178 9076 50 0.003 9109 113 0.043 0.261 9101 88 0.865
1.0E-14 9663 185 9542 55 0.003 9577 118 0.041 0.268 9569 92 0.853

cfat200-2/
degree

0.2 3041 172 2963 4 0.027 2963 4 0.027 0.929 2963 4 0.830
0.1 3267 178 3185 6 0.027 3185 6 0.027 0.929 3185 6 0.830
0.01 3803 194 3713 11 0.027 3713 10 0.027 0.929 3712 10 0.830

1.0E-4 4518 216 4416 17 0.027 4415 16 0.027 0.929 4415 17 0.830
1.0E-6 5049 232 4938 22 0.027 4937 21 0.027 0.929 4937 21 0.830
1.0E-8 5490 245 5371 26 0.027 5371 24 0.027 0.929 5370 25 0.830
1.0E-10 5875 257 5749 30 0.027 5749 28 0.027 0.929 5748 28 0.830
1.0E-12 6220 267 6089 33 0.027 6088 30 0.027 0.929 6087 31 0.830
1.0E-14 6537 277 6400 36 0.027 6399 33 0.027 0.929 6398 34 0.830

ca-netscience/
degree

0.2 28164 1002 26169 196 0.000 26097 197 0.000 0.017 26098 193 0.900
0.1 29689 1029 27657 200 0.000 27580 207 0.000 0.038 27583 201 0.853
0.01 33300 1098 31183 216 0.000 31092 238 0.000 0.114 31098 224 0.848

1.0E-4 38103 1192 35874 251 0.000 35758 284 0.000 0.092 35767 266 0.813
1.0E-6 41665 1265 39355 285 0.000 39220 324 0.000 0.076 39230 303 0.813
1.0E-8 44620 1327 42243 317 0.000 42091 359 0.000 0.067 42103 336 0.813
1.0E-10 47198 1381 44763 347 0.000 44596 390 0.000 0.067 44610 366 0.784
1.0E-12 49514 1429 47026 374 0.000 46845 418 0.000 0.074 46861 394 0.842
1.0E-14 51633 1474 49098 400 0.000 48905 444 0.000 0.081 48921 419 0.830

ca-GrQc/
degree

0.2 4032668 60538 9666845352 1824763160 0.000 3455870 17041 0.000 0.000 3457971 16176 0.460
0.1 4100297 61062 9666847956 1824748898 0.000 3517608 17204 0.000 0.000 3519680 16336 0.442
0.01 4260901 62312 9666854140 1824715027 0.000 3664186 17591 0.000 0.000 3666208 16722 0.442

1.0E-4 4474975 63984 9666862383 1824669878 0.000 3859529 18140 0.000 0.000 3861506 17249 0.408
1.0E-6 4633978 65230 9666868505 1824636344 0.000 4004604 18568 0.000 0.000 4006550 17648 0.460
1.0E-8 4765953 66266 9666873587 1824608510 0.000 4125007 18930 0.000 0.000 4126935 17988 0.469
1.0E-10 4881136 67173 9666878022 1824584217 0.000 4230080 19246 0.000 0.000 4232003 18291 0.460
1.0E-12 4984607 67988 9666882006 1824562394 0.000 4324470 19538 0.000 0.000 4326386 18569 0.451
1.0E-14 5079332 68736 9666885654 1824542416 0.000 4410880 19810 0.000 0.000 4412792 18828 0.478

Erdos992/
degree

0.2 9307396 60880 10000000000 0 0.000 9104433 4932 0.000 0.000 9104421 4931 0.965
0.1 9433699 61228 10000000000 0 0.000 9229249 5100 0.000 0.000 9229244 4958 0.906
0.01 9733657 62061 10000000000 0 0.000 9525667 5566 0.000 0.000 9525686 5110 0.988

1.0E-4 10133488 63184 10000000000 0 0.000 9920775 6299 0.000 0.000 9920827 5490 0.953
1.0E-6 10430463 64027 10000000000 0 0.000 10214242 6902 0.000 0.000 10214318 5882 0.941
1.0E-8 10676958 64732 10000000000 0 0.000 10457822 7430 0.000 0.000 10457921 6265 0.988
1.0E-10 10892090 65351 10000000000 0 0.000 10670412 7907 0.000 0.000 10670530 6635 0.976
1.0E-12 11085348 65911 10000000000 0 0.000 10861385 8347 0.000 0.000 10861521 6990 0.976
1.0E-14 11262269 66425 10000000000 0 0.000 11036215 8757 0.000 0.000 11036367 7332 1.000

48 F. Neumann and C. Witt

Table 2. Results for stochastic minimum weight dominating set with different confi-
dence levels of α where α = 1− β. Results after 1M fitness evaluations. p1: Test (1+1)
EA vs GSEMO2D, p2: Test (1+1) EA vs Fast SW-GSEMO3D, p3: Test GSEMO2D vs
Fast SW-GSEMO3D, p4: Test (1+1) EA vs Fast SW-GSEMO3D0, p5: Test GSEMO2D
vs Fast SW-GSEMO3D0, p6: Test Fast GSEMO3D vs Fast SW-GSEMO3D0.

Graph/
weight type

β
(1+1) EA [14] GSEMO2D [14,15] Fast SW-GSEMO3D Fast SW-GSEMO3D0
Mean Std Mean Std p1-val Mean Std p2-val p3-val Mean Std p4-val p5-val p6-val

ca-CSphd/
uniform

0.2 1176951 29560 1149185 21187 0.000 1053428 5919 0.000 0.000 1052480 4910 0.000 0.000 0.367
0.1 1200964 25599 1173498 21419 0.000 1076406 5973 0.000 0.000 1075454 4965 0.000 0.000 0.367
0.01 1235668 29329 1231241 21969 0.836 1130976 6108 0.000 0.000 1130017 5105 0.000 0.000 0.383

1.0E-4 1314570 28190 1308208 22705 0.451 1203715 6301 0.000 0.000 1202747 5308 0.000 0.000 0.375
1.0E-6 1378890 25618 1365376 23254 0.062 1257743 6455 0.000 0.000 1256767 5471 0.000 0.000 0.391
1.0E-8 1410240 22358 1412826 23711 0.712 1302586 6587 0.000 0.000 1301605 5612 0.000 0.000 0.383
1.0E-10 1455663 21030 1454239 24110 0.894 1341724 6707 0.000 0.000 1340738 5740 0.000 0.000 0.375
1.0E-12 1495936 29008 1491441 24470 0.574 1376883 6818 0.000 0.000 1375892 5859 0.000 0.000 0.433
1.0E-14 1526403 25752 1525499 24799 1.000 1409069 6921 0.000 0.000 1408074 5970 0.000 0.000 0.469

ca-HepPh/
uniform

0.2 24866045 323815 24664260 251849 0.010 21903190 229592 0.000 0.000 21655867 211163 0.000 0.000 0.000
0.1 25126756 223438 24941951 253168 0.006 22162387 230935 0.000 0.000 21913353 212217 0.000 0.000 0.000
0.01 25709929 219138 25601440 256304 0.101 22777957 234129 0.000 0.000 22524858 214726 0.000 0.000 0.000

1.0E-4 26602650 271535 26480507 260496 0.132 23598486 238398 0.000 0.000 23339968 218088 0.000 0.000 0.000
1.0E-6 27104133 304517 27133437 263618 0.595 24207935 241578 0.000 0.000 23945393 220598 0.000 0.000 0.000
1.0E-8 27675018 335011 27675380 266213 0.953 24713788 244221 0.000 0.000 24447901 222696 0.000 0.000 0.000
1.0E-10 28123068 314336 28148371 268482 0.941 25155281 246532 0.000 0.000 24886470 224540 0.000 0.000 0.000
1.0E-12 28616742 357514 28573268 270522 0.636 25551883 248611 0.000 0.000 25280441 226199 0.000 0.000 0.000
1.0E-14 28831138 286317 28962248 272392 0.143 25914960 250516 0.000 0.000 25641110 227723 0.000 0.000 0.000

ca-AstroPh/
uniform

0.2 51557918 568600 51043030 528254 0.001 64103184 4470490 0.000 0.000 45226809 500442 0.000 0.000 0.000
0.1 51942457 555700 51548678 531285 0.021 64668884 4491484 0.000 0.000 45698407 502905 0.000 0.000 0.000
0.01 53161346 658583 52749539 538490 0.017 66012371 4541343 0.000 0.000 46818411 508759 0.000 0.000 0.000

1.0E-4 54581672 577272 54350226 548110 0.160 67803180 4607807 0.000 0.000 48311327 516571 0.000 0.000 0.000
1.0E-6 55574306 568036 55539139 555269 0.965 69133305 4657175 0.000 0.000 49420191 522386 0.000 0.000 0.000
1.0E-8 56482376 659036 56525957 561218 0.525 70237331 4698155 0.000 0.000 50340566 527216 0.000 0.000 0.000
1.0E-10 56997947 442067 57387223 566415 0.003 71200892 4733922 0.000 0.000 51143842 531435 0.000 0.000 0.000
1.0E-12 58002729 535712 58160914 571088 0.255 72066476 4766054 0.000 0.000 51865440 535228 0.000 0.000 0.000
1.0E-14 58598177 480173 58869203 575369 0.033 72858892 4795471 0.000 0.000 52526040 538702 0.000 0.000 0.000

ca-CondMat/
uniform

0.2 87564936 940507 86293144 783450 0.000 431800766 1807172824 0.000 0.000 75931086 610598 0.000 0.000 0.000
0.1 87993459 758163 87014750 786716 0.000 432555511 1807030509 0.000 0.000 76602241 613185 0.000 0.000 0.000
0.01 89127748 754815 88728501 794478 0.069 434347964 1806692530 0.000 0.000 78196177 619334 0.000 0.000 0.000

1.0E-4 91086972 739979 91012856 804836 0.859 436737226 1806242026 0.000 0.000 80320825 627546 0.000 0.000 0.000
1.0E-6 92467544 650611 92709566 812539 0.204 438511855 185907420 0.000 0.000 81898913 633655 0.000 0.000 0.000
1.0E-8 93588939 815736 94117866 818937 0.015 439984829 1805629695 0.000 0.000 83208753 638731 0.000 0.000 0.000
1.0E-10 94695345 520061 95346987 824526 0.002 441270396 1805387308 0.000 0.000 84351942 643167 0.000 0.000 0.000
1.0E-12 96086744 975803 96451130 829550 0.183 442425245 1805169569 0.000 0.000 85378890 647155 0.000 0.000 0.000
1.0E-14 96686021 889063 97461938 834151 0.001 443482473 1804970239 0.000 0.000 86319029 650809 0.000 0.000 0.000

ca-CSphd/
degree

0.2 1176359 23453 1166190 32090 0.071 1053397 6005 0.000 0.000 1052796 5364 0.000 0.000 0.668
0.1 1197763 27695 1190714 32418 0.322 1076425 6076 0.000 0.000 1075804 5419 0.000 0.000 0.657
0.01 1243411 22570 1248957 33200 0.416 1131114 6256 0.000 0.000 1130446 5555 0.000 0.000 0.647

1.0E-4 1318313 23041 1326592 34244 0.294 1204011 6514 0.000 0.000 1203281 5748 0.000 0.000 0.615
1.0E-6 1370672 30267 1384255 35022 0.110 1258155 6718 0.000 0.000 1257380 5898 0.000 0.000 0.615
1.0E-8 1411274 28448 1432117 35668 0.004 1303096 6895 0.000 0.000 1302282 6027 0.000 0.000 0.605
1.0E-10 1465714 31864 1473889 36233 0.322 1342319 7054 0.000 0.000 1341472 6143 0.000 0.000 0.584
1.0E-12 1494845 26265 1511414 36742 0.076 1377554 7202 0.000 0.000 1376676 6249 0.000 0.000 0.595
1.0E-14 1539841 28989 1545767 37207 0.756 1409811 7339 0.000 0.000 1408905 6349 0.000 0.000 0.584

ca-HepPh/
degree

0.2 24940255 229915 24770247 328453 0.019 21925184 256481 0.000 0.000 21672753 170643 0.000 0.000 0.000
0.1 25129650 329488 25048454 330378 0.322 22184365 258158 0.000 0.000 21930197 171670 0.000 0.000 0.000
0.01 25755684 291735 25709164 334958 0.584 22799898 262146 0.000 0.000 22541605 174114 0.000 0.000 0.000

1.0E-4 26478853 313950 26589855 341060 0.156 23620377 267470 0.000 0.000 23356586 177388 0.000 0.000 0.000
1.0E-6 27073736 305766 27243988 345599 0.055 24229788 271431 0.000 0.000 23961915 179829 0.000 0.000 0.000
1.0E-8 27647166 283416 27786927 349368 0.086 24735610 274722 0.000 0.000 24464348 181862 0.000 0.000 0.000
1.0E-10 28101126 327539 28260785 352656 0.079 25177076 277597 0.000 0.000 24902857 183641 0.000 0.000 0.000
1.0E-12 28523939 323332 28686461 355612 0.071 25573654 280182 0.000 0.000 25296778 185243 0.000 0.000 0.000
1.0E-14 28937484 306489 29076155 358320 0.147 25936707 282550 0.000 0.000 25657400 186712 0.000 0.000 0.000

ca-AstroPh/
degree

0.2 51524407 570578 50681144 611971 0.000 64564376 6120887 0.000 0.000 45109042 578792 0.000 0.000 0.000
0.1 52090421 613178 51184838 615193 0.000 65131764 6149639 0.000 0.000 45579883 581545 0.000 0.000 0.000
0.01 53271848 477150 52381067 622852 0.000 66479261 6217924 0.000 0.000 46698084 588091 0.000 0.000 0.000

1.0E-4 54408644 498038 53975585 633070 0.012 68275417 6308950 0.000 0.000 48188591 596839 0.000 0.000 0.000
1.0E-6 55533826 541501 55159915 640666 0.015 69609515 6376561 0.000 0.000 49295668 603348 0.000 0.000 0.000
1.0E-8 56254153 556558 56142930 646976 0.469 70716840 6432682 0.000 0.000 50214561 608758 0.000 0.000 0.000
1.0E-10 57221946 419431 57000876 652487 0.165 71683280 6481663 0.000 0.000 51016543 613485 0.000 0.000 0.000
1.0E-12 58115722 620857 57771583 657440 0.048 72551451 6525664 0.000 0.000 51736978 617736 0.000 0.000 0.000
1.0E-14 58619146 587556 58477140 661975 0.433 73346234 6565947 0.000 0.000 52396514 621630 0.000 0.000 0.000

ca-CondMat/
degree

0.2 87579791 869378 86547921 742313 0.000 103694132 9559675 0.000 0.000 75939104 868161 0.000 0.000 0.000
0.1 87713127 806685 87270373 745665 0.028 104482533 9598957 0.000 0.000 76609900 872129 0.000 0.000 0.000
0.01 89207002 639620 88986134 753635 0.132 106354916 9692249 0.000 0.000 78202983 881557 0.000 0.000 0.000

1.0E-4 90856334 857580 91273168 764272 0.110 108850723 9816605 0.000 0.000 80326490 894132 0.000 0.000 0.000
1.0E-6 92392083 865712 92971867 772182 0.017 110704488 9908973 0.000 0.000 81903730 903477 0.000 0.000 0.000
1.0E-8 93674413 808337 94381818 778752 0.003 112243147 9985641 0.000 0.000 83212867 911237 0.000 0.000 0.000
1.0E-10 94664923 600565 95612380 784491 0.000 113586040 10052555 0.000 0.000 84355442 918012 0.000 0.000 0.000
1.0E-12 96145670 762399 96717817 789649 0.017 114792388 10112666 0.000 0.000 85381839 924101 0.000 0.000 0.000
1.0E-14 96814075 636459 97729809 794374 0.000 115896760 10167696 0.000 0.000 86321473 929676 0.000 0.000 0.000

Sliding Window 3-Objective Pareto Optimization 49

Table 3. Average maximum population size and standard deviation during the 30 runs
of 1M iterations for Fast SW-GSEMO3D and Fast SW-GSEMO3D0 in the uniform
random, degree-based setting for large graphs.

Graph Fast SW-GSEMO3D FastSW − GSEMO3D0

uniform degree uniform degree
Mean Std Mean Std Mean Std Mean Std

ca-CSphd 665 40.555 670 37.727 225 16.829 230 15.616
ca-HepPh 2770 124.786 2713 166.804 125 15.561 128 20.372
ca-AstroPh 3608 167.880 3602 132.344 140 26.422 144 25.647
ca-CondMat 5196 130.968 5245 109.568 107 20.817 104 19.662

pairs to check whether results are statistically significant, which we assume to
be the case if the p-value is at most 0.05.

We first consider results for the instances already investigated in [15]. We
consider the random and degree based instances and results for the examined
algorithms are shown in Table 1. Results for the GSEMO2D approach developed
in [14] and the GSEMO3D developed in [15] have already been obtained in [15].
Each run that does not obtain a dominating set gets allocated a fitness value of
1010. We note that this only applies to GSEMO3D for ca-GrQc and Erdos992 and
GSEMO3D. It has already been stated in [15] that GSEMO3D has difficulties in
obtaining feasible solutions for these graphs. In fact, it never returns a feasible
solution for Erdos992 in both chance constrained settings and only in 1 out of
30 runs for ca-GrQc in both chance constrained settings. Comparing the results
of GSEMO2D and GSEMO3D to our new approaches Fast SW-GSEMO3D and
Fast SW-GSEMO3D0, we can see that all approaches behave quite similar for
cfat200-1 and cfat200-2. For ca-netscience, there is a slight advantage for our
fast sliding window approaches that is statistically significant when compared
to GSEMO2D and GSEMO3D, but no real difference on whether the sliding
window approach starts with an initial solution chosen uniformly at random or
with the search point 0n. Both Fast SW-GSEMO3D and Fast SW-GSEMO3D0

show their real advantage for the larger graphs ca-GrQc and Erdos992 where
the 3-objective approach GSEMO3D was unable to produce feasible solutions.
On these instance GSEMO2D is clearly outperformed by the sliding window
3-objective approaches.

Results for the instances based on the graphs ca-CSphd, ca-HepPh, ca-
AstroPh, ca-CondMat, which consist of 1882, 4158, 6100, 11204, 17903, 21363
nodes are shown in Table 2. Note that the graphs (except ca-CSphd) have more
than 10000 nodes and are therefore significantly larger than the ones tested
previously. As we are dealing with larger graphs and a smaller fitness evalua-
tion budget of 1M, we also consider the (1+1) EA approach presented in [14].
Here each run of the (1+1) EA tackles each value of α (see Equation (2)) sepa-
rately with a budget of 1M fitness evaluations, which implies the single-objective
approach uses a fitness evaluation budget that is ten times the one of the multi-
objective approaches. We observe that Fast SW-GSEMO3D0 overall produces
the best results. For the smallest graph ca-CSphd, there is no significant differ-

50 F. Neumann and C. Witt

ence on whether to start with an initial solution chosen uniformly at random or
with the search point 0n. However, for the larger graphs ca-HepPh, ca-AstroPh,
ca-CondMat consisting of more than 10000 nodes, starting with the initial search
point 0n in the sliding window approach is crucial for the success of the algo-
rithm. In particular, we can observe that Fast SW-GSEMO3D starting uniformly
at random is performing significantly worse than the (1+1) EA and GSEMO2D
for the graphs ca-AstroPh, ca-CondMat consisting of 17903 and 21363 nodes,
respectively. All observations hold for the uniform as well as the degree-based
chance constrained settings.

As mentioned starting with 0n in our sliding window approach provides a
clear benefit when dealing with large graphs. We have already seen in our anal-
ysis that the sliding window approach starts at the constraint value of 0 which
gives a partial explanation of its benefit. In order to gain additional insights,
we provide in Table 3 the maximum population sizes that the approaches Fast
SW-GSEMO3D and Fast SW-GSEMO3D0 encounter for the graphs ca-CSphd,
ca-HepPh, ca-AstroPh, ca-CondMat. We can observe that the maximum pop-
ulation sizes when starting with the search point 0n are significantly smaller
than when starting with an initial solution chosen uniformly at random. For the
graph ca-CondMat, the average maximum population size among the executed
30 runs for Fast SW-GSEMO3D is almost by a factor of 50 larger than for Fast
SW-GSEMO3D0 (5196 vs. 107). Given that large populations can significantly
slow down the progress of the sliding window approach, we regard the difference
in maximum population sizes as a clear explanation why Fast SW-GSEMO3D0

clearly outperforms Fast SW-GSEMO3D on the graphs ca-HepPh, ca-AstroPh,
and ca-CondMat.

Conclusions

We have shown how to significantly speed and scale up the 3-objective approach
for chance constrained problems introduced in [15]. We have presented a sliding
window approach and shown that it provides with high probability the same
theoretical approximation quality as the one given in [15] but within a signifi-
cantly smaller fitness evaluation budget. Our experimental investigations show
that the new approach is able to deal with chance constrained instances of the
dominating set problem with up to 20,000 nodes (within 1M iterations) whereas
the previous approach given in [15] was not able to produce good quality (or
even feasible) solutions for already medium size instances of around 4,000 nodes
(within 10M iterations).

Acknowledgments. This work has been supported by the Australian Research Coun-
cil (ARC) through grant FT200100536 and by the Independent Research Fund Den-
mark through grant DFF-FNU 8021-00260B.

Sliding Window 3-Objective Pareto Optimization 51

References

1. Doerr, B., Doerr, C., Neumann, A., Neumann, F., Sutton, A.M.: Optimization of
chance-constrained submodular functions. In: AAAI, pp. 1460–1467. AAAI Press
(2020)

2. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

3. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation-Recent Devel-
opments in Discrete Optimization. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-29414-4

4. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evol. Comput. 18(4), 617–633 (2010)

5. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm.
In: Proceedings of CEC ’03, vol. 3, pp. 1918–1925 (2003). https://doi.org/10.1109/
CEC.2003.1299908

6. Ishii, H., Shiode, S., Nishida, T., Namasuya, Y.: Stochastic spanning tree problem.
Discret. Appl. Math. 3(4), 263–273 (1981)

7. Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science Perspec-
tive. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

8. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K.,
Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_19

9. Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex
cover problem. Algorithmica 65(4), 754–771 (2013)

10. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-boolean functions. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004)

11. Neumann, A., Neumann, F.: Optimising monotone chance-constrained submodular
functions using evolutionary multi-objective algorithms. In: Bäck, T., Preuss, M.,
Deutz, A., Wang, H., Doerr, C., Emmerich, M., Trautmann, H. (eds.) PPSN 2020.
LNCS, vol. 12269, pp. 404–417. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58112-1_28

12. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective
optimization. Nat. Comput. 5(3), 305–319 (2006)

13. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
- Algorithms and Their Computational Complexity. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16544-3

14. Neumann, F., Witt, C.: Runtime analysis of single- and multi-objective evolu-
tionary algorithms for chance constrained optimization problems with normally
distributed random variables. In: IJCAI, pp. 4800–4806. ijcai.org (2022)

15. Neumann, F., Witt, C.: 3-objective pareto optimization for problems with chance
constraints. In: GECCO, pp. 731–739. ACM (2023)

16. Neumann, F., Witt, C.: Fast pareto optimization using sliding window selection.
In: ECAI. Front. Artif. Intell. Appl. 372, 1771–1778. IOS Press (2023)

17. Qian, C., Shi, J., Yu, Y., Tang, K.: On subset selection with general cost con-
straints. In: IJCAI, pp. 2613–2619 (2017). https://doi.org/10.24963/ijcai.2017/364

18. Qian, C., Yu, Y., Zhou, Z.: Subset selection by Pareto optimization. In: NIPS, pp.
1774–1782 (2015)

https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1109/CEC.2003.1299908
https://doi.org/10.1109/CEC.2003.1299908
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1007/3-540-44719-9_19
https://doi.org/10.1007/978-3-030-58112-1_28
https://doi.org/10.1007/978-3-030-58112-1_28
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.24963/ijcai.2017/364

52 F. Neumann and C. Witt

19. Roostapour, V., Neumann, A., Neumann, F., Friedrich, T.: Pareto optimization for
subset selection with dynamic cost constraints. Artif. Intell. 302, 103597 (2022)

20. Xie, Y., Harper, O., Assimi, H., Neumann, A., Neumann, F.: Evolutionary algo-
rithms for the chance-constrained knapsack problem. In: GECCO, pp. 338–346.
ACM (2019)

21. Xie, Y., Neumann, A., Neumann, F.: Specific single- and multi-objective evolu-
tionary algorithms for the chance-constrained knapsack problem. In: GECCO, pp.
271–279. ACM (2020)

22. Zhou, Z., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories and Algo-
rithms. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5956-9

https://doi.org/10.1007/978-981-13-5956-9

Runtime Analysis of a Multi-valued
Compact Genetic Algorithm

on Generalized OneMax

Sumit Adak(B) and Carsten Witt

DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
{suad,cawi}@dtu.dk

Abstract. A class of metaheuristic techniques called estimation-of-
distribution algorithms (EDAs) is employed in optimization as a more
sophisticated substitute for traditional strategies like evolutionary algo-
rithms. EDAs generally drive the search for the optimum by creating
probabilistic models of potential candidate solutions through repeated
sampling and selection from the underlying search space.

Most theoretical research on EDAs has focused on pseudo-Boolean
optimization. Jedidia et al. (GECCO 2023) introduced a framework
for EDAs for optimizing problems involving multi-valued decision vari-
ables. In addition, they conduct a mathematical runtime analysis of a
multi-valued UMDA on the r-valued LeadingOnes function. Using their
framework, here we focus on the multi-valued compact genetic algorithm
(r-cGA) and provide a first runtime analysis of a generalized OneMax
function.

To prove our results, we investigate the effect of genetic drift and
progress of the probabilistic model towards the optimum. After finding
the right algorithm parameters, we prove that the r-cGA solves this r-
valued OneMax problem efficiently. We establish that the runtime bound
is O(r2n log2 r log3 n) with high probability.

Keywords: Estimation-of-distribution algorithms · multi-valued
compact genetic algorithm · genetic drift · OneMax

1 Introduction

The term estimation-of-distribution algorithms (EDAs) refers to an optimization
method that creates a probabilistic model that is subsequently utilized to pro-
duce new search points based on previous searches. The fundamental distinction
from evolutionary algorithms (EAs) is that they evolve a probabilistic model
rather than a population. The performance of EDAs can be more efficient than
EAs [5,8,18,37]. EDAs are constructed by carrying out three basic steps: first, a
population of individuals is sampled using the current probabilistic model; sec-
ond, the fitness of the population is determined; and finally, a new probabilistic
model is generated depending on the fitness of the population.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 53–69, 2024.
https://doi.org/10.1007/978-3-031-70071-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_4&domain=pdf
http://orcid.org/0000-0002-1814-7612
http://orcid.org/0000-0002-6105-7700
https://doi.org/10.1007/978-3-031-70071-2_4

54 S. Adak and C. Witt

In this framework, various probabilistic models and updating methodolo-
gies provide distinct algorithms. The probabilistic model in multivariate EDAs
includes inter-variable relationships. Some popular examples of multivariate
EDAs include mutual-information-maximization input clustering (MIMIC) [7],
bivariate marginal distribution algorithm (BMDA) [29], extended compact
genetic algorithm (ecGA) [17], and many more. Another sort of EDA is a univari-
ate EDA, where the positions of the probabilistic model are independent of each
other. Examples of univariate EDAs are population-based incremental learning
(PBIL) [3], univariate marginal distribution algorithm (UMDA) [26], compact
genetic algorithm (cGA) [16]. Because the dependencies in multivariate EDAs are
difficult to analyze mathematically, the majority of theoretical studies of EDAs
focus on univariate models [21]. This manuscript likewise focuses on univariate
EDAs.

In conventional genetic algorithms on bit strings, the frequency of bit values
in the population are controlled by the bit’s contribution to fitness as well as
random fluctuations caused by other bits with a higher influence on fitness.
Random fluctuations can even cause particular bits to converge to a single value
that differs from the best solution. This effect is known as genetic drift [2,19].
Genetic drift is also observed in EDAs. According to Krejca and Witt [21], genetic
drift in EDAs is a broad concept of martingales, which are random processes
with zero expected change that finally may stop at absorbing bounds of the
underlying interval. Furthermore, Witt [36] and Lengler et al. [23] demonstrated
that, depending on the parameter, genetic drift might result in a significant
performance loss on the OneMax function.

Classical evolutionary algorithms are commonly employed for a variety of
search spaces, whereas EDAs have traditionally been used for issues involv-
ing binary decision variables. Further, researchers took the initial steps toward
applying EDAs for situations involving decision variables with more than two
values [4,30]. More specifically, in [4], Jedidia et al. consider univariate EDAs for
multi-valued decision factors. They treat a multi-valued problem by introducing
r probability values for each variables. Particularly, by building a framework,
they analyzed the runtime of multi-valued UMDA on the r-valued Leadin-
gOnes function. This article also deals with EDAs for multi-valued decision
variables by using their framework. Particularly, we focus on the r-valued com-
pact genetic algorithm (r-cGA) as defined in [4] without borders on frequencies.

Here we look at the multi-valued OneMax function. On the generalized
LeadingOnes studied in [4], the function leads to perfect neutrality in the
positions that are not yet relevant and a very strong fitness signal in all other
positions. In contrast, on generalized OneMax, all positions have a weak fitness
signal, yet the algorithm is able to identify the optimal values for all compo-
nents if parameters are set appropriately. Therefore, the analysis of generalized
OneMax is more complicated than that of generalized LeadingOnes. Infor-
mally, one main challenge is determining how these parameters should be con-
figured.

Runtime Analysis of a Multi-valued cGA on Generalized OneMax 55

In this paper, we provide the first runtime analysis of the multi-valued cGA
and the first analysis of a multi-valued OneMax function. We perform a mathe-
matical runtime of the r-cGA on the r-OneMax function with high probability.
In our final analysis, we establish that the typical runtime of the r-cGA on
r-OneMax problem is O(r2n log2 r log3 n) (Theorem 5) with high probability.
Further, we compare our bound with the bound of binary cGA and mention
that our bound probably is not tight.

The article is structured as follows: Sect. 2 summarizes the earlier work on our
technical topics. The following section establishes the terminologies and defines
the multi-valued OneMax function. Section 4 elaborates on the multi-valued
EDA framework for the r-cGA. Sections 5 and 6 include the major technical
results, genetic drift analysis, and the runtime evaluation of the r-cGA on the
r-valued OneMax. The experiments in Sect. 7 demonstrate the empirical run-
time throughout the entire parameter range for the hypothetical population size
(K), and we compare the empirical runtimes of the r-cGA on r-OneMax and
G-OneMax. Finally, the manuscript concludes with a brief summary.

2 Related Work

This work is separated into three technical topics: the first one is the framework
for EDAs, the next one concerns genetic drift, and finally a runtime evaluation
on the multi-valued OneMax function. There are numerous theoretical papers
on traditional evolutionary algorithms for multi-valued decision variables.

Model-based optimization approaches have enabled EDAs to tackle a wide
area of large and complicated problems [13,14,34]. Droste conducted the ini-
tial runtime analysis for an EDA [13]. For a simple EDA, the compact genetic
algorithm (cGA) was used with the OneMax function. They provide an overall
lower and upper bounds for all functions. It was also noticed that EDAs opti-
mize problems differently, as evidenced by the difference in runtime between two
linear functions. This stands in contrast to the well-known analysis of how the
(1+1) EA optimizes linear functions by Droste et al. [14].

Most theoretical research on EDAs has focused on pseudo-Boolean optimiza-
tion [6,15,20]. Jedidia et al. [4] recently introduced a framework for EDAs for
optimizing problems involving more than two decision variables from the domain
{0, . . . , r − 1}n. They prove that the multi-valued UMDA solve the r-valued
LeadingOnes problem efficiently. Overall, they demonstrate how EDAs can be
tailored to multi-valued issues and used to assist define their parameters. At
present, there is a very active research area analyzing EDAs on complex prob-
lems. Further, in [21,22,28], one can find out more details about theory and
practice of EDAs.

3 Preliminaries

We are considering the r-valued compact genetic algorithm (r-cGA) introduced
by [4] to maximize an r-valued OneMax function. Here, we’re looking at the

56 S. Adak and C. Witt

maximization of functions of the kind f : {0, 1, . . . , r − 1}n → R, also known
as r-valued fitness functions. We define f(x) as the fitness of x, where x ∈
{0, 1, . . . , r − 1}n is an individual.

In this work, we discuss two different types of multi-valued OneMax func-
tions: one is r-OneMax and another is G-OneMax. Let n ∈ N≥1 and r ∈ N≥2.
In the following, we give the definition of r-OneMax and G-OneMax, where, for
all x = (x1, . . . , xn) ∈ {0, 1, . . . , r − 1}n,

r-OneMax(x) :=
n∑

i=1

1{xi = r − 1}

G-OneMax(x) :=
n∑

i=1

xi.

In both functions, the single maximum is the string all-(r − 1)s. A general
variant can be derived by selecting a random optimum a ∈ {0, . . . , r − 1}n

and defining, for all b ∈ {0, . . . , r − 1}n, r-OneMaxa(b) = n − d(b, a), where
d(b, a) =

∑n
i=1 1{bi �= ai} specifies the distance between the strings a and b.

Similarly, we can define the generalized G-OneMax. For an arbitrary optimum
a ∈ {0, . . . , r − 1}n, and defining, for all b ∈ {0, . . . , r − 1}n, G-OneMaxa(b) =
n · (r − 1) − d(b, a) where d(b, a) =

∑n
i=1 min{|ai − bi|, r − |bi − ai|} specifies the

distance between a and b. The main difference between these two functions is
that in r-OneMax the values are categorical values and only the right value for
a position to contribute to the fitness, whereas in G-OneMax there is a distance
metric between values and each position has a fitness signal towards the optimal
value. Here, r-OneMax only distinguishes between whether value r − 1 is taken
at a position or not, while G-OneMax takes all r ∈ {0, . . . , r − 1} values per
position into account. The maximum fitness value for r-OneMax is n, and for
G-OneMax it is n(r − 1).

A random variable Z is said to stochastically dominate another random vari-
able Y , denoted by Z � Y , if and only if we have Pr[Z ≤ λ] ≤ Pr[Y ≤ λ] for all
λ ∈ R.

4 The Framework

In [4], Jedidia et al. introduced a framework for EDAs for multi-valued decision
variables that are not permutation problems. In this paper, we adopt their frame-
work to characterize the underlying probabilistic model. Here, we concentrate
on the r-valued cGA.
r-cGA: The Compact genetic algorithm (cGA) [16] is a widely used univariate
EDA. The cGA has only one parameter, K ∈ N≥1, which refers to the so-called
hypothetical population size [8] and it maintains a vector of probabilities (called
frequencies). Each iteration creates two solutions independently. After comput-
ing the fitness value, it changes each frequency by 1/K so that the frequency of
the better sample increases while the frequency of the worse sample decreases.

Runtime Analysis of a Multi-valued cGA on Generalized OneMax 57

The r-cGA is an expanded variant of cGA that takes into account multiple
variables. The r-cGA, outlined in Algorithm 1, employs marginal probabilities
(again denoted as frequencies) p

(t)
i,j corresponding to the probability of position i

and value j at time t. The sampling distribution generates two solutions, x and
y, independently in each iteration. After that, the fitter offspring is determined
among x and y, and the frequencies are modified by ±1/K in the prospective
direction towards better offspring for positions where both offspring vary. In this
way, 1/K indicates the strength of the probabilistic model update.

Algorithm 1: r-valued Compact Genetic Algorithm (r-cGA) for the max-
imization of f : {0, . . . , r − 1}n → R

Initialization : t ← 0
p
(t)
i,0 ← p

(t)
i,1 ← p

(t)
i,2 · · · ← p

(t)
i,r−1 ← 1

r
where i ∈ {1, 2, . . . , n}

1 while termination criterion not met do
2 for i ∈ {1, 2, . . . , n} do
3 xi ← j with probability p

(t)
i,j w.r.t. j = 0, . . . , r − 1, independently for all

i
4 yi ← j with probability p

(t)
i,j w.r.t. j = 0, . . . , r− 1, independently for all i

5 if f(x) < f(y) then
6 swap (x1, . . . , xn) and (y1, . . . , yn)

7 for i ∈ {1, 2, . . . , n} do
8 for j ∈ {0, 1, . . . , r − 1} do
9 p

(t+1)
i,j ← p

(t)
i,j +

1
K
(1{xi = j} − 1{yi = j})

10 t ← t+ 1

The Probabilistic Model: This paragraph depicts the stochastic process in the
algorithm. Let p

(t)
i,j be the marginal probability at time t for arbitrary position

i and value j where (i, j) ∈ {1, . . . , n} × {0, . . . , r − 1}. An r-valued EDA’s
probabilistic model is an n × r matrix of (p(t)i,j)i,j (the frequency matrix), with
each row i forming a frequency vector of probabilities that sum to 1. When
constructing an individual x ∈ {0, . . . , r − 1}n, for all i ∈ {1, . . . , n} and all j ∈
{0, . . . , r−1}, the probability of xi having value j is p

(t)
i,j . For every y ∈ {0, . . . , r−

1}n, we can state that Pr[x = y] = Πi∈{1,...,n}Πj∈{0,...,r−1}(p
(t)
i,j)

1{yi=j}, where we
assume that 00 = 1. We use the uniform distribution to initialize the frequency
matrix, where each frequency gets the value of 1/r.

After the update, each frequency vector in the r-cGA sums to 1, since one
frequency is increased by 1/K and one frequency is decreased by the same quan-
tity. We are interested in the number of function evaluations the r-cGA performs
before sampling the optimum. This quantity is also known as runtime or opti-
mization time.

Note that, in this work, contrary to the model in [4], the marginal probabil-
ities are not restricted to some specific intervals. The lower and upper borders

58 S. Adak and C. Witt

on frequencies are 0 and 1. We do not use the borders from [4] since otherwise
the analysis will be much more complicated. We make the following well-behaved
frequency assumption: the r-cGA of any two frequencies can vary by a fac-
tor of 1/K. In the absence of borders, the r-cGA can employ frequencies in
{0, 1/K, 2/K, . . . , 1}, where 1/r is a multiple of 1/K.

The change of p
(t)
i,j in one step is defined as Δi,j := Δt

i,j := p
(t+1)
i,j − p

(t)
i,j .

Therefore, we can write Δi,r−1 := p
(t+1)
i,r−1 − p

(t)
i,r−1. This change is determined by

whether the value of position i influences the decision to update based on the
first string x sampled at time t or the second string y. Particularly, we inspect
the changes in the r-OneMax value at all positions except i. To achieve this, we
define Di :=

(∑
j �=i 1{xj = r − 1} − ∑

j �=i 1{yj = r − 1}
)
.

At this point, the r-cGA experiences two different kinds of steps which we
discuss below. The following analysis and the terms “rw-steps” and “biased steps”
follow closely the one from [34] for the binary cGA.
Random-walk steps: If |Di| ≥ 2, position i has no impact on the decision to
update with respect to string x or y. With Δi,r−1 �= 0, it is necessary that
position i for value r − 1 is sampled differently. That means, the value of p

(t)
i,r−1

will be increased or decreased by 1/K with equal probability p
(t)
i,r−1(1 − p

(t)
i,r−1).

Otherwise, based on the remaining probability, it holds p
(t+1)
i,r−1 = p

(t)
i,r−1. Now, we

can describe this by taking a variable Fi where

Fi :=

⎧
⎪⎨

⎪⎩

+1/K with probability p
(t)
i,r−1(1 − p

(t)
i,r−1),

−1/K with probability p
(t)
i,r−1(1 − p

(t)
i,r−1),

0 with the remaining probability.

A step where |Di| ≥ 2 is referred to as a random-walk step (rw-step)
because the process is a fair random walk (along with self-loops) as E(Δi,r−1 |
p
(t)
i,r−1, |Di| ≥ 2) = E(Fi | p

(t)
i,r−1) = 0.

If Di = 1, then (
∑n

i=1 1{xi = r − 1}) ≥ (
∑n

i=1 1{yi = r − 1}) and for that
strings x and y are never swapped in the r-cGA. So, as previous, here we obtain
the same argumentation. In addition, the process also executes a rw-step.
Biased steps: If Di = −1, then the strings x and y are swapped unless position i
is sampled as xi = r − 1 and yi �= r − 1. As a result, both the events of sampling
position i raise the p

(t)
i,r−1 value in different ways. So, we obtain Δi,r−1 = 1/K

with probability 2p
(t)
i,r−1(1 − p

(t)
i,r−1) and Δi,r−1 = 0 else.

If Di = 0, then both the events of sampling position i raise the p
(t)
i,r−1 value

differently, similar to the previously examined situation (Di = −1). Again, we
have Δi,r−1 = 1/K with the probability 2p

(t)
i,r−1(1 − p

(t)
i,r−1) and Δi,r−1 = 0 else.

Let us take a random variable Bi where

Bi :=

{
+1/K with probability 2p

(t)
i,r−1(1 − p

(t)
i,r−1),

0 with the remaining probability.

Runtime Analysis of a Multi-valued cGA on Generalized OneMax 59

For Di = −1 and Di = 0, we can conclude that Δi,r−1 follows the same
distribution as Bi. A biased step (b-step) occurs when E(Δi,r−1 | p

(t)
i,r−1,Di ∈

{−1, 0}) = E(Bi | p
(t)
i,r−1) = 2p

(t)
i,r−1(1 − p

(t)
i,r−1)/K > 0.

The event whether a step is a rw-step or a b-step for position i is merely
depending on external factors that are stochastically independent of the outcome
of position i. Let Ri represent the occurrence where Di = 1 or |Di| ≥ 2. At the
end, we get the following equality:

Δi,r−1 = Fi · 1{Ri} + Bi · 1{Ri} (1)

which we call superposition. Informally, the value change in p
(t)
i,r−1 is a superpo-

sition of a unbiased random walk and biased steps.

5 Genetic Drift for the r-Valued cGA

We prove the results of an upper bound on the influence of genetic drift for
r-valued EDAs, similar to [4,11]. This enables us to select parameter values for
the EDAs that avoid the often undesirable effect of genetic drift. This section
provides a general overview of genetic drift, followed by a concentration result for
neutral positions. Finally, there is an upper bound for positions with weak pref-
erence. The results of this section have already been presented for the UMDA [4].
Here, we prove similar results for the r-cGA.

In EDAs, genetic drift occurs when a frequency does not reach extreme values
1 or 0 as a result of a clear signal from the objective function, but rather as a
result of random fluctuations caused by the process’s stochasticity. Researchers
have explored genetic drift in EDAs explicitly [31–33] and conducted numerous
runtime analyses [10,12,24,34–36]. We analyze genetic drift for multi-valued
EDAs, particularly for the r-cGA, based on insights from [4] and the framework
from [11].

Genetic drift is typically examined using a fitness function in the neutral
position. Let f denote an r-valued fitness function. A position i ∈ {1, . . . , n} is
called neutral (in relation to f) if and only if xi has no effect on the value of f for
all x ∈ {0, . . . , r − 1}n, and we have f(x) = f(x′) for each x, x′ ∈ {0, . . . , r − 1}n

such that xj = x′
j for all j ∈ {1, . . . , n} \ {i}.

The frequencies of neutral variables in traditional EDAs without margins
create martingales, which is useful for analyzing genetic drift [11]. This finding
applies to EDAs with binary representation. Furthermore, the concept can be
carried over to the r-UMDA [4], too. We make this argument specific to the r-
cGA. Due to page restrictions, some of our proofs are not included in this paper.
One can find them in the preprint [1].

Lemma 1. Let f be an r-valued fitness function, and let i ∈ {1, . . . , n} be a
neutral position of f . Consider the r-cGA without margins, optimizing f . Then,
the frequencies (p(t)i,j)t∈N are a martingale for all j ∈ {0, . . . , r − 1}.

60 S. Adak and C. Witt

In [4], all frequencies of an EDA start at a value 1/r and analyses for smaller
deviations in both direction up to 1/(2r). In this article, for the r-cGA we follow
the same frequency setting starting from 1/r and tolerate changes by up to
1/(2r) in either direction.

We apply a martingale concentration result [25, Theorem 3.13] to exploit
the lower sampling variance at the frequencies in Θ(1/r). In fact, we restate an
adjusted version of a theorem by McDiarmid [25, eq. (41)] that was used by
Doerr and Zheng [11] and by Jedidia et al. [4].

Theorem 1. Let a1, . . . , am ∈ R, and X1, . . . , Xm be a martingale difference
sequence with |Xk| ≤ ak for each k. Then for all ε ∈ R≥0, it holds that

Pr

[
max

k=1,...,m

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− ε2

2
∑m

i=1 a2
i

)
.

Next, we use Theorem 1 to demonstrate for how much time the frequencies
of the r-cGA at neutral places remain around the starting value of p

(0)
i,j (which

is usually 1/r).

Theorem 2. Let f be an r-valued fitness function with a neutral position i ∈
{1, . . . , n}. Consider the r-cGA optimizing f with population size K. Then, for
j ∈ {0, . . . , r − 1} and T ∈ N, we have

Pr
[

max
t∈{0,...,T}

∣∣∣p(t)i,j − p
(0)
i,j

∣∣∣ ≥ 1
2r

]
≤ 2 exp

(
− K2

8Tr2

)
.

In many situations, for a given fitness function the positions are not neutral.
However, we demonstrate that the outcomes for neutral positions apply to the
positions in which one value is better than all other values. This is referred to
as weak preference [11]. An r-valued fitness function f has a weak preference
at a position i ∈ {1, . . . , n} for a value j ∈ {0, . . . , r − 1} if and only if, for all
x1, . . . , xn ∈ {0, . . . , r − 1}, and it holds that

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, j, xi+1, . . . , xn).

Next, we apply Lemma 3 in [11] according to the r-cGA. In the following
lemma, we establish the dominance results by comparing two runs of the r-cGA.

Theorem 3. Let f and g be two r-valued fitness functions to optimize using the
r-cGA, such that the first position of f weakly prefers r−1 and the first position
of g is neutral.

Let p and q be the corresponding frequency matrices of f and g, both defined
by the r-cGA. Then, for all t ∈ N, it holds that p

(t)
1,r−1 � q

(t)
1,r−1.

Applying Theorem 3 allows us to extend Theorem 2 to positions with weak
preference. Since their expected value may raise over time (formally, they are
a submartingale), we state the deviation with respect to an arbitrary starting
value.

Runtime Analysis of a Multi-valued cGA on Generalized OneMax 61

Theorem 4. Let f be an r-valued fitness function with a weak preference at
position i ∈ {1, . . . , n} for the value r−1. Consider the r-cGA optimizing f with
parameter K. Let T ∈ N, then we have

Pr
[

min
t∈{0,...,T}

p
(t)
i,r−1 ≤ p

(0)
i,r−1 − 1

2r

]
≤ 2 exp

(
− K2

8Tr2

)
.

6 Runtime Analysis

This section evaluates the runtime of the r-cGA (Algorithm 1) on r-OneMax. In
the preliminaries, we briefly presented the two variants of r-valued OneMax –
one is r-OneMax and another is G-OneMax. There is a single local maximum for
both functions at the all-(r−1)s string, which is also their global optimum. Here,
we focus on the runtime evaluation of the r-cGA on r-OneMax only. Further,
we leave the analysis of G-OneMax for future work.

With high probability, we bound the runtime of the r-cGA on r-OneMax
under the assumption of low genetic drift using drift analysis and then apply
Markov’s inequality on the time bound. Further we consider the probability of no
frequency dropping below 1/(2r) at the beginning and, over time, below k/(2r)
for a growing k. We prove the following theorem in a similar fashion as Sudholt
and Witt [34, Theorem 2] for binary decision variables; however, additional care
has to be taken to control genetic drift from the starting value 1/r of a frequency.
In the following theorem (Theorem 5), we formulate our main results related to
runtime.

Theorem 5. With high probability, the runtime of the r-cGA on r-OneMax
with K ≥ cr2

√
n(log r + log2 n) for a sufficiently large c > 0 and K, r = poly(n)

is O(K
√

n log r log n). For K = cr2
√

n(log r + log2 n), the runtime bound is
O(r2n log2 r log3 n).

The following lemmas are required to prove the Theorem 5. According to the
lemmas, the drift grows with an update strength of 1/K. Furthermore, a high
value of 1/K also increases genetic drift. We prove the next lemma in a similar
way as [27, Lemma 1].

Lemma 2. Let p
(t)
i,j denote the frequency vectors of the current iteration of the

r-cGA on r-OneMax where (i, j) ∈ {1, . . . , n} × {0, . . . , r − 1}. For a sufficiently
large n, we get

P[Di = 0] ≥ 4

9
(

2
√

3
(∑

j �=i p
(t)
j,r−1(1 − p

(t)
j,r−1)

)
+ 1

)

where Di :=
(∑

j �=i 1{xj = r − 1} − ∑
j �=i 1{yj = r − 1}

)
and x, y ∈ {0, . . . , r−

1}n.

62 S. Adak and C. Witt

The following lemmas (Lemma 3 and Lemma 4) employ the use of consider-
ations and notation from Lemma 2. In the next lemma, we establish a positive
trend towards optimal values for the r-cGA.

Lemma 3. If 1
K ≤ p

(t)
i,r−1 ≤ 1 − 1

K , then

E(Δi,r−1 | p
(t)
i,r−1) ≥ 8(p(t)i,r−1(1 − p

(t)
i,r−1))

9K

(
2
√

3
(∑

j �=i p
(t)
j,r−1(1 − p

(t)
j,r−1)

)
+ 1

) .

Proof: We get the expected changes using Eq. 1, as

E(Δi,r−1 | p
(t)
i,r−1) = E(Fi | p

(t)
i,r−1) · 1{Ri} + E(Bi | p

(t)
i,r−1) · 1{Ri}.

From Sect. 4, we know E(Fi | p
(t)
i,r−1) = 0 and E(Bi | p

(t)
i,r−1) = 2p

(t)
i,r−1(1 −

p
(t)
i,r−1)/K. Further, from Lemma 2, we got

1{Ri} ≥ P[Di = 0] ≥ 4

9
(

2
√

3
(∑

j �=i p
(t)
j,r−1(1 − p

(t)
j,r−1)

)
+ 1

) .

By multiplying the results of E(Bi | p
(t)
i,r−1) and P[Di = 0]

E(Δi,r−1 | p
(t)
i,r−1) ≥ 8(p(t)i,r−1(1 − p

(t)
i,r−1))

9K

(
2
√

3
(∑

j �=i p
(t)
j,r−1(1 − p

(t)
j,r−1)

)
+ 1

) . �

The following lemma accumulates the drift of single frequencies in a potential
function ϕ and will be crucial for the proof of Theorem 5. Its proof frequently
uses the complementary frequencies q

(t+1)
i,j := 1 − p

(t+1)
i,j .

Lemma 4. For any t ≥ 0, let ϕt :=
∑n

i=1 1 − p
(t)
i,r−1 = n − ∑n

i=1 p
(t)
i,r−1. If, for

any t ≥ 0, there is some s > 0 such that for all i ∈ {1, . . . , n} it holds that
p
(t)
i,r−1 ≥ s and furthermore ϕt ≥ 1/2, then

E(ϕt − ϕt+1 | ϕt) ≥ 2 s
√

ϕ

15K
.

Proof. We estimate the expectation of ϕ′ := ϕt+1 =
∑n

i=1 q
(t+1)
i,r−1 based on ϕ :=

ϕt =
∑n

i=1 q
(t+1)
i,r−1 . First, we consider the drift of a single term q

(t)
i,r−1. If pi,r−1 ≤

1 − 1/K, then by Lemma 3

E(q(t+1)
i,r−1 | q

(t)
i,r−1) ≤ q

(t)
i,r−1 − 8(p(t)i,r−1(1 − p

(t)
i,r−1))

9K

(
2
√

3
(∑

j �=i p
(t)
j,r−1(1 − p

(t)
j,r−1)

)
+ 1

) .

Runtime Analysis of a Multi-valued cGA on Generalized OneMax 63

We bound p
(t)
i,r−1(1 − p

(t)
i,r−1) from below using our assumption p

(t)
i,r−1 ≥ s and

the sum from above using

∑

j �=i

p
(t)
i,r−1(1 − p

(t)
i,r−1) ≤

n∑

j=i

(1 − p
(t)
i,r−1) =

n∑

j=i

q
(t)
i,r−1 = ϕ.

Then,

E(q(t+1)
i,r−1 | q

(t)
i,r−1) ≤ q

(t)
i,r−1 − 8

9
· q

(t)
i,r−1

K
· s ·

(
1

2
√

3ϕ + 1

)

≤ q
(t)
i,r−1

(
1 − 8 s

9K
· 1
2
√

3ϕ + 1

)
.

Putting all together,

E(ϕ′ | ϕ) =
n∑

i=1

E(q(t+1)
i,r−1) | q

(t)
i,r−1) ≤

n∑

i=1

q
(t)
i,r−1

(
1 − 8 s

9rK
· 1
2
√

3ϕ + 1

)

≤ ϕ

(
1 − 8 s

9K
· 1
2
√

3ϕ + 1

)
≤ ϕ − 8 s

9K
· ϕ

2
√

3ϕ + 1

≤ ϕ − 8 s

9K
· ϕ1/2

2
√

3ϕ + 1
· ϕ1/2.

Further, for ϕ ≥ 1/2, the product of the first two fractions in the negative term
can be bounded from below using

8 s

9K
· ϕ1/2

2
√

3ϕ + 1
≥ 8 s

9K
· ϕ1/2

2
√

3ϕ + 2
√

3ϕ
≥ 2 s

15K
.

By substituting this back,

E(ϕ′ | ϕ) ≤ ϕ − 2 sϕ1/2

15K

as suggested. 	

With these lemmas, we now provide the proof of the main statement.

Proof (Proof of Theorem 5). By our assumptions on well-behaved frequencies,
all frequencies are restricted to {0, 1/K, 1/2K, . . . , 1/r, . . . , 1 − 1/K, 1}. The
main idea is to bound the expected optimization time under the assumption of
low genetic drift using additive drift analysis in a sequence of certain phases
and then variable drift analysis, using a potential function accumulating all
frequencies for value r − 1. The drift of this potential has already been bounded
in Lemma 4 above, using similar estimations as in [34]. The aim is to show that
after O(K

√
n log n log r) iterations the algorithm finds the global optimum, i. e.,

the string (r − 1)n, with high probability, if K ≥ cr2
√

n(log2 n + log r) for a
sufficiently large constant c > 0.

64 S. Adak and C. Witt

Let p
(t)
i,j denote the marginal probabilities at time t and q

(t)
i,j := 1 − p

(t)
i,j

where (i, j) ∈ {1, . . . , n} × {0, . . . , r − 1}. Now, we use the potential function
ϕt =

∑n
i=1 q

(t)
i,r−1, which calculates the distance to an ideal setting in which all

frequencies for value r − 1 have reached their maximum. From the definition of
ϕt =

∑n
i=1 1 − p

(t)
i,r−1 = n − ∑n

i=1 p
(t)
i,r−1, we can note when ϕ falls, then the

sum of the frequencies increases. This will allow us to use increasing bounds for
p
(0)
i,r−1 in Theorem 4 as ϕ falls.

Starting from initialization, we split the run of the r-cGA into phases k =
1, . . . , r/2. Phase k starts at the first time where ϕt ≤ n − kn/r and ends just
before the first time where ϕt ≤ n − (k + 1)n/r. We will assume that for each
i ∈ {1, . . . , n}, at the starting time Tk of phase k it holds that p

(Tk)
i,r−1 ≥ k/(2r) and

will analyze the probability of the bound holding below when studying genetic
drift. Clearly, the bound is true at the starting time T1 = 0 of phase 1.

Note that it is sufficient to reduce the potential by a total amount of n/r to
end any phase k. From Lemma 4 we obtain a drift throughout phase k of

E(ϕ − ϕ′ | ϕ) ≥ 2 sϕ1/2

15K
≥ k

√
n/2

15Kr

where we use our assumption s ≥ k/(2r) and bound ϕ ≥ n/2 because k ≤ r/2,
i. e., we only do the analysis until the potential has decreased to at most n/2.

Now, we apply additive drift analysis with overshooting [9, Theorem 4]. An
analysis of overshooting is necessary because at the point in time where the
potential is at most n− (k +1)n/r, it does not have to be exactly n− (k +1)n/r
but might be smaller. However, the target cannot be overshoot by much: even
if all frequencies change by 1/K, then the total change is at most n/K. Based
on our assumption that K ≥ cr2(log2 n + log r), we can simply pessimistically
add the value n/K ≤ n/r (assuming c ≥ 1) to the actual distance d = n/r to be
overcome. As analyzed above, we have the drift bound δ = k

√
n/2/(15Kr) in

phase k and the total distance is (d + n/K). Then, the expected time to bridge
the distance is (d+n/K)/δ ≤ (2n/r)/δ = 2d/δ. So, we obtain the expected time
to conclude phase k is at most

2d

δ
=

2n

r

15K√
n/2

r

k
= O(K

√
n/k).

Applying Markov’s inequality and a restart argument, the length of phase k is
O(K

√
n log n/k) with probability 1 − O(1/nκ) for any constant κ > 0. Further,

summing over k = 1, . . . , r/2, we obtain the total expected time spent in all
phases is

O

(
r∑

k=1

K
√

n

k

)
= O

(
K

√
n

r∑

k=1

1
k

)
= O(K

√
n log r).

In the same way, by adding up the tail bounds on the phase lengths, we have that
the total time spent in phases 1, . . . , r/2 is O(K

√
n log r log n) with probability at

Runtime Analysis of a Multi-valued cGA on Generalized OneMax 65

least 1−O(rn−κ), using a union bound. Since r = poly(n), this failure probability
is still o(1) if κ is a sufficiently large constant.

After the potential has decreased to at most n/2, we can essentially use the
same analysis as for the classical (binary) cGA on OneMax [34, Theorem 2], with
the exception that we do not use borders on frequencies here and, therefore, the
potential ϕ is non-increasing. We have ϕ ≤ n/2 as starting point and assume
s ≥ 1/2 − 1/(2r) ≥ 1/4. Using the variable drift theorem [34, Theorem 18],
we can estimate the expected time it takes for the potential function to drop
from ϕ ≤ n/2 to a value ϕ ≤ 1/2 (we do not wait for the potential to equal 0
because this would lead to weaker runtime bound). We choose the drift function
h(ϕ) := 2sϕ1/2/(15K) ≥ ϕ1/2/(30K), for any ϕ ≥ 1/2, in the variable drift
theorem. Also similarly as in [34, Proof of Theorem 2], we merge all the states
with potentials 0 < ϕ < 1/2 with state 0 so that the smallest state larger than 0
is xmin = 1/2. This modification can only increase the drift, hence the drift is still
bounded from below by h(ϕ) for all states ϕ ≥ xmin. Moreover, at xmin = 1/2,
the probability of sampling the optimum is at least 1/2 by the same arguments
related to majorization and Schur-convexity as in [34].

Now, the expected time to reach state 0 in the updated process, or any state
with ϕ < 1/2 in the actual process, is at most

1/2
h(1/2)

+
∫ n

1/2

1
h(ϕ)

dϕ = O(K) + O(K) ·
∫ n

1/2

ϕ−1/2 dϕ = O(K
√

n).

Afterwards, after expected time at most 2, the optimum is sampled. Moreover,
again by applying Markov’s inequality and a restart argument, the time to sam-
ple the optimum is O(K

√
n log n) with probability 1 − o(1).

We still have to analyze the effect of genetic drift. In the analysis above, we
assume that at the time Tk beginning phase k (when the potential has become
at most n − nk/r), every frequency p

(Tk)
i,r−1, where i ∈ {1, . . . , n}, is bounded

from below by k/(2r). By definition, a potential of ϕt corresponds to an average
frequency value of (n − ϕt)/n. Moreover, since all n frequencies p

(t)
i,r−1 describe

the same stochastic process due to the symmetry of the r-OneMax function,
this average frequency equals the expected frequency at this time t. Deviations
of the frequency below the expected value can only happen in rw-steps. The
aim is therefore to show that in each phase, the reduction of any frequency in
rw-steps is bounded from above by 1/(2r). By Theorem 4 (using identifying its
starting time 0 with Tk), the probability of a failure in a single phase, i. e., of a
reduction more than 1/(2r) by genetic drift is at most 2 exp(K2/(2Tr2)). Using
K ≥ cr2

√
n(log2 n+log r) for some sufficiently large constant c > 0 and plugging

in the above bound on the length of phase k of T = c′(K
√

n log n)/k for another
constant c′ > 0, the failure probability is bounded from above by

2 exp(Kk/(2c′√n(log n)r2)) ≤ 2 exp(kc(log n + log r)/c′) ≤ 2n−c/c′
r−c/c′

.

Choosing c large enough and taking a union bound over at most r phases and
n frequencies, the failure probability in this analysis of genetic drift is still o(1).

66 S. Adak and C. Witt

By choosing all constants appropriately, also the sum of all failure probabilities
is o(1). 	

7 Experiments

In the following section, we show the results of the experiments carried out to
check the performance of the proposed algorithm without border restriction.
Theoretically, we prove the typical runtime for the r-cGA on the r-OneMax
without margins. We used the C programming language and the WELL1024a
random number generator to implement the algorithm.

In the experiments, we ran the r-cGA on r-OneMax for n = 500 (Fig. 1) with-
out border restriction and all averaged over 3000 runs where r ∈ {3, 4, . . . , 10}.
Also, for G-OneMax using G-OneMax(x) =

∑n
i=1 xi for simplicity, we ran the

r-cGA with the same configuration. In all cases, we observe the same scenario
where the empirical runtime begins at a very high value, takes a minimum and
then increases again for the rest of the K. As an example, we got the minimum
when K is around 110 (Fig. 1: Left-hand side and r = 4). And after that it
clearly goes up with K.

We can compare the results according to the variants. If we compare the plots
for r-OneMax and G-OneMax, then both variants produce the same structure.
From the experimental setup, we can say that the bound of the theoretical
analysis is not tight. We observed some empirical findings about the relationship
between K and runtime. After the close inspection, we can find the value of
K where the minimum of the runtime is reached. Based on the experiments,
we believe that the runtime of the r-cGA on G-OneMax is higher than on r-
OneMax. In fact, the analysis of G-OneMax is more complicated compared to
r-OneMax since there is no benefit in moving to a value close to the optimal one
if the new value is not optimal. Therefore, the theoretical analysis of the r-cGA
on G-OneMax is one of our future research subjects.

Fig. 1. Left-hand side: empirical runtime of the r-cGA on r-OneMax, right-hand side:
empirical runtime of the r-cGA on G-OneMax; for n = 500, K ∈ {50, 51, . . . , 1000}
and averaged over 3000 runs.

Runtime Analysis of a Multi-valued cGA on Generalized OneMax 67

8 Conclusion

We have performed a runtime analysis of a multi-valued EDA, namely the r-
cGA, on a generalized OneMax function. In our analysis, we have bound the
runtime of the r-cGA with a high probability. Also, considering the increased
complexity of the problem, the resulting runtime is understandable. Since the
r-cGA is efficient on generalized OneMax, we believe that the r-cGA is a good
algorithm for other, more complex problems, too.

A theoretical analysis of the r-cGA on G-OneMax is one of the future research
works. Also, we would like to investigate the r-cGA on a multi-valued OneMax
problem where all the frequencies are restricted by a specific upper and lower
border value. Based on the experiments, we believe that the runtime of the r-
cGA on G-OneMax is higher than on r-OneMax. Further, from the experiments,
we believe that our runtime bounds can be improved.

Acknowledgments. This work has been supported by the Danish Council for Inde-
pendent Research through grant 10.46540/2032-00101B.

References

1. Adak, S., Witt, C.: Runtime analysis of a multi-valued compact genetic algorithm
on generalized OneMax (2024). https://arxiv.org/abs/2404.11239

2. Asoh, H., Mühlenbein, H.: On the mean convergence time of evolutionary algo-
rithms without selection and mutation. In: Davidor, Y., Schwefel, H.-P., Männer,
R. (eds.) Parallel Problem Solving from Nature — PPSN III, pp. 88–97. Springer,
Berlin, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_253

3. Baluja, S.: Population-based incremental learning: a method for integrating genetic
search based function optimization and competitive learning. Carnegie Mellon Uni-
versity Pittsburgh, PA, School of Computer Science (1994)

4. Ben Jedidia, F., Doerr, B., Krejca, M.S.: Estimation-of-distribution algorithms for
multi-valued decision variables. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 230–238 (2023)

5. Benbaki, R., Benomar, Z., Doerr, B.: A rigorous runtime analysis of the 2-MMASIB
on jump functions: ant colony optimizers can cope well with local optima. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 4–13
(2021)

6. Dang, D.C., Lehre, P.K.: Simplified runtime analysis of estimation of distribution
algorithms. In: Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation, pp. 513–518 (2015)

7. De Bonet, J., Isbell, C., Viola, P.: MIMIC: finding optima by estimating probability
densities. In: Advances in Neural Information Processing Systems 9 (1996)

8. Doerr, B.: The runtime of the compact genetic algorithm on jump functions. Algo-
rithmica 83, 3059–3107 (2021)

9. Doerr, B., Kötzing, T.: Multiplicative up-drift. Algorithmica 83(10), 3017–3058
(2021)

10. Doerr, B., Krejca, M.S.: The univariate marginal distribution algorithm copes well
with deception and epistasis. In: Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, pp. 17–18 (2020)

https://arxiv.org/abs/2404.11239
https://doi.org/10.1007/3-540-58484-6_253

68 S. Adak and C. Witt

11. Doerr, B., Zheng, W.: Sharp bounds for genetic drift in estimation of distribution
algorithms. IEEE Trans. Evol. Comput. 24(6), 1140–1149 (2020)

12. Droste, S.: Not all linear functions are equally difficult for the compact genetic algo-
rithm. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation, pp. 679–686 (2005)

13. Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions.
Nat. Comput. 5, 257–283 (2006)

14. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276(1), 51–81 (2002)

15. Friedrich, T., Kötzing, T., Krejca, M.S.: EDAs cannot be balanced and stable.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
1139–1146 (2016)

16. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Trans. Evol. Comput. 3(4), 287–297 (1999)

17. Harik, G.R., Lobo, F.G., Sastry, K.: Linkage learning via probabilistic modeling
in the extended compact genetic algorithm (eCGA). In: Scalable Optimization via
Probabilistic Modeling, pp. 39–61. Springer (2006). https://doi.org/10.1007/978-
3-540-34954-9_3

18. Hasenöhrl, V., Sutton, A.M.: On the runtime dynamics of the compact genetic
algorithm on jump functions. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 967–974 (2018)

19. Kimura, M.: Diffusion models in population genetics. J. Appl. Probab. 1(2), 177–
232 (1964)

20. Krejca, M.S., Witt, C.: Lower bounds on the run time of the univariate marginal
distribution algorithm on OneMax. In: Proceedings of the 14th ACM/SIGEVO
Conference on Foundations of Genetic Algorithms, pp. 65–79 (2017)

21. Krejca, M.S., Witt, C.: Theory of estimation-of-distribution algorithms. In: Doerr,
B., Neumann, F. (eds.) Theory of Evolutionary Computation: Recent Develop-
ments in Discrete Optimization, pp. 405–442. Springer International Publishing,
Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_9

22. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation, vol. 2. Springer Science & Business Media
(2001). https://doi.org/10.1007/978-1-4615-1539-5

23. Lengler, J., Sudholt, D., Witt, C.: Medium step sizes are harmful for the compact
genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1499–1506 (2018)

24. Lengler, J., Sudholt, D., Witt, C.: The complex parameter landscape of the com-
pact genetic algorithm. Algorithmica 83, 1096–1137 (2021)

25. McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez-Alfonsin,
J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics,
pp. 195–248. Springer, Berlin, Heidelberg (1998). https://doi.org/10.1007/978-3-
662-12788-9_6

26. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distri-
butions I. Binary parameters. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwe-
fel, H.-P. (eds.) Parallel Problem Solving from Nature — PPSN IV, pp. 178–187.
Springer, Berlin, Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X_982

27. Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: ACO with iteration-
best update. In: Proceedings of the 12th Annual Conference on Genetic and Evo-
lutionary Computation, pp. 63–70 (2010)

https://doi.org/10.1007/978-3-540-34954-9_3
https://doi.org/10.1007/978-3-540-34954-9_3
https://doi.org/10.1007/978-3-030-29414-4_9
https://doi.org/10.1007/978-1-4615-1539-5
https://doi.org/10.1007/978-3-662-12788-9_6
https://doi.org/10.1007/978-3-662-12788-9_6
https://doi.org/10.1007/3-540-61723-X_982

Runtime Analysis of a Multi-valued cGA on Generalized OneMax 69

28. Pelikan, M., Hauschild, M.W., Lobo, F.G.: Estimation of Distribution Algorithms.
In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelli-
gence, pp. 899–928. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-43505-2_45

29. Pelikan, M., Muehlenbein, H.: The bivariate marginal distribution algorithm. In:
Roy, R., Furuhashi, T., Chawdhry, P.K. (eds.) Advances in Soft Computing, pp.
521–535. Springer, London (1999). https://doi.org/10.1007/978-1-4471-0819-1_39

30. Santana, R., Larranaga, P., Lozano, J.A.: Protein folding in simplified models with
estimation of distribution algorithms. IEEE Trans. Evol. Comput. 12(4), 418–438
(2008). https://doi.org/10.1109/TEVC.2007.906095

31. Shapiro, J.L.: The sensitivity of PBIL to its learning rate, and how detailed balance
can remove it. In: FOGA, pp. 115–132 (2002)

32. Shapiro, J.L.: Drift and scaling in estimation of distribution algorithms. Evol.
Comput. 13(1), 99–123 (2005)

33. Shapiro, J.L.: Diversity loss in general estimation of distribution algorithms. In:
Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX: 9th International
Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings, pp. 92–101.
Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11844297_10

34. Sudholt, D., Witt, C.: On the choice of the update strength in estimation-of-
distribution algorithms and ant colony optimization. Algorithmica 81, 1450–1489
(2019)

35. Witt, C.: Domino convergence: why one should hill-climb on linear functions. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1539–
1546 (2018)

36. Witt, C.: Upper bounds on the running time of the univariate marginal distribution
algorithm on OneMax. Algorithmica 81, 632–667 (2019)

37. Witt, C.: How majority-vote crossover and estimation-of-distribution algorithms
cope with fitness valleys. Theoret. Comput. Sci. 940, 18–42 (2023)

https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1007/978-1-4471-0819-1_39
https://doi.org/10.1109/TEVC.2007.906095
https://doi.org/10.1007/11844297_10

Faster Optimization Through Genetic
Drift

Cella Florescu, Marc Kaufmann(B), Johannes Lengler, and Ulysse Schaller

Department of Computer Science, ETH Zürich, Zürich, Switzerland
{cella.florescu,marc.kaufmann,johannes.lengler,

ulysse.schaller}@inf.ethz.ch

Abstract. The compact Genetic Algorithm (cGA), parameterized by its
hypothetical population size K, offers a low-memory alternative to evolv-
ing a large offspring population of solutions. It evolves a probability dis-
tribution, biasing it towards promising samples. For the classical bench-
mark OneMax, the cGA has two different modes of operation: a conser-
vative one with small step sizes Θ(1/(

√
n logn)), which is slow but pre-

vents genetic drift, and an aggressive one with large step sizes Θ(1/ logn),
in which genetic drift leads to wrong decisions, but those are corrected effi-
ciently. On OneMax, an easy hill-climbing problem, both modes lead to
optimization times of Θ(n logn) and are thus equally efficient.

In this paper we study how both regimes change when we replace One-
Max by the harder hill-climbing problem Dynamic BinVal. It turns
out that the aggressive mode is not affected and still yields quasi-linear
runtime O(n polylog n). However, the conservative mode becomes sub-
stantially slower, yielding a runtime of Ω(n2), since genetic drift can
only be avoided with smaller step sizes of O(1/n). We complement our
theoretical results with simulations.

Keywords: compact Genetic Algorithm · Genetic Drift ·
Estimation-of-Distribution Algorithm · Dynamic Binary Value

1 Introduction

Estimation-of-distribution algorithms (EDAs) are a family of randomized opti-
mization heuristics in which the algorithm evolves a probability distribution
over the search space.1 In each iteration, it samples solutions from this distri-
bution, evaluates their quality (also called fitness), and updates the probabil-
ity distribution accordingly. Examples in discrete domains include the cGA,
UMDA, PBIL, ant colony systems like the MMAS, and multivariate systems
like hBOA [24] or MIMIC [2], see [16] for a survey. EDAs turn out to be a
powerful alternative to population-based heuristics like evolutionary and genetic
algorithms. They have the advantage that they often sample from a wider region
1 Proofs in this submission are omitted due to the page limit. A full version with

detailed proofs can be found in the arXiv version of this article [10].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 70–85, 2024.
https://doi.org/10.1007/978-3-031-70071-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-70071-2_5

Faster Optimization Through Genetic Drift 71

of the search space than their population-based alternatives, which makes them
less susceptible to local deviations like (frozen or non-frozen) noise and local
optima [3,11,12,18,27].

EDAs have been used for several decades, but theoretical investigations of
EDAs have only started to gain momentum a few years ago. While for some
aspects a clear picture has emerged, like that EDAs are able to cope with large
amounts of noise [11], there is one aspect for which researchers have found a
complex and ambiguous pattern: genetic drift. Genetic drift is the tendency of an
algorithm to move through the fitness landscape even in absence of a clear signal-
to-noise ratio.2 While it is possible to avoid genetic drift by tracking the signal-to-
noise ratio [5,8], this conservative attempt of avoiding mistakes could potentially
make the algorithm slow and inflexible. An alternative approach might be to
embrace genetic drift, allow the algorithm to swiftly move through the search
space, and let it correct mistakes as they appear.

Indeed, these two alternatives are exemplified by the behaviour of the com-
pact Genetic Algorithm cGA on the pseudo-Boolean function OneMax [23].
The OneMax function assigns to a bit string x ∈ {0, 1}n the number of one-
bits in x. It is one of the simplest and most classical hill-climbing benchmarks.
The cGA maintains for each of the n coordinates a frequency pi, which encodes
the probability that the i-th bit is set to one in the distribution. In each itera-
tion, it samples two solutions, and for each component i it shifts the frequency
pi by 1/K towards the value of the fitter of the two solutions. Droste was the
first to prove an expected runtime bound of Θ(

√
nK) on OneMax and Θ(Kn)

on BinVal whenever K = Ω(n1/2+ε) [9]. The latter assumption on K was nec-
essary in order to avoid frequencies getting trapped at 0 or at 1. In the version
of the algorithm that recent research has therefore focused on, frequencies are
capped in the interval [p̄, 1− p̄] in order to avoid that, where p̄ = p̄(n) ∈ (0, 1

2) is
a boundary parameter, usually set to p̄ = 1

n , see Sect. 2 for full details. The step
size 1/K determines how aggressively or conservatively the algorithm updates.
It is well understood that the size of K determines whether genetic drift happens
to a relevant extent on OneMax or not. If K = ω(

√
n log n) then the frequen-

cies move so slowly that the signal exceeds the noise, and all frequencies move
slowly but steadily towards the upper boundary. This corresponds to the regime
where genetic drift is avoided, and we refer to this as conservative regime. On
the other hand, if K = o(

√
n log n) then the signal is weaker than the noise, and

some bits move to the wrong boundary due to genetic drift. In the subsequent
optimization process, these mistakes are then slowly corrected. We call this the
aggressive regime.

It turns out that both regimes are equally efficient on OneMax. For suitable
K = C log n with a large constant C, errors are corrected so quickly that the opti-

2 The term drift is also used in the context of drift analysis, where it means the
expected change, which is almost the opposite concept. The term “genetic drift”
should not be confused with this other meaning of the term “drift”.

72 C. Florescu et al.

mum is sampled in O(n log n) iterations.3 On the other hand, if K = C
√

n log n
with a large constant C, then the algorithm moves more slowly, but does not
make any errors, which yields the same asymptotic runtime O(n log n). Both
parameter settings are brittle with respect to smaller K: if either K = C log n
or K = C

√
n log n are decreased only slightly, this results in a sudden loss of

performance. On the other hand, if the parameter K is increased from either
K = C log n or K = C

√
n log n, then the performance deteriorates slowly but

steadily. Hence, there are two optimal parameter settings for the cGA on One-
Max, a conservative one which avoids genetic drift and an aggressive one which
embraces genetic drift.

Since the mentioned analysis was limited to OneMax, it remained open
whether both modes of the algorithm also show comparable performance for
other hill-climbing tasks. In this paper, we give a negative answer and show that
for the harder hill-climbing problem Dynamic BinVal, the aggressive mode
still finds the optimum in quasi-linear time, while the conservative mode needs
time Ω(n2).

1.1 Our Results

We investigate the cGA on the function Dynamic BinVal, or DynBV for
short. This function, introduced in [20], builds on the classical linear test func-
tion Binary Value that assigns to each binary string the integer that is rep-
resented by it in the binary number system. DynBV is obtained by drawing
at each iteration a random permutation of the weights and then evaluating all
solutions with the permuted Binary Value function, see Sect. 2 for a formal
definition. Binary Value is conjectured to be the hardest linear function4, and
DynBV is known to be the hardest dynamic linear function5 [20,21]. This makes
it the perfect benchmark for a hard hill-climbing task. For more discussion of
the benchmark, see Sect. 1.2.
Our proofs rely heavily on drift theorems, a standard toolbox from the analy-
sis of evolutionary algorithms. These allow to transform statements about the
expected one-iteration change of a potential function, a proxy for the function
to be optimized, into runtime bounds. For an overview see [19].

The Conservative Regime is Slow. Our first main result is the following
lower runtime bound, which holds for all K = O(poly(n)). In this range the
runtime will at first increase quadratically in K, until K reaches the dimension
of the search space - at which point the runtime dependency becomes Ω(K · n).

3 This was only shown formally for the UMDA in [27] and [1], not for the cGA.
However, [23] contains an informal argument why the results should also apply to
the cGA.

4 For the (1 + 1)-EA. It is a famous open problem to prove this formally [13].
5 It is not formally a dynamic linear function in the sense of [22], but can be obtained

as a limit of such functions [20].

Faster Optimization Through Genetic Drift 73

Theorem 1. Let p̄ ∈ (0, 1
2) be arbitrary and consider the cGA with param-

eter K = O(poly(n)) and boundaries at p̄ and 1 − p̄ on DynBV. Then with
high probability, the optimum is not sampled during the first Ω(K · min{K,n})
iterations.

The reason for this is captured in Lemma 9, which states that in this period,
there are always linearly many bits which stay in some constant interval around
their initialization value, so it is exponentially unlikely to sample the optimum.

If we want to avoid genetic drift, we have to choose a rather large K (small
step sizes) to overcome the small signal-to-noise ratio that is inherent to DynBV.
The following theorem states that any K = O(n) will lead to substantial genetic
drift and hence belongs to the aggressive regime. This agrees with the guidelines
from [3] on how to avoid genetic drift and is similar to LeadingOnes [6].

Theorem 2. For every ρ > 0 and β ∈ (p̄, 1
2) there is δ > 0 such that the

following holds. Consider the cGA with parameter K ≤ ρn on DynBV. Then
with high probability as K → ∞ at least δn frequencies drop below β during
optimization.

The proof sketches of Theorem 1 and Theorem 2 can be found in Sect. 4.
Theorem 2 shows that indeed the only possibility to avoid substantial genetic
drift is to set K = ω(n), which leads to a runtime of ω(n2) by Theorem 1. Hence,
DynBV can not be optimized in quadratic time by any parameter setting of
the cGA that avoids genetic drift. As we will see below, aggressive parameter
settings that allow genetic drift are much more efficient. Before we come to this
other regime, we complement Theorem 1 with a matching upper bound that
holds when we are safely in the conservative regime with K = Ω(n log n). To
simplify the proof, we require a slight adjustment of the boundary values. More
precisely, we set them to 1

cn , 1 − 1
cn for a large enough constant c > 0. As our

simulations, which are all conducted with boundaries 1
n , 1− 1

n , show, this choice
does not affect the asymptotic behaviour.

Theorem 3. Consider the cGA with parameter K = poly(n) and boundaries
at 1

cn and 1− 1
cn on DynBV. If K ≥ c′ · n log n, and the constants c, c′ > 0 are

large enough, then the expected optimization time is O(Kn).

The main ingredient for this proof, whose sketch can be found in Sect. 5, is to
show that in the first polynomially many rounds, all frequencies stay bounded
away from the lower boundary (Proposition 10). Hence, the proof of Theorem 3
is similar to other proofs of upper runtime bounds in conservative regimes [8,26].

Together, Theorems 1 and 3 give tight runtime bounds of Θ(Kn) in the
conservative regime. This implies in particular that the runtime in this regime is
much larger for DynBV than for OneMax, where the runtime is O(K

√
n) [25].

We remark that the different transition points between conservative and
aggressive regime (K = Θ(n) in Theorem 2 and K = Θ(n log n) in Theorem 3)
are natural because there are different possible definitions of the conservative
regime: that no frequency drops below 1/3 (or any other fixed constant below

74 C. Florescu et al.

1/2), that no frequency reaches the lower boundary, or that the number of fre-
quencies hitting the lower boundary is sublinear. All these variants lead to dif-
ferent transition points between the conservative and aggressive regime.

The Aggressive Regime is Fast. Our second result shows that in contrast,
the optimization time of the cGA remains quasi-linear for small K, i.e. lin-
ear up to a poly-logarithmic factor. This corresponds to the aggressive regime
where many frequencies reach the wrong boundary, but those errors are cor-
rected efficiently. To make the analysis simpler, similar as for Theorem 3, we
do not set the two boundary values at their standard values 1/n and 1 − 1/n,
but this time we even set them to 1/(npolylog n) and 1−1/(npolylog n). More-
over, we do not use the smallest possible (most aggressive) parameter choice
K = C log n for the aggressive regime, but rather choose the slightly more con-
servative K = Θ(log2 n). Then we prove the following result (proof sketch in
Sect. 6).

Theorem 4. Consider the cGA with parameter K = Θ(log2 n) and boundaries
1/(n log7 n) and 1 − 1/(n log7 n) on DynBV. Then with high probability the
optimum is sampled in O(n · polylog(n)) iterations.

We hide in the notation O(n · polylog(n)) our explicit derived bound of
O(n log16 n) iterations. But this is not tight with regard to log-factors in various
places, so we did not optimize for the exponent of the logarithm. We further note
that we made no effort to optimize the exponent 7 of the poly-logarithmic factor
in the boundaries. We conjecture that the true runtime for optimal parameters
is O(n log n), and that this is achieved with the standard boundaries 1/n and
1 − 1/n. Notably, this would mean that there is no substantial runtime differ-
ence in the aggressive regime with optimal parameters between OneMax and
DynBV, in stark contrast to the conservative regime. We do not quite show this
statement, but we show it up to poly-logarithmic factors.

Compared to this conjecture, our analysis is likely not tight in several ways.
Firstly, even for the given parameters we believe that the poly-logarithmic expo-
nent of our runtime bound could be reduced at the cost of a more technical anal-
ysis. Secondly, both the conservative choice of K and the non-standard choice
of the threshold likely bring us away from the optimal parameter. This simpli-
fies the proof, but costs us performance, even though only logarithmic factors.
We suspect that the optimal parameter setup is indeed the standard setup of
K = C log n for a large constant C and boundaries 1/n and 1 − 1/n. This is
supported by the experiments presented in Sect. 7.

1.2 Discussion of the Setup and Related Work

Signal Steps and DynBV. In order to understand genetic drift, a key question is
how often each frequency receives a signal step. We call an iteration a signal step
for frequency pi if both solutions differ in this position i and the two values of this

Faster Optimization Through Genetic Drift 75

position are necessary to decide which of the two solution is fitter. When both
solutions differ, but their values are irrelevant for identifying the fitter solution,
then we call the iteration a random walk step for frequency pi. In the initial
phase of the cGA on OneMax, the probability of a signal step is Θ(1/

√
n). For

DynBV, the signal probability is considerably weaker, namely of order Θ(1/n).
In fact, in each iteration exactly one frequency receives a signal step, except
when the two offspring sampled by the algorithm agree in every single bit.

As mentioned, DynBV is the hardest dynamic linear function. This also
holds in terms of the signal strength: when comparing two non-equal solutions,
then exactly one frequency gets a signal, while all other frequencies perform a
random walk step. This is the weakest signal strength among all dynamic linear
functions, and even the hardest among all dynamic monotone functions [14],
since every monotone function, static or dynamic, will always provide a signal
step to at least one frequency when comparing two solutions.

Although it is a dynamic function, DynBV provides a hill-climbing task
in the sense that in each iteration and at any position, a one-bit gives a higher
fitness than a zero-bit. Thus, pure hill-climbing heuristics such as Random Local
Search (RLS) can be highly efficient on this function. Moreover, DynBV is
more symmetric than the classical Binary Value function, which makes the
analysis simpler. All these properties make DynBV the perfect benchmark for
a theoretical runtime analysis of a hard hill-climbing task.

Related Work. It has been shown that Dynamic BinVal is harder to optimize
by evolutionary algorithms than static monotone functions in various ways. The
(1, λ)-EA with self-adapting offspring population size fails on Dynamic BinVal
while succeeding on OneMax if the hyperparameters are not set correctly [15].
Furthermore, a “switching” variant of Dynamic BinVal minimizes drift in the
number of zeros at every search point for the (1 + 1)-EA for any mutation rate
at every search point, making it harder to optimize than any static monotone
function [14].

We do not claim that the aggressive mode of the cGA is generally superior
to the conservative mode. However, our results show that the other extreme
position of avoiding genetic drift at all costs, does cost performance for Dynamic
BinVal. On the other hand, the conservative mode was shown to be superior on
the function DeceptiveLeadingBlocks for some parameter settings [7,17],
though a discussion at a Dagstuhl seminar shows that opinions are split about
the implications of these results [4]. We hope that further research will give a
clearer and more nuanced picture on the benefits and drawbacks of genetic drift.

2 Setting

Our search space is always {0, 1}n. We say that an event E = E(n) holds with
high probability or whp if Pr[E] → 1 as n → ∞. We may for simplicity omit the
parameter t indicating the iteration when it is clear from context.

76 C. Florescu et al.

2.1 The Algorithm: The CGA with Hypothetical Population Size K

We begin with an intuitive description of the cGA. Before the start of the
algorithm, we fix a capping probability p̄ < 1

2 and a hypothetical population
size K, which we may think of as an inverse update strength. At every iteration,
the algorithm generates two offspring x and y independently of each other by
the same sampling procedure. At iteration t, the i-th bit of the offspring to be
sampled is set (independently of all other bits and of all previous iterations) to
1 with probability pi,t and set to 0 otherwise. The probabilities are initialized to
1
2 for all bits and evolve according to the following procedure: At each iteration,
the fitness of x and y are compared according to the fitness function f - in
our case this will be Dynamic BinVal. If the fitter offspring contains a 1 at
position i, we increase the probability of sampling a 1 bit, pi, by 1

K for the next
iteration, otherwise we decrease it by the same amount. If there is no strictly
fitter offspring, i.e. f(x) = f(y), all probabilities pi,t remain unchanged in the
next iteration. To ensure the algorithm does not get stuck by fixing one of the
bits, i.e. sampling a 1 (or a 0) with probability 1, we restrict the possible values
for probabilities pi,t to the interval [p̄, 1 − p̄]. If an update step would make a
pi,t exceed these bounds, we set it to the boundary value instead. The algorithm
stops when the optimum has been sampled (as one of the two offspring in a given
iteration). The pseudocode is provided in Algorithm 1.

2.2 The Benchmark: DYNAMIC BINVAL

In our considered benchmark Dynamic BinVal, at each iteration t, we draw
uniformly at random (and independently of everything else) from the set of
bijections from {1, . . . , n} onto itself an element πt : {1, 2, . . . , n} → {1, 2, . . . , n}.
Note that this can be seen as a permutation of the bits of the search point. The
fitness function for iteration t is then given by

ft(x) =
n∑

i=1

2n−i · xπt(i).

Intuitively, the offspring which has a 1 bit at the most significant position (given
by the permutation πt) at which the two offspring differ is considered fitter.

2.3 Terminology

Signal Step. A signal step of a bit i ∈ {1, 2, . . . , n} is the increase in the marginal
probability of bit i during an iteration t where the value of this bit in the two
offspring was decisive. In other words, bit i performs a signal step at iteration t
if and only if the two offspring differ at bit i and are equal at any other bit i′

for which πt(i′) < πt(i).

Random Step. A random step of a bit i ∈ {1, 2, . . . , n} is the change in the
marginal probability of bit i during an iteration where the value of this bit in the
two offspring was not decisive. Thus, all changes in a bit’s marginal probability
that are not signal steps are random steps.

Faster Optimization Through Genetic Drift 77

Algorithm 1. cGA(f,K, p̄)
t ← 0
p1,t ← p2,t ← · · · ← pn,t ← 1

2

while optimum has not been sampled do
for i ∈ {1, 2, . . . , n} do

xi ← 1 with probability pi,t and 0 otherwise
yi ← 1 with probability pi,t and 0 otherwise

end for
if f(x) = f(y) then

t ← t + 1
continue

else if f(x) < f(y) then
swap x and y

end if
for i ∈ {1, 2, . . . , n} do

if xi > yi then
p′
i,t+1 ← pi,t +

1
K

else if xi < yi then
p′
i,t+1 ← pi,t − 1

K

else
p′
i,t+1 ← pi,t

end if
pi,t+1 ← min

{
max

{
p̄, p′

i,t+1

}
, 1 − p̄

}

end for
t ← t + 1

end while

Sampling Variance. The sampling variance at time t is the variance of the bino-
mial distribution induced by the probabilities pi,t, i = 1, . . . n. We denote it by
Vt :=

∑n
i=1 pi,t(1 − pi,t). Intuitively, it is the sum at time t of the variances

contributed by the probability of each frequency in the generating distribution.

Lower/Upper Boundary. Recall from Subsect. 2.1 that the possible values for
the probabilities pi,t are restricted to an interval [p̄, 1− p̄] � [0, 1] for some value
p̄ = O(1n) to ensure that the algorithm does not get stuck. The values p̄ and
1 − p̄ are going to be referred to as lower and upper boundary respectively. For
example, we say a frequency pi,t is at its upper boundary if pi,t = 1 − p̄. Note
that the distances of the lower and upper boundaries from 0 and 1 is always the
same, respectively. p̄ is fixed for the entire execution of the algorithm. It will
always either be 1

cn or 1
n logc n for constant c > 0, and it will usually be clear

from context which value of p̄ is assumed.

3 Dynamics of the Marginal Probabilities

We start by analyzing how the cGA behaves on the Dynamic BinVal at the
level of a single iteration. The first proposition computes the probability that

78 C. Florescu et al.

a bit i at which the two offspring differ gets a signal step (in some iteration
t). This proposition captures the main difference between DynBV and One-
Max. For OneMax, a position which differs in the two offspring has probability
1/max{√

Vt, 1} to perform a signal step [26], and performs a random step other-
wise. For DynBV, the probability is 1/max{Vt, 1}, so the term

√
Vt is replaced

by Vt. Hence, signal steps are more likely for OneMax, and the signal-to-noise
ratio of OneMax is larger than for DynBV. This corresponds to the fact that
OneMax is a particularly easy function to optimize.

Proposition 5. Let K ≥ 1 and p̄ ∈ (0, 1
2) be arbitrary, and consider the algo-

rithm cGA(K, p̄) on DynBV and some bit i ∈ [n] and iteration t. For the
permutation πt drawn at iteration t, we denote by Si,t the event that all bits
i′ ∈ [n] that appear before i in the permutation, i.e. such that πt(i′) < πt(i), are
equal in the two offspring. Then it holds that

Pr[Si,t] = Θ

(
1

max{Vt, 1}
)

.

The idea of the proof is that the expected number of bits differing in the
two offspring is

∑n
i=1 2pi,t(1 − pi,t) = 2Vt, and each of these bits is equally

likely to be the first bit differing in the two offspring, yielding a probability of
Θ(1/max{Vt, 1}) (the maximum with 1 ensures the expression stays constant).

Using Proposition 5, one can describe the transition matrix of the marginal
probabilities, which then allows to compute the drift of these marginal proba-
bilities. As for Proposition 5, the same formulas would hold for OneMax with
Vt replaced by

√
Vt.

Proposition 6. Let K ≥ 1 and p̄ ∈ (0, 1
2) be arbitrary, and consider the

algorithm cGA(K, p̄) on DynBV. Then for all i ∈ [n] and t ∈ N we have
pi,t+1 = min

{
max

{
p̄, p′

i,t+1

}
, 1 − p̄

}
where

p′
i,t+1 =

⎧
⎪⎪⎨

⎪⎪⎩

pi,t, with probability 1 − 2pi,t(1 − pi,t)

pi,t + 1
K , with probability

(
1
2 + Θ

(
1

max{Vt,1}
))

2pi,t(1 − pi,t)

pi,t − 1
K , with probability

(
1
2 − Θ

(
1

max{Vt,1}
))

2pi,t(1 − pi,t)

.

This implies E[pi,t+1 − pi,t | pi,t] = Θ
(pi,t(1−pi,t)

K·max{Vt,1}
)
, where the lower bound

requires pi,t < 1 − p̄ and the upper bound requires pi,t > p̄.

4 Lower Bound on the Runtime

In this section, we sketch the proof for the lower bounds on the runtime of the
compact Genetic Algorithm on Dynamic BinVal when K is polynomial in the
number of bits. The idea is to bound the number of signal steps that a given bit
makes over a certain number of iterations, and use this bound to show that a
linear number of frequencies stay a constant distance away from the boundaries

Faster Optimization Through Genetic Drift 79

for Ω(K · min{K,n}) iterations. As long as this is the case, the probability to
sample the optimum in any given iteration is exponentially small, and hence
a union bound over the iterations gives us a high probability lower bound on
the runtime. We start by upper bounding the probability that a fixed frequency
gets a signal step in a given iteration, under the condition that enough bits have
marginal probabilities far away from the boundaries.

Corollary 7. Let K ≥ 1 and p̄ ∈ (0, 1
2) be arbitrary, and consider the algorithm

cGA(K, p̄) on DynBV. Assume that at iteration t there are at least γn bits
whose marginal probabilities are within [16 , 5

6], for some constant γ > 0. Then
the probability of having a signal step on any fixed bit is O(1/n).

The following lemma guarantees, using Chernoff bounds, that the displace-
ment of the marginal probabilities caused by O(K2) random steps is bounded
in absolute value by 1

6 for a linear number of bits.

Lemma 8. Let K ≥ 1 and p̄ ∈ (0, 1
2) be arbitrary, and consider the algorithm

cGA(K, p̄) on DynBV. Consider a fixed frequency i ∈ [n] and let t ≤ αK2,
where α > 0 is a small enough constant. With probability Θ(1), the first t random
steps of frequency i lead to a total change of the bit’s marginal probability that
is within

[− 1
6 , 1

6

]
.

Moreover, for a small enough constant γ > 0, the probability that the above
holds for less than γn bits among the first n

2 bits is 2−Ω(n), regardless of the
decisions made on the last n

2 bits.

We assemble things in the next lemma and show that there is a constant frac-
tion of bits whose marginal probabilities stay bounded away from the boundaries
(and hence receive few signal steps). The proof bounds the accumulated effect
of signal steps using Chernoff bounds.

Lemma 9. Let K ≥ 1 and p̄ ∈ (0, 1
2) be arbitrary, and consider the algorithm

cGA(K, p̄) on DynBV. There exist constants α, γ > 0, such that the following
holds with high probability, regardless of the last n

2 bits (i.e. an adversary may
choose the value of those bits in the offspring). There is a subset S of γn bits
among the first n

2 bits such that during the first t := αK2 iterations:

i) the marginal probabilities of all bits in S always lie in the interval
[
1
6 , 5

6

]
;

ii) the total number of signal steps for each bit in S is bounded by K
6 , leading to

a displacement of at most 1
6 .

Theorem 1 is then a direct consequence of the above lemma. Theorem 2 follows
in a similar manner, by showing that there is a linear subset of the other n

2 bits
which make Ω(K2) random steps and at most εK signal steps, and the random
steps lead them to a value below β − ε. We omit the details.

80 C. Florescu et al.

5 Upper Bound on the Runtime for the Conservative
Regime

This section is dedicated to an upper bound (Theorem 3) on the runtime for
population sizes K = Ω(n log n) that matches Theorem 1. We slightly adjust
the boundaries by setting p̄ = 1

cn for some large enough constant c.
Our first proposition states that for K = Ω(n log n), the marginal probability

of any bit above at least some constant threshold β will not drop below a fixed
constant 0 < α < β in the next polynomially many iterations. In other words,
even moderately high marginal probabilities do not drop by much for a while.
The proof is a straightforward application of the negative drift theorem.

Proposition 10. Let p̄ ∈ (0, 1
2) be arbitrary and let K ≥ 1, and consider the

algorithm cGA(K, p̄) on DynBV. Let p̄ < α < β < 1−p̄ and γ > 0 be constants.
There exists a constant c′ > 0 (possibly depending on α, β, and γ) such that for
a specific bit the following holds: If the bit has marginal probability at least β and
K ≥ c′ · n log n, then the probability that during the following nγ iterations the
marginal probability decreases below α is at most O(n−γ).

The next lemma gives an upper bound on the time until the marginal prob-
ability reaches any threshold τ , irrespective of where the marginal probability
starts. It allows us to bound the “recovery time" needed for bits whose marginal
probabilities travel to the lower boundary.

Lemma 11. Let c > 0 be a constant and let K ≥ 1. Let τ ∈ [
1
cn , 1 − 1

cn

]
and

consider some fixed bit i in the cGA(K, 1
cn) on DynBV with an arbitrary value

for the initial marginal probability. Then the expected time until the marginal
probability pi of this bit reaches at least pi = τ is O(Kn2).

To finish the proof of Theorem 3, we now show that with probability Ω(1),
after O(Kn) iterations either the global optimum has been found (success) or at
least one of the frequencies - which were initially all at least 1

2 - has dropped below
some constant η < 1

2 (failure). From a failure, we can recover quickly in expec-
tation (they are unlikely by Proposition 10 and recovery is fast by Lemma 11).
One then concludes by an application of the variable drift theorem.

6 Upper Bound on the Runtime for the Aggressive
Regime

In this section, we analyze the cGA when K = Θ(log2 n), culminating in The-
orem 4. Throughout, we consider a capping probability of p̄ := 1

n logc n for some
constant c > 0, but our simulations indicate that the result should also hold for
the classical 1

n capping probability. Theorem 4 is stated with c = 7 but the proof
would go through for any c ≥ 7. It would be possible to reduce this constant,
but we aimed for simpler proofs and have not tried to optimize it.

Faster Optimization Through Genetic Drift 81

The proof of Theorem 4 proceeds in four main steps. First, we show that due
to the high genetic drift, the frequencies essentially start by executing random
walks until they reach one of the boundaries. As a consequence, the sampling
variance Vt drops from Θ(n) to O(log n) during the first O(polylog(n)) iterations,
and then stays below O(log n) for the remainder of the optimization time with
high probability. We call this initial phase the burn-in phase.

Proposition 12. For K = Θ
(
log2 n

)
consider the algorithm cGA(K, 1

n log7 n
)

on DynBV. After the first O
(
K3 log n

)
iterations, with high probability the sam-

pling variance Vt will stay below O(log n) for at least n2 consecutive iterations.

The proof of the above proposition requires the following lemma that bounds
the time until a given frequency reaches one of the boundaries, and is proved
using coupling to a fair random walk and standard drift analysis tools.

Lemma 13. Let c > 0 be a constant and K = ω(1), and consider the frequency
pi,t of a bit i of the algorithm cGA(K, 1

n logc n) on DynBV. Let T denote the
first time that pi,t reaches one of the boundaries. Then for every initial value
pi,0 and all r ≥ 8, E[T | pi,0] ≤ 4K2 lnK and Pr[T ≥ rK2 lnK | pi,0] ≤ 2−�r/8�.

With that result, the proof of Proposition 12 consists of dividing the optimiza-
tion into phases of length O

(
K3 log n

)
, and showing that with high probability,

during a single such phase, all the frequencies that were not at the boundaries
at the start of the phase will return to one of the boundaries, and the number of
frequencies that detach from the boundaries during that same phase is O(log n).

Given the bound on the sampling variance Vt = O(log n), we show, using the
negative drift theorem, that frequencies at the upper boundary are unlikely to
drop below a constant. This basically ensures that, while frequencies from the
lower boundary may reach the upper boundary, the converse does not happen.

Lemma 14. Let p̄ ∈ (0, 1
2) be arbitrary and let K ≥ 1, and consider the algo-

rithm cGA(K, p̄) on DynBV. Let p̄ < α < β < 1 − p̄ and γ > 0 be constants.
Assume that Vt = O(log n) holds for the variance throughout the optimization
time. Then there exists a constant c′ > 0 (possibly depending on α, β, and γ)
such that for a specific bit the following holds: If the bit has marginal probability
at least β and K ≥ c′ · log2 n, then the probability that during the following nγ

iterations the marginal probability decreases below α is at most O(n−γ).

We then argue that indeed all the frequencies starting from the lower bound-
ary after the burn-in phase reach the upper boundary (at least once) within
O(n · polylog(n)) iterations using the following proposition. The proof uses
Lemma 13 and a coupling of the process pi,t with a fair gambler’s ruin ran-
dom walk with self-loops.

Proposition 15. Let c > 0 be a constant and K ≥ 1, and consider the algorithm
cGA(K, 1

n logc n) on DynBV. Let i ∈ {1, . . . , n} be an arbitrary bit at the lower
boundary, and assume that Vt = O(log n) for the rest of the optimization. Then,
the expected number of iterations until the frequency of bit i reaches the upper
boundary is in O(K4n logc n).

82 C. Florescu et al.

This puts us in a situation where n − O(polylog(n)) frequencies are at the
upper boundary, and the remaining O(polylog(n)) frequencies are lower-bounded
by a constant. We now show that with high probability all O(polylog(n)) fre-
quencies reach the upper boundary while no frequency detaches from the upper
boundary, and this process only takes O(polylog(n)) iterations. Hence we finally
reach a state where pi,t = 1 − 1

n logc n holds for all positions i, from which the
optimum is then sampled with high probability in a single iteration, and that
leads to the termination of the algorithm.

7 Simulations

In this section, we provide simulations that complement our theoretical anal-
ysis. All figures depict the optimization of DynBV for varying hypothetical
population size K.6 The dimension of the search space is always n = 300. The
probabilities pi, i = 1, . . . , n are initialized with 1

2 as in the pseudocode of the
algorithm. The lower and upper boundary are set to 1

n and 1− 1
n . The algorithm

stops when the optimum has been sampled, or after 200′000 iterations if the
optimum has not been sampled at that point. The code for the simulations is
provided on request.

Fig. 1. Number of iterations for the optimization of Dynamic BinVal with the cGA
when 6 ≤ K ≤ 10000. The right plot shows the subinterval 18 ≤ K ≤ 90. The median
over 50 runs is plotted.

The regime of small population sizes is shown in the right plot of Fig. 1. Even
at a small search space dimension of n = 300, the asymptotic speed-up of small K
is clearly visible. For K = 6, 7, the optimum is not reached before the number of
iterations are capped. This is in line with the observation that even for OneMax,
when K = o(log(n)), the runtime of the cGA becomes exponential. However,

6 For 6 ≤ K ≤ 420 all integer values of K are simulated, for 421 ≤ K ≤ 1000 all integer
multiples of 5, for 1001 ≤ K ≤ 6000 integer multiples of 20, for 6001 ≤ K ≤ 10000
integer multiples of 500.

Faster Optimization Through Genetic Drift 83

for 10 ≤ K ≤ 20 we observe a phase transition, with the minimal runtime
attained for hypothetical population sizes K around 30. Due to the small problem
dimension, it is difficult to tell if the threshold is located at K = Θ(log n), at
K = Θ(polylog(n)), or even K = Θ(nc) for some small c < 1. But the data
is consistent with the theoretical result that the optimum is obtained for the
sublinear K regime of genetic drift. For K = Ω(n log n), Theorems 9 and 3 show
an asymptotically tight runtime bound of Θ(Kn). Figure 1 covers a range of
K = 6 up to K = 10000, exceeding the search space dimension of n = 300 by 2–
3 orders of magnitude. We see indeed that the runtime increases proportionally to
K, thus confirming our theoretical findings. In particular we see that, contrary to
the optimization of OneMax, there are no local minima after the transition from
the exponential to the polynomial regime. Furthermore, the plot indicates that
the runtime scales linearly with K in practice much earlier than our theoretical
bound from Theorem 3.

Fig. 2. Number of bits that reach the lower boundary 1− 1
n

for the range 5 ≤ K ≤ 800.
The median over 20 runs is plotted.

In Fig. 2, we see that after an initial exponential decrease, which is similar
to the initial exponential runtime decrease in Fig. 1, the number of frequencies
ever reaching the lower boundary tapers off only slowly. In particular, for the
empirically optimal value K ≈ 30 from Fig. 1 still many frequencies reach the
lower boundary, confirming that this is in the aggressive regime of strong genetic
drift. Until K = n, there is still a double-digit number of bits which reach the
lower boundary. Only after approximately K = 500 = 5

3n the median drops to
zero.

Acknowledgments. M.K. and U.S. were supported by the Swiss National Science
Foundation [grant number 200021_192079]. The Dagstuhl seminar 22182 “Estimation-
of-Distribution Algorithms: Theory and Applications” gave inspiration for this work.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

84 C. Florescu et al.

References

1. Dang, D.C., Lehre, P.K., Nguyen, P.T.H.: Level-based analysis of the univariate
marginal distribution algorithm. Algorithmica 81 (2019)

2. De Bonet, J., Isbell, C., Viola, P.: Mimic: Finding optima by estimating probability
densities. In: Advances in Neural Information Processing Systems, vol. 9 (1996)

3. Doerr, B.: The runtime of the compact genetic algorithm on jump functions. Algo-
rithmica 83, 3059–3107 (2021)

4. Doerr, B., Krejca, M., Lehre, P.K.: Estimation-of-distribution algorithms: theory
and applications. Panel discussion (2022). https://doi.org/10.4230/DagRep.12.5.
17

5. Doerr, B., Krejca, M.S.: Significance-based estimation-of-distribution algorithms.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
1483–1490 (2018)

6. Doerr, B., Krejca, M.S.: A simplified run time analysis of the univariate marginal
distribution algorithm on LeadingOnes. Theoret. Comput. Sci. 851, 121–128 (2021)

7. Doerr, B., Krejca, M.S.: The univariate marginal distribution algorithm copes well
with deception and epistasis. Evol. Comput. 29(4), 543–563 (2021)

8. Doerr, B., Zheng, W.: Sharp bounds for genetic drift in estimation of distribution
algorithms. IEEE Trans. Evol. Comput. 24(6), 1140–1149 (2020)

9. Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions.
Nat. Comput. 5, 257–283 (2006). https://doi.org/10.1007/s11047-006-9001-0

10. Florescu, C., Kaufmann, M., Lengler, J., Schaller, U.: Faster optimization through
genetic drift. arXiv preprint arXiv:2404.12147 (2024)

11. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algo-
rithm is efficient under extreme gaussian noise. IEEE Trans. Evol. Comput. 21(3),
477–490 (2016)

12. Friedrich, T., Kötzing, T., Neumann, F., Radhakrishnan, A.: Theoretical study
of optimizing rugged landscapes with the cGA. In: Rudolph, G., Kononova, A.V.,
Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) Parallel Problem Solving
from Nature – PPSN XVII: 17th International Conference, PPSN 2022, Dortmund,
Germany, September 10–14, 2022, Proceedings, Part II, pp. 586–599. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-14721-
0_41

13. Gießen, C.: Theory of randomized optimization heuristics (Dagstuhl Seminar
17191). Dagstuhl Rep. 7(5), 22–55 (2017). https://doi.org/10.4230/DagRep.7.5.
22

14. Kaufmann, M., Larcher, M., Lengler, J., Sieberling, O.: Hardest monotone func-
tions for evolutionary algorithms (2023)

15. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: OneMax is not the easiest func-
tion for fitness improvements. In: Pérez Cáceres, L., Stützle, T. (eds.) Evolutionary
Computation in Combinatorial Optimization: 23rd European Conference, EvoCOP
2023, Held as Part of EvoStar 2023, Brno, Czech Republic, April 12–14, 2023, Pro-
ceedings, pp. 162–178. Springer Nature Switzerland, Cham (2023). https://doi.
org/10.1007/978-3-031-30035-6_11

16. Krejca, M.S., Witt, C.: Theory of estimation-of-distribution algorithms. In: Doerr,
B., Neumann, F. (eds.) Theory of Evolutionary Computation: Recent Develop-
ments in Discrete Optimization, pp. 405–442. Springer International Publishing,
Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_9

https://doi.org/10.4230/DagRep.12.5.17
https://doi.org/10.4230/DagRep.12.5.17
https://doi.org/10.1007/s11047-006-9001-0
http://arxiv.org/abs/2404.12147
https://doi.org/10.1007/978-3-031-14721-0_41
https://doi.org/10.1007/978-3-031-14721-0_41
https://doi.org/10.4230/DagRep.7.5.22
https://doi.org/10.4230/DagRep.7.5.22
https://doi.org/10.1007/978-3-031-30035-6_11
https://doi.org/10.1007/978-3-031-30035-6_11
https://doi.org/10.1007/978-3-030-29414-4_9

Faster Optimization Through Genetic Drift 85

17. Lehre, P.K., Nguyen, P.T.H.: On the limitations of the univariate marginal distribu-
tion algorithm to deception and where bivariate EDAs might help. In: Proceedings
of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, pp.
154–168 (2019)

18. Lehre, P.K., Nguyen, P.T.H.: Runtime analysis of the univariate marginal distri-
bution algorithm under low selective pressure and prior noise. In: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 1497–1505 (2019)

19. Lengler, J.: Drift analysis. In: Doerr, B., Neumann, F. (eds.) Theory of Evolu-
tionary Computation: Recent Developments in Discrete Optimization, pp. 89–131.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-29414-4_2

20. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic envi-
ronments. Nat. Comput. 23(1), 115–129 (2024). https://doi.org/10.1007/s11047-
022-09915-0

21. Lengler, J., Riedi, S.: Runtime analysis of the (μ+ 1)-EA on the dynamic BinVal
function. Evol. Comput. Comb. Optim. 12692, 84–99 (2021)

22. Lengler, J., Schaller, U.: The (1+ 1)-EA on noisy linear functions with random
positive weights. In: 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 712–719. IEEE (2018)

23. Lengler, J., Sudholt, D., Witt, C.: The complex parameter landscape of the com-
pact genetic algorithm. Algorithmica 83, 1096–1137 (2021)

24. Pelikan, M., Lin, T.-K.: Parameter-less hierarchical BOA. In: Deb, K. (ed.) Genetic
and Evolutionary Computation – GECCO 2004: Genetic and Evolutionary Com-
putation Conference, Seattle, WA, USA, June 26-30, 2004. Proceedings, Part II,
pp. 24–35. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24855-2_3

25. Sudholt, D., Witt, C.: On the choice of the update strength in estimation-of-
distribution algorithms and ant colony optimization. Algorithmica 81, 1450–1489
(2019)

26. Witt, C.: Upper bounds on the running time of the univariate marginal distribution
algorithm on OneMax. Algorithmica 81, 632–667 (2019)

27. Witt, C.: How majority-vote crossover and estimation-of-distribution algorithms
cope with fitness valleys. Theoret. Comput. Sci. 940, 18–42 (2023)

https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/s11047-022-09915-0
https://doi.org/10.1007/s11047-022-09915-0
https://doi.org/10.1007/978-3-540-24855-2_3
https://doi.org/10.1007/978-3-540-24855-2_3

Greedy Versus Curious Parent Selection
for Multi-objective Evolutionary

Algorithms

Denis Antipov1 , Timo Kötzing2 , and Aishwarya Radhakrishnan2(B)

1 University of Adelaide, Adelaide, Australia
denis.antipov@adelaide.edu.au

2 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{timo.koetzing,aishwarya.radhakrishnan}@hpi.de

Abstract. From the literature we know that simple evolutionary multi-
objective algorithms can optimize the classic two-objective test functions
OneMinMax and CountingOnesCountingZeroes in O(n2 log n)
expected time. We extend this result to any pair of generalized OneMax
functions and show that, if the optima of the two functions are d apart,
then (G)SEMO has an expected optimization time of O(dn log(n)).

In an attempt to achieve better optimization times, some algorithms
consider parent selection. We show that parent selection based on the
curiosity-based novelty search can improve the optimization time to
O(n2) on OneMinMax. By contrast, we show that greedy parent selec-
tion schemes can be trapped with an incomplete Pareto front for super-
polynomial time.

Finally, we provide experimental results on the two-objective opti-
mization of linear functions.

Keywords: Evolutionary Algorithm · Multi-Objective Optimization ·
Run time analysis

1 Introduction

While evolutionary algorithms [16] might be most famous for applications on
single-objective problems, the setting of optimizing multiple criteria at once is
particularly suitable for an approach with population-based methods, since dif-
ferent candidate solutions might be incomparable: while one solution is better
than another in terms of the first criterion, the situation is reversed in terms of
the second criterion, and so on. Thus it makes sense to retain all non-dominated
solutions (where no other solution is better in all objectives), naturally giving a
population of solutions. The analysis of the search behavior and search perfor-
mance has been the subject of significant theoretical analysis [10–12,17,23,28].

Core starting point of all theoretical research is the classic benchmark prob-
lem OneMax, which was extended to the setting of two objectives in two ways.
The first uses the classic OneMax function as one objective and the direct oppo-
site, minimizing the number of 1s instead of maximizing it, as the other objective.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 86–101, 2024.
https://doi.org/10.1007/978-3-031-70071-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_6&domain=pdf
http://orcid.org/0000-0001-7906-096X
http://orcid.org/0000-0002-1028-5228
http://orcid.org/0000-0002-5667-8780
https://doi.org/10.1007/978-3-031-70071-2_6

Greedy Versus Curious Parent Selection for MOEAs 87

Using these two objectives is called OneMinMax. The second extension con-
siders less conflicting bits: While the second half of the bits stay in conflict, the
first half are shared. This is called CountingOnesCountingZeroes (COCZ).

The behavior of the classic SEMO (Simple Evolutionary Multi-Objective)
and GSEMO (Global Simple Evolutionary Multi-Objective) algorithms is well-
understood on these two problems (see [4,20,22,26]). The expected run time of
SEMO and GSEMO to cover the whole Pareto front while minimizing OneM-

inMax and COCZ is Θ(n2 log(n)) and the theoretical analyses can be found in
[4,20,22].

For the case of single-objective optimization, the broader class of linear func-
tions [14] gives an important extension of the simple OneMax function, extend-
ing it to a sizable class of functions. This was a driver for further development
of the field [27]. While OneMax as a member of this class has been analyzed
for the two-objective case, no other linear functions where considered.

With this paper, we first provide a general definition of two-objective prob-
lems where both objectives are derived from the OneMax test function; we call
this OMC, the OneMax function class. Analogously, we define LFC, the linear
function class. In Sect. 4 we introduce and discuss these function classes and
study some of their properties. We also include a proof of the expected run time
of (G)SEMO on two elements of OMC being O(dn log(n)) in dependence on
the distance d > 0 of the optima of the two objective functions. Note that this
shows the smooth transition of run time O(n log(n)) when using twice the same
objective and O(n2 log(n)) for complementary objectives (as in OneMinMax)
and also recovers the run time bound for COCZ.

The considered algorithms typically waste a lot of time reconsidering old
search points which are already optimal and where no more progress can be
made in the proximity. This inspires algorithms based on considering new search
points rather than reconsidering old ones. This paradigm is called novelty search
and in the literature the algorithm is known as fair evolutionary multi-objective
optimizer (FEMO) [18,22,23]. In Sect. 6 we consider a simple variant of such
an algorithm which maintains, for each phenotype, a counter of how often it
was considered for creating offspring. Each iteration, an individual with mini-
mal counter is considered for creating offspring. We show, in Theorem 4, that
this algorithm has an expected optimization time of O(n2) on OneMinMax,
improving over (G)SEMO.

Novelty search modifies which individuals are considered for creating off-
spring, while leaving the rest of the algorithm as is. This is called a parent
selection scheme and the literature knows a variety of other mechanisms [4,5].
These schemes typically rank all individuals of the population according to how
promising they are to create relevant offspring and then prefer more promis-
ing ones over less promising ones. In Sect. 7 we show that, for many ranking
schemes and too radically greedy preference of more promising points, we get
super-polynomial optimization on OneMinMax with constant probability (see
Theorem 6). We consider this as a cautionary tale that parent selection schemes

88 D. Antipov et al.

need to reconsider less promising search points from time to time, even on very
easy fitness landscapes (such as OneMinMax).

Finally, in Sect. 8, we provide experimental evidence for the expected run time
performance of GSEMO on two anti-aligned LFC functions without any shared
bits and GSEMO on two anti-aligned LFC functions without any conflicted bits.
Our results hint at an asymptotic run time of O(n2 · log(n)) for anti-aligned
LFC functions without any shared bits and O(n · log(n)) for anti-aligned LFC
functions without any conflicted bits.

The remainder of this paper first gives some discussion on further related
work (see Sect. 2). We give important definitions in Sect. 3. We introduce OMC
formally (along with the extension to linear functions) in Sect. 4 and analyze the
run time of (G)SEMO on OMC in Sect. 5. We analyze novelty search in Sect. 6
and greedy parent selection in Sect. 7. We conclude with some experiments in
Sect. 8. Many proofs are not included into this document, but can be found in
the supplementary material [1].

2 Related Works

In [23], a first run time analysis was conducted on the simple multi-objective
optimization algorithm (SEMO) on minimizing LeadingOnesTrailingZeros

(LOTZ). This work was extended in [22] to the fair and the greedy multi-
objective optimization algorithms (FEMO, GEMO) and the multi-start (1+1)
EA on COCZ and LOTZ.

The global simple multi-objective optimization algorithm (GSEMO) was ana-
lyzed on LOTZ in [19] along with a lower bound on GSEMO for a general class
of pseudo-boolean functions. GSEMO and GSEMO with asymmetric mutation
operator on plateau functions and set cover instances were studied in [3,17].
In [18], the performance of GSEMO and Global-FEMO algorithms on plateaus,
plateaus with gap and dual path were analyzed. In [25], analysis of GSEMO with
mixed strategy (mixing selection mechanisms) on ZPLG (ZeroMax, a plateau,
and a path with little gaps) and SPG (shortest path and gaps) can be found.

The algorithms SEMO and GSEMO with crossover operators on COCZ and
minimum spanning tree (MST) problems were studied in [26]. The first analysis
of SEMO optimizing OneMinMax was given in [20]. The OneMinMax func-
tion was again analyzed in [8], but using the (μ + 1)-SIBEAD algorithm. The
decomposition-based multi-objective evolutionary algorithms (MOEAs) were
introduced in [24] and analyzed on COCZ and LOTZ.

A diversity-based parent selection mechanism (based on hypervolume con-
tribution) for SEMO and GSEMO was given in [4,5] and studied on minimizing
OneMinMax and LOTZ. In [12], SEMO and GSEMO were studied on optimiz-
ing the OneJumpZeroJump function. An offspring selection mechanism which
uses the total Hamming distance as a diversity measure was given in [2] and the
OneMinMax function was again analyzed in this setting.

Greedy Versus Curious Parent Selection for MOEAs 89

3 Preliminaries

In this section we give some definitions, the algorithms we analyze and some
notations which we use throughout the paper. We use the following theorem in
some of our proofs.

Theorem 1 (Multiplicative Drift Theorem [21]). Let (Xt)t∈N be a random
process over R, xmin > 0, δ > 0 and let T = min{t | Xt < xmin}. Furthermore,
suppose that

1. X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0, and that
2. for all t < T , we have Xt − E[Xt+1 | X0, . . . , Xt] ≥ δXt.

Then

E[T | X0] ≤
1 + ln

(
X0

xmin

)

δ
.

We analyze the simple multi-objective optimizer (SEMO) and the global
multi-objective optimizer (GSEMO) algorithms (see Algorithm 1) on different
bi-objective functions in this paper. The only difference between SEMO and
GSEMO is the mutation step. In SEMO, at the mutation step, a bit position is
chosen uniformly at random and flipped (one bit mutation). In GSEMO, each
bit position is flipped with probability 1/n (standard bit mutation).

The initial population has only one individual chosen at random from {0, 1}n.
An individual x dominates another individual y (x � y) if and only if f1(x) ≤
f1(y) and f2(x) ≤ f2(y). Note that we use slightly different Pareto dominance
relation which prefers the offspring if the offspring has the same fitness as any
of the other individuals existing in the population. We use the term genotype to
refer to the individuals in the input domain and the term phenotype to refer to
the fitness vector.

ïż£

Algorithm 1: (Global) Simple Evolutionary Multi-objective Optimizer
((G)SEMO) minimizing f = (f1, f2).
1 x ← choose u.a.r from {0, 1}n, P ← {x};
2 while termination criteria not met do
3 select parent x from P u.a.r;
4 x′ ← mutate(x);
5 P ← P \ {z ∈ P | x′ � z};
6 if �z ∈ P s.t (z � x′) then P ← P ∪ {x′}

When discussing greedy parent selection schemes, we use the following (sim-
plified) definition of the hypervolume contribution for 2 objectives, usually used
in minimization problems.

90 D. Antipov et al.

Definition 1. Consider a bi-objective function f = (f1, f2) and a population of
points P = (x1, . . . , xμ) which do not dominate each other (in terms of f) and
are sorted in the ascending order of their f1 value. Let r = (r1, r2) be a reference
point such that r1 ≥ f1(xμ) and r2 ≥ f2(x1). For all i ∈ [1..μ] let ai = f1(xi)
and let bi = f2(xi). Let also aμ+1 = r1 and b0 = r2. Then for all i ∈ [1..μ] the
hypervolume contribution (HVC) of point xi ∈ P is (ai+1 − ai) · (bi−1 − bi).

4 Linear Multi-objective Functions

In this section we analyze two classes of functions: first, the OneMax function
class, where each fitness function measures the Hamming distance to some opti-
mal bit string. Second, the linear function class, where each bit has a weight and
fitness is the sum of the weights of incorrect bits.

Formally, for each a ∈ {0, 1}n, we let

OMa : {0, 1}n → R, x �→ H(a, x),

where H is the Hamming distance between two bit strings. We define the One-

Max class as
OMC = {OMa | a ∈ {0, 1}n} .

Note that the OneMax class has been studied before in the context of black-box
optimization [7,13,15]. The most famous example from OMC is OM := OM1n

which is minimal at 1n. For two-objective optimization, we also care for the exact
opposite, ZeroMax, denoted as ZM := OM0n .

Similarly, we can define the linear function class LFC as follows. For each
w ∈ R

n+1, we let

fw : {0, 1}n → R, x �→ wn+1 +
n∑

i=1

wi xi.

Note that we use the constant wn+1 (a) as an offset, so that all function values
are non-negative and can be more nicely depicted in a diagram; and (b) so that
it is formally true that each OneMax function is a linear function, which they
intuitively are (for example, for a = 1n we need ∀i ∈ [1..n] : wi = −1 and
wn+1 = n).

In the literature we frequently find the additional restrictions wn+1 = 0 and
∀i ≤ n : wi > 0; or even ∀i < n : wi > wi+1 > 0. These can be assumed
without loss of generality to simplify the exposition or the proof in the context
of single objective optimization. However, in the context of optimizing two such
functions simultaneously, and with the algorithm potentially making decisions
not just based on the ranking of search points (but, for example, also based on
hypervolume covered), we prefer this more general definition here.

We define the linear function class as

LFC =
{
fw | w ∈ R

n+1
}

.

We have the following theorem about the two function classes and the proof
can be found in the supplementary material [1].

Greedy Versus Curious Parent Selection for MOEAs 91

Theorem 2. We have OMC ⊆ LFC, and both OMC and LFC are closed under
isomorphisms of the hypercube.

We use the following definition to talk about the fitness landscape of two
linear fitness functions.

Definition 2. Let two linear functions fw, fv be given. We call the set I =
{i ∈ [n] | wi · vi ≥ 0} the shared bits, since there is a bit setting which is optimal
for both fw and fv. We call [n] \ I the conflicted bits. We call the number of
conflicted bits the Pareto dimension, since all elements on the Pareto front agree
on the shared bits and only differ on conflicted bits (discarding the case of weights
of 0). We frequently denote the Pareto dimension by d.

If all n bits are conflicted, then we call fw and fv complementary (since their
unique global optima are complementary).

We call fw and fv anti-aligned if ordering the bits descendingly according to
|wi|-value leads to an ascending ordering according to |vi|-value. In other words:
the more significant bit positions of w are, the less significant bit positions of v
(and vice versa).

5 SEMO and GSEMO on OMC

Here we give a generalization of the OneMinMax and COCZ analysis to the
situation where the optima can share any number of bits (rather than either 0
bits as for OneMinMax or n/2 bits as in COCZ). Let log+(x) = max{log(x), 1}.

Theorem 3. Let a, b ∈ {0, 1}n, a
= b, let d = dH(a, b) and 0 < d < n. Then
(G)SEMO minimizing (OMa,OMb) takes O(dn log(n)) function evaluations in
expectation to discover the full Pareto front of size d + 1.

Proof. First we show that the expected time for (G)SEMO to find an individual
on the Pareto front is O(dn log+(n − d)) using the multiplicative drift theorem
(see Theorem 1).

Let T1 be the time taken by (G)SEMO to find an individual on the Pareto
front, and let I be the set of all shared bits, i.e., I = {i ∈ [n] | ai = bi}. Since
d = dH(a, b), |I| = n−d. Also, an individual x is on the Pareto front if and only
if all shared bits of a and b (elements of I) are set correctly, i.e.,

∑
i∈I |ai −xi| =∑

i∈I |bi − xi| = 0.
For any t > 0, let P t be the parent population at iteration t. For any t < T1,

let Xt = argminx∈P t{∑
i∈I |ai − xi|}. Then we claim that, Xt ≥ Xt+1, i.e.,

an individual with less correct shared bits will not dominate an individual with
more correct shared bits. If an individual x has 1 < i ≤ n more shared bits
set correctly than another individual y, then for y to dominate x the individual
y should have i more conflicted (non-shared) bits (than x) set correctly with
respect to a and i more conflicted bits set correctly with respect to b. This is not
possible, since setting a conflicted bit correctly with respect to a implies that
this conflicted bit is set incorrectly with respect to b. Therefore, for all t we have,
Xt ≥ Xt+1.

92 D. Antipov et al.

We claim that at any time t, the population P t has at most d+1 individuals.
Since there are only d conflicted bits, if there are d + 2 individuals in the pop-
ulation then, by the pigeonhole principle, there is an i ∈ [0..d] such that there
are two distinct individuals in the population in which i conflicted bits are set
correctly with respect to a. Since both the individuals exist in the population,
their fitness is different. Therefore, one of them has more shared bits set cor-
rectly than the other, which implies that one individual dominates the other.
This contradicts the definition of (G)SEMO since it only stores non-dominated
individuals in its population.

Now we claim that Pr(Xt −Xt+1 = 1 | Xt) ≥ Xt

e(d+1)n . As the maximum size
of the population is d + 1 and the mutation operator can choose an individual
contributing to the potential Xt and flip exactly one of the Xt positions where
ai
= xt with probability 1

n in the case of SEMO and with probability at least
1

en in the case of GSEMO.
By the multiplicative drift theorem (Theorem 1) and since we have X0 ≤

n−d, the expected time taken by (G)SEMO to find an individual on the Pareto
front E[T1] is O(dn log+(n − d)).

Next, we show that the expected time to cover the Pareto front after the
algorithm finds an individual on the Pareto front is O(dn ln(d)). At time T1,
when the algorithm finds an individual xT on the Pareto front for the first time,
the fitness of this first individual cannot be more than d in both objectives, since,
as we mentioned before, an individual is on the Pareto front if and only if all
shared bits of a and b are set correctly. Let the fitness of this first individual be
(i, d − i), where 0 ≤ i ≤ d.

Let Yt = −1, if all fitness vectors from (0, d) to (i, d− i) are in population P t,
and let it be the maximum j < i such that we do not have fitness (j, d − j) in
population P t otherwise. Similarly, let Zt be d+ 1, if we have all fitness vectors
from (i, d−i) to (d, 0) in the population P t, and let it be the minimum k > i such
that (k, d−k) is not in P t otherwise. Then the Pareto front is covered, iff Yt = −1
and Zt = d + 1. Consider first time T ′

2 until Yt reaches −1. If Yt = j, then to
decrease it we can choose an individual with fitness (j+1, d−j−1) (which exists
in the population) with probability at least 1

d+1 and flip exactly one one-bit in
it with probability j+1

n or j+1
en for SEMO or GSEMO respectively. Since for each

value of j we decrease Yt only once, the total expected time until we have Yt = −1
is at most E[T ′

2] ≤ ∑i−1
j=0

en(d+1)
j+1 = O(nd log+(i)). Similarly, we can show that

the expected time T ′′
2 until Zt reaches d + 1 is at most O(nd log+(d − i)). We

then have that T2 ≤ T ′
2 + T ′′

2 and therefore, it is at most O(nd log(d)).
Overall, (G)SEMO takes O(dn log+(n − d) + dn log(d)) = O(dn log(n)) iter-

ations in expectation while minimizing (OMa,OMb) to discover the full Pareto
front of size d + 1. ��

6 Novelty Search

Consider as an order scheme the ranking of all individuals by how often they have
been considered for creating offspring since entering the population, from least

Greedy Versus Curious Parent Selection for MOEAs 93

to most frequently considered. In a sense, we want to explore under-explored
parts of the search space, and we want to find novel areas. This can lead to
speed-ups in exploration of the Pareto front, as the next theorem shows.

We distinguish two cases for novelty search: resetting the offspring counter
when an individual was replaced by one with the exact same phenotype, and
not doing such a reset. That is, when we reset the counter, we actually counting
the number of times the genotype has been selected as a parent, and when we
do not reset the counter, we count the number of such times for the phenotype.
The following theorem shows a speed-up of the latter approach on OneMinMax

compared to the standard parent selection. We believe that resetting the counter
when replacing individuals with the same phenotype leads to a behavior much
like uniform parent selection, which is not interesting for us.

Theorem 4. (G)SEMO paired with the the novelty ranking without resets which
always chooses a parent that has been considered the smallest number of times
finds the whole Pareto-front on OneMinMax in O(n2) expected iterations.

Proof. All individuals are on the Pareto-front, since more 1s contribute positively
to minimize the objective ZM and negatively to the objective OM and vice
versa in the case of more 0s. Any two individuals x, y ∈ {0, 1}n either have the
same number of 1s, which leads to the same fitness, or one of them has more
1s than the other, which implies that neither x dominates y nor y dominates x.
Therefore, the set {(i, n − i) | 0 ≤ i ≤ n} is the set of all possible fitness values
which corresponds to n + 1 individuals on the Pareto-front.

For reasons of space, in the rest of this proof we consider SEMO. The proof
for GSEMO uses the same arguments, but has slightly different constants.

We break down the total run time into time taken for the following events to
happen. For any 0 ≤ i ≤ n− 1, let Xi be the random variable which denotes the
time taken to find an individual x with fitness (i+1, n−i−1) after the algorithm
has found an individual with fitness (i, n − i) and the algorithm has chosen this
individual at least n times for offspring creation. For any 1 ≤ i ≤ n, let Yi be
the random variable which denotes the time taken to find an individual y with
fitness (i − 1, n − i+ 1) after the algorithm has found an individual with fitness
(i, n− i) and has chosen this individual at least n times for offspring creation. At
any given iteration, when individual with fitness (i, n − i) is chosen as a parent,
this individual has either not yet been selected for offspring selection n times
or the algorithm tries to find a new individual in the Pareto front which is not
in the population by mutation. Therefore, the expected time T to find all the
elements on the Pareto-front is

E[T] ≤
n−1∑
i=0

(E[Xi] + n) +
n∑

i=1

(E[Yi] + n) ≤
n−1∑
i=0

E[Xi] +
n∑

i=1

E[Yi] + 2n2. (1)

Now we calculate upper bounds on the expectation of the random variables
Xi and Yi for a given i. The probability that an individual with fitness (i, n − i)
does not lead to an offspring with fitness (i+1, n−i−1) after being chosen n times

94 D. Antipov et al.

is (1− n−i
n)n ≤ ei−n and the probability that an individual with fitness (i, n− i)

does not lead to an offspring with fitness (i − 1, n − i + 1) after being chosen
n times is (1 − i

n)
n ≤ e−i. The number of function evaluations needed for an

individual with fitness (i, n−i) to produce an offspring with fitness (i+1, n−i−1)
by flipping exactly one bit follows the Geo(n−i

n) geometric distribution and each
failure costs at most n function evaluations since every other individual in the
population must be selected at least as many times as this desired individual for
offspring selection before this individual can be selected again. We note that if
a new fitness appears in the population at this stage, then we can wait for more
than n iterations before we chose our individual with fitness (i, n − i) again,
however those iterations when we choose an individual with this new fitness do
not go to the cost of our mistake, but to the n iterations which are allocated for
that new fitness in the corresponding term in eq. (1) or they go to the price of our
previous mistakes. Similarly, the number of function evaluations needed for an
individual with fitness (i, n−i) to produce an offspring with fitness (i−1, n−i+1)
by flipping exactly one bit follows the Geo(i

n) with the cost of at most n function
evaluations for each failure. Therefore, for 0 ≤ i ≤ n − 1, Xi ≤ nei−n ·Geo(n−i

n)
and for 1 ≤ i ≤ n, Yi ≤ ne−i · Geo(i

n). Thus, from eq. (1) we have

E[T] ≤
n−1∑
i=0

E

[
nei−n · Geo

(
n − i

n

)]
+

n∑
i=1

E

[
ne−i · Geo

(
i

n

)]
+ 2n2

= n2
n−1∑
i=0

1
(n − i)(en−i)

+ n2
n∑

i=1

1
iei

+ 2n2 = O(n2).

��
We have the following corollary on strictly monotone increasing functions

and the proof can be found in the supplementary material [1].

Corollary 5. Let f, g : R → R be strictly monotone increasing. Then the novelty
ranking paired without reset which always chooses an individual that has been
considered least number of times (top individual) leads to a run time of O(n2)
on minimizing (f(OM), g(ZM)).

7 Counter-Example for Phenotype-Based Methods

In this section we show that the parent selection methods which are based on
the phenotype of the points in the population might be decisive even on very
simple problems. We consider GSEMO with an exaggerated greedy phenotype-
based parent selection: it always chooses one of the two points with the largest
HVC (Definition 1) as a parent, each with probability 1

2 . We call this algorithm
GSEMO2 for brevity.

We study this algorithm on OneMinMax with a reference point (2n, 2n), so
that the largest HVC is always yielded by the two edge points in the population

Greedy Versus Curious Parent Selection for MOEAs 95

(the points with the largest and the smallest numbers of one-bits), and therefore
one of them is always chosen as a parent. The main result of this section is the
following theorem, which demonstrates an ineffectiveness of the GSEMO2.

Theorem 6. With probability Ω(1) the GSEMO2 optimizing OneMinMax

with reference point (2n, 2n) does not find all points in the Pareto front in poly-
nomial time.

We split the proof of Theorem 6 into three stages. The first stage of the proof
shows that a run of the algorithm with high probability occurs in a particular
initial state, where the two edge points are in linear distance from each other
(in phenotype space), but they are still not too far away from the initial search
point. In the second stage we show that starting from the initial state, we are
very likely to create a hole in the population, when we get an edge point in
distance at least two (again, in the phenotype space) from the nearest other
point in the population. In the last stage we show that once we get a hole, with
constant probability it stays in the population for a super-polynomial time. For
reasons of space, we omit the analysis of the first two stages, but it can be found
in supplementary material [1].

Theorem 6 resembles Theorem 8.1 in [5], where a similar result was proven
for the GSEMO with a similar (but artificially modified) greedy parent selection
on LOTZ. The main difference of our result is that we use a much more simple
function, for which all points in the search space are Pareto optimal, thus we
do not need to modify the selection mechanism as in [5]. Another significant
difference is that in the third stage of our proof extending the front is less likely
than covering the hole, while for LOTZ these events are equally likely. Despite
this, the hole is also likely to stay on OneMinMax.

We use the following notation. By xt we denote the individual in the popula-
tion with the maximum OneMax value after iteration t, and by yt the one with
the minimum OneMax value. Note that in iteration t+1 we always choose as a
parent either xt or yt, since they are the edge points. In our proofs we also use an
arbitrary small constant ε, which can be any value in (0, 1

10). For simplicity we
also assume that n is even and εn is an integer. We start the proof with several
auxiliary results.

Lemma 7. Let ωt, t ∈ N, be a sequence of random experiments. Let also At and
Bt be sequences of events over the corresponding probabilistic spaces. Let Ct be
another sequence of events such that Ct = ∩t−1

j=1Aj (that is, Ct is the event that
Aj did not occur before time t) and let τ be the first time when At occurs, that
is, τ = min{t | ωt ∈ At} and assume that Pr[τ = +∞] = 0.

(a) If there exists p such that, for all t ∈ N, we have Pr [Bt | At ∩ Ct] ≤ p, then
Pr[Bτ] ≤ p.

(b) If there exists q such that, for all t ∈ N, we have Pr [Bt | At ∩ Ct] ≥ q, then
Pr[Bτ] ≥ q.

96 D. Antipov et al.

Proof. We prove only (a), since the proof of (b) is analogous. Event τ = t occurs,
iff At occurs and all Aj for j ∈ [1..t−1] do not occur, that is, it is equal to event

At ∩
⎛
⎝

t−1⋂
j=1

Aj

⎞
⎠ = At ∩ Ct,

hence by condition we have Pr[Bt | τ = t] ≤ p.
Since Pr[τ = +∞] = 0, we can use the law of total probability.

Pr[Bτ] =
+∞∑
t=1

Pr[τ = t] Pr[Bt | τ = t] ≤
+∞∑
t=1

Pr[τ = t] · p = p.

��
We now show that if we create a hole in our population, which is not too far

from, but also not too close to the center of the Pareto front, then with at least
a constant probability we move our edge points in a linear distance from this
hole before we fill it.

Lemma 8. Consider a run of the GSEMO2 on OneMinMax. Assume that at
some iteration t0 we have some i ∈ [n2 + 2εn..n

2 + 4εn] such that

(1) we do not have fitness (i, n − i) in population,
(2) OM(xt0−1) > i, and
(3) OM(yt0−1) < i − εn.

Then with at least a constant (that is, Ω(1)) probability we get xt > i+εn before
we generate an offspring with i one-bits.

Without proof we note that such iteration t0 exists with probability 1 −
e−Ω(n), which is shown in the supplementary material [1].

Proof. Assume that, at some iteration t′, we have OM(xt−1) = i + k for some
k ∈ [1..εn]. For all t ≥ t′ let At be an event that we either have OM(xt) > i+ k
or we generate an offspring with exactly i one-bits in generation t. Let Bt be an
event that we have OM(xt) > i+ k. Let also Ct be

⋂t−1
j=t′ Aj . Then by Lemma 7

and since Bt is a sub-event of At, the probability pk that we get OM(xt) > i+k
before we cover the fitness value (i, n − i) is at least

Pr[Bt | At ∩ Ct] =
Pr[Bt | Ct]
Pr[At | Ct]

=
Pr[Bt | Ct]

Pr[Bt ∪ (At \ Bt) | Ct]

=
Pr[Bt | Ct]

Pr[Bt | Ct] + Pr[At \ Bt | Ct]
=

1

1 + Pr[At\Bt|Ct]
Pr[Bt|Ct]

.

Event At\Bt conditional on Ct is the event when we create an individual with
exactly i one-bits. If we chose yt−1 as a parent, then to do this we would need to

Greedy Versus Curious Parent Selection for MOEAs 97

flip at least εn bits, the probability of which is e−Ω(n) by Chernoff bounds. If we
choose xt−1 as a parent, then we need to flip at least k one-bits, the probability
of which is at most

(
i+k
k

)
(1n)

k by Lemma 1.10.37 in [6]. Consequently, we have

Pr[At \ Bt | Ct] ≤ 1
2

· e−Ω(n) +
1
2

·
(

i + k

k

) (
1
n

)k

≤ e−Ω(n) + nk

k!nk

2
=

e−Ω(n) + 1
k!

2
.

The probability of Bt conditional on Ct is at least the probability that we chose
xt−1 as a parent and flip only one zero-bit in it, that is,

Pr[Bt | Ct] ≥ 1
2

· n − i − k

n

(
1 − 1

n

)n−1

≥ n − n
2 − 5εn
2en

=
1 − 10ε

2e
.

Hence, we have

Pr[Bt | At ∩ Ct] ≥ 1

1 + e−Ω(n)+ 1
k!

2 · 2e
1−10ε

=
1

1 + c
(
e−Ω(n) + 1

k!

) ,

where c = e
1−10ε = Ω(1), if ε < 1

10 .
The probability that we reach OM(xt) > i+εn before we cover the hole is at

least the probability that for each OneMax value visited by xt we increase this
value before we cover the hole. By the law of total probability used inductively
over all values of k from 1 to εn, this probability is at least

εn∏
k=1

1
1 + c

(
e−Ω(n) + 1

k!

) =
1

exp
(
ln

∏εn
k=1

(
1 + c

(
e−Ω(n) + 1

k!

)))

=
1

exp
(∑εn

k=1 ln
(
1 + c

(
e−Ω(n) + 1

k!

)))

≥ 1
exp

(∑εn
k=1 c

(
e−Ω(n) + 1

k!

))

≥ 1
exp

(
cεne−Ω(n) + ce

) =
1

ece+o(1)
= Ω(1).

��
We are now in position to prove the main result of this section, Theorem 6.

Proof (Proof of Theorem 6). By Lemma 8, assuming that with high probability
its conditions are satisfied at some iteration t0, with probability at least Ω(1),
a run of GSEMO2 is in a situation where there is some fitness value (i, n − i)
which is not present in the population, OM(xt) > i + εn and OM(yt) < i − εn.
Therefore, in all consequent iterations, to generate an individual with exactly i
one-bits we need to flip at least εn bits in the parent (independently on which
edge point we chose), the probability of which by the Chernoff bound is e−Ω(n).
Hence, the expected time until we cover the whole Pareto front is at least eΩ(n).
Since this happens with at least a constant probability, the total expected run
time of the GSEMO2 is also eΩ(n), that is, it is super-polynomial.

98 D. Antipov et al.

8 Anti-aligned LFC

We use experimental results to extend our analyses to anti-aligned fitness func-
tions from LFC. For the OMC, many individuals on the Pareto front have many
neighbors on the Pareto front, so the exploration of the Pareto front is efficient.
For anti-aligned fitness functions from LFC, we are only guaranteed a single
neighbor (in each possible direction).

We start our analyses with two anti-aligned LFC functions without any
shared bits. We assume, without loss of generality, that the optimum (mini-
mum) of fw is 1n and that the weights are sorted based on the absolute value in
descending order and thus the optimum of fv is 0n and the weights are sorted
in ascending order. The lemma below is about how an individual on the Pareto-
front looks like while optimizing anti-aligned LFC functions without any shared
bits and the proof can be found in the supplementary material [1].

Proposition 9. Let w, v ∈ R
n be such that w has only negative values, v has

only positive values and the values are in ascending order. Then the Pareto
dimension of the multi-objective function (fw, fv) is n and the Pareto front is
{1i0n−i | 0 ≤ i ≤ n}.

Fig. 1. Average run time of GSEMO on anti-aligned LFC functions with no shared
bits.

We now empirically analyze the performance of GSEMO on minimizing two
different types of anti-aligned LFC functions. First, we look at (fw, fv), where
fw, fv are two anti-aligned LFC functions without any shared bits. That is, the
optimum of fw and the optimum of fv differ in each bit position. Let n be the
length of the bit string. The values of the weight vectors w and v are randomly
chosen from (−1, 0) and (0, 1), respectively and are sorted in ascending order. We
consider the mean of 100 independent runs of GSEMO on (fw, fv). In Fig. 1(a),
for each n, we have the mean and the standard deviation of total number of

Greedy Versus Curious Parent Selection for MOEAs 99

iterations required by the each run of GSEMO to cover the whole Pareto front
and in Fig. 1(b) this value is divided by n2 · ln(n). We can observe from the
Fig. 1(b), since the mean of the run time is almost a constant line, that GSEMO
minimizing two anti-aligned LFC functions without any shared bits appears to
have an expected run time of O(n2 · log(n)).

We next look at (fw, fv), where fw, fv are two anti-aligned LFC functions
without any conflicted bits. That is, fw and fv have the same global optimum.
The values of the weight vectors w and v are randomly chosen from (0, 1). With-
out loss of generality, let the weights be positive and the weight vector w be
sorted in descending order and the weight vector v be sorted in ascending order.
Note that the Pareto front is {0n}. In the case of SEMO, the optimization process
is similar to the random local search algorithm optimizing the ZeroMax func-
tion. Since in each iteration only one bit is flipped, the offspring gets rejected if
a 0 bit is flipped to 1 and the offspring replaces the parent if a 1 bit is flipped
to 0. This guarantees that SEMO has exactly one individual in the population
at each iteration. However, in the case of GSEMO, the population size could be
more than one, and the individuals in the population need not have the same
number of 0s. We are interested in whether these possibilities slow down search
compared with the run time required for the single objective optimization of any
of these fitness functions.

Fig. 2. Average run time of GSEMO on anti-aligned LFC functions with no conflicted
bits.

We empirically analyze the performance of GSEMO minimizing (fw, fv) by
considering the mean of 100 independent runs. In Fig. 2(a), for each n, we have
the mean and standard deviation of total number of iterations required by each
run of GSEMO to cover the whole Pareto front and in Fig. 2(b) this value is
divided by n · ln(n). In Fig. 2(b), we also have the average run time of the (1+1)
EA on minimizing fw, one of the objectives of the two objectives considered for
GSEMO. We can observe from the Fig. 2(b), that GSEMO on two anti-aligned
LFC functions without any conflicted bits appears to have an expected run time

100 D. Antipov et al.

of O(n · log(n)), while being a constant factor slower than just on one of the two
functions.

References

1. Antipov, D., Kötzing, T., Radhakrishnan, A.: Supplementary material - greedy
versus curious parent selection for multi-objective evolutionary algorithms (2024).
https://zenodo.org/records/10990807

2. Antipov, D., Neumann, A., Neumann, F.: Rigorous runtime analysis of diversity
optimization with GSEMO on OneMinMax. In: Foundations of Genetic Algorithms
(FOGA 2023), pp. 3–14. ACM (2023)

3. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler,
E.: Do additional objectives make a problem harder? In: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation GECCO 2007, pp.
765–772. ACM (2007)

4. Covantes Osuna, E., Gao, W., Neumann, F., Sudholt, D.: Speeding up evolutionary
multi-objective optimisation through diversity-based parent selection. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO 2017), pp.
553–560. ACM (2017)

5. Covantes Osuna, E., Gao, W., Neumann, F., Sudholt, D.: Design and analysis
of diversity-based parent selection schemes for speeding up evolutionary multi-
objective optimisation. Theor. Comput. Sci. 832, 123–142 (2018)

6. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation - Recent
Developments in Discrete Optimization, pp. 1–87. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-29414-4_1

7. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

8. Doerr, B., Gao, W., Neumann, F.: Runtime analysis of evolutionary diversity max-
imization for oneminmax. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference 2016 (GECCO 2016), pp. 557–564. ACM (2016)

9. Doerr, B., Kötzing, T.: Lower bounds from fitness levels made easy. Algorithmica
86(2), 367–395 (2024)

10. Doerr, B., Qu, Z.: A first runtime analysis of the NSGA-II on a multimodal prob-
lem. IEEE Trans. Evol. Comput. 27(5), 1288–1297 (2023)

11. Doerr, B., Qu, Z.: Runtime analysis for the NSGA-II: provable speed-ups from
crossover. In: Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI
2023), pp. 12399–12407. AAAI Press (2023)

12. Doerr, B., Zheng, W.: Theoretical analyses of multi-objective evolutionary algo-
rithms on multi-modal objectives: (hot-off-the-press track at GECCO 2021). In:
Proceedings of the 2021 Annual Conference on Genetic and Evolutionary Compu-
tation GECCO 2021, pp. 25–26. ACM (2021)

13. Doerr, C., Lengler, J.: Onemax in black-box models with several restrictions. In:
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO 2015), pp. 1431–1438. ACM (2015)

14. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

15. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theory Comput. Syst. 39(4), 525–544 (2006)

https://zenodo.org/records/10990807
https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1007/978-3-030-29414-4_1

Greedy Versus Curious Parent Selection for MOEAs 101

16. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn.
Springer, Heidelberg (2015)

17. Friedrich, T., Hebbinghaus, N., Neumann, F.: Plateaus can be harder in multi-
objective optimization. In: 2007 IEEE Congress on Evolutionary Computation
CEC, pp. 2622–2629 (2007)

18. Friedrich, T., Horoba, C., Neumann, F.: Illustration of fairness in evolutionary
multi-objective optimization. Theor. Comput. Sci. 412(17), 1546–1556 (2011)

19. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm.
In: The 2003 Congress on Evolutionary Computation CEC, vol. 3, pp. 1918–1925
(2003)

20. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimization. In: Proceedings of the 8th Annual Conference on Genetic and Evo-
lutionary Computation GECCO 2006, pp. 651–658. ACM (2006)

21. Kötzing, T., Krejca, M.S.: First-hitting times under drift. Theoret. Comput. Sci.
796, 51–69 (2019)

22. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004)

23. Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., Deb, K.: Running time analysis of
multi-objective evolutionary algorithms on a simple discrete optimization problem.
In: Proceedings of the 7th International Conference on Parallel Problem Solving
from Nature PPSN 2002, pp. 44–53. Springer (2002)

24. Li, Y.L., Zhou, Y.R., Zhan, Z.H., Zhang, J.: A primary theoretical study on
decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Evol.
Comput. 20(4), 563–576 (2016)

25. Qian, C., Tang, K., Zhou, Z.H.: Selection hyper-heuristics can provably be helpful
in evolutionary multi-objective optimization. In: Parallel Problem Solving from
Nature PPSN 2016. Springer (2016)

26. Qian, C., Yu, Y., Zhou, Z.H.: An analysis on recombination in multi-objective evo-
lutionary optimization. In: Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation (GECCO 2011), pp. 2051–2058. ACM (2011)

27. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

28. Zheng, W., Doerr, B.: Mathematical runtime analysis for the non-dominated sort-
ing genetic algorithm II (NSGA-II). Artif. Intell. 325, 104016 (2023)

How Population Diversity Influences
the Efficiency of Crossover

Sacha Cerf1(B) and Johannes Lengler2

1 Ecole Polytechnique, Paris, France
sacha.cerf@inria.fr

2 ETH Zürich, Zürich, Switzerland

Abstract. Our theoretical understanding of crossover is limited by our ability to
analyze how population diversity evolves. In this study, we provide one of the
first rigorous analyses of population diversity and optimization time in a setting
where large diversity and large population sizes are required to speed up progress.
We give a formal and general criterion which amount of diversity is necessary and
sufficient to speed up the (µ+1) Genetic Algorithm on LEADINGONES. We show
that the naturally evolving diversity falls short of giving a substantial speed-up for
any µ = O(

√
n/ log2 n). On the other hand, we show that even for µ = 2, if

we simply break ties in favor of diversity then this increases diversity so much
that optimization is accelerated by a constant factor.3(Proofs in this submission
are mostly omitted due to the page limit. A full version with detailed proofs can
be found in the arXiv version of this article [2], but reviewers are not required to
consult that version or to check correctness of those proofs.)

1 Introduction

One of the central aspects of genetic algorithms (GAs) is their ability to recombine
existing solutions via crossover. This is considered crucial and important in practical
applications [30]. In order for crossover to be helpful, it is vital that the population
remains diverse, which gives a very specific setting for the exploration/exploitation
dualism. Unfortunately, our ability to mathematically analyze population diversity and
its impact on runtime has been limited to situations of small populations and/or small
diversity, as we will review below. To already give one example, in easy hillclimbing
settings like ONEMAX1, a tiny Hamming distance of 2 between two parents of equal
fitness is already beneficial for crossover. In such situations, crossover has been proven
to be helpful [28].

In this paper, we will treat a situation that was not amenable for analysis with previ-
ous techniques, because crossover will only be beneficial if the population diversity is
quite large. More precisely, we will study the LEADINGONES function LO(x), which
returns for x ∈ {0, 1}n the number of one-bits before the first zero-bit in x, see Sect. 2
for the formal definition. For a string x with LO(x) = k, in order to improve its fitness
it is necessary to flip the (k+1)st bit in x. Thus, it is rather hard to find such an improve-
ment. ONEMAX and LEADINGONES are the most common theoretical benchmarks for

1 For x ∈ {0, 1}n, the ONEMAX function is defined via f(x) =
∑n

i=1 xi.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 102–116, 2024.
https://doi.org/10.1007/978-3-031-70071-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_7&domain=pdf
https://doi.org/10.1007/978-3-031-70071-2_7

Population Diversity and Crossover 103

hillclimbing in discrete search spaces, where ONEMAX is supposed to be particularly
easy2 and LEADINGONES is designed to be particularly hard [26]. By construction of
LEADINGONES, a crossover between two bit-strings x and y, where LO(x) = k, can
only be fitter than x if the two parents differ specifically in the (k+1)st position. This is
a quite strong requirement and this situation will usually only occur if the population is
very diverse. In contrast, on ONEMAX an offspring of x and y can be fitter than x if the
parents differ in any position where x has a zero-bit, which happens even with minimal
population diversity. The main contribution of this paper is that we develop a method to
track the population diversity even if it is large, and that we give a general criterion to
translate population diversity into runtime3 for the (μ + 1) GA on LEADINGONES.

1.1 Our Results

We analyze the runtime of the elitist (μ + 1) Genetic Algorithm (or (μ + 1) GA for
short) on LEADINGONES. We use standard options for mutation and crossover oper-
ators: standard bit mutation with rate χ/n for some constant χ > 0 and uniform
crossover with uniform parent selection, see Sect. 2 for details. It was known before
that without crossover, the expected runtime of the (μ + 1) GA on LEADINGONES is
(1 + o(1)) eχ−1

2χ2 n2 for all μ = o(n/ log n) [1,31].
Our first result is that this runtime stays the same for the (μ + 1) GA for any μ =

O(
√

n/ log2 n), up to a (1 + o(1)) factor.4 The core contribution of the proof lies in
showing that the population diversity, measured by the average Hamming distance of
two randomly selected parents, is bounded by O(μ). We show in a general setting that
this diversity is too small to speed up the runtime by any constant factor. Our technique
builds on a recent result by Jorritsma, Lengler and Sudholt [16], who analyzed how
population diversity of the (μ+1) GA evolves in the absence of selective pressure, i.e.,
for a flat fitness function. Hence, for moderately large population sizes, the (μ+1) GA
lacks population diversity.

Our second result shows that this problem can be overcome easily by simply break-
ing ties between equally fit individuals in favor of diversity, then even for μ = 2 the
average Hamming distance increases to Ω(n). This speeds up optimization by a con-
stant factor.

Intuitive Explanation of the Results

Preparation: Runtime Without Crossover. Let us first recapitulate where the runtime
for μ = 1 comes from (without crossover, as this does not make sense for μ = 1).
When the current search point x has fitness LO(x) = k, then for an improvement it
is necessary to flip the (k + 1)st bit of x, which happens with probability χ/n. The
expected time until this happens is n/χ. There is a second condition: the bits 1, . . . , k
must not be flipped. It can be shown that this second condition leads to an aggregated

2 In fact, it can be mathematically proven that ONEMAX is the easiest problem with unique
optimum for many algorithms [9,16,27,32].

3 We measure the runtime as the number of function evaluations until the optimum is evaluated.
4 For ease of terminology we will ignore (1 + o(1)) factors in the rest of this exposition.

104 S. Cerf and J. Lengler

factor of (eχ − 1)/χ. This is not completely obvious, but is also not hard with the
modern tools of drift analysis that have been developed in the last decade [20].

The two aforementioned conditions for fitness improvement would lead to a runtime
of (1 + o(1)) eχ−1

χ2 n2 if it was necessary to visit all n fitness levels, but this is not
necessary. When the (k+1)st bit is flipped, then it may happen by chance that the (k+
2)nd bit is already set to one, in which case the algorithm will skip fitness level k + 1.
This happens with probability 1/2, and in this case the (k + 2)nd bit is called a free-
rider. There can be more than one free-rider at once, and the number of free-riders is
well-understood: in expectation only every second fitness level is visited, which reduces
the runtime by a factor of 2, and leads to the overall runtime of (1 + o(1)) eχ−1

2χ2 n2.
Without crossover, the above explanation remains essentially unchanged for larger

μ, up to μ = o(n/ log n): once the first individual reaches fitness level k, it only takes
time Θ(μ log μ) = o(n) until all individuals are on this level. This time is negligible
compared to the time that is needed for the next improvement. Once all individuals
have reached fitness k, all parents have the same chance to produce an offspring of
larger fitness, so the effect of the larger population size is negligible. The discussion up
to this point was known from previous work.

Extra Free-Riders Through Crossover. Our main insight lies in the following. With
crossover there is an additional chance to make progress. Consider the situation that
the whole population is at fitness level k, and an offspring x reaches a new fitness level
for the first time. Assume for simplicity that there are no free-riders in this step, so
LO(x) = k +1. Then x has a one-bit at position k +1 and a zero-bit at position k +2.
All other individuals have a zero-bit at position k + 1 because they all have fitness k.
But it is possible that some other individual y has a one-bit at position k + 2. If x and
y perform a crossover, then there is a chance of 1/4 that it gets the one-bit at position
k+1 from x, and the one-bit at position k+2 from y, combining the best from the two
parents. This effectively gives an extra free-rider. If this scenario happens for a constant
fraction of all levels, this reduces the runtime by a constant factor.

There are two key question for the runtime analysis:

1. Conditional on LO(x) = k + 1, how likely is it that there is an individual y in the
population with a one-bit in position k + 2?

2. If there exists such y, how likely is it that y transfers its gene to x before it is replaced
by individuals of higher fitness?

The answer to the second question is more positive than might seem on first glance,
because in each generation the probability that y passes on its gene is only O(1/μ).
However, in order to replace the old population by fitter individuals, the algorithm needs
some time: it must select x or its equally fit descendants at least μ times. (Here we omit
the unlikely case that the level is reached a second time by mutation.) Intuitively, this
corresponds to μ chances to select y as the second parent and perform the gene transfer,
each with probability 1/μ. The real situation is more complex since y could be replaced
earlier, but it suffices if the gene continues to exist in the population until half of the
population has reached fitness at least k + 1. In this case, it already has a chance of
Ω(1) to be passed on in form of an extra free-rider. We will not need this argument

Population Diversity and Crossover 105

directly for the proofs, but believe that it provides the right intuition: genes that exist
are efficiently transferred into extra free-riders.

Connection to Diversity. For point 1, recall that LO(x) = k + 1 means in particular
that x has a zero-bit at position k + 2. This is key to the situation: we want to obtain
a one-bit in a specific position where x can not provide the one-bit by itself. Thus, the
probability to understand is: how likely is it that the bit value of y differs from the bit
value of x in position k+2? This is closely connected to the Hamming distance between
x and y and thus, to the diversity. In fact, the LEADINGONES function has a high level
of symmetry, and the bits k + 2, . . . , n do not have any effect on the fitness before the
creation of x. Hence, if x and y have Hamming distance d, then the bits in which they
differ are uniformly at random among k+2, . . . , n (plus the two special position k and
k + 1). Thus, we can compute the probability that x and y differ in position k + 2 from
their Hamming distance, which is directly connected to the population diversity.

Let us quantify the effect in terms of μ. Once a new fitness level is reached, the
old population is replaced, which represents a genetic bottleneck that reduces diversity.
Afterwards, the average Hamming distance starts growing again. If given enough time,
it will grow until it reaches Θ(μ), at which point it maxes out because diversity may
also get lost again whenever individuals are removed from the population. These equi-
librium dynamics were recently discovered and quantified in [16]. For μ = o(

√
n), this

means that the average Hamming distance stays at Θ(μ), and the probability that a fixed
individual y differs in position k+2 from x is only O(μ/n). By a union bound over all μ
individuals, the probability that the desired one-bit exists somewhere in the population
is at most O(μ2/n) = o(1). Since this one-bit typically does not exist, crossover has
no chance of providing an extra free-rider. We prove this formally, where for technical
reasons we make the slightly stronger assumption μ = o(

√
n/ log2 n).

If we modify the (μ + 1) GA to break fitness ties in favor of larger diversity, then
the equilibrium dynamics changes. We show for μ = 2 that the equilibrium shifts from
Θ(1) to Θ(n). Moreover, the time required to reach diversity Θ(n) is only O(n). This
is fast enough to give an expected constant number of extra free-riders per fitness level,
which leads to a constant factor speed-up.

Although we do not examine the case in this paper, let us briefly speculate on the
case μ = Ω(

√
n) ∩ o(n/ log n), without diversity-increasing tie-breaker. This may

look promising since the aforementioned equilibrium dynamics remain true: the aver-
age Hamming distance is Θ(μ), so it seems conceivable that point 1 from above has a
high probability. However, we conjecture that this is not the case, and that the proba-
bility is o(1), because the diversity is generated by o(n) positions who differ in many
pairs, while n − o(n) positions are identical throughout the population. Nevertheless,
we believe that this setting is worth exploring, since a mechanism for increasing diver-
sity in this regime could potentially lead to runtime o(n2). We leave the exploration of
this regime to future work.

1.2 Related Work

There is a very long history of theoretical work on crossover, and we only give a brief
overview. A thorough overview of the theoretical study of population diversity is the

106 S. Cerf and J. Lengler

review by Sudholt [29]. For the more specific question how diversity can provably
decrease runtime, a more detailed discussion can be found in [7].

Our result on LEADINGONES is by far not the first setting in which crossover is
provably beneficial. Historically one of the first rigorous mathematical results were
for functions that were specifically tailored to make crossover beneficial, such as the
REALROYALROAD function [15]. A non-tailored example is the ONEMAX function
mentioned above. Sudholt [28] proved that crossover accelerates a non-standard ver-
sion of the (2 + 1) GA by a constant factor on ONEMAX, and Corus and Oliveto [3]
showed that a constant factor speedup is also obtained for the standard (2 + 1) GA.
However, their analyses rely on the fact that crossover between any two different search
points is helpful for ONEMAX. So it sufficed to show that the diversity is not literally
zero. Experiments in [3] indicated that larger population sizes than 2 might be helpful,
but so far it could not be mathematically shown that higher population sizes μ = ω(1)
(or even μ > 2) leads to substantially larger diversity that speeds up optimization on
ONEMAX.

Another important benchmark problem is the JUMP function, where the optimum
is surrounded by a fitness valley of size k. There has been a long and rich line of
research for crossover on this function, particularly on the (μ+ 1) GA and some varia-
tions [4,7,14,17,22,25]. It had been understood early that mutation can increase diver-
sity substantially [17], but it remained unclear how crossover influences the population
dynamics. Hence, polynomial runtime bounds independent of k (for constant k) could
only be shown if crossover happens so rarely that it does not influence the dynamics
of population diversity [14,17], or if the process is amended with diversity-enhancing
mechanisms [4]. Without such mechanisms and for larger crossover probabilities, anal-
yses were for a long time limited to minimal amounts of diversity [7,25]. Even so recent
results as the work by Doerr, Echarghaoui, Jamal and Krejca from 2023 [7] could only
make use of Hamming distances of at least one, i.e., the proof relied on showing that
crossover is frequently performed between two individuals which are not identical to
each other. However, very recently Lengler, Opris and Sudholt [22] could show a tight
bound by proving that the typical Hamming distances are 2k, which is the maximal pos-
sible Hamming distance on the plateau of local optima. However, they could only show
their result for a modified version of the (μ + 1) GA in which the parents produce sev-
eral offspring at the same time, and proceed with the fittest. Nevertheless, the result was
the first to show analytically high amounts of diversity on JUMP in a setting with fre-
quent crossover-based and without diversity-enhancing mechanism. Notably, the result
in [22] built on the same techniques from 2023 in [21] that we also build upon.

Other theoretical work has shown benefits of problem-specific crossover opera-
tors [8,24], of special ways of applying crossover as in the successful design of the
(1 + (λ, λ)) GA [6], and of crossover that is enhanced by diversity-preserving mecha-
nisms [4,19,23]. A discussion of those and further results can be found in [7] and [29].

2 Preliminaries

In this section, we formally introduce the optimization problem and algorithm studied
in the paper. Then, we introduce the notations that will be used in our analysis. We also

Population Diversity and Crossover 107

Algorithm 1: The (μ + 1)-GA for maximizing a fitness function f .

1 t ← 0; Generate initial population P0 ∈ ({0, 1}n)µ.
2 repeat
3 With probability pc, choose a random parent pair of parents in Pt which do not have

the same index and generate the offspring y via crossover. Otherwise, choose a
random parent x ∈ Pt and copy it to get y.

4 Apply mutation on y to get y′.
5 Choose z uniform at random among the individuals in Pt with minimal fitness.
6 if f(y′) > f(z) then
7 Pt+1 ← Pt\{z} ∪ {y′}.

8 if f(y′) = f(z) and tie-breaker decides for y′ then
9 Pt+1 ← Pt\{z} ∪ {y′}.

10 t ← t+ 1

11 until forever;

explain the concept of unbiased operators from [18] since some of our results hold for
arbitrary unbiased mutation and crossover operators.

LeadingOnes. Let n ∈ N. The LEADINGONES fitness of a bit-string x ∈ {0, 1}n is the
number of consecutive ones from the left of x,

LO(x) = LEADINGONES(x) =
n∑

i=1

i∏

j=1

xj = max{1 ≤ i ≤ n | ∀1 ≤ j ≤ i : xj = 1}.

We will sometimes write f instead of LEADINGONES for the sake of conciseness.

The Algorithm. The (μ+ 1) Genetic Algorithm, or (μ+ 1) GA for short, is described
in Algorithm 1 for arbitrary mutation and (binary) crossover operators and for arbi-
trary tie-breaking rules. Its runtime Tμ = Tμ

n is the number of function evaluations on
LEADINGONES before the optimum is found. Our main result will use standard bit-
mutation and uniform crossover: standard bit-wise mutation with mutation rate χ flips
every bit of a bit-string independently with probability χ/n, and uniform crossover
consists in taking each bit from one of the two parents, with equal probability and
independently from each other. Moreover, we will always break ties in favor of the off-
spring except for Sect. 3.2, where we explicitly study a variant of the (2+1) GA which
uses a diversity-increasing tie-breaking mechanism. Some of our results, in particular
in Sect. 2.1 are true for more general mutation and crossover operators and tie-breakers.

General Notation. We consider the LEADINGONES function on the search space
{0, 1}n for n → ∞, and all Landau notation like O(.), Ω(.), . . . is with respect to
this limit. We denote search points by x = (x1, ..., xn). For any two search points
x, y, the Hamming distance H(x, y) of x and y is the number of positions 1 ≤ i ≤ n
such that xi �= yi. For x ∈ {0, 1}n, we define 0x = {1 ≤ i ≤ n | xi = 0}, and
1x = {1 ≤ i ≤ n | xi = 1}. For S ⊆ {1, . . . , n}, we define xS = (xi)i∈S . For the
special case where S is an integer interval with lower and upper bounds m and M , we
may write x[m:M], or even x[m:] if M = n. Finally, for two random variables X and Y ,

108 S. Cerf and J. Lengler

we write X
 Y for "X is stochastically dominated by Y ". We use the same notation if
Y is a probability distribution. We write G(p) for the geometric distribution with mean
1/p.

(μ + 1)GA Process. We denote by χ the expected number of bits flipped by any muta-
tion operator, and assume χ = Θ(1) throughout the paper. The best fitness of an individ-
ual in the t-th population Pt = {xt

1, . . . , x
t
μ} is denoted LOt = max{LO(x), x ∈ Pt}.

We call Ct the event "a crossover was performed at iteration t", and M i
t the event "bit i

is mutated at time t".
For 0 ≤ i ≤ n, we will use the expression "level i is visited" to signify "∃t ∈

N, LOt = i". We denote by T in
i the time of reaching fitness level at least i, by T o

i the
time of exceeding fitness i, and by Succi the fitness level at time T o

i + 1. We say that
a population P is consolidated if all individuals in P have the same fitness i. We call
the consolidation time for fitness level i the time from reaching this level until a consol-
idated population on this fitness level occurs. Note that there may be no consolidated
population on fitness level i, in which case we set T c

i = T o
i . As in [12], "fitness level

i is essential" means that it is visited, and left by mutation. We call this event Ei. If
an essential fitness level i is left before consolidation (T c

i > T o
i), it is called "strange",

which is denoted Si. An essential fitness level i which is not strange is called "normal",
which is denoted by Ni. We also denote ESucci the smallest essential fitness level after
i, i.e. ESucci := min{j > i | Ej}. We set ESucci := n + 1 if there is no j > i with
Ej .

Diversity Measure. Following [21], we define for a population P the sum of pairwise
Hamming distances in the population S(P) =

∑
x∈P

∑
y∈P H(x, y), and for x ∈

{0, 1}n, the sum SP (x) =
∑

y∈P H(x, y) of Hamming distances between x and all
individuals in P . Note that the average Hamming distance between two individuals
(without repetition) is SP (x)

μ(μ−1) . When it is clear, we will omit the index of the population
P we are summing over: SP (x) = S(x). Finally, we call "diversity of the population at

time t", the quantity dt = S(P ′
t)

μ(μ−1)(n−LOt−1) , where P ′
t = {x[LOt+2:], x ∈ Pt}. This is

the average pairwise Hamming distance of the non-optimized parts of the bit-strings in
the population (not counting the bit just after the current fitness level), normalized by
the size of the non-optimized part of a fit bit-string.

2.1 Unbiased Offspring Generation Mechanisms

Our analysis builds on the fact that, for a given individual in the population, the bits
between LOt + 2 and n are uniformly distributed in the space of bit-strings of size
n − LOt − 1, and that the bits in which two individuals differ are evenly distributed in
this range. As we will show below, this is generally true if mutation, crossover, and tie-
breaker are unbiased operators. The notion of unbiased operators has been introduced
in [18] as operators which are invariant under automorphisms of the hypercube.

The unbiased framework has been very successful especially in the context of black-
box complexity [11]. Most of the standard mutation operators, such as standard bit-
wise mutation or the heavy-tailed mutation used in fast GAs [10] are unbiased. Many

Population Diversity and Crossover 109

crossover operators are unbiased, like uniform crossover, but some, like the single-point
crossover, are not, see [13] for details. Our default in this paper are standard bit-wise
mutation and uniform crossover, both of which are unbiased. Note that a tie-breaker can
be considered as a (μ + 2)-ary operator, taking as an input the full population of size μ
and two additional search points between which we want to break ties, one of which it
needs to return.

For the (μ + 1) GA, we call the combination of crossover (if applied), mutation
and tie-breaking as offspring generation mechanism, and we call such a mechanism
unbiased if all three operators that constitute it are unbiased. We call the algorithm
(μ + 1) GA unbiased if its offspring generation mechanism is unbiased and if it is
initialized with a 0-ary unbiased operator. We may now prove some useful results that
are true for an unbiased (μ + 1) GA on the LEADINGONES problem. Define, for every
automorphism of the hypercube π, and every population P , π(P) = {π(x), x ∈ P},
and F (P) = max{LO(y), y ∈ P}. Our first result states that the population Pt is
invariant under automorphisms that keep the first F (Pt) + 1 bits fixed. We omit the
proof.

Lemma 1. Consider an unbiased (μ + 1) GA. For all t ≥ 0, all P ∈ {0, 1}μ and all
automorphism π of the hypercube such that for all bit-string x, and all j ≤ F (P) + 1,
π(x)j = xj ,

Pr(Pt = P) = Pr(Pt = π(P)).

Lemma 1 has some interesting consequences, the first one being on the distribution
of the non-optimized part of a single bit-string in the population.

Corollary 2. For all 1 ≤ j ≤ μ, xt
j[LOt+2:]

is uniformly distributed on {0, 1}n−LOt−1.

We also get the following very useful result that helps us bound the size of the fitness
jumps.

Corollary 3. For all t ≥ 0, for all 2 ≤ j, Pr(LOt+1 − LOt ≥ j | LOt+1 − LOt ≥
1) = 2−(j−1).

Finally we give a result on the distribution of the bits that differ between two indi-
viduals in the population at a given iteration. Recall that dt is the average density of
non-equal bits in the population when we restrict to the non-optimized part of the bit-
string [LOt + 1 : n].

Corollary 4. Let t ≥ 0, and 1 ≤ i, i′ ≤ μ with i �= i′. Let d := xt
i[LOt+2:]

⊕ xt
i′
[LOt+2:]

be the string which has a 1 where xt
i and xt

i′ differ, and a 0 otherwise, truncated to the
non-optimized part. Then, for any pair of bit-strings s, s′ ∈ {0, 1}n−LOt−1 of equal
Hamming weight, we have Pr(d = s) = Pr(d = s′). In particular, for any j ∈ [LOt +
2 : n] and for all H ≥ 0,

Pr
(
(xt

i)j �= (xt
i′)j | H(xt

i[LOt+2:]
, xt

i′
[LOt+2:]

) = H
)
= H

n−LOt−1 .

Moreover, if the tie-breaker is symmetric with respect to permutations of the population
and the initial population is uniformly random, then

Pr((xt
i)j �= (xt

i′)j | dt) = dt.

110 S. Cerf and J. Lengler

Preliminary Results on the Consolidation Process. The following lemma bounds the
consolidation time of raising the whole population to fitness at least i, after this fitness
level has been found. This time is well-known to have expectation O(μ log μ), e.g. [31].
Here we provide a tail bound. Note that the crossover probability pc and the parameter
pclone that appears in the following lemma are not included into the index of Cβ because
those are part of the algorithm, which we consider as fixed.

Lemma 5. Consider the (μ+1)GA with a mutation operator that has probability pclone
of duplicating the parent. Let 1 ≤ i ≤ n be any fitness level on LEADINGONES. For
t ≥ 0, let Xt be the number of individuals of fitness at least i in PT in

i +t. Then, for any
constant β > 0, pclone > 0 and pc < 1, there exists Cβ > 0 such that for n big enough
the following holds for all C > Cβ .

Pr(XCμ log μ < μ) ≤ μ−β . (1)

In particular, for any fitness level 1 ≤ i ≤ n, E[T c
i − T in

i] = O(μ log μ) and

Pr(T c
i − T in

i > Cμ log μ) ≤ μ−β .

3 Analysis of the (µ + 1) GA on LEADINGONES for Different
Population Regimes

In this section, we will show that the number of extra free-riders determines the
expected runtime of the (μ + 1) GA. Throughout the section, we will assume stan-
dard bit mutation where the mutation rate χ and the crossover probability pc < 1 are
constants. However, at first the algorithm may use any respectful5 unbiased crossover
operator and any unbiased tie-breaking rule.

Our strategy is based on the notion of extra free-riders due to crossover, as intro-
duced in Sect. 2. This term is derived from the term "free-rider" originating in [12],
which we define as Fi := Succi − i − 1 if the i-th fitness level is essential, and as
Fi := 0 otherwise. In other words, a free-rider is a fitness level that is skipped due to
a mutation. Extending on this idea, we define "extra free-riders" as additional leading
ones that are obtained with crossover. Recall that Ei is the event that the i-th fitness
level is essential, i.e., is left via mutation, and that ESucci is the smallest essential
fitness level after level i.

Definition 6 (Extra free-riders). For 0 ≤ i ≤ n − 1, we denote as EFi and call "extra
free-riders associated to level i" the following random variable.

EFi =

{
ESucci − Succi if Ei

0 otherwise

5 In a respectful crossover, if both parents have the same bit at some position i, the offspring
also has the same bit at position i.

Population Diversity and Crossover 111

Note that if the crossover operator is respectful, which is the case for most common
crossover operators (see [21] for a classification), then extra free-riders must come from
one of the parent. Thus, just like normal free-riders, these 1-bits already accidentally
exist among the population (that is, they are not here because of an optimization choice
of the algorithm, but because of genetic drift), and allow us to overcome some fitness
plateaus in negligible time.

The typical scenario for the acquisition of extra free-riders is that, after the whole
population is brought to a common fitness plateau, diversity accumulates on the non-
optimized trailing part of the bit-strings. Then, when an individual x reaches a higher
fitness level, some individuals in the lower levels may happen to have a 1-bit at the
position corresponding to the next fitness level. If a crossover between one of these
individuals and an individual of fitness f(x) is performed, then with a good probability
we get extra free-riders. These extra free-riders can be obtained from multiple succes-
sive crossovers, until the next fitness level is left via mutation. We introduce a useful
definition that stems from this observation.

The two following lemmas draw a link between the expected value of EFi for any
reached fitness level i in a given implementation of the (μ + 1) GA, and the expected
runtime of the algorithm. Recall that we consider the (μ + 1) GA with standard bit-
wise mutation with mutation rate χ = Θ(1), pc < 1, any respectful crossover operator,
and any unbiased tie-breaker, but the proof may be adapted to most known mutation
mechanisms.

Lemma 7. Consider the (μ + 1) GA with standard bit mutation and any respectful
unbiased mutation operator. Suppose that there exists a sequence of functions (mn)n∈N

defined on [0, 1], uniformly convergent to a function m, and k(n) = ω(1), such that
εmn

= max{|mn(x) − mn(y)| | |x − y| ≤ 1
k} = o(1), and, for all fitness levels

0 ≤ i ≤ n − 1, Pr(EFi ≥ 1 | Ni) ≥ mn(i
n). Then:

E[Tμ] ≤ n2

χ

∫ 1

0

eχx

2 + m(x)
dx + o(n2).

Lemma 8. Consider the (μ + 1) GA with standard bit mutation and any respectful
unbiased mutation operator. Suppose that there exists a sequence of functions (Mn)n∈N

defined on [0, 1], uniformly convergent to a function M , and k(n) = ω(1), such that
εMn

= max{|Mn(x) − Mn(y)| | |x − y| ≤ 1
k} = o(1), and, for all fitness levels

0 ≤ i ≤ n − 1, E[EFi | Ni] ≤ Mn(i
n). Suppose also that the event A : "for all

1 ≤ i ≤ n,ESucci − i = o(n
max(k,μ log μ))" holds with high probability. Then:

E[Tμ] ≥ n2 + o(n2)
χ

∫ 1

0

eχx

2 + M(x)
dx.

Observation 1 Note that for the case where mn and Mn are constant, the inequality
from Lemmas 7 and 8 respectively become:

E[Tμ] ≤ 1
2+mn

eχ−1
χ2 n2 + o(n2) and E[Tμ] ≥ 1

2+Mn

eχ−1
χ2 n2 + o(n2).

Observation 2 When pc = 0, one can simply set mn = Mn = 0, and obtain E[T 1] =
eχ−1
2χ2 n2 + o(n2), which is up to o(n2) the runtime of the (1 + 1) EA.

112 S. Cerf and J. Lengler

These two lemmas are stated in a much stronger form than what we will use in this
paper, where Mn or mn are constant. This is because we believe they can be a useful
tool for whoever would like to study other variants of the (μ+ 1) GA, where these two
quantities might depend on the current fitness level.

To prove these lemmas, we will need two preparatory results. One will allow us
neglect strange fitness levels, the second one to restrict to normal fitness level.

Lemma 9. For any fitness level 0 ≤ i ≤ n − 1, Pr(Si) = O
(

μ log μ
n

)
.

Lemma 10. For μ = o(n/ log n) the following equality holds:

E[Tμ] =
∑n−1

i=0
E[1Ni

(T o
i − T c

i)] + o(n2).

With this preparation, we can now prove Lemma 7. We omit the proof of Lemma 8,
since it mostly follows the same strategy, although a bit more work is needed to exclude
exceedingly large jumps.

Proof (of Lemma 7). By Lemma 10 we may focus on normal levels. We observe that
on any normal fitness level i, we have T o

i − T c
i ∼ G((1 − χ

n)
i χ
n). Indeed, after con-

solidation, at each iteration, regardless of whether we use crossover or not (since the
crossover operator is respectful, so the first i 1-bits are always copied to the offspring),
the probability of producing an offspring with fitness level higher than i is determined
only by the mutation phase, where we have to keep the first i bits untouched and mutate
the (i + 1)-st bit.

We also need to know how many normal levels there are in a local window of fitness
levels. The more extra free-riders we get, the sparser normal fitness levels are, and the
faster the optimization is. To make this precise, let us define, for 0 ≤ j ≤ k, ij = jn

k .
Then, for ij ≤ i < ij+1, define the truncated number of extra free-riders associated to
fitness level i as

ẼFi := min(ij+1,ESucci) − Succi.

First, we claim that for all 0 ≤ j ≤ k − 1:

∑ij+1−1

i=ij

1Ni
(1 + Fi + ẼFi) ≤

∑ij+1−1

i=ij

1Ei
(1 + Fi + ẼFi) ≤ n

k . (2)

The first inequality stems from Ni ⊂ Ei. The second holds because the sum in the
middle is simply ij+1 − Lj , where Lj is the first essential level in [ij , ij+1], if such a
level exists. In particular the sum is at most ij+1 − ij = n

k . If no essential level exists
then the sum is zero and the bound is still true.

Note that E[ẼFi | Ni] ≥ Pr(EFi ≥ 1 | Ni) ≥ mn(i
n). Using (Fi | Ni)
 G(12)−1

(which is a direct implication of Corollary 3), this yields for all level i:

E[1Ni
(1 + Fi + ẼFi)] ≥ E[1Ni

](2 + mn(i
n)).

Hence, by definition of εmn
, for ij ≤ i ≤ ij+1 − 1,

E[1Ni
(1 + Fi + EFi)] ≥ E[1Ni

](2 + mn(
ij

n) − εmn
) = E[1Ni

](2 + mn(j
k) − εmn

).

Population Diversity and Crossover 113

Plugging this last inequality into the left part of (2), we get the desired bound for
the expected number of essential levels in the local window ij ≤ i < ij+1.

∑ij+1−1

i=ij

E[1Ni
] ≤ n

k(2+mn(j/k)−εmn)

By Lemma 10 and since T o
i − T c

i ∼ G((1 − χ
n)

i χ
n), it suffices to bound

∑n−1
i=0 E[1Ni

G((1 − χ
n)

i χ
n)]. Decomposing this sum into sums over the local windows

yields:

k−1∑

j=0

ij+1−1∑

i=ij

E[1Ni
G((1 − χ

n)
i χ
n)] ≤

k−1∑

j=0

ij+1−1∑

i=ij

E[1Ni
](1 − χ

n)
−i n

χ

≤
k−1∑

j=0

n

k(2 + mn(j/k) − εmn
)
n

χ
(1 − χ

n)
−ij+1 ≤ n2

χ

1
k

k−1∑

j=0

((1 − χ
n)

−n)(j+1)/k

2 + mn(j/k) − εmn

.

Thanks to the uniform convergence mn → m and (1 − χ
n)

−nx → eχx for x ∈ [0, 1]
when n → ∞, the sum converges to

∫ 1

0
eχx

2+m(x) as k → ∞, as required. ��

3.1 The Vanilla (µ + 1) GA Is Not Faster Than the Vanilla (1 + 1) EA
for µ ∈ O(

√
n/ log2 n).

In this section, we show that the vanilla (μ + 1) GA is not faster than the (1 + 1) EA
for any population size μ = O(

√
n/ log2 n), where "vanilla" means standard bit-wise

mutation, uniform crossover, and uniform tie-breaker. This is because the diversity at
equilibrium is not big enough to provide extra free-riders.

We will make the simplifying assumption that the population is initialized with the
all-0 string. This allows us to start with a normal fitness level, and to prove inductively
that gaps between fitness levels are not larger than O(log n). We first show that the
expected diversity when leaving a fitness level is small.

Lemma 11. Consider the (μ + 1) GA with μ = o(
√

n). Let 1 ≤ i ≤ n − ω(μ) and
suppose that Pt0 is consolidated for some t0 ≥ 0, and f(Pt0) = i. Then

E[dT o
i
] = O

(
μ2

n d(Pt0) +
μ

n−i

)
.

Proof. We use a result from [21] (Corollary 3.4 and Theorem 4.3) to show that after
truncating the population Pt to the non-optimized part, called Qt, satisfies

E[S(Qt+1) | S(Qt)] = (1 − 2
μ2 + 4(μ−1)χ

μ2(n−i))S(Qt) + 2(μ − 1)χ.

Solving this recursion explicitly and summing over all possible exit times t∗ from this
fitness level yields the lemma. We omit the details. ��

We call a fitness level i good if there is a consolidated population on level i and
d(P) ≤ 1/μ. Next we show inductively that the algorithm frequently encounters good
fitness levels. This allows us to bound any gain form non-normal fitness levels by
O(log n).

114 S. Cerf and J. Lengler

Lemma 12. Let μ = O(
√

n/ log2 n) and let i = n − ω(μ2) be a good fitness level.
Then with probability 1 − o(1/n) there is a good fitness level i′ = i + O(log n).

Now, we can prove that the expected number of extra free-riders is negligible.

Lemma 13. Consider the (μ+1) GA with μ = O(
√

n/ log2 n) starting in the all-zero
string. Then for all 1 ≤ i ≤ n − ω(μ2), E[EFi | Ni] = o(1).

Proof. Under some good event E (the time t∗ spend on level i is not too small and the
diversity approaches equilibrium at least once before t∗), we show

E[dt∗ | E] = O(μ
n−i),

and Lemma 12 allows us to bound the contribution of the event Ē. The statement fol-
lows then from Lemma 11. ��

3.2 Breaking Ties Towards Diversity Speeds up the (2 + 1) GA

In this section, we consider the tie-breaker that, when two individuals are in a tie,
chooses the one that has the highest S-value relative to the rest of the population. This
tie-breaker is unbiased. It is similar to that studied by [5] (Sect. 5.5), who proved that
it significantly enhances the optimization of the JUMP functions. We first observe that
this tie-breaker indeed improves dt when the offspring produced at t is not better than
one of the individuals.

Lemma 14. For the above tiebreaker, suppose that the offspring y produced at time t
is not fitter than any of the individuals in Pt. Then dt+1 ≥ dt.

The first step is to study the diversity evolution process on a fitness plateau. The
proof is similar to the proof of Lemma 11 and is omitted.

Lemma 15. Consider a run of the (2+1) GA using the diversity-improving tie-breaker
and standard bit-wise mutation with any mutation rate χ and uniform crossover. Let
0 ≤ i ≤ n − 1. Then, E[dT o

i
| Ni] ≥ 1−pc

3−2pc
+ o(1).

This lemma guarantees a larger expected number of extra free-riders.

Lemma 16. For 0 ≤ i ≤ n, Pr[EFi ≥ 1 | Ni, dT o
i
] ≥ pc

8 dT o
i
,

With this lemma, one can show our main result of this section.

Theorem 17. Consider the (2 + 1) GA using standard bit-wise mutation, uniform
crossover with constant probability pc, and the diversity-improving tie-breaker. Then
its runtime T satisfies:

E[T] ≤ 2
2+pc(1−pc)/(24−16pc)

· eχ−1
2χ2 n2 + o(n2)

Note that the first factor is a constant strictly smaller than 1, and the second factor is up
to a (1 + o(1)) the runtime of a vanilla (2 + 1) GA or a (1 + 1) EA. This means that
the diversity-improving tie-breaker brings a constant factor improvement. Empirically,
we found a speedup about twice as large as our bound.

This bound is optimized for pc ≈ 0.6, which is also experimentally the opti-
mal static crossover value. However, our proof yields an adaptive mechanism for the
crossover probability, which is to set pc = 1 when the population is not consolidated,
and pc = 0 otherwise. This predicted improvement was also confirmed experimentally.

Population Diversity and Crossover 115

4 Conclusion

In this work, we examined the connection between population diversity and progress
on the LEADINGONES problem by the (μ + 1) GA. We have shown that the naturally
evolving diversity for any μ = o(

√
n/ log2 n) is not enough to improve the runtime by

more than a (1 + o(1)) factor. On the other hand, even for μ = 2 simple tie-breaking in
favor of diversity leads to so much diversity in the population that the runtime decreases
by a constant factor.

There are many question that we had to leave open. The most interesting is what
happens for μ = Ω(

√
n/ log2 n) ∩ o(n/ log n). We conjecture that the vanilla version

can not create enough diversity to give a constant factor speed-up, even though the aver-
age Hamming distance between parents increases further. We conjecture further that the
problem is not that differences in bits are never created, but instead the problem is that
they also get lost again. So, if there was a way of preventing these differences to get
lost, we may even hope for algorithms which get extra free-riders on most fitness lev-
els, which could lead to asymptotically optimization time o(n2). We believe that this is
a very interesting setting to explore more systematically potential diversity-preserving
mechanisms.

Disclosure of Interests. The author do not have conflicting interests.

References

1. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the
leadingones problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) Paral-
lel Problem Solving from Nature, PPSN XI, pp. 1–10. Springer, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5_1

2. Cerf, S., Lengler, J.: How population diversity influences the efficiency of crossover. arXiv
preprint (2024)

3. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb faster than
mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput. 22, 720–732 (2018)

4. Dang, D.C., et al.: Escaping local optima using crossover with emergent diversity. IEEE
Trans. Evol. Comput. 22(3), 484–497 (2017)

5. Dang, D., et al.: Escaping local optima using crossover with emergent diversity. IEEE Trans.
Evol. Comput. 22, 484–497 (2018)

6. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algo-
rithms. Theoret. Comput. Sci. 567, 87–104 (2015)

7. Doerr, B., Echarghaoui, A., Jamal, M., Krejca, M.S.: Lasting diversity and superior runtime
guarantees for the (µ+ 1) genetic algorithm. CoRR abs/2302.12570 (2023)

8. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary computation.
Theoret. Comput. Sci. 425, 17–33 (2012)

9. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–
697 (2012)

10. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Genetic and
Evolutionary Computation Conference, GECCO 2017, pp. 777–784. ACM (2017)

11. Doerr, C.: Complexity theory for discrete black-box optimization heuristics. Theory of Evo-
lutionary Computation: Recent Developments in Discrete Optimization, pp. 133–212 (2020)

12. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm.
Theoret. Comput. Sci. 276, 51–81 (2002)

https://doi.org/10.1007/978-3-642-15844-5_1

116 S. Cerf and J. Lengler

13. Friedrich, T., et al.: Crossover for cardinality constrained optimization. In: Genetic and Evo-
lutionary Computation Conference, GECCO 2022, pp. 1399–1407. ACM (2022)

14. Jansen, T., Wegener, I.: On the analysis of evolutionary algorithms — a proof that crossover
really can help. In: Nešetřil, J. (ed.) Algorithms - ESA’ 99, pp. 184–193. Springer, Berlin,
Heidelberg (1999). https://doi.org/10.1007/3-540-48481-7_17

15. Jansen, T., Wegener, I.: Real royal road functions-where crossover provably is essential.
Discret. Appl. Math. 149(1–3), 111–125 (2005)

16. Jorritsma, J., Lengler, J., Sudholt, D.: Comma selection outperforms plus selection on One-
Max with randomly planted optima. In: Genetic and Evolutionary Computation Conference
(GECCO) (2023)

17. Kötzing, T., Sudholt, D., Theile, M.: How crossover helps in pseudo-Boolean optimization.
In: Proceedings of GECCO’11, pp. 989–996. ACM (2011)

18. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642
(2012)

19. Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input-output
sequences. Soft. Comput. 15, 1675–1687 (2011)

20. Lengler, J.: Drift analysis. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Com-
putation: Recent Developments in Discrete Optimization, pp. 89–131. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_2

21. Lengler, J., Opris, A., Sudholt, D.: Analysing equilibrium states for population diversity.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1628–1636
(2023)

22. Lengler, J., Opris, A., Sudholt, D.: A Tight O(4k/pc) runtime bound for a (µ + 1) GA on
Jumpk for realistic crossover probabilities. In: Proceedings of the Genetic and Evolutionary
Computation Conference, p to appear (2024)

23. Neumann, F., Oliveto, P.S., Rudolph, G., Sudholt, D.: On the effectiveness of crossover for
migration in parallel evolutionary algorithms. In: Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, pp. 1587–1594 (2011)

24. Oliveto, P.S., He, J., Yao, X.: Analysis of population-based evolutionary algorithms for the
vertex cover problem. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), pp. 1563–1570 (2008). https://doi.org/10.1109/
CEC.2008.4631000

25. Oliveto, P.S., Sudholt, D., Witt, C.: Tight bounds on the expected runtime of a standard steady
state genetic algorithm. Algorithmica., 1–56 (2022)

26. Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Verlag Dr, Kovǎc (1997)
27. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms.

IEEE Trans. Evol. Comput. 17(3), 418–435 (2012)
28. Sudholt, D.: How crossover speeds up building block assembly in genetic algorithms. Evol.

Comput. 25, 237–274 (2017)
29. Sudholt, D.: The benefits of population diversity in evolutionary algorithms: a survey of rig-

orous runtime analyses. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Compu-
tation: Recent Developments in Discrete Optimization, pp. 359–404. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_8

30. Whitley, D.: Next generation genetic algorithms: a user’s guide and tutorial. In: Gendreau,
M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, pp. 245–274. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_8

31. Witt, C.: Runtime analysis of the (µ + 1) EA on simple pseudo-Boolean functions. Evol.
Comput. 14, 65–86 (2006)

32. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear
functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

https://doi.org/10.1007/3-540-48481-7_17
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1109/CEC.2008.4631000
https://doi.org/10.1109/CEC.2008.4631000
https://doi.org/10.1007/978-3-030-29414-4_8
https://doi.org/10.1007/978-3-319-91086-4_8

Overcoming Binary Adversarial
Optimisation with Competitive

Coevolution

Per Kristian Lehre and Shishen Lin(B)

University of Birmingham, Birmingham B15 2TT, UK
{p.k.lehre,sxl1242}@cs.bham.ac.uk

Abstract. Co-evolutionary algorithms (CoEAs), which pair candidate
designs with test cases, are frequently used in adversarial optimisation,
particularly for binary test-based problems where designs and tests yield
binary outcomes. The effectiveness of designs is determined by their per-
formance against tests, and the value of tests is based on their abil-
ity to identify failing designs, often leading to more sophisticated tests
and improved designs. However, CoEAs can exhibit complex, sometimes
pathological behaviours like disengagement. Through runtime analysis,
we aim to rigorously analyse whether CoEAs can efficiently solve test-
based adversarial optimisation problems in an expected polynomial run-
time.

This paper carries out the first rigorous runtime analysis of (1, λ)-
CoEA for binary test-based adversarial optimisation problems. In partic-
ular, we introduce a binary test-based benchmark problem called Diago-
nal problem and initiate the first runtime analysis of competitive CoEA
on this problem. The mathematical analysis shows that the (1, λ)-CoEA
can efficiently find an ε approximation to the optimal solution of the
Diagonal problem, i.e. in expected polynomial runtime assuming suf-
ficiently low mutation rates and large offspring population size. On the
other hand, the standard (1, λ)-EA fails to find an ε approximation to
the optimal solution of the Diagonal problem in polynomial runtime.
This illustrates the potential of coevolution for solving binary adversarial
optimisation problems.

Keywords: Adversarial Optimisation · Theory of Computation ·
Competitive Coevolution

1 Introduction

CoEAs are a class of algorithms that have been applied in various game-theoretic
and strategic optimisation scenarios. There are two main types of CoEAs: coop-
erative and competitive CoEAs. Competitive CoEAs can be applied to prob-
lems that involve adversaries, such as Maximin optimisation problems. With
the widespread use and development of GANs [7], there are recent successful

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 117–132, 2024.
https://doi.org/10.1007/978-3-031-70071-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_8&domain=pdf
http://orcid.org/0000-0002-9521-1251
http://orcid.org/0009-0008-7405-6564
https://doi.org/10.1007/978-3-031-70071-2_8

118 P. K. Lehre and S. Lin

applications of competitive CoEAs for GANs [1,28] and co-evolutionary learn-
ing [19]. Competitive CoEAs share similarities with neural network-based adver-
sarial models but require less information, e.g., a gradient. However, despite
their potential, the application of CoEAs is challenging. One of the main dif-
ficulties is that these algorithms often exhibit pathological behaviours, such as
cyclic behaviours, disengagement, and over-specialisation [22,29]. More precisely,
cyclic behaviour means that the solution A dominates B, B dominates C, but
C can dominate A. This leads to the problem of the algorithm forgetting the
optimal solution previously found; for example, RLS-PD suffers from an evo-
lutionary forgetting issue for finding Nash Equilibrium [6]. Disengagement and
over-specialisation mean one of the population is too strong, and the other barely
learns or optimises from coevolution. These challenges limit the widespread use
of CoEAs.

There is a growing interest in optimisation problems that involve one or
more adversaries. These problems include robust optimisation or designing game-
playing strategies. We focus on a special case of adversarial problems called
test-based optimisation problems [13]. Test-based optimisation is an important
class of optimisation problems where individuals in a population of designs are
evaluated against test cases, which co-evolve with the designs [14]. For example,
in supervised learning, we consider model parameters as solutions and training
data as test cases [8]. Researchers also apply reinforcement learning methods in
board games, including Go [27] and Stratego [21], which consider the opponents
as test cases in their self-plays. Gradient-based methods have been used to tackle
these problems when the “payoff” function is differentiable [26]. However, in
many real-world scenarios, the payoff function is not differentiable, for example,
when the strategy space is discrete. In these cases, CoEAs have been suggested to
be a promising approach [22]. A notable early success in this field was the work by
Hillis [10], who used competitive CoEAs to optimise sorting networks and their
corresponding test cases. Other early examples of the successful application of
CoEAs on test-based problems can be found in works by [2] and [18]. De Jong
et al. explored test-based problems in the context of either coevolution [14] or
multi-objective optimisation [15] from empirical studies. There is a gap in the
theoretical understanding of CoEAs on test-based problems.

Hillis [10] showed empirically that there is a significant improvement in sort-
ing networks via competitive CoEAs compared with normal EAs. But it is still
unclear why competitive CoEAs lead to a better design than traditional EAs
[22,24]. We would like to understand how competitive CoEAs work on test-
based optimisation problems from the simplest example. We formalise a general
problem class, which includes Hillis’ co-evolutionary approach on sorting net-
works as follows: consider a function g : X × Y → {0, 1}, where X is a set
of designs and Y is a set of test cases. We define g(x, y) = 1 if and only if
design x passes test case y. Our optimisation problem can be defined as follows:
arg maxx∈X miny∈Y g(x, y). In other words, the Maximin Optimisation is to find
(x∗, y∗) ∈ X × Y such that

for all (x, y) ∈ X × Y, g(x, y∗) ≤ g(x∗, y∗) ≤ g(x∗, y).

Overcoming Binary Adversarial Optimisation with Competitive Coevolution 119

So here come the following research questions:

1. Under what circumstances can a competitive CoEA obtain an optimal solu-
tion in polynomial expected time?

2. How does the runtime depend on the problem (g) and on the algorithm?

To understand the questions above, we proceed by using runtime analysis.
Runtime analysis of traditional evolutionary algorithms considers the time com-
plexity of a given randomised algorithm. It provides either lower or upper bounds
for the number of fitness function evaluations (called runtime) to understand the
performance of given algorithms [5]. Runtime analysis can identify relationships
between algorithmic parameters and problem characteristics that determine the
efficiency of evolutionary algorithms. There is limited literature about runtime
analysis of CoEAs apart from [6,12,16]. We want to develop more runtime anal-
ysis for CoEAs and expect the insights from runtime analysis of CoEAs will
improve the design of CoEAs [22].

Our Contributions. We first introduce a formulation of a binary test-based
adversarial optimisation problem, the Diagonal problem. We prove that the
traditional (1, λ)-EA cannot solve the Diagonal Game in expected polynomial
runtime. However, we rigorously show for the first time that, with the help of
coevolution, (1,λ)-CoEA can solve Diagonal problems in expected polynomial
runtime under certain settings by using a two-phase analysis and order statistics
tools. This suggests the promising potential of coevolution for solving binary
adversarial optimisation problems.

2 Preliminaries

For a filtration Ft, we write Et(·) := E(·|Ft) and Prt(·) := Pr(·|Ft). Denote the
1-norm as |z|1 =

∑n
i=1 zi for z ∈ {0, 1}n. Denote Xt = |xt|1 ∈ [n] ∪ {0} for

xt ∈ {0, 1}n and Yt = |yt|1 ∈ [n] ∪ {0} for yt ∈ {0, 1}n for any n ∈ N. We
focus on the search space X × Y = {0, 1}n × {0, 1}n for any n ∈ N. We consider
the filtration (Ft)t≥0 including the information of (X0, Y0), . . . , (Xt, Yt) in this
paper. For any ε ∈ [0, 1] and any problem with a unique optimum (x∗, y∗), we say
that algorithm A finds an ε-approximation to the optimum (x∗, y∗) in iteration
T ∈ N if ||x∗|1 − |xT |1| + ||y∗|1 − |yT |1| < εn where (xT , yT) is the search point
of A at iteration T . “With high probability” is abbreviated to “w.h.p.”.

2.1 Diagonal Games

In order to model the binary test-based optimisation problem inspired by Hillis’s
method of sorting networks [10], a payoff function with X ×Y as input and {0, 1}
as output is introduced as follows. Here X = {0, 1}n is the solution space of a
set of designs for sorting networks and Y = {0, 1}n is the solution space of a set
of test cases. We continue to consider a function g : X × Y → {0, 1}. We define

120 P. K. Lehre and S. Lin

g(x, y) = 1 if and only if design x passes test case y. Our optimisation problem
can be defined in terms of Maximin optimisation: find (x∗, y∗) ∈ X × Y such
that

for all (x, y) ∈ X × Y, g(x, y∗) ≤ g(x∗, y∗) ≤ g(x∗, y).

We want to start our analysis with simple problems with clear structures so we
introduce a constraint function c as follows, which splits the search space into
several parts.

Definition 1. (Generalised boundary test-based problem) Given a constraint
function c(z) : R → R, a generalised boundary function is called General-
Boundary gc : X × Y → {0, 1}, where X = {0, 1}n and Y = {0, 1}n, if

gc(x, y) =

{
1 |y|1 ≤ c(|x|1)
0 otherwise.

In our case, we start with a linear constraint function c(|x|1) = |x|1.
Definition 2. For X = {0, 1}n and Y = {0, 1}n, the payoff function
Diagonal : X × Y → {0, 1} is

Diagonal(x, y) :=

{
1 |y|1 ≤ |x|1
0 otherwise

.

Fig. 1. Example of Diagonal problem. The horizontal axis represents the number of
1-bits in the designs x, and the vertical axis represents the number of 1-bits in the
test cases y. The grey area represents search points of payoff 1, and the rest represents
search points with payoff 0. (Color figure online)

We also use g(x, y) to denote Diagonal. Notice that 1 means the design x
passes the test cases y ∈ Y. In this simple Diagonal game, yn with |yn|1 = n
represents the most difficult test case, and xn with |xn|1 = n is the only solution
that can pass yn (i.e. g(xn, yn) = 1). Thus, (1n, 1n) is the Maximin optimum
in this case. In this optimum, neither the design nor the test case is willing
to deviate from affecting their payoff g(x, y) anymore. This exactly coincides
with the definition of Nash equilibrium. This paper aims to explore whether the
CoEAs can find such an optimal solution efficiently.

Overcoming Binary Adversarial Optimisation with Competitive Coevolution 121

2.2 Drift Analysis Toolbox

Before our analysis, we introduce the Negative Drift Theorem [20,25], which will
be used to prove the inefficiency of algorithms.

Theorem 1 (Negative Drift Theorem [4,20,25]). For constants a, b, δ, η,
r > 0, with a < b, there exist c > 0, n0 ∈ N such that the following holds
for all n ≥ n0. Suppose (Xt)t≥0 is a sequence of random variables with a finite
state space S ⊂ R

+
0 and with associated filtration Ft. Assume X0 ≥ bn, and let

Ta := min{t ≥ 0 | Xt ≤ an} be the hitting time of S ∩ [0, an]. Assume further
that for all s ∈ S with s > an, for all j ∈ N0, and for all t ≥ 0, the following
conditions hold:

(1) E(Xt − Xt+1 | Ft,Xt = s) ≤ −δ
(2) Pr[|Xt − Xt+1| ≥ j | Ft,Xt = s] ≤ r

(1+η)j

Then, Pr[Ta ≤ ecn] ≤ e−cn.

Before our analysis, we introduce the Additive Drift Theorem [4,9], which
will be used to provide the bounds for the runtime of algorithms.

Theorem 2 (Additive Drift Theorem [4,9]). Let (Xt)t≥0 be a sequence of
non-negative random variables with a finite state space S ⊆ R

+
0 such that 0 ∈ S.

Let T := inf{t ≥ 0 | Xt = 0}.
(1) If there exists δ > 0 such that for all s ∈ S \ {0} and for all t ≥ 0,

E(Xt − Xt+1 | Xt = s) ≥ δ, then E(T) ≤ E(X0)/δ.
(2) If there exists δ > 0 such that for all s ∈ S \ {0} and for all t ≥ 0,

E(Xt − Xt+1 | Xt = s) ≤ δ, then E(T) ≥ E(X0)/δ.

3 Traditional Evolutionary Algorithm Cannot Solve
Diagonal Efficiently

In this section, we would like to explore whether traditional (1, λ)-EA can effi-
ciently solve problems with only binary fitness. For a fair comparison between
traditional evolutionary and coevolutionary algorithms, we chose (1, λ)-EA as
the closest traditional evolutionary algorithm to the coevolutionary algorithm
studied in this paper.

Algorithm 1 samples x uniformly at random. We define the same mutation
operator Dt

mut for x. Ω is the sample space and ωt ∈ Ω means that the algorithm
performs bit-wise mutation for each bit in the bit-string with probability χ/n
where χ ∈ (0, 1] in iteration t where x is of length n1. Next, we evaluate each
individual by taking the fitness of i-th offspring. Then, until the termination
criteria are met, only the bit-wise mutation operator mutates x. After that,
Algorithm 1 selects the individual with the best fitness. If there is a tie in line
5 of Algorithm 1, then we consider choosing among all the individuals of the
highest fitness uniformly at random. Next, we prove the following theorem.
1 We consider χ ∈ (0, 1] including the default choice χ = 1 used in [25].

122 P. K. Lehre and S. Lin

Algorithm 1. (1, λ)-EA [11]
Require: Search spaces X .
Require: Mutation Dt

mut : Ω × {0, 1}n → {0, 1}n.
Require: Payoff function f : X → R.
1: Set t := 1 and choose xt ∈ X uniformly at random.
2: loop until the termination criteria met
3: Set t := t + 1
4: Let yt,1 := D(ωt, xt−1), . . . , yt,λ := D(ωt, xt−1).
5: Choose yt ∈ {yt,1, . . . , yt,λ} among all elements with the largest f -value.
6: (1, λ)-EA: Set xt := yt.
7: Go to 2.

Theorem 3. Given any ε ∈ (0, 1/4), n ∈ N and the function f : {0, 1}2n →
{0, 1} s.t. z = (x, y) where x, y ∈ {0, 1}n and f(z) = Diagonal(x, y), the
runtime of (1, λ)-EA with λ = poly(n) and constant χ ∈ (0, 1] on finding an
ε-approximation to the optimum (i.e. Nash Equilibrium) of f is at least eΩ(n)

with probability 1 − e−Ω(n).

From our analysis of (1, λ)-EA on Diagonal, Theorem 3 shows that for any
constant ε ∈ (0, 1/4), standard (1, λ)-EA cannot find any ε-approximation of the
Maximin optimum of Diagonal efficiently. Moreover, for expected runtime Tε,
if we apply Markov’s inequality:

E[Tε] ≥ ecn Pr(Tε ≥ ecn) = ecn(1 − e−cn) = eΩ(n).

Diagonal only consists of binary values, resulting in a very hard and flat fitness
landscape in the search space. It leads to a random walk of the search point on the
search space, which consists of fitness 1 (i.e. in a grey area of Fig. 1). A further
insight is that traditional EAs (e.g. (1, λ)-EA, (1 + 1) EA) cannot cope well
with the interaction between x and y since these algorithms might only favour
the highest (or lowest) fitness other than Nash equilibrium in Diagonal2. The
approach of considering a pair of individuals from two distinct populations (x ∈
X and y ∈ Y) as a single entity within one population (represented as z := (x, y))
fails to capture the complexity of interactions between these two populations.
So is there any alternative evolutionary approach that could help us to resolve
this issue?

4 Competitive Coevolution Solves Diagonal Efficiently

After our analysis, we know that (1, λ)-EA cannot solve the Diagonal Games
efficiently. We are wondering whether a competitive CoEA exists that can solve
this problem by changing the selection mechanism or increasing the size of off-
spring. The key is to properly capture the complex interaction between pop-
ulations so the algorithm can find Nash equilibrium efficiently. So, we extend
2 The proof of Theorem 3 can be generalised to a broader class of traditional EAs.

Overcoming Binary Adversarial Optimisation with Competitive Coevolution 123

the traditional evolutionary algorithm in the context of competitive CoEAs and
consider the (1, λ)-variant of CoEAs. Then, we prove (1, λ)-CoEA solves the
Diagonal problem in expected polynomial runtime.

Algorithm 2. (1, λ)-CoEA (Alternating Update)
Require: Search spaces X , Y.
Require: Mutation Dt

mut(x) : Ω → {0, 1}n for all x ∈ {0, 1}n

Require: Payoff function g : X × Y → R.
1: Sample x ∼ Unif(X); Sample y ∼ Unif(Y).
2: for t ∈ {1, 2, . . . } do
3: if t mod 2 = 0 then
4: for i = 1 to λ do
5: xi ∼ Dt

mut(x);

6: x := arg maxi∈[λ] g(xi, y);
7: else
8: for i = 1 to λ do
9: yi ∼ Dt

mut(y);

10: y := arg maxi∈[λ] −g(x, yi);

Algorithm 2 samples both design x and test case y uniformly at random. We
define the same mutation operator Dt

mut for both x and y. Ω is the sample space
and Dt

mut(x) means that for any x ∈ {0, 1}n, the algorithm performs bit-wise
mutation for each bit in the bit-string with probability χ/n for χ ∈ (0, n) in
iteration t. Then, instead of using pairwise dominance, we evaluate each design
by taking the payoff of i-th offspring against the parent opponent and evaluate
each test case by taking the payoff of it against the parent design for λ offspring.
Then, until the termination criteria are met, only the bit-wise mutation operator
mutates either x or y in an alternating manner. After that, Algorithm 2 selects
the pair of the design and the test case of the best fitness. In the following
analysis, we define f(xi) := g(xi, y) and h(yi) := −g(x, yi) where x, y, xi, yi are
defined in Algorithm 2. In this paper, in order to archive polynomial runtime for
Algorithm 2, we restrict λ ∈ poly(n).

4.1 Characteristic Lemma for Alternating Update

In this section, without loss of generality, we write the λ offspring at generation
t ∈ N in descending order in their 1-norms: |x(1)

t |1 ≥ |x(2)
t |1 ≥ · · · ≥ |x(λ)

t |1 and
|y(1)

t |1 ≥ |y(2)
t |1 ≥ · · · ≥ |y(λ)

t |1. We also use X
(i)
t and Y

(i)
t to denote |x(i)

t |1 and
|y(i)

t |1 respectively. Xt := |xt|1 and Yt = |yt|1 where xt, yt ∈ {0, 1}n are current
search point at iteration t ∈ N.

Lemma 1. Consider the fitness of x-bitstring denoted by f and the fitness of
y-bitstring denoted by h in Algorithm 2,

124 P. K. Lehre and S. Lin

(1) If |x(1)|1 ≥ |x(2)|1, then f(x(1)) ≥ f(x(2)).
(2) If |y(1)|1 ≥ |y(2)|1, then h(y(1)) ≥ h(y(2)).

By Lemma 1, if λ offspring all have the same 1-norms, then they have the
same fitness. The algorithm will conduct a random walk around the search space.
The algorithm makes actual progress based on argmax selection mechanism when
“crossing the diagonal”. Next, we rigorously define it.

Definition 3. (Cross the diagonal) Given Algorithm 2 applied to Diagonal,
and for current search point (xt, yt) ∈ {0, 1}n ×{0, 1}n, assume that we have the
λ offspring at iteration t ∈ N in descending order in their 1-norms. We say that
λ offspring cross the diagonal horizontally at iteration t, if there exist some
k such that |xk

t |1 ≥ |yt|1 with |yt|1 > |xt|1; We say that λ offspring cross the
diagonal vertically at iteration t if there exist some 	 such that |y�

t |1 > |xt|1
with |xt|1 ≥ |yt|1. We say λ offspring cross the diagonal if either occurs.

Definition 3 means that when crossing the diagonal, the fitness of either x-
bitstring or y-bitstring strictly improves. Next, we introduce the concept of a
c-tube (the purple strip as presented in Fig. 1).

Definition 4. (c-tube) We call C = {(x, y) ∈ X × Y | ||x|1 − |y|1| < c} c-tube.
We say a current search point (x, y) ∈ X ×Y lies outside the c-tube if (x, y) /∈ C.

4.2 Phase 1

Algorithm 2 updates the search point in an alternating manner. From the charac-
teristic lemma and definition of crossing the diagonal, we know when Yt−Xt > 0,
Algorithm 2 makes progress on searching the optimum by updating Xt to let
it cross the diagonal and vice versa. In the analysis, we want to avoid the case
when Yt − Xt > 0, but Algorithm 2 updates Yt instead of Xt in c-tube. This
inspires the following definition. We define a successful cycle formally.

Definition 5. Given c > 0, then for all t ∈ N, we have a successful cycle in
iteration 2t with respect to c which consists of two consecutive steps if X2t + c >
Y2t > X2t, Y2t+1 + c > X2t+1 ≥ Y2t+1 and X2t+2 + c > Y2t+2 > X2t+2. We
have a successful cycle in iteration 2t + 1 with respect to c which consists of two
consecutive steps if Y2t+1 + c > X2t+1 ≥ Y2t+1, X2t+2 + c > Y2t+1 ≥ X2t+2 and
X2t+3 + c > Y2t+3 ≥ Y2t+3.

A successful cycle implies that the algorithm crosses the diagonal twice with-
out leaving the c-tube. We show that the search point will move along the diago-
nal towards the optimum. We use Ht := 2n− (Xt +Yt) as the potential function
to show there is a positive drift towards the optimum (Xt, Yt) = (n, n) although
with a small probability of escaping from the c-tube.

In the following analysis, we consider a deterministic initialisation to simplify
the analysis. The following analysis sufficiently covers the core principle of how
Algorithm 2 works via competitive coevolution. We consider an initialisation at
(0n, 0n) which is the farthest search point with respect to the optimum (n, n) in
terms of Hamming distance. First, we present our main lemma in this subsection.

Overcoming Binary Adversarial Optimisation with Competitive Coevolution 125

Lemma 2. Assume that Algorithm 2 is initialised with (X0, Y0) = (0, 0). For all
t ∈ N, we define Dt := |Xt − Yt| and T := inf{t > 0 | Ht := 2n − Xt − Yt < εn}
and for all τ ∈ N, let event Eτ denote that the algorithm has τ consecutive
successful cycles with respect to c or mint∈[2τ] Ht < εn. If ∃c > 0, pc, pe ∈ [0, 1]
s.t. for all t ∈ [1, T/2),

(1) Pr (X2t+1 ≥ Y2t+1 | X2t < Y2t) ≥ 1 − pc;
(2) Pr (X2t+2 < Y2t+2 | X2t+1 ≥ Y2t+1) ≥ 1 − pc;

(3a) Pr (D2t+1 > c | D2t < c) ≤ pe;
(3b) Pr (D2t+2 > c | D2t+1 < c) ≤ pe,

then Pr (Eτ) ≥ 1 − 2τ(pc + pe) for any constant ε ∈ (0, 1).

The conditions (1), (2) means that the search point crosses the diagonal at
iteration either 2t or 2t + 1 with probability at least 1 − pc. The condition (3)
means that the search point escapes from the c-tube at iteration t + 1 with
probability at most pe for all t ∈ [1, T). So Lemma 2 gives a lower bound for the
probability the algorithm has τ consecutive successful cycles.

We will use Lemma 2 to wrap up all the arguments with τ = Ω(n) and
λ = nΩ(1) later. We proceed with Phase 2 by assuming a successful cycle always
exists in the analysis. In other words, when Yt > Xt, a successful cycle guarantees
that we update Xt and when Yt ≤ Xt, a successful cycle guarantees that we
update Yt. We will compute pc and pe in Phase 2.

4.3 Phase 2

Let us define Dt = |Xt −Yt| to be the distance away from the diagonal. After the
search point crosses the diagonal, we start Phase 2. We divide Phase 2 into three
sections. Firstly, we show that given a search point stays within some c-tube,
the λ offspring cross the diagonal with probability 1 − 2

(
1
λ

) 1
2eχ . Meanwhile, the

search point escapes from the c-tube with prob. bounded by 1
λO(1) . Secondly,

we show that we always have a positive drift when the search point crosses
the diagonal. Finally, we wrap up everything using a restart argument, which
accounts for the failed generations.

Phase 2.1. Firstly, we need some lemmas to formulate the most likely scenarios
when λ offspring are produced.

Lemma 3. [3] Given a binomial random variable Z ∼ Bin(n, p),
Pr (Z is even) = 1

2 + 1
2 · (1 − 2p)n.

We will use Lemma 3 to show the following Lemma 4. So we can see from
Lemma 4, that we need sufficiently large offspring size to avoid the case that
X

(1)
t coincides with X

(λ)
t and guarantee that there is some offspring identical to

the parents pair with high probability.

126 P. K. Lehre and S. Lin

Lemma 4. Given problem size, offspring size and iteration n, λ, t ∈ N and
mutation rate χ = O(1), if t is even, then

Pr
(∃k ∈ [λ], xk

t = xt

) ≥ 1 − e−Ω(λ),Pr
(

max
i∈[λ]

Xi
t > min

i∈[λ]
Xi

t

)

≥ 1 − e−Ω(λ)

If t is odd, then

Pr
(∃	 ∈ [λ], y�

t = yt

) ≥ 1 − e−Ω(λ),Pr
(

max
i∈[λ]

Y i
t > min

i∈[λ]
Y i

t

)

≥ 1 − e−Ω(λ).

Next, we provide some useful concentration inequality, which can be used to
show how much deviation is made by each i-th offspring in the number of 1-bits.
To obtain the concentration, we proceed by using Moment Generating Functions
(MGFs).

Lemma 5. For n ∈ N and any s ∈ [n] ∪ {0}, we define U = V1 − V2 where
V1 ∼ Bin(n − s, χ/n) and V2 ∼ Bin(s, χ/n) are independent, with χ < n. The
MGF (moment generating function) MU (η) ≤ exp (χ(eη − 1)) for any η > 0.

Lemma 6. With the same setting as Lemma 5, for any s ≥ 0 and λ ≥ 1,
Pr (U ≥ s) ≤ e−χλχe−s ln ln λ. Furthermore, for any s ≥ e2χ and any λ ≥ 1,
Pr (U ≥ s) ≤ e−χe−s.

Given Algorithm 2 with constant χ > 0, we define the number of 1-bits in each
offspring in t iteration as X

(i)
t where i ∈ [λ]. Given the current number of 1-bits

s ∈ [n] for the parent solution, we define the change of the number of 1 in Xt for
each offspring by ΔX

(i)
t ∼ V1−V2 where V1 ∼ Bin(n−s, χ

n) and V2 ∼ Bin(s, χ
n).

So ΔX
(i)
t has the same MGFs from Lemma 5 for each i ∈ [n]. From Lemma 6,

for any i ∈ [λ] and s > 0, we have Pr
(
ΔX

(i)
t > s

)
≤ e−χλχe−s ln ln λ.

Phase 2.2. Next, we show in a certain c-tube that the search point crosses
the diagonal with high probability, resulting in the positive drift towards the
optimum. First, we show the search point induced by Algorithm 2 crosses the
diagonal w.h.p.

Lemma 7. Given problem size, offspring size and iteration n, λ, t ∈ N, let c :=
κ ln λ/ ln lnλ for any constant κ ∈ (0, 1), we denote Et ={The algorithm crosses
the diagonal as defined in Definition 3 at iteration t+1}. Assume any constants
χ > 0 and ε ∈ (0, 1). If Dt < c, n − Xt ≥ εn and n − Yt ≥ εn, and if either of
the two conditions holds (1) t is even and Xt < Yt; (2) t is odd and Xt ≥ Yt,
then Pr (Et) ≥ 1 − 2

(
1/λ1/2eχ)

Lemma 7 means that if the search point lies in a given tube of length c, then
before reaching an ε-approximation, the search point keeps crossing the diagonal
with high probability.

Next, we show that the search point deviates from some c-tube with a small
probability. The idea is to show the algorithm is more likely to select the sam-
ples/offspring which lie inside the c-tube. We first prove some lemma to proceed.

Overcoming Binary Adversarial Optimisation with Competitive Coevolution 127

Lemma 8. Let problem size, offspring size and iteration n, λ, t ∈ N, n−Xt ≥ εn
and n−Yt ≥ εn for any constant ε ∈ (0, 1) and constant mutation rate χ ∈ (0, 1).
For any κ ∈ (χ, (1 + χ)/2), let c := κ ln λ/ ln lnλ,

(1) if t is even and Xt < Yt, then c satisfies the following conditions
(A) Pr

(
maxi∈[λ] ΔXi

t ≥ Dt | Dt < c
) ≥ 1 − 2

(
1/λ1/2eχ)

(B) Pr (K/M ≤ 2(1 + δ) (1/λκ−χ)) ≥ 1− e−Ω(λ) for any constant δ ∈ (0, 1)
where ΔXi

t := Xi
t − Xt, and K = |{i | ΔXi

t ≥ Dt + c}| and M = |{i |
ΔXi

t ≥ Dt}|.
(2) If t is odd and Xt ≥ Yt, then c satisfies

(C) Pr
(
maxi∈[λ] ΔY i

t ≥ Dt | Dt < c
) ≥ 1 − 2

(
1/λ1/2eχ)

(D) Pr (K ′/M ′ ≤ 2(1 + δ) (1/λκ−χ)) ≥ 1−e−Ω(λ) for any constant δ ∈ (0, 1)
where ΔY i

t := Y i
t −Yt, and K ′ = |{i | ΔY i

t ≥ Dt +c}| and M ′ = |{i | ΔY i
t ≥

Dt}|.
Notice that in Lemma 8, ΔXi

t denotes the change of number of 1-bits in i-th
offspring of xt, and K = |{i | ΔXi

t ≥ Dt + c}| means the number of sam-
ples/offspring s.t. ΔXi

t ≥ Dt + c and M = |{i | ΔXi
t ≥ Dt}| means the number

of samples/offspring s.t. ΔXi
t ≥ Dt and similar for yt. (A) and (C) conditions

in Lemma 8 means that for sufficiently large λ, the next search point produced
by Algorithm 2 can cross the diagonal with high probability. (B) and (D) con-
ditions in Lemma 8 means that in those offspring which cross the diagonal, the
portion of offspring which make a large jump to cross outside the c-tube is rare
with overwhelmingly high probability.

Lemma 9. (Escape from the c-tube with small prob.) Assume the conditions of
Lemma 8 hold. Consider (1, λ)-CoEA on Diagonal. We define Ht = 2n−Xt −
Yt. Let T := inf{t > 0 | Ht ≤ εn} for any constant ε ∈ (0, 1). For any t ∈ [1, T],
any constants χ ∈ (0, 1) and γ ∈ (0, (1 − χ)/2), we have

Pr(Dt+1 > c | Dt < c) ≤ 9
(

1
λ

)γ

where c is defined in Lemma 8.

Lemma 9 means that if the search point lies in a given tube of length c, then
before reaching ε-approximation, the search point stays in the given tube with
probability 1 − O (1/λγ) for constant γ > 0.

We use Lemma 8 to show that firstly within c-tube, the search point can
cross the diagonal with high probability. Then, we consider two extreme cases
when the search point lies in the tube. Assume Yt > Xt, the first one is that
the search point is close to the upper boundary (with Hamming distance 1),
then we need to show it can still cross the diagonal but not cross too much and
escape from the lower boundary with high probability. The second extreme case
is if the search point stays very close to the diagonal (with Hamming distance
1). It is a challenge to show that the next search point will not escape from the
lower boundary since we have already shown within the tube, that there is a

128 P. K. Lehre and S. Lin

high probability that the offspring jump at least Hamming distance Dt to cross
the diagonal. So, it is the case that a few offspring may escape from the lower
boundary. The key is to observe that more offspring cross the diagonal lie inside
the tube compared with those outside the tube. All the offspring in Algorithm 2
which cross the diagonal have fitness 1. Then Algorithm 2 selects the next search
point uniformly at random from these offspring crossing the diagonal and with
an overwhelming higher probability to select those inside the tube.

Lemma 10. Let problem size, offspring size and iteration n, λ, t ∈ N, n − Xt ≥
εn and n−Yt ≥ εn for any constant ε ∈ (0, 1). For any χ ∈ (0, 1), let Dt ∈ [0, c]
where c = (1+3χ

4) ln λ/ln lnλ. If t is even and Yt > Xt, then Xt+1 − Xt ≥ 1 with
probability at least 1−O(1/λ(1−χ)/4). If t is odd and Yt ≤ Xt, then Yt+1 −Yt ≥ 1
with probability at least 1 − O(1/λ(1−χ)/4). Moreover, let Ht = 2n − Xt − Yt,
then Et(Ht − Ht+1) ≥ 1/2.

From Lemma 10, before reaching ε-approximation, if the search point stays
within the c-tube, there exists positive constant drift towards the optimum when
considering Ht as the Hamming distance to (n, n). Since we show the existence
of positive drift, next we come to the main theorem of this paper.

Phase 2.3. Now, we wrap up everything and use a restart argument to compute
the overall runtime by using Lemma 2 and Lemma 10. Moreover, we will restart
the algorithm every 2Tc generation with x0 = y0 = 0n. Given the problem size
n ∈ N, we have the main result:

Theorem 4. Consider the (1, λ)-CoEA with constant mutation rate χ ∈ (0, 1),
and offspring size λ ≥ (264(2 − δ)n)4/(1−χ) for any constant δ ∈ (0, 1). Assume
that the algorithm is initialised at x = y = 0n, and restarted at x = y = 0n

every 2Tc generations, with Tc := 4(2 − δ)n. Then the expected time to find a
δ-approximation to the Maximin optimum of Diagonal is at most 24(2−δ)λn.

Theorem 4 shows that a large offspring population size helps the CoEA to
cross the diagonal consistently with high probability, which is thus favoured
during selection and finally leads to the positive drift towards the optimum.
Lemma 8 and Lemma 9 show the necessity of large offspring size. Otherwise, a
small number of offspring will let CoEA fall to the flat fitness landscape apart
from the tube along the diagonal and then get lost in the random walk around the
search space. Above all, with proper design of coevolution and large offspring
population size, (1, λ)-CoEA can find an ε-approximation to the optimum of
Diagonal efficiently.

5 Experiments

To complement our asymptotic results with data for concrete problem sizes, we
conduct the following experiments.

Overcoming Binary Adversarial Optimisation with Competitive Coevolution 129

5.1 Settings

We conduct experiments with the (1, λ)-CoEA on Diagonal problem with n =
λ = 1000 and the initialisation of the algorithm is set up as uniformly at random.
We also set different mutation rates in the range of 0.2 to 2.2 in increments of 0.2
and conduct 100 independent runs for each configuration to explore the suitable
range of mutation rate for the Diagonal problem. The budget for each run is
set to be 109 function evaluations.

Fig. 2. Runtime of (1, λ)-CoEA on Diagonal. Figure 2a (left): Runtime against dif-
ferent mutation rates under n = λ = 1000. Figure 2b (right): Runtime against specific
χ = 0.6. The red curve is f(n, λ) = 6λn where in this case we set n = λ. (Color figure
online)

Then, as Fig. 2a shows, χ = 0.6, the expected performance of (1, λ)-CoEA
is the best. Then, we fix such a mutation rate, and run the experiments in the
range of n = 100 to n = 1000 in increments of 100. We conduct 100 independent
runs for each configuration. The budget for each run is 109 function evaluations.

5.2 Results

Figure 2a displays the runtime of (1, λ)-CoEA on Diagonal for different muta-
tion rate from 0.2 to 2.2. This data confirms that for the suitable low muta-
tion rates and sufficiently large offspring size, Algorithm 2 finds the optimum
efficiently. The higher mutation rate eventually leads to the inefficiency of the
algorithm. As we observe in Fig. 2b, under suitable mutation rate χ = 0.6, the
empirical average of the runtime is bounded above by O(λn). Notice that in our
theoretical analysis, we need to require λ = Ω(n4/(1−χ)), while it seems that
λ = O(n) in the experiments is already sufficient to guarantee a polynomial
runtime for (1, λ)-CoEA on Diagonal. This suggests that the current bound
may not be tight and our theoretical analysis still has room to improve.

130 P. K. Lehre and S. Lin

6 Discussion and Conclusion

CoEAs exhibit complex dynamics on Maximin optimisation. To the best of our
knowledge, this paper is the first runtime analysis of CoEAs on binary test-based
adversarial optimisation problems. As a starting point, we propose a binary test-
based problem called Diagonal. We showed that for Diagonal, (1, λ)-EA get
trapped in binary fitness landscape. Thus, traditional (1, λ)-EA failed to find any
approximation to optimum in polynomial runtime due to negative drift induced
by flat fitness landscape. However, for (1,λ)-CoEA with the alternating update
method, if the offspring population is sufficiently large λ = Ω(n4/(1−χ)) with
a reasonable constant mutation rate χ ∈ (0, 1), it can find an approximation
to optimum efficiently in expected runtime O (λn). We want to highlight the
necessity of coevolution and large offspring size in solving these binary problems
in which the fitness landscape is very flat and hard to search from these analyses.

On the technical side, this paper shows that mathematical runtime analyses
are also feasible for the (1, λ)-CoEA. We are optimistic that our tools will widen
the toolbox for future analyses of competitive CoEAs. On the practical side,
it brings insight for practitioners that traditional EAs may not be well suited
for Diagonal-like problems. We suggest using CoEAs with large samples and
relatively low mutation rates, which can help to search Nash Equilibria on binary
problems with similar hard and flat fitness landscapes more efficiently.

For future work, it is interesting to provide a more precise upper bound for the
runtime of (1, λ)-CoEAs on Diagonal and a more general analysis by relaxing
the deterministic initialisation since the empirical results suggest our theoretical
bound might not be tight enough. Using more advanced theoretical tools like [17],
we can derive a better tail bound of the current runtime for (1, λ)-CoEA. It is also
worth exploring whether there are more efficient ways to capture the interaction
between two populations well, for example, any combination of coevolution and
self-adaptation or multi-objective optimisation [23]. Furthermore, it is exciting
to explore the behaviour of CoEAs on a more general class of payoff functions
like generalised boundary test-based problems.

Acknowledgments. This work was supported by a Turing AI Fellowship (EPSRC
grant ref EP/V025562/1). The computations were performed using the University of
Birmingham’s BlueBEAR high performance computing (HPC) service.

Disclosure of Interest. No, I declare no competing interests as defined by Springer

Nature, or other interests that might be perceived to influence results and/or discussion

reported in this manuscript.

Overcoming Binary Adversarial Optimisation with Competitive Coevolution 131

References

1. Al-Dujaili, A., Schmiedlechner, T., Hemberg, A.E., O’Reilly, U.M.: Towards dis-
tributed coevolutionary GANs, August 2018. http://arxiv.org/abs/1807.08194,
arXiv:1807.08194 [cs]

2. Axelrod, R., et al.: The evolution of strategies in the iterated prisoner’s dilemma.
Dyn. Norms 1, 1–16 (1987)

3. Cameron, P.J.: Notes on combinatorics (2007)
4. Doerr, B., Neumann, F.: Theory of evolutionary computation: recent developments

in discrete optimization (2019)
5. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation: Recent

Developments in Discrete Optimization. Natural Computing Series. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-29414-4

6. Fajardo, M.A.H., Lehre, P.K., Lin, S.: Runtime analysis of a co-evolutionary algo-
rithm: overcoming negative drift in maximin-optimisation. In: Proceedings of the
17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, FOGA
2023, pp. 73–83. Association for Computing Machinery, New York, NY, USA (2023)

7. Goodfellow, I., et al.: Generative adversarial nets. Commun. ACM 63(11), 139–144
(2020)

8. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction., vol. 2. Springer, Cham
(2009)

9. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127(1), 57–85 (2001)

10. Hillis, W.: Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42(1–3), 228–234 (1990)

11. Jagerskupper, J., Storch, T.: When the plus strategy outperforms the comma strat-
egy and when not. In: 2007 IEEE Symposium on Foundations of Computational
Intelligence, pp. 25–32. IEEE (2007)

12. Jansen, T., Wiegand, R.P.: The cooperative coevolutionary (1+1) EA. Evol. Com-
put. 12(4), 405–434 (2004)

13. Jaśkowski, W.: Algorithms for test-based problems. Adviser: Krzysztof Krawiec.
Ph.D. thesis. Poznan, Poland: Institute of Computing Science, Poznan University
of Technology (2011)

14. Jong, E.D.D., Pollack, J.B.: Ideal evaluation from coevolution. Evol. Comput.
12(2), 159–192 (2004)

15. Knowles, J., Corne, D., Deb, K.: Multiobjective Problem Solving from Nature:
From Concepts to Applications. Natural Computing Series, 1st edn. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72964-8

16. Lehre, P.K.: Runtime analysis of competitive co-evolutionary algorithms for max-
imin optimisation of a bilinear function. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, pp. 1408–1416, GECCO 2022 (2022)

17. Lehre, P.K., Lin, S.: Concentration tail-bound analysis of coevolutionary and ban-
dit learning algorithms. arXiv preprint arXiv:2405.04480 (2024)

18. Lindgren, K.: Evolutionary phenomena in simple dynamics. In: Artificial Life II,
pp. 295–312 (1992)

19. Mitchell, M.: Coevolutionary learning with spatially distributed populations. Com-
put. Intell. Principles Pract. 400 (2006)

20. Oliveto, P.S., Witt, C.: Erratum: Simplified Drift Analysis for Proving Lower
Bounds in Evolutionary Computation, November 2012. http://arxiv.org/abs/1211.
7184, arXiv:1211.7184 [cs]

http://arxiv.org/abs/1807.08194
http://arxiv.org/abs/1807.08194
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-540-72964-8
http://arxiv.org/abs/2405.04480
http://arxiv.org/abs/1211.7184
http://arxiv.org/abs/1211.7184
http://arxiv.org/abs/1211.7184

132 P. K. Lehre and S. Lin

21. Perolat, J., et al.: Mastering the game of Stratego with model-free multiagent
reinforcement learning. Science 378(6623), 990–996 (2022)

22. Popovici, E., Bucci, A., Wiegand, R.P., De Jong, E.D.: Coevolutionary principles.
In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp.
987–1033. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-
9 31

23. Qin, X., Lehre, P.K.: Self-adaptation via multi-objectivisation: an empirical study.
In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar,
T. (eds.) International Conference on Parallel Problem Solving from Nature, pp.
308–323. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14714-2 22

24. Rosin, C.D.: Coevolutionary search among adversaries. University of California,
San Diego (1997)

25. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1,λ)
EA. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2012, pp. 1349–1356. Association for Computing Machin-
ery, New York, NY, USA (2012)

26. Ruder, S.: An overview of gradient descent optimization algorithms, June 2017.
http://arxiv.org/abs/1609.04747, arXiv:1609.04747 [cs]

27. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

28. Toutouh, J., Hemberg, E., O’Reilly, U.M.: Spatial evolutionary generative adver-
sarial networks. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2019, pp. 472–480. Association for Computing Machinery,
New York, NY, USA (2019)

29. Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. George
Mason University (2004)

https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.1007/978-3-031-14714-2_22
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747

Evolving Populations of Solved Subgraphs
with Crossover and Constraint Repair

Jiwon Lee and Andrew M. Sutton(B)

Algorithmic Evolution Lab, University of Minnesota Duluth, Duluth, USA
{lee02761,amsutton}@d.umn.edu

Abstract. We introduce a population-based approach to solving param-
eterized graph problems for which the goal is to identify a small set of
vertices subject to a feasibility criterion. The idea is to evolve a pop-
ulation of individuals where each individual corresponds to an optimal
solution to a subgraph of the original problem. The crossover operation
then combines both solutions and subgraphs with the hope to generate an
optimal solution for a slightly larger graph. In order to correctly combine
solutions and subgraphs, we propose a new crossover operator called gen-
eralized allelic crossover which generalizes uniform crossover by associat-
ing a probability at each locus depending on the combined alleles of the
parents. We prove for graphs with n vertices and m edges, the approach
solves the k-vertex cover problem in expected time O

(
4km+m4 logn

)

using a simple RLS-style mutation. This bound can be improved to
O

(
4km+m2nk logn

)
by using standard mutation constrained to the

vertices of the graph.

1 Introduction

Many combinatorial problems involving graphs require finding a small set of
components (e.g., vertices or edges) subject to some feasibility criterion. Exam-
ples include the k-vertex cover problem, where a solution is a set of vertices of
size at most k that includes at least one endpoint of every edge in the graph,
and the k-edge dominating set problem in which a solution is a set of edges of
size at most k such that each edge not in the set is adjacent to at least one edge
in the set.

When applying methods from evolutionary computation to solve such prob-
lems, a popular approach to handle infeasibility is to add a penalty term into the
fitness function to ensure feasible solutions are preferred over infeasible solutions.
A somewhat orthogonal approach is to employ some kind of constraint repair
operation that repairs infeasible solutions that may have been produced by muta-
tion or crossover. Recently, Branson and Sutton [1] introduced a focused jump-
and-repair operation that tries to repair infeasible solutions by taking a focused
jump in the fitness landscape and subsequently invokes a domain-specific repair
operator to transform offspring rendered infeasible by mutation into feasible
individuals.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 133–148, 2024.
https://doi.org/10.1007/978-3-031-70071-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_9&domain=pdf
http://orcid.org/0009-0009-2250-3315
http://orcid.org/0000-0003-1295-6715
https://doi.org/10.1007/978-3-031-70071-2_9

134 J. Lee and A. M. Sutton

An open question from [1] is whether populations and crossover might be
used together with constraint repair to efficiently solve parameterized prob-
lems. We address that question in this paper by developing a new population-
based approach in which the population consists of feasible solutions to sub-
graphs of the original graph. We introduce a generalization of uniform crossover,
called generalized allelic crossover, and show that this crossover together with
mutation and constraint repair results in fixed-parameter tractable runtime
for the k-vertex cover problem. In particular, on graphs with n vertices and
m edges, our approach finds a vertex cover of size at most k (if one exists)
within O

(
4km + m4 log n

)
generations using RLS mutation. This bound can be

improved to O
(
4km + m2nk log n

)
using standard mutation that only affects

the segment of the bitstring corresponding to the vertices. Ignoring polynomial
factors, these bounds are not as tight as the FPT bounds for (1+1) EA on
the same problem [1], but are interesting for a number of reasons. First, the
population-based approach can be easily parallelized to incur runtime speedups.
Furthermore, even without parallelization we found the approach to be signifi-
cantly more efficient than the (1+1) EA variant on empirical studies of randomly
generated graphs (reported in Sect. 5).

1.1 Background

Constraint repair is one of the main techniques employed to address con-
strained optimization by randomized search heuristics [2]. Repair-based crossover
operators were initially developed in the context of permutation-based encod-
ings [7,13,15]. A repair mechanism based on local search was applied to ver-
tex cover problems and examined empirically by Pelikan, Kalapala and Hart-
mann [19] for hierarchical Bayesian optimization (hBOA) and the simple genetic
algorithm (SGA). The authors showed that these approaches (along with simu-
lated annealing) produced optimal vertex covers on Erdős-Rényi random graphs
significantly faster than branch-and-bound.

Finding minimal vertex covers has been an intense subject of research for
evolutionary algorithms. Khuri and Bäck [10] investigated handling infeasible
solutions by adding a penalty term to the fitness function that strongly dis-
counts candidate solutions that are not vertex covers. They demonstrated that
a genetic algorithm significantly outperforms the well-known 2-approximation
based on maximal matching on random graphs and structured graphs introduced
by Papadimitriou and Steiglitz [18]. This promising empirical performance of
evolutionary methods on vertex cover influenced the development of theoretical
work on the problem [5,8,17].

From a parameterized complexity perspective, the vertex cover problem was
the first problem for which a fixed-parameter tractable evolutionary algorithm
was developed in the work of Kratsch and Neumann [11]. They proved that
Global SEMO using a tailored mutation operator has an expected optimization
time bounded by O(OPT · n4 + n · 2OPT 2+OPT) on any graph G where OPT is
the size of a minimum vertex cover of G. When the objective function also uses

Evolving Populations of Solved Subgraphs 135

cost of an optimal fractional cover (obtained by linear programming) the bound
is improved to O(n2 log n + OPT · n2 + 4OPTn).

Branson and Sutton [1] recently showed that a focused jump-and-repair oper-
ation can probabilistically simulate iterative compression, which is an algorithm
design technique for efficiently compressing a feasible solution into a slightly
smaller solution. They proved that the (1+1) EA employing focused jump-and-
repair and using a restarting framework results in a fixed-parameter tractable
O(2OPTn2 log n) runtime bound on k-vertex cover problems. They also give
fixed-parameter tractable bounds for the FeedbackVertexSet and OddCy-
cleTransversal problems.

In this paper, we show how a carefully designed crossover operator can also
leverage populations based on subgraphs to probabilistically simulate iterative
compression. The effect of crossover on parameterized complexity has also been
studied on the closest string problem [22].

2 Preliminaries

We consider undirected graphs G = (V,E) where V = {v1, . . . , vn} is a set of
n vertices and E = {e1, . . . , em} ⊆ (

V
2

)
is a family of m 2-element sets of V

called edges. Given a vertex set Sv ⊆ V and an edge set SE ⊆ E, we take the
intersection to be the set of vertices that appear in both sets (i.e., the edge set
is “flattened”): SV ∩ SE = SV ∩

(⋃
{u,v}∈SE

{u, v}
)
. The set difference SV \ SE

is defined analogously.
We construct subgraphs of G = (V,E) using subsets of E. Specifically, for

any edge set SE ⊆ E, the unique subgraph of G corresponding to SE is the
graph (V ∩ SE , SE). The neighborhood of v ∈ V is the set N(v) := {u ∈ V |
{u, v} ∈ E}.

A vertex cover of G = (V,E) is a set S ⊆ V such that for every e ∈ E,
e∩S �= ∅. The problem of deciding if a graph has a vertex cover of a given size is
NP-complete [9], and thus finding a minimum size vertex cover is NP-hard.

Large instances of NP-hard problems can often be solved in practice because
real-world instances usually exhibit some kind of structure that can be leveraged
by solvers. In these settings, worst-case complexity as a function of problem size
alone is not as useful. Parameterized complexity theory [3,4] refines classical
complexity theory by factoring the running time of an algorithm into more than
one parameter of the input. The aim is to extract the hardness of a problem
class by isolating the superpolynomial contribution to the running time to a
parameter independent of the problem size.

Formally, a parameterized problem is expressed as a language L ⊆ Σ∗ × N

for a finite alphabet Σ. A problem L is fixed-parameter tractable if (x, k) ∈ L can
be decided in time g(k) · |x|O(1) for some function g that depends only on k. The
complexity class of fixed-parameter tractable problems is FPT. An algorithm
is a Monte Carlo FPT algorithm for a parameterized problem L if it accepts
(x, k) ∈ L with probability at least 1/2 in time g(k) · |x|O(1) and accepts x �∈ L
with probability zero.

136 J. Lee and A. M. Sutton

Parameterized complexity theory is especially relevant to the analysis of evo-
lutionary algorithms in the context of understanding the influence of problem
structure on the running time of NP-hard optimization problems [16,22]. Assume
(x, k) ∈ L and let T be the optimization time of a randomized search heuristic
(measured, e.g., by the number of calls to the fitness function) until it certifies
(x, k) ∈ L. Any randomized search heuristic with a bound E[T] ≤ g(k) · |x|O(1)

on L can be transformed into a Monte Carlo FPT algorithm by stopping its exe-
cution after 2g(k) · |x|O(1) fitness function evaluations. We thus say a randomized
search heuristic runs in randomized FPT time on a parameterized problem of
size n when E[T] ≤ g(k) · nO(1). The parameterized k-vertex cover problem is,
given a graph G and an integer k, decide whether there is a vertex cover of size
at most k.

2.1 Generalized Allelic Crossover

Let x, y ∈ {0, 1}n. With each locus i ∈ [n], we associate three probabilities p
(0)
i ,

p
(1)
i and p

(2)
i . The generalized allelic crossover operator (GAC) produces an

offspring z from two parents x and y by setting for each i ∈ [n]

zi =

{
1 with probability p

(xi+yi)
i ,

0 otherwise.

Standard uniform crossover [23] can be considered a special case of GAC
when p

(0)
i = 0, p

(1)
i = 1/2, and p

(2)
i = 1 for all i ∈ [n]. Moreover, GAC can also

implement deterministic set operations such as union (p(0)i = 0, p
(1)
i = p

(2)
i = 1)

and intersection (p(0)i = p
(1)
i = 0, p

(2)
i = 1). Keeping p

(0)
i = 0 and p

(2)
i = 1

but varying p
(1)
i recovers the “parameterized uniform crossover” of Spears and

De Jong [21] (if p
(1)
i = p

(1)
j for all i, j ∈ [n]).

We note that GAC is allowed to deviate from common crossover design
philosophies. Specifically, when p

(2)
i < 1 (or p

(0)
i > 0), it becomes possible for

GAC to produce offspring that lie outside the smallest hyperplane containing
both parents. Thus, with such settings, GAC is not a forma-respecting opera-
tor (also called inheritance-respectful by Friedrich et al. [6]), nor does it always
strictly transmit in the sense of Radcliffe [20]. Similarly, it is not necessarily a
geometric crossover operator in the sense of Moraglio [14], as it can, with certain
settings, produce offspring that do not lie in the convex hull described by the
parents.

One may argue that such allowances in some sense perverts the original
philosophy of crossover, which is meant to share information possessed by all
parents. Nevertheless, we show in this paper how it can be leveraged to achieve
good results, at least on the vertex cover problem.

3 A Population-Based Subgraph GA for k-Vertex Cover

The philosophy of our approach is to start with a large population of feasible
solutions to small subgraphs of G, and allow these subgraphs to produce offspring

Evolving Populations of Solved Subgraphs 137

that correspond to feasible solutions of slightly larger subgraphs. This process
continues until a feasible solution is found for the entire graph G.

In the context of the k-vertex cover problem, a population of feasible solutions
to subgraphs corresponds to a set of subgraphs, each with a valid vertex cover
of size at most k. We represent each individual as a bit string of length n + m
in which the first n elements encode a candidate vertex cover and the last m
elements encode a candidate subgraph. Given a bit string x ∈ {0, 1}n+m, we
define the operators S(x) and E(x) that extract the candidate cover and the
candidate edge set, respectively. In particular,

S(x) := {vi ∈ V : i ∈ [n] and xi = 1}
E(x) := {ei ∈ E : i ∈ [m] and xn+i = 1}

Using these operators, we can define the concept of feasibility as follows.

Definition 1. Let G = (V,E) be a graph. An individual x ∈ {0, 1}n+m is fea-
sible when the vertex set S(x) ∩ E(x) corresponds to a feasible k-vertex cover in
the subgraph of G selected by E(x), i.e., when

1. for each e ∈ E(x), e ∩ S(x) �= ∅, and
2. |S(x) ∩ E(x)| ≤ k.

Throughout the paper, we will assume that we are given a graph G that is
guaranteed to have a vertex cover of size k. This is not strictly a limitation,
since the runtime bounds provided can be used to design a search for the small-
est k with probabilistic guarantees on the success of each run (cf the restart
framework in [1]).

In each generation, an offspring is created via crossover or mutation. Sur-
vival selection proceeds similar to the Global SEMO algorithm from evolution-
ary multiobjective optimization: if the offspring is not dominated or tied by
any individuals in the current population, it is included in the next population.
Moreover, any individual in the current population that is dominated by the
offspring does not survive.

Definition 2. A solution x is dominated by a solution y, written as x ≺ y, if
and only if at least one of the following conditions holds.

1. x is infeasible but y is feasible,
2. E(x) ⊂ E(y), or
3. E(x) = E(y) and |S(x)| > |S(y)|.

If E(x) = E(y) and |S(x)| = |S(y)|, then x and y are tied. If y dominates
x or x and y are tied, we write x
 y. If x and y are not tied and x does not
dominate y (and vice versa), then x and y are incomparable.

With probability pc, in line 6 an offspring is created from two parents by
applying a crossover operator, and in line 7, the constraint-repair operation is
called that attempts to repair an offspring that was possibly made infeasible by

138 J. Lee and A. M. Sutton

Algorithm 1: Population-based subgraph GA
Input: A graph G = (V,E) and a crossover probability pc

1 Initialize P0;
2 t ← 0;
3 while Pt does not contain an optimal solution do
4 Choose parents x, y ∈ Pt uniformly at random;
5 with probability pc do
6 z ← Crossover(x,y);
7 z ← ConstraintRepair(z,x,y,G);

8 else
9 z ← Copy(x);

10 z ← Mutate(z);

11 if � ∃w ∈ Pt s.t. z � w then
12 Pt+1 = {w ∈ Pt | w �≺ z} ∪ {z};

13 t ← t+ 1;

crossover. Otherwise, with probability 1−pc, in line 9, no crossover occurs and an
arbitrary parent is copied to the offspring and is varied according to a mutation
operator in line 10. Finally, in line 12 , the offspring is added to the population
if it is not dominated or tied by any element of the population, and all elements
of the population dominated by the offspring are removed.

3.1 Variation Operators and Controlling Population Growth

The crossover operation in Algorithm 1 is implemented as generalized allelic
crossover (defined in Sect. 2.1) on bitstrings of length n + m with the following
probabilities. For all 1 ≤ i ≤ n + m, we set p

(0)
i = 0. Otherwise,

p
(1)
i = p

(2)
i =

{
1/2 for 1 ≤ i ≤ n;
1 for n + 1 ≤ i ≤ n + m.

We may thus think of bitstrings as separated into a length-n vertex segment con-
sisting of the first n elements, and a length-m edge segment consisting of elements
n+1 to n+m. The crossover probabilities are designed so that vertex segments
are combined probabilistically and edge segments are combined deterministi-
cally. In particular, given the offspring z of two parents x and y, it always holds
that S(z) is a uniform random subset of S(x) ∪ S(y) and E(z) = E(x) ∪ E(y).

We consider two separate approaches to mutation. For RLS-Mutation,
an index i is chosen uniformly at random in {1, . . . , n+m} and the single bit xi

is flipped. For Vertex-Mutation, we flip each bit in xi with probability 1/n,
but only for indexes in {1, . . . , n} that correspond to the vertices of G.

We do not consider standard bit mutation on the entire bit string for the
following reasons. We will require that crossover and mutation always create

Evolving Populations of Solved Subgraphs 139

offspring that dominates its parent(s), or is always dominated by a parent.
Enforcing this constraint ensures that the population size cannot increase dur-
ing the execution of the algorithm (captured in Lemma 1 below). The Vertex-
Mutation operator clearly creates an offspring with a subgraph equal to the
one of its parent. The RLS-Mutation operator may add or delete exactly one
edge (or none), in which case one subgraph contains the other. Using standard
bit mutation on the entire bitstring allows for the chance to create an offspring
with an edge set that is incomparable with respect to subset inclusion to the edge
set of its parent. This offspring would also be incomparable to its parent in the
sense of Definition 2. Allowing such incomparable offspring could cause uncon-
trolled population growth during the execution of the algorithm. While there
may be specific techniques to mitigate this growth, in this paper we will restrict
ourselves to the above defined mutation operators that guarantee a population
size that does not grow.

Lemma 1. Consider the execution of Algorithm 1 using either RLS-Mutation
or Vertex-Mutation for its mutation operation. Let Pt denote the population
in generation t. If all individuals in Pt are feasible, it holds that (1) all individuals
in Pt+1 are feasible, and (2) |Pt+1| ≤ |Pt|.
Proof. In line 12 of Algorithm 1, an offspring z is only added to Pt+1 if it is not
dominated nor tied by any individual Pt. The first condition trivially holds, as
all infeasible solutions are automatically dominated by feasible solutions.

Let x, y ∈ Pt be the parents selected in line 4 of Algorithm 1. We argue that
either x ≺ z, z ≺ x, or x and z are tied. If z is not feasible, then the z ≺ x
clearly holds, since x is feasible. Thus, assume that z is also feasible. It suffices
to show that either E(x) ⊆ E(z) or E(z) ⊆ E(x). If one graph is a proper subset
of the other, then we have dominance (of the superset graph). Otherwise, when
E(x) = E(z), then x and z are either tied (if |S(x)| = |S(z)|) or one dominates
the other.

If z was created by crossover, then since p
(1)
i = p

(2)
i = 1 for all indexes

i ∈ {n+1, . . . , n+m}, it follows that E(z) = E(x)∪E(y), and therefore E(x) ⊆
E(z). If z was created by RLS-Mutation, then either E(x) = E(z) (when the
flipped bit index is at most n), otherwise E(z) has gained (respectively, lost)
exactly one edge compared to E(x). This means that E(z) ⊂ E(x) (respectively,
E(x) ⊂ E(z)). Finally, since Vertex-Mutation does not affect the indexes
corresponding to the edges, we would have E(x) = E(z).

Since z is added to the population only if it is not dominated or tied, it
follows that z ∈ Pt+1 ⇐⇒ x �∈ Pt+1 and thus we have |Pt+1| ≤ |Pt|. ��

3.2 Constraint Repair Operator

Crossover can produce infeasible solutions. We employ a constraint repair oper-
ation inspired by the iterative compression procedure that attempts to repair
any crossover offspring that does not correspond to a vertex cover.

In particular, if crossover removes a vertex from S(x)∪S(y), then any uncov-
ered edge can be repaired by adding the neighbors of that vertex back into the

140 J. Lee and A. M. Sutton

offspring’s vertex set. The resulting offspring is guaranteed to be a vertex cover.
However, it is not necessarily feasible in the sense of the k-vertex cover prob-
lem, as it may return a cover of size greater than k. We formalize the vertex
cover repair operator in Algorithm 2

Algorithm 2: ConstraintRepairVC (z, x, y,G)
Input: An offspring z, parents x, y and a graph G = (V,E)

1 if S(z) is a feasible cover for E(z) then return z;
// Store vertices that were removed from S(x) ∪ S(y)

2 A ← (S(x) ∪ S(y)) \ S(z);
3 foreach v ∈ A do
4 S(z) ← S(z) ∪ N(v);

5 return z;

The intuition behind this procedure is that since S(x) is a feasible cover for
E(x) and S(y) is a feasible cover for E(y), if v belongs to one of them, but not
S(z), then the neighbors of v in G may need to be added to potentially cover
the edges in E(z) = E(x) ∪ E(y).

4 Runtime Analysis

Given an individual x ∈ {0, 1}n+m, since S(x) is interpreted to be a candidate
solution in the subgraph defined by E(x), any v ∈ S(x)\E(x) does not contribute
to the solution. This motivates the following definition.

Definition 3. We say an individual x ∈ {0, 1}n+m is efficient when S(x) \
E(x) = ∅. We call a population efficient when all of its individuals are efficient.

We are interested in bounding the total expected number of generations that
Algorithm 1 spends on populations that are not efficient. The mutation operator
together with the fitness domination criteria listed above ensures that there is
always selective pressure toward efficient populations, but in some cases the
“inefficiency” of a population can increase. However, we show in the following
theorem that efficiency is lost only in cases where we are in some sense making
overall progress, and thus the number of times this occurs can be bounded.

Theorem 1. Let G = (V,E) be a graph. We assume that G is connected. Let
P0 be any set of feasible solutions with |P0| = poly(n) and

⋃
x∈P0

E(x) = E. Let
pc ∈ (0, 1) be a constant. The expected number of generations of Algorithm 1 in
which the population is not efficient is bounded above by O

(|P0|2m2 log n
)

using
RLS-Mutation and O

(|P0|2kn log n
)

using Vertex-Mutation.

Evolving Populations of Solved Subgraphs 141

Proof. We design a nonnegative drift potential ϕ over populations as follows.

ϕ(Pt) =
∑

x∈Pt

|S(x) \ E(x)|

. Clearly, ϕ(Pt) = 0 if and only if Pt is efficient.
This drift function can fluctuate during the course of the execution of Algo-

rithm 1. However, we will later show that the number of times it can increase
is strictly bounded. Thus we are able to bound the total time (in expectation)
that the algorithm spends waiting for the potential to decrease to zero. Since
the remainder of the time the potential would be at zero, the population must
be efficient during those generations.

Let A = {ϕ(Pt+1) > ϕ(Pt)} be the event that the offspring created from
population Pt survives into Pt+1 and results in a strict increase in potential. We
first bound the conditional drift of ϕ on the complementary event A, namely,
the potential of Pt+1 is not strictly greater than the potential of Pt. A sufficient
event to decrease the potential is to (1) perform mutation on a single parent
with probability 1 − pc, (2) select x ∈ Pt with probability 1/|Pt|, and (3) flip
exactly one bit in S(x) \ E(x). Summing the probability of these disjoint events
over all possible individuals x ∈ Pt, for RLS-Mutation the conditional drift
can be bounded as

E

[

ϕ(Pt) − ϕ(Pt+1)
∣
∣ Pt, A

] ≥
∑

x∈Pt

(1 − pc)|S(x) \ E(x)|
|Pt|(n + m)

≥ (1 − pc)
|P0|(n + m)

· ϕ(Pt)

since |Pt| ≤ |P0|, by Lemma 1. Similarly, for Vertex-Mutation, the probability
of flipping exactly one particular bit is (1/n)(1 − 1/n)n−1 ≥ 1/e, so we have

E

[
ϕ(Pt) − ϕ(Pt+1)

∣
∣ Pt, A

] ≥ (1 − pc)
|P0|en · ϕ(Pt)

The expected time until ϕ hits zero (or increases, if sooner) can be bounded above
using multiplicative drift [12] as O(|P0|(n + m) log(|P0|n)) = O(|P0|m log n) for
RLS-Mutation and O(|P0|n log n) for Vertex-Mutation.

We now argue that the total number of times that this potential can increase
is strictly bounded for the entire run. We consider two further events in the
offspring creation process. Let B denote the event that z is created by muta-
tion from parent x ∈ Pt and survives into Pt+1, necessarily replacing x in the
population. Let C denote the event that z is created by a successful crossover
between parents x and y, again necessarily replacing x and y in the population.

Note that event C must reduce the population size by at least one because a
new feasible subgraph is created from two parents, and those two parents would
be dominated by the offspring. Thus the event A∩C can happen at most |P0|−1
times during the entire run.

Under RLS-Mutation, a necessary condition for the event A∩B is that the
mutation occurs in the edge segment of the bitstring (indexes larger than n) and
particularly, when a bit is flipped from zero to one. If the mutation producing

142 J. Lee and A. M. Sutton

z had occurred in the vertex segment (indexes at most n) then the potential
cannot increase, as this would imply S(z) > S(x) and E(z) = E(x), thereby z
would be dominated by x. Similarly, if the mutation occurs in the edge segment
and changes a one to a zero, then E(z) ⊂ E(x) and again z would not survive to
be included in Pt+1. Since edges can be added to a subgraph in the population
at most |P0|m times, the event A ∩ B occurs at most |P0|m times during the
entire run.

Under Vertex-Mutation, event A ∩ B only occurs when x is replaced by
offspring z where E(x) = E(z), and to compensate for the fact |S(z) \ E(z)| >
|S(x) \ E(x)|, it must be true that |S(z) ∩ E(z)| < |S(x) ∩ E(x)|. However, both
x and z are necessarily feasible, so |S(x) ∩ E(x)| ≤ k and thus for any given
subgraph in the population, event A∩B can occur at most k times. Since B ∪C
is necessary for A, it follows that A ∩ B and A ∩ C partition A, and thus the
potential can only increase during these events.

Therefore, in the case of RLS-Mutation, the potential can reset at most
|P0|(m+1)−1 times, and for Vertex-Mutation, the potential can reset at most
|P0|(k+1)−1 times. The claimed bounds thus follow from the multiplicative drift
arguments above, and by pessimistically assuming the potential always resets to
the highest possible value and all possible resets occur. ��

To bound the runtime of Algorithm 1, it remains only to estimate the total
time spent on efficient populations. The proof of the following theorem estab-
lishes this bound by determining the probability that crossover successfully pro-
duces a dominating offspring from any parents in an efficient population. Such
an event strictly reduces the population size by combining two solved subgraphs
into a larger solved subgraph. The total waiting time for these events together
with the time spent on inefficient populations yields the claimed bounds.

Theorem 2. Let G = (V,E) be a connected graph and let P0 be any polynomial-
size set of feasible individuals such that E =

⋃
x∈P0

E(x).
Setting pc ∈ (0, 1) to be a constant, Algorithm 1 finds a k vertex cover of G

(if one exists) in O
(
4k|P0| + |P0|2m2 log n

)
generations using RLS-Mutation

and in O
(
4k|P0| + |P0|2nk log n

)
generations using Vertex-Mutation.

Proof. By Theorem 1, the expected number of generations the algorithm spends
on populations that are not efficient is at most O

(|P0|2m2 log n
)

using RLS-
Mutation and at most O

(|P0|2kn log n
)

using Vertex-Mutation.
We thus seek to bound the number of generations spent on efficient popu-

lations until an optimal solution is found. Suppose that Pt is efficient and let
x, y ∈ Pt with E(x) �= E(y). Since both x and y must be feasible, S(x) is a
cover of the subgraph E(x) and S(y) is a cover of the subgraph E(y). More-
over, the feasibility of x and y together with the efficiency of Pt guarantees that
|S(x)|, |S(y)| ≤ k. Thus S(x)∪S(y) is a valid cover of the subgraph E(x)∪E(y)
with |S(x) ∪ S(y)| ≤ 2k. We have also assumed there is a k-cover of the entire
graph G, namely S∗ ⊆ V where |S∗| ≤ k. Then S∗ ∩ (E(x) ∪ E(y)) is also
a cover of the subgraph E(x) ∪ E(y). Let R = (S(x) ∪ S(y)) \ S∗ denote the

Evolving Populations of Solved Subgraphs 143

set of vertices that belong to S(x) ∪ S(y), but not to the optimal cover. Let
T = (S(x) ∪ S(y)) ∩ S∗ be the set of vertices that belong to both covers.

We consider the application of generalized allelic crossover using x and y as
parents to produce an offspring z. Note that E(z) = E(x) ∪ E(y) since p

(1)
i =

p
(2)
i = 1 for all n+1 ≤ i ≤ n+m in the edge segment of the bitstring. Similarly, for

all 1 ≤ i ≤ n in the vertex segment of the bitstring, we have p
(1)
i = p

(2)
i = 1/2,

so every vertex v ∈ S(x) ∪ S(y) belongs to S(z) with probability 1/2. Since
p
(0)
i = 0 for all i, any vertex (respectively, edge) not in S(x)∪S(y) (respectively,

E(x) ∪ E(y)) will not belong to S(z) (respectively, E(z)).
Note that since T ⊆ (S(x)∪S(y)), we have S(z) = T with probability exactly

2−|S(x)∪S(y)| ≥ 2−2k. We condition on this event for the remainder of the proof.
Every edge in the subgraph E(x) ∪ E(y) = E(z) that is not covered by S(z)
must have one endpoint in S∗ and one endpoint in R because both S∗ and
(S(x) ∪ S(y)) are valid vertex covers of E(x) ∪ E(y).

After crossover, the repair operation listed in Algorithm 2 identifies the set of
vertices removed from S(x)∪S(y), which in this csea corresponds exactly to the
set R, and then add the neighbor set N(R). This results in a repaired offspring
z′ with S(z′) = T ∪ N(R) ⊆ S∗ which must cover E(x) ∪ E(y) = E(z′).

The fact S(z′) ⊆ S∗ implies |S(z′)| ≤ k and so it follows that x, y ≺ z′,
and since z′ would not be dominated by any other element of the population, z′

replaces x and y in Pt+1. This event, which occurs with probability at least 4−k,
results in a strictly smaller population |Pt+1| < |Pt|.

A feasible, efficient population containing more than one individual can
always shrink with probability Ω(4−k) under the above sequence of events. It
follows that the waiting time until an efficient population shrinks in this way
is bounded above by O(4k). The population can shrink at most |P0| − 1 times
before it consists of a single feasible individual x∗. As GAC always composes
subgraphs by union, it holds that E(x∗) = E, and since feasibility is maintained
S(x∗) is a vertex cover of size at most k for G.

Before generating x∗, the algorithm can spend at most O(4k|P0|) generations
on efficient populations and the total time spent on inefficient populations is
bounded by Theorem 1, which yields the claimed result. ��

Theorem 2 requires only an initial population of feasible subgraphs that
compose into G. For specific graphs, this could be constructed by including
promising subgraphs that are hoped to be “close” to an optimal cover. However,
every graph at least has a natural initial population of size m in which each
subgraph consists of a single unique edge from G (together with a cover that
contains at least one vertex incident on that edge). This yields the following
general bound.

Corollary 1. Let G = (V,E) be a graph on n vertices and m edges. Algorithm 1
finds a vertex cover of size at most k of G (if one exists) in O

(
4km + m4 log n

)

generations using RLS-Mutation and O
(
4km + m2nk log n

)
generations using

Vertex-Mutation.

144 J. Lee and A. M. Sutton

Proof. Construct P0 from G as follows. For each edge {u, v} ∈ E, let x be any
string in {0, 1}n+m such that xu = 1 and E(x) = {{uv}}. Then P0 satisfies the
conditions for Theorem 2. ��

5 Experiments

To investigate the concrete running time of Algorithm 1, and to compare it
with the similar repair-based (1+1) EAj+r

k introduced in [1], we performed a
number of experiments on the planted vertex cover instances from [1]. Each
of these instances were generated by randomly selecting a subset of k vertices
and including an edge with probability p subject to having at least one end point
in the subset.

The number of vertices n varies from 20 to 100 by 10, planted cover size k
varies from 3 to 10, and edge probabilities are p ∈ { 1

10 , 1
4 , 1

2 , 3
4}. On each graph

we ran each algorithm for 50 trials and measured the run time as the number of
calls to the fitness function until a vertex cover of size at most k is found. For
Algorithm 1, we set pc = 0.8, and experimented with both RLS-Mutation and
Vertex-Mutation. The median run times for k = 10 as a function of n are
reported in Fig. 1. We omit results for other k-values due to space constraints,
but mention that the trend is identical. Note that after generating a random
graph for a given n, we remove isolated vertices and the figures report the true n
after removal. This explains the variability in n at low edge densities. In Fig. 2,
we plot the median run times as a function of k fixing n = 100. The bottom
right plot shows the median as a function of k taken over all p and n. We also
provide box plots of the running time of all three algorithms on graphs with
n = 100, k = 10 over all edge densities in Fig. 3.

Despite the fact that runtime bound of the (1+1) EAj+r
k from [1] is exponen-

tially smaller in k than the one derived in Corollary 1, we see that Algorithm 1
with Vertex-Mutation scales better with both n and k on this class of graphs,
and has smaller variability as measured by interquartile range. Not surprisingly,
the variant using RLS-Mutation is strongly affected by the number of edges,
and performs poorly on denser graphs, as can be seen in Fig. 1.

Khuri and Bäck [10] conducted experiments on hard vertex cover instances
using a GA with two-point crossover and proportional selection. In addition to
(nonplanted) random graphs, they investigated two structured graph instances
originally defined by Papadimitriou and Steiglitz [18] to demonstrate that greedy
degree-heuristics fail to approximate minimum vertex covers. These instances
(PS100 and PS202) have vertex counts n = 100, 202, edge counts m = 1122, 4556,
and minimum vertex covers of size k = 34, 68. We also report the success rates
of the population subgraph algorithm on these instances for different runtime
budgets in Table 1 along with the success rates reported in [10]. Note that the
minimum covers for these graphs are comparatively large. Nevertheless, we still
observe surprisingly high success rates, even at runtime budgets much smaller
than 4k.

Evolving Populations of Solved Subgraphs 145

Fig. 1. Median run times of Algorithm 1 and the (1+1) EAj+r
k on random planted

k = 10 vertex cover instances of varying edge density p as a function of n. Error bars
denote interquartile range.

Fig. 2. Median run times of Algorithm 1 and the (1+1) EAj+r
k on random planted

vertex cover instances of varying edge density p as a function of k. Error bars denotein-
terquartile range.

146 J. Lee and A. M. Sutton

Fig. 3. Runtime statistics for n = 100 and k = 10 over all edge densities.

Table 1. Success rates on Papadimitriou-Steiglitz instances PS100 and PS202 from
[10] for different runtime budgets.

budgetKhuri & Bäck GA [10] GA RLS-MutationGA Vertex-Mutation

PS100 PS202 PS100 PS202 PS100 PS202

2 · 104 65% — 18% 0% 97% 0%
4 · 104 — 60% 63% 0% 98% 29%
106 — — 100% 96% 100% 100%

6 Conclusion

We have introduced a population-based technique designed to solve feasible
component-selection problems in graphs. In this technique, one begins with a
large population of solutions to small subgraphs, e.g., single edges or vertices.
We showed that if a suitable constraint repair operation is used, the approach can
achieve fixed-parameter tractable running time bounds on the NP-hard k vertex
cover problem. Our results give insight into how crossover can be leveraged to
exploit structure in hard combinatorial optimization problems. Moreover, exper-
imental results suggest that the population-based approach can be more efficient
than the (1+1) EA on certain classes of graphs.

There are a number of potential directions for future work. As yet, no lower
bounds exist for FPT evolutionary algorithms on the k-vertex cover problem.
This is rather difficult, as the structure of different kinds of graphs have varying
and unpredictable degrees of influence on the assorted modules of evolution-
ary algorithms. Nevertheless, it would be interesting to obtain lower bounds in
terms of k for certain graph categories. Moreover, the proposed subgraph app-
roach leverages only a suitable constraint repair operations, so it could be easily
extended to similar problems in which a small set of vertices or edges need to
be selected subject to some feasibility criterion.

Acknowledgments. This research was funded by NSF grant 2144080.

Disclosure of Interests. The authors have no competing interests.

Evolving Populations of Solved Subgraphs 147

References

1. Branson, L., Sutton, A.M.: Focused jump-and-repair constraint handling for
fixed-parameter tractable graph problems. In: Proceedings of the Sixteenth
ACM/SIGEVO Conference on Foundations of Genetic Algorithms. Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3450218.3477304

2. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art. Comput. Methods
Appl. Mech. Eng. 191(11–12), 1245–1287 (2002). https://doi.org/10.1016/S0045-
7825(01)00323-1

3. Downey, R.G., Fellows, M.R.: Parameterized Complexiy. Springer, New York
(1999). https://doi.org/10.1007/978-1-4612-0515-9

4. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Cham (2006).
https://doi.org/10.1007/3-540-29953-X

5. Friedrich, T., Hebbinghaus, N., Neumann, F., He, J., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective mod-
els. In: Proceedings of the Conference on Genetic and Evolutionary Computa-
tion (GECCO), London, UK, pp. 797–804. ACM (2007).https://doi.org/10.1145/
1276958.1277118

6. Friedrich, T., et al.: Crossover for cardinality constrained optimization. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO).
ACM, July 2022. https://doi.org/10.1145/3512290.3528713

7. Goldberg Jr., D.E., Lingle, R.: Alleles, loci, and the traveling salesman problem.
In: Grefenstette, J.J. (ed.) Proceedings of the First International Conference on
Genetic Algorithms and their Applications (ICGA), Pittsburgh, PA, USA, vol. 154,
pp. 154–159. Lawrence Erlbaum, Hillsdale, NJ (1985)

8. Jansen, T., Oliveto, P.S., Zarges, C.: Approximating vertex cover using edge-
based representations. In: Neumann, F., Jong, K.A.D. (eds.) Proceedings of the
Twelfth Workshop on Foundations of Genetic Algorithms (FOGA XII), Adelaide,
SA, Australia, 16–20 January 2013, pp. 87–96. ACM (2013). https://doi.org/10.
1145/2460239.2460248

9. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Computer
Computations, Held 20–22 March 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA, pp. 85–103. The IBM Research Sym-
posia Series, Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-
2001-2_9

10. Khuri, S., Bäck, T.: An evolutionary heuristic for the minimum vertex cover prob-
lem. In: Kunze, J., Stoyan, H. (eds.) Workshops of the Eighteenth Annual German
Conference on Artificial Intelligence (KI-1994), pp. 86–90, Saarbrücken, Germany
(1994)

11. Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the ver-
tex cover problem. Algorithmica 65(4), 754–771 (2012). https://doi.org/10.1007/
s00453-012-9660-4

12. Lengler, J.: Drift analysis. In: Doerr, B., Neumann, F. (eds.) Theory of Evolution-
ary Computation - Recent Developments in Discrete Optimization, pp. 89–131.
Natural Computing Series, Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-29414-4_2

https://doi.org/10.1145/3450218.3477304
https://doi.org/10.1145/3450218.3477304
https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1145/1276958.1277118
https://doi.org/10.1145/1276958.1277118
https://doi.org/10.1145/3512290.3528713
https://doi.org/10.1145/2460239.2460248
https://doi.org/10.1145/2460239.2460248
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s00453-012-9660-4
https://doi.org/10.1007/s00453-012-9660-4
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-030-29414-4_2

148 J. Lee and A. M. Sutton

13. Mitchell, G.G., O’Donoghue, D., Barnes, D., McCarville, M.: GeneRepair - a repair
operator for genetic algorithms. In: Late-Breaking Papers at the Genetic and Evo-
lutionary Computation Conference (GECCO), Chicago, IL, USA, pp. 235–239
(2003). http://mural.maynoothuniversity.ie/10351/

14. Moraglio, A.: Abstract convex evolutionary search. In: Proceedings of the Eleventh
Workshop on Foundations of Genetic Algorithms (FOGA XI). ACM, January 2011.
https://doi.org/10.1145/1967654.1967668

15. Mühlenbein, H.: Parallel genetic algorithms in combinatorial optimization. In:
Balci, O., Sharda, R., Zenios, S.A. (eds.) Computer Science and Operations
Research: New Developments in their Interfaces, pp. 441–453. Pergamon Press,
Amsterdam (1992). https://doi.org/10.1016/b978-0-08-040806-4.50034-4

16. Neumann, F., Sutton, A.M.: Parameterized complexity analysis of randomized
search heuristics. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Com-
putation: Recent Developments in Discrete Optimization, pp. 213–248. Natu-
ral Computing Series. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
29414-4_4

17. Oliveto, P.S., He, J., Yao, X.: Analysis of the (1+1)-EA for finding approximate
solutions to vertex cover problems. IEEE Trans. Evol. Comput. 13(5), 1006–1029
(2009). https://doi.org/10.1109/tevc.2009.2014362

18. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Upper Saddle River (1982)

19. Pelikan, M., Kalapala, R., Hartmann, A.K.: Hybrid evolutionary algorithms on
minimum vertex cover for random graphs. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), London, UK, pp. 547–554. ACM
(2007). https://doi.org/10.1145/1276958.1277073

20. Radcliffe, N.J.: Forma analysis and random respectful recombination. In: Proceed-
ings of the Fourth International Conference on Genetic Algorithms (ICGA) (1991)

21. Spears, W.M., Jong, K.A.D.: On the virtues of parameterized crossover. In: Pro-
ceedings of the Fourth International Conference on Genetic Algorithms (ICGA),
pp. 230–236 (1991)

22. Sutton, A.M.: Fixed-parameter tractability of crossover: steady-state GAs on the
closest string problem. Algorithmica 83(4), 1138–1163 (2021). https://doi.org/10.
1007/s00453-021-00809-8

23. Syswerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the Third
International Conference on Genetic Algorithms (ICGA), vol. 3, pp. 2–9 (1989)

http://mural.maynoothuniversity.ie/10351/
https://doi.org/10.1145/1967654.1967668
https://doi.org/10.1016/b978-0-08-040806-4.50034-4
https://doi.org/10.1007/978-3-030-29414-4_4
https://doi.org/10.1007/978-3-030-29414-4_4
https://doi.org/10.1109/tevc.2009.2014362
https://doi.org/10.1145/1276958.1277073
https://doi.org/10.1007/s00453-021-00809-8
https://doi.org/10.1007/s00453-021-00809-8

Analysis of Evolutionary Diversity Optimisation
for the Maximum Matching Problem

Jonathan Gadea Harder1(B) , Aneta Neumann2 , and Frank Neumann2

1 Hasso Plattner Institut, Potsdam, Germany
jonandrop.ja@gmail.com

2 University of Adelaide, Adelaide, South Australia

Abstract. This paper delves into the enhancement of solution diversity in evolu-
tionary algorithms (EAs) for the maximum matching problem, with a particular
focus on complete bipartite graphs and paths. We utilize binary string encod-
ing for matchings and employ Hamming distance as the metric for measuring
diversity, aiming to maximize it. Central to our research is the (µ+ 1)-EAD and
2P-EAD , applied for diversity optimization, which we rigorously analyze both
theoretically and empirically.

For complete bipartite graphs, our runtime analysis demonstrates that, for
reasonably small µ, the (µ + 1)-EAD achieves maximal diversity with an
expected runtime of O(µ2m4 log(m)) for the big gap case (where the pop-
ulation size µ is less than the difference in the sizes of the bipartite parti-
tions) and O(µ2m2 log(m)) otherwise. For paths we give an upper bound of
O(µ3m3). Additionally, for the 2P-EAD we give stronger performance bounds
of O(µ2m2 log(m)) for the big gap case, O(µ2n2 log(n)) otherwise, and
O(µ3m2) for paths. Here n is the total number of vertices and m the number
of edges. Our empirical studies, examining the scaling behavior with respect to
m and µ, complement these theoretical insights and suggest potential for further
refinement of the runtime bounds.

1 Introduction

Evolutionary algorithms (EAs) stand as a robust class of heuristics that navigate the
intricate landscapes of various domains, from combinatorial optimization to bioinfor-
matics, and have proven especially valuable in addressing problems within graph the-
ory [25]. Central to the discussion in the field is the concept of diversity within EAs,
which has been pivotal in enhancing the search process and preventing premature con-
vergence on suboptimal solutions [11].

1.1 Related Work

Recent research in evolutionary computation investigates various connections between
quality and diversity. Quality Diversity (QD) has gained recognition as a widely adopted
search paradigm, particularly in the fields of robotics and games [1,4,5,15,29,30]. The
goal of QD is to illuminate the space of solution behaviours by exploring various niches

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 149–165, 2024.
https://doi.org/10.1007/978-3-031-70071-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_10&domain=pdf
http://orcid.org/0000-0002-0869-0865
http://orcid.org/0000-0002-0036-4782
http://orcid.org/0000-0002-2721-3618
https://doi.org/10.1007/978-3-031-70071-2_10

150 J. Gadea Harder et al.

in the feature space and maximizing quality within each specific niche. In particular, the
popular MAP-elites algorithm divides the search space into cells to identify the solution
with the highest possible quality for each cell [1,19,33,34]

The area of Evolutionary diversity optimization (EDO) aims to find a maximal
diverse set of solutions that all meet a given quality criterion. EDO approaches have
been applied in a wide range of settings. Diversity, while typically a means to avoid
stagnation in the search for a single optimal solution, here is leveraged to yield a set of
diverse, high-quality solutions. This is advantageous for decision-makers who value a
variety of options from which to select the most fitting solution, accounting for different
practical considerations and trade-offs [31,32]. For example the use of different diver-
sity measures has been explored for evolving diverse set of TSP instances that exhibit
the difference in performance of algorithms for the traveling salesperson problem as
well as differences in terms of features of variation of a given image [6]. In the classical
context of combinatorial optimization, EDO algorithms have been designed for prob-
lems such as the knapsack problem [2], the computation of minimum spanning trees [3],
communication networks [14,24], to compute sets of problem instances [12,22,23], as
well as the computation of diverse sets of solutions for monotone submodular functions
under given constraints [8,21]. Furthermore, Pareto Diversity Optimization (PDO) has
been developed in [20] which is a coevolutionary approach optimizing the quality of the
best possible solution as well as computing a diverse set of solutions meeting a given
threshold value. EDO approaches have been analyzed with respect to their theoretical
behavior for simple single- and multi-objective pseudo-Boolean functions [10] as well
as simple scenarios of the traveling salesperson problem [6,26,27], the minimum span-
ning tree problem [3], the traveling thief problem [28], the permutation problems [7]
and the optimization of submodular functions [21].

1.2 Our Contribution

This paper builds upon the methodology of [13] applying the theoretical runtime anal-
ysis framework to the maximum matching problem, specifically in bipartite graphs and
paths. We aim to provide a deeper understanding of how diversity mechanisms influence
the efficiency of population-based EAs in converging to a diverse set of high-quality
maximum matchings.

To achieve this, we adopt a binary string representation for matchings and use Ham-
ming distance as a measure of diversity. We then delve into the theoretical underpin-
nings of evolutionary diversity optimization for the maximummatching problem, exam-
ining structural properties that impact the performance of diversity-enhancing mecha-
nisms within EAs. We provide runtime analysis for evolutionary algorithms, shedding
light on their scalability for different problem instances. Finally, we present our experi-
mental investigations to assess how close the bounds on the theoretical runtimes match
the experimental runtimes.

In summary, our research provides theoretical insights and empirical evidence to
understand how diversity can be effectively maximized for the maximum matching
problem. Our findings contribute to a deeper understanding of the interplay between
diversity and optimization in EAs and pave the way for further research in this direc-
tion.

Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem 151

The paper is organized as follows. In Sect. 2, we introduce the maximum matching
problem and the evolutionary diversity optimization approaches analyzed in this study.
We then explore structural properties and present runtime analyses for diversity opti-
mization in the context of complete bipartite graphs and paths (Sect. 3). Experimental
investigations are detailed for both unconstrained and constrained scenarios (Sects. 4
and 5), followed by concluding remarks and suggestions for future research directions
(Sect. 6).

2 Preliminaries

In this part of the paper, we present the core concepts related to diversity optimization
for matchings in bipartite graphs. We start by establishing the definitions and measures
of diversity that will be used throughout our discussion.

2.1 Maximum Matching Problem and Diversity Optimization

Our study is concerned with the matching problem in bipartite graphs, described by a
graph G = (V,E). The aim is to find a maximum matching M , which is a collection
of edges that do not share common vertices. It is presumed that each individual in the
starting population represents a valid maximum matching. Our analysis is directed at
determining how long it takes evolutionary algorithms to cultivate a population that is
not only diverse but also meets a specified quality benchmark.

Let x ∈ {0, 1}|E| represent a bitstring where each bit corresponds to an edge in E,
indicating whether the edge is included in the matching.

The divergence between individuals is gauged using the Hamming distance, which
is appropriate given our binary string representation of solutions. This distance mea-
sures how many bits differ between two strings.

2.2 Diversity Measure

The diversity of a multiset (duplicates allowed) of search points P (called population in
the following) is defined as the cumulative Hamming distance across all pairs of unique
individual within P . This is mathematically expressed as

D(P) =
∑

(x,y)∈P̃×P̃

H(x, y),

where P̃ is the set (no duplicates) containing all solutions in P , and H(x, y) is the
Hamming distance between any two solutions x and y. The notion of contribution for a
solution x within a population is quantified as the difference in diversity if x were to be
excluded and defined as

c(x) = D(P) − D(P \ {x}).

It is important to note that c(x) = 0 if x is duplicated in P .

152 J. Gadea Harder et al.

2.3 Initial Population

For our analysis, we assume that the initial population consists of maximum matchings.
These can be efficiently obtained using deterministic maximum matching algorithms
such as the Hopcroft-Karp algorithm for bipartite graphs [18].

Algorithm 1:.(μ + 1)-EAD

Input: A population P of µ maximum matchings, individual length m, mutation
probability 1/m

1 ; while termination criterion not met do
2 Choose s ∈ P uniformly at random
3 Produce s′ by flipping each bit of s with probability 1/m independently
4 if s′ meets the quality criteria then
5 Add s′ to P
6 Choose a solution z ∈ P where c(z) = min

x∈P
c(x) u.a.r.

7 Set P := P \ {z}
8 end
9 end

2.4 Algorithms

The (μ+1)-EAD (see Algorithm 1) operates on a principle of maintaining and enhanc-
ing diversity within a population. It starts with a population of solutions, iteratively
evolving them through mutation. In each iteration, it selects a solution uniformly at ran-
dom, applies mutation, and if the new solution meets quality criteria, it is added to the
population. To maintain population size, the least diverse individual (or one of them,
if there are several) is removed. This process continues until the termination criterion
is met. In our case this would be achieving maximal diversity and the quality criterion
being a valid maximum matching.

The Two-Phase Matching EAD (see Algorithm 2) is also designed to generate
diverse solutions in the population. The first phase involves unmatching a random subset
of vertices in a solution, while the second phase focuses on rematching these vertices to
other unmatched vertices in the graph. The algorithm keeps adding these newly formed
solutions to the population if they fulfill the quality criteria and, similar to the (μ + 1)-
EAD, removes the least diverse solutions to maintain population size. The algorithm
continues this process until the set criteria are met, aiming to achieve a diverse set of
high-quality matchings.

2.5 Drift Theorems

We analyse the considered algorithms with respect to their runtime behaviour. The
expected runtime refers to the expected number of generated offspring until a given

Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem 153

Algorithm 2:. Two-Phase Matching EAD (2P-EAD)
Input: A population P of µ maximum matchings, individual length m

1 while termination criterion not met do
2 Choose s ∈ P uniformly at random (u.a.r);
3 Create s′ as a duplicate of s;
4 Select a subset of vertices S ⊆ V, where each vertex is included with probability 1

|V | ;

5 foreach vertex v ∈ S do
6 Unmatch v in s′ (sets only one corresponding bit to 0 if s′ is a valid matching)
7 end
8 foreach vertex v ∈ S do
9 if unmatched neighbors of v exist then

10 Match v in s′ u.a.r with an unmatched neighbor
11 end
12 end
13 if s′ meets quality criteria then
14 Add s′ to P
15 Choose a solution z ∈ P where c(z) = min

xinP
c(x) u.a.r.

16 end
17 end

goal has been achieved (usually until a valid population of maximal diversity has been
computed). For our analysis, we make use of the additive and multiplicate drift theo-
rems which we state in the following.

Theorem 1 (Additive Drift Theorem [17]). Let S ⊆ R
+, (Xt)t∈N over S ∪ {0}, and

T = min{t | Xt ≤ 0}. For δ > 0 with

E[Xt − Xt+1 | T > t] ≥ δ =⇒ E[T | X0] ≤ X0

δ

Theorem 2 (Multiplicative Drift Theorem [9]). Let (Xt)t∈N be random variables
over R, xmin > 0, and let T = min{t | Xt < xmin}. Furthermore, suppose that
X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0, there is some value δ > 0 such
that, for all t < T , it holds that Xt − E[Xt+1 | X0, . . . , Xt] ≥ δXt.

Then E[T | X0] ≤ 1+ln
(

X0
xmin

)

δ .

3 Runtime Analysis for Complete Bipartite Graphs

This section introduces key theoretical results on complete bipartite graphs. We com-
mence with a lemma that characterizes the conditions for maximal diversity within a
population. Subsequently, we present a series of theorems that delineate the expected
runtime to achieve this optimal diversity. These theorems compare the performance of
the (μ + 1)-EAD and 2P-EAD algorithms, providing a quantitative basis for assessing
their efficacy.

154 J. Gadea Harder et al.

Lemma 1 (Diversity of a Population). Let G = ((L,R), E) be a complete bipartite
graph with |R| ≤ |L|. For a population P of size μ < min{ |R|

2 , |L| − |R|}, maximal
diversity D(P) is attained if and only if all matchings in P are pairwise edge-disjoint.

Proof. See the detailed proof in [16]. �	
In the following theorem we show that there is always a local improvement, need-

ing 2 bit flips, to reach a population with maximum diversity if the difference in size
between both partitions is larger than the population size.

Theorem 3. Let G = ((L,R), E) be a complete bipartite graph with μ < |R|
2 , μ <

|L| − |R| and |R| < |L|. In the (μ + 1)-EAD applied to G, the expected time until the
diversity is maximized is O(μ2m2 log(m)).

Proof. We define the potential function Xt as the difference between the optimal diver-
sity divopt and the current diversity div(t) at time t:

Xt := divopt − div(t).

In each solution, exactly |R| vertices from L are adjacent to a matching edge, leav-
ing |L| − |R| vertices in L unadjacent in every solution. Additionally, each vertex in R
can be matched to at most μ < |L|− |R| different vertices across all solutions, ensuring
that, for each vertex in R, there exists a vertex in L that is not matched with it in any
solution.

To show that there is always a 2-bit flip which improves diversity by at least Xt

μ , we
focus on a sequence of improving 2-bit flips. Each 2-bit flip corresponds to changing
a match for a vertex in R, which entails deactivating one edge (currently part of a
matching) and activating another edge (currently not part of the matching). This process
is akin to reassigning a vertex in R to a different, unmatched vertex in L.

Consider an edge e used in i solutions. When this edge is deactivated (removed from
the matching), the diversity change is −(μ−i), since μ−i solutions lose a unique edge,
reducing diversity. Conversely, when a new edge is activated (added to the matching)
that is unused across all other solutions in the current population, it contributes μ − 1
to the diversity.

Thus, for each such 2-bit flip involving edge e, the total change in diversity is:

−(μ − i) + (μ − 1) = −μ + i + μ − 1 = i − 1.

This calculation demonstrates that the diversity improve achieved by applying the 2-bit
flip for an edge in the sequence either decreases or remains unchanged if it is flipped
later in the sequence. Note that in each step of the sequence the newmaximummatching
contains an edge unused by any other matching, so the offspring is always valid and the
diversity improvement is at least 1, since this would be achieved by replacing the parent.
Additionally, when all edges are unique across all solutions, the population becomes
optimal. As a result, the total change across these unique edges equals the difference
from the optimum, Xt.

Let e represent the count of such “imperfect” edges (edges used in more than one
solution). Applying the 2-bit flip to one edge of the sequence gives at-least the diversity

Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem 155

increase it achieves in the sequence, since the value of i can only decrease or remain
unchanged, and it is at most μ. Thus eμ ≥ Xt, which implies e ≥ Xt

μ . The expected
drift then is:

E[Xt − Xt+1 | Xt] ≥ e

μm2

(
1 − 1

m

)m−2

≥ Xt

μ2m2e
.

Given that
(
μ
2

)
2|R| is the maximum diversity, when all edges are pairwise distinct,

it holds that X0 ≤ (
μ
2

)
2|R| ≤ μ2|R| ≤ |R|3 ≤ |L| · |R| · |R| ≤ m1.5, the application

of the multiplicative drift theorem yields the expected runtime of O(μ2m2 log(m)) to
achieve maximum diversity. �	

We now show that the Two-Phase Matching Algorithm achieves significant speedup
since no longer two edges have to be flipped to change where one vertex is matched to.

Theorem 4. Let G = ((L,R), E) be a complete bipartite graph with μ < |R|
2 , μ <

|L| − |R| and |R| < |L|. In the Two-Phase Matching Evolutionary Algorithm applied
to G, the expected time until the diversity is maximized is O(μ2n2 log(n)), where n =
|L| + |R|.
Proof. We define the potential function Xt as the difference between the optimal diver-
sity divopt and the current diversity div(t) at time t:

Xt := divopt − div(t).

The maximal diversity is achieved when all matchings in the population are pairwise
edge-disjoint. The drift in the potential function Xt at each step of the algorithm is
analyzed as follows:

In each step, the algorithm first selects a solution and a subset of vertices, which it
rematches with unmatched vertices in L. Let e represent the count of such “imperfect”
edges (edges used in more than one solution). As shown in Theorem 3 it holds that
e ≥ Xt

μ . The expected drift then is obtained by selecting the corresponding solution to
any of the e edges, unmatching the adjacent vertex in R and rematching it to include
an edge unused by any solution. The probability to unmatch any and no other particular
vertex inR is 1

n (1− 1
n)

n−1 ≥ 1
en , and the probability of matching it with an appropriate

unmatched vertex in L is at-least 1
n .

The expected decrease in the potential function Xt per step, or the expected drift, is
then given by:

E[Xt − Xt+1 | Xt] ≥ e

μn2e
≥ Xt

μ2n2e
,

where the factor 1
μn2 accounts for the probability of selecting the right vertex and mak-

ing a beneficial rematch.
Given that

(
μ
2

)
2|R| is the maximum diversity, when all edges are pairwise distinct,

it holds that X0 ≤ (
μ
2

)
2|R| ≤ μ2|R| ≤ |R|3 ≤ m1.5, the application of the multiplica-

tive drift theorem yields the expected runtime of O(μ2n2 log(n)) to achieve maximum
diversity. �	

156 J. Gadea Harder et al.

Theorem 6 covers the case μ ≥ |L|−|R| missing in the previous theorems, which gives
a much larger runtime bound. Intuitively this happens because as μ gets greater than the
gap between |L|−|R| it is no longer guaranteed that we can always find a new rematch,
such that this matching edge is not used by any other solution, thus making more than
two bit flips necessary. Theorem 5 includes such a situation with a theoretical lower
bound.

Theorem 5. Let G = ((L,R), E) be a complete bipartite graph with |R| < |L|. Con-
sider a population size μ, satisfying μ < |R|

2 and μ ≥ |L| − |R|. There exists a starting
population Pw such that when the (μ + 1)-EAD is applied to G, the expected time to
reach a population with maximal diversity is Ω(m3.5).

Proof. See the detailed proof in [16]. �	
In the following theorem we generalize that while there is not always an improving

2-bit flip, a 4-bit flip can always be found.

Theorem 6. For a complete bipartite graph G = ((L,R), E) where |R| < |L|, let the
population size μ satisfy μ < |R|

2 and μ ≥ |L| − |R|. When the (μ+1)-EAD is applied
to G, the expected time to achieve maximal diversity is bounded by O(μ2 m4 log(m)).

Proof. We investigate the expected time for the (μ + 1)-EAD to maximize diversity
in a complete bipartite graph with the given conditions. Initially, we note that for any
maximum matching there exist |L| − |R| unmatched vertices from the left partition.

Let M be a maximum matching in G. Consider that full diversity is not achieved
yet and thus an edge erl ∈ M is part of multiple maximum matchings. We define
L(r) ⊆ L to be the set of vertices in L that are not matched to a vertex r ∈ R in any of
the solutions of the population. We denote by M(r) the vertex in L to which a vertex
r ∈ R is matched under M .

Consider a matching M , where we want to switch M(r) with an element l ∈ L(r)
to resolve a possible conflict. If there is some r′ ∈ R\{r}so that for any of the μ − 1
other matchings M ′, M(r)
= M ′(r′) and M(r′) ∈ L(r), we can swap M(r) and
M(r′) and we are done. Otherwise, we have that for some r′ ∈ R\{r}, M(r′) ∈ L(r)
and there exist some matching M ′ so that M ′(r′) = M(r) such that no swapping
between M(r) and M(r′) is possible, but given the number of matchings μ, at most
μ − 1 distinct element of L(r) fall into this case. However

|L(r)| − (μ − 1) > |L(r)| − μ > |L| − 2μ > 0,

where we used μ < |L|/2, there must be some r′, so that we are in the first case, i.e.
there exists must exist some r′ ∈ R\{r}, such that M(r′) ∈ L(r) and we can switch
M(r) and M(r′) without conflict.

Just as in Theorem 3 each of those 4-bit flips only decreases or does not change the
multiplicities of other edges, since they are both unique edges over all solutions. Also
successively applying these 4-bit flips at most e times will result in optimal diversity,
so eμ ≥ Xt holds.

Define Xt to be the difference between the optimal diversity and the current diver-
sity at time t. Then, we observe a positive drift in the expected diversity increase per
time step, similarly as Theorem 3 which can be bounded below by:

Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem 157

E[Xt − Xt+1 | Xt] ≥ e

μm4

(
1 − 1

m

)m−4

≥ Xt

μ2m4e
.

Here, 1
μ represents the probability of selecting the correct individual for reassign-

ment, and the term 1
m4

(
1 − 1

m

)m−4
accounts for the probability of selecting the appro-

priate edges for activation and deactivation.
Since the maximum initial diversity gap X0 can be at most mμ2 (each pair of solu-

tions can have a hamming distance of at most m), the Multiplicative Drift Theorem
provides us with a runtime bound of O(μ2m4 log(m)) to achieve maximum diversity.�	

A similar speedup as for μ < |L| − |R| can be shown by applying the 2P-EAD.

Theorem 7. Given a complete bipartite graph G = ((L,R), E) with |R| < |L|, con-
sider a population size μ that fulfills μ < |R|

2 and μ ≥ |L| − |R|. For the 2P-EAD, the
expected time to reach maximal diversity is O(μ2m2 log(m)).

Proof. Consider the (μ + 1)-EAD applied to a complete bipartite graph G =
((L,R), E) under the condition μ ≥ |L| − |R|. Define the potential function Xt as
in the previous theorem:

Xt := divopt − div(t).

Let e be the number of edges that are shared across different matchings. The
expected drift in Xt per step, considering the efficient selection and rematching pro-
cess of only two vertices, is given by:

E[Xt − Xt+1 | Xt] ≥ e

μn2n2

(
1 − 1

n

)n−2

≥ Xt

μ2n4e
,

where the factor 1
μn2 accounts for the probability of selecting the right solution and pair

of vertices and 1
n2 of making a beneficial rematch. The term

(
1 − 1

n

)n−2
considers the

probability of unmatching and rematching exactly two vertices without affecting the
others.

Given the initial diversity gap X0 ≤ mμ2, applying the Multiplicative Drift The-
orem yields an expected runtime of O(μ2n4 log(n)) to achieve maximum diversity.
Now since |L| − |R| ≤ μ < |R|

2 it holds that |R| < |L| < 1.5|R|, which implies
O(|L|) = O(|R|). Also by definition n = |L| + |R|, so O(n2) = O(|L||R|) = O(m)
and we get a bound of O(μ2m2 log(m)). �	

4 Runtime Analysis for Paths

This section introduces key theoretical results on paths. We commence with an intro-
duction of useful notation to simplify the following proofs. Subsequently, we present a
series of theorems that delineate the expected runtime to achieve this optimal diversity.
These theorems compare the performance of the (μ+1)-EAD and 2P-EAD algorithms,
providing a quantitative basis for assessing their efficacy.

158 J. Gadea Harder et al.

In a path with an even number of edges, such as when m = 6, there are multiple
ways to form a maximum matching. Each maximum matching includes exactly three
edges, ensuring that no two edges in the matching share a vertex. The notation EiOj is
used to represent these matchings, where i and j denote the number of edges with even
and odd indices in the matching, respectively. A detailed proof of this result is provided
in [16].

With an even number of edges, such as m = 6, there are the following maximum
matching configurations, represented as (matching edges in red):

E3O0:
0 1 2 3 4 5

E2O1:
0 1 2 3 4 5

E1O2:
0 1 2 3 4 5

E0O3:
0 1 2 3 4 5

The following Lemma characterizes the conditions for maximal diversity within a
population using this notation.

Lemma 2 (Diversity of a Population). For an m-path with m even and population
size μ ≤ m

2 + 1, the population with optimum diversity contains:

– For each j from 0 to �μ
2 � − 1, the individuals EjOm

2 −j and Em
2 −jOj .

– For odd μ and �μ
2 � ≤ k ≤ m

2 − �μ
2 �, it further contains any one individual of the

form EkOm
2 −k.

Proof. See the detailed proof in [16]. �	
Building up on this, in the following theorem we show that there is always a local

improvement, needing 2 bit flips, to improve diversity.

Theorem 8. Let G be a path with m edges, where m is even, and let the population
size μ satisfy 2 ≤ μ ≤ m

2 +1. In the (μ+1)-EAD applied to G, the expected time until
the diversity is maximized is O(μ3m3).

Proof. We consider a path graph with an even number of edges m, where multiple
maximum matchings are possible. The maximum matching is unique when m is odd,
hence the maximum diversity is trivially obtained in that case. Therefore, our analysis
focuses on when m is even.

Within a population, suppose there is duplication. By Lemma 2 it follows that there
exists at least one individual for which the first i ≥ 0 matched edges have even indices
without another individual having the first i + 1 matched edges with even indices, or
an individual where the last i ≥ 0 matched edges have odd indices without another
individual having the last i + 1 matched edges with odd indices.

Considering that the total number of distinct maximum matchings for a path with m
edges exceeds μ, the likelihood of choosing an individual from the current population
and correctly flipping two edges to enhance diversity is at least 1

μ
1

m2 (1− 1
m)m−2. This

lower bound on the probability yields a diversity improvement of at least 1.
If the population has not reached maximal diversity but consists of pairwise distinct

maximum matchings, then there must exist a maximal 0 ≤ j ≤ �μ
2 − 1� such that

EjO
m
2 −j or E

m
2 −jOj is not present in the population. W.l.og. let this be EjO

m
2 −j .

We focus on the individual EkO
m
2 −k with minimal k s.t. k < j (i.e., with the most

odd edges). By applying a 2-bit flip we get Ek−1O
m
2 −k+1. The diversity change, by

Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem 159

replacing the parent, would be only determined by this edge change. This new odd edge
is already used by j matchings, since j is maximal, and only those since else EkO

m
2 −k

would not have the most odd edges of the remaining population. By symmetry the
deactivated even edge is used in μ−j solutions (excluding the parent). Thus the change
in diversity by replacing the parent would be μ − j − j = μ − 2j. By choice of j this is
strictly positive. Since replacing the parent is possible, the diversity increase is at least
of this size. Let Xt denote the difference between the optimal diversity and the current
diversity at time t. The possibility of enhancing diversity via a two-bit flip provides us
with a drift given by

E[Xt − Xt+1 | Xt] ≥ 1
μm2

(
1 − 1

m

)m−2

≥ 1
μm2e

.

Since the initial diversity deficit X0 is at most mμ2 (each pair of solutions can have a
hamming distance of at mostm), applying the additive drift theorem results in a runtime
estimation of O(μ3m3). �	
Theorem 9. In the 2P-EAD applied to a path with m edges, the expected time until the
diversity is maximized is O(μ3m2).

Proof. Since the proof follows closely the arguments presented in Theorem 8, we will
focus only on the different bounds on drift, which is the main differing element.

Any maximum matching EjO
m
2 −j , j > 0 can be chosen with probability 1

μ and

be mutated to Ej−1O
m
2 −j+1 by unmatching the jth vertex and rematching him with

probability 1
2 to his unmatched left neighbour. Since all previous edges have to be of

even index this neighbour must be unmatched. Analogously it holds for EjO
m
2 −j , j <

m − 1 to Ej+1O
m
2 −j−1. For both the case of having duplicates or not being optimal in

Theorem 8 we make use of such a local edge swap. The drift is therefore given by

E[Xt − Xt+1 | Xt] ≥ 1
μn2

(
1 − 1

n

)n−1

≥ 1
μn2e

.

where
(
1 − 1

n

)n−1
is the probability of not rematching any other vertex. Given that

the initial diversity deficit X0 is at most mμ2 (each pair of solutions can have a ham-
ming distance of at most m), the additive drift theorem provides an upper bound on the
expected run time of O(μ3m2), since m = n − 1. �	
The upper bounds provided in Theorems 8 and 9 are general worst-case bounds. How-
ever, it’s worth noting that populations with low diversity may offer more opportunities
for improvement, potentially leading to faster convergence in practice.

For the (μ+1)-EAD, when diversity is low, there’s a higher probability of selecting
individuals with shared edges, making beneficial 2-bit flips more likely. Similarly, for
the 2P-EAD, low diversity increases the chances of unmatching and rematching vertices
in ways that create new, unique matchings.

This observation suggests that the algorithms might exhibit a form of adaptive
behavior, where progress is initially rapid when diversity is low, and then slows as the
population approaches maximal diversity.

Future work could explore this adaptive nature more rigorously, potentially yielding
more nuanced runtime analyses that better reflect the algorithms’ performance across
different stages of the optimization process.

160 J. Gadea Harder et al.

5 Empirical Analysis

In this section, we present our empirical findings on the performance of the evolu-
tionary diversity algorithms on complete bipartite graphs and paths. Our experiments
were designed to test the theoretical predictions made in previous sections, particularly
focusing on the efficiency of the algorithm in terms of the number of iterations (steps)
required to achieve optimal diversity.

Fig. 1. Experimental results on complete bipartite graphs

5.1 Experimental Setup

Our experiments were designed to explore the performance dynamics of the algorithms
under two specific conditions: when the population size μ is held constant and when the
number of edges m remains fixed.

Complete Bipartite Graphs. The starting condition for complete bipartite graphs
involves a maximum matching where for each 0 ≤ i ≤ |R| − 1,ri ∈ R is matched
to li ∈ L, forming a homogeneous initial population. In the constant μ scenario, we
increase the size of both L and R by one unit per iteration to maintain a steady |L|−|R|
difference, allowing a controlled analysis of the algorithms’ scalability. In the constant
m scenario we simply increase μ by one per iteration.

Paths. For paths, the initial population comprises maximum matchings including all
even-indexed edges. With a fixed μ, the number of edges is incrementally increased
by ten in each iteration, in order to cover a wider set of problem sizes, while staying
experimentally feasible. In the constant m case, out of feasibility, we simply increase μ
by one per iteration.

Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem 161

5.2 Methodology

Each experiment was conducted 30 times to determine the average number of iterations
and the standard deviation, estimating the algorithms’ asymptotic runtime for both fixed
population size (μ) and a fixed number of edges (m). For complete bipartite graphs and
fixed m we chose |L| = 24 and |R| = 23 for the small gap case and |L| = 34 and
|R| = 23 for the big gap case, such that the number of edges m = 782 for the small
gap case and m = 756 for the big gap case are comparable in size.

Fig. 2. Experimental results on paths

5.3 Complete Bipartite Graphs

This subsection focuses on the performance of evolutionary diversity algorithms on
complete bipartite graphs, specifically examining the (μ + 1)-EAD and 2P-EAD algo-
rithms.

In Fig. 1a, we show the average number of iterations for a fixed population size
of μ = 8 and different values of |L| − |R|. Specifically, we examine cases where the
difference |L| − |R| is either 1, referred to as the ‘small gap’ scenario or μ+1, the ‘big
gap’ scenario. The (μ + 1)-EAD algorithm presented a quadratic growth in m for the
big gap case in iterations, empirically estimated as μm2, suggesting an out-performance
by a factor of approximately μ log(m) over the theoretical bound. For the small gap
case we empirically estimate the run time as μm2.5, an even stronger suggested out-
performance by a factor of μm1.5 log(m) when compared against the theoretical bound
of O(μ2 m4 log(m)).

In Fig. 1c, we display the average iteration counts for a constant edge count m,
considering the same values of |L| − |R|. These findings echo the trends observed in

162 J. Gadea Harder et al.

Fig. 1a, showcasing how the algorithm’s behavior remains consistent across different
graph sizes and population disparities.

In Fig. 1b for μ fixed and Fig. 1d for m fixed, we zoom in on the results for the 2P-
EAD algorithm. For both the small and big gap case the 2P-EAD algorithm exhibited
a linear increase in the number of iterations with respect to m when μ was held con-
stant and vice versa. Empirically, the run time for 2P-EAD was observed to be close to
μm, a notable deviation from the predicted O(μ2m log(m)). The results summarized
in Table 1 provide a summary of these observations. It is evident that the performance
of the 2P-EAD algorithm is not only superior in practice but also suggests that our
theoretical bounds may be refined to more closely predict the empirical outcomes.

Table 1. Summary of results for complete bipartite graphs

Algo. |L| − |R| > µ |L| − |R| ≤ µ

Empirical Theor. UB Empirical Theor. UB

EAD ∼ µm2 O(µ2m2 log(m)) ∼ µm2.5 O(µ2m4 log(m))

2P ∼ µm O(µ2n2 log(n)) ∼ µm O(µ2m2 log(m))

Table 2. Summary of results for paths

Algorithm Empirical Theor. UB

EAD ∼ µm3 O(µ3m3)

2P ∼ µm2 O(µ3m2)

5.4 Paths

This subsection focuses on the performance of evolutionary diversity algorithms on
paths, specifically examining the (μ + 1)-EAD and 2P-EAD algorithms.

In Fig. 2a, we present the average number of iterations when the population size μ is
fixed at 8. The graph illustrates how the number of iterations required for convergence
changes as the number of edges m in the path increases. Figure 2c shows the average
number of iterations for a fixed number of edges m = 100 and varying population
size μ. For the (μ + 1)-EAD algorithm, a trend of polynomial growth in the number
of iterations is observed as a function of the problem size. When μ is fixed at 8, the
empirical runtime grows in line with μm3, which could indicate a performance better
than the theoretical upper bound of O(μ3m3) by a factor of μ2.

When we examine the 2P-EAD algorithm in Fig. 2b for a fixed μ, and in Fig. 2d
for a fixed m, we notice a similar pattern. The empirical runtime for the 2P-EAD is
consistently around μm2, also possibly deviating by a factor of μ2 from the theoretical
O(μ3m2) bound. The results in Table 2 provide a summary of these observations. It is
evident that the performance of the 2P-EAD algorithm is not only superior in practice
but also suggests that our theoretical bounds may be refined to more closely predict the
empirical outcomes.

Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem 163

6 Conclusions

In this study, we explored the application of evolutionary algorithms (EAs) for max-
imizing diversity in solving the maximum matching problem in complete bipartite
graphs and paths. Our methodology was structured into two distinct phases: a rigorous
theoretical analysis followed by comprehensive empirical evaluations. We specifically
looked at the (μ + 1)-EAD and the Two-Phase Matching Evolutionary Algorithm (2P-
EAD), finding that both could achieve maximal diversity in expected polynomial time,
with 2P-EAD showing a speed advantage in all scenarios. Our findings not only under-
score the utility of EAs in combinatorial diversity problems but also open up avenues
for further research. A significant future direction would be to refine the theoretical
upper bounds of these algorithms’ runtime. Additionally, applying these insights to
other graph problems and exploring real-world applications, could provide practical
benefits.

Acknowledgements. This work has been supported by the Australian Research Council through
grant DP190103894.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Alvarez, A., Dahlskog, S., Font, J.M., Togelius, J.: Empowering quality diversity in dungeon
design with interactive constrained map-elites. In: IEEE Conference on Games, CoG 2019,
pp. 1–8. IEEE (2019). https://doi.org/10.1109/CIG.2019.8848022

2. Bossek, J., Neumann, A., Neumann, F.: Breeding diverse packings for the knapsack problem
by means of diversity-tailored evolutionary algorithms. In: Chicano, F., Krawiec, K. (eds.)
GECCO 2021: Genetic and Evolutionary Computation Conference, Lille, France, 10–14 July
2021, pp. 556–564. ACM (2021). https://doi.org/10.1145/3449639.3459364

3. Bossek, J., Neumann, F.: Evolutionary diversity optimization and the minimum spanning
tree problem. In: Chicano, F., Krawiec, K. (eds.) GECCO 2021: Genetic and Evolutionary
Computation Conference, Lille, France, 10–14 July 2021, pp. 198–206. ACM (2021). https://
doi.org/10.1145/3449639.3459363

4. Bossens, D.M., Tarapore, D.: QED: using quality-environment-diversity to evolve resilient
robot swarms. IEEE Trans. Evol. Comput. 25(2), 346–357 (2021). https://doi.org/10.1109/
TEVC.2020.3036578

5. Cully, A., Demiris, Y.: Quality and diversity optimization: a unifying modular framework.
IEEE Trans. Evol. Comput. 22(2), 245–259 (2018). https://doi.org/10.1109/TEVC.2017.
2704781

6. Do, A.V., Bossek, J., Neumann, A., Neumann, F.: Evolving diverse sets of tours for the trav-
elling salesperson problem. In: Coello, C.A.C. (ed.) GECCO 2020: Genetic and Evolution-
ary Computation Conference, Cancún Mexico, 8–12 July 2020, pp. 681–689. ACM (2020).
https://doi.org/10.1145/3377930.3389844

7. Do, A.V., Guo, M., Neumann, A., Neumann, F.: Analysis of evolutionary diversity optimiza-
tion for permutation problems. ACM Trans. Evol. Learn. Optim. 2(3), 11:1–11:27 (2022).
https://doi.org/10.1145/3561974

https://doi.org/10.1109/CIG.2019.8848022
https://doi.org/10.1145/3449639.3459364
https://doi.org/10.1145/3449639.3459363
https://doi.org/10.1145/3449639.3459363
https://doi.org/10.1109/TEVC.2020.3036578
https://doi.org/10.1109/TEVC.2020.3036578
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1145/3377930.3389844
https://doi.org/10.1145/3561974

164 J. Gadea Harder et al.

8. Do, A.V., Guo, M., Neumann, A., Neumann, F.: Diverse approximations for monotone sub-
modular maximization problems with a matroid constraint. In: Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelligence, IJCAI 2023, pp. 5558–
5566. ijcai.org (2023). https://doi.org/10.24963/IJCAI.2023/617

9. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64(4), 673–
697 (2012). https://doi.org/10.1007/S00453-012-9622-X

10. Friedrich, T., Horoba, C., Neumann, F.: Illustration of fairness in evolutionary multi-
objective optimization. Theor. Comput. Sci. 412(17), 1546–1556 (2011). https://doi.org/10.
1016/J.TCS.2010.09.023

11. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving mecha-
nisms for global exploration. Evol. Comput. 17(4), 455–476 (2009). https://doi.org/10.1162/
EVCO.2009.17.4.17401

12. Gao, W., Nallaperuma, S., Neumann, F.: Feature-based diversity optimization for prob-
lem instance classification. Evol. Comput. 29(1), 107–128 (2021). https://doi.org/10.1162/
evco_a_00274

13. Gao, W., Pourhassan, M., Neumann, F.: Runtime analysis of evolutionary diversity optimiza-
tion and the vertex cover problem. In: Silva, S., Esparcia-Alcázar, A.I. (eds.) Genetic and
Evolutionary Computation Conference, GECCO 2015, Companion Material Proceedings,
pp. 1395–1396. ACM (2015). https://doi.org/10.1145/2739482.2764668

14. Gounder, S., Neumann, F., Neumann, A.: Evolutionary diversity optimisation for sparse
directed communication networks. In: Genetic and Evolutionary Computation Conference,
GECCO 2024. ACM (2024, to appear)

15. Gravina, D., Khalifa, A., Liapis, A., Togelius, J., Yannakakis, G.N.: Procedural content
generation through quality diversity. In: IEEE Conference on Games, CoG 2019, London,
United Kingdom, 20–23 August 2019, pp. 1–8. IEEE (2019). https://doi.org/10.1109/CIG.
2019.8848053

16. Harder, J.G., Neumann, A., Neumann, F.: Analysis of evolutionary diversity optimisation for
the maximum matching problem (2024). https://arxiv.org/abs/2404.11784

17. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolu-
tionary algorithms. Nat. Comput. 3(1), 21–35 (2004). https://doi.org/10.1023/B:NACO.
0000023417.31393.C7

18. Hopcroft, J.E., Karp, R.M.: An N5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput. 2(4), 225–231 (1973). https://doi.org/10.1137/0202019

19. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909 (2015)

20. Neumann, A., Antipov, D., Neumann, F.: Coevolutionary pareto diversity optimization. In:
GECCO 2022: Genetic and Evolutionary Computation Conference, pp. 832–839. ACM
(2022). https://doi.org/10.1145/3512290.3528755

21. Neumann, A., Bossek, J., Neumann, F.: Diversifying greedy sampling and evolutionary
diversity optimisation for constrained monotone submodular functions. In: GECCO 2021:
Genetic and Evolutionary Computation Conference, pp. 261–269. ACM (2021). https://doi.
org/10.1145/3449639.3459385

22. Neumann, A., Gao, W., Doerr, C., Neumann, F., Wagner, M.: Discrepancy-based evolution-
ary diversity optimization. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 991–998. ACM (2018). https://doi.org/10.1145/3205455.3205532

23. Neumann, A., Gao, W., Wagner, M., Neumann, F.: Evolutionary diversity optimization using
multi-objective indicators. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2019, pp. 837–845. ACM (2019). https://doi.org/10.1145/3321707.
3321796

https://doi.org/10.24963/IJCAI.2023/617
https://doi.org/10.1007/S00453-012-9622-X
https://doi.org/10.1016/J.TCS.2010.09.023
https://doi.org/10.1016/J.TCS.2010.09.023
https://doi.org/10.1162/EVCO.2009.17.4.17401
https://doi.org/10.1162/EVCO.2009.17.4.17401
https://doi.org/10.1162/evco_a_00274
https://doi.org/10.1162/evco_a_00274
https://doi.org/10.1145/2739482.2764668
https://doi.org/10.1109/CIG.2019.8848053
https://doi.org/10.1109/CIG.2019.8848053
https://arxiv.org/abs/2404.11784
https://doi.org/10.1023/B:NACO.0000023417.31393.C7
https://doi.org/10.1023/B:NACO.0000023417.31393.C7
https://doi.org/10.1137/0202019
http://arxiv.org/abs/1504.04909
https://doi.org/10.1145/3512290.3528755
https://doi.org/10.1145/3449639.3459385
https://doi.org/10.1145/3449639.3459385
https://doi.org/10.1145/3205455.3205532
https://doi.org/10.1145/3321707.3321796
https://doi.org/10.1145/3321707.3321796

Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem 165

24. Neumann, A., et al.: Diversity optimization for the detection and concealment of spatially
defined communication networks. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO 2023, pp. 1436–1444. ACM (2023). https://doi.org/10.1145/
3583131.3590405

25. Neumann, F., Witt, C.: Bioinspired computation in combinatorial optimization: algorithms
and their computational complexity. In: Blum, C., Alba, E. (eds.) Genetic and Evolution-
ary Computation Conference, GECCO 2013, pp. 567–590. ACM (2013). https://doi.org/10.
1145/2464576.2466738

26. Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Computing diverse sets of high qual-
ity TSP tours by eax-based evolutionary diversity optimisation. In: FOGA 2021: Foundations
of Genetic Algorithms XVI, pp. 9:1–9:11. ACM (2021). https://doi.org/10.1145/3450218.
3477310

27. Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Entropy-based evolutionary diver-
sity optimisation for the traveling salesperson problem. In: GECCO 2021: Genetic and
Evolutionary Computation Conference, pp. 600–608. ACM (2021). https://doi.org/10.1145/
3449639.3459384

28. Nikfarjam, A., Neumann, A., Neumann, F.: Evolutionary diversity optimisation for the trav-
eling thief problem. In: GECCO 2022: Genetic and Evolutionary Computation Conference,
pp. 749–756. ACM (2022). https://doi.org/10.1145/3512290.3528862

29. Nikfarjam, A., Neumann, A., Neumann, F.: On the use of quality diversity algorithms for the
traveling thief problem. In: GECCO 2022: Genetic and Evolutionary Computation Confer-
ence, pp. 260–268. ACM (2022). https://doi.org/10.1145/3512290.3528752

30. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary
computation. Front. Robot. AI 3, 40 (2016). https://doi.org/10.3389/FROBT.2016.00040

31. Ulrich, T., Bader, J., Thiele, L.: Defining and optimizing indicator-based diversity measures
in multiobjective search. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN
2010. LNCS, vol. 6238, pp. 707–717. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15844-5_71

32. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimization. In:
Krasnogor, N., Lanzi, P.L. (eds.) 13th Annual Genetic and Evolutionary Computation Con-
ference, GECCO 2011, Proceedings, Dublin, Ireland, 12–16 July 2011, pp. 641–648. ACM
(2011). https://doi.org/10.1145/2001576.2001665

33. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.B.: Using centroidal voronoi tessellations
to scale up the multidimensional archive of phenotypic elites algorithm. IEEE Trans. Evol.
Comput. 22(4), 623–630 (2017)

34. Zhang, H., Chen, Q., Xue, B., Banzhaf, W., Zhang, M.: Map-elites for genetic programming-
based ensemble learning: an interactive approach [AI-explained]. IEEE Comput. Intell. Mag.
18(4), 62–63 (2023). https://doi.org/10.1109/MCI.2023.3304085

https://doi.org/10.1145/3583131.3590405
https://doi.org/10.1145/3583131.3590405
https://doi.org/10.1145/2464576.2466738
https://doi.org/10.1145/2464576.2466738
https://doi.org/10.1145/3450218.3477310
https://doi.org/10.1145/3450218.3477310
https://doi.org/10.1145/3449639.3459384
https://doi.org/10.1145/3449639.3459384
https://doi.org/10.1145/3512290.3528862
https://doi.org/10.1145/3512290.3528752
https://doi.org/10.3389/FROBT.2016.00040
https://doi.org/10.1007/978-3-642-15844-5_71
https://doi.org/10.1007/978-3-642-15844-5_71
https://doi.org/10.1145/2001576.2001665
https://doi.org/10.1109/MCI.2023.3304085

Archive-Based Single-Objective
Evolutionary Algorithms for Submodular

Optimization

Frank Neumann1(B) and Günter Rudolph2

1 Optimisation and Logistics, School of Computer and Mathematical Sciences, The
University of Adelaide, Adelaide, Australia

frank.neumann@adelaide.edu.au
2 Computational Intelligence, Department of Computer Science, TU Dortmund

University, Dortmund, Germany

Abstract. Constrained submodular optimization problems play a key
role in the area of combinatorial optimization as they capture many
NP-hard optimization problems. So far, Pareto optimization approaches
using multi-objective formulations have been shown to be successful to
tackle these problems while single-objective formulations lead to difficul-
ties for algorithms such as the (1 + 1)-EA due to the presence of local
optima. We introduce for the first time single-objective algorithms that
are provably successful for different classes of constrained submodular
maximization problems. Our algorithms are variants of the (1 + λ)-EA
and (1+1)-EA and increase the feasible region of the search space incre-
mentally in order to deal with the considered submodular problems.

Keywords: evolutionary algorithms · submodular optimization ·
runtime analysis · theory

1 Introduction

Many combinatorial optimization problems that face diminishing returns can be
stated in terms of a submodular function under given set of constraints [7]. The
maximization of a non-monotone submodular function even without constraints
includes the classical maximum cut problem in graphs and is therefore an NP-
hard combinatorial optimization problem that cannot be solved in polynomial
time unless P = NP but different types of approximation algorithms are avail-
able [2]. Monotone submodular functions play a special role in the area of opti-
mization as they capture import coverage and influence maximization problems
in networks. The maximization of monotone submodular functions is NP-hard
even for the case of simple constraint that limits the number of elements that can
be chosen, but greedy algorithms have shown to obtain best possible approxima-
tion guarantees for different types of constraints [7,8]. At best, one can hope to
develop a method that can provide an α-approximation in polynomial time, i.e.,
a solution with a value of at least α f(x∗) where α ∈ (0, 1) and x∗ is an optimal
solution of the submodular function f(·). Such an algorithm was proposed in [8]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 166–180, 2024.
https://doi.org/10.1007/978-3-031-70071-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_11&domain=pdf
https://doi.org/10.1007/978-3-031-70071-2_11

Single-Objective Evolutionary Algorithms for Submodular Optimization 167

where it was proved that a greedy method can find an (1 − 1/e)-approximation
of the maximum of a submodular function in polynomial time.

Although the (1+1)-EA shares many characteristics with a greedy algorithm,
it was proven in [4, Thm. 1], that it can get trapped in local optima even for
monotone submodular problems with a uniform constraint requiring exponential
time to achieve an approximation better than 1/2 + ε for any given ε > 0.

Due to this disappointing result, the focus shifted to other types of evolution-
ary algorithms. Since multiobjective EAs have proven successful in the treatment
of combinatorial problems in the past [3,6,10], the variant GSEMO [5] has been
applied to the maximiziation of a submodular function with cardinality con-
straint. Guided by the proof in [8] it was proven in [4] that the GSEMO can find
a (1 − 1/e)-approximation in polynomial time with small failure probability. In
the sequel there have been several publications in this direction considering dif-
ferent variants of GSEMO together with appropriate muli-objective formulations
treating the considered constraint as an additional objective [1,9,12–15].

Recently, the sliding window GSEMO (SW-GSEMO) has been introduced
in [11] which outscores the performance of the original GSEMO significantly of
large problem instances. The improvement here comes from a sliding window
selection method that selects parent individuals dependent on the anticipated
progress in time during the optimization run. Motivated by the insights gained
through the development of SW-GSEMO, we show that singleobjective EAs with
only few small algorithmic changes to the standard versions are able to achieve
the same theoretical and competitive practical performance as their multiobjec-
tive counterpart, i.e., it is not necessary to apply multiobjective EAs. This result
potentially opens a new area in the development of evolutionary algorithms for
submodular problems which has so far relied on the use of multi-objective prob-
lem formulations and algorithms.

The outline of the paper is as follows. In Sect. 2 we introduce terminology
and basic results regarding submodular functions. Section 3 provides theoret-
ical results for single-objective EAs without archive, whereas Sect. 4 presents
the proof that an (1+1)-EA can successfully solve the submodular problem if
it is equipped with a specific kind of archive. The theoretical findings are sup-
ported by experimental results on graph cover problems in Sect. 5. Finally, Sect. 6
reports on our conclusions.

2 Preliminaries

Definition 1. Let U be a finite ground set and f : 2U → R
+
0 . If for all A,B ⊆ U

holds

a) f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) then f is termed submodular;
b) f(A) ≤ f(B) then f is called monotone.

Many functions arising in combinatorial optimization are submodular. For
example, let A1, . . . , An be subsets of a finite universe U . Then the coverage
function f(S) = | ∪i∈S Ai| with S ⊆ {1, . . . , n} is submodular. Submodular

168 F. Neumann and G. Rudolph

Fig. 1. Gray set A in the left figure is a subset of the gray set B in the middle figure
which in turn is a subset of the gray set C in the right figure. Adding the blue set leads
to a lower gain of area the larger the gray set is. (Color figure online)

functions are also called functions of diminishing returns, as demonstrated in
Fig. 1: The later we add the blue set to the increasing gray set, the smaller is
the gain of area.

Theorem 1 (see [8], Proposition 2.1). The following conditions are equiva-
lent to the definition of submodular set functions:

a) for all A ⊆ B ⊆ U and x /∈ B

f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B)

b) for all A ⊆ B ⊆ U

f(B) ≤ f(A) +
∑

x∈B\A

(f(A ∪ {x}) − f(A))

For later purpose we present an auxiliary result which can be established from
well-known properties of monotone submodular functions [7,8]. We present it
here together with the proof as it is crucial for optimizing monotone submodular
functions with a uniform constraint.

Lemma 1. Let f be a monotone submodular set function, X∗ an optimal solu-
tion and X some feasible solution. Then

f(X∗) ≤ f(X) + r δ (1)

where δ = max
x∈X∗\X

(f(X ∪ {x}) − f(X)) and r = |X∗|.

Proof. Note that we have f(X∗) ≤ f(X ∪ X∗) since f is monotone. Let

δ = max
x∈X∗\X

(f(X ∪ {x}) − f(X))

Single-Objective Evolutionary Algorithms for Submodular Optimization 169

be the largest marginal gain among all elements in X∗ \ X. We have

f(X∗) ≤ f(X ∪ X∗)

≤ f(X) +
∑

x∈X∗\X

(f(X ∪ {x}) − f(X)) (2)

≤ f(X) + |X∗| · δ

= f(X) + r · δ.

where inequality (2) follows from Theorem 1(b). 	

Definition 2. Let c : 2U → R+ with |U | = n < ∞ and budget B > 0. The
constraint c(X) ≤ B is termed a cardinality or uniform constraint if c(X) = |X|
for X ∈ 2U and B ≤ n. Otherwise it is called a general constraint.

Definition 3. The maximization of a monotone submodular function under a
given constraint is termed the monotone submodular maximization problem
(MSMP).

Definition 4. The submodularity ratio αf of a non-negative set function f is
defined as αf = minX⊆Y ⊆U,v �∈Y

f(X∪v)−f(X)
f(Y ∪v)−f(Y) .

A function f is submodular iff αf = 1 holds. In Sect. 4, we will consider general
monotone objective and monotone cost functions and investigate approximations
dependent of αf .

When considering evolutionary algorithms for the optimization of submodu-
lar function, we work with the search space {0, 1}n, i.e. search points are binary
strings of length n. We identify each element ui ∈ U with a bit xi, 1 ≤ i ≤ n,
and define the set X ⊆ U as X = {ui ∈ U | xi = 1}. To ease the presentation
we use the search point x and its set of chosen elements X in an interchangeable
way.

3 (1 + λ)-EA Without Archive

We first consider the case of the optimization of a monotone submodular func-
tions with a uniform constraint, i.e. |x|1 =

∑n
i=1 xi ≤ B holds for any feasible

solution x ∈ {0, 1}n, before we consider the case of general constraints.

3.1 Algorithm

The (1 + λ)-EA always starts at the zero string xj = 0n where j = 0, 1, . . . B

denotes the jth epoch on the way to reach the bound B. The current bound B̂
is set to zero initially. It is clear that x0 is feasible.

In each epoch j ≥ 0 the (1 + λ)-EA samples λ offspring independently by
mutation. For our theoretical investigations, we consider standard-bit-mutation
which flip each bit independently of the others with probability 1/n. For our

170 F. Neumann and G. Rudolph

experimental investigations, we consider standard-bit-mutation-plus as done in
[11] which repeats standard-bit-mutation until at least one bit has been flipped.
We are seeking the best solution for the incremented bound B̂. If an offspring y
is feasible and not worse than its parent xj then it is accepted as a candidate for
selection. After all λ offspring have been evaluated the best candidate becomes
the new best individual of epoch j + 1.

This process repeats until the current bound B̂ exceeds the maximum bound
B. The (1 + λ)-EA is given in Algorithm 1 in case of uniform constraint.

Algorithm 1 (1+λ) EA, input: f, c, B, λ

1: Set j := 0, xj := 0n, B̂ := 0
2: while B̂ < B do
3: B̂ = B̂ + 1
4: x̂ = xj

5: for k := 1 to λ do
6: y := mutation(xj)
7: if c(y) ≤ B̂ and f(y) ≥ f(x̂) then
8: x̂ := y
9: end if

10: end for
11: xj+1 := x̂
12: j := j + 1
13: end while
14: return xj

3.2 Uniform Constraint

Theorem 2. The (1 + λ)-EA finds a (1 − 1
e)-approximation of a mono-

tone submodular maximization problem with uniform constraint in at most
tmax = 2 e r n log(n) function evaluations with probability 1 − o(1), where
λ = 2 e n log(n), r is equal to the maximum budget in the constraint and n
is the dimension of the problem.

Proof. The proof is oriented at the proofs of Theorem 1 in [11] and Theorem 2
in [4] with adaptation to the context of the (1 + λ)-EA.

Let x∗ be the optimal solution and f(x∗) denote the global maximum.
Assume that at each epoch j = 0, 1, . . . , r the EA has found a solution xj with
at most j elements such that

f(xj) ≥
[
1 −

(
1 − 1

r

)j
]

· f(x∗). (3)

If the assumption is true, then xr has the desired approximation ratio as can be
seen from

f(xr) ≥
[
1 −

(
1 − 1

r

)r]
· f(x∗) ≥

(
1 − 1

e

)
· f(x∗).

Single-Objective Evolutionary Algorithms for Submodular Optimization 171

Therefore we have to establish the validity of inequality (3) for all r = 0, 1 . . . , r,
which is done by induction.

We begin with the feasible solution xj = (0, . . . , 0) at epoch j = 0. Evidently,
inequality (3) is fulfilled since f(x0) ≥ 0. Now assume that xj is the current
solution at time τj = j ·λ for j = 0, 1, . . . , r−1. Now we can make λ trials to find
the best feasible improvement by mutation. For the best feasible improvement
only a single specific bit mutation from 0 to 1 is necessary. As a consequence, the
probability to transition from xj to xj+1 in a single trial is lower bounded via

P{xj → xj+1 in single trial} =
1
n

(
1 − 1

n

)n−1

≥ 1
e n

. (4)

As a consequence, the probability that the transition to xj+1 does not happen
in λ trials is upper bounded by

P{xj �→ xj+1 in λ trials} ≤
(

1 − 1
e n

)λ

=
(

1 − 1
e n

)2 e n log(n)

=
[(

1 − 1
e n

)e n]2 log(n)

≤ e−2 log(n) =
1
n2

.

Owing to the above bound and Boole’s inequality we finally obtain

P

⎧
⎨

⎩

r⋃

j=1

{xj not generated at τj}
⎫
⎬

⎭ ≤
r∑

j=1

P{xj not generated at τj} ≤ r

n2
≤ 1

n

since r ≤ n. This bound on the failure probability proves the success probability
1 − o(1) in the statement of the theorem.

It remains to prove the induction step. According to (1) in Lemma 1 we have
f(x∗) ≤ f(xi) + r δi+1 ⇔ δi+1 ≥ 1

r (f(x∗) − f(xi)). It follows that

f(xj+1) ≥ f(xj) +
1
r

(f(x∗) − f(xj))

= f(xj)
(

1 − 1
r

)
+

1
r

f(x∗)

≥
(

1 −
(

1 − 1
r

)j
)

· f(x∗) ·
(

1 − 1
r

)
+

1
r

f(x∗) (5)

=
(

1 − 1
r

)
f(x∗) −

(
1 − 1

r

)j+1

f(x∗) +
1
r

f(x∗)

= f(x∗)

(
1 −

(
1 − 1

r

)j+1
)

where (5) results from inserting the induction hypothesis. 	

172 F. Neumann and G. Rudolph

3.3 General Constraint

The (1 + λ)-EA does not work in the more general case where the constraint
is given by a linear function or the general cost function considered in [11,12]
as can be observed by the following example instance of the classical knapsack
problem. Consider the knapsack problem where each item i has weight wi and
profit pi and the sum of the weight of the chosen items in any feasible solution
is at most B. Assume for items i, 1 ≤ i ≤ n − 1, we have wi = 1 and pi = 1
and for item n we have wn = n − 1 and pn = L where L is a large value,
e.g. L = 2n. We set B = n − 1. The optimal solution consists of the item n
only and any solution not chosen item n has profit at most n − 1. Note that
choosing item n plus any other item leads to an infeasible solutions. Hence, any
feasible solution that is not optimal has approximation ratio at most n/L which
is n/2n for L = 2n. The (1 + λ)-EA starts with the solution 0n and increases
the bound iteratively. Only once B̂ = n − 1 holds, item n may be introduced.
However, once B̂ = n − 1 holds, a large number of the first n − 1 items has been
introduced which prevents element n from being inserted. Inserting element n is
then only possible of all other elements are removed in the same mutation step.
This leads with high probability to an exponential runtime for obtaining the
optimal solution in the case of λ = 2en log n as chosen in Theorem 2. Even for
λ = 1, the algorithm would have included a constant fraction of the first n − 1
elements before B̂ = n−1 holds which again implies an exponential optimization
time with high probability for λ = 1. The arguments can be generalized to show
an exponential optimization time with high probability for the (1 + λ)-EA as
defined in Algorithm 1 for any λ ≥ 1.

4 (1 + 1)-EA with Archive

We now consider the case of general (monotone) objective function f and cost
function c as already investigated in [11,12] for variants of GSEMO using multi-
objective formulations. Recall that the submodularity ratio αf of a given function
f measures how close the function is of being submodular (see Definition 4).

4.1 Algorithm

For the general setting, we consider a variant of the classical (1 + 1)-EA. The
algorithm is shown in Algorithm 2. It starts with the solution x0 = 0n and a
constraint bound B̂ = 0. As for (1+λ)-EA, we use standard-bit-mutation for our
theoretical investigations and standard-bit-mutation-plus in the experiments.
For tepoch iterations, the single solution is improved under the current bound
and solutions that are currently infeasible but still meet the bound B of the
given problem are added to an archive A. After the current epoch is finished
the bound B̂ is increased by 1 and it is checked whether the archive contains a
solution feasible for the updated bound that is better than the current solution
x̂ of the algorithm. If so, the current solution x̂ is updated with the best (now)

Single-Objective Evolutionary Algorithms for Submodular Optimization 173

Algorithm 2 (1 + 1)-EA with archive, input: f, c, B, tmax

1: Set j := 0, xj := 0n, B̂ := 0, A := ∅
2: tepoch = �(tmax/(�B�))�
3: while (B̂ ≤ B) ∧ (t < tmax) do
4: for (k := 1, (k ≤ tepoch) ∧ (t < tmax), k := k + 1) do
5: y := mutation(xj)
6: t := t + 1
7: if (c(y) > B̂) ∧ (c(y) ≤ B) then
8: if
 ∃z ∈ A : (c(z) ≤ c(y) ∧ f(z) > f(y)) then
9: A := A ∪ {y}

10: end if
11: end if
12: if (c(y) ≤ B̂) ∧ (f(y) ≥ f(xj)) then
13: xj := y
14: end if
15: end for
16: A := A \ {y ∈ A : c(y) ≤ B̂}
17: B̂ := min{B̂ + 1, B}
18: x̂ := xj

19: A∗ := {y ∈ A : c(y) ≤ B̂}
20: if |A∗| > 0 then
21: y∗ := arg max{f(y) : y ∈ A∗}
22: if f(y∗) ≥ f(x̂) then
23: x̂ := y∗

24: end if
25: end if
26: j := j + 1
27: xj := x̂
28: end while
29: return xj

feasible solution that can be found in the archive. The algorithm then proceeds
with the next epoch consisting of tepoch steps for the updated bound and does
so until tepoch steps have finally been carried out for the bound B of the given
problem. For our theoretical investigations, tepoch is the crucial parameter for the
success probability and we assume that B is a positive integer. Hence, we will
mainly concentrate on tepoch as parameter and the total number of iterations tmax

can be obtained by considering that in total B epochs of length tepoch are carried
out. For our experiments the algorithm works with tmax as an input and divides it
(roughly) equally among the epochs. During the run, the algorithm stores at xB̂

the best feasible solution that it obtains for budget B̂, 0 ≤ B̂ ≤ B, and finally
returns xB as the solution to the given problem with budget constraint B.

4.2 Analysis

Let x∗
B̂

be an optimal solution for a reduced budget R(B, c) dependent on the
characteristics of the monotone cost function c and given budget B̂, 0 ≤ B̂ ≤ B.

174 F. Neumann and G. Rudolph

For details on the budget reduction, we refer the reader to Eq. 4 in [12]. As done
in [11], we assume that c : {0, 1}n → N takes on non-negative integer values for
our analysis. We show that for each B̂ ∈ {0, . . . , B}, (1 + 1)-EA with archive
computes a solution xB̂ with

c(xB̂) ≤ B̂ and f(xB̂) ≥ αf

2
(1 − e−αf) · f(x∗

B̂
)

where x∗
B̂

is an optimal solution for budget R(B, c). Note that this matches the
results given in Theorem 5 in [15] where it is shown that GSEMO computes for
any possible budget up to the given budget B a solution of the stated quality.

We now show that a (1+1)-EA using an archive for the solutions that exceed
the current bound B̂ (but have cost at most B) is able to obtain the same
approximation ratio as the multi-objective approaches presented in [11,12].

Let δc = minV ′⊆V minv �∈V ′(c(V ′ ∪{v})− c(V ′) ≥ 1 the minimal possible cost
increase when adding one element to any set not containing the element.

We use tepoch = en ln(nB2) which implies tmax ≤ (B + 1) · tepoch = en(B +
1) ln(nB2) = O(nB(2 ln B + ln n)).

We denote by x∗
B̂

an optimal solution for the reduced constraint bound
R(B, c) dependent on B̂ and characteristics of the constraint function c as done
in [11,12].

Theorem 3. Let tmax = B · tepoch where tepoch ≥ en ln(nB2). Then (1 + 1)-EA
with archive computes with probability 1 − o(1) for each bound B̂, 0 ≤ B̂ ≤ B, a
solution xB̂ with

c(xB̂) ≤ B̂ and f(xB̂) ≥ (αf/2) · (1 − e−αf) · f(x∗
B̂

)

In particular it computes a (αf/2)(1 − e−αf)-approximation with probability 1 −
o(1) for the given bound B when setting tmax = B ·tepoch with tepoch ≥ en ln(nB).

Proof. We start with some observations. For each bound B′, 0 ≤ B′ ≤ B the
algorithm maintains a solution x with c(x) ≤ B′ that has the highest function
value among all solution of cost at most B′ obtained during the run. This solution
is either contained in A∪{x̂} or stored at xB̂ when the bound B̂ = B′ is reached.

According to [12], for a given bound B̂ a solution with the stated approxi-
mation quality can be obtained by selection the best out of two solutions.

Case 1: The first solution consists of the single element v∗ ∈ V of highest
function value among all solution with a single element v for which c(v) ≤ B̂
holds. If such a v∗

B̂
with c(v∗) ≤ B̂ is a (αf/2)(1 − 1/eαf)-approximation for

bound B̂, then it can be obtained by flipping the bit corresponding to v∗
B̂

and
no other bit in the initial solution 0n. The probability for this to happen in a
single mutation step applied to 0n is at least 1/(en). The solution 0n is chosen
tepoch times for mutation and the probability that a feasible solution for B̂ with
function value at least f(v∗

B̂
) has not been obtained is upper bounded by

(1 − 1/en)tepoch ≤ (1 − 1/en)en ln(nB2) ≤ 1/(nB2). (6)

Single-Objective Evolutionary Algorithms for Submodular Optimization 175

Using the union bound the probability that for at least one value of B̂ ∈
{1, . . . , B} such a solution has not been obtained is 1/(nB).

Case 2: If selecting element v∗
B̂

only does not yield a (αf/2)(1 − 1/eαf)-
approximation for bound B̂, then a solution with the desired approximation
quality can be obtained by incrementally adding an element with the largest
marginal gain to the solution yB̂ with

c(yB̂) ≤ CB̂ and f(yB̂) ≥
(
1 − e−αf CB̂/B

)
· f(x∗

B̂
). (7)

Note that the search point 0n meets the condition for CB̂ = 0.
For a given solution x, let N(x) be the set of all solutions that can be obtained

from x by flipping a single 0-bit in x. Then we call

y = arg max
z∈N(x)

(f(z) − f(x))/(c(z) − c(x))

a solution with the largest marginal gain with respect to x and the considered
objective and cost function. The element contained in y but not in x is an element
with the largest marginal gain. According to [12], adding an element with the
largest marginal gain to yB̂ results in a solution y′

B̂
with

f(y′
B̂

) ≥ f(yB̂) + αf · c(y′
B̂

) − c(yB̂)

B̂
· (f(x∗

B̂
) − f(yB̂))

≥
(

1 − αf · δĉ

B̂

)
f(yB̂) + αf · δĉ

B̂
· f(x∗

B̂
)

≥
(

1 − αf · δĉ

B̂

)(
1 − e−αf CB̂/B̂

)
· f(x∗

B̂
) + αf · δĉ

B̂
· f(x∗

B̂
)

≥
(

1 −
(

1 − αf · δĉ

B̂

)
· e−αf CB̂/B

)
f(x∗

B̂
)

≥
(
1 − e−αf · δĉ

B̂ · e−αf CB̂/B̂
)

f(x∗
B̂

)

≥
(
1 − e−αf (CB̂+δĉ)/B̂

)
· f(x∗

B̂
)

Note that for CB̂ + δĉ ≥ B̂, we have

f(y′
B̂

) ≥
(
1 − e−αf (CB̂+δĉ)/B̂

)
· f(x̂B̂) ≥ (1 − e−αf) · f(x∗

B̂
).

We consider the case when c(y′
B̂

) > B̂. We have f(v∗
B̂

) ≥ αf ·(f(y′
B̂

)−f(yB̂))
as f is αf -submodular which implies

f(v∗
B̂

) + f(yB̂) ≥ αf · f(y′
B̂

) ≥ αf · (
1 − e−αf

) · f(x∗
B̂

)

and therefore max{f(v∗
B̂

), f(yB̂))} ≥ (αf/2) · (1 − e−αf) · f(x∗
B̂

). If c(y′
B̂

) > B̂

and v∗
B̂

is not a (αf/2)(1 − e−αf)-approximation for bound B̂ then we have
f(yB̂) ≥ (αf/2)(1 − e−αf) · f(x∗

B̂
).

176 F. Neumann and G. Rudolph

For B̂ = 0, the solution x0 = 0n has the desired approximation quality.
Let B′ ∈ {1, . . . , B̂} and consider the solution yB′ ∈ A ∪ {xj} that meets the
condition for the largest possible value of CB′ according to Eq. 7.

We claim that the invariant CB′ ≥ B̂ holds during the run of the algorithm
with high probability for any B′ and B̂ as long as the desired approximation
has not been reached. For B̂ = 0, the solution x0 = 0n obviously fullfills the
condition for CB′ = 0 for any B′.

We consider the time when B̂ = CB′ holds for the first time and show that
CB′ increases with high probability. Note that this is a pessimistic assumption
as CB′ might increase earlier by creating an offspring of the current solution xj .
We consider the epoch of the next tepoch steps once reached B̂ = CB′ . Note that
in this epoch only solutions xj with c(xj) ≤ CB′ and f(xj) ≥ f(yB̂) are chosen
for mutation which implies that they meet the condition of Eq. 7 for CB′ .

The probability that there is no mutation step adding the element with the
largest marginal gain to the current solution xj and therefore increasing CB′ by
producing an offspring y (line 5 of Algorithm 2) by at least δc ≥ 1 is at most
1/(nB2) (see Eq. 6).

The value of CB′ needs to be increase at most B times and hence we obtain
a solution yB′ with f(yB′) ≥ (αf/2)(1 − e−αf) · f(x∗

B′) with probability at least
1 − 1/(nB) if element v∗

B′ from Case 1 does not give the desired approximation.
There are B different values of B′ which implies that for all values of B̂,

0 ≤ B̂ ≤ B, a solution xB̂ with f(xB̂) ≥ (αf/2)(1 − e−αf) · f(x∗
B̂

) is obtained
with probability at least (1 − 1/n − 1/(nB) ≥ 1 − 2/n within the run of the
algorithm. If the case where we are only interested in the desired approximation
for the given bound B, choosing tmax = B ·tepoch with tepoch ≥ en ln(nB) suffices
as the element v∗

B is introduced with probability at least 1/(nB) in this case and
the solution yB is obtained with probability at least 1/n by considering at most
B increases of CB . 	

The previous result can be adapted to the case of a uniform constraint |x|1 ≤
r as considered in Sect. 3.2. As the cost of each item is 1, we can obtain the
following corollary by adjusting the proofs of Theorem 2 and 3.

Corollary 1. Let tmax = r · tepoch where tepoch ≥ 2en log n. Then (1 + 1)-EA
with archive computes a (1 − 1/e)-approximation with probability 1 − o(1).

5 Experimental Investigations

We now carry out experimental investigations for the two single-objective evo-
lutionary approaches introduced for optimizing constrained submodular prob-
lems. We evaluate the algorithms on instances of the NP-hard maximum cov-
erage problem which is a classical submodular optimization problem defined on
graphs.

We use standard-bit-mutation-plus (see [11]) as mutation operator for the
algorithm and run them on the same instances as done in [11]. The underlying

Single-Objective Evolutionary Algorithms for Submodular Optimization 177

Table 1. Maximum coverage scores obtained by (1+1) EA with archive and (1+λ)-EA
on medium instances

Graph B tmax Uniform Random

(1 + 1) EA (1 + λ)-EA (1 + 1) EA (1 + λ)-EA

Mean Std Mean Std p-value Mean Std Mean Std p-value

ca-CSphd 10 100000 222 0.000 222 0.000 1.000 234 7.764 235 9.296 0.695

10 500000 222 0.000 222 0.000 1.000 242 11.846 240 11.939 0.399

10 1000000 222 0.000 222 0.000 1.000 245 12.735 240 12.294 0.165

43 100000 600 0.728 599 0.711 0.174 601 12.206 605 10.715 0.206

43 500000 600 0.000 600 0.000 1.000 614 12.788 608 11.688 0.038

43 1000000 600 0.000 600 0.000 1.000 619 12.417 609 13.414 0.008

94 100000 927 0.964 928 0.750 0.191 932 11.212 931 12.182 0.589

94 500000 928 0.365 928 0.000 0.824 947 11.671 940 11.732 0.035

94 1000000 928 0.000 928 0.000 1.000 950 10.884 946 12.128 0.041

188 100000 1278 1.413 1279 1.081 0.264 1304 12.423 1300 13.157 0.198

188 500000 1279 0.702 1279 0.809 0.584 1321 12.863 1317 12.944 0.198

188 1000000 1279 0.629 1279 0.629 1.000 1326 12.805 1322 13.281 0.212

ca-GrQc 12 100000 505 7.158 506 5.649 0.923 524 19.509 524 23.457 0.947

12 500000 510 0.000 510 0.000 1.000 551 24.536 544 19.123 0.193

12 1000000 510 0.000 510 0.000 1.000 563 19.987 555 22.822 0.132

64 100000 1512 6.872 1512 6.518 0.690 1554 22.583 1547 22.618 0.261

64 500000 1526 4.312 1526 4.476 0.668 1608 27.234 1596 25.095 0.147

64 1000000 1529 2.380 1529 1.954 0.807 1631 20.223 1609 20.411 0.000

207 100000 2742 6.646 2738 9.464 0.076 2766 22.039 2759 18.237 0.209

207 500000 2769 4.720 2765 5.845 0.008 2844 21.315 2834 15.824 0.072

207 1000000 2773 5.045 2768 4.480 0.000 2864 19.825 2845 16.747 0.001

415 100000 3565 6.066 3557 9.051 0.000 3581 14.673 3563 14.940 0.000

415 500000 3606 4.066 3602 4.468 0.001 3650 11.331 3631 12.922 0.000

415 1000000 3612 4.838 3605 4.219 0.000 3664 12.773 3646 13.563 0.000

Erdos992 12 100000 601 2.773 600 2.682 0.359 645 15.347 649 16.234 0.333

12 500000 604 0.000 604 0.000 1.000 668 19.263 669 23.397 0.947

12 1000000 604 0.000 604 0.000 1.000 687 23.483 678 21.527 0.183

78 100000 2454 6.173 2453 6.653 0.318 2398 31.071 2451 30.601 0.000

78 500000 2472 0.890 2472 0.968 0.953 2489 37.452 2507 32.866 0.042

78 1000000 2472 0.819 2473 0.629 0.988 2522 38.457 2521 37.696 0.988

305 100000 4707 8.677 4718 12.322 0.000 4563 27.503 4613 34.571 0.000

305 500000 4771 2.096 4772 1.489 0.061 4723 25.279 4750 21.008 0.000

305 1000000 4774 0.937 4775 0.845 0.034 4752 25.387 4767 22.048 0.018

610 100000 5240 5.026 5234 6.182 0.000 5236 13.125 5203 18.913 0.000

610 500000 5263 0.937 5262 1.196 0.001 5314 8.737 5299 10.183 0.000

610 1000000 5264 0.730 5263 1.155 0.745 5324 8.568 5312 9.105 0.000

178 F. Neumann and G. Rudolph

Table 2. Maximum coverage scores obtained by (1+1) EA with archive and (1+λ)-EA
on large instances

Graph B tmax Uniform Random

(1 + 1) EA (1 + λ)-EA p-value (1 + 1) EA (1 + λ)-EA p-value

Mean Std Mean Std Mean Std Mean Std

ca-HepPh 13 100000 1807 26.271 1804 29.228 0.584 1845 51.305 1850 39.910 0.723

13 500000 1842 15.291 1843 9.754 0.695 1913 47.774 1915 52.637 0.525

13 1000000 1840 5.112 1842 8.632 0.657 1938 61.109 1919 50.702 0.126

105 100000 4627 28.443 4611 33.286 0.050 4659 35.830 4671 43.630 0.196

105 500000 4762 17.618 4757 19.511 0.315 4876 50.292 4860 41.453 0.176

105 1000000 4787 11.162 4787 11.396 0.784 4938 39.003 4908 44.298 0.015

560 100000 8514 25.487 8486 20.989 0.000 8550 44.136 8517 32.833 0.003

560 500000 8766 10.316 8745 12.357 0.000 8887 29.469 8847 22.758 0.000

560 1000000 8796 9.713 8783 11.683 0.000 8956 35.481 8906 29.424 0.000

1120 100000 10200 20.861 10161 17.307 0.000 10205 24.322 10154 21.882 0.000

1120 500000 10460 9.395 10438 10.915 0.000 10533 17.225 10488 19.822 0.000

1120 1000000 10492 7.397 10470 8.358 0.000 10595 18.362 10550 15.359 0.000

ca-AstroPh 14 100000 2862 59.952 2865 48.219 0.988 2856 85.887 2892 92.832 0.130

14 500000 2965 13.289 2972 9.649 0.019 3005 75.418 3025 70.585 0.274

14 1000000 2978 4.249 2978 4.690 0.941 3038 80.257 3030 56.286 0.525

133 100000 8337 60.951 8326 53.037 0.464 8391 58.454 8402 78.692 0.605

133 500000 8679 28.093 8677 24.020 0.848 8805 54.412 8816 50.448 0.579

133 1000000 8722 24.139 8725 16.979 0.779 8931 47.486 8912 53.551 0.072

895 100000 15015 35.029 14948 37.983 0.000 15017 42.388 14973 40.257 0.000

895 500000 15559 20.849 15538 16.778 0.000 15653 30.599 15609 35.076 0.000

895 1000000 15638 10.944 15621 10.409 0.000 15779 33.990 15729 23.735 0.000

1790 100000 17018 24.879 16936 23.255 0.000 17000 20.884 16921 26.926 0.000

1790 500000 17438 8.670 17412 12.840 0.000 17488 15.484 17437 18.276 0.000

1790 1000000 17491 8.581 17469 6.715 0.000 17579 11.757 17524 11.488 0.000

ca-CondMat 14 100000 1759 48.528 1753 68.135 0.807 1695 94.934 1758 95.933 0.010

14 500000 1853 3.960 1853 4.925 0.569 1857 68.802 1885 62.486 0.048

14 1000000 1856 3.108 1857 2.580 0.079 1875 65.595 1897 68.254 0.287

146 100000 6633 56.195 6654 63.743 0.225 6546 81.784 6635 77.537 0.000

146 500000 7030 21.828 7042 22.911 0.030 7050 54.530 7079 52.443 0.026

146 1000000 7082 10.261 7079 14.222 0.610 7151 59.810 7176 70.114 0.179

1068 100000 15744 58.965 15672 54.984 0.000 15721 61.110 15634 66.097 0.000

1068 500000 16671 24.122 16655 28.693 0.013 16761 45.483 16728 44.291 0.006

1068 1000000 16797 17.002 16789 17.744 0.149 16980 45.050 16924 45.781 0.000

2136 100000 19150 32.710 18968 48.385 0.000 19130 36.406 18961 46.673 0.000

2136 500000 20039 18.032 20003 21.860 0.000 20091 24.887 20025 25.165 0.000

2136 1000000 20167 12.032 20148 10.722 0.000 20292 21.225 20219 22.946 0.000

Single-Objective Evolutionary Algorithms for Submodular Optimization 179

graphs are sparse graphs from the network repository. In the uniform case, all
nodes of weight 1 whereas in the random case each node have been assigned a
cost independently of the others chosen uniformly at random in [0.5, 1.5]. For
each uniform and random setting we consider the same bounds B and number of
fitness evaluations tmax as done in [11], namely B = log2 n,

√
n, �n/20�, �n/10�

and tmax = 100000, 500000, 1000000. A result is called statistically significant if
the p-value is at most 0.05.

We first consider the graphs ca-CSphd, ca-GrQc, and Erdos992 consisting
of 1882, 4158, and 6100 nodes, respectively. The results are shown in Table 1.
For the graph ca-CSphd, the results obtained by the two algorithms are very
similar in both the uniform and random setting. For the graph ca-GrQc, the
results differ only for large values of B and the statistical test also obtains small
p-values in this case. Similar observations can be made for the graph Erdos992.
Small p-values can usually be observed together with a better performance of
(1 + 1)-EA with archive. This is especially the case for the random setting.

We now consider results for the larger graphs ca-HepPh, ca-AstroPh, ca-
CondMat, which consist of 11204, 17903, 21363 nodes, respectively. The results
are shown in Table 2 and overall follow the same trend. Overall, the advantage
of (1 + 1)-EA with archive over (1 + λ)-EA can be observed again for the larger
values of B. The difference in mean also becomes larger for both the uniform and
random instances and statistical tests show a stronger difference for the large
instances then for the medium size ones.

Overall, it can be observed that the quality of solutions obtained by (1 + λ)-
EA and (1+1)-EA with archive are very similar. Only for larger random instances
with a large constraint bound, the (1 + 1)-EA with archive obtains significantly
better results. Doing a cross comparison with the results presented in [11], we
observe the results of (1 + λ)-EA and (1 + 1)-EA with archive are better then
the ones of GSEMO and slightly inferior then the ones of SW-GSEMO. We
can therefore say that our newly introduced simple single-objective algorithms
provide a good alternative to the more complex multi-objective setups and even
outperform standard approaches based on GSEMO for the considered instances.

6 Conclusions

The maximization of submodular functions under constraints captures a wide
range of NP-hard combinatorial optimization problems. In addition to classical
greedy algorithms, Pareto optimzation approaches relaxing a given constraint
into an additional objective have shown to obtain state of the art results from
a theoretical and practical perspective. Contrary to this, it has been shown
that standard single-objective approaches using the classical (1+1) EA easily
get stuck in local optima. We presented adaptive single-objective approaches
increasing the set of feasible solution incrementally during the optimization pro-
cess. For the (1+λ)-EA, we have shown that this leads to best possible theoretical
performance guarantee for the case of a uniform constraint. For more general
monotone cost constraints, we presented a (1 + 1)-EA with archive and have

180 F. Neumann and G. Rudolph

shown that this algorithm obtains state of the art theoretical guarantees. Our
experimental investigations show that both algorithms perform quite similar and
outperform the standard GSEMO approach for the considered settings.

Acknowledgments. This work has been supported by the Australian Research Coun-
cil (ARC) through grant FT200100536.

References

1. Crawford, V.G.: Faster guarantees of evolutionary algorithms for maximization of
monotone submodular functions. In: IJCAI, pp. 1661–1667. ijcai.org (2021)

2. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

3. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evol. Comput. 18(4), 617–633 (2010)

4. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid con-
straints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015)

5. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In:
Proceedings of CEC 2003, vol. 3, pp. 1918–1925 (2003). https://doi.org/10.1109/
CEC.2003.1299908

6. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K.,
Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9 19

7. Krause, A., Golovin, D.: Submodular function maximization. In: Tractability, pp.
71–104. Cambridge University Press (2014)

8. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions - I. Math. Program. 14(1), 265–294 (1978)

9. Neumann, A., Neumann, F.: Optimising monotone chance-constrained submodular
functions using evolutionary multi-objective algorithms. In: Bäck, T., et al. (eds.)
PPSN 2020. LNCS, vol. 12269, pp. 404–417. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58112-1 28

10. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective
optimization. Nat. Comput. 5(3), 305–319 (2006)

11. Neumann, F., Witt, C.: Fast Pareto optimization using sliding window selection.
In: ECAI. Frontiers in Artificial Intelligence and Applications, vol. 372, pp. 1771–
1778. IOS Press (2023)

12. Qian, C., Shi, J., Yu, Y., Tang, K.: On subset selection with general cost con-
straints. In: IJCAI, pp. 2613–2619 (2017). https://doi.org/10.24963/ijcai.2017/364

13. Qian, C., Yu, Y., Tang, K., Yao, X., Zhou, Z.: Maximizing submodular or monotone
approximately submodular functions by multi-objective evolutionary algorithms.
Artif. Intell. 275, 279–294 (2019)

14. Qian, C., Yu, Y., Zhou, Z.: Subset selection by Pareto optimization. In: Advances
in Neural Information Processing Systems 28: Annual Conference on Neural Infor-
mation Processing Systems, pp. 1774–1782 (2015)

15. Roostapour, V., Neumann, A., Neumann, F., Friedrich, T.: Pareto optimization for
subset selection with dynamic cost constraints. Artif. Intell. 302, 103597 (2022)

https://doi.org/10.1109/CEC.2003.1299908
https://doi.org/10.1109/CEC.2003.1299908
https://doi.org/10.1007/3-540-44719-9_19
https://doi.org/10.1007/978-3-030-58112-1_28
https://doi.org/10.1007/978-3-030-58112-1_28
https://doi.org/10.24963/ijcai.2017/364

Local Optima in Diversity Optimization:
Non-trivial Offspring Population is

Essential

Denis Antipov(B) , Aneta Neumann , and Frank Neumann

Optimisation and Logistics, School of Computer and Mathematical Sciences,
University of Adelaide, Adelaide, Australia

{denis.antipov,aneta.neumann,frank.neumann}@adelaide.edu.au

Abstract. The main goal of diversity optimization is to find a diverse
set of solutions which satisfy some lower bound on their fitness. Evolu-
tionary algorithms (EAs) are often used for such tasks, since they are
naturally designed to optimize populations of solutions. This approach
to diversity optimization, called EDO, has been previously studied from
theoretical perspective, but most studies considered only EAs with a triv-
ial offspring population such as the (μ+1) EA. In this paper we give an
example instance of a k-vertex cover problem, which highlights a critical
difference of the diversity optimization from the regular single-objective
optimization, namely that there might be a locally optimal population
from which we can escape only by replacing at least two individuals at
once, which the (μ + 1) algorithms cannot do.

We also show that the (μ + λ) EA with λ ≥ μ can effectively find
a diverse population on k-vertex cover, if using a mutation operator
inspired by Branson and Sutton (TCS 2023). To avoid the problem of
subset selection which arises in the (μ+λ) EA when it optimizes diversity,
we also propose the (1µ + 1µ) EAD, which is an analogue of the (1 + 1)
EA for populations, and which is also efficient at optimizing diversity on
the k-vertex cover problem.

Keywords: Diversity Optimization · Population-based Algorithms ·
Theory · Landscape Analysis · Vertex Cover

1 Introduction

Obtaining a diverse set of good solutions is a complex optimization task, which
often arises in real-world problems such as planning [21], satisfiability [33], archi-
tectural planning [16], cutting materials [19] and others. The most common rea-
son for the need of a diverse set of solutions is that some objectives or constraints
cannot be strictly formalized (e.g., for political, ethical, aesthetic or other rea-
sons), therefore an algorithm user would like to get not a single best solution, but
a set of good solutions to choose from. And if this set is not diverse enough, all
solutions might occur infeasible in terms of those non-formalizable constraints.

Formalizing diversity is also a non-trivial task, and often it is problem-
specific. One of the ways to get a set which can be called diverse is to divide
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 181–196, 2024.
https://doi.org/10.1007/978-3-031-70071-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_12&domain=pdf
http://orcid.org/0000-0001-7906-096X
http://orcid.org/0000-0002-0036-4782
http://orcid.org/0000-0002-2721-3618
https://doi.org/10.1007/978-3-031-70071-2_12

182 D. Antipov et al.

the search space into regions and to optimize the objective (or objectives) in
each region simultaneously [9,27]. This approach, called the quality diversity
(or QD for brevity), has been mainly developed in the domains of robotics and
games [8,18,25,26,37,40]. Recently this approach has been applied to the trav-
eling thief problem, and various domains such as design and health [24,32,34].

Another way to formalize the problem, which we adopt in this paper, is
to define a diversity measure over the space of sets of solutions, and turn the
problem into optimizing this measure under some constraints on the quality of
solutions in the population.

The popularity of this problem has attracted a lot of attention from the
algorithmic community, which resulted in developing multiple approaches from
deterministic ones [3,22] to using various randomized search heuristics [4,20].
One of the most efficient approaches is using evolutionary algorithms (EAs),
which is called evolutionary diversity optimization or EDO for brevity. It has
been used in many applications, including classical combinatorial problems such
as the traveling salesperson problem [10,30], the traveling thief problem [31],
the computation of minimum spanning trees [5], submodular problems [28] and
related communication problems in the area of defense [17,29].

The reason behind EDO’s spread is that in diversity optimization the aim
is to find not a single solution, but a set of solutions, which most optimization
algorithms struggle with due to the increased dimensionality of the problem. The
EAs, however, have been naturally designed to evolve a population of solutions,
hence they do not need much adaptation for the diversity-oriented problems.

The theoretical foundations of EDO have been established by studying this
approach on benchmark functions such as OneMax or LeadingOnes [15], as
well as on permutation problems without any constraint on the fitness of the
solutions [10]. It has also been studied on submodular functions in [11,28]. In all
cases upper bounds on the runtime were shown, indicating that the runtime is
always finite. It does not appear to be a surprising statement, since most EAs are
designed in such a way that they have a finite runtime, e.g., by using standard
bit mutation which guarantees a non-zero probability for generating the global
optimum in any generation. For this reason in single-objective optimization EAs
with a non-trivial parent population such as the (μ + 1) EA can always find an
optimum (probably in ridiculously large nn time as on the Trap function).

In this paper we demonstrate that in EDO the standard bit mutation does
not guarantee a finite runtime. We give an example of a k-vertex cover instance,
where none of the algorithms using the (μ + 1) scheme (that is, the elitist EAs
which have a non-trivial parent population and which generate only one offspring
per generation) can find the global optimum in finite time. This indicates that
in optimization of some diversity measure over a set of populations replacing
only one solution is similar to performing a one-bit mutation in single-objective
problems, which might get the process stuck in a local optimum on any non-
monotone function.

Local Optima in Diversity Optimization 183

On the positive side, we show that the (μ + λ) EAD with λ ≥ μ can always
find an optimal population by generating all individuals from a population with
optimal diversity in one iteration. Since selecting a subset with optimal diversity
might be a non-trivial task for the (μ + λ) EAD, we also propose the (1µ +
1µ) EAD, which is an analogue of the (1 + 1) EA for population space. We use
a jump-and-repair mutation operator from [6] and show that the (μ + λ) EAD

with λ ≥ μ and the (1µ + 1µ) EAD using this operator can find an optimally
diverse set of k-covers on a graph with n vertices in expected number of at most
2k+µ(1 − o(1)) iterations.1 We note that since the main aim of the diversity
optimization is to give a decision-maker (usually, a human) a diverse set of
solutions, then μ is preferred to be not too large, e.g., constant. Therefore, if we
also take k = O(log(n)), then the runtime will be polynomial.

The rest of the paper is organized as follows. In Sect. 2 we formally define the
k-vertex cover problem, as well as the diversity measures and the algorithms we
study in this paper. Section 3 gives an example of a graph and a population of k-
vertex covers on this graph which is locally optimal in the space of populations.
We then perform a runtime analysis of the (1µ +1µ) EAD showing its efficiency
on this problem in Sect. 4. A discussion of our results concludes the paper in
Sect. 5.

2 Preliminaries

2.1 Diversity Optimization

The problem of diversity optimization was defined in [38]. We slightly generalize
it as follows. Given a fitness function f : Ω �→ R (where Ω is the search space),
population size μ, quality threshold B and diversity measure D, the goal is to
find a population P , which is a multiset of μ elements from Ω, with the best
value of D(P) under condition that all x ∈ P meet the quality threshold, that
is, f(x) ≥ B.

Usually the definition of the diversity measure is problem-specific, but it
always reflects how different the solutions are in the search space (but not in the
fitness space). In this paper we study the total Hamming distance, a diversity
measure which has been previously studied in the context of theoretical runtime
analysis of EDO [2,12,15]. Given a population P of bit strings, the total Ham-
ming distance is defined as D(P) =

∑
x,y∈P H(x, y), where H is the Hamming

distance and the sum is over all unique unordered pairs of individuals.
An important property of this measure for pseudo-Boolean optimization (that

is, when the search space is the set {0, 1}n of all bit strings of length n) which
has been previously used in the analysis of EDO algorithms is that it can be
computed through the number of one-bits in each position in the population. It
was first shown in [39], and later was used in many works which studied this

1 As in the vast majority of theoretical studies, we focus on estimating the number of
iterations rather than the wall-clock time.

184 D. Antipov et al.

diversity measure. Let ni be a number of ones in position i over all individuals
in population P . Then

D(P) =
n∑

i=1

ni(|P | − ni). (1)

This property implies that the contribution of position i into diversity is maxi-
mized, when ni = � |P |

2 � or ni = � |P |
2 	. The maximum diversity is obtained when

all ni are either � |P |
2 � or � |P |

2 	. However it is not always possible due to the
constraints on the fitness of the solutions.

2.2 Vertex Cover

For a given undirected graph G = (V,E) we call any set of vertices such that
all edges in E are adjacent to at least one vertex in this set a vertex cover (or
cover for short). The minimum vertex cover is a problem of finding a cover of
minimum size, and the k-vertex cover is a fixed-target2 variant of this problem,
that is, the problem of finding a cover of a size of at most k.

Finding a k-vertex cover for an arbitrary graph and an arbitrary k is a classic
NP-hard problem, and therefore, there is no known algorithm which could solve
this problem efficiently (that is, in a polynomial time). For this reason the EAs
have been previously applied to it in many different ways. In [35,36] it has been
shown that the classic EAs can be very ineffective on some instances of the
vertex cover, when they use a single-objective formulation. Hybrid evolutionary
approaches have been studied in [13], and in [14,23] an effectiveness of the multi-
objective approach has been shown. A typical representation of the vertex cover
when applying EAs is a bit string of length n = |V |, where the i-th bit indicates
if the i-th vertex is included into the set. We use this representation in this
paper.

It is also well-known that the k-vertex cover is a fixed parameter tractable
(FPT) problem [23], that is, there exists a parameter of the instance k such
that the time we need to optimize the instance is f(k) · Poly(|V |). In our case,
this parameter k is the size of the optimal cover. To address the FPT property
of this problem, in [6] Branson and Sutton used a modified representation for
individuals and proposed a jump-and-repair mutation operator which allowed
the (1 + 1) EA to find a k-vertex cover in expected number of O(2kn2 log(n))
iterations, if such cover exists. The main idea behind that operator is that if
there exist a vertex cover y of size at most k such that none of the vertices can
be removed from it, then we can get it from any other vertex cover x by removing
all vertices belonging to x \ y and adding their neighbours (see Lemma 4 in [6]).

In this work we aim at finding a diverse (in terms of the total Hamming
distance) set of vertex covers of size at most k for a given graph G = (V,E),
assuming that at least one such cover exists. We also assume that the target
population size μ and the cover size k are relatively small, namely that kμ =
2 For more information about fixed-target analysis and notation see [7].

Local Optima in Diversity Optimization 185

Algorithm 1: The jump-and-repair mutation operator for diversity opti-
mization on k-vertex cover problem on graph G = (V,E) based on Algo-
rithm 4 in [6].
1 Input: graph G = (V, E) ;
2 Input: integer k > 0;
3 Input: parent cover x ⊆ V such that |x| ≤ k;
4 S ← ∅; // A set of vertices to remove from x
5 for v ∈ x do
6 With probability 1

2
add v to S;

7 y ← x \ S;
8 for v ∈ S do // Adding neighbours of the removed vertices
9 for u ∈ V : (u, v) ∈ E do

10 y ← y ∪ {u};

11 while |y| < k do // Adding more random vertices to get a k-cover
12 Choose z from V \ y u.a.r.;
13 y ← y ∪ {z};

14 return y;

o(
√

n). This implies that by the pigeonhole principle, in any population there
will be only o(

√
n) different positions which have at least one-bit, and therefore

there will be many positions i, in which all individuals would have a zero-bit
(that is, vertex i is not included in any cover in the population). If a population
has some individuals which have � < k vertices, than adding k − � vertices not
included into any individual in the population will increase the corresponding
terms in Eq. (1) by |P | = μ, hence it never makes sense to have covers of size
less than k in the population.

However, the mutation operator used in [6] cannot generate all covers of size
k, but only non-excessive ones, that are, those covers from which we cannot
remove any vertex and keep it a cover. For this reason, in this work we modify
their mutation operator. Our modified operator is shown in Algorithm 1. Given
a cover x, this jump-and-repair mutation first removes each vertex from it with
probability 1/2 and then adds all neighbours of the removed vertices, similar to
the operator from [6]. Since we add all neighbours of the removed vertices, it
guarantees that the result of this mutation is a cover, that is, there is no edge
for which none of the two adjacent vertices is in the resulting individual. This
cover might be of size less than k, and in this case we add some randomly chosen
vertices to make the size of the vertex cover exactly k.

The following lemma is an extension of Lemma 4 in [6].

Lemma 1. Let x be a k-vertex cover of graph G and let y be a non-excessive
cover of size at most k. Then the probability that the jump-and-repair mutation
(Algorithm 1) applied to x generates y before adding additional random vertices
(that is, by line 11 in Algorithm 1) is exactly 2−k.

186 D. Antipov et al.

Algorithm 2: The (μ + 1) EAD maximizing function f and maximizing
diversity measure D with fitness threshold B.
1 Input: population of μ individuals P ;
2 Define g : x 	→ min{f(x), B};
3 while stopping criterion is not met do
4 Create a new individual y ; // We intentionally do not specify how it

is created
5 if g(y) ≥ minx∈P g(x) then
6 P ← P ∪ {y};
7 Q ← argminx∈P g(x) ; // argmin returns a set of individuals

(probably, a trivial set of one element)
8 S ← argminx∈QD(P \ {x});
9 if |S| ≥ 2 and y ∈ S then

10 S ← S \ {y};

11 x ← random individual from S;
12 P ← P \ {x};

13 return P ;

Proof. Let S be x\y, that is, the vertices in x which are not in y. All neighbours
of vertices in S are in y, since otherwise an edge between such a vertex and it
neighbour is not covered by y. Therefore, removing S from x and adding their
neighbours results in a cover which is a subset of y. Since y is non-excessive, it
is exactly y.

The probability that we remove S and keep x \ S is exactly 2−k, since each
vertex is removed with probability 1

2 . ��

2.3 The Considered EAs

In this paper we consider population-based EAs which are commonly used in
the diversity optimization. Most of theoretical studies of EDO considered the
(μ + 1) EAD, which optimizes the diversity only when it breaks ties between
candidates for the next generation [5,10,12]. We describe a generalized version
of this EA in Algorithm 2. This algorithm stores a population P of μ individuals.
We do not specify the way these individuals are initialized. In each iteration this
algorithm creates a new individual y by applying variation operators (usually,
mutation and crossover) to some randomly chosen individuals from the popula-
tion. If the fitness of y is not worse than the worst fitness in the population or
satisfies the quality threshold, y is added into P , and then we remove an indi-
vidual with the worst fitness (counting all individuals which meet the quality
threshold as equal). If there are several such individuals, we remove the one with
the smallest contribution to the diversity. If there are still more than one such
individuals, then we choose one of them uniformly at random (but in this case
we do not choose y if it is one of these individuals) and remove it. We note that

Local Optima in Diversity Optimization 187

Algorithm 3: The (1µ +1µ) EAD maximizing diversity measure D under
constraint f(x) ≥ B.
1 Input: population of μ individuals P meeting the minimum fitness threshold;
2 while stopping criterion is not met do
3 P ′ ← ∅;
4 for i ∈ [1..μ] do
5 Create a new individual y;
6 P ′ ← P ′ ∪ {y};

7 if ∀x ∈ P : f(x) ≥ B and D(P ′) ≥ D(P) then
8 P ← P ′.

9 return P ;

since we are searching for a population of individuals which meet the minimum
fitness threshold B, all individuals above this threshold are similarly feasible
for us. Hence, instead of optimizing the original objective f , the (μ + 1) EAD

optimizes g : x �→ min{f(x), B}.
We also consider an elitist EA with a non-trivial offspring population, the

(μ+λ) EAD. The main difference of this algorithm from the (μ+1) EAD is that
it creates λ offspring in each iteration, each by independently choosing parents
(or a parent) from the current population and applying variation operators to
them. The main complication of the (μ+λ) EAD compared to the (μ+1) EAD

is in the selection of the individuals into the next population. After we add all λ
offspring to the current population P , we need to remove λ individuals from P .
We first remove individuals with the minimum fitness (according to the modified
fitness g) as long as the removal of them does not make size of P less than μ. If
after that the size of P is more than μ, we need to break a tie and select |P | −μ
individuals with the worst fitness to remove. We always select a set of |P | − μ
such individuals which has the smallest contribution to the diversity, similar to
how we do it in the (μ + 1) EAD.

The subset selection problem might be very demanding for the computational
resources, especially when we have to break a tie between 2μ individuals, hence
in the diversity optimization it makes sense to use the following analogue of the
(μ+λ) EAD, which we call the (1µ+1µ) EAD. This algorithm is initialized with
a population of μ individuals, all of which meet our constraints on the worst
fitness value (if we get at least one such individual, we can use a population of
its copies). In each iteration it creates a population P ′ of μ offspring individuals
(in the same way as the (μ + λ) EAD creates λ offspring) and replaces P with
P ′, if all individuals of P ′ are feasible and the diversity of P ′ is not worse than
the diversity of P according to the chosen diversity measure. This algorithm can
be considered as a variant of the (1 + 1) EA in the population space, for which
individuals are bit strings of size μn. Its pseudocode is shown in Algorithm 3.

188 D. Antipov et al.

3 Locally Optimal Population

In this section we give examples of vertex cover instances, for which there exists
a population with sub-optimal diversity, such that to improve its diversity we
need to change at least two individuals together. This implies that if a (μ + 1)-
kind of algorithm gets such a population, it gets stuck in it, since it only changes
one individual in each iteration. Note that in this section the diversity is always
measured via the total Hamming distance.

We start with a simple example, where the population size is 2 and the
graph has 8 vertices. We then extend this simple example to an arbitrary even
population size μ and any even problem size n ≥ 10.

3.1 The Simple Example

Consider graph G = (V,E) with 8 vertices {v1, . . . , v8} and edges as shown in
Fig. 1.

Fig. 1. Graph G, for which we have a population of 4-covers with suboptimal diversity,
from which it is impossible to escape by replacing only one individual.

This is a bipartite graph which has 8 vertices and 8 edges. We will show that
when we aim at finding the most diverse population of size μ = 2 for a 4-vertex
cover on this graph, we might occur in a local optimum which is impossible
to escape for the (μ + 1) kind of algorithms. The next lemma shows the main
properties of G.

Lemma 2. The following statements are true for graph G shown in Fig. 1

1. There is no vertex cover of size one or two.
2. The only 3-vertex cover is {v1, v2, v4}.
3. The only 4-vertex cover which includes v3 is {v1, v2, v3, v4}.
4. The only 4-vertex cover which does not include v2 is {v5, v6, v7, v8}.
Proof. The proof of all statements is based on the following observation. If we
have a set of vertices V ′ with known degrees (number of adjacent edges), then
the number of edges they cover is

∑
v∈V ′ deg(v)− K, where K is the number of

edges which are covered from both sides.

Local Optima in Diversity Optimization 189

The First Statement. Graph G has only one vertex with degree 4 (namely,
v2), and all others have degree 2, except v3 which has degree zero. Hence, one
or two vertices can cover at most 4 and 6 edges respectively, which is less than
the total number of edges. Hence, no 1-cover or 2-cover exists.

The Second Statement. A 3-vertex cover must include v2, otherwise the sum
of degrees of the vertices will be at most 6, which is less than the number of
edges. The other two vertices cannot cover any of the edges covered by v2, since
otherwise the number of covered edges will be strictly less than the sum of their
degrees, that is, 8. Hence, we cannot have v5, v6, v7 or v8 in this cover. Among
the rest, the only two vertices which have degree at least 2 are v1 and v4, which
we must include into the cover. Since {v1, v2, v4} covers all the edges, it is a
unique 3-vertex cover.

The Third Statement. If we include v3 into the cover, it does not cover any
edges. Hence, the rest of the three vertices must cover all 8 edges. By the previous
statement, the only way to do so is to take {v1, v2, v4}. Hence, {v1, v2, v3, v4} is
the only 4-vertex cover that includes v3.

The Fourth Statement. If we do not include v2 in the cover, then we need
to include all its neighbors to cover the edges adjacent to v2. Its neighbors are
{v5, v6, v7, v8}, which form a vertex cover. ��

Based on these properties we can build a population with locally optimal
diversity. We do it in the following lemma. We note that for the population
of size two, the diversity is defined by the Hamming distance between the two
individuals.

Lemma 3. Consider a problem of finding the most diverse population of size two
of 4-vertex covers of graph G shown in Fig. 1. The following sets are 4-vertex
covers for this graph.

– V1 = {v1, v2, v7, v8},
– V2 = {v2, v4, v5, v6},
– V3 = {v1, v2, v3, v4},
– V4 = {v5, v6, v7, v8}.
Covers V1, V2 and V4 are non-excessive. Then the unique population of size two
with the maximum Hamming distance 8 is (V3, V4). Population (V1, V2) has a
Hamming distance 6 and replacing any individual with a different 3- or 4-vertex
cover would reduce the Hamming distance, that is, this population is a local
optimum.

Proof. All the sets V1, V2, V3 and V4 are 4-vertex covers, and the distances
between them are the following.

– H(V1, V2) = 6,
– H(V3, V4) = 8 and
– all other distances are 4 (since each pair coincides in exactly two included

vertices and exactly two non-included).

190 D. Antipov et al.

By Lemma 2, V3 is the unique 4-cover which has v3, and V4 is the unique
4-cover which does not include v2. Therefore, for any 3- or 4-cover V , covers V1

and V2 coincide with it in including v2 and not including v3, hence H(V1, V) ≤ 6
and H(V2, V) ≤ 6. To have H(V1, V) = 6, we need V to be different from V1

in all vertices, except v2 and v3, and the only cover which satisfies it is V2. It
is also true the other way around: the only cover in distance 6 from V2 is V1.
Hence, if we have population (V1, V2), then replacing any of the individuals with
another 3- or 4-cover makes the distance between the two individuals smaller,
and therefore cannot be accepted by any (μ + 1) elitist algorithm. ��

3.2 Extending the Example to Arbitrary Population and Problem
Sizes

Based on the example given in the previous subsection, we now show that a
population with sub-optimal diversity which cannot be escaped by the (μ+1) EA
exists also for larger μ and |V |. We start with extending our example for larger
population sizes, keeping |V | = 8.

We consider the same graph G as shown in Fig. 1, and give an example of a
locally optimal population in the following lemma.

Lemma 4. Let μ ≥ 4 be even and let ν = µ
2 − 1. Let also V1, V2, V3 and V4

be the same vertex covers as in Lemma 3. Consider a population which has one
individual V1, one individual V2, ν individuals V3, and ν individuals V4. Then
this population has a sub-optimal diversity (the total Hamming distance) and
replacing any individual with any different vertex cover of size at most 4 reduces
the diversity.

Proof. We exploit the expression of the total Hamming distance given in Eq. (1).
In the given population all ni (the number of one-bits in position i) are µ

2 , except
for i = 2 and i = 3. Since the bit strings representing V1 and V2 have a one-bit
in position 2 and a zero-bit in position 3, we have n2 = µ

2 + 1 and n3 = µ
2 − 1.

Hence, if we change the number of one-bits in any position (except 2 and 3) by
one, it decreases the corresponding term in Eq. (1) by one, since we have

(μ

2

)2

−
(μ

2
+ 1

) (μ

2
− 1

)
=

(μ

2

)2

−
((μ

2

)2

− 1
)

= 1.

For the same reason, increasing the number of one-bits in position 2 decreases
this term by 3 and decreasing the number of one-bits by one increases it by 1.
For position 3 it is the other way around.

We now consider different cases of replacing individuals in the population
with different 4- or 3-covers, and show that all of them would only decrease the
total Hamming distance.

Case 1: Replacing V1. If we replace the only individual V1 with V3, then we
increase the number of one-bits in position 3 (and therefore, its contribution
to the diversity is increased by one), and we change the number of one-bits in

Local Optima in Diversity Optimization 191

positions 4, 7 and 8, which decreases the diversity by 3. Therefore, the total
diversity is decreased. Similarly, if we replace V1 with V4, we make the diversity
in position 2 better, but we unbalance positions 1, 5 and 6, hence, we decrease
the diversity.

If we replace V1 with any other 3 or 4-cover, then this cover has the same
values in positions 2 and 3 by Lemma 2, and at least one other value should
be different. This would decrease the term in Eq. (1) which corresponds to this
different position. Hence, the diversity is decreased.

Case 2: Replacing V2. This case is similar to Case 1. Replacing V2 with either
V3 or V4 decreases the diversity by two, and any other replacement decreases it
by at least one.

Case 3: Replacing V3. In this case we consider replacing one of the ν individ-
uals V3 with a different one. If we replace it with V4, then we decrease n2, which
increases the diversity by one. However, it also decreases n3, which decreases the
diversity by 3 and changes all other ni, which decreases the diversity by 6 more.
Hence, the diversity is decreased by 8. Since by Lemma 2 all other covers include
v2 and do not include v3, replacing V3 with one of such covers does not change
n2 and decreases n3 by one, which reduces the diversity by 3. The changes in
other positions can only reduce diversity even more. Therefore, any replacement
of any individual representing V3 would decrease the diversity.

Case 4: Replacing V4. This case is similar to Case 3. If we replace it with
V3, we balance position 3, but we unbalance all other positions, which decreases
the diversity. Replacing it with any other cover would unbalance at least one
position.

Bringing all cases together, we conclude that replacing any individual in this
population with a different 3- or 4-vertex cover decreases the total Hamming
distance, and therefore is not accepted by the algorithm. ��

To extend this result to larger problem sizes it is enough to add to the graph
in Fig. 1 a complete bipartite graph Kn,n, which is not connected with the basic
graph and consider the (n+4)-cover problem. Then the locally optimal popula-
tion will be the same as in Lemma 4, but half of the individuals in that population
must contain one half of the bipartite graph, and another half of individuals—
another half of the bipartite graph. This results in a population in which all
positions except 2 and 3 are balanced. Hence, the arguments of Lemma 4 will
work on this graph as well, if we note that changing the value of any bit corre-
sponding to an added vertex would result in decreasing the corresponding term
in (1) and therefore, reducing the diversity.

4 Large Offspring Populations Are Effective

In this section we show that the (1µ + 1µ) EAD and also the (μ+ λ) EAD with
λ ≥ μ can effectively find a diverse population of k-vertex covers. The main
result is the following theorem.

192 D. Antipov et al.

Theorem 1. Consider the (1µ + 1µ) EAD or the (μ + λ) EAD with λ ≥ μ,
which optimize the total Hamming distance on a k-vertex cover instance, for
which at least one k-cover exist. If we have kμ = o(

√
n), then in each iteration

the probability of these two algorithms to find a population of k-vertex covers
with optimal diversity is at least 2−kµ(1 − o(1)), and therefore, its runtime is
dominated by geometric distribution Geom(2−kµ(1 − o(1))).

Proof. Let Popt be a population of μ individuals which meet the constraint on
fitness and which has the best possible diversity. As it was discussed in Sect. 2.2,
all individuals in this population have exactly k vertices, since otherwise we
could add additional vertices to some of them and increase diversity. Let P ′

opt
be another population of μ covers, where the i-th individual is a non-excessive
cover, which is a subset of the i-th individual in P ′

opt.
To get Popt from P ′

opt we need to add vertices to individuals which have less
than k vertices. If we add a vertex to position i, in which ni > 0 individuals
have a one-bit (that is, they include vertex i), then the improvement of the
corresponding term in Eq. (1) will be

(ni + 1)(μ − ni − 1) − ni(μ − ni) = μ − ni − 1 − ni + 1 < μ.

Hence, we can add this vertex to another position i, in which ni = 0 and improve
the diversity more, namely, by μ. Therefore, if at least one vertex is added to
a position with ni > 0, then it contradicts with optimality of D(Popt). We also
note that any way of adding the missing vertices to P ′

opt to positions with ni = 0,
would yield the same increase in diversity, therefore, to get an optimal diversity,
we do not have to get Popt: any other population obtained in this way from P ′

opt
has an optimal diversity.

The probability that we create such a population in one iteration of the (1µ+
1µ) EAD or the (μ+λ) EAD with λ ≥ μ is at least the probability that for each i
we generate the i-th offspring yi by first creating the i-th individual x′

i of P ′
opt and

then we add the missing vertices (if there are any) to positions with no vertices
in other individuals. For the (1µ + 1µ) EAD it gives a population with optimal
diversity, and for the (μ + λ) EAD the population with optimal diversity is a
subset of the new offspring, hence the diversity of the next-generation population
cannot be sub-optimal.

By Lemma 1, the probability to create an individual from P ′
opt is 2−k, hence

the probability that we create exactly μ such individuals is at least 2−kµ. We
then add the missing vertices. At each point of time there are at least n − kμ
good positions in which there is no vertex in any individual, and there are at
most n positions to which we add a vertex, hence the probability that we add it
to a good position is at least (1− kµ

n). Since we need to add at most kμ vertices,
the probability that all of them are added to good positions is at least

(

1 − kμ

n

)kµ

≥ 1 − (kμ)2

n
= 1 − o(1),

Local Optima in Diversity Optimization 193

where we used Bernoulli inequality and the lemma condition kμ = o(
√

n). Hence,
we conclude that the probability to create a population with optimal diversity
in each iteration is at least 2−kµ(1 − o(1)). ��

If we assume that μ is some constant, the expected runtime given by Theo-
rem 1 is at most O(2k) iterations or fitness evaluations, hence the task of finding
a diverse population with the (1µ + 1µ) EAD or the (μ + λ) EAD is easier than
finding a k-vertex cover with methods, proposed in [6], where an upper bound
of O(2kn2 log(n)) iterations was shown for the (1 + 1) EA.

5 Conclusion

In this paper we showed the first example of a local optimum in the diversity
optimization problem, from which it is impossible to escape by replacing only
one individual in the population if we optimize diversity in an elitist way. This
result illustrates that when optimizing in the space of populations, the (μ + 1)
algorithms can be interpreted as local search in that space. To get a positive
probability of finding an optimally diverse population in any iteration we have
to be able to perform global changes on the population, which demands from us
creating at least μ offspring. This idea brought us to the (1µ+1µ) EAD, which is
an analogue of the (1 + 1) EA, where in role of individuals we have populations
represented with bit strings of size nμ.

The first signs of this result might have been seen in the previous empirical
study [29]. There it was shown that the amount of diversity of the obtained
solutions in the context of constructing a wireless communication network can be
increased in most of the cases by even slightly increasing the offspring population
size. This also rises a question on how many individuals should we replace at
once to escape such local optima. Creating the number of offspring which is
at least the size of the parent population is definitely enough, and, as we have
shown in this paper, might be effective when the parent population size is not
too large. However, if we want to obtain large diverse populations, then counting
on generating the whole optimal population in one iteration is not promising,
and our hope would be on improving the diversity via replacing a small number
of individuals per iteration.

Before we find an answer to the question on what the offspring population size
should be, a lazy approach to such problems would be using variable population
size in the (μ+λ) EAD. A good strategy for this might be choosing λ according to
the power-law distribution, which on the one hand gives us a decent probability
to have a large population size, but also preserves a small expected cost of one
iteration, as it was shown in [1].

Acknowledgements. This work has been supported by the Australian Research
Council through grants DP190103894 and FT200100536.

194 D. Antipov et al.

References

1. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms.
Algorithmica 84(6), 1724–1761 (2022)

2. Antipov, D., Neumann, A., Neumann, F.: Rigorous runtime analysis of diversity
optimization with GSEMO on OneMinMax. In: Foundations of Genetic Algo-
rithms, FOGA 2023, pp. 3–14. ACM (2023)

3. Baste, J., et al.: Diversity of solutions: an exploration through the lens of fixed-
parameter tractability theory. Artif. Intell. 303, 103644 (2022)

4. Benke, L., Miller, T., Papasimeon, M., Lipovetzky, N.: Diverse, top-k, and top-
quality planning over simulators. In: ECAI. Frontiers in Artificial Intelligence and
Applications, vol. 372, pp. 231–238. IOS Press (2023)

5. Bossek, J., Neumann, F.: Evolutionary diversity optimization and the minimum
spanning tree problem. In: Genetic and Evolutionary Computation Conference,
GECCO 2021, pp. 198–206. ACM (2021)

6. Branson, L., Sutton, A.M.: Focused jump-and-repair constraint handling for fixed-
parameter tractable graph problems closed under induced subgraphs. Theor. Com-
put. Sci. 951, 113719 (2023)

7. Buzdalov, M., Doerr, B., Doerr, C., Vinokurov, D.: Fixed-target runtime analysis.
Algorithmica 84(6), 1762–1793 (2022)

8. Chatzilygeroudis, K., Cully, A., Vassiliades, V., Mouret, J.-B.: Quality-diversity
optimization: a novel branch of stochastic optimization. In: Pardalos, P.M., Rasska-
zova, V., Vrahatis, M.N. (eds.) Black Box Optimization, Machine Learning, and
No-Free Lunch Theorems. SOIA, vol. 170, pp. 109–135. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-66515-9_4

9. Cully, A., Mouret, J.: Behavioral repertoire learning in robotics. In: Genetic and
Evolutionary Computation Conference, 2013, pp. 175–182. ACM (2013)

10. Do, A.V., Guo, M., Neumann, A., Neumann, F.: Analysis of evolutionary diversity
optimization for permutation problems. ACM Trans. Evol. Learn. Optim. 2(3),
11:1–11:27 (2022)

11. Do, A.V., Guo, M., Neumann, A., Neumann, F.: Diverse approximations for mono-
tone submodular maximization problems with a matroid constraint. In: Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2023, pp. 5558–5566.
ijcai.org (2023)

12. Doerr, B., Gao, W., Neumann, F.: Runtime analysis of evolutionary diversity max-
imization for OneMinMax. In: Genetic and Evolutionary Computation Conference,
GECCO 2016, pp. 557–564. ACM (2016)

13. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Analyses of simple
hybrid algorithms for the vertex cover problem. Evol. Comput. 17(1), 3–19 (2009)

14. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evol. Comput. 18(4), 617–633 (2010)

15. Gao, W., Neumann, F.: Runtime analysis for maximizing population diversity in
single-objective optimization. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2014, pp. 777–784. ACM (2014)

16. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimisation. Evol. Comput. 18(3), 335–356 (2010)

17. Gounder, S., Neumann, F., Neumann, A.: Evolutionary diversity optimisation for
sparse directed communication networks. In: Genetic and Evolutionary Computa-
tion Conference, GECCO 2024. ACM (2024, to appear)

https://doi.org/10.1007/978-3-030-66515-9_4

Local Optima in Diversity Optimization 195

18. Gravina, D., Khalifa, A., Liapis, A., Togelius, J., Yannakakis, G.N.: Procedural
content generation throuertegh quality diversity. In: IEEE Conference on Games,
CoG 2019, pp. 1–8. IEEE (2019)

19. Haessler, R.W., Sweeney, P.E.: Cutting stock problems and solution procedures.
Eur. J. Oper. Res. 54, 141–150 (1991)

20. Ingmar, L., de la Banda, M.G., Stuckey, P.J., Tack, G.: Modelling diversity of
solutions. In: AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 1528–
1535. AAAI Press (2020)

21. Katz, M., Sohrabi, S.: Reshaping diverse planning. In: AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, pp. 9892–9899. AAAI Press (2020)

22. Kellerhals, L., Renken, M., Zschoche, P.: Parameterized algorithms for diverse
multistage problems. In: ESA. LIPIcs, vol. 204, pp. 55:1–55:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021)

23. Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex
cover problem. Algorithmica 65(4), 754–771 (2013)

24. Macedo, J., Lopes, D., Correia, J., Machado, P., Costa, E.: Evolving visually-
diverse graphic design posters. In: Johnson, C., Rebelo, S.M., Santos, I. (eds.) Evo-
MUSART 2024. LNCS, vol. 14633, pp. 265–278. Springer, Cham (2024). https://
doi.org/10.1007/978-3-031-56992-0_17

25. Medina, A., Richey, M., Mueller, M., Schrum, J.: Evolving flying machines in
minecraft using quality diversity. In: Genetic and Evolutionary Computation Con-
ference, GECCO 2023, pp. 1418–1426 (2023)

26. Mkhatshwa, S., Nitschke, G.: The impact of morphological diversity in robot
swarms. In: Genetic and Evolutionary Computation Conference, GECCO 2023,
pp. 65–74 (2023)

27. Mouret, J., Clune, J.: Illuminating search spaces by mapping elites. CoRR
abs/1504.04909 (2015)

28. Neumann, A., Bossek, J., Neumann, F.: Diversifying greedy sampling and evolu-
tionary diversity optimisation for constrained monotone submodular functions. In:
Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 261–269.
ACM (2021)

29. Neumann, A., et al.: Diversity optimization for the detection and concealment of
spatially defined communication networks. In: Genetic and Evolutionary Compu-
tation Conference, GECCO 2023, pp. 1436–1444. ACM (2023)

30. Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Entropy-based evolution-
ary diversity optimisation for the traveling salesperson problem. In: Genetic and
Evolutionary Computation Conference, GECCO 2021, pp. 600–608. ACM (2021)

31. Nikfarjam, A., Neumann, A., Neumann, F.: Evolutionary diversity optimisation for
the traveling thief problem. In: Genetic and Evolutionary Computation Conference,
GECCO 2022, pp. 749–756. ACM (2022)

32. Nikfarjam, A., Neumann, A., Neumann, F.: On the use of quality diversity algo-
rithms for the traveling thief problem. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pp. 260–268 (2022)

33. Nikfarjam, A., Rothenberger, R., Neumann, F., Friedrich, T.: Evolutionary diver-
sity optimisation in constructing satisfying assignments. In: Genetic and Evolu-
tionary Computation Conference, GECCO 2023, pp. 938–945. ACM (2023)

34. Nikfarjam, A., Stanford, T., Neumann, A., Dumuid, D., Neumann, F.: Quality
diversity approaches for time use optimisation to improve health outcomes. In:
Genetic and Evolutionary Computation Conference, GECCO 2024. ACM (2024,
to appear)

https://doi.org/10.1007/978-3-031-56992-0_17
https://doi.org/10.1007/978-3-031-56992-0_17

196 D. Antipov et al.

35. Oliveto, P.S., He, J., Yao, X.: Evolutionary algorithms and the vertex cover prob-
lem. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 1870–1877.
IEEE (2007)

36. Oliveto, P.S., He, J., Yao, X.: Analysis of population-based evolutionary algorithms
for the vertex cover problem. In: IEEE Congress on Evolutionary Computation,
CEC 2008, pp. 1563–1570. IEEE (2008)

37. Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of
quality diversity. In: Genetic and Evolutionary Computation Conference, GECCO
2015, pp. 967–974. ACM (2015)

38. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective opti-
mization. In: Genetic and Evolutionary Computation Conference, GECCO 2011,
pp. 641–648. ACM (2011)

39. Wineberg, M., Oppacher, F.: The underlying similarity of diversity measures used
in evolutionary computation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS,
vol. 2724, pp. 1493–1504. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45110-2_21

40. Zardini, E., Zappetti, D., Zambrano, D., Iacca, G., Floreano, D.: Seeking quality
diversity in evolutionary co-design of morphology and control of soft tensegrity
modular robots. In: Genetic and Evolutionary Computation Conference, GECCO
2021, pp. 189–197. ACM (2021)

https://doi.org/10.1007/3-540-45110-2_21
https://doi.org/10.1007/3-540-45110-2_21

Proven Runtime Guarantees for How the
MOEA/D: Computes the Pareto Front

from the Subproblem Solutions

Benjamin Doerr1 , Martin S. Krejca1(B) , and Noé Weeks2

1 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut
Polytechnique de Paris, Palaiseau, France

martin.krejca@polytechnique.edu
2 École Normale Supérieure, Paris, France

Abstract. The decomposition-based multi-objective evolutionary algo-
rithm (MOEA/D) does not directly optimize a given multi-objective
function f , but instead optimizes N + 1 single-objective subproblems
of f in a co-evolutionary manner. It maintains an archive of all non-
dominated solutions found and outputs it as approximation to the Pareto
front. Once the MOEA/D found all optima of the subproblems (the g-
optima), it may still miss Pareto optima of f . The algorithm is then
tasked to find the remaining Pareto optima directly by mutating the g-
optima.

In this work, we analyze for the first time how the MOEA/D with
only standard mutation operators computes the whole Pareto front of
the OneMinMax benchmark when the g-optima are a strict subset of
the Pareto front. For standard bit mutation, we prove an expected run-
time of O(nN log n+nn/(2N)N logn) function evaluations. Especially for
the second, more interesting phase when the algorithm start with all g-
optima, we prove an Ω(n(1/2)(n/N+1)

√
N2−n/N) expected runtime. This

runtime is super-polynomial if N = o(n), since this leaves large gaps
between the g-optima, which require costly mutations to cover.

For power-law mutation with exponent β ∈ (1, 2), we prove an
expected runtime of O

(
nN log n + nβ logn

)
function evaluations. The

O
(
nβ log n

)
term stems from the second phase of starting with all g-

optima, and it is independent of the number of subproblems N . This
leads to a huge speedup compared to the lower bound for standard bit
mutation. In general, our overall bound for power-law suggests that the
MOEA/D performs best for N = O(nβ−1), resulting in an O(nβ logn)
bound. In contrast to standard bit mutation, smaller values of N are
better for power-law mutation, as it is capable of easily creating missing
solutions.

Keywords: MOEA/D · multi-objective optimization · runtime
analysis · power-law mutation

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 197–212, 2024.
https://doi.org/10.1007/978-3-031-70071-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_13&domain=pdf
http://orcid.org/0000-0002-9786-220X
http://orcid.org/0000-0002-1765-1219
http://orcid.org/0009-0000-3008-1372
https://doi.org/10.1007/978-3-031-70071-2_13

198 B. Doerr et al.

1 Introduction

Many real-world problems require the simultaneous optimization of different
objectives. In this setting, known as multi-objective optimization, different solu-
tions may not be comparable based on their objective values, as one solution can
win over another solution in one objective, but lose in another objective. This
results in a set of incomparable optimal objective values, commonly referred to
as Pareto front. The aim in multi-objective optimization is to find the Pareto
front of a problem, or a good approximation thereof.

Due to their population-based and heuristic nature, evolutionary algorithms
lend themselves very well to multi-objective optimization, and they have been
successfully applied for decades to a plethora of hard multi-objective optimiza-
tion problems [32]. This strong interest has led to a variety of algorithms [24,32],
following different paradigms.

From the early days of theoretical analyses of evolutionary algorithms on,
multi-objective evolutionary algorithms have been analyzed also via theoretical
means [13,17,21,22]. This area saw a boost of activity in the last two years, when
the first mathematical runtime analysis of the NSGA-II [31] inspired many deep
analyses of this important algorithm and variants such as the NSGA-III or SMS-
EMOA [1–4,10–12,20,23,26–30].

A substantially different, yet also very important algorithm is the
decomposition-based multi-objective evolutionary algorithm (MOEA/D) [25].
It decomposes a multi-objective optimization problem f into various single-
objective subproblems of f . These subproblems are optimized in parallel. While
doing so, the non-dominated solutions for f are maintained in an archive.

Despite its popularity in empirical research and good performance in real-
world problems [24,32], the MOEA/D has not been extensively studied the-
oretically [5,15,16,19]. In particular, it is currently not known how the basic
MOEA/D using only standard mutation operators as variation operators finds
Pareto optima that are not already an optimum of one of the subproblems (we
refer to Sect. 2 for a detailed discussion of the previous works). We recall that
the MOEA/D solves a number of single-objective subproblems essentially via
single-objective approaches. Hence, if all Pareto optima of the original problem
appear as optima of subproblems (we call these g-optima in the remainder),
this is the setting regarded, e.g., in [19], then the multi-objective aspect of the
problem vanishes and the only question is how efficiently the single-objective
approaches solve the subproblems.

Our Contribution. Naturally, in a typical application of the MOEA/D, one
cannot assume that the subproblems are sufficiently numerous and evenly dis-
tributed so that each Pareto optimum appears as g-optimum. To better under-
stand how the MOEA/D copes with such situations, we study in this work
mathematically how the MOEA/D computes the full Pareto front when started
with a population consisting of all g-optima. In this first work on this topic, as
often in the mathematical runtime analysis, we consider the basic OneMinMax

MOEA/D: Computing the Pareto Front from the Subproblem Solutions 199

(OMM) benchmark [14]. As in most previous works, we assume that the N + 1
subproblems are constructed in a manner that the corresponding g-optima are
spread equidistantly, with respect to the Hamming distance, across the Pareto
front. We regard the basic MOEA/D using standard bit mutation as only varia-
tion operator. Interestingly, this is the first theoretical analysis of the MOEA/D
in this setting (apart from the case that the g-optima cover the Pareto front [19]).
Hence our results (Theorem 2), together with standard estimates on this time
to compute the g-optima (Corollary 3), also give the first estimates on the full
runtime of the MOEA/D in this setting (Corollary 1).

Since our results show that the main bottleneck for computing points on the
Pareto front that are far from all g-optima is that standard bit mutation rarely
flips many bits (due to the concentration behavior of the binomial distribution),
we also resort to the heavy-tailed mutation operator proposed by Doerr et al. [9].
Interestingly, this allows for drastic speed-ups when considering the phase of the
optimization that starts with all g-optima (Theorem 3).

In detail, our various results provide us with expected-runtime estimates
for the MOEA/D with either mutation operator to optimize OMM (Corol-
laries 1 and 2). These results prove, respectively, an expected number of
O(nN log n+ nn/(2N)N log n) function evaluations for the MOEA/D with stan-
dard bit mutation where n is the problem dimension and N +1 is the population
size, and O

(
nN log n + nβ log n

)
expected function evaluations for power-law

mutation with power-law exponent β ∈ R>1 being a constant. In both results,
the second term refers to the interesting phase where the algorithm is initialized
with all g-optima and is tasked to find the remaining Pareto optima of OMM.

Our overall bound for standard bit mutation yields O(n2 log n) in the best
case of N = n, matching the result by Li et al. [19, Proposition 4]. For gen-
eral N , the second term in our bound suggests that the MOEA/D performs
best if N ∈ [n2 ..n] and that the runtime is super-polynomial once N = o(n).
Moreover, we prove a lower bound of Ω(n(1/2)(n/N+1)

√
N2−n/N) for this sec-

ond term (Theorem 2), which supports this runtime characterization. However,
this lower bound is not necessarily applicable to the entire optimization of the
MOEA/D on OMM, as we only prove it for a certain phase of the optimization
process. Nonetheless, we believe that it is true for sufficiently large n. We go
more into detail about this behavior in Sect. 5 and especially in Sect. 5.1. Over-
all, our bounds suggest that standard bit mutation performs better when N is
large.

Our upper bound for power-law mutation is best once N = O(nβ−1), result-
ing in a runtime bound of O(nβ log n). The bound O(nβ log n) stems from the
second phase of the optimization, where the algorithm is initialized with all g-
optima (Theorem 3). It is noteworthy that this bound does not depend on N , as,
roughly, the time to fill in the gaps between g-optima is inversely proportional
to the cost of performing N + 1 function evaluations each iterations. Hence,
the parameter N only influences our bound for the first phase of finding all
g-optima. Overall, this suggests that the MOEA/D performs better when N is
small, which is opposite of the behavior with standard bit mutation. Moreover,

200 B. Doerr et al.

the bound for power-law mutation is O(n2 log n) in the worst case, matching
the best case of our bound for standard bit mutation. This suggests that power-
law mutation is more preferable than standard bit mutation in our setting, as
power-law mutation exhibits a far more robust runtime behavior.

Last, for each of the two phases we consider, we get independent results that
hold for a larger class of algorithms (Lemmas 3 and 4) or functions (Theorems 2
and 3). Moreover, we prove an anti-concentration bound for the hypergeometric
distribution close around its expected value (Lemma 2). Due to the more general
setting, we believe that these results are of independent interest.

2 Related Work

Theoretical analyses of the MOEA/D so far are scarce. Most results do not con-
sider the MOEA/D with only standard mutation operators. And those that do
make simplifying assumptions about the decomposition, using problem-specific
knowledge. We also note that we could not find any proofs for how the MO-
EA/D finds its reference point (one of its parameters), which is important in the
general scenarios. If the reference point is mentioned, it is immediately assumed
to be best-possible.

Li et al. [19] conducted the first mathematical analysis of the MOEA/D.
They study the runtime of the algorithm on the classic bi-objective OneMin-

Max (OMM) [14] and LeadingOnesTrailingZeros (LOTZ)1 benchmarks of
size n, that is, the number of objective-function evaluations until the MOEA/D
finds all Pareto optima of the problem. Both benchmarks have a Pareto front
of size n + 1. The authors consider a decomposition of each problem into n + 1
subproblems—matching the size of the Pareto front—, and they assume that
the MOEA/D uses standard bit mutation. The authors prove that if the sub-
problems are chosen such that the n + 1 g-optima correspond one-to-one to the
Pareto front of the problem, then the MOEA/D optimizes OMM in O(n2 log n)
expected function evaluations, and LOTZ in O(n3). We note that this requires a
different subproblem structure for OMM and LOTZ. Moreover, the authors show
that if the MOEA/D uses the commonly used subproblem structure of OMM
for LOTZ, then the g-optima do not cover the entire Pareto front of LOTZ, for
sufficiently large n. In this case, the authors argue that optimization takes a
long time, as the missing solutions need to be found, but these arguments are
not made formal.

Huang and Zhou [15] analyze the MOEA/D when using contiguous hyper-
mutations, a non-standard mutation operator stemming from artificial immune
systems. The authors study two versions of contiguous hypermutation, and they
consider the OMM and the LOTZ benchmarks as well as a deceptive bi-objective
1 We note that the authors call OMM COCZ, and that they consider a version

of LOTZ, called LPTNO, that considers strings over {−1, 1} instead of binary
strings, effectively replacing 0s with −1s. This changes some values for certain param-
eters but effectively results in the same bounds, to the best of our knowledge. Hence,
we use the names OMM and LOTZ throughout this section.

MOEA/D: Computing the Pareto Front from the Subproblem Solutions 201

problem and one containing a plateau. Moreover, the authors consider a general
decomposition of each problem into N + 1 subproblems. This decomposition is
always the same and corresponds to the commonly used one, which results in
evenly spread g-optima on the Pareto front of OMM, also analyzed by Li et
al. [19] above. Huang and Zhou [15] prove that both MOEA/D variants opti-
mize each of the four benchmarks in O(Nn2 log n) expected function evalua-
tions. Moreover, they prove the same runtime bounds for the 4-objective versions
of OMM and LOTZ. Overall, their results suggest that a choice of N = O(1)
is more beneficial, as the hypermutation operators are capable to cover larger
distances than standard bit mutation and can thus find Pareto optima efficiently
that do not correspond to g-optima.

Huang et al. [16] analyze a variant of the MOEA/D that employs standard
bit mutation as well as one-point crossover at a rate of 0.5. When performing
crossover, one of the parents is the best solution of the current subproblem g and
the other one is chosen uniformly at random among the non-dominated solutions
of the subproblems closest to g with respect to the Euclidean distance in one of
their parameters. The problem decomposition is always the commonly used one
with equidistant g-optima, as in the two papers discussed above. The authors
consider essentially the same four2 problems as Huang and Zhou [15] above, and
they also consider a general number of N + 1 subproblems. For LOTZ and the
plateau function, the authors proved an expected runtime of O(Nn2) function
evaluations, and an O(Nn log n) bound for OMM and the deceptive function.

Very recently, Do et al. [5] analyzed the MOEA/D on the multi-objective
minimum-weight-base problem, which is an abstraction of classical NP-hard
combinatorial problems. Their MOEA/D variant uses a decomposition based
on weight scalarization, different from the previous works above. The authors
then prove that this variant finds an approximation of the Pareto front of the
problem within expected fixed-parameter polynomial time.

3 Preliminaries

We denote the natural numbers by N, including 0, and the real numbers by R.
For a, b ∈ R, let [a..b] = [a, b] ∩ N and [a] = [1..a].

Let n ∈ N≥1. We consider bi-objective optimization problems, that is, func-
tions f : {0, 1}n → R

2. We always assume that the dimension n ∈ N≥1 is given
implicitly. When using big-O notation, it refers to asymptotics in this n. In this
sense, an event occurs with high probability if its probability is at least 1− o(1).

We call a point x ∈ {0, 1}n an individual and f(x) the objective value of x.
For all i ∈ [n] and j ∈ [2], we let xi denote the i-th component of x and fj(x)
the j-th component of f(x). Moreover, let |x|0 denote the number of 0s of x, and
let |x|1 denote its number of 1s.

For all u, v ∈ R
2, we say that v weakly dominates u (written v � u) if and

only if for all i ∈ [2] holds that fi(v) ≥ fi(u). We say that v strictly dominates
2 The authors actually treat LOTZ and LPTNO as two functions, but the results are

the same, which is why we count it as one problem.

202 B. Doerr et al.

u if and only if one of these inequalities is strict. We extend this notation to
individuals, where a dominance holds if and only if it holds for their respective
objective values.

We consider the maximization of bi-objective functions f , that is, we are
interested in �-maximal elements, called Pareto-optimal individuals. The set of
all objective values that are not strictly dominated, that is, the set F ∗ := {v ∈
R

2 | ∃y ∈ {0, 1}n 	 ∃x ∈ {0, 1}n : v = f(y) ∧ f(x) � v}, is called the Pareto front
of f .

ONEMINMAX. We analyze the OneMinMax (OMM) benchmark [14] problem,
which returns for each individual the number of 0s as the first objective, and the
number of 1s as the second objective. Formally, OMM: x �→ (|x|0, |x|1).

Note that each individual is Pareto optimal. The Pareto front of OneMin-

Max is {(i, n − i), i ∈ [0..n]}.

Mathematical Tools. We use the well-known multiplicative drift theorem [7]
with tail bounds [6]. We present the theorem in a fashion that is sufficient for
our purposes. Throughout this article, if we write for a stopping time T and two
unary formulas P and Q that for all t ∈ N with t < T holds that P (t) ≥ Q(t),
then we mean that for all t ∈ N holds that P (t) · 1{t < T} ≥ Q(t) · 1{t < T},
where 1 denotes the indicator function.

Theorem 1 (Multiplicative drift [7], upper tail bound [6][18, Theo-
rem 2.4.5]). Let n ∈ N, let (Xt)t∈N be a random process over [0..n], and
let T = inf{t ∈ N | Xt = 0}. Moreover, assume that there is a δ ∈ R>0 such
that for all t ∈ N with t < T holds that E[Xt − Xt+1 | Xt] ≥ δXt. Then,
E[T] ≤ 1

δ (1 + lnn), and for all r ∈ R≥0 holds that Pr[T > 1
δ (r + lnn)] ≤ e−r.

4 The MOEA/D

We analyze the decomposition-based multi-objective evolutionary algorithm (MO-
EA/D; Algorithm 1) [25] for multi-objective optimization. The MOEA/D decom-
poses its objective function into a pre-specified number of single-objective sub-
problems. These subproblems are optimized in parallel. The MOEA/D main-
tains an archive of the �-best solutions found so far, allowing it to find Pareto-
optimal solutions for the original problem while only explicitly optimizing the
subproblems.

More formally, given, besides others, a bi-objective optimization problem f
as well as a decomposition number N ∈ [n] and a weight vector w ∈ [0, 1]N+1, the
MOEA/D optimizes f by decomposing f into N+1 single-objective subproblems
{gi : {0, 1}n × R

2 → R}i∈[0..N], weighted by w. Each of these subproblems is
subject to minimization (of an error). The MOEA/D maintains a population of
N +1 individuals (xi)i∈[0..N] ∈ ({0, 1}n)N+1 as well as a reference point z∗ ∈ R

2

such that for each i ∈ [0..N], individual xi is the currently best solution found
for subproblem i with respect to z∗. Ideally, the reference point is a point such

MOEA/D: Computing the Pareto Front from the Subproblem Solutions 203

Algorithm 1: The MOEA/D [25] maximizing a bi-objective problem
f : {0, 1}n → R

2. See also Section 4.
Input: A decomposition number N ∈ N≥1, a weight vector w ∈ [0, 1]N+1,

subproblems {gi}i∈[0..N], a mutation operator mut: {0, 1}n → {0, 1}n,
and a termination criterion.

1 Initialization: for each i ∈ [0..N], choose xi uniformly at random from {0, 1}n;
set z∗

1 = maxi∈[0..N] f1(xi), z∗
2 = maxi∈[0..N] f2(xi), and iteratively add f(xi)

to P if there is no j ∈ [0..i − 1] such that xi is weakly dominated by xj ;
2 while stopping criterion is not met do
3 for each subproblem i ∈ [0..N] do
4 Mutation: y ← mut(xi);
5 Update z∗: set z∗

1 ← max(z∗
1 , f1(y)), z∗

2 ← max(z∗
2 , f2(y));

6 Update xi: if gi(y, z∗) ≤ gi(xi, z
∗), then xi ← y;

7 Update P : remove all elements weakly dominated by f(y) from P and
add f(y) to P if it is not weakly dominated by an element of P ;

that for all j ∈ [2], value z∗
j is optimal for objective fj . To this end, the MO-

EA/D updates z∗ whenever it optimizes a subproblem. Moreover, the algorithm
maintains a set P ⊆ R

2 (the Pareto front) of non-dominated objective values.
We consider subproblems that measure the maximum distance to the refer-

ence point, known as Chebyshev approach. That is, for all i ∈ [0..N], x ∈ {0, 1}n,
and z∗ ∈ R

2, it holds that

gi(x, z∗) = max
(
wi · |z∗

1 − f1(x)|, (1 − wi) · |z∗
2 − f2(x)|

)
. (1)

When minimizing subproblem i ∈ [0..N], the MOEA/D picks xi as parent
and mutates it according to a given mutation operator. Afterward, it compares
the offspring of the mutation to xi and selects the better one.3

We define the runtime of the MOEA/D on f as the number of function
evaluations of f until the Pareto front P of the algorithm is equal to the Pareto
front F ∗ of f for the first time.

In this article, we consider the MOEA/D with different mutation operators.

Mutation Operators. We consider both standard bit mutation as well as
power-law mutation [9]. Let x ∈ {0, 1}n be the input (the parent) of the muta-
tion. Both operators create a new individual (the offspring) by first copying x
and then adjusting its bit values. Standard bit mutation flips, for all i ∈ [n],
bit xi independently with probability 1/n.

Power-law mutation requires a parameter β > 1 (the power-law exponent)
as input and utilizes the power-law distribution Pow(β, n) over [n], defined as
follows. Let Cβ =

∑
i∈[n] i

−β as well as X ∼ Pow(β, n). For all i ∈ [n], it holds

3 We note that the general MOEA/D allows to specify neighborhoods among the
subproblems, which exchange non-dominated solutions among each other. In this
article, we focus on no exchange.

204 B. Doerr et al.

that Pr[X = i] = i−β/Cβ . The power-law mutation first draws X ∼ Pow(β, n)
(the mutation strength) and then flips an X-cardinality subset of positions in x
chosen uniformly at random.

The following lemma bounds the probability to mutate an individual with at
most n

4 0s into one with at most n
2 , showing that the probability is proportional

to the distance in the number of 0s. Its proof makes use of the anti-concentration
of the hypergeometric distribution (Lemma 2) around its expectation, which we
discuss after Lemma 1. We note that, due to space restrictions, the proofs of
these results are on arXiv [8].

Lemma 1. Let x ∈ {0, 1}n with u := |x|0 ∈ [0..n
4] and let v ∈ [u + 1..n

2 − 1].
Moreover, let β ∈ R>1, and let mutβ denote the power-law mutation with power-
law exponent β. Then Pr[|mutβ(x)|0 = v] = Ω

(
(v − u)−β

)
.

Hypergeometric Distribution. The hypergeometric distribution (Hyp) takes three
parameters, namely, n ∈ N, k ∈ [0..n], and r ∈ [0..n], and it has a support of
[max(0, r+k−n)..min(k, r)]. A random variable X ∼ Hyp(n, k, r) describes the
number of good balls drawn when drawing r balls uniformly at random without
replacement from a set of n balls, out of which k are good. That is, for all
i ∈ [max(0, r + k − n)..min(k, r)] holds Pr[X = i] =

(
k
i

)(
n−k
r−i

)
/
(
n
r

)
. Moreover,

E[X] = r k
n as well as Var[X] = r k

n (1 − k
n)

n−r
n−1 . In the context of power-law

mutation, n represents the number of bits, k the number of specific bits to flip
(for example, 0-bits), and r represents the mutation strength.

The following lemma shows that the hypergeometric distribution has a rea-
sonable probability of sampling values that deviate only by the standard devia-
tion from its expected value.

Lemma 2. Let n ∈ N, k ∈ [0..n
2], and r ∈ [0..34n].

Moreover, let H ∼ Hyp(n, k, r). Then there exists a constant γ ∈ R>0 such
that for all x ∈ [E[H]− 2

√
Var[H],E[H] + 2

√
Var[H]] it holds that Pr[H = x] ≥

γ/
√

Var[H].

5 Runtime Analysis

We analyze the MOEA/D (Algorithm 1) on the OneMinMax (OMM) function
(of dimension n ∈ N≥1) with subproblems spread uniformly across the Pareto
front of OMM, which is the typical way to pick weights [25] and was also used
in the first mathematical analysis of the MOEA/D [19]. To this end, we make
the following assumptions about the input of the algorithm, which we refer to as
the parametrization: We consider decomposition numbers N ∈ [n], we define the
weight vector as w = (i n

N)i∈[0..N], and we consider the subproblems as defined
in equation (1). In our calculations, we assume that N divides n, as this avoids
rounding, but we note that all results are equally valid if N does not divide n,
although the computations become more verbose, adding little merit. We note
that, due to space restrictions, some of our proofs are only on arXiv [8].

Our main results are the following, bounding the expected runtime for both
standard bit mutation and power-law mutation.

MOEA/D: Computing the Pareto Front from the Subproblem Solutions 205

Corollary 1. Consider the MOEA/D maximizing OMM with standard bit
mutation and with the parametrization specified at the beginning of Sect. 5. Then
its expected runtime is O(nN log n + nn/(2N)N log n) function evaluations.

Corollary 2. Consider the MOEA/D maximizing OMM with power-law expo-
nent β ∈ R>1 and with the parametrization specified at the beginning of Sect. 5.
Then its expected runtime is O

(
nN log n + nβ log n

)
function evaluations.

Both runtime results present two terms, which stem from the two phases into
which we separate our analysis. The first term in the results is an upper bound
of the first phase, which is the number of function evaluations it takes the MO-
EA/D to optimize all subproblems. We call the solutions to these subproblems
g-optima. Our bounds for either mutation operator for the first phase are the
same (Corollary 3). The optimization mainly resembles performing N +1 times
an optimization similar to that of the well-known (1+1) evolutionary algorithm
on the OneMax benchmark function. For N = n, our result for standard bit
mutation recovers the result by Li et al. [19, Proposition 4]. We go into detail
about the analysis in Sect. 5.1.

The second phase starts immediately after the first phase and stops once
the Pareto front of the MOEA/D covers the Pareto front of OMM. During this
analysis, we only assume that the MOEA/D found the g-optima so far. Thus,
in the worst case, it still needs to find all other Pareto-optima of OMM. To this
end, each such optimum needs to be created via mutation directly from one of
the g-optima, as the latter are not being replaced, due to them being optimal.
Depending on the gap size, that is, the number of Pareto optima between two g-
optima of neighboring subproblems, the mutation operator makes a big difference
on the expected runtime bound. We analyze both mutation operators separately
in Sect. 5.2.

Regarding Corollary 1, we see that the upper bound for standard bit mutation
only handles values for N ∈ [n2 ..n] without any slowdown in comparison to the
first phase. For smaller values, the upper bound is dominated by the second term
and becomes super-polynomial once N = o(n). In Theorem 2, we prove a lower
bound for the second phase that shows that the expected runtime is also at least
super-polynomial once N = o(n). However, as this lower bound only applies to
the second phase, it may be possible during the whole optimization of OMM
that the algorithm finds most of the OMM-Pareto optima already during the
first phase, although we conjecture this not to happen for sufficiently small N .

For power-law mutation (Corollary 2), the bound for the second phase is
independent of N (Theorem 3). This shows that the power-law mutation picks
up missing Pareto optima fairly quickly. In fact, even for an optimal value of
N = n for standard bit mutation, which results in a bound of O(n2 log n) for the
second phase, the bound for power-law mutation is still smaller by a factor of
nβ−2, which is less than 1 if we further assume that β ∈ (1, 2), which is a typical
range of values used for β in practice. Moreover, for the whole optimization,
the upper bound for power-law mutation is best once N = O(nβ−1), that is,
for smaller values of N . This is in contrast to the upper bound for standard bit
mutation, which gets better for larger values of N .

206 B. Doerr et al.

Overall, our results suggest that standard bit mutation profits from having
many subproblems, as creating initially skipped solutions may be hard to create
once all subproblems are optimized. In contrast, power-law mutation is slowed
down by optimizing many subproblems in parallel. Instead, it profits from opti-
mizing fewer such subproblems and then creating initially skipped solutions.

In the following, we first analyze the first phase (Sect. 5.1) and then the
second phase (Sect. 5.2).

5.1 First Phase

Recall that the first phase considers optimization of OMM only until all sub-
problems are optimized, that is, until all g-optima are found. Our main result
is the following and shows that finding the g-optima is not challenging for the
MOEA/D, regardless of the mutation operator.

Corollary 3. Consider the MOEA/D maximizing OMM with the parametriza-
tion specified at the beginning of Sect. 5. Then the expected time until P contains
all g-optima of OMM is O(nN log n) function evaluations for both standard bit
mutation and power-law mutation with power-law exponent β ∈ R>1.

For our proof of Corollary 3, we split the first phase into two parts. The
first part considers the time until the reference point z∗ is optimal, that is, until
z∗ = (n, n). For this part, only the optimization of g0 and gN is relevant.

The second part starts with an optimal reference point and considers the
time until all g-optima are found. For this part, we consider the optimization of
an arbitrary subproblem and multiply the resulting time by roughly N logN , as
we consider N + 1 subproblems and we wait until all of them are optimized.

In order to prove results that hold for the MOEA/D with standard bit muta-
tion as well as with power-law mutation, we consider a general mutation opera-
tor, which we call general mutation. It takes one parameter p1 ∈ (0, 1] and works
as follows: It chooses to flip exactly one bit in the parent with probability p1
(and it flips any other number with probability 1 − p1). Conditional on flipping
exactly one bit, it flips one of the n bits of the parent uniformly at random and
returns the result. Note that standard bit mutation is general mutation with
p1 = (1 − 1

n)
n−1 and that power-law mutation with power-law exponent β is

general mutation with p1 = 1/Cβ . Both of these values are constants.
For the first part, we get the following result.

Lemma 3. Consider the MOEA/D maximizing OMM with the parametrization
specified at the beginning of Sect. 5 and with general mutation with parameter
p1 ∈ (0, 1]. Then the expected time until z∗ = (n, n) holds is O(n

p1
N log n) func-

tion evaluations.

Proof. Let T be the first iteration such that z∗
1 = n. Without loss of generality,

we only analyze E[T], as the analysis for z∗
2 = n is identical when changing

all 1s into 0s and vice versa in the individuals in all arguments that follow.
Thus, the expected runtime that we aim to prove is at most 2E[T] by linearity

MOEA/D: Computing the Pareto Front from the Subproblem Solutions 207

of expectation. Hence, we are left to show that E[T] = O(n
p1

log n), where the
factor of N in the bound of Lemma 3 stems from the MOEA/D making N + 1
function evaluations per iteration. To this end, we only consider the optimization
of gN .

By Eq. (1), the choice of the weight vector w, and the definition of OMM,
it follows for all x ∈ {0, 1}n and z ∈ R

2 that gN (x, z) = max(|z1 − |x|1|, 0) =
|z1 − |x|1|. In each iteration, let xN denote the best-so-far solution for gN at the
beginning of the iteration, and let y denote its offspring generated via mutation.
Note that, due to how z∗ is initialized and updated, in each iteration, it holds
that z∗

1 ≥ max(f1(xN), f1(y)) = max(|xN |1, |y|1). Thus, if |y|1 > |xN |1, then
g(y, z∗) < g(xN , z), and thus xN is updated to y at the end of the iteration.
Hence, the optimization of gN proceeds like a (1 + 1)-EA-variant with general
mutation optimizing OneMax.

More formally, let (Xt)t∈N such that for each t ∈ N, the value Xt denotes the
number of 0s in xN at the end of iteration t. Note that XT = 0. We aim to apply
the multiplicative drift theorem (Theorem 1) to X with T . By the definition of
the mutation operator, it follows for all t < T that E[Xt − Xt+1 | Xt] ≥ Xt

p1
n ,

since it is sufficient to choose to flip one bit (with probability p1) and then to
flip one of the Xt 0s of xN (at the beginning of the iteration), which are chosen
uniformly at random. Thus, by Theorem 1, it follows that E[T] ≤ n

p1
(1 + lnn),

concluding the proof. ��
For the second part, we get the following result.

Lemma 4. Consider the MOEA/D maximizing OMM with the parametrization
specified at the beginning of Sect. 5 and with z∗ = (n, n) and with general muta-
tion with parameter p1 ∈ (0, 1]. Then the expected time until P contains all
g-optima of OMM is O(n

p1
N log n) function evaluations.

Proof. Let i ∈ [0, N]. We bound with high probability the time T until gi is
optimized, only counting the function evaluations for subproblem i. The result
of Lemma 4 follows then by considering the maximum runtime among all values
of i and multiplying it by N + 1, as we perform N + 1 function evaluations per
iteration and optimize all subproblems in parallel. We bound the maximum with
high probability by taking a union bound over all N+1 different values for i. If the
maximum of T over all i is at least B ∈ R≥0 with probability at most q ∈ [0, 1),
then we get the overall expected runtime by repeating our analysis 1

1−q times in
expectation, as the actual runtime is dominated by a geometric random variable
with success probability 1− q. The overall expected runtime is then O(BN 1

1−q)
Thus, it remains to show that Pr[T > n

p1

(
ln(n) + 2 ln(N + 1)

)
] ≤ (N + 1)−2,

as it then follows that q ≤ (N + 1)−1 and thus 1
1−q ≤ 2. We aim to prove this

probability bound with the multiplicative drift theorem (Theorem 1).
Let (Xt)t∈N be such that for all t ∈ N, value Xt denotes the value of gi(xi, z

∗)
at the beginning of the iteration. Note that XT = 0 and that for all t < T holds
that Xt ∈ [0..n] and that for Xt to reduce (if Xt > 0), it is sufficient to flip one
of the Xt bits that reduce the distance. Thus, by the definition of the mutation

208 B. Doerr et al.

operator, it follows that E[Xt − Xt+1 | Xt] ≥ Xt
p1
n . Overall, by (Theorem 1), it

follows that Pr[T > n
p1

(
ln(n)+2 ln(N+1)

)
] ≤ (N+1)−2. The proof is concluded

by noting that N ≤ n and thus ln(n) + 2 ln(N + 1) = O(log n). ��
By the linearity of expectation, the expected time of the first phase is the sum

of the expected runtimes of both parts. Moreover, since standard bit mutation
and power-law mutation are both a general mutation with p1 = Θ(1), we can
omit p1 in the asymptotic notation. Overall, we obtain Corollary 3.

5.2 Second Phase

Recall that the second phase assumes that the MOEA/D starts with the g-
optima as its solutions to the subproblems, and it lasts until all OMM-Pareto
optima are found.

For this phase, the actual objective function is not very important. All that
matters is that if the solutions (xi)i∈[0..N] of the MOEA/D are such that for all
i ∈ [0..N] holds that |xi|1 = i n

N , then xi is optimal for gi. We refer to such a
situation as evenly spread g-optima.

Since there is a drastic difference between the runtimes of standard bit muta-
tion and power-law mutation, we analyze these two operators separately.

Standard Bit Mutation. Since the standard bit mutation is highly concen-
trated around flipping only a constant number of bits, it does not perform well
when it needs to fill in larger gaps. The following theorem is our main result,
and it proves an upper and a lower bound for the expected runtime of the second
phase. These bounds are not tight, but they show that the runtime is already
super-polynomial once N = o(n).

Theorem 2. Consider the MOEA/D maximizing a bi-objective function with
evenly spread g-optima and with standard bit mutation, using the parametriza-
tion specified at the beginning of Sect. 5. Moreover, assume that n

2N is inte-
ger and that the algorithm is initialized with (xi)i∈[0..N] such that for all
i ∈ [0..N] holds that |xi|1 = i · n

N . Then the expected runtime until for
each j ∈ [0..n] at least one individual with j 0s is created via mutation is
O(nn/(2N)N log n) ∩ Ω(n(1/2)(n/N+1)

√
N2−n/N) function evaluations.

Power-Law Mutation. The power-law mutation allows to create individuals
at larger distance from its parent with far higher probability than standard bit
mutation. Our main result is the following theorem, which shows that the MO-
EA/D with power-law mutation optimizes the second phase of OMM efficiently.
As before, we state this theorem in a more general fashion.

Theorem 3. Consider the MOEA/D optimizing a bi-objective function with
evenly spread g-optima, using the parametrization specified at the beginning of
Sect. 5. Moreover, assume that the algorithm is initialized with {i · n

N }i∈[0..N].
Then the expected runtime until for each j ∈ [0..n] at least one individual
with j 0s is created via mutation is O(nβ log n).

MOEA/D: Computing the Pareto Front from the Subproblem Solutions 209

The bound of Theorem 3 does not depend on N , in contrast to the bound on
the first phase (Corollary 3). The reason for our bound not depending on N is
roughly that the effort to fill in a gap between to g-optima is inversely propor-
tional to the cost of an iteration, namely, N +1. Thus, a smaller value of N leads
to faster iterations but more iterations spend to fill the gaps, and vice versa.

Our (omitted) proof of Theorem 3 makes use of the following lemma, which
bounds the probability to create a specific individual from any of the g-optima
in a single iteration of the MOEA/D.

Lemma 5. Consider a specific iteration during the optimization of the MO-
EA/D of a bi-objective function with evenly spread g-optima, using the
parametrization specified at the beginning of Sect. 5. Moreover, assume that the
algorithm is initialized with {i · n

N }i∈[0..N]. Last, let u ∈ [0..n
2]. Then the probabil-

ity that an individual with u 0-bits is produced during mutation in this iteration
is Ω

(
N(n−β)

)
.

Proof. Let i be such that ni/N < u ≤ n(i+1)/N . Clearly, i ≤ N/2, as u ≤ n/2.
Note that are at least i/4 values of j ∈ [0..N/4] such that jn/N ≤ n/4. By
Lemma 1, each individual xj mutates into an individual with u 0-bits with
probability Ω

((
(i+1)n/N

)−β)
. Because there are Ω(i) such possible mutations

during an iteration, the probability of generating at least one during an iteration
is Ω

(
i1−βn−β · Nβ

)
= Ω(N

(
N
i

)β−1
n−β) = Ω

(
Nn−β

)
, concluding the proof. ��

6 Conclusion

We studied the impact of the decomposition number N of the MOEA/D [25] on
the classic multi-objective benchmark OneMinMax (OMM) [14] theoretically.
Our analyses considered subproblems that are evenly spread out on the Pareto
front of OMM. Especially, we studied the expected runtime when starting with
all optima of the subproblems (the g-optima) and requiring to find the remaining
Pareto optima of OMM.

One of our theoretical results (Theorem 3) shows that using power-law muta-
tion allows the MOEA/D to efficiently find the entire Pareto front of OMM even
if it is initialized only with the g-optima. Interestingly, this bound is independent
of the number of problems N and thus the number of initially missing Pareto
optima between two neighboring g-optima. Together with our general bound for
finding all g-optima (Corollary 3), this shows that the MOEA/D with power-law
mutation always optimizes OMM efficiently (Corollary 2). Depending on N , our
total-runtime bound ranges from O(n2 log n) in the worst case to O(nβ log n)
in the best case of N = O(nβ−1). This suggests that the MOEA/D is, in fact,
slowed down when using many subproblems, despite large values of N implying
that the subproblems cover the Pareto front of OMM better than smaller values.
The reason is that a large value of N roughly translates to optimizing the same
problem N times. With the power-law mutation, it is better to optimize fewer
and therefore more diverse subproblems and to then find the remaining Pareto
optima efficiently via the power-law mutation.

210 B. Doerr et al.

For standard bit mutation, when starting with all g-optima, we show (Theo-
rem 2) that the MOEA/D is not capable of efficiently finding all Pareto optima
if N is sufficiently small, as our lower bound is super-polynomial for N = o(n).
Nonetheless, for N = Θ(n), the expected runtime of the MOEA/D with standard
bit mutation is polynomial in this part. This translates to an overall polynomial
expected runtime (Corollary 1) for N = Θ(n) that it is even O(n2 log n) for
N ∈ [n2 ..n], matching our worst-case bound with power-law.

Overall, our results suggest a clear benefit of power-law mutation over stan-
dard bit mutation of the MOEA/D in the setting we considered. Not only is the
power-law variant faster, it is also far more robust to the choice of N and thus
to how the problem is decomposed.

For future work, it would be interesting to improve the upper bounds or prove
matching lower bounds. A similar direction is to consider an exchange of best-
so-far solutions among the subproblems. The classic MOEA/D supports such
an exchange, which could potentially lead to finding the g-optima more quickly.
Another promising direction is the study of different problem decompositions,
for example, not-evenly spread subproblems or subproblem definitions different
from equation (1). Last, we considered the OMM setting, with a stronger gen-
eralization some of our results (Theorems 2 and 3). However, it is not clear to
what extent the benefit of power-law mutation carries over to problems with an
entirely different structure, such as LeadingOnesTrailingZeros.

Acknowledgments. This research benefited from the support of the FMJH Program
Gaspard Monge for optimization and operations research and their interactions with
data science.

Disclosure of Interests. The authors declare no competing interests.

References

1. Bian, C., Qian, C.: Better running time of the non-dominated sorting genetic algo-
rithm II (NSGA-II) by using stochastic tournament selection. In: Rudolph, G.,
Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) Parallel
Problem Solving From Nature, PPSN 2022, pp. 428–441. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-14721-0_30

2. Cerf, S., Doerr, B., Hebras, B., Kahane, J., Wietheger, S.: The first proven perfor-
mance guarantees for the Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
on a combinatorial optimization problem. In: International Joint Conference on
Artificial Intelligence, IJCAI 2023, pp. 5522–5530. ijcai.org (2023)

3. Dang, D.C., Opris, A., Salehi, B., Sudholt, D.: Analysing the robustness of NSGA-
II under noise. In: Genetic and Evolutionary Computation Conference, GECCO
2023, pp. 642–651. ACM (2023)

4. Dang, D.C., Opris, A., Salehi, B., Sudholt, D.: A proof that using crossover can
guarantee exponential speed-ups in evolutionary multi-objective optimisation. In:
Conference on Artificial Intelligence, AAAI 2023, pp. 12390–12398. AAAI Press
(2023)

https://doi.org/10.1007/978-3-031-14721-0_30
https://www.ijcai.org

MOEA/D: Computing the Pareto Front from the Subproblem Solutions 211

5. Do, A.V., Neumann, A., Neumann, F., Sutton, A.M.: Rigorous runtime analysis of
MOEA/D for solving multi-objective minimum weight base problems. In: Advances
in Neural Information Processing Systems, pp. 36434–36448. Curran Associates
(2023)

6. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250
(2013)

7. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

8. Doerr, B., Krejca, M.S., Weeks, N.: Proven runtime guarantees for how the
MOEA/D computes the pareto front from the subproblem solutions. CoRR
abs/2405.01014 (2024)

9. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784.
ACM (2017)

10. Doerr, B., Qu, Z.: A first runtime analysis of the NSGA-II on a multimodal prob-
lem. IEEE Trans. Evol. Comput. 27, 1288–1297 (2023)

11. Doerr, B., Qu, Z.: From understanding the population dynamics of the NSGA-II
to the first proven lower bounds. In: Conference on Artificial Intelligence, AAAI
2023, pp. 12408–12416. AAAI Press (2023)

12. Doerr, B., Qu, Z.: Runtime analysis for the NSGA-II: provable speed-ups from
crossover. In: Conference on Artificial Intelligence, AAAI 2023, pp. 12399–12407.
AAAI Press (2023)

13. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In:
Congress on Evolutionary Computation, CEC 2003, pp. 1918–1925. IEEE (2003)

14. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimisation. Evol. Comput. 18, 335–356 (2010)

15. Huang, Z., Zhou, Y.: Runtime analysis of somatic contiguous hypermutation opera-
tors in MOEA/D framework. In: Conference on Artificial Intelligence, AAAI 2020,
pp. 2359–2366. AAAI Press (2020)

16. Huang, Z., Zhou, Y., Chen, Z., He, X., Lai, X., Xia, X.: Running time analysis
of MOEA/D on pseudo-Boolean functions. IEEE Trans. Cybern. 51, 5130–5141
(2021)

17. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput.
8, 170–182 (2004)

18. Lengler, J.: Drift analysis. In: Doerr, B., Neumann, F. (eds.) Theory of Evolu-
tionary Computation: Recent Developments in Discrete Optimization, pp. 89–131.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_2, also avail-
able at https://arxiv.org/abs/1712.00964

19. Li, Y.L., Zhou, Y.R., Zhan, Z.H., Zhang, J.: A primary theoretical study on
decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Evol.
Comput. 20, 563–576 (2016)

20. Opris, A., Dang, D.C., Neumann, F., Sudholt, D.: Runtime analyses of NSGA-III
on many-objective problems. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2024. ACM (2024, to appear)

21. Rudolph, G.: Evolutionary search for minimal elements in partially ordered finite
sets. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998.
LNCS, vol. 1447, pp. 345–353. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0040787

https://doi.org/10.1007/978-3-030-29414-4_2
https://arxiv.org/abs/1712.00964
https://doi.org/10.1007/BFb0040787
https://doi.org/10.1007/BFb0040787

212 B. Doerr et al.

22. Thierens, D.: Convergence time analysis for the multi-objective counting ones prob-
lem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO
2003. LNCS, vol. 2632, pp. 355–364. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36970-8_25

23. Wietheger, S., Doerr, B.: A mathematical runtime analysis of the Non-dominated
Sorting Genetic Algorithm III (NSGA-III). In: International Joint Conference on
Artificial Intelligence, IJCAI 2023, pp. 5657–5665. ijcai.org (2023)

24. Zhang, J., Xing, L.: A survey of multiobjective evolutionary algorithms. In: Inter-
national Conference on Computational Science and Engineering (CSE), pp. 93–100.
IEEE (2017)

25. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

26. Zheng, W., Doerr, B.: Better approximation guarantees for the NSGA-II by using
the current crowding distance. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2022, pp. 611–619. ACM (2022)

27. Zheng, W., Doerr, B.: Mathematical runtime analysis for the non-dominated sort-
ing genetic algorithm II (NSGA-II). Artif. Intell. 325, 104016 (2023)

28. Zheng, W., Doerr, B.: Runtime analysis for the NSGA-II: proving, quantifying,
and explaining the inefficiency for many objectives. IEEE Trans. Evol. Comput.
(2023, in press). https://doi.org/10.1109/TEVC.2023.3320278

29. Zheng, W., Doerr, B.: Runtime analysis of the SMS-EMOA for many-objective
optimization. In: Conference on Artificial Intelligence, AAAI 2024. AAAI Press
(2024)

30. Zheng, W., Li, M., Deng, R., Doerr, B.: How to use the metropolis algorithm for
multi-objective optimization? In: Conference on Artificial Intelligence, AAAI 2024.
AAAI Press (2024)

31. Zheng, W., Liu, Y., Doerr, B.: A first mathematical runtime analysis of the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II). In: Conference on Artificial
Intelligence, AAAI 2022, pp. 10408–10416. AAAI Press (2022)

32. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective
evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1,
32–49 (2011)

https://doi.org/10.1007/3-540-36970-8_25
https://doi.org/10.1007/3-540-36970-8_25
https://www.ijcai.org
https://doi.org/10.1109/TEVC.2023.3320278

Ranking Diversity Benefits
Coevolutionary Algorithms
on an Intransitive Game

Mario Alejandro Hevia Fajardo(B) and Per Kristian Lehre

University of Birmingham, Birmingham B15 2TT, UK

m.heviafajardo@bham.ac.uk

Abstract. Competitive coevolutionary algorithms (CoEAs) often
encounter so-called coevolutionary pathologies particularly cycling
behavior, which becomes more pronounced for games where there is no
clear hierarchy of superiority among the possible strategies (intransi-
tive games). In order to avoid these pathologies and ensure an efficient
optimisation, it has been suggested that it is critical to choose a good
evaluation environment (set of solutions used for evaluation).

In this paper, we use runtime analysis to increase our understanding
of the essential characteristics that the evaluation environments should
possess to ensure efficient runtime on the intransitive problem class
Bilinearα,β . For this problem class, we observe that it is beneficial to
maintain a high diversity of rankings in the evaluation environment, that
is, a set of individuals used for evaluation which are diverse in how they
rank opponents.

We propose and analyse two mechanisms that implement this idea. In
the first approach, we ensure diversity of rankings through an archive. In
the second approach, we introduce a CoEA without an archive, but with
a ranking diversity mechanism. Both approaches optimise Bilinearα,β

in expected polynomial time.

Keywords: Runtime analysis · Competitive coevolution · Archives ·
Maximin optimisation

1 Introduction

Within the field of Evolutionary Computation, coevolutionary algorithms stand
out for harnessing the dynamic interplay between solutions (individuals) to
tackle optimisation problems where computing the fitness of isolated individu-
als is infeasible [17]. Coevolutionary algorithms are categorized into cooperative
and competitive variants based on the nature of interactions among the evolved
solutions. The focus of this work is on competitive coevolutionary algorithms.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70071-2 14.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 213–229, 2024.
https://doi.org/10.1007/978-3-031-70071-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_14&domain=pdf
http://orcid.org/0000-0003-3529-0434
http://orcid.org/0000-0002-9521-1251
https://doi.org/10.1007/978-3-031-70071-2_14
https://doi.org/10.1007/978-3-031-70071-2_14

214 M. A. H. Fajardo and P. K. Lehre

Competitive coevolutionary algorithms (we omit the competitive label and
simply call them CoEAs), simultaneously evolve one or more populations of
solutions that compete and adapt to one another. CoEAs do not rely on a global
fitness function to assign fitness values to sampled solutions. Instead, they use
the aggregation of outcomes from interactions between competing solutions to
rank solutions and make selection decisions. Thus, this optimisation technique
is well suited for problems that have intrinsically competitive domains or for
problems where finding a suitable global fitness measure is hard. Accordingly, in
this work, we use coevolutionary algorithms to find a maximin-optimum, that
is, a pair of solutions (x, y) such that the performance of x against the least
favourable y is the best, and the same for y.

Despite their success at solving non-trivial problems (e.g. zero-sum games
[1,29], software engineering [2,14], and generative models [10,11]) CoEAs often
encounter so-called coevolutionary pathologies [21,30]. This is particularly likely
if the problem is intransitive, that is, if there is no clear hierarchy of superiority
for all possible solutions [17]. Aggravating the situation, Czarnecki et al. [3]
showed that real-world games tend to have intransitive dynamics.

In order to avoid these pathologies and ensure an efficient optimisation, it has
been suggested that it is critical to choose a good evaluation environment (set of
opponents) [17,22,27]. The rationale for this is that CoEAs use a varying set of
opponents to assign fitness and select individuals. This may result in apparent
progress (local progress) against a poorly selected set of opponents. However, this
does not necessarily translate into real progress toward the optimal solution when
comparing against the entire set of possible opponents (global progress) [22].
Therefore, a good evaluation environment that represents all possible opponents
could enable global progress and as a consequence an efficient optimisation.

Previous studies have focused on guaranteeing monotonic global progress (see
Sect. 2). But Popovici et al. [26] warned that monotonic progress does not guar-
antee an efficient optimisation and recommends instead to focus on studying
the performance of algorithms and in particular the authors propose the use of
runtime analysis to understand CoEAs better.

We aim to use runtime analysis to increase our understanding of the key
characteristics required for evaluation environments to ensure efficient runtime
on intransitive problems. In particular, we study the class of intransitive prob-
lems called Bilinearα,β [18]. Bilinearα,β is a challenging class of maximin-
problems where CoEAs have been shown to lack a clear signal towards the
optimal solutions during most of the optimisation steps and the algorithms tend
to cycle around the optimum due to its intransitive properties [12,13]. We aim
to find the properties of an evaluation environment that gives a clear signal
towards the optimal solution, accelerating the optimisation and avoiding the
cycling behaviour characteristic of these intransitive problems.

We start our analyses by isolating the evaluation environments, separating
the search populations from the evaluation environments using archive popu-
lations (Archived Tournament Selection CoEA – Algorithm 1). Doing this, we
observe that it is beneficial to maintain a high diversity of rankings in the evalua-
tion environment, that is, given that the search populations are ranked (ordered)

Ranking Diversity Benefits CoEAs on an Intransitive Game 215

by the payoff when interacting with an opponent, the individuals in the evalua-
tion environment rank these solutions in a diverse way.

Given this insight, we propose two mechanisms. In the first approach, we
ensure diversity of rankings through an archive update scheme that maintains a
diverse evaluation environment. In the second approach, we introduce a CoEA
without an archive that we call RankDivCoEA (Ranking Diversity CoEA). This
algorithm implements an intuitive ranking diversity mechanism that maintains
solutions in the current populations that rank their competitors differently with-
out the overhead of maintaining an archive.

In Sect. 5 we then analyse ATS-CoEA with our proposed archive update
scheme and show that ATS-CoEA solves Bilinearα,β for all α and β in O(λ4n)
expected function evaluations, with λ representing the population size and n the
problem size. Finally, in Sect. 6 we show that RankDivCoEA solves Bilinearα,β

with αn, βn /∈ Z in O(λ3n) expected function evaluations.

2 Related Work

Archives. A common strategy for maintaining a robust evaluation environment
in CoEAs involves the use of archives. An archive is a set of solutions that
is systematically updated throughout the coevolutionary process and used to
compare evolved solutions. The aim is that the archives accumulate knowledge
of the problem and maintain diversity and progress [17].

Rosin and Belew [28] proposed the hall of fame archive, one of the first and
simplest archives for CoEAs. The hall of fame is an unbounded archive that adds
individuals that are successful against the current population and a subset of the
archive. This helps CoEAs select individuals that outperform their ancestors. A
simple extension of the hall of fame where the archive is bounded was made by
Nolfi and Floreano [24].

Ficici and Pollack [9] proposed an unbounded archive built upon the game-
theoretic principle of Nash Equilibrium called Nash memory. This archive guar-
antees global monotonic progress in symmetric zero-sum games [8,9]. Oliehoek
et al. [25] extended it to asymmetric games maintaining the progress guarantee.

De Jong [4] introduced an unbounded archived CoEA called IPCA (Incre-
mental Pareto Coevolution Archive). In IPCA one population is considered as
a set of objectives in the sense of Evolutionary Multi-Objective Optimisation
and aims to find the Pareto-front. IPCA guarantees global monotonic progress.
A bounded variant named LAPCA (LAyered Pareto Coevolution Archive) was
later proposed by De Jong [5] without the monotonicity guarantees. Based on
the same concept Yang et al. [31] proposed EPCA (Efficient Pareto Coevolution
Archive) showing experimentally that it can outperform IPCA.

Another approach when using archives is to extract dimension informa-
tion (underlying objectives implicitly defined) in order to create a suitable
archive. De Jong and Bucci [6] proposed one of the first archives of this kind,
named DECA (Dimension Extracting Coevolutionary Algorithm) and showed
empirically that it is at least as good as IPCA and LAPCA for the problems

216 M. A. H. Fajardo and P. K. Lehre

tested. Based on this idea Yang et al. [32] and Jaśkowski and Krawiec [16] pro-
posed SCA-BDE (Simple Coevolution Archive based on Bidirectional Dimen-
sion Extraction) and COSA (Coordinate System Archive) respectively, showing
improved performances to all previous archives in the problems tested.

We remark that all mentioned archive mechanisms ensuring global monotonic
progress require unlimited memory. Additionally, as shown in the later studies,
archives without this guarantee can outperform these archives in practice.

Runtime Analysis of Coevolutionary Algorithms. Due to their complex-
ity, there is little rigorous understanding of the algorithm dynamics in (cooper-
ative and competitive) CoEAs.

Cooperative CoEAs: Jansen and Wiegand [15] rigorously analysed the run-
time of a cooperative CoEA on separable functions and showed that problem sep-
arability does not guarantee a speedup over traditional EAs. Lehre and Lin [19]
showed that the cooperative CoEA CC-(1 + 1) EA solves all linear functions in
the same asymptotic time as the (1 + 1) EA.

Competitive CoEAs: Lehre [18] analysed for the first time the runtime of
a competitive CoEA, the PD-CoEA, on some instances of the pseudo-Boolean
Bilinear problem, showing that given the correct parameters the algorithm
finds an ε-approximation efficiently, but a too high mutation rate leads to expo-
nential runtime. Similarly, Hevia Fajardo and Lehre [12] analysed a (1, λ) CoEA
on a version of Bilinear that uses an integer lattice as search space, showing
that the algorithm finds a solution near the maximin-optima in polynomial time
with high probability if the worst-case interaction is used to assign fitness (i. e.
the fitness of a solution is its worst performance) but is inefficient if the average
of all interactions is used instead.

Hevia Fajardo et al. [13] analysed the runtime and total regret of a CoEA
named RLS-PD on some instances of a slight variation of the pseudo-Boolean
Bilinear problem. The authors showed that despite finding the optimum in
O(n1.5) the algorithm quickly forgets this solution and stays far away from it.

3 Preliminaries

We define [n] := {1, . . . , n}. We denote the 1-norm of a bit string x ∈ {0, 1}n by
‖x‖ :=

∑n
i=1 xi, i.e., the number of 1-bits in x. We use the function

sign(x) :=

⎧
⎪⎨

⎪⎩

1 if x > 0
0 if x = 0
−1 if x < 0.

We denote the power set of a set S as P(S).

Ranking Diversity Benefits CoEAs on an Intransitive Game 217

Due to space constraints, we removed the proofs and provide proof sketches
instead; the detailed proofs can be found in the supplementary material1.

In this work we introduce two algorithms, ATS-CoEA (Algorithm 1) and
RankDivCoEA (Algorithm 2). The algorithms are defined for payoff functions
g : X × Y → R defined over arbitrary (finite) search spaces X and Y.

Mutation Operator. Both Algorithms 1 and 2 can use any mutation oper-
ators mutx(·) : X → X , muty(·) : Y → Y. Given that for our analysis
X = Y = {0, 1}n, we consider mutx(·) = muty(·). Furthermore, we use the
following unbiased mutation operator.

Definition 1 (Unbiased Mutation Operator mutD). For a probability dis-
tribution D on {0} ∪ [n] with probabilities r(0), . . . , r(n) ≥ 0. Let mutD be the
mutation operator that samples k ∼ D and then flips a uniform random set of
exactly k positions.

We note that any unary unbiased mutation operator (see [20]) can be
expressed as mutD (Lemma 1 in [7]).

Algorithm 1: Archived Tournament Selection CoEA (ATS-CoEA)

1 Require: Search spaces X and Y.
2 Require: Payoff function g : X × Y → R.
3 Require: Population size λ ∈ N.
4 Require: Tournament and competition size 2 ≤ k ∈ [λ] 2 ≤ � ∈ [λ].
5 Require: mutx(·) : X → X , muty(·) : Y → Y.
6 Require: Initial populations P0 ∈ X λ and Q0 ∈ Yλ.
7 Require: Initial archives V−1 ∈ P(X) and W−1 ∈ P(Y).
8 Require: Archive update scheme arch update(·, ·, ·, ·).
9 for t ∈ N0 until termination condition satisfied do

10 Vt,Wt := arch update(Vt−1,Wt−1, Pt, Qt) ;
11 for i ∈ [λ] do
12 Sample k predators x1, . . . , xk ∼ Unif (Pt) i. i. d.;
13 Sample � prey y1, . . . , y� ∼ Unif (Wt) i. i. d.;
14 Select parent index j := arg max

r∈[k]

min
s∈[�]

g(xr, ys) where j ∈ [k], breaking ties u. a. r.;

15 Create Pt+1(i) := mutx(xj);

16 for i ∈ [λ] do
17 Sample k prey y1, . . . , yk ∼ Unif (Qt) i. i. d.;
18 Sample � predators x1, . . . , x� ∼ Unif (Vt) i. i. d.;
19 Select parent index j := arg min

s∈[k]

max
r∈[�]

g(xr, ys) where j ∈ [�], breaking ties u. a. r.;

20 Create Qt+1(i) := muty(yj);

Algorithmic Description. ATS-CoEA uses two populations P ∈ X λ and Q ∈
Yλ which we sometimes will refer to as the “predators” and the “prey” and two
archives V ∈ P(X) and W ∈ P(Y). Initially, we make minimal assumptions about
the archives: the archives can only contain individuals seen by the algorithm and
are updated at the start of each generation using the current archives and the

1 https://mariohevia.github.io/assets/pdf/PPSN 2024 sup material.pdf.

https://mariohevia.github.io/assets/pdf/PPSN_2024_sup_material.pdf

218 M. A. H. Fajardo and P. K. Lehre

current populations. In our analyses we assume that the initial archives are
empty, but in practice they can be seeded with known solutions.

ATS-CoEA selects λ parents by using λ tournaments with k solutions sam-
pled u. a. r. from the populations P or Q that compete against � competitors
sampled exclusively from the archives V or W . The best worst-case solution (a
solution’s fitness is its worst performance) within the tournament is selected as
the parent. Afterwards an offspring is created by mutating the parent and the
offspring is added to the next population.

RankDivCoEA uses two populations P ∈ X λ and Q ∈ Yλ which we some-
times will refer to as the “predators” and the “prey”. A central component
of RankDivCoEA is a diversity mechanism which is defined in the same way
for the predators and the prey. We now describe how it works for the preda-
tors. Each predator x imposes a total order ≤x on the set of prey Y given by
y1 ≤x y2 if and only if g(x, y1) ≤ g(x, y2). Clearly, different predators x lead
to different orders/ranks. To achieve this, in each iteration the algorithm sam-
ples two predators x1 and x2, and two prey y1 and y2. First, the algorithm
checks if g(x1, y1) = g(x1, y2) and g(x2, y1) = g(x2, y2). In such a case y1 and y2

appear to have the same phenotype, bypassing the diversity mechanism for x1

and x2. Therefore, in this case a random bit is flipped of either y1 or y2 until
g(x1, y1) 	= g(x1, y2) or g(x2, y1) 	= g(x2, y2)2.

Algorithm 2: Ranking Diversity CoEA (RankDivCoEA)

1 Require: Search spaces X and Y.
2 Require: Payoff function g : X × Y → R.
3 Require: Population size λ ∈ N.
4 Require: mutx(·) : X → X , muty(·) : Y → Y.
5 Require: Initial populations P0 ∈ X λ and Q0 ∈ Yλ.
6 for t ∈ N0 until termination condition satisfied do
7 for i ∈ [λ] do
8 Sample x1, x2, x3 ∼ Unif (Pt) and y1, y2 ∼ Unif (Qt);
9 while g(x1, y1) = g(x1, y2) ∧ g(x2, y1) = g(x2, y2) do Flip one bit u. a. r. from either y1 or y2 ;

10 s1 ← sign(g(x1, y1) − g(x1, y2));
11 s2 ← sign(g(x2, y1) − g(x2, y2));
12 s3 ← sign(g(x3, y1) − g(x3, y2));

13 x′ ←

⎧
⎪⎨

⎪⎩

x1 if s1 	= s2 ∧ s1 	= s3

x1 if s1 = s2 ∧ min(g(x1, y1), g(x1, y2)) ≥ min(g(x2, y1), g(x2, y2))
x2 otherwise.

14 Create Pt+1(i) := mutx(x′);
15 Sample y1, y2, y3 ∼ Unif (Qt) and x1, x2 ∼ Unif (Pt);
16 while g(x1, y1) = g(x2, y1) ∧ g(x1, y2) = g(x2, y2) do Flip one bit u. a. r. from either x1 or x2 ;
17 s1 ← sign(g(x1, y1) − g(x2, y1));
18 s2 ← sign(g(x1, y2) − g(x2, y2));
19 s3 ← sign(g(x1, y3) − g(x2, y3));

20 y′ ←

⎧
⎪⎨

⎪⎩

y1 if s1 	= s2 ∧ s1 	= s3

y1 if s1 = s2 ∧ max(g(x1, y1), g(x2, y1)) ≤ max(g(x1, y2), g(x2, y2))
y2 otherwise.

21 Create Qt+1(i) := muty(y′);

2 This mechanism does not change the original solutions in the population, they are
just changed locally for the diversity mechanism.

Ranking Diversity Benefits CoEAs on an Intransitive Game 219

Afterwards, if x1 and x2 order y1 and y2 differently (e. g. y1 ≤x1 y2 and
y1 ≥x2 y2), then the algorithm samples a third predator x3 uniformly at random.
If x2 and x3 order y1 and y2 in the same way (e. g. y1 ≥x2 y2 and y1 ≥x3 y2),
then (probabilistically) the predator x1 orders the prey more uniquely than x2,
and the algorithm selects x1. (See illustration in Fig. 1). Otherwise, if x1 and
x3 order y1 and y2 in the same way (e. g. y1 ≤x1 y2 and y1 ≤x3 y2), then the
predator x2 (probabilistically) orders the prey in a more unique way than x1

and x2 is selected. If both x1 and x2 order y1 and y2 identically (e. g. y1 ≤x1 y2

and y1 ≤x2 y2), then the algorithm selects the best worst-case solution, that is,
the solution with the highest payoff value for its worst interaction.

Problem Definition. Maximin optimisation is a decision-making approach
that seeks to find a candidate solution that maximise the possible payoff, assum-
ing that the adversary takes the least favourable action for that solution. For-
mally, given a function g : X × Y → R representing the payoff, maximin opti-
misation involves finding a solution x ∈ X such that maxx∈X miny∈Y g(x, y) is
achieved.

We consider the function Bilinearα,β : {0, 1}n × {0, 1}n → R [18] defined
for arbitrary, not necessarily constant, α, β ∈ (0, 1) as Bilinearα,β(x, y) :=
‖y‖(‖x‖−βn)−αn‖x‖. The maximin-optima of Bilinearα,β are all pairs (x, y)
with ‖x‖ = βn and ‖y‖ = αn.

We focus on Bilinearα,β because it has been shown to be a challenging class
of problems to solve due to its intransitive behaviour (rock-paper-scissors-like
interaction). Most studied algorithms do not have a clear signal towards/away
the optimal solutions during most of the optimisation, leaving the algorithms
susceptible to dynamics akin to random walks, cycling around the target solu-
tions [12,13].

During our analysis, we partition the search space into four quadrants (Fig. 1).
We say that a pair of search points (x, y) is in: the first quadrant if ‖x‖ <
βn∧‖y‖ ≥ αn, the second quadrant if ‖x‖ ≥ βn∧‖y‖ > αn, the third quadrant
if ‖x‖ > βn ∧ ‖y‖ ≤ αn, and the fourth quadrant if ‖x‖ ≤ βn ∧ ‖y‖ < αn.

3.1 Level-Based Theorem

In this work we use the level-based theorem for coevolutionary processes
from [18]. In addition we also use a slight modification shown in the appendix
(Theorem 4). In this modified version, rather than assuming that the initial lev-
els cover the whole search space, we allow for arbitrary initial levels, as long
as it can be ensured that a sufficiently large proportion of the populations are
initialised within these initial levels. Furthermore, the runtime is stated as a tail
bound rather than an upper bound on the expected runtime.

We now divide the search in a suitable sequence (Aj × Bj)j∈m of subsets of
X ×Y (levels) where Am ×Bm is the target set. Given our objective is to ensure
the general applicability of our results across a wide range of algorithms (i.e.
Algorithm 1 with any appropriate archive and Algorithm 2), we give a general

220 M. A. H. Fajardo and P. K. Lehre

Fig. 1. Contour of Bilinearα,β (α = β = 1/2) with the quadrants enumerated and
illustration of diversity mechanism in RankDivCoEA, where the blue arrows indicate
increasing g-values. Given a uniformly selected predator x3 and uniformly selected
prey y1 and y2, predator x1 is preferred over predator x2 because it has a more unique
ordering of y1 and y2. (Color figure online)

definition of a level that partitions the search space in three customisable regions
for each population. Then, when analysing a particular algorithm, we can define
a particular sequence of levels with this definition.

Following [18] and as illustrated in Fig. 2 (a), for any r1 ≤ r2 and any s2 ≤ s1,
we partition X and Y into three sets each,

R0(r1) := {x ∈ X | 0 ≤ ‖x‖ < r1}, S0(s1) := {y ∈ Y | s1 < ‖y‖ ≤ n},

R1(r1, r2) := {x ∈ X | r1 ≤ ‖x‖ ≤ r2}, S1(s2, s1) := {y ∈ Y | s2 ≤ ‖y‖ ≤ s1},

R2(r2) := {x ∈ X | r2 < ‖x‖ ≤ n}, S2(s2) := {y ∈ Y | 0 ≤ ‖y‖ < s2}.

Fig. 2. Partitioning of search space X × Y of Bilinear. (Adapted from [18])

For the sake of clarity, when the parameters r1, r2, s1 and s2 are clear from
context, we will just denote these sets as R0, R1, R2, S0, S1 and S2.

In Sect. 6, we redefine slightly the partition of the search space, as illustrated
in Fig. 2 (b). For any k ∈ [0, (1−β)n] and � ∈ [0, αn), we partition X and Y into

Ranking Diversity Benefits CoEAs on an Intransitive Game 221

three sets each,

R0 := {x ∈ X | 0 ≤ ‖x‖ < βn} , S0 := {y ∈ Y | αn ≤ ‖y‖ ≤ n} ,

R1(k) := {x ∈ X | βn ≤ ‖x‖ < n − k} , S1(�) := {y ∈ Y | � ≤ ‖y‖ < αn} ,

R2(k) := {x ∈ X | n − k ≤ ‖x‖ ≤ n} , S2(�) := {y ∈ Y | 0 ≤ ‖y‖ < �} .

For ease of notation, when the k and � are clear from the context, we will simply
refer to these sets as R0, R1, R2, S0, S1, and S2.

We now proceed to define the probability of sampling an individual inside
each of these regions within the search space from the current populations.

p0 = Pr
x∼Unif(P)

[x ∈ R0] , q0 = Pr
y∼Unif(Q)

[y ∈ S0] ,

p = Pr
x∼Unif(P)

[x ∈ R1] , q = Pr
y∼Unif(Q)

[y ∈ S1] .

Furthermore, for the random parents x′ and y′ selected in lines 14 and 19 of
Algorithm 1 and lines 13 and 20 of Algorithm 2, for all C ⊆ X ×Y, let psel(C) :=
Pr ((x′, y′) ∈ C). In addition, we define the probability of sampling an individual
with more, less and exactly the same number of ones as the optimal solution from
the current archives.

v1 = Pr
x∼Unif(V)

[‖x‖ < βn] , w1 = Pr
y∼Unif(W)

[‖y‖ < αn] ,

v2 = Pr
x∼Unif(V)

[‖x‖ = βn] , w2 = Pr
y∼Unif(W)

[‖y‖ = αn] ,

v3 = Pr
x∼Unif(V)

[‖x‖ > βn] , w3 = Pr
y∼Unif(W)

[‖y‖ > αn] .

4 What is a Good Evaluation Environment?

In this section we explore what are the characteristics that the evaluation envi-
ronment (archive population) used by Algorithm 1 needs to guarantee conditions
(G2a) and (G2b) in the level-based theorem for coevolution [18] when using a
tournament of size k = 2 and a competition size � = 2 on Bilinearα,β . In
the context of Bilinearα,β (and likely many other problems), this is the most
challenging scenario. This is because the algorithm must simultaneously select a
good individual from the population to participate in the tournament and also
a diverse set of competitors to ensure an accurate ranking, while sampling only
two times from the population and two times from the archive. If the tournament
size or the competition size is increased we conjecture that the restrictions on
the archive would be lessened.

To begin this section we assume that a good archive would make the individu-
als in the current populations P and Q approach the maximin-optima. Using the
partitions from Sect. 3.1 we can define the levels that we will use in this section.
A(r1, r2) := R1(r1, r2), B(s2, s1) := S1(s2, s1). In this section, we always use
A1 := A(0, n) = X and B1 := B(0, n) = Y.

222 M. A. H. Fajardo and P. K. Lehre

In Lemma 1 we show that for any level with βn−r1 = r2 −βn and αn−s2 =
s1 − αn (Fig. 5 (a)) the archive populations V and W need to have a certain
ranking diversity. More specifically for archive V (W) there needs to be at least
1 − 1√

2
≈ 0.29 fraction of individuals with more than βn (αn) 1-bits ranking

y ∈ Q (x ∈ P) with respect to the number of 0-bits, and 1 − 1√
2

fraction of
individuals with less than βn (αn) 1-bits ranking y ∈ Q (x ∈ P) with respect to
the number of 1-bits.

We note that the values needed to meet the conditions of Lemma 1 for r(0)

are relatively high. This is in part because the tournament size is small but also
because the proof uses approximations and some pessimistic assumptions to ease
the computations.

Lemma 1. Let r1 ≤ βn, βn ≤ r2, s2 ≤ αn, αn ≤ s1 with βn − r1 = r2 − βn
and αn − s2 = s1 − αn. Let ε > 0 be a constant. Let x and y be the offspring
created in Lines 15 and 20 of Algorithm 1 with k = � = 2, and r(0) be the
probability of not flipping a bit during mutation. If v1, v3, w1, w3 ≥ 1 − 1√

2
+ ε

and there exist constants δ, δ′ > 0 such that 1+δ

1+(1−δ′)(1+
√

2)ε
≤ r2

(0) ≤ 1,

then, for all γ ∈ (0, δ′/2] any population with P ∈ X λ and Q ∈ Yλ with
|(P × Q) ∩ (A(r1, r2) × B(s2, s1))| ≥ γλ2 guarantees that

Pr [x ∈ A(r1, r2)] Pr [y ∈ B(s2, s1))] ≥ (1 + δ)γ.

It is clear that if the algorithm does not know beforehand that the optimi-
sation problem is Bilinearα,β , it is unlikely that its archive populations are
initialised in such a way that the conditions of Lemma 1 are met. Nonetheless,
with the insights of Lemma 1 we can design algorithms that create and maintain
such diversity of rankings (Fig. 3).

Fig. 3. Levels for Lemma 1 on Bilinearα,β .

Ranking Diversity Benefits CoEAs on an Intransitive Game 223

5 An Example Archive with Efficient Runtime
on BILINEAR

In the previous section we learnt that if the competitors in the archives rank
solutions in the current populations P and Q differently then the algorithm
tends towards the maximin-optima.

Based on this notion we propose an archive update scheme (Algorithm 3)
that we call Diverse Ranking Archives Update Scheme (DRAUS). This update
scheme is used in line 10 of Algorithm 1. It uses the concept of archive domination
(Definition 2) to add to the archive any solution in the current population that
ranks solutions differently than other solutions already in the archive.

Definition 2 (Archive Domination). Given a function g : X × Y → R, a
population Q ∈ Yλ and two archives V1, V2 ⊆ X , we say that V1 dominates V2

with respect to Q and g denoted V1 �Q V2 if and only if:

1. for all x2 ∈ V2 and all (y1, y2) ∈ Q×Q where g(x2, y1) > g(x2, y2) there exist
x1 ∈ V1 st. g(x1, y1) > g(x1, y2) and

2. for all x2 ∈ V2 and all (y1, y2) ∈ Q×Q where g(x2, y1) = g(x2, y2) there exist
x1 ∈ V1 st. g(x1, y1) = g(x1, y2).

Analogously, W1 �P W2 denotes that W1 dominates W2 with respect to P and g.

Algorithm 3: Diverse Ranking Archives Update Scheme (DRAUS)

1 Require: Search spaces X and Y.
2 Require: Payoff function g : X × Y → R.
3 Require: Current archives V ⊆ X , W ⊆ Y.
4 Require: Current populations P ∈ X λ, Q ∈ Yλ

5 for i ∈ [λ] do
6 if ¬(V �Q {P (i)}) then V := V ∪ {P (i)} ;
7 if ¬(W �P {Q(i)}) then W := W ∪ {Q(i)} ;

8 return V,W

To check whether V �Q {x} for a solution x ∈ P takes at most (|V |+1)|Q| =
(|V | + 1)λ evaluations. If the results of the evaluations between the archive V
and the population Q are stored, then to check V �Q {x′} for a new solution
x′ ∈ P only requires λ extra evaluations. In total this results in at most (|V |+λ)λ
evaluations to update the archive V . The same argument can be applied to the
archive W . This shows the bounds in Lemma 2.

Lemma 2. Let |V | and |W | be the size of the archives. Then, Algorithm 3 uses
at most (|V | + λ)λ + (|W | + λ)λ evaluations to update the archive.

On Bilinearα,β both the predator and prey individuals can only be ranked
in three different ways each. Here we explain the three ranks that the predators
induce in the prey. All predators x with ‖x‖ > βn order all y ∈ Y by their
number of 1-bits in descending order, that is, the higher the number of 1-bits in
y the smaller their payoff when compared against x with ‖x‖ > βn. In turn all

224 M. A. H. Fajardo and P. K. Lehre

predators x with ‖x‖ < βn order all y ∈ Y by their number of 1-bits in ascending
order. Finally all predators x with ‖x‖ = βn give the same payoff to all y ∈ Y.

Therefore the maximum size of both the predator and prey archives using
DRAUS (Algorithm 3) is three. Thanks to this, the maximum number of evalu-
ations needed to update the archive on Bilinearα,β is in the worst case O(λ2).
We remark that this might be different on other problems and it could grow
exponentially on the problem size n. Therefore, we recommend to account for
that if it is used on other problems.

Now, we show that ATS-CoEA (Algorithm 1) using DRAUS (Algorithm 3)
builds a diverse archive and optimise Bilinearα,β efficiently for α, β ∈ (0, 1).

Theorem 1. Let α, β ∈ (0, 1). Consider Algorithm 1 using Algorithm 3 as
archive update scheme on Bilinearα,β. Define OPT := {(x, y) ∈ (X × Y) |
‖x‖ = βn ∧ ‖y‖ = αn} and T := min{λ2t | Pt × Qt ∩ OPT 	= ∅}. Then if there
are constants δ, δ′ > 0 such that the probability r(0) of the mutation operator is
at least

max

{
8(1 + δ)

14(1 − δ′)
,

√
6(1 + δ)

6 + (1 − δ′)
(
2 − √

2
)

}

,

r(1) > 0 is constant and for a sufficiently large constant c, c log n ≤ λ ∈ poly (n)
then, it holds that E[T] = O(λ4n).

The main idea of the proof is that if the algorithm does not have an individual
for each possible ranking in both archives, the archives guide the search towards
a region of the search space where that ranking exist. After finding all individuals
that rank their opponents differently, then the archive meets the conditions for
Lemma 1 and the algorithm has a clear signal towards the optimum.

6 Enforcing Diversity Without an Archive

In this section we analyse RankDivCoEA on Bilinearα,β with αn, βn /∈ Z.
This algorithm maintains populations that rank their opponents in distinct ways
without the overhead of maintaining an archive.

6.1 Balancing of Populations Across βn and αn

We will show that the diversity mechanism will eventually ensure that the num-
ber of predators in R0 converge to approximately λ/2 (i.e., half the predators).
The reason is that predators in R0 order prey differently than predators outside
R0. If the predators in R0 are in a minority, the diversity mechanism will pre-
fer them over predators outside R0, and vice versa. With overwhelmingly high
probability, not much more than half of the predators are R0 (Lemma 3 with
A0 = R0). Furthermore, if a constant, but less than half, fraction of the predators
are in R0, then the number of such predators will increase with overwhelmingly
high probability (Lemma 4). Due to symmetry of the problem and the algorithm,
analogous statements can be proved about the prey population with respect to
the region S0.

Ranking Diversity Benefits CoEAs on an Intransitive Game 225

Fig. 4. Overview of an era.

Lemma 3. Consider Algorithm 2 with x1, x2, y1, y2 from line 8 and x′ from
line 13. Let ε ∈ (0, 1/2) be any constant. Let A ⊂ X be any subset such that
∀y1, y2 ∈ Y,∀x1 ∈ A,∀x2 ∈ X \A, g(x1, y1) ≥ g(x1, y2) if and only if g(x2, y1) ≤
g(x2, y2), and for all x′ ∈ X \ A, Prx∼mutx(x′)(x ∈ A) ≤ ε/6. For all t ≥ 0, if
|Pt ∩ A| ≤ λ

2 (1 + ε), then Pr
[|Pt+1 ∩ A| > λ

2 (1 + ε)
]

= e−Ω(λ).

Lemma 4. Consider Algorithm 2 with x1, x2, y1, y2 from line 8 and x′ from
line 13. Let ε ∈ (0, 1/2) be any constant. Let A ⊂ X be any subset such
that ∀y1, y2 ∈ Y,∀x1 ∈ A,∀x2 ∈ X \ A, g(x1, y1) ≥ g(x1, y2) if and
only if g(x2, y1) ≤ g(x2, y2), and for all x′ ∈ A, Prx∼mutx(x′)(x ∈ A) ≥
1 − ε

4 . For all t ∈ N, define Xt := |Pt ∩ A|. Then, for all t ≥ 0,
Pr

[
Xt+1 ≥ (1 + ε

16)min{Xt,
λ
2 (1 − ε)} | Xt

] ≥ 1 − e−Ω(Xt).

6.2 Runtime Analysis Sketch

We will divide the run of the algorithm into eras, where each era consists of seven
overlapping phases as illustrated in Fig. 4. Phase i ∈ [7] starts at deterministic
generation number ti−1 and lasts until the last generation number t7. Each
phase i ∈ [7] has a “warm-up” sub-phase from generation ti−1, lasting for τi :=
ti − ti−1 generations. We let τ :=

∑7
i=1 τi = t7 − t0 denote the duration of

one era. Each phase i is associated with a predicate Ei defined on the set of
possible populations X λ ×Yλ. Phase i is called successful if for every generation
t ∈ [ti, t7], predicate Ei(Pt, Qt) holds. The final event E7(P,Q) corresponds to
the populations P and Q containing optimal solutions. To compute the expected
time until the algorithm finds the optimum, we compute the expected number
of eras until all phases within an era are successful.

It will become apparent from the analysis that once the populations are
approximately equally divided in the four quadrants of the search space, the pop-
ulations will steadily evolve towards the optimum. The first phases capture the
fact that the algorithm will eventually reach a configuration where the predators
are almost evenly divided above and below βn, and the prey are almost evenly

226 M. A. H. Fajardo and P. K. Lehre

divided above and below αn. More precisely,

1 − ε

2
≤ |P ∩ R0|

λ
≤ 1 + ε

2
and

1 − ε

2
≤ |Q ∩ S0|

λ
≤ 1 + ε

2
. (1)

Unless the populations are already in this configuration in generation t0, there
must exist one quadrant which contains the majority of the predators and prey.
Without loss of generality, we will assume that the era starts in generation t0
with a large fraction of the predator-prey pairs in the third quadrant. More
precisely, we will make the following assumption:

Assumption 1. The populations at the start of the era satisfy

|Pt0 ∩ R0|
λ

<
1 + ε

2
and

|Qt0 ∩ S0|
λ

<
1 + ε

2
. (2)

Clearly, other initial configurations are possible. However, due to symmetry
of the problem and the algorithm, the analysis starting from other configurations
is the same. Given the assumption about the initial populations, the phases with
corresponding predicates are given in Definition 3, and illustrated in Fig. 4.

Definition 3. Let ε, γ0, δ be some constants satisfying δ ∈ (0, 1/5), 0 < γ0 ≤
(1 + 3ε)/4 and γ0 + ε ≤ 2

3 (1 − δ). Define the predicates

E1(P,Q) := |Q ∩ S0| ≤ λ

2
(1 + ε) ∧ |P ∩ R0| ≤ λ

2
(1 + ε) (3)

E2(P,Q) := |P ∩ R0| ≥ γ0λ (4)

E3(P,Q) := |P ∩ R0| ≥ λ

2
(1 − ε) (5)

E4(P,Q) := |Q ∩ S0| ≥ γ0λ (6)

E5(P,Q) := |Q ∩ S0| ≥ λ

2
(1 − ε) (7)

E6(P,Q) := |P ∩ R1((1 − β)n − 1)| ≥ γ0λ (8)
E7(P,Q) := ∃x ∈ P,∃y ∈ Q, ‖x‖ = βn ∧ ‖y‖ = αn. (9)

In addition, we assume the following for the mutation operator.

Assumption 2. The probabilities r(1) and r(0) of the mutation operator satisfy
r(1) > 0 is constant, r2

(0) ≥ 1 − δ/2 and r(0) ≥ 1 − ε/6, with δ and ε given
in Definition 3, and the population size is λ ≥ c log(n) for a sufficiently large
constant c.

Following the proof sketch above we can show the main result of this section.
We note that preliminary experiments show that the restriction αn, βn /∈ Z in
Theorem 2 is not necessary, but it simplifies the already lengthy proofs.

Theorem 2. For all αn, βn /∈ Z, Algorithm 2 with parameter satisfying
Assumption 2 has expected runtime O(nλ3 − nλ ln(αβ(1 − β)(1 − α))) on
Bilinearα,β.

Ranking Diversity Benefits CoEAs on an Intransitive Game 227

7 Conclusions

We have shown that for the intransitive problem class Bilinearα,β it is beneficial
to maintain a high diversity of rankings in the evaluation environment, that is,
a set of individuals used for evaluation which are diverse in how they rank oppo-
nents. We proposed two algorithms that ensure high diversity of rankings via
archive populations (ATS-CoEA with DRAUS) and an intrinsic ranking diver-
sity mechanism (RankDivCoEA). We rigorously showed that both approaches
optimise Bilinearα,β in O(λ4n) and O(λ3n) expected evaluations respectively.

The Bilinearα,β problem class only has a small number of possible rankings
for each population. We showed that the algorithms proposed here work well for
this case, but it remains an open problem whether these mechanisms are effective
on intransitive problems with a large number of possible rankings.

Acknowledgments. This research was supported by a Turing AI Fellowship (EPSRC
grant ref EP/V025562/1).

Disclosure of Interests. The authors have no competing interests to declare that are

relevant to the content of this article.

References

1. Angeline, P.J., Pollack, J.B.: Competitive environments evolve better solutions
for complex tasks. In: Proceedings of the International Conference on Genetic
Algorithms, pp. 264–270. Morgan Kaufmann Publishers Inc., San Francisco (1993)

2. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In: 2008 IEEE Congress on Evolutionary Computation, pp. 162–168 (2008)

3. Czarnecki, W.M., et al.: Real world games look like spinning tops. In: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 33, pp. 17443–17454. Curran Associates, Inc.
(2020)

4. Jong, E.D.: The incremental pareto-coevolution archive. In: Deb, K. (ed.) GECCO
2004. LNCS, vol. 3102, pp. 525–536. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24854-5 55

5. De Jong, E.D.: Towards a bounded pareto-coevolution archive. In: Proceedings of
the 2004 Congress on Evolutionary Computation, vol. 2, pp. 2341–2348 (2004)

6. De Jong, E.D., Bucci, A.: DECA: dimension extracting coevolutionary algo-
rithm. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2006, pp. 313–320. Association for Computing Machinery, New York
(2006)

7. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2016, pp. 1123–1130. Association for Computing Machinery, New
York (2016)

8. Ficici, S.G.: Solution concepts in coevolutionary algorithms. Ph.D. thesis, Depart-
ment of Computer Science, Brandeis University, Waltham, MA (2004)

https://doi.org/10.1007/978-3-540-24854-5_55
https://doi.org/10.1007/978-3-540-24854-5_55

228 M. A. H. Fajardo and P. K. Lehre

9. Ficici, S.G., Pollack, J.B.: A game-theoretic memory mechanism for coevolution.
In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L.D., Roy, R., O’Reilly, U.-M.,
Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener, J.,
Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K.A., Jonoska, N., Miller, J.
(eds.) GECCO 2003. LNCS, vol. 2723, pp. 286–297. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45105-6 35

10. Flores, D., Hemberg, E., Toutouh, J., O’Reily, U.M.: Coevolutionary generative
adversarial networks for medical image augumentation at scale. In: Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2022, pp. 367–
376. Association for Computing Machinery, New York (2022)

11. Hemberg, E., Toutouh, J., Al-Dujaili, A., Schmiedlechner, T., O’Reilly, U.M.: Spa-
tial coevolution for generative adversarial network training. ACM Trans. Evol.
Learn. Optim. 1(2), 1–28 (2021)

12. Hevia Fajardo, M.A., Lehre, P.K.: How fitness aggregation methods affect the
performance of competitive CoEAs on bilinear problems. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2023, pp. 1593–1601.
Association for Computing Machinery, New York (2023)

13. Hevia Fajardo, M.A., Lehre, P.K., Lin, S.: Runtime analysis of a co-evolutionary
algorithm: overcoming negative drift in maximin-optimisation. In: Proceedings of
the ACM/SIGEVO Conference on Foundations of Genetic Algorithms, FOGA
2023, p. p73–83. Association for Computing Machinery, New York (2023)

14. Hillis, W.: Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42(1–3), 228–234 (1990)

15. Jansen, T., Wiegand, R.P.: The cooperative coevolutionary (1+1) EA. Evol. Com-
put. 12(4), 405–434 (2004)

16. Jaśkowski, W., Krawiec, K.: Coordinate system archive for coevolution. In: IEEE
Congress on Evolutionary Computation, pp. 1–10 (2010)

17. Krawiec, K., Heywood, M.: Solving complex problems with coevolutionary algo-
rithms. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2020, pp. 832–858. Association for Computing Machinery, New York
(2020)

18. Lehre, P.K.: Runtime analysis of competitive co-evolutionary algorithms for max-
imin optimisation of a bilinear function. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO 2022, pp. 1408–1416. Association for
Computing Machinery, New York (2022)

19. Lehre, P.K., Lin, S.: Is CC-(1+1) EA more efficient than (1+1) EA on separable
and inseparable problems? In: 2023 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–9 (2023)

20. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4),
623–642 (2012)

21. Luke, S., Wiegand, R.P.: When coevolutionary algorithms exhibit evolutionary
dynamics. In: Genetic and Evolutionary Computation Conference Workshop Pro-
gram, pp. 236–241 (2002)

22. Miconi, T.: Why coevolution doesn’t “Work”: superiority and progress in coevolu-
tion. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.)
EuroGP 2009. LNCS, vol. 5481, pp. 49–60. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01181-8 5

23. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

24. Nolfi, S., Floreano, D.: Coevolving predator and prey robots: Do “Arms Races”
arise in artificial evolution? Artif. Life 4(4), 311–335 (1998)

https://doi.org/10.1007/3-540-45105-6_35
https://doi.org/10.1007/978-3-642-01181-8_5
https://doi.org/10.1007/978-3-642-01181-8_5

Ranking Diversity Benefits CoEAs on an Intransitive Game 229

25. Oliehoek, F.A., De Jong, E.D., Vlassis, N.: The parallel Nash Memory for asym-
metric games. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO 2006, pp. 337–344. Association for Computing Machinery, New
York (2006)

26. Popovici, E., Bucci, A., Wiegand, R.P., De Jong, E.D.: Coevolutionary principles.
In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp.
987–1033. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-
9 31

27. Rosin, C.D., Belew, R.K.: Methods for competitive co-evolution: finding opponents
worth beating. In: Proceedings of the International Conference on Genetic Algo-
rithms, pp. 373–381. Morgan Kaufmann Publishers Inc., San Francisco (1995)

28. Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evol. Com-
put. 5(1), 1–29 (1997)

29. Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4),
353–372 (1994)

30. Watson, R.A., Pollack, J.B.: Coevolutionary dynamics in a minimal substrate. In:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2001, pp. 702–709. Morgan Kaufmann Publishers Inc., San Francisco (2001)

31. Yang, L., Huang, H., Yang, X.: An efficient pareto-coevolution archive. In: Pro-
ceedings of the Third International Conference on Natural Computation, ICNC
2007, vol. 04, pp. 484–488. IEEE Computer Society (2007)

32. Yang, L., Huang, H., Yang, X.: A simple coevolution archive based on bidirectional
dimension extraction. In: Proceedings of the 2009 International Conference on
Artificial Intelligence and Computational Intelligence, AICI 2009, vol. 01, pp. 596–
600. IEEE Computer Society (2009)

https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.1007/978-3-540-92910-9_31

On the Equivalence Between Stochastic
Tournament and Power-Law Ranking

Selection and How to Implement Them
Efficiently

Duc-Cuong Dang(B), Andre Opris, and Dirk Sudholt

University of Passau, Passau, Germany

duccuong.dang@uni-passau.de

Abstract. Tournament selection is a popular parent selection mecha-
nism in evolutionary algorithms. Bian and Qian (PPSN 2022) proved
that choosing the tournament size uniformly at random, called stochas-
tic tournament selection, in combination with crossover significantly
improves the performance of NSGA-II on some benchmark functions. We
show that this selection mechanism is asymptotically equivalent to the
power-law ranking selection proposed in Covantes Osuna et al. (Theor.
Comput. Sci. 832, 2020) with the exponent of 2. Thus asymptotic run-
time bounds proven for one operator also hold when one operator is
replaced with the other.

We also investigate how to implement these operators efficiently for
NSGA-II on the problems considered in the previous papers. We propose
to implement the stochastic tournament with a pre-computed selection
distribution to save on random numbers. Experiments on high dimen-
sional problems demonstrate the superiority of this method compared
to the standard implementation. Overall, the power-law ranking selec-
tion is the most efficient selection mechanism for the studied problems.
Remarkably, we also find that the way ties are broken between equally
fit solutions can make the difference between the best and the worst
approach, especially when crossover is involved.

Keywords: Selection operators · tournament selection · power-law
ranking · multi-objective optimisation · runtime analysis · algorithm
engineering

1 Introduction

Selection together with variation are the driving forces of evolution. Selection
favours more adapted individuals thus allows their useful traits to pass on to
future generations, so without selection adaptation is not possible. Early research
in evolutionary computation has considered various selection mechanisms such as
fitness proportionate selection, tournament selection, ranking selections, and
their properties and effects on the population per generation [4,26].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 230–245, 2024.
https://doi.org/10.1007/978-3-031-70071-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-70071-2_15

On the Equivalence Between Stochastic Tournament 231

As theory research has gained momentum in evolutionary computation over
the years [14,30], selection mechanisms can now be studied under the lens of
rigorous runtime analysis, specifically their impacts to the optimisation times
have been proven for different settings. The inefficiency of fitness proportionate
selection (also called roulette wheel selection), a popular parent selection mech-
anism for evolutionary algorithms [19], was investigated in [27–29]. Specifically,
Oliveto and Witt [29] showed that with high probability the Simple Genetic
Algorithm with a population size below n1/4, using this selection requires expo-
nential runtime to optimise the simple OneMax function, even when crossover
is enabled. Lehre [24,25] provided general tools to analyse the negative and
positive effects of selection mechanisms in non-elitist populations that only use
mutations as variation operators, and also proved a similar negative result for
fitness proportionate selection, but for population sizes above n3. Other selection
mechanisms were also considered in [25], such as tournament, truncation selec-
tion (also known as comma selection), and linear ranking to show that the right
balance between selection and mutation is the key to the efficient optimisation of
standard benchmark functions. By proving a lower bound on the expected run-
ning of comma selection on Jumpk, Doerr [13] argued that there is no apparent
benefit of comma selection over plus selection (i. e. elitist algorithms) in escap-
ing local optima. Dang et al. [8] pointed out the issue of the comma selection
is due to the linearity of its cumulative selection distribution, then provided a
class of problems with local optima in which non-elitist algorithms with appro-
priate selection mechanisms excel while elitist algorithms struggle. This rigorous
research also led to the introduction of new effective selection operators, such
as the power-law ranking selection for non-elitist populations by [9,10], inverse
ranking selection for steady-state algorithms [6], or stochastic survival selection
in [3] for multi-objective optimisation.

We are interested the following two results on the speed-up of multi-objective
evolutionary algorithms (EMO) using novel parent selection mechanisms.

Covantes Osuna et al. [7] proposed to apply diversity metrics in the par-
ent selection. The idea is to focus on individuals located in poorly explored
areas of the search space to increase the chance of creating new non-dominated
solutions. Their approach ranks possible parents (non-dominated solutions in
(G)SEMO [18,23]) according to their crowding distance or hypervolume contri-
bution and then picks individuals from a fixed distribution that favours better
ranks. One such distribution is the power-law distribution with exponent 2 that
we call power-law ranking selection, in which the probability of selecting an indi-
vidual at rank i in the population is proportional to 1/iβ for a parameter β > 1
(this is a different selection compared to the one from [9,10], because the lat-
ter imposes a power-law on the cumulative selection distribution). The paper
showed speedups by a factor of order n for (G)SEMO on OneMinMax (OMM)
and for SEMO on LeadingOnesTrailingZeroes (LOTZ) compared to uni-
form parent selection as the Pareto front is explored a lot more effectively by
focusing on extreme search points and others with high diversity score.

232 D.-C. Dang et al.

Bian and Qian [2] analysed the performance of NSGA-II using crossover on
LOTZ. Tournament selection commonly uses a fixed tournament size k and
returns the best individuals from k population members chosen uniformly at
random. Bian and Qian [2] (and its extended version [1]) considered a modifica-
tion to tournament selection where the tournament size is chosen uniformly at
random between 1 and the population size. They proved that this stochastic tour-
nament selection allows a significant improvement of the asymptotic expected
runtime bound of the NSGA-II algorithm [11] with crossover on LOTZ [2] and
other benchmark functions [1]. The reason is that parent selection focuses on the
extreme points. This implies that the Pareto-optima 0n and 1n are discovered
quickly, and then one-point crossover is able to create all other Pareto-optimal
solutions {1i0n−i | 1 ≤ i ≤ n − 1} by crossing 1n with 0n.

There are several similarities between these two papers. The runtime bound
of O(n2) for NSGA-II on LOTZ in [2] matches that for SEMO on LOTZ in [7].
Both independently developed the idea of focusing on solutions with a high diver-
sity score through defining a new selection operator, albeit the way of exploring
the Pareto front is different ([2] relies on one-point crossover of 1n and 0n and
[7] relies solely on mutation).

1.1 Our Contributions

We prove that the selection distributions of power-law ranking selection with
exponent 2 and stochastic tournament selection are asymptotically equivalent:
both sample the i-th ranked search point with a probability proportional to
1/i2. This implies that all bounds on the expected runtime proven for algo-
rithms relying on one of these mechanisms automatically hold for the same
algorithms if the other selection mechanism is used instead. In other words, the
results on (G)SEMO in [7] also hold for stochastic tournament selection, and
those for NSGA-II in [2] also hold for power-law ranking selection. Furthermore,
we point out that all the results on the speed-up on synthetic benchmark func-
tions OMM, LOTZ, CountingOnesCountingZeroes (COCZ) by NSGA-II
gained by using stochastic tournament selection in the latter paper also hold for
the use of all power-law ranking selections with exponent β > 1.

The rigorous runtime analyses results only cover the runtime in terms of
the asymptotic number of fitness evaluations and the leading constant is not
specified. In practice, the leading constant in the running time can also be
important. Additional factors such as the cost of producing random numbers
and other basic operations for selection or mutation operators can impact the
computational time to produce satisfactory solutions (see [21] for a discussion of
these issues and [22] for a recent analysis of the cost of randomness). We there-
fore investigate how the two equivalent selection mechanisms can be efficiently
implemented and conduct experiments with NSGA-II on the above-mentioned
functions to compare the true performance of these selection mechanisms in
terms of CPU times.

We propose an implementation of the stochastic tournament which is similar
to how the power-law ranking selection is implemented, i. e. by pre-computing

On the Equivalence Between Stochastic Tournament 233

the selection distribution in each generation. The advantage of this approach
compared to the naive implementation, i. e. actually comparing random numbers
of individuals, is that it saves on random numbers in each generation from the
quadratic order of the population (in expectation or with probability at least
1/2) to (surely) linear. Experiments on high dimensional problems confirm the
efficiency of this implementation over the traditional one. Overall the power-
law ranking selection optimises the studied function using the shortest CPU
times, hence it is the most efficient mechanism. This is because numerically
(and not asymptotically) the mechanism attributes larger probabilities to select
top-ranked individuals, compared to the stochastic tournament.

An additional insight from our study is that the seemingly innocent question
of how to break ties between equally good individuals can be of utmost impor-
tance since in our scenario it makes the difference between the best and the worst
implementations. A naive, arbitrarily fixed ranking gives the worst performance.
In contrast, when equally fit elements receive the same probability mass in the
selection step, we obtain the best performance. The reason for discrepancy is due
to the important role that crossover plays during the optimisation process [2]:
it is crucial to make sure that when applying crossover two different extreme
solutions, i. e. 0n and 1n in the case of LOTZ and OMM, and 1n/20n/2 and 1n

in the case of COCZ, that are equally fit, are selected to ensure the creation of
successful (Pareto-optimal) offspring.

2 Preliminaries

The set of natural numbers, reals, complex numbers are denoted N,R, C respec-
tively. For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. The logarithm
function of base 2 is denoted log(x) for x ∈ R

+. The Riemann’s Zeta function is
denoted ζ(x) for x ∈ C. The Euler constant is e.

We use standard asymptotic notation with symbols O, Ω,Θ, o [5]. Let f(i)
and g(i) be two functions on [0,+∞). We say that they are asymptotically equal,
denoted f ∼ g, if and only if there exist constants c2 ≥ c1 > 0 and i0 ≥ 0 such
that c1g(i) ≤ f(i) ≤ c2g(i) for all i ≥ i0.

Let P := (x1, . . . , xμ) be a sequence (or population) of μ search points (on
any search space) sorted according to some criteria which imposes a total order
on P . In a k-tournament selection, k individuals from P are picked uniformly at
random with replacement and the one with the smallest index in the sorted
population, i. e. the best one, is returned. The advantage of this operator is that it
is easy to implement and efficient if k is small as k−1 pairwise comparisons using
the same criteria are sufficient to determine the best individual to return. When
k = 2, this selection is referred as binary tournament selection.

NSGA-II [11] is a popular EMO algorithm summarised in Algorithm 1. It
uses the so-called (μ + μ) elitist survival selection scheme. The algorithm starts
from a randomly initialised population of μ solutions. In each generation new μ
offspring solutions (the population Qt) are generated. Then the 2μ solutions of
Rt := Pt ∪ Qt compete for survival, so that the next population Pt+1 again has

234 D.-C. Dang et al.

Algorithm 1: NSGA-II [11] on {0, 1}n,
1 Initialise P0 ∼ Unif(({0, 1}n)µ);
2 for t := 0 to ∞ do
3 Initialise Qt := ∅;
4 for i = 1 to µ do
5 Sample p1, p2 from Pt using a selection mechanism;
6 With probability pc create x by applying 1-point crossover on p1, p2,

otherwise create x as a clone of p1;
7 Apply the bitwise mutation with mutation rate 1/n on x;
8 Update Qt := Qt ∪ {x};

9 Set Rt := Pt ∪ Qt;
10 Partition Rt into layers F 1

t+1, F
2
t+1, . . . using the non-dominated sorting

algorithm [11];

11 Compute the critical layer i∗ ≥ 1 such that
∑i∗−1

i=1 |F i
t+1| < µ and

∑i∗
i=1|F i

t+1| ≥ µ;

12 Set Yt :=
⋃i∗−1

i=1 F i
t+1;

13 Select a multiset F̃ i∗
t+1 ⊂ F i∗

t+1 of individuals such that |Yt ∪ F̃ i∗
t+1| = µ using

the crowding distances;

14 Create the next population Pt+1 := Yt ∪ F̃ i∗
t+1;

size μ. We use the same setting as [2] for the production of offspring: each off-
spring is created independently by first picking two parents, also independently,
using a selection mechanism. Then, with a probability pc, one-point crossover is
applied to produce the offspring. Otherwise (i. e. with probability 1 − pc), the
offspring is identical to the first parent. The offspring is then mutated using
standard bit mutation with rate 1/n, i. e. each bit is flipped independently from
the others with probability 1/n. In the survival selection, Rt is partitioned into a
sequence of non-dominated layers (F 1

t+1, F
2
t+1, . . .) by the non-dominated sorting

algorithm (the readers are referred to [1,2,11] for details). The algorithm follows
this sequence to include the first encountered layers into the next generation Pt+1

until it reaches a critical layer F i∗
t+1 with

∑i∗−1
i=1 |F i

t+1| < μ and
∑i∗

i=1|F i
t+1| ≥ μ.

The remaining r := μ − ∑i∗−1
i=1 |F i

t+1| slots of Pt+1 (if r > 0) are then taken by
solutions from F i∗

t+1. The criterion used for selecting those solutions is the crowd-
ing distances. Let M := (x1, x2, . . . , x|M |) be a multi-set of search points, the
crowding distance cDist(xi,M) of xi with respect to M is determined as follows.
At first sort M as M = (xk1 , . . . , xk|M|) with respect to each objective k ∈ [d]
separately using a stable sort. Then cDist(xi, M) :=

∑d
k=1 cDistk(xi,M),

where

cDistk(xki
,M) :=

⎧
⎨

⎩

∞ if i ∈ {1, |M |},
fk(xki−1)−fk(xki+1)

fk(xk1)−fk(xkM) otherwise.

The first and last ranked individuals are always assigned an infinite crowding
distance. The remaining individuals are then assigned the differences between

On the Equivalence Between Stochastic Tournament 235

the values of fk of those ranked directly above and below the search point and
normalised by the difference between fk of the first and last ranked. NSGA-II
then takes r solutions from F i∗

t with the largest computed crowding distances
from F i∗

t to complete Pt+1 where ties are broken uniformly at random.
All selection mechanisms considered in this paper for NSGA-II use the same

criteria in the following lexicographical order to determine whether a search
point in Pt is better than another: (i) first by the index of the non-dominated
layer that the search point belong to (the smaller the better), (ii) then by its
crowding distance (the larger the better).

The benchmark functions LOTZ (LeadingOnesTrailingZeroes), OMM

(OneMinMax), and COCZ (CountingOnesCountingZeroes) [23] are:

LOTZ(x) :=

⎛

⎝
n∑

i=1

i∏

j=1

xj ,

n∑

i=1

n∏

j=i

(1 − xj)

⎞

⎠ ,

OMM(x) :=

(
n∑

i=1

xi, n −
n∑

i=1

xi

)

,

COCZ(x) :=

⎛

⎝
n∑

i=1

xi,

n/2∑

i=1

xi +
n∑

i=n/2+1

(1 − xi)

⎞

⎠ .

LOTZ optimises the number of leading ones (a prefix of ones) and the number of
trailing zeros (a suffix of zeros). OMM minimises and maximises the number of
ones. COCZ does the same in the right half of the bit string, and both objectives
also include the common goal of maximising the number of ones in the first half.

3 Proving Asymptotic Equivalence

In stochastic tournament selection [2] the parameter k is first sampled k ∼
Unif([μ]), i. e. uniformly between 1 and μ, and then a k-tournament selection is
conducted. In a power-law ranking selection with exponent β, the probability of
selecting individual xi of the sorted population (x1, . . . , xμ) is

ri :=
1/iβ

∑μ
i=1(1/iβ)

. (1)

The following result shows that the stochastic tournament selection is asymp-
totically equivalent to the power-law ranking selection with exponent 2.

Lemma 1. Let P := (x1, . . . , xμ) be a sequence of points which is sorted accord-
ing to some criteria, then the stochastic tournament selection on P using the
same criteria samples xi with probability ∼ 1/i2.

Proof. We first determine the probability pi,k that xi is the winner of a k-
tournament for fixed integers i, k ∈ [1, μ]. Let Ai be the event that x1, . . . , xi are

236 D.-C. Dang et al.

not among the k sampled individuals, then Pr(Ai) = (1 − i/μ)k. Note that xi is
the winner of the k-tournament if and only if Ai−1 occurs but not Ai, so

pi,k = Pr(Ai−1 \ Ai) =
(

1 − i − 1
μ

)k

−
(

1 − i

μ

)k

.

Now, let pi be the probability that xi is the winner of a stochastic tournament
selection. Since k ∼ Unif([μ]), then by the law of total probability:

pi :=
μ∑

k=1

pi,k

μ
=

1
μ

μ∑

k=1

((

1 − i − 1
μ

)k

−
(

1 − i

μ

)k
)

. (2)

Then we show that c1
i2 ≤ pi ≤ c2

i2 for every i ∈ [μ] where c1 := 1 − 2
e and

c2 := 2 + 4
e2 . We consider two cases:

Case 1: i = 1. Using the geometric sum
∑n

i=0 ai = 1−an+1

1−a for a �= 1, we get

p1 =
1
μ

·
μ∑

k=1

(

1 −
(

1 − 1
μ

)k
)

= 1 +
1
μ

− 1
μ

μ∑

k=0

(

1 − 1
μ

)k

= 1 +
1
μ

− 1
μ

· 1 − (1 − 1/μ)μ+1

1 − (1 − 1/μ)
=

1
μ

+
(

1 − 1
μ

)μ+1

. (3)

Hence p1 > (1 − 1/μ)2(1 − 1/μ)μ−1 > 1/e > 1 − 2/e = c1/i2 and also p1 <
1 + 1 < c2 = c2/i2 for i = 1.

Case 2: 2 ≤ i ≤ μ. Again using the geometric sum gives

pi =
1
μ

(
μ∑

k=0

((

1 − i − 1
μ

)k
)

−
μ∑

k=0

(

1 − i

μ

)k
)

=
1
μ

·
(

1 − (1 − i−1
μ)μ+1

1 − (1 − i−1
μ)

−
1 − (1 − i

μ)μ+1

1 − (1 − i
μ)

)

=
1 −

(
1 − i−1

μ

)μ+1

i − 1
−

1 −
(
1 − i

μ

)μ+1

i

=
1 + (i − 1)

(
1 − i

μ

)μ+1

− i
(
1 − i−1

μ

)μ+1

i(i − 1)
=

1 + b(i)
i(i − 1)

(4)

where

b(i) := (i − 1)
(

1 − i

μ

)μ+1

− i

(

1 − i − 1
μ

)μ+1

.

It then suffices to show that − 2
e = c1 − 1 ≤ b(i) ≤ 1

2c2 − 1 = 2
e2 because this

implies the claim for i ≥ 2:

c1

i2
≤ b(i) + 1

i2
≤ b(i) + 1

i(i − 1)
≤ 2b(i) + 2

i2
≤ c2

i2
.

On the Equivalence Between Stochastic Tournament 237

Since f(x) := xe−x is monotonically decreasing on [1,+∞) as its derivative
f ′(x) = (1 − x)e−x ≤ 0, then for x ≥ 2 we get f(x) = xe−x ≤ f(2) = 2

e2 , and
using this gives

b(i) ≤ i ·
(

1 − i

μ

)μ+1

≤ i ·
(

1 − i

μ

)μ

≤ i · e−i ≤ 2
e2

=
1
2
c2 − 1,

and

−b(i) ≤ i ·
(

1 − i − 1
μ

)μ+1

≤ i ·
(

1 − i − 1
μ

)μ

≤ i · e−(i−1) = e · i · e−i ≤ 2
e
.

	

This lemma immediately implies that the asymptotic results are transferable

between the two selection mechanisms, examples of which are those in [2,7].
The analysis in [7] defines “good” parents as those that have a Pareto-optimal
Hamming neighbour not yet present in the population. According to Lemma 4.5
in [7], the probability of selecting a good parent is at least min{p1, p2, p3} since
either selecting an extreme point with crowding distance ∞ can create a search
point with an even more extreme objective value. Or, in case both 0n and 1n

have already been found, a third-ranked individual with a finite crowding dis-
tance will be neighboured to a gap in the Pareto front. By Lemma 1 we have
min{p1, p2, p3} = Ω(1) and by Lemmas 5.1 and 6.1 in [7] we immediately obtain
upper bounds of O(n log n) for OMM and O(n2) for LOTZ.

Theorem 2 (based on Theorems 5.2 and 6.2 in [7]). SEMO and GSEMO
algorithms using stochastic tournament selection covers the whole Pareto front of
OMM in O(n log n) expected fitness evaluations. SEMO using stochastic tourna-
ment selection covers the whole Pareto front of LOTZ in O(n2) expected fitness
evaluations.

For stochastic tournament selection, Lemma 1 in [1,2] shows that (i) the
probability of selecting individual ranked i is Ω(1) if i ∈ O(1) and (ii) the
probability of selecting the worst individual is Ω(1/μ2). However, only (i) was
used in the subsequent results in that paper for runtime analysis of NSGA-
II, while (ii) was only used to show that the probability of selecting the worst
individual is still asymptotically equal to that of binary tournament selection.
We have the same property (i) for power-law ranking selections with β ≥ 1.

Lemma 3. In power-law ranking selection with a constant exponent β > 1, the
probability of selecting an individual ranked i ∈ O(1) is Ω(1).

Proof. The probability of selecting an individual ranked i is

1/iβ
∑μ

i=1 1/iβ
>

1/iβ
∑∞

i=1 1/iβ
=

1
ζ(β)iβ

= Ω(1)

since ζ(β) = O(1) for β > 1, and both β, i ∈ O(1).

238 D.-C. Dang et al.

Thus we have the following theorem for NSGA-II.

Theorem 4 (based on Theorems 4, 5, 6 in [1]). NSGA-II using power-
law ranking selection with any constant exponent β > 1 covers the whole Pareto
front of OMM, or LOTZ, or COCZ in expected O(n2) fitness evaluations if
μ ∈ O(n) ∩ [2(n + 1),∞) for OMM and LOTZ, and if μ ∈ O(n) ∩ [n + 2,∞)
for COCZ.

As we later show experiments with binary tournament selection, we recall
the results of [2] for binary tournament selection.

Theorem 5 (Theorem 1, 2, 3 in [1]). NSGA-II using binary tournament
selection covers the whole Pareto front of OMM, and LOTZ in O(n2 log n),
O(n3) expected fitness evaluations respectively if μ ∈ O(n) ∩ [2(n + 1),∞), and
of COCZ in O(n2 log n) expected fitness evaluations if μ ∈ O(n) ∩ [n + 2,∞).

Comparing Theorems 4 and 5 confirms that upper bounds for power-law
ranking selection are smaller than those for binary tournament selection by a
factor of order n. We believe that the latter upper bounds are tight, though this
has only been proven for OMM and NSGA-II using fair parent selection [15].

4 Differences in Implementation

In this section, we explain different ways to implement the power-law ranking
selection and stochastic tournament selection, and detail their time complexity.
We will separate the complexity in terms of basic operations (e.g. comparisons,
arithmetic operations, etc.) versus the number of random numbers in (0, 1) (e.g.
64-bit float) required since this is the common way pseudo-random numbers
are used (this differs from the precise number of random bits analysed in [22]
under the name “cost of randomness”). We will also specify the costs that occur
by the selection mechanisms at initialisation (before any generation is executed),
and in each generation of a (μ+λ) EA, e.g. NSGA-II, or (μ,λ) EA. For NSGA-
II, this complements our theoretical results as they only consider the number of
function evaluations and do not account for overheads or computational effort
during preprocessing for the operators.

4.1 Power-Law Ranking

For the power-law selection of any exponent β, once the population size has been
decided at initialisation, the selection probabilities ri of (1) can be computed
in Θ(μ) basic operations and stored throughout the run. Then in each genera-
tion, if all current individuals have different fitness and hence distinctive ranks,
the stored values can be used immediately as the distribution for sampling par-
ents. However, it is often the case that there are equally fit individuals in the
population, thus their treatment needs to be specified.

One approach is to assign an arbitrary ranking to equally fit solutions. Then
these solutions will receive different probability mass. We denote this variant

On the Equivalence Between Stochastic Tournament 239

of power-law ranking selection by Powfixed. The other approach, denoted by
Powadjusted, is to assign equal probability mass to equally fit individuals by
redistributing their total probability mass. For example, if solutions ranked 3, 4, 5
are equally fit then they will be selected with the same probability (r3+r4+r5)/3.
Note that compared to Powfixed, Powadjusted favours more selecting diverse
equally fit individuals by the following reasoning. Assume only those ranked 3
and 4 are equally fit. The chance of selecting both these two in two independent
applications of Powfixed is s1 := 2r3r4, while that of Powadjusted is s2 := 2((r3+
r4)/2)2 and we note that s2 ≥ s1 because this is equivalent to (r3 − r4)2 ≥ 0.

The cost of the re-adjustment is Θ(μ) basic operations per generation as only
going through the values of ri a few times is required. This cost is asymptoti-
cally superseded by that of sorting the population to identify the rank for each
individual, which is in the order of O(μ log μ). Once the selection distribution
is adjusted, in order to select λ parents (where λ = 2μ for NSGA-II) to pro-
duce offspring, fast sampling methods for custom distributions such as the alias
method of sampling [12,32,33] or the inverse transform method [12] can be used
so that the cost in terms of random numbers is constant per parent selection.
An overall cost of Θ(λ) basic operations also occurs as the indices of the selected
parents in the population have to be stored.

Proposition 6. Powadjusted and Powfixed requires Θ(μ) basic operations at
initialisation and O(μ log μ + λ) basic operations and Θ(λ) random numbers in
each generation if λ parents are sampled.

4.2 Tournament Selection

Binary tournament selection, denoted as Bin, is popular since it is inexpensive.
No cost occurs during initialisation and in each generation when each parent
selection uses O(1) basic operations and O(1) random numbers, i. e. sampling
two random numbers u1, u2 in (0, 1) and then returning the best individual
among Pt(�u1μ) and Pt(�u2μ).
Proposition 7. Bin sampling λ parents uses Θ(λ) basic operations and Θ(λ)
random numbers.

Stochastic tournament selection can also be implemented directly based on
its description in Sect. 3, and this implementation is denoted Sto. No cost occurs
during initialisation for this implementation. However, the cost for each parent
selection in each generation is high because the tournament size sampled from
Unif([μ]) is at least μ/2 = Θ(μ) in expectation and also in median, and each
member of the tournament requires a random number. Thus by linearity of
expectation, to sample λ parents, λμ/2 = Θ(μλ) random numbers are used in
expectation. This is by a factor of μ more expensive than the previous mecha-
nisms. Furthermore, the number of parents sampled using more than μ/2 random
numbers dominates Bin(λ, 1/2), thus by a Chernoff bound the probability hav-
ing less than λ/3 such parents sampled is 2−Ω(λ). This implies with probability
1 − 2−Ω(λ), at least (λ/3)(μ/2) = Θ(λμ) random numbers are required. These
arguments also hold for the number of basic operations.

240 D.-C. Dang et al.

Proposition 8. Sto sampling λ parents uses Θ(λμ) basic operations and Θ(λμ)
random numbers in expectation, and also with a probability of at least 1−2−Ω(λ).

Because this high cost, particularly in terms of randomness resource, we
suggest to implement the selection similarly to the power-law ranking selection
as described in the previous section. This implementation also has two variants
depending on whether the selection probabilities, now pi from (2), are adjusted
to equally fit individuals or not. These variants are denoted Stoadjusted and
Stofixed, respectively. Note also that if we naively use (2) to compute each pi

then this costs Θ(μ), thus overall the cost of basic operations at initialisation is
Θ(μ2) as there are μ values to compute. However, this cost is only Θ(μ) if we
use the formulations of (3) and (4) instead.

Proposition 9. Stoadjusted and Stofixed sampling λ parents use O(μ log μ+λ)
basic operations and Θ(λ) random numbers, in addition to a preprocessing cost
of Θ(μ) basic operations at initialisation.

5 Empirical Results

Now we conduct experiments with NSGA-II on the functions studied in [1,2] to
complement our theoretical results and to get insights into hidden constants.

5.1 Experimental Setup

Our code is written in Python and we use the implementation of NSGA-II from
the DEAP library [17] as it allows the possibility to redefine existing operators
and introduce new ones and features the fast non-dominated sorting from [16].
A drawback of DEAP at the time we write this paper is that it mixes up the use
of pseudo-random numbers from both the standard Python library (Python’s
random) and from that of NumPy across the operators used by NSGA-II. This
can cause problems for reproducibility of the results as one has to make sure to
initialise the random seeds for both streams of pseudo-random numbers. For this
reason, we redefine the necessary operators, i. e. copying from the library and
making necessary changes, to make sure that only pseudo-random numbers from
NumPy are used. For the mutation operator, since we only deal with the bitwise
mutation with standard mutation rate 1/n, we implement the fast operator using
samples from a geometric distribution, see [20,31].

All the variants Bin, Powfixed, Powadjusted, Sto, Stofixed, Stoadjusted are
implemented. Operators Sto and Stoadjusted always use the same distribution to
select parents and only differ in their implementation. All other pairs of operators
use different distributions to select parents when the population contains equally
fit individuals. Our experiments are conducted on all the three functions OMM,
LOTZ, and COCZ. To sample from custom distributions in constant time we
use the alias method of sampling [33] and follow the implementation of [9,10].

The population is always set to the minimal requirement by Theorem 4, i. e.
μ = 2(n+1) for LOTZ and OMM, and μ = n+2 for COCZ. For each configu-
ration of the algorithm running on a specific problem size, 100 independent runs

On the Equivalence Between Stochastic Tournament 241

are produced and each run is initialised with different random seed. The experi-
ments are conducted on a server machine with AMD EPYC 7443 processor and
each run is reserved one computer core with 2 GB of RAM. Our code along with
all the results are available at https://gitlab.com/d2cmath/nsga2-sts-pow.

5.2 Results on Low Dimension Problems

Fig. 1. Empirical results on LOTZ for n ∈ {20, 30, . . . , 120}. The CPU times are in
seconds. The plot to the right shows the average CPU time spent per generation for
each variant of NSGA-II.

The purpose of this series of experiments is to complement the findings by [2]
that Bin is inefficient in terms of numbers of generations and fitness evaluations
compared to the other selections on all studied problems, cf. Theorems 4 and 5.
For this, we only use the problem dimensions between 20 and 120 with a step
size of 10. Figure 1 illustrates the results for LOTZ, and the other results can
be found in the provided link. From the middle plot of the figure, we notice that
Bin requires significant more generations to optimise the functions as predicted
by the theory [2]. This led to the high computational time in total as shown in
the left plot, although Bin spends less CPU time per generation than Sto as
shown in the right plot.

5.3 Results on High Dimension Problems

We take the inefficient selection Bin out and consider the remaining selection
operators for higher dimension problems, i. e. with n from 20 up to 400 with a
step size of 20, see Fig. 2. From the first and second row of the figure, we notice
that both Powfixed and Stofixed are far worse than the other implementations in
terms of number of generations and overall CPU times. The discrepancy between
Powadjusted and Powfixed is astounding, and this is due to Powadjusted favour-
ing more selecting equally fit but diverse individuals as explained in Sect. 4.1.

https://gitlab.com/d2cmath/nsga2-sts-pow

242 D.-C. Dang et al.

Fig. 2. Empirical results on LOTZ, OMM, COCZ for n ∈ {20, 40, . . . , 400}. The CPU
times are in seconds. The last column of plots shows the average CPU time spent per
generation for each variant of NSGA-II.

Particularly, if we look at the case of LOTZ as seen in the top-left plot, this
is the difference between solving a problem in more than one hour versus in 10
minutes. The best implementations are Powadjusted, Stoadjusted, and Sto as
their differences are hard to distinguish in the figure. We therefore extract them
for the case of LOTZ to show in Fig. 3. The middle plot of that figure confirms

On the Equivalence Between Stochastic Tournament 243

Fig. 3. Empirical results for Powadjusted, Stoadjusted, Sto on LOTZ for n ∈
{20, 40, . . . , 400}. The CPU times are in seconds.

that Stoadjusted and Sto are exactly the same mechanism as they require the
same number of generations to optimise the function. Nevertheless Stoadjusted is
more efficiently implemented as it results in shorter computational time in total,
cf. the left plot. In all experiments, Sto always spends the most CPU time per
generation compared to all other selection mechanism as predicted in Sect. 4.2.

6 Conclusions

We have shown that stochastic tournament selection is asymptotically equivalent
to power-law ranking selection with exponent 2. This yield a better understand-
ing of stochastic tournament selection and it allows the direct transfer of runtime
results between the two selection mechanisms for various algorithms studied in
the literature [2,7]. We have investigated the efficient implementations of these
mechanisms and found out that stochastic tournament selection can be imple-
mented more efficiently if done similarly to power-law ranking with pre-computed
selection probabilities. This improvement has been assessed by empirical results
conducted on synthetic benchmark functions. The reason for this improvement
is that the implementation reduces the cost of randomness (number of random
variables) from a quadratic order of the population size to a linear one. Our
experiments also showed that overall the power-law ranking selection optimises
the studied function using the shortest CPU times, hence it is the most efficient
mechanism. This is because numerically (and not asymptotically) the mecha-
nism attributes larger probabilities to select top-ranked individuals, compared
to stochastic tournament selection. An insight from our study is that specifically
when crossover is involved the treatment of equally good individuals has to be
done properly, i. e. they should receive the same selection probability, because
this seemingly small detail can make a surprisingly difference in the performance,
i. e. decide between the best versus the worst implementations.

244 D.-C. Dang et al.

References

1. Bian, C., Qian, C.: Running time analysis of the non-dominated sorting genetic
algorithm II (NSGA-II) using binary or stochastic tournament selection. arXiv
preprint arXiv:2203.11550 (2022)

2. Bian, C., Qian, C.: Better running time of the non-dominated sorting genetic algo-
rithm II (NSGA-II) by using stochastic tournament selection. In: Rudolph, G.,
Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) PPSN
2022, pp. 428–441. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
14721-0 30

3. Bian, C., Zhou, Y., Li, M., Qian, C.: Stochastic population update can provably
be helpful in multi-objective evolutionary algorithms. Proc. Int. Joint Conf. Artif.
Intell. 2023, 5513–5521 (2023)

4. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary
algorithms. Evol. Comput. 4(4), 361–394 (1996)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

6. Corus, D., Lissovoi, A., Oliveto, P.S., Witt, C.: On steady-state evolutionary algo-
rithms and selective pressure: why inverse rank-based allocation of reproductive
trials is best. ACM Trans. Evolution. Learn. Optimiz. 1(1), 2:1–2:38 (2021)

7. Covantes Osuna, E., Gao, W., Neumann, F., Sudholt, D.: Design and analysis
of diversity-based parent selection schemes for speeding up evolutionary multi-
objective optimisation. Theor. Comput. Sci. 832, 123–142 (2020)

8. Dang, D.-C., Eremeev, A.V., Lehre, P.K.: Non-elitist evolutionary algorithms excel
in fitness landscapes with sparse deceptive regions and dense valleys. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO 2021),
pp. 1133–1141. ACM (2021)

9. Dang, D.-C., Eremeev, A.V., Lehre, P.K., Qin, X.: Fast non-elitist evolution-
ary algorithms with power-law ranking selection. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2022), pp. 1372–1380. ACM
(2022)

10. Dang, D.-C., Eremeev, A.V., Qin, X.: Empirical evaluation of evolutionary algo-
rithms with power-law ranking selection. In: Shi, Z., Torresen, J., Yang, S. (eds.)
IIP 2024, Part I, pp. 217–232. Springer, Cham (2024). https://doi.org/10.1007/
978-3-031-57808-3 16

11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

12. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York
(1986). https://doi.org/10.1007/978-1-4613-8643-8

13. Doerr, B.: Does comma selection help to cope with local optima? Algorithmica
84(6), 1659–1693 (2022)

14. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation - Recent
Developments in Discrete Optimization. Springer, Cham (2020)

15. Doerr,B., Qu, Z.: From understanding the population dynamics of the NSGA-II to
the first proven lower bounds. In: Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI 2023, pp. 12408–12416. AAAI Press (2023)

16. Fortin, F., Grenier, S., Parizeau, M.: Generalizing the improved run-time com-
plexity algorithm for non-dominated sorting. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2013), pp. 615–622. ACM (2013)

http://arxiv.org/abs/2203.11550
https://doi.org/10.1007/978-3-031-14721-0_30
https://doi.org/10.1007/978-3-031-14721-0_30
https://doi.org/10.1007/978-3-031-57808-3_16
https://doi.org/10.1007/978-3-031-57808-3_16
https://doi.org/10.1007/978-1-4613-8643-8

On the Equivalence Between Stochastic Tournament 245

17. Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., Gagné, C.:
DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175
(2012)

18. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimisation. Evol. Comput. 18(3), 335–356 (2010)

19. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning.
Addison-Wesley (1989)

20. Grefenstette, J.: Efficient implementation of algorithms. In: Handbook of Evolu-
tionary Computation, 1st edn., pp. E2.1:1–E2.1:6. IOP Publishing Ltd. (1997)

21. Jansen, T., Zarges, C.: Analysis of evolutionary algorithms: from computational
complexity analysis to algorithm engineering. In: Proceedings of Foundations of
Genetic Algorithms (FOGA 2011), pp. 1–14. ACM (2011)

22. Kneissl, C., Sudholt, D.: The cost of randomness in evolutionary algorithms:
crossover can save random bits. In: Pérez Cáceres, L., Stützle, T. (eds.) EvoCOP
2023, EvoStar 2023, pp. 179–194. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-30035-6 12

23. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004)

24. Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5 25

25. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Proceedings the Genetic
and Evolutionary Computation Conference (GECCO 2011), pp. 2075–2082. ACM
(2011)

26. Motoki, T.: Calculating the expected loss of diversity of selection schemes. Evol.
Comput. 10(4), 397–422 (2002)

27. Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional
selection: landscapes and efficiency. In: Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO 2009), pp. 835–842. ACM (2009)

28. Oliveto, P.S., Witt, C.: On the runtime analysis of the simple genetic algorithm.
Theoret. Comput. Sci. 545, 2–19 (2014)

29. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic
algorithm. Theoret. Comput. Sci. 605, 21–41 (2015)

30. Oliveto, P.S., He, J., Yao, X.: Time complexity of evolutionary algorithms for
combinatorial optimization: a decade of results. Int. J. Autom. Comput. 4(3),
281–293 (2007)

31. Rudolph, G., Ziegenhirt, J.: Computation time of evolutionary operators. In: Hand-
book of Evolutionary Computation, 1st edn., pp. E2.2:1–E2.2:4. IOP Publishing
Ltd. (1997)

32. Vose, M.D.: A linear algorithm for generating random numbers with a given dis-
tribution. IEEE Trans. Softw. Eng. 17(9), 972–975 (1991)

33. Walker, A.J.: New fast method for generating discrete random numbers with arbi-
trary frequency distributions. Electron. Lett. 10(8), 127–128 (1974)

https://doi.org/10.1007/978-3-031-30035-6_12
https://doi.org/10.1007/978-3-031-30035-6_12
https://doi.org/10.1007/978-3-642-15844-5_25

Level-Based Theorems for Runtime
Analysis of Multi-objective Evolutionary

Algorithms

Duc-Cuong Dang, Andre Opris(B), and Dirk Sudholt

University of Passau, Passau, Germany

andre.opris@uni-passau.de

Abstract. Runtime analysis of multi-objective evolutionary algorithms
(MOEAs) is a rapidly emerging field in which recent breakthroughs stud-
ied state-of-the-art MOEAs like NSGA-II and NSGA-III. These analyses
typically bound the expected time to cover the Pareto front by analysing
(1) the expected time to find a first Pareto-optimal search point and (2)
the expected time to cover the whole Pareto front from there.

We support this development by providing a powerful general tool for
bounding the expected time to reach a first Pareto-optimal search point.
It is based on the well-known fitness-level method, a simple and versatile
yet powerful analysis method, adapted to multiple objectives. The ben-
efits are to simplify runtime analyses by removing repetitive arguments
used across many runtime analyses, thus allowing for shorter and sim-
pler proofs, and to make runtime analysis of MOEAs more accessible to
other researchers. Our level-based theorems further provide additional
results on stochastic domination and tail bounds in addition to bounds
on expected hitting times. We identify sufficient conditions for NSGA-II
and NSGA-III to reach the Pareto front, which may pave the way for
runtime analyses of state-of-the-art MOEAs approximating the Pareto
front with population sizes smaller than the Pareto front.

Keywords: Runtime analysis · analysis methods · evolutionary
multi-objective optimisation · theory

1 Introduction

Many optimisation problems found in practice feature multiple objectives that
are often conflicting. Evolutionary algorithms are well suited to dealing with
multiple objectives owing to their innate ability to store trade-offs in their pop-
ulation. State-of-the-art multi-objective evolutionary algorithms (MOEAs) like
the non-dominated sorting algorithm II (NSGA-II) [19] or its successor for many-
objective optimisation, NSGA-III [18], have found thousands of applications and
have amassed over 50,000 citations between them. Yet there is little theoretical
underpinning and the reasons behind their success are not well understood.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 246–263, 2024.
https://doi.org/10.1007/978-3-031-70071-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_16&domain=pdf
https://doi.org/10.1007/978-3-031-70071-2_16

Level-Based Theorems for Runtime Analysis 247

Recent breakthrough papers managed to analyse the runtime of these
state-of-the-art algorithms for common pseudo-Boolean benchmark problems.
Zheng, Liu, and Doerr [46] gave the first runtime analysis of NSGA-II (with-
out crossover) on the LOTZ benchmark, showing that the algorithm efficiently
covers the whole Pareto front if the population size is large enough. Several
subsequent papers demonstrated the usefulness of using crossover in NSGA-
II [3,12,14,26]. Further analyses illustrating the efficiency of NSGA-II consid-
ered multimodal problems [15,23,24], noisy optimisation [13] and combinato-
rial optimisation [5]. Other papers considered improvements to the crowding
distance computation [44], limitations in many-objective optimisation [45] and
lower bounds on the runtime [25]. NSGA-III was first analysed in the break-
through paper by Wietheger and Doerr [41] on a 3-objective benchmark prob-
lem and was recently shown to be effective on many-objective problems for large
enough populations.

All these papers have enhanced our understanding of the limits and capabil-
ities of these algorithms. However, the theory of MOEAs is still in its infancy.
In particular, while powerful tools have been developed for analysing single-
objective evolutionary algorithms (e.g., the fitness-level method and various
extensions of it [29,33,40]), such tools are lacking for multi-objective optimi-
sation. Consequently, the analysis of MOEAs is often done from scratch and
proofs frequently use the same repetitive arguments. This work aims to advance
this line of research by contributing a powerful and versatile method to simplify
proofs and to obtain more powerful statements.

The well-known fitness-level method, which originated in [34,37] and was
popularised in [40], divides the search space into sets (“levels”) A0, . . . , Ak of
increasing fitness and maps the current population of an evolutionary algorithm
to a level. Elitist algorithms can never worsen their current level. If we have
a lower bound si on the probability of leaving a level Ai, we obtain an upper
bound of 1/si on the expected waiting time for this to happen and summing
over all levels yields an upper bound on the expected time to find the highest
fitness level (e.g., the set of global optima).

Here we review, refine and adapt the method to MOEAs to simplify a crucial
part of existing and future runtime analyses. In most recent runtime analyses
reviewed above, the goal was to cover the whole Pareto front and the analyses
followed a common pattern: dividing a run into two phases. Phase 1 describes the
time to create the first Pareto-optimal search point. Phase 2 covers the time to
cover the whole Pareto front. For Phase 1 it is often sufficient to consider Pareto
dominance, whereas for Phase 2 the specific details of the algorithm matter, e. g.
deciding which incomparable solutions should survive, or whether or not to keep
solution copies [15]. For algorithms that are based on Pareto-dominance, e.g.,
(G)SEMO [27,32], NSGA-II [19], NSGA-III [18] and SMS-EMOA [2] the same
arguments are used in Phase 1. By providing a general analysis method that can
be easily plugged into proofs, we aim to reduce the use of repetitive arguments,
allowing for shorter and simpler proofs. We also aim to make runtime analysis of
MOEAs accessible to other researchers as the new method is versatile and easy

248 D.-C. Dang et al.

to use. Moreover, we include several statements that go beyond a bound on the
expectation of the time to find the Pareto front, including stochastic domination
and tail bounds. This enhances existing analyses at no additional cost.

Finally, we obtain more clarity on required parameter settings that guarantee
to discover the Pareto front efficiently, and find that these can be much looser
than requirements for covering the whole Pareto front. We also believe that
future research effort will be devoted to studying smaller populations. The goal
of covering the whole Pareto front is only achievable if the population is at least as
large as the Pareto front. In practice, this is not always realistic or reasonable and
smaller populations are preferred, provided they give a good approximation of
the Pareto front. By researching minimum requirements on parameters (e.g., the
population size) to reach the Pareto front, we hope to facilitate this development.

2 Preliminaries

2.1 The Fitness-Level Method

The fitness-level method, also known as method of f -based partitions, was first
formalised by Wegener [40]. It partitions the search space into non-empty sets
A0, . . . , Ak called levels, in a way that the final set Ak contains desirable solutions
and there is some progression towards reaching levels of higher index. In its
original formulation, the levels are sorted according to fitness (maximising some
function f): for all i ∈ {0, . . . , k − 1}, all x ∈ Ai and all y ∈ Ai+1 we have
f(x) < f(y). Then Ak contains search points with the highest fitness, and it is
often restricted to global optima.

For an elitist (1+1) evolutionary algorithm we consider the fitness level Ai

that contains the current search point and say that the algorithm is “in Ai” or
“on level i” if its current search point is in Ai. If we have a lower bound si on the
probability of reaching a higher fitness-level set in one generation, and this lower
bound holds for all populations on this fitness level, the expected time until a
better fitness level is found is stochastically dominated by a geometric random
variable with parameter si and the expected time until this happens is at most
1/si. Owing to elitism, the current level can never decrease. By summing up
these waiting times for all non-optimal fitness levels, starting with the initial
one, we obtain an upper bound of

k−1∑

j=0

Pr (start in Aj)
k−1∑

i=j

1
si

≤
k−1∑

i=0

1
si

.

The inequality is trivial and subsequent applications often used the bound on
the right-hand side for the sake of simplicity and since often there is very little
gain in considering the initialisation.

The fitness-level method found many applications beyond (1+1) evolution-
ary algorithms by appropriately redefining the notion of the current fitness
level (e.g. by considering the best fitness level in the current population). It

Level-Based Theorems for Runtime Analysis 249

was extended to parent populations [42], ant colony optimisation [28,35], a
binary particle swarm optimiser [39], offspring populations [31] and island mod-
els [30,31].

The fitness-level method was also used to prove lower bounds on the expected
running time of EAs, by exploiting additional information on transition prob-
abilities between fitness levels [38]. This approach was very recently simplified
in [22] and refined by combining fitness levels with drift analysis [29].

The fitness-level method turned out also to be applicable to non-elitist algo-
rithms, assuming that the probability of decreasing the current level is small
enough. In a breakthrough paper, Lehre [33] and later Dang and Lehre [10] intro-
duced the fitness-level method for non-elitist populations for which the strong
requirement on the progress is relaxed to a probabilistic condition and a lower
bound on the population size (to ensure the stability of the process). The method
was later extended into the so-called level-based method [7] which can be applied
to a variety of algorithms, including estimation of distribution algorithms [9],
and noisy settings [8], and led to the introduction of performance-guaranteed
algorithms for combinatorial problems [6] and new operators [11]. An improved
version of the level-based method was developed in [21].

An advantage of fitness-levels for elitist populations is that the time to reach
the last level is stochastically dominated by sums of geometric random variables,
with probability bounds si as parameters. This was used in Zhou, Luo, Lu, and
Han [47] to derive tail bounds on the time to reach the last fitness level. Such tail
bounds were later improved by Witt [43]. Doerr [20] advocated the description of
search processes using stochastic domination. This allows for more informative
performance guarantees, decouples the algorithmic task of finding domination
statements from probability-theoretical derivations of desired probabilistic guar-
antees, and helps to find simpler and more natural proofs [20].

2.2 Multi-objective Benchmark Functions

In this paper we look at maximisation problems of an m-objective function
f(x) := (f1(x), . . . , fm(x)) where fi : {0, 1}n → N0 for each i ∈ [m]. Suppose
that the range of fi is the integer set {0, 1, . . . , fmax

i } for all i ∈ {1, . . . , m} and
let f sum :=

∑m
i=1 fmax

i be the sum of all fitness ranges.

Definition 1. Consider an m-objective function f .

(1) Given two search points x, y ∈ {0, 1}n, x weakly dominates y, denoted by
x � y if fi(x) ≥ fi(y) for all 1 ≤ i ≤ m; and x (strictly) dominates y,
denoted x � y, if one inequality is strict; if neither x � y nor y � x then x
and y are incomparable.

(2) A set S ⊆ {0, 1}n is a set of mutually incomparable solutions with respect
to f if all search points in S are incomparable; thus, any two search points
in S have distinct fitness vectors.

(3) Each solution that is not dominated by any other solution in {0, 1}n is
called Pareto-optimal. A set of these solutions that covers all possible

250 D.-C. Dang et al.

non-dominated fitness values and are mutually incomparable is called a
Pareto(-optimal) set of f .

When m = 2, the function is called also bi-objective. We will illustrate
our level-based method on the following standard benchmarks. The function
m-LOTZ aims to maximise the number of leading ones (a prefix of only ones)
and the number of trailing zeros (a suffix of only zeros) at the same time. The
parameter m describes the number of objectives. For m > 2 the bit string is
divided into m/2 blocks of size 2n/m each.

Definition 2 (Laumanns et al. [32]). Let m be divisible by 2 and let the
problem size be a multiple of m/2. The m-objective function m-LOTZ is defined
by m-LOTZ : {0, 1}n → N

m
0 as m-LOTZ(x) = (f1(x), f2(x), . . . , fm(x)) with

fk(x) =

{∑2n/m
i=1

∏i
j=1 xj+n(k−1)/m, if k is odd,

∑2n/m
i=1

∏2n/m
j=i (1 − xj+n(k−2)/m), otherwise,

for all x = (x1, . . . , xn) ∈ {0, 1}n.

The function m-COCZ aims to maximise the number of ones and the number
of zeros in parts of the bit string. More specifically, the second half of the bit
string is divided into m/2 blocks of length n/m each. Moreover, each objective
also adds the number of ones in the first half of the bit string. Hence this function
models a common goal as well as conflicting goals.

Definition 3 (Laumanns et al. [32]). Let m be divisible by 2 and let the
problem size be a multiple of m. The m-objective function m-COCZ is defined
by m-COCZ : {0, 1}n → N

m
0 as m-COCZ(x) = (f1(x), . . . , fm(x)) with

fk(x) =
n/2∑

i=1

xi +

{∑n/m
i=1 xi+n/2+(k−1)n/(2 m), if k is odd,

∑n/m
i=1

(
1 − xi+n/2+(k−2)n/(2 m)

)
, otherwise,

for all x = (x1, . . . , xn) ∈ {0, 1}n.

2.3 Multi-objective Evolutionary Algorithms

We start our review of MOEAs with the simple algorithm (G)SEMO (Algo-
rithm 1). One solution is initialised uniformly at random, and in each generation
a new offspring solution y is created by mutating a parent solution p selected
uniformly at random from the current population Pt. SEMO flips one bit chosen
uniformly at random, whereas GSEMO uses standard bit mutation. If y is not
weakly dominated by any solutions of Pt then it is added to Pt, and the next pop-
ulation Pt+1 is computed by removing all those individuals weakly dominated
by y from Pt. The population size |Pt| may vary over time.

NSGA-II [17,19] and NSGA-III [18] using standard bit mutation are shown
in Algorithm 2. Both algorithms start with a randomly initialised population of

Level-Based Theorems for Runtime Analysis 251

Algorithm 1: (G)SEMO Algorithm on {0, 1}n

1 Initialise P0 := {x} where x ∼ Unif({0, 1}n);
2 for t := 0 → ∞ do
3 Sample p ∼ Unif(Pt);
4 Create y by mutating p using 1-bit flips (SEMO) or standard bit mutation

(GSEMO);
5 if � ∃x ∈ Pt : x � y then
6 Create the next population Pt+1 := Pt ∪ {y};
7 Remove all x ∈ Pt+1 where y
 x;

μ solutions, and then create new μ offspring solutions. Then the 2μ solutions
(the population Rt = Pt ∪Qt) compete for survival in the next population Pt+1.

We use the most basic choices for the parent selection and mutation operators
to generate the offspring: each offspring solution is created independently from
each other by first picking a parent uniformly at random (with replacement) and
then applying a mutation operator to the copied parent.

In survival selection, the parent and offspring populations Pt and Qt are
joined into Rt, and then partitioned into layers F 1

t+1, F
2
t+1, . . . by the non-

dominated sorting algorithm [19]. The layer F 1
t+1 consists of all non-dominated

points, and F i
t+1 for i > 1 only contains points that are the non-dominated solu-

tions after removing F 1
t+1, . . . , F

i−1
t+1 . Then a critical layer F i∗

t+1 is computed such
that

∑i∗−1
i=1 |F i

t+1| < μ and
∑i∗

i=1|F i
t+1| ≥ μ. Then Pt+1 consists of all solutions

from the layers F 1
t+1, . . . , F

i∗−1
t+1 and of r := μ−∑i∗−1

i=1 |F i
t+1| remaining solutions

from F i∗
t+1. To determine those remaining r ones, NSGA-II uses the crowding

distance while NSGA-III uses the distance to a predefined set of reference rays
after a normalisation procedure.

The detailed normalisation procedure can be found in [4]. The following
description and properties are enough for our purposes in this paper. For an m-
objective function f : {0, 1}n → (N0)m, the normalised fitness vector fn(x) :=
(fn

1 (x), . . . , fn
m(x)) of search point x is computed as

fn
j (x) =

fj(x) − ymin
j

ynad
j − ymin

j

(1)

for each j ∈ [m]. The points ymin := (ymin
1 , . . . , ymin

m) and ynad := (ynad
1 , . . . , ynad

m)
are referred to as the ideal and nadir points, respectively, of the objective space.
Particularly, ymin

j is set to the minimum value in objective j either from the cur-
rent population, or from all search points that the algorithm has determined so
far. To simplify the analysis, we suppose that ymin

j is based only on the individ-
uals from F 1

t+1 of the current population. For the full normalisation procedure
we refer to [4].

252 D.-C. Dang et al.

Algorithm 2: NSGA-II [19] and NSGA-III [18] on {0, 1}n

1 Initialise P0 ∼ Unif(({0, 1}n)µ);
2 for t := 0 to ∞ do
3 Initialise Qt := ∅;
4 for i = 1 to μ do
5 Sample p from Pt uniformly at random;
6 Create x by mutating p and add x to Qt;

7 Let Rt := Pt ∪ Qt;
8 Partition Rt into layers F 1

t+1, F
2
t+1, . . . using non-dominated sorting [19];

9 Compute the critical layer i∗ ≥ 1 such that
∑i∗−1

i=1 |F i
t+1| < μ and

∑i∗
i=1|F i

t+1| ≥ μ;

10 Set Yt :=
⋃i∗−1

i=1 F i
t+1;

11 Select a multiset F̃ i∗
t+1 ⊂ F i∗

t+1 of individuals such that |Yt ∪ F̃ i∗
t+1| = μ: use

crowding distance for NSGA-II and distances to reference points
(Algorithm 3) for NSGA-III;

12 Create the next population Pt+1 := Yt ∪ F̃ i∗
t+1;

After normalization, each individual of rank at most i∗ is associated with
the reference point rp(x) such that the distance between fn(x) and the line
through the origin and rp(x) is minimized (see Algorithm 3). Here ties are bro-
ken deterministically, i.e. two individuals which have the same smallest distance
to two reference points are assigned to the same reference point. Then one iter-
ates through all the reference points where the reference point with the fewest
associated individuals that are already selected for the next generation Pt+1 is
chosen. Ties are broken uniformly at random. A reference point is omitted if it
only has associated individuals that are already selected for Pt+1. Then, among
the not yet selected individuals of that reference point the one nearest to the
chosen reference point is taken for Pt+1 where ties are again broken uniformly
at random. The selection terminates if the required number of individuals is
reached (i.e. if |Yt| + |F̃ i

t | = μ). (Compare also with [41] or [36].)
To define the set of reference points Rp the original paper [18] suggests the

method from Das and Denis [16] to define this set with a parameter p ∈ N:

Rp :=
{(

a1

p
, . . . ,

ad

p

)
| (a1, . . . , ad) ∈ N

d
0,

∑d

i=1
ai = p

}
. (2)

In case of NSGA-II the selection in line 12 in Algorithm 2 is based on
the crowding distance cDist(xi,M) of xi with respect to M where M :=
(x1, x2, . . . , x|M |) is a multi-set of search points. At first we sort M to obtain
M = (xk1 , . . . , xk|M|) with respect to each objective k ∈ [m] separately. Then
cDist(xi, M) :=

∑d
k=1 cDistk(xi,M), is calculated where

cDistk(xki
,M) :=

⎧
⎨

⎩
∞ if i ∈ {1, |M |},
fk(xki−1)−fk(xki+1)

fk(xk1)−fk(xkM) otherwise.
(3)

Level-Based Theorems for Runtime Analysis 253

Algorithm 3: Distance to reference points [18] to compute F̃ i∗
t+1 from F i∗

t+1

based on a set Rp of reference points.

1 Compute the normalised fn(x) for each x ∈ Yt ∪ F i∗
t+1 [4];

2 Associate each x ∈ Yt ∪ F i∗
t+1 to its reference point rp(x) ∈ Rp based on the

smallest distance to the reference rays;
3 For each r ∈ Rp, initialise ρr := |{x ∈ Yt | rp(x) = r}|;
4 Initialise F̃ i∗

t+1 := ∅ and R′ := Rp;
5 while true do
6 Determine rmin ∈ R′ such that ρrmin is minimal (break ties randomly);

7 Determine xrmin ∈ F i∗
t+1 \ F̃ i∗

t+1 which is associated with rmin and minimises
the distance between fn(xrmin) and the ray of rmin (break ties randomly);

8 if xrmin exists then

9 Update F̃ i∗
t+1 := F̃ i∗

t+1 ∪ {xrmin};
10 Update ρrmin := ρrmin + 1;

11 if |Yt| + |F̃ i∗
t+1| = μ then return F̃ i∗

t+1

12 else Update R′ := R′ \ {r}

The first and last ranked individuals are always assigned an infinite crowding
distance. The remaining individuals are then assigned the differences between
the values of fk of those ranked directly above and below the search point and
divided by the difference between fk of the first and last ranked. NSGA-II then
takes r solutions from F i∗

t+1 with the largest crowding distances from F i∗
t+1 to

complete Pt+1 where ties are broken uniformly at random.

3 General Level-Based Theorems for Elitist Algorithms

We first give a general level-based theorem that applies to single- and multi-
objective settings, before considering multi-objective functions in Sect. 4. The
following result combines several extensions of the fitness-level method from
the literature, including offspring populations from [31], stochastic domination
results from [20] and tail bounds from [43].

Definition 4. A partition A0, . . . , Ak of the search space such that all sets Ai

are non-empty is called level partition. For a population P denote by �(P) :=
max{i | P ∩ Ai �= ∅} the index of the best level set.

Definition 5. An algorithm A evolving populations P0, P1, . . . is called level-
monotone w. r. t. a level partition A0, . . . , Ak if, for all times t, �(Pt+1) ≥ �(Pt).

For a sequence of sets A0, . . . , Ak we use the shorthands A>i :=
⋃

j>i Aj and
A<i :=

⋃
j<i Aj , and likewise for A≥i := Ai ∪ A>i and A≤i := Ai ∪ A<i.

Theorem 6. Consider a level partition A0, . . . , Ak and a level-monotone algo-
rithm A evolving populations P0, P1, . . . of cardinality μ. Assume that A creates
λ offspring by using some independent parent selection where a parent in A�(Pt)

254 D.-C. Dang et al.

is chosen with probability at least |A�(Pt)∩Pt|/|Pt|. For 0 ≤ i ≤ k−1 let si ∈ (0, 1]
be a lower bound on the probability of creating a search point in A>�(Pt) when
selecting a parent in A�(Pt). Let T denote the random number of evaluations
made until the last level Ak is reached. Then the following statements hold.

(1)

E [T] ≤ λk + μ

k−1∑

i=0

1
si

.

(For λ = 1 the summand λk can be dropped.)
(2) T is stochastically dominated by a sum of independent random variables:

λ

k−1∑

i=0

Geom(1 − (1 − si/μ)λ).

(3) For every δ ≥ 0,

Pr

(
T > λk + μ

k−1∑

i=0

1
si

+ δλ

)
≤ e−(δ/4) min{δ/s,h}

where h := min{1−(1−si/μ)λ | 0 ≤ i ≤ k−1} and s :=
∑k−1

i=0
1

(1−(1−si/μ)λ)2
.

Proof. The probability of selecting a search point from the current best level i
and creating an offspring in a better level is at least si/μ. The probability of this
happening during λ offspring creations is at least 1 − (1 − si/μ)λ. The expected
waiting time for this to happen is stochastically dominated by a geometric ran-
dom variable with parameter 1 − (1 − si/μ)λ. Multiplying by λ to account for λ
offspring being created in one generation proves the second claim.

The first statement follows from the second one and the fact that the
expectation of a geometric random variable with parameter p is 1/p. Using
1 − (1 − p)λ ≥ pλ

1+pλ [1, Lemma 10], the expected number of generations on
level i is at most

1
1 − (1 − si/μ)λ

≤ 1 + siλ/μ

siλ/μ
= 1 +

μ

siλ
.

Multiplying by λ proves the claimed bound on the expectation. In the special
case λ = 1 we have 1

1−(1−si/μ)λ = μ
si

and obtain a bound of
∑k−1

i=0
1
si

evaluations.
The third statement follows directly from Witt’s tail bound for fitness lev-

els [43] applied to amplified success probabilities. Here one step of the algorithm
in Theorem 1 of [43] corresponds to one generation of A and the probability of
improving the current level i is at least 1 − (1 − si/μ)λ. Multiplying the time
bound with λ yields a tail bound on the number of evaluations used by A:

Pr

(
T > λ

k−1∑

i=0

1
1 − (1 − si/μ)λ

+ δλ

)
≤ e−(δ/4) min{δ/s,h}.

Noting λ
∑k−1

i=0
1

1−(1−si/μ)λ ≤ λk + μ
∑k−1

i=0
1
si

(see above) yields the claim. �

Level-Based Theorems for Runtime Analysis 255

4 Applying Level-Based Theorems to Multi-objective
EAs

We now show how the fitness-level method can be applied to multi-objective
evolutionary algorithms.

Definition 7. A level partition A0, . . . , Ak is called level partition respecting
Pareto-dominance if for all i ∈ {0, . . . , k} all search points in Ai are not weakly
dominated by any search point in A<i.

Note that any set Ai in a level partition respecting Pareto-dominance may
still contain search points x and y such that one dominates the other. This is
intentional as it allows for a coarse-grained partition of the search space. How-
ever, for the final set Ak such a coarse-graining may not be desired if we are
looking for Pareto-optimal search points. If Ak only contains mutually incom-
parable search points, all search points in Ak are Pareto-optimal.

Lemma 8. Consider a level partition A0, . . . , Ak respecting Pareto-dominance.
If all search points in Ak are mutually incomparable then Ak only contains Pareto
optima.

Proof. Assume for a contradiction that Ak contains a search point x that is
not Pareto optimal. Then there exists a search point y strictly dominating x. By
Definition 7 and Pareto-dominance, y cannot be in A<k. So y ∈ Ak, contradicting
the assumption that all points in Ak are mutually incomparable. �

Level partitions can be carefully crafted or be defined in a canonical fashion.
The following lemma shows three different ways: using the sum of fitness values,
focusing on one objective i and ignoring all other objectives and applying non-
dominated sorting to the whole search space.

Lemma 9.(1) For j ∈ {0, . . . , f sum} let Aj := {x ∈ {0, 1}n | f1(x)+ . . .+fm(x)
= j}. Then the non-empty Aj form a level partition respecting Pareto-
dominance.

(2) For a fixed dimension i ∈ {1, . . . , m} and j ∈ {0, . . . , fmax
i } let Bi

j := {x ∈
{0, 1}n | fi(x) = j}. Then the non-empty sets from Bi

0, B
i
1, . . . , B

i
fmax

i
form

a level partition respecting Pareto-dominance.
(3) Let F1, . . . , Fk be the layers obtained when applying non-dominated sorting

to the whole search space {0, 1}n. For j ∈ {1, . . . , k} let Aj := Fk−j. Then
A0, . . . , Ak−1 form a level partition respecting Pareto-dominance.

Proof. (1): Let j < i and suppose that x ∈ Ai and y ∈ Aj . Then
∑m

i=1 fi(x) >∑m
i=1 fi(y). Suppose that x � y. Then fi(x) ≤ fi(y) for every i ∈ {1, . . . , m}

and therefore
∑m

i=1 fi(x) ≤ ∑m
i=1 fi(y), a contradiction.

(2): Let i ∈ {1, . . . , m} and j, � with j < �. Suppose that x ∈ Bi
� and y ∈ Bi

j ,
which implies fi(y) < fi(x). If x � y then fi(x) ≤ fi(y), a contradiction.
(3): By the non-dominated sorting the F1, . . . , Fk form a partition of {0, 1}n.
Suppose some x ∈ As = Fk−s weakly dominates a y ∈ A� = Fk−� for s < �,

256 D.-C. Dang et al.

i.e. x is in a worse layer than y. If f(x) = f(y) then s = �, a contradiction (as
individuals with equal fitness are put in the same layer). If f(x) �= f(y) then x
strictly dominates y and hence, x is in a better layer than y, a contradiction. �

Example 10. Let f := m-LOTZ. Then fmax
i = 2n/m for i ∈ [m] and hence

f sum = 2n. Additionally, for i ∈ [m/2] we have that {f2i−1(x) + f2i(x) | x ∈
{0, 1}n} = {0, . . . , 2n/m} \ {2n/m − 1} since every block has length 2n/m.
Note that there is no x ∈ {0, 1}n with f2i−1(x) + f2i(x) = 2n/m − 1, because
block i of x has the form 1�010� if x has second largest possible fitness value
f2i−1(x) + f2i(x). This implies {∑m

i=1 fi(x) | x ∈ {0, 1}n} = {0, . . . , n − m,n −
m + 2, n − m + 4, . . . , n} since the number of blocks is m/2. Hence there are
n + 1 − m/2 levels A0, . . . , An−m, An−m+2, . . . , An. Since the LeadingOnes- or
TrailingZeros-value in every block can be any value in {0, . . . , 2n/m} there
are 2n/m + 1 levels B0, . . . , B2n/m.

Example 11. Let g := m-COCZ. We have gmax
i = n/2 + n/m for i ∈ [m] and

hence gsum = mn/2 + n. For x ∈ {0, 1}n let |x|11 be the number of ones in
the first half of x. Then for i ∈ {1, . . . ,m/2} and a given � ∈ {0, . . . , n/2}
we have {g2i−1(x) + g2i(x) | x ∈ {0, 1}n, |x|11 = �} = {2� + n/m} and there-
fore {∑m

i=1 gi(x) | x ∈ {0, 1}n, |x|11 = �} = {m� + n/2}. The latter implies
{∑m

i=1 gi(x) | x ∈ {0, 1}n} = {m� + n/2 | � ∈ {0, . . . , n/2}} and hence there
are n/2 + 1 many levels An/2, An/2+m, . . . , An/2+mn/2. For i ∈ [m] we see that
{gi(x) | x ∈ {0, 1}n} = {0, . . . , n/2 + n/m} (since |x|11 ∈ {0, . . . , n/2} and every
block in the left half of x has size at most n/m) which shows that there are
n/2 + n/m + 1 many levels Bi

0, . . . , B
i
n/2+n/m.

The next goal for this section is to show that the multiobjective algo-
rithms (G)SEMO, NSGA-II and NSGA-III are level-monotone for level parti-
tions respecting Pareto-dominance. In case of NSGA-II we use a stable sorting
algorithm to sort each objective when computing the crowding distance, i.e. sort
the j-th objective and then transfer this result to the (j + 1)-th one by keeping
identical elements in their original order. The following lemma shows operations
under which the current level is maintained.

Lemma 12. Let P ⊂ {0, 1}n and suppose that P ′ results from P either by
adding a search point from {0, 1}n or by removing a search point from P that is
weakly dominated by another element from P . Then �(P) ≤ �(P ′) with respect
to any level partition respecting Pareto-dominance.

Proof. Clearly, adding a search point does not decrease the level. Suppose that
x is the search point removed from P and y �= x is a search point weakly dom-
inating x. If x /∈ A�(P) then clearly �(P ′) = �(P). If x ∈ A�(P), by Definition 7
we have that y /∈ A<�(P) and thus we must have y ∈ A�(P). Thus, �(P) = �(P ′).

�

Now we show that well known EMO algorithms like (G)SEMO, NSGA-II
and NSGA-III are level-monotone given certain algorithmic parameter settings.

Level-Based Theorems for Runtime Analysis 257

Lemma 13. Let S be a maximum-cardinality set of mutually incomparable solu-
tions and let m be the number of objectives. The following properties hold with
respect to every level partition A0, . . . , Ak that respects Pareto-dominance.

(1) (G)SEMO is level-monotone.
(2) Suppose that m = 2 and μ ≥ 2|S|. For any iteration t of NSGA-II we have

�(Pt) ≤ �(Rt) = �(Pt+1), i.e. NSGA-II is level-monotone.
(3) Suppose that μ ≥ |S| and there are p ≥ 2m3/2fmax divisions along each objec-

tive to define the set Rp of reference points. For any iteration t of NSGA-III
we have �(Pt) ≤ �(Rt) = �(Pt+1), i.e. NSGA-III is level-monotone.

Lemma 13 applies to every level partition respecting Pareto-dominance. Thus,
researchers wanting to apply our tool only need to verify that their level partition
respects Pareto-dominance and (for NSGA-II/III) choose algorithmic parameters
meeting the requirements from the lemma.

Proof of Lemma 13. (1): During one iteration of (G)SEMO only individuals
are removed which are weakly dominated by the offspring x. By Lemma 12
(G)SEMO is level-monotone.

(2)/(3): Let Pt be the current population. Then a set Qt of μ offspring is
generated and Rt := Qt ∪ Pt is computed. Let F 1

t+1, . . . , F
s
t+1 be the partition

of Rt computed by non-dominated sorting. Then �(Pt) ≤ �(Rt) = �(F 1
t+1) where

the latter equality is due to Lemma 12 and the fact that every individual in
F 2

t+1, . . . , F
s
t+1 is strictly dominated by a z ∈ F 1

t+1. Then we argue for both
algorithms that for every y ∈ F 1

t+1 there is z ∈ Pt+1 with f(y) = f(z) as follows.
For NSGA-II we follow [46]: for every fitness vector there are at most two

search points covering that vector with positive crowding distance. Hence, there
can be at most 2|S| ≥ 2|{f(x) | x ∈ F 1

t+1}| many individuals in F 1
t+1 with

positive crowding distance and if μ ≥ 2|S| then every individual from F 1
t+1 with

positive crowding distance is taken into Pt+1. Note also that for every fitness
vector covered by an individual x ∈ F 1

t there is at least one individual x′ ∈ F 1
t+1

covering the same vector and having a positive crowding distance. We refer
to [46] for details.

For NSGA-III we follow [36,41]: if there are p ≥ 2m3/2fmax divisions along
each objective then one can show that two individuals from F 1

t+1 with two dis-
tinct fitness vectors are associated with two distinct reference points. Since there
are μ ≥ |S| ≥ |{f(x) | x ∈ F 1

t+1}| := s distinct individuals, there are also s ref-
erence points to which at least one individual is associated. Since μ ≥ s, at least
one x′ ∈ F 1

t+1 which is associated to the same reference point as x survives with
f(x) = f(x′). We refer to [36] for details. Hence, �(F 1

t+1) = �(Pt+1). Together,
we see �(Pt) ≤ �(Pt+1). �

The following lemma improves on Lemma 13 by stating much looser algo-
rithmic requirements for NSGA-II and NSGA-III, however for specific level par-
titions that only consider an arbitrary but fixed objective i. This means that
an appropriate choice of the level partition can yield much looser algorithmic
requirements (e.g., smaller populations) for reaching the Pareto front. This is an

258 D.-C. Dang et al.

important stepping stone for runtime analyses using populations of much smaller
sizes than that of the Pareto front. Compact populations were studied in [15].

Lemma 14. Let i ∈ {1, . . . , m} and let Bi
0, . . . , B

i
fmax

i
be defined by Bi

j := {x ∈
{0, 1}n | fi(x) = j}. Then the following holds.

(1) If μ ≥ 2m, then �(Rt) = �(Pt+1) for every iteration t of NSGA-II, i. e.
it is level-monotone w. r. t. the level partition of non-empty sets of Bi

j. In
addition, if m = 2 the condition μ ≥ 2 is sufficient.

(2) If m = 2 and μ ≥ |Rp| ≥ 2 (i.e. at least p ≥ 1 divisions along each objective
are used), then �(Rt) = �(Pt+1) for every iteration t of NSGA-III, i. e. it is
level-monotone w. r. t. the level partition of non-empty sets of Bi

j.

Proof. (1): Note that there are at most 2m many individuals in F 1
t+1 with infinite

crowding distance. Since μ ≥ 2m they are all taken into Pt+1. Hence, there is
an individual with maximum fi-value in F 1

t+1 with infinite crowding distance.
This individual is taken into Pt+1. Hence, �(Pt) ≤ �(Rt) = �(Pt+1). Now suppose
m = 2. Since we use a stable sorting algorithm, the sorting (x1, x2, . . . , xK) of
the individuals from F 1

t+1 with respect to the first objective induces the sorting
(xK , . . . , x1) with respect to the second objective. The reason is because all
individuals in Ft+1 are mutually incomparable, hence if f1(xi) < f1(xj) for i < j
we must have f2(xi) > f2(xj) and the other way round. Note that this does not
hold for m ≥ 3 in general. Hence, there are at most 2 individuals x1, xK with
infinite crowding distance and they both will transfer to Pt+1 owing to μ ≥ 2.

(2): If |F 1
t+1| ≤ μ then the claim holds since there is an x ∈ F 1

t+1 with
maximum fi-value. So suppose that |F 1

t+1| > μ and fix x ∈ F 1
t+1 with maximum

fi-value. Since we deal with two objectives and all individuals with distinct
fitness in F 1

t+1 are incomparable, x has also minimal (f3−i)-value among all
individuals from F 1

t+1 (otherwise x dominates another individual in F 1
t+1). We

also have x3−i = ymin
3−i and therefore fn

3−i(x) = 0. Thus, x is on the reference ray
g coinciding with the x(3−i)-axis and hence it is associated with the reference
point v where v(3−j) = 1 if j = i and vj = 0 otherwise. Hence, the individuals
from F 1

t+1 with the smallest angle to the reference ray g are on g and hence have
the same fitness value as x. (If y �= x and y is on g then either x ≺ y or y ≺ x.)
Since μ ≥ |Rp|, for every reference point v at least one individual associated
with v with the smallest angle to v survives. Hence, an individual x′ with the
same fitness value as x survives, which implies �(Pt) ≤ �(Rt) = �(Pt+1). �

An immediate consequence of Lemma 14 is that for two objectives, NSGA-II
and NSGA-III are able to find a Pareto-optimal search point even if μ is small.

Theorem 15. Consider NSGA-II with μ ≥ 2 or NSGA-III with μ ≥ |Rp| ≥ 2
(i.e. at least p ≥ 1 divisions along each objective are used) on f := 2-LOTZ.
Let T denote the number of evaluations made until a Pareto-optimal solution is
created. Then the following statements hold.

(1) E[T] ≤ μn + eμn2.
(2) T is stochastically dominated by μ

∑n−1
i=0 Geom(1/(en + 1)).

Level-Based Theorems for Runtime Analysis 259

(3) For every δ > 0,

Pr
(
T > μn + eμn2 + δμ

) ≤ e−(δ/4) min{δ/(n(en+1)2),1/(en+1)}

which is e−Ω(n) if δ = Ω(n2).

Proof. By Lemma 14 NSGA-II and NSGA-III are level-monotone w. r. t. the level
partition defined by B1

j := {x ∈ {0, 1}n | f1(x) = j} for j ∈ {0, . . . , n}. Note
that B1

n = {1n} consists only of one Pareto-optimal search point and therefore
a Pareto-optimal search point is found if B1

n is reached. Let � ∈ {0, . . . , n − 1}
be the current best level. Since one x ∈ Pt in B1

� is chosen uniformly at random,
i.e. with probability 1/μ, we can apply Theorem 6 on B1

0 , . . . , B1
n.

The current level is improved if a specific zero bit of an individual in Bj
�

is flipped while the remaining bits are kept unchanged. Hence, we may choose
si = 1/(en), and, by Theorem 6, E [T] ≤ μn + μ

∑n−1
i=0 en = μn + μen2 since

μ offspring are created in one iteration. We also have that T is stochastically
dominated by μ

∑n−1
i=0 Geom(1 − (1 − 1/(enμ))μ). For r := 1/(enμ) we obtain

1 − (1 − r)μ ≥ μr

1 + μr
=

1
1/(μr) + 1

=
1

en + 1
,

and hence T is also stochastically dominated by μ
∑n−1

i=0 Geom(1/(en + 1)).
For the third statement, s :=

∑n−1
i=0

1
(1−(1−1/(enμ))μ)2 ≤ ∑n−1

i=0
1

(1/(en+1))2 =
n(en + 1)2 and h := min{1− (1−si/μ)μ | 0 ≤ i ≤ n−1} = 1− (1−1/(enμ))μ ≥
1/(en + 1). Thus, for every δ > 0

Pr
(
T > μn + μen2 + δμ

) ≤ e−(δ/4) min{δ/(n(en+1)2),1/(en+1)}.

�

Theorem 16. Consider NSGA-II with μ ≥ 2 or NSGA-III with μ ≥ |Rp| ≥ 2
(i.e. at least p ≥ 1 divisions along each objective are used) on f := 2-COCZ.
Let T denote the random number of evaluations made until a Pareto-optimal
solution is created. Then we get, denoting by H(n) the n-th harmonic number,

(1) E[T] ≤ μn + eμnH(n).
(2) T is stochastically dominated by μ

∑n−1
i=0 Geom(i/(en + i)).

(3) For every δ > 0

Pr (T > μn + μenH(n) + δμ) ≤ e−Ω(δ min{δ/n2,1/n}).

Proof. We use the same level partition and the same initial arguments as
in the proof of Theorem 15. The level is improved if a zero bit of an indi-
vidual in B1

i is flipped while the remaining bits are kept unchanged. Hence,
si = (n − i)/(en), and by Theorem 6 we obtain E [T] ≤ μn+μ

∑n−1
i=0 en/(n−i) =

μn + μ
∑n

i=1 en/i = μn + μenH(n). We also have that T is stochastically domi-
nated by μ

∑n
i=1 Geom(1 − (1 − ri)μ) where ri := i/(enμ). Since 1 − (1 − ri)μ ≥

riμ
1+riμ

= i
en+i , T is also stochastically dominated by μ

∑n
i=1 Geom(i/(en + i)).

260 D.-C. Dang et al.

For the third statement, s :=
∑n

i=1
1

(1−(1−i/(enμ))μ)2 ≤ ∑n
i=1

1
(i/(en+i))2 =∑n

i=1(en/i + 1)2 ≤ ∑n
i=1((e + 1)n/i)2 ≤ (e + 1)2n2

∑∞
i=1 1/i2 = (e + 1)2n2π2/6

and h = min{1− (1− ri/μ)μ | 0 ≤ i ≤ n− 1} = 1− (1− 1/(enμ))μ ≥ 1/(en+1).
For every δ > 0

Pr (T > μn + μenH(n) + δμ) ≤ e−(δ/4) min{δ/((e+1)2n2π2/6),1/(en+1)}.

�

5 Conclusions

We have shown that a general level-based theorem can be applied to all level
partitions respecting Pareto-dominance. It immediately yields upper bounds on
expected runtimes, stochastic domination statements as well as tail bounds.
To apply this method, one only has to prove that the level partition respects
Pareto-dominance (this is often an easy task and for straightforward partitions
it is implied by Lemma 9), and the requirements for NSGA-II and NSGA-III
guaranteeing level-monotonicity can be taken directly from Lemma 13. We also
showed that when only seeking to find a Pareto-optimal solution, smaller popu-
lation sizes are sufficient. We hope that Lemma 14 paves the way for analysing
state-of-the-art MOEAs with population sizes smaller than the Pareto front.

References

1. Badkobeh, G., Lehre, P.K., Sudholt, D.: Black-box complexity of parallel search
with distributed populations. In: Proceedings of the Foundations of Genetic Algo-
rithms (FOGA 2015), pp. 3–15. ACM Press (2015)

2. Beume, N., Naujoks, B., Emmerich, M.T.M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

3. Bian, C., Qian, C.: Better running time of the non-dominated sorting genetic algo-
rithm II (NSGA-II) by using stochastic tournament selection. In: PPSN 2022.
LNCS, vol. 13399, pp. 428–441. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-14721-0 30

4. Blank, J., Deb, K., Roy, P.C.: Investigating the normalization procedure of NSGA-
III. In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 229–240. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-12598-1 19

5. Cerf, S., Doerr, B., Hebras, B., Kahane, Y., Wietheger, S.: The first proven perfor-
mance guarantees for the non-dominated sorting genetic algorithm II (NSGA-II)
on a combinatorial optimization problem. In: Proceedings of the International Joint
Conference on Artificial Intelligence, IJCAI 2023, pp. 5522–5530. ijcai.org (2023)

6. Corus, D., Lehre, P.K.: Theory driven design of efficient genetic algorithms for a
classical graph problem. In: Amodeo, L., Talbi, E.-G., Yalaoui, F. (eds.) Recent
Developments in Metaheuristics. ORSIS, vol. 62, pp. 125–140. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-58253-5 8

7. Corus, D., Dang, D.-C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic
algorithms and other search processes. IEEE Trans. Evolution. Comput. 22(5),
707–719 (2018)

https://doi.org/10.1007/978-3-031-14721-0_30
https://doi.org/10.1007/978-3-031-14721-0_30
https://doi.org/10.1007/978-3-030-12598-1_19
https://doi.org/10.1007/978-3-319-58253-5_8

Level-Based Theorems for Runtime Analysis 261

8. Dang, D.-C., Lehre, P. K.: Efficient optimisation of noisy fitness functions with
population-based evolutionary algorithms. In: Proceedings of the Foundations of
Genetic Algorithms (FOGA 2015), pp. 62–68. ACM Press (2015)

9. Dang, D.-C., Lehre, P.K.: Simplified runtime analysis of estimation of distribu-
tion algorithms. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 15), pp. 513–518. ACM Press (2015)

10. Dang, D.-C., Lehre, P.K.: Runtime analysis of non-elitist populations: from classi-
cal optimisation to partial information. Algorithmica 75(3), 428–461 (2016)

11. Dang, D.-C. , Eremeev, A.V., Lehre, P.K., Qin, X.: Fast non-elitist evolutionary
algorithms with power-law ranking selection. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2022), pp. 1372–1380. ACM Press
(2022)

12. Dang, D.-C., Opris, A., Salehi, B., Sudholt, D.: A proof that using crossover
can guarantee exponential speed-ups in evolutionary multi-objective optimisation.
Proc. AAAI Conf. Artif. Intell. 37(10), 12390–12398 (2023)

13. Dang, D.-C., Opris, A., Salehi, B., Sudholt, D.: Analysing the robustness of NSGA-
II under noise. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO 2023), pp. 642–651. ACM Press (2023)

14. Dang, D.-C., Opris, A., Sudholt, D.: Crossover can guarantee exponential speed-
ups in evolutionary multi-objective optimisation. Artif. Intell. 330, 104098 (2024)

15. Dang, D.-C., Opris, A., Sudholt, D.: Illustrating the efficiency of popular evolu-
tionary multi-objective algorithms using runtime analysis. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2024) (2024). To
appear

16. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generat-
ing the pareto surface in nonlinear multicriteria optimization problems. SIAM J.
Optimiz. 8(3), 631–657 (1998)

17. Deb, K.: NSGA-II source code in C, version 1.1.6 (2011). https://www.egr.msu.
edu/∼kdeb/codes/nsga2/nsga2-gnuplot-v1.1.6.tar.gz. Accessed 15 Aug 2022

18. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

19. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

20. Doerr, B.: Analyzing randomized search heuristics via stochastic domination. The-
oret. Comput. Sci. 773, 115–137 (2019)

21. Doerr, B., Kötzing, T.: Multiplicative up-drift. Algorithmica 83(10), 3017–3058
(2021)

22. Doerr, B., Kötzing, T.: Lower bounds from fitness levels made easy. Algorithmica
86(2), 367–395 (2024)

23. Doerr, B., Qu, Z.: A first runtime analysis of the NSGA-II on a multimodal prob-
lem. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar,
T. (eds.) PPSN 2022. LNCS, vol. 13399, pp. 399–412. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-14721-0 28

24. Doerr, B., Qu, Z.: A first runtime analysis of the NSGA-II on a multimodal prob-
lem. IEEE Trans. Evol. Comput. 27(5), 1288–1297 (2023)

25. Doerr, B., Qu, Z.: From understanding the population dynamics of the NSGA-II to
the first proven lower bounds. In: Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI 2023, pp. 12408–12416. AAAI Press (2023)

https://www.egr.msu.edu/~kdeb/codes/nsga2/nsga2-gnuplot-v1.1.6.tar.gz
https://www.egr.msu.edu/~kdeb/codes/nsga2/nsga2-gnuplot-v1.1.6.tar.gz
https://doi.org/10.1007/978-3-031-14721-0_28

262 D.-C. Dang et al.

26. Doerr, B., Qu, Z.: Runtime analysis for the NSGA-II: provable speed-ups from
crossover. In: Proceedings of the AAAI Conference on Artificial Intelligence,
AAAI 2023, pp. 12399–12407. AAAI Press (2023)

27. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimisation. Evol. Comput. 18(3), 335–356 (2010)

28. Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization
with best-so-far reinforcement. Methodol. Comput. Appl. Probab. 10(3), 409–433
(2008)

29. He, J., Zhou, Y.: Drift analysis with fitness levels for elitist evolutionary algorithms.
In: Evolutionary Computation, pp. 1–25 (2024). To appear

30. Lässig, J., Sudholt, D.: General upper bounds on the running time of parallel
evolutionary algorithms. Evol. Comput. 22(3), 405–437 (2014)

31. Lässig, J., Sudholt, D.: Analysis of speedups in parallel evolutionary algorithms
and (1+λ) EAs for combinatorial optimization. Theoret. Comput. Sci. 551, 66–83
(2014)

32. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-boolean functions. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004)

33. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 2075–
2082. ACM Press (2011)

34. Mühlenbein H.: How genetic algorithms really work: mutation and hillclimbing. In:
Parallel Problem Solving from Nature (PPSN II), pp. 15–26 (1992)

35. Neumann, F., Sudholt, D., Witt, C.: Analysis of different MMAS ACO algorithms
on unimodal functions and plateaus. Swarm Intell. 3(1), 35–68 (2009)

36. Opris, A., Dang, D.-C., Neumann, F., Sudholt, D.: Runtime analyses of NSGA-
III on many-objective problems. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2024) (2024). To appear. Preprint available at
https://arxiv.org/abs/2404.11433

37. Rudolph, G.: Local performance measures: genetic algorithms. In: Bäck, T., Fogel,
D.B., Michalewicz, Z., (eds.) Handbook of Evolutionary Computation, vol. B2,
no. 4, pp. 20–27. IOP Publishing and Oxford University Press, Bristol, New York
(1997)

38. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17(3), 418–435 (2013)

39. Sudholt, D., Witt, C.: Runtime analysis of a binary particle swarm optimizer.
Theoret. Comput. Sci. 411(21), 2084–2100 (2010)

40. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-Boolean
functions. In: Evolutionary Optimization, pp. 349–369. Kluwer (2002)

41. Wietheger, S., Doerr, B.: A mathematical runtime analysis of the non-dominated
sorting genetic algorithm III (NSGA-III). In: Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence (IJCAI 2023), pp. 5657–
5665. ijcai.org (2023)

42. Witt, C.: Runtime analysis of the (μ+1) EA on simple pseudo-Boolean functions.
Evol. Comput. 14(1), 65–86 (2006)

43. Witt, C.: Fitness levels with tail bounds for the analysis of randomized search
heuristics. Inf. Process. Lett. 114(1), 38–41 (2014)

44. Zheng, W., Doerr, B.: Better approximation guarantees for the NSGA-II by using
the current crowding distance. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2022), pp. 611–619. ACM Press (2022)

https://arxiv.org/abs/2404.11433

Level-Based Theorems for Runtime Analysis 263

45. Zheng, W., Doerr, B.: Runtime analysis for the NSGA-II: proving, quantifying, and
explaining the inefficiency for many objectives. IEEE Trans. Evolution. Comput.
(2023). To appear

46. Zheng, W., Liu, Y., Doerr, B.: A first mathematical runtime analysis of the non-
dominated sorting genetic algorithm II (NSGA-II). In: Proceedings of the AAAI
Conference on Artificial Intelligence, AAAI 2022, pp. 10408–10416. AAAI Press
(2022)

47. Zhou, D., Luo, D., Lu, R., Han, Z.: The use of tail inequalities on the probable
computational time of randomized search heuristics. Theoret. Comput. Sci. 436,
106–117 (2012)

Runtime Analysis for State-of-the-Art
Multi-objective Evolutionary Algorithms

on the Subset Selection Problem

Renzhong Deng1, Weijie Zheng1(B), Mingfeng Li1, Jie Liu1,
and Benjamin Doerr2

1 School of Computer Science and Technology, International Research Institute
for Artificial Intelligence, Harbin Institute of Technology, Shenzhen, China

{dengrenzhong,limingfeng}@stu.hit.edu.cn, {zhengweijie,jieliu}@hit.edu.cn
2 Laboratoire d’Informatique (LIX), École Polytechnique, CNRS,

Institut Polytechnique de Paris, Palaiseau, France
doerr@lix.polytechnique.fr

Abstract. In the last few years, the mathematical runtime analysis of
randomized search heuristics has made a huge step forward by devel-
oping the methods to analyze the most prominent multi-objective evo-
lutionary algorithms (MOEAs) as opposed to previously only simplistic
algorithms. These results confirmed that many previous results extend to
state-of-the-art MOEAs, but also showed that algorithms like the NSGA-
II can have unexpected difficulties on problems easily solved by simple
MOEAs. We continue this line of research by analyzing how the NSGA-II
and the SMS-EMOA (also with a recently proposed stochastic popula-
tion update) solve the NP-hard subset selection problem. For these two
state-of-the-art algorithms, we prove performance guarantees that agree
with those previously shown for the POSS algorithm, a variant of the
simplistic GSEMO, namely that they compute (1 − e−γ)-approximate
solutions in expected time O(k2n). Our experiments confirm these find-
ings. This work is the first runtime analysis of state-of-the-art MOEAs
for the subset selection problem, and also the first runtime analysis of
SMS-EMOA on a combinatorial problem.

Keywords: Subset selection · Multi-objective optimization · Runtime
analysis · Theory

1 Introduction

Many optimization problems have conflicting objectives. Multi-objective evolu-
tionary algorithms (MOEAs) are widely used to solve such problems. For exam-
ple, the NSGA-II was first proposed in 2002 by Deb et al. [8], and has received
more than 50000 citations (according to Google scholar). The SMS-EMOA was
first proposed in 2007 by Beume et al. [2], and now receives more than 2,000
citations (according to Google scholar). The runtime analysis of the simplistic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 264–279, 2024.
https://doi.org/10.1007/978-3-031-70071-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_17&domain=pdf
https://doi.org/10.1007/978-3-031-70071-2_17

Runtime Analysis for MOEAs on the Subset Selection Problem 265

MOEAs (like SEMO and GSEMO) dates back to the early 2000s [14,17]. Only
in the last few years, mathematical runtime analyses of the above prominent
algorithms were conducted. Zheng et al. [33] (see [28] for the complete journal
version) gave the first runtime analysis of the NSGA-II, and proved that the
expected runtime of the NSGA-II to cover the full Pareto front is O(n2 lnn) for
OneMinMax and is O(n3) for LOTZ. We note that both complexities are the
same as for the (G)SEMO [14,15,17]. The first runtime analysis of the SMS-
EMOA was conducted by Bian et al. [4], where a runtime of O(nk+1) for bi-
objective OJZJ [12] with gap size k is proved. We also note that it is the same
asymptotic complexity as the GSEMO [30] and the NSGA-II [10].

The above runtime results on the state-of-the-art MOEAs quickly attracted
considerable attention. The effect of crossover [24] and heavy-tailed mutation [30]
witnessed in the GSEMO was also proven for the NSGA-II [3,6,10,11]. For
the combinatorial bi-objective minimum spanning tree problem, Cerf et al. [5]
showed that the NSGA-II has the same performance as the GSEMO. Besides, the
SMS-EMOA reaches the same runtime on DLTB as the GSEMO [32]. The above
works confirm that many previous results for GSEMO extend to the NSGA-II
and the SMS-EMOA.

However, Zheng and Doerr [29] proved that from three objectives on, the
NSGA-II with reasonable population size needs at least exponential runtime to
cover the full Pareto front of the m-objective OneMinMax problem, in contrast
to the polynomial runtime of the GSEMO. That is, we should be careful when
extending the results of the simplistic MOEAs to the state-of-the-art MOEAs.
We note that these difficulties where not seen with the NSGA-III [20,26].

The subset selection problem is a classic NP-hard optimization problem.
The aim is to select a subset of size no more than k from a total set of size n to
optimize a given objective function f . Qian et al. [25] modelled the above con-
strained single-objective problem into a bi-objective one, and used the GSEMO
as the multi-objective solver to obtain a set of solutions. The best feasible one
is then selected as the output. They call this the Pareto optimization for subset
selection, POSS, and proved that it can find a solution with (1 − e−γ) approx-
imation ratio, which is the same ratio as the greedy algorithm [7]. They also
proved that the expected runtime to reach such an approximation is 2ek2n. Con-
sidering real-word scenarios and optimization efficiency in the subset selection
problem, parallel, noisy and distributed POSS algorithms have been gradually
proposed [21–23].

Our Contributions: In this work, we continue this line of research, and discuss
whether the results above for the GSEMO extend to the NSGA-II and the SMS-
EMOA. We will prove that both the NSGA-II and the SMS-EMOA are able
to achieve the same approximation ratio. We will also prove that the expected
runtime to reach such approximation is 8ek2n for the NSGA-II, and 2ek2n for
the SMS-EMOA. Both are asymptotically same as for the GSEMO.

We will also discuss the impact of a recently proposed stochastic popula-
tion update [4] for the SMS-EMOA, which allowed super-polynomial speed-ups
for the OJZJ problem. We will prove that this variant computes (1 − e−γ)-

266 R. Deng et al.

approximate solutions within ek(4k+1)n iterations in expectation. Consequently,
we were not able to prove a strong speed-up as done in [4] for OJZJ. Our exper-
iments do not indicate such a speed-up either.

Extensive experiments are conducted on the sparse regression as an applica-
tion of the subset selection. The experimental results show that when using the
same function evaluation times 2ek2n, NSGA-II, SMS-EMOA, and SMS-EMOA
with stochastic population update reach a similar approximation ratio to the
POSS. We also show that the impact of stochastic population update is limited.

2 Preliminaries

The subset selection problem is to select a subset (with a size less than a prede-
fined value) of a given set to minimize (or maxmize) a given objective function.

Definition 1 (Subset Selection). Let n, k ∈ N and U = {X1, . . . , Xn}. The
subset selection problem (minimizing f : 2U → R) is

min
S⊆U

f(S), s.t. |S| ≤ k. (1)

Since the subset selection is an NP-hard problem, in the following, we focus on
how well a solution approximates the optimum.

2.1 Characteristics

We now list some definitions and characteristics of the subset selection problem
that will be discussed and used in our proof.

Definition 2 (Submodularity Ratio [7]). Let f be a non-negative set func-
tion. The submodularity ratio of f w.r.t. a set U and a parameter k ≥ 1 is

γU,k(f) = min
L⊆U,S:|S|≤k,S∩L=∅

∑
x∈S(f(L ∪ {x}) − f(L))

f(L ∪ S) − f(L)
.

Definition 3 (Monotonity). Let n ∈ N and U = {X1, . . . , Xn}. We call that
f : 2U → R monotonically increases if f(S) ≤ f(S′) holds for all S ⊆ S′ ⊆ U .
Similarly, we call that f monotonically decreases if f(S) ≥ f(S′) holds for all
S ⊆ S′ ⊆ U .

From the above definitions, we obviously know that γU,k(f) monotonically
decreases w.r.t. U , see the following corollary.

Corollary 4. Let f be a non-negative set function, k ≥ 1, and γU,k(f) as defined
in Definition 2. Then γU,k(f) monotonically decreases w.r.t. U .

In the following, we will just write γU,k for γU,k(f) without ambiguity. For
a non-negative and monotonically increasing set function, we have the following
lemma that shows that one can always add an item so that the function improve-
ment is proportional to the distance between the optimal function value and the
current function value. Note that this lemma is from [25, Lemma 1], which is
deduced from the proof in [7, Theorem 3.2].

Runtime Analysis for MOEAs on the Subset Selection Problem 267

Lemma 5 ([25]). Let f ≥ 0 be monotonically increasing. Let OPT be the opti-
mal function value for the subset problem (1). Then for any S ⊆ U , there is one
item v ∈ U \ S such that

f(S ∪ {v}) − f(S) ≥ γS,k

k
(OPT−f(S)).

2.2 Pareto Optimization

Different from designing algorithms to solve the above constrained single-
objective problem, Qian et al. [25] first formulated (1) into maximizing the fol-
lowing bi-objective problem. In this bi-objective function, the first objective is
f in (1) but penalizes it as −∞ when |S| ≥ 2k when the constraint is violated
too much. −|S| is set as the second objective.

Definition 6 (Bi-objective Model [25]). Let n, k ∈ N and U = {X1, . . . ,
Xn}. The bi-objective function g = (g1(S), g2(S)) : 2U → R

2 is defined by

g1(S) =

{
−∞, if |S| ≥ 2k,

f(S), else,
, g2(S) = −|S|. (2)

After formulating (1) into the bi-objective (2), Qian et al. [25] then used the
simplistic GSEMO as the multi-objective solver. The GSEMO will provide a set
of solutions when it is terminated. Among these solutions, the best feasible one
that maximizes f will finally be selected. The above procedure is called Pareto
optimization for subset selection, POSS, see Algorithm 1.

Algorithm 1. POSS
Input: The set U = {X1, . . . , Xn}, a given criterion f , an integer parameter k ∈ [1..n],

the number of iterations T and an isolation function I : {0, 1}n → R

Output: A subset of U with at most k items
1: Generate bi-objective g (Definition 6) from f
2: Let s = {0}n and P = {s}. Let t = 0
3: while t < T do
4: Select s from P uniformly at random
5: Generate s′ form s by flipping each bit of s with probability 1/n
6: if �z ∈ P such that I(z) = I(s′) and ((g1(z) < g1(s

′) ∧ g2(z) ≤ g2(s
′)) or

(g1(z) ≤ g1(s
′) ∧ g2(z) < g2(s

′)) then
7: Q = {z ∈ P | I(z) = I(s′) ∧ g1(s

′) ≤ g1(z) ∧ g2(s
′) ≤ g2(z)}

8: P = (P \ Q) ∪ {s′}
9: end if

10: t = t + 1
11: end while
12: return argmins∈P,|s|≤k f(s)

268 R. Deng et al.

Here we use a binary vector s ∈ {0, 1}n to represent the subset S ⊆ V , where
si = 1 means that the i-th elements in V is in subset S and si = 0 otherwise.
The isolation function I [27] is introduced in the POSS, and two solutions can
be compared if and only if they have the same isolation function value. When I
is set to a constant, it can be ignored since every solution has the same I value.
In the following discussions, we will set I as a constant as in [25], and just omit
it in the discussion of the NSGA-II and the SMS-EMOA in Sects. 3 and 4.

Here are some definitions related to the bi-objective optimization that will
be used in this paper. For any bi-objective function g = (g1, g2), and for any two
solutions x,y, if gi(x) ≥ gi(y) for i = 1, 2, then we say x weakly dominates y,
denoted as x 	 y. If x 	 y and at least one of the above inequalities is strict,
then we say x dominates y, denoted as x
 y.

Although it is mentioned but without any proof in [25] for (2), we extract
the following lemma here with a formal proof as we believe it will be useful for
future usage. In the following, we will use [a..b] to represent a set of integers
{a, . . . , b} with a ≤ b.

Lemma 7. Consider any set of solutions P such that r �� s w.r.t. (2) for all
r, s ∈ P with r �= s. Then |P | ≤ 2k.

3 NSGA-II Efficiently Approximates

As introduced in Sect. 1, the state-of-the-art MOEAs like the NSGA-II can have
unexpected difficulties on problems easily solved by simple GSEMO. For the
subset selection problem, the existing literature only considered the GSEMO
as the multiobjective solver in the POSS, and showed the nice approximation
ability and efficient runtime for reaching such an approximation. Whether the
above difficulty will also be witnessed on the subset selection, for state-of-the-
art MOEAs like NSGA-II and SMS-EMOA, is still unknown. This section will
prove that the NSGA-II has the same approximation ability as the GSEMO,
and needs the same asymptotical runtime as the GSEMO. The performance of
SMS-EMOA will be discussed in the next section.

3.1 NSGA-II

The NSGA-II algorithm is first proposed in [8] and uses random initialization.
Note that the GSEMO used in POSS [25] starts with an initial individual of 0n.
Different from the GSEMO, the NSGA-II starts with a set of solutions (popu-
lation) with size N . Following this, we also consider the NSGA-II starts with
a population with all 0ns for the subset selection problem. This choice aligns
with the previous works [21–23,25] analyzing randomized search heuristics for
the subset selection problem, and 0n is an obvious feasible solution, hence a
natural starting point, in particular, for a problem where a solution with few,
namely k, ones is asked for. We note that the MOEAs regarded in this work in
particular optimize the single objectives. Consequently, by minimizing the sec-
ond objective, they would also quickly find the solution 0n. From this point on,

Runtime Analysis for MOEAs on the Subset Selection Problem 269

they would work with a population that contains at least one copy of 0n, and all
our proofs would apply to this situation equally well as to an initial population
consisting of all-zeros strings only.

Other steps are the same as the original NGSA-II. In each loop, an off-
spring population Qt with the same size N will be generated. By using fast-
non-dominated-sort [8], the joint population of the parent population and the
offspring population Rt = Pt ∪Qt is divided into F1, F2, . . . , where no individual
in Fi will be dominated by individuals in Fj with j ≥ i. The parent popula-
tion of the next iteration is determined by F1, . . . , Fi∗−1 and some individuals
in Fi∗ , where

∑i∗−1
i=1 |Fi| < N and

∑i∗

i=1 |Fi| ≥ N . Some individuals in Fi∗ are
determined by using crowding-distance-assignment [8]. The crowding distance
of an individual in Fi∗ is the sum of the crowding distances over all objectives.
For each objective, after sorting the objective values of all individuals in Fi∗ in
ascending order, the individuals with largest and smallest objective values have
an infinite crowding distance, and the crowding distance for other individuals
is the difference in objective values between their left and right neighbors nor-
malized by the largest and smallest objective values. N − ∑i∗−1

i=1 |Fi| individuals
in Fi∗ with largest crowding distance will enter the next generation population.
The loop ends when a certain termination condition is reached. For details, see
Algorithm 2. Note that as discussed in Sect. 2 we will omit the isolation function
in POSS as [25] set it as a constant and takes no effect.

Algorithm 2. NSGA-II
1: Generate the initial population P0 = {x1, x2, . . . , xN} with xi ∈ {0}n, i =

1, 2, . . . , N
2: for t = 0, 1, 2, . . . , do
3: Generate the offspring population Qt with size N
4: Use fast-non-dominated-sort() [8] to divide Rt = Pt ∪ Qt into F1, F2, . . .

5: Find i∗ ≥ 1 such that
∑i∗−1

i=1 |Fi| < N and
∑i∗

i=1 |Fi| ≥ N
6: Use crowding-distance-assignment() [8] to separately calculate the crowding dis-

tance of each individual in F1, . . . , Fi∗

7: Let F̃i∗ be the N −∑i∗−1
i=1 |Fi| individuals in Fi∗ with largest crowding distance,

chosen at random in case of a tie
8: Pt+1 = (

⋃i∗−1
i=1 Fi) ∪ F̃i∗

9: end for

3.2 Performance Analysis

As discussed in Sect. 2, the subset selection is an NP-hard problem so that the
optimum is difficult to obtain. Hence, we will evaluate the performance of the
algorithm by the approximation ratio to show how well it approximates the
optimum. On the other hand, we also concern how efficient the algorithm is to
obtain such approximation ratio. That is, we will also discuss the runtime (the
number of function evaluations or the number of iterations) as commonly used
in the evolutionary theory [1,9,16,19,34].

270 R. Deng et al.

Recall in Sect. 2 that we use a binary bitstring s ∈ {0, 1}n to denote the
subset S ⊆ U (item i in U is selected into S if si = 1). Let j ∈ [0..k], γmin =
mins:|s|1=k−1 γS,k. Since all individuals in P0 are {0}n, let Jmax denote the max-
imum value of j such that there exists a solution s in the population P with
|s|1 ≤ j and f(s) ≥ (

1 − (1 − γmin
k)j

) · OPT, that is,

Jmax = max

{

j ∈ [0..k] | ∃s ∈ P : |s|1 ≤ j ∧ f(s) ≥
(

1 −
(
1 − γmin

k

)j
)

· OPT

}

.

When Jmax = k, it means that ∃s ∈ P such that |s|1 ≤ k and

f(s) ≥ (1 − (1 − γmin/k)k) · OPT ≥ (1 − e−γmin) · OPT .

That is, a feasible solution with approximation ratio of (1 − e−γmin) is obtained
for the original subset selection problem. Hence, in our following proofs, the key
relies on whether it can increase the value of Jmax to k, and relies on how many
fitness evaluations the algorithm needs to reach Jmax = k if it is reachable.

We first prove in the following lemma that if the population size is large
enough, the value of Jmax will not decrease. The key of the proof is that at least
one solution corresponding to the Jmax or the improved Jmax will survive in the
iterations when the population size N ≥ 8k.

Lemma 8. Consider using the NSGA-II algorithm with population size N ≥
8k to optimize g defined in Definition 6. Then Jmax will not decrease as the
population evolves.

The following theorem shows approximation ratio of the NSGA-II and the
runtime to reach such an approximation. The key of the proof is to consider a
solution starting from 0n (i.e., Jmax = 0), and greedily flip a specific 0 bit each
time to increase Jmax from 0 to k and then achieve such an approximation ratio.

Theorem 9. Consider optimizing g defined in Definition 6 via the NSGA-II
with standard bit-wise mutation once to each parent. If the population size N is
at least 8k and is of order Θ(k). then the expected runtime to find a solution s
(which denote the subset S of U) with |s|1 ≤ k and f(s) ≥ (1− e−γmin) ·OPT is
ekn iterations and ekNn fitness evaluations, where γmin = mins:|s|1=k−1 γS,k.

Theorem 9 shows that the NSGA-II can reach the same approximation ratio
as the GSEMO in POSS [25], and that the runtime to reach such an approxi-
mation is O(k2n), the same asymptotic complexity as the POSS [25].

4 SMS-EMOA Also Efficiently Approximates

The above section shows that the performance of the POSS on the subset selec-
tion problem extends to the NSGA-II successfully. This section will discuss the
SMS-EMOA, another state-of-the-art MOEAs that is recently analyzed. We will
show that the SMS-EMOA also achieves the same approximation ratio and

Runtime Analysis for MOEAs on the Subset Selection Problem 271

requires the same asymptotic runtime as the POSS. Besides, we will also analyze
the impact of the stochastic population update strategy, which is proposed and
shown to result in a super-polynomial speed-up for the bi-objective Jump [4], but
is also proven with a reduced speed-up for many-objective ones. Our theoretical
result only shows the same performance as the original one, and the experiments
in the next section do not indicate a considerable speed-up either.

4.1 SMS-EMOA

The SMS-EMOA algorithm is proposed in [2], and can be regarded as a variant
of the steady-state NSGA-II. Steady-state NSGA-II here means that only one
offspring individual is generated in each iteration instead of N offspring individ-
uals in the original NSGA-II. The SMS-EMOA is such a variant but replaces the
crowding distance by the hypervolume indicator in the survival selection. For-
mally speaking, after dividing the combined parent and offspring population into
several fronts, an individual in Fi∗ with the smallest Δr(z, Fi∗) will be removed.
Here Δr(z, Fi∗) = HVr(Fi∗)−HVr(Fi∗ \ {z}), HVr(S) = L (⋃

u∈S Hu ,r

)
repre-

sents the hypervolume value of S w.r.t. the reference point r, and L represents
the Lebesgue measure. The reference point r is usually dominated by all points
in the solution space. Similar to the GSEMO and the NSGA-II in Sects. 2 and 3,
the SMS-EMOA for the subset selection also initialize the set of the solutions
with all {0}ns. We also set the isolation function to be constant and ignore its
effect as in [25]. See Algorithm 3 for more details.

Algorithm 3. SMS-EMOA
1: Generate the initial population P0 = {x1, x2, . . . , xμ} with xi ∈ {0}n, i = 1, 2, . . . , μ
2: for t = 0, 1, 2, . . . , do
3: Select a solution x uniformly at random from Pt

4: Generate x′ by flipping each bit of x independently with probability 1/n
5: Use fast-non-dominated-sort() [8] to divide Rt = Pt ∪ {x′} into F1, ..., Fi∗

6: Calculate Δr(z, Fi∗) for all z ∈ Fi∗ and find D = argminz∈Fi∗ Δr(z, Fi∗)
7: Uniformly at random pick z′ ∈ D and Pt+1 = Rt \ {z′}
8: end for

Performance of SMS-EMOA. The first runtime analysis of the SMS-EMOA
is only recently conducted by Bian et al. [4] on the bi-objective OJZJ benchmark
in 2023, and the other runtime analysis is for the many-objective Jump function
in [31]. There is no theoretical analysis of the SMS-EMOA on the subset selection
problem till now. Here we conduct such analysis.

Similar to the discussion in Sect. 3.2, here we discuss the approximation ratio
and the runtime to reach such approximation as the performance of the algo-
rithm.

272 R. Deng et al.

With similar proof ideas, we analyze the performance of the SMS-EMOA
by regarding whether Jmax can increase to k (the approximation ratio of 1 −
e−γmin will be reached) and how efficiently the algorithm reaches Jmax = k. The
following lemma shows that when the population size is at least the upper bound
of the size of the non-dominated solutions (Lemma 7), Jmax will not decrease.
The key of the proof is the same as Lemma 8.

Lemma 10. Consider using the SMS-EMOA algorithm with population size μ ≥
2k to optimize g defined in Definition 6. Then Jmax will not decrease in the
iterations.

Now we establish the performance analysis of the SMS-EMOA. The key of
the proof is the same as Theorem 9.

Theorem 11. Consider optimizing g defined in Definition 6 via the SMS-
EMOA. If the population size μ is at least 2k and is of order Θ(k), then the
expected runtime to find a solution s (which denote the subset S of U) with
|s|1 ≤ k and f(s) ≥ (1 − e−γmin) · OPT is ekμn fitness evaluations, where
γmin = mins:|s|1=k−1 γS,k.

Theorem 11 shows that the SMS-EMOA can also reach the same approxima-
tion ratio within the same runtime of O(k2n), as the GSEMO in POSS [25]. We
note that it is the first runtime analysis of the SMS-EMOA on a combinatorial
problem.

4.2 SMS-EMOA with Stochastic Population Update

Bian et al. [4] proposed a stochastic population update strategy for the SMS-
EMOA, aiming to make some usage of the inferior solutions. The stochastic pop-
ulation update happens after the offspring population is generated. Compared
to the original SMS-EMOA , this strategy only picks half of the solutions in the
combined parent and offspring population for the survival selection. Thus, some
inferior solutions but with useful information will have some chance of being
kept. We denote its variant as SMS-EMOA-SPU, see Algorithm 4. Note that the
only difference from in Algorithm 3 locates in Steps 6 and 7.

Performance of SMS-EMOA-SPU. With the stochastic population update
strategy, Bian et al. [4] proved a super-polynomial speed-up compared to the
original SMS-EMOA on the bi-objective OJZJ. However, a recent work [31]
proved that the impact of this strategy will drastically reduce and even vanish
when the number of objectives increases. Hence, whether or when this strategy
helps for a specific problem is still unclear. Here, we consider the performance
(as discussed in previous sections) of the SMS-EMOA with this strategy on the
subset selection.

The process of using the SMS-EMOA-SPU to optimize the bi-objective sparse
regression problem is similar to the SMS-EMOA. We consider whether Jmax can
increase to k and how efficiently the algorithm reaches Jmax = k. Similar to

Runtime Analysis for MOEAs on the Subset Selection Problem 273

Algorithm 4. SMS-EMOA-SPU
1: Generate the initial population P0 = {x1, x2, . . . , xμ} with xi ∈ {0}n, i = 1, 2, . . . , μ
2: for t = 0, 1, 2, . . . , do
3: Select a solution x uniformly at random from Pt

4: Generate x′ by flipping each bit of x independently with probability 1/n
5: Rt ← Pt ∪ {x′}
6: R′

t ←
(μ + 1)/2� solutions uniformly and randomly selected from Rt without
replacement

7: Use fast-non-dominated-sort() [8] to divide R′
t into F1, . . . , Fi∗

8: Calculate Δr(z, Fi∗) for all z ∈ Fi∗ and find D = argminz∈Fi∗ Δr(z, Fi∗)
9: Uniformly at random pick z′ ∈ D and Pt+1 = Rt \ {z′}

10: end for

Lemma 10, Jmax will not decrease in the evolving process of the SMS-EMOA-
SPU with population size more than 4k.

Lemma 12. Consider using the SMS-EMOA-SPU algorithm with population
size μ ≥ 4k+1 to optimize g defined in Definition 6. Then Jmax will not decrease
in the iterations.

Now we prove the performance of the SMS-EMOA with the stochastic pop-
ulation update strategy.

Theorem 13. Consider optimizing g defined in Definition 6 via the SMS-
EMOA-SPU. If the population size μ is at least 4k + 1 and is of order Θ(k),
then the expected runtime to find a solution s (which denotes the subset S of U)
with |s|1 ≤ k and f(s) ≥ (1 − e−γmin) · OPT is ekμn fitness evaluations, where
γmin = mins:|s|1=k−1 γS,k.

Comparing Theorem 13 with Theorem 11, we see that for obtaining an
approximation ratio of 1 − e−γmin , both algorithms need the same asymptotic
runtime. Noting that both results give the upper bounds, we cannot say that
the stochastic population update cannot help the SMS-EMOA on the subset
selection. Some lower bound is needed. However, the experiments in the next
section show that the speed-up of this strategy is questionable, and we believe
that we may not put effort for obtaining such lower bounds.

5 Experiments

The above sections theoretically show that the good performance of the POSS
on the subset selection successfully extends to the state-of-the-art MOEAs, the
NSGA-II and the SMS-EMOA. Although the same approximation ratio and
runtime to reach such an approximation also extends to the SMS-EMOA with the
stochastic population update, whether a good speed-up exists is still unknown.
This section will use the sparse regression as an application of the subset selection
problem to experimentally verify the theoretical results we obtained, and to
experimentally check whether a practical speed-up can be achieved with the
stochastic population update.

274 R. Deng et al.

5.1 Sparse Regression as an Application

In this section, we will follow the same line as in [25] to analyze the performance
of MOEAs on the subset selection in its application of sparse regression. Sparse
regression problem [18] aims to obtain a linear model that depends on as small
as possible number of features. How to select such features is a subset selection
problem.

Definition 14 (Sparse Regression). Let n ∈ N and U = {1, . . . , n} be set of
feature indices. The sparse regression is to find a subset of feature indices with
size at most k that minimizes the mean squared error, that is,

min
S⊆U

MSE(S)

s.t. |S| ≤ k
(3)

with MSES = minα∈R|S| E
[(
Z − ∑

i∈S αiXi

)2
]
, where Xi , i = 1, . . . , n is the

vector of observed values for i-th feature, and Z is the predictor.

Following [25], in our experiments, we replace MSES by the squared multiple
correlation

R2
Z ,S = (Var(Z) − MSES)/Var(Z). (4)

Here are our settings.
Datasets. Table 1 collects nine datasets1 from [25] that are utilized for the
experiments.

Algorithms. POSS, NSGA-II, SMS-EMOA, SMS-EMOA-SPU. The original
POSS with the GSEMO as the multiobjective solver is conducted as the baseline
of the performance. We do not consider other algorithms for comparison as our
motivation for this work is to test whether the results of the POSS successfully
extend to the NSGA-II and the SMS-EMOA. NSGA-II, SMS-EMOA, and SMS-
EMOA-SPU are the algorithms that we have theoretically analyzed in previous
sections.

Accuracy Baseline. Since the subset selection is NP-hard, we just use the
exhaustive enumeration as the optimizer to obtain the (approximate) optimum.
We denote, in our experiments, the best solution via the enumeration as OPT.
For the first three relatively smaller datasets (housing, enuite2001, svmguide3),
the obtained values are optimal. For other datasets, after running a long time
without obtaining results, we evaluated the precision achieved by the algorithms
under a given number of fitness evaluations. The maximum number of fitness
evaluations is set to be

⌊
2ek2n

⌋
which is the theoretical upper bound for POSS

algorithm suggested in [25].

1 The data sets are from http://archive.ics.uci.edu/ml/ and https://www.openml.org/
and http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. Some binary classifi-
cation data are used for regression.

http://archive.ics.uci.edu/ml/
https://www.openml.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Runtime Analysis for MOEAs on the Subset Selection Problem 275

Table 1. The datasets.

Dataset #inst #feat Dataset #inst #feat Dataset #inst #feat

housing 506 13 ionosphere 351 34 coil2000 9000 86
eunite2001 367 16 sonar 208 60 mushrooms 8124 112
svmguide3 1284 21 triazines 186 60 clean1 476 166

Efficiency. For the first three datasets where the optimum is reachable, we use
the number of fitness evaluations that the algorithm uses to reach the optimum
as the measure for the efficiency. Note that it is widely used as the runtime in
the evolutionary theory community [1,9,16,19,34].

Others. To assess each method on each data set, we repeated each experiment
100 times. The data set was randomly and evenly split into a training set and a
test set.

5.2 Experimental Results and Analyses

Accuracy and Generalization Performance. For the first three datasets, all
algorithms reach the optimum. Hence, Table 2 only records the training R2 values
for the remaining datasets. Note that merely regarding the training accuracy is
also a subset selection problem. From Table 2, it is indicated that the NSGA-II,
SMS-EMOA, and SMS-EMOA-SPU reach a similar approximation ratio to the
POSS (using GSEMO) in optimizing sparse regression problems under a given
number of fitness evaluations. Table 3 collects the generalization performance of
the algorithms on ionosphere, sonar, and triazines datasets, as in [25]. Similarly,
a t-test with a significance level of 0.05 indicates that there is no significant
difference among the four algorithms. The reason for conducting statistical tests
on the data is to eliminate the influence of randomness on the experimental
results as much as possible.

Efficiency. Recall that for the first three datasets, all algorithms obtained the
optimum. Here, we further collected the number of function evaluations when
such an optimum is reached for the first time. These results will help to check
the runtime we theoretically obtained in the previous sections. Recall that we
proved the same asymptotic runtime of the NSGA-II, SMS-EMOA, and SMS-
EMOA-SPU as the GSEMO, and that the constants for these three are 8, 2, 4
and 2 for the GSEMO [25]. From Table 4 and Fig. 1, we saw similar rankings
to the above constants. That is, NSGA-II needs the largest number of function
evaluations, then SMS-EMOA-SPU. POSS and SMS-EMOA are similar, and
need the smallest number of function evaluations. We also note that we do not
see a speed-up when SMS-EMOA uses the stochastic population update.

Summary of Experimental Results. The experimental results verify our the-
oretical findings that the NSGA-II, SMS-EMOA, and SMS-EMOA-SPU approx-
imate the optimum of the subset selection as well as the POSS. The stochastic
population update does not speed up the SMS-EMOA on the subset selection.

276 R. Deng et al.

Table 2. The training R2 values (mean ± std.) of the four algorithms on 6 data sets
for k = 8 with the same number of function evaluations which is set to be

⌊
2ek2n

⌋
.

We performed Kolmogorov-Smirnov tests for normality on all experimental data, and
the results indicate that the experimental data conform to a normal distribution.
We demonstrated through a t-test with significance level 0.05 that four evolutionary
algorithms achieve the same performance (without significant differences) across these
datasets, with the exception of the mushrooms data set in which there is significant
difference between the POSS and the SMS-EMOA.

Dataset POSS NSGA-II SMS-EMOA SMS-EMOA-SPU

ionosphere 0.5988 ± 0.0402 0.5984 ± 0.0403 0.5987 ± 0.0403 0.5988 ± 0.0404
sonar 0.5389 ± 0.0447 0.5396 ± 0.0438 0.5395 ± 0.0433 0.5392 ± 0.0437
triazines 0.4269 ± 0.0986 0.4255 ± 0.1053 0.4250 ± 0.1052 0.4280 ± 0.0982
mushrooms 0.9916 ± 0.0016 0.9915 ± 0.0016 0.9911 ± 0.0019 0.9916 ± 0.0016
clean1 0.4354 ± 0.0259 0.4331 ± 0.0289 0.4354 ± 0.0281 0.4349 ± 0.0282
coil2000 0.0614 ± 0.0460 0.0632 ± 0.0421 0.0632 ± 0.0421 0.0632 ± 0.0421

Table 3. The test R2 value (mean ± std.) of the four algorithms on 3 data sets for
k = 8. We also conducted a t-test on the experimental data with significance level
0.05. The results indicated that there is no significant difference in the generalization
performance among the four algorithms (no significant differences were observed).

Dataset POSS NSGA-II SMS-EMOA SMS-EMOA-SPU

ionosphere 0.5029 ± 0.0516 0.5037 ± 0.0507 0.5006 ± 0.0533 0.5033 ± 0.0493
sonar 0.3169 ± 0.0546 0.3203 ± 0.0546 0.3235 ± 0.0517 0.3161 ± 0.0547
triazines 0.2264 ± 0.1142 0.2299 ± 0.1191 0.2178 ± 0.1201 0.2262 ± 0.1205

Table 4. The number of functions evaluations of reaching OPT (mean ± std.) of the
four algorithms on 3 data sets for k = 8 and we eliminated the five best and five worst
data points from the experiments.

Dataset POSS NSGA-II SMS-EMOA SMS-EMOA-SPU

eunite2001 917 ± 428 3000 ± 997 1368 ± 949 1702 ± 690
housing 522 ± 247 1924 ± 444 577 ± 220 942 ± 305
svmguide3 4379 ± 8921 7528 ± 13173 2433 ± 2268 3598 ± 4095

The results demonstrate that these more complex algorithms do not outperform
simpler ones. It is evident that in practical scenarios, opting for these state-of-
the-art algorithms is not advisable. The absence of notable speed-up resulting
from the introduction of stochastic population updates can be attributed to the
fact that, in the OJZJ problem, this approach enables the retention of solutions
with inferior objective function values but closer proximity to certain elusive
special Pareto optimal solutions. However, for the subset selection problem, the
existence of such distinctive solutions is not guaranteed, thus hindering the accel-
eration observed in the OJZJ problem.

Runtime Analysis for MOEAs on the Subset Selection Problem 277

3 4 5 6 7 8
k

0

500

1000

1500

2000

2500

3000

3500

4000

F
itn

es
s

E
va

lu
at

io
ns

Runtime for solving sparse regression problem

POSS
NSGA-II
SMS-EMOA
SMS-EMOA-SPU

Fig. 1. The median number of fitness evaluations of POSS, NSGA-II, SMS-EMOA
and SMS-EMOA-SPU for solving sparse regression problem on enuite2001 data set for
k ∈ {3, 4, 5, 6, 7, 8} in 100 independent runs, with error bars set to the first and third
quartiles.

6 Conclusion

In this paper, we proved that on the subset selection problem, the approxima-
tion ability and the running time guarantee of O(k2n) obtained by the previous
simplistic GSEMO (i.e., POSS) can be extended to the state-of-the-art MOEAs
such as NSGA-II, SMS-EMOA, and SMS-EMOA with the stochastic population
update. Our experiments on the sparse regression problems verified the above
findings and indicated that no speed-up is reached for the stochastic population
update. We successfully conducted the first runtime analysis of state-of-the-art
MOEAs on the subset selection problem and the first runtime analysis of SMS-
EMOA on the combinatorial problem.

Our experiments revealed that the NSGA-II requires the highest number
of function evaluations, which is likely due to its (N + N)-strategy. It would
therefore be valuable to investigate a steady-state version of NSGA-II [13], i.e.,
the (N +1)-version. The only difference between this steady-state NSGA-II and
the SMS-EMOA would be the secondary selection criterion. Exploring how this
steady-state NSGA-II performs in comparison to SMS-EMOA, particularly in
terms of efficiency and effectiveness on subset selection problems, will provide
deeper insights into the relative advantages of these algorithms.

Acknowledgements. This work was supported by National Natural Science Foun-
dation of China (Grant No. 62350710797, 62306086), Science, Technology and Innova-
tion Commission of Shenzhen Municipality (Grant No. GXWD20220818191018001),
and Guangdong Basic and Applied Basic Research Foundation (Grant No.
2019A1515110177). This research benefited from the support of the FMJH Program
Gaspard Monge for optimization and operations research and their interactions with
data science.

278 R. Deng et al.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Sci-
entific Publishing (2011)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181, 1653–1669 (2007)

3. Bian, C., Qian, C.: Better running time of the non-dominated sorting genetic algo-
rithm II (NSGA-II) by using stochastic tournament selection. In: Rudolph, G.,
Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) PPSN
XVII, pp. 428–441. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
14721-0_30

4. Bian, C., Zhou, Y., Li, M., Qian, C.: Stochastic population update can provably
be helpful in multi-objective evolutionary algorithms. In: International Joint Con-
ference on Artificial Intelligence, IJCAI 2023, pp. 5513–5521. ijcai.org (2023)

5. Cerf, S., Doerr, B., Hebras, B., Kahane, J., Wietheger, S.: The first proven perfor-
mance guarantees for the non-dominated sorting genetic algorithm II (NSGA-II)
on a combinatorial optimization problem. In: International Joint Conference on
Artificial Intelligence, IJCAI 2023, pp. 5522–5530. ijcai.org (2023)

6. Dang, D.C., Opris, A., Salehi, B., Sudholt, D.: A proof that using crossover can
guarantee exponential speed-ups in evolutionary multi-objective optimisation. In:
Conference on Artificial Intelligence, AAAI 2023, pp. 12390–12398. AAAI Press
(2023)

7. Das, A., Kempe, D.: Submodular meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary selection. In: International Confer-
ence on Machine Learning, ICML 2011, pp. 1057–1064. ACM (2011)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

9. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation—Recent
Developments in Discrete Optimization. Springer, Cham (2020)

10. Doerr, B., Qu, Z.: A first runtime analysis of the NSGA-II on a multimodal prob-
lem. IEEE Trans. Evol. Comput. 27, 1288–1297 (2023)

11. Doerr, B., Qu, Z.: Runtime analysis for the NSGA-II: provable speed-ups from
crossover. In: Conference on Artificial Intelligence, AAAI 2023, pp. 12399–12407.
AAAI Press (2023)

12. Doerr, B., Zheng, W.: Theoretical analyses of multi-objective evolutionary algo-
rithms on multi-modal objectives. In: Conference on Artificial Intelligence, AAAI
2021, pp. 12293–12301. AAAI Press (2021)

13. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: On the effect of the steady-state
selection scheme in multi-objective genetic algorithms. In: Evolutionary Multi-
criterion Optimization: 5th International Conference, EMO 2009, Nantes, 7–10
April 2009. Proceedings 5, pp. 183–197. Springer (2009)

14. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In:
Congress on Evolutionary Computation, CEC 2003, pp. 1918–1925. IEEE (2003)

15. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimisation. Evol. Comput. 18, 335–356 (2010)

https://doi.org/10.1007/978-3-031-14721-0_30
https://doi.org/10.1007/978-3-031-14721-0_30

Runtime Analysis for MOEAs on the Subset Selection Problem 279

16. Jansen, T.: Analyzing Evolutionary Algorithms – The Computer Science Perspec-
tive. Springer, Heidelberg (2013)

17. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput.
8, 170–182 (2004)

18. Miller, A.: Subset Selection in Regression. CRC Press (2002)
19. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization

– Algorithms and Their Computational Complexity. Springer, Heidelberg (2010)
20. Opris, A., Dang, D.C., Neumann, F., Sudholt, D.: Runtime analyses of NSGA-III

on many-objective problems. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2024. ACM (2024), to appear

21. Qian, C., Li, G., Feng, C., Tang, K.: Distributed pareto optimization for subset
selection. In: Lang, J. (ed.) International Joint Conference on Artificial Intelligence,
IJCAI 2018, pp. 1492–1498. ijcai.org (2018)

22. Qian, C., Shi, J., Yu, Y., Tang, K., Zhou, Z.: Parallel pareto optimization for subset
selection. In: International Joint Conference on Artificial Intelligence, IJCAI 2016,
pp. 1939–1945. IJCAI/AAAI Press (2016)

23. Qian, C., Shi, J., Yu, Y., Tang, K., Zhou, Z.: Optimizing ratio of monotone set
functions. In: International Joint Conference on Artificial Intelligence, IJCAI 2017,
pp. 2606–2612. ijcai.org (2017)

24. Qian, C., Yu, Y., Zhou, Z.: An analysis on recombination in multi-objective evo-
lutionary optimization. Artif. Intell. 204, 99–119 (2013)

25. Qian, C., Yu, Y., Zhou, Z.H.: Subset selection by pareto optimization. In: Advances
in Neural Information Processing Systems, NIPS 2015, vol. 28. Curran Associates,
Inc. (2015)

26. Wietheger, S., Doerr, B.: A mathematical runtime analysis of the Non-dominated
Sorting Genetic Algorithm III (NSGA-III). In: International Joint Conference on
Artificial Intelligence, IJCAI 2023, pp. 5657–5665. ijcai.org (2023)

27. Yu, Y., Yao, X., Zhou, Z.H.: On the approximation ability of evolutionary opti-
mization with application to minimum set cover. Artif. Intell. 180, 20–33 (2012)

28. Zheng, W., Doerr, B.: Mathematical runtime analysis for the non-dominated sort-
ing genetic algorithm II (NSGA-II). Artif. Intell. 325, 104016 (2023)

29. Zheng, W., Doerr, B.: Runtime analysis for the NSGA-II: proving, quantifying, and
explaining the inefficiency for many objectives. IEEE Trans. Evolution. Comput.
(2023). In press. https://doi.org/10.1109/TEVC.2023.3320278

30. Zheng, W., Doerr, B.: Theoretical analyses of multiobjective evolutionary algo-
rithms on multimodal objectives. Evol. Comput. 31, 337–373 (2023)

31. Zheng, W., Doerr, B.: Runtime analysis of the SMS-EMOA for many-objective
optimization. In: Conference on Artificial Intelligence, AAAI 2024, pp. 20874–
20882. AAAI Press (2024)

32. Zheng, W., Li, M., Deng, R., Doerr, B.: How to use the metropolis algorithm for
multi-objective optimization? In: Conference on Artificial Intelligence, AAAI 2024,
pp. 20883–20891. AAAI Press (2024)

33. Zheng, W., Liu, Y., Doerr, B.: A first mathematical runtime analysis of the non-
dominated sorting genetic algorithm II (NSGA-II). In: Conference on Artificial
Intelligence, AAAI 2022, pp. 10408–10416. AAAI Press (2022)

34. Zhou, Z.H., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories and Algo-
rithms. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5956-9

https://doi.org/10.1109/TEVC.2023.3320278
https://doi.org/10.1007/978-981-13-5956-9

When Does the Time-Linkage Property
Help Optimization by Evolutionary

Algorithms?

Mingfeng Li1 , Weijie Zheng1(B) , Wen Xie1 , Ao Sun1 , and Xin Yao2

1 School of Computer Science and Technology, International Research Institute
for Artificial Intelligence, Harbin Institute of Technology, Shenzhen, China

zhengweijie@hit.edu.cn
2 Lingnan University, Hong Kong SAR, China

Abstract. Recent theoretical works show that the time-linkage prop-
erty challenges evolutionary algorithms to optimize. Here we consider
three positive circumstances and give the first runtime analyses to show
that the time-linkage property can also help the optimization of evolu-
tionary algorithms. The problem is easier to optimize if the time-linkage
property changes the optimal function value to an easy-to-reach one. We
construct a time-linkage variant of the Cliffd problem with this fea-
ture and prove that conditional on an event that happens with Ω(1)
probability, the (1 + 1) EA reaches the optimum in expected O(n lnn)
iterations. It is much better than the expected runtime of Θ(nd) for the
original Cliffd. If the time-linkage property does not change the opti-
mal function value but enlarges the optimal solution set, the problem
is also possible to be easier to optimize. We construct another time-
linkage variant of the Cliffd problem with this feature, and also prove
an expected runtime of O(n lnn) (conditional on an event happening
with Ω(1) probability), compared with the expected runtime of Ω(nd−2)
for the corresponding problem without the time-linkage property. Even
if the time-linkage property neither changes the optimal function value
nor the optimal solution set, it is still possible to ease this problem if the
intermediate solution, from which the optimum is easier to reach, is more
prone to be maintained. We construct a time-linkage variant of the Jump
problem, and proved that the expected runtime is reduced from O(nk)
to O(nk−1). Our experiments also verify the above theoretical findings.

Keywords: Time-linkage property · Evolutionary algorithms

1 Introduction

Many real-world optimization problems have the time-linkage property, that is,
the objective function depends on both the current solutions and the historical
ones [2]. However, as already pointed out in the first paper [2] that introduced
this property into the evolutionary computation, the time-linkage property can
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 280–294, 2024.
https://doi.org/10.1007/978-3-031-70071-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_18&domain=pdf
http://orcid.org/0009-0001-9751-2429
http://orcid.org/0000-0002-8483-0161
http://orcid.org/0009-0002-1720-3632
http://orcid.org/0009-0006-9770-9332
http://orcid.org/0000-0001-8837-4442
https://doi.org/10.1007/978-3-031-70071-2_18

When Does the Time-Linkage Property Help Optimization by EAs? 281

turn a problem into a deceptive one and then makes the problem hard to solve.
The theoretical runtime analysis of the evolutionary algorithms on time-linkage
problems recently started and also confirmed the search difficulties that this
property brings [14,15,18]. OneMax is arguably the easiest benchmark ana-
lyzed in the evolutionary theory community, and the (1 + 1) EA and other
well-analyzed evolutionary algorithms reach the optimum in expected runtime
of O(n lnn) [4,11,12]. Zheng, Chen, and Yao [15] constructed a time-linkage
version of OneMax where the first dimension of the previous solution takes
the time-linkage effect. They proved that for this benchmark, with probability
1 − o(1), randomized local search and the (1 + 1) EA cannot find the optimum.
They also proved that this challenge can be largely overcome by introducing a
non-trivial parent population with its size large enough. Zheng et al. [18] proved
that a 1−o(1) probability of not reaching the global optimum still exists for the
(1 + λ) EA where the non-trivial offspring population is introduced, and they
also proved that the non-elitism will help. Yang and Zhou [14] considered the
mutiobjective optimization and constructed a time-linkage version of COCZ (a
bi-objective counterpart of OneMax). They also proved the difficulty encoun-
tered by the GSEMO (the multiobjective counterpart of the (1 + 1) EA). Till
now, all existing theoretical works show that the time-linkage property turns an
easy problem into a hard one.

Here, we will consider three positive circumstances and give the first runtime
analyses to show that the time-linkage property can also help the optimization by
evolutionary algorithms. We first consider the circumstance where the problem
becomes easier as the time-linkage property changes the optimal function value
to an easy-to-reach one. We take the Cliffd problem as an example. Cliffd is
regarded as a not-easy-to-solve benchmark in the community as the (1 + 1) EA
needs expected Θ(nd) runtime to reach its optimum due to the cliff region to
jump [9]. We will construct CliffdTL, a time-linkage variant of Cliffd that
changes the optimal function value and moves the original optimal solution from
1n (after the cliff region) to solutions that can be reached easily without jump-
ing. We will prove that for CliffdTL the expected runtime for the (1 + 1) EA
is only O(n lnn), conditional on an event that happens with Ω(1) probability
(Theorem 1).

We then consider the circumstance in which the problem becomes easier
as the introduction of the time-linkage property enlarges the optimal solution
set but keeps the optimal function value unchanged. We will still take the
Cliffd problem (slightly modifying its constant component (from 1/2 to 1)
which requires expected runtime of Ω(nd−2) for the (1 + 1) EA) as an example.
The constructed time-linkage variant Cliff′

dTL will have a larger optimal solu-
tion set that includes easy-to-reach solutions. We will also prove an expected
runtime of O(n lnn) for the (1+1) EA, conditional on an event happening with
Ω(1) probability (Theorem 3).

The last circumstance in which the problem becomes easier that we will
consider is that some easy-to-reach intermediate solution becomes prone to be
maintained even if both the optimal function value and optimal solution set are

282 M. Li et al.

unchanged. Here, we take another not-easy-to-solve benchmark Jump (which
requires jumping across a gap) as an example. The constructed time-linkage
variant JumpkTL makes a gap point near the optimum be possible to be main-
tained, which makes the optimum easier to be reached. We will prove that the
expected runtime of the (1 + 1) EA will be reduced from O(nk) to O(nk−1)
(Theorem 4).

Our experimental results also verify the above theoretical findings.

2 Preliminaries

Similar to OneMax(0,1n), this work only considers the time-linkage effect of
the first dimension of the last step on a pseudo-Boolean problem. Formally, we
consider to maximize the time-linkage pseudo-Boolean problem f : {0, 1}n ×
{0, 1}n → R

f(xt−1, xt) = g(xt−1
1 , xt)

for two consecutive xt−1 = (xt−1
1 , . . . , xt−1

n), xt = (xt
1, . . . , x

t
n) and the pseudo-

Boolean problem g : {0, 1} × {0, 1}n → R.
The (1 + 1) EA is the simplest evolutionary algorithm and widely analyzed

in the evolutionary theory community. Hence, we will use the (1 + 1) EA to
demonstrate whether the time-linkage property will ease the optimization of the
algorithm. Same as in [15], we take Algorithm 1 as the time-linkage (1 + 1) EA
to analyze. This time-linkage (1 + 1) EA is the same as the original (1 + 1) EA
except that here the fitness evaluation requires the value of stored historical
solutions.

Algorithm 1. The (1 + 1) EA to maximize the time-linkage problem f for two
consecutive time steps
1: Generate the random initial two generations x0 = (x0

1, . . . , x
0
n) and x1 =

(x1
1, . . . , x

1
n)

2: for t = 0, 1, 2, ... do
3: Generate x̃t via independently flipping each bit of xt with probability of 1/n
4: if f(xt, x̃t) ≥ f(xt−1, xt) then
5: (xt, xt+1) = (xt, x̃t)
6: else
7: (xt, xt+1) = (xt−1, xt)
8: end if
9: end for

Besides, in this work, we will use |x|1 to denote the number of ones in the
bitstring x, and use [a..b] := {a, a + 1, . . . , b} for a ≤ b and a, b ∈ Z. The
optimization goal is to reach an optimal solution for the first time.

When Does the Time-Linkage Property Help Optimization by EAs? 283

3 Different But Easy-to-Reach Optimal Function Value

This paper will consider three positive circumstances in which the time-linkage
property will help the optimization by the evolutionary algorithms. The optimal
function value and optimal solution set may change after the time-linkage prop-
erty is introduced. This section will consider the first circumstance in which the
optimal function value becomes different. Other two circumstances in Sects. 4
and 5 consider the unchanged optimal function value.

3.1 CLIFFdTL

The problem becomes easier as the time-linkage property changes the optimal
function value to an easy-to-reach one. To better demonstrate it, we start from
a benchmark that is not that easy to solve. Multimodal benchmarks can be
somehow difficult to solve due to the existence of local optima. Here we choose
the popular Cliffd benchmark (Definition 1), extending a construction by [7],
as an example. For this problem, the optimal solution set is {1n} and the optimal
function value is n − d + 1

2 . Paixao et al. [9] proved that the expected runtime
time of the (1 + 1) EA on Cliffd with d ∈ [2..n2] is Θ(nd).

Definition 1 (Cliffd [9]). For any x = (x1, . . . , xn), the Cliffd : {0, 1}n → R

is defined by

Cliffd(x) =

{
|x|1, if |x|1 ≤ n − d

|x|1 − d + 1
2 , otherwise

where |x|1 =
∑n

i=1 xi counts the number of ones.

Now we construct the time-linkage variant of Cliffd. As discussed in Sect. 2,
we will only consider the time-linkage effect of the value of the first dimension
in the previous generation. The time-linkage takes effect if the previous first bit
has the value of 1, and the optimal function value only exists in this situation.
See Definition 2 for the formal description of our time-linkage Cliffd, called
CliffdTL.

Definition 2 (CliffdTL). Let n ∈ N, the CliffdTL : {0, 1}n × {0, 1}n → R is
defined by

CliffdTL(xt−1, xt) =

⎧⎪⎨
⎪⎩

n − d + 1
2 , |xt|1 = n

|xt|1 − d + 1
2 , |xt|1 − xt−1

1 ∈ [n − d + 1, n − 1]
|xt|1, else

where xt−1 = (xt−1
1 , ..., xt−1

n) ∈ {0, 1}n and xt = (xt
1, ..., x

t
n) ∈ {0, 1}n are two

consecutive solutions.

For a better illustration, we plot the function values of the CliffdTL in
Fig. 1. If the first bit of the last generation xt−1

1 = 0, it is identical to the
original Cliffd, but is different for xt−1

1 = 1. The optimal function value is 31,
witnessed when xt with |xt|1 = 31 and xt−1

1 = 1.

284 M. Li et al.

0 10 20 30 40
0

10

20

30

F
un

ct
io

n
V

al
ue

0 10 20 30 40
0

10

20

30

F
un

ct
io

n
V

al
ue

Optimum

Fig. 1. CliffdTL with (n, d) = (40, 10)

We form its optimal function value and optimal solution set in the following
lemma.

Lemma 1. The optimal function value of CliffdTL is n−d+1, and the optimal
solution set is {(xt−1, xt) | (xt−1

1 , |xt|1) = (1, n − d + 1)}.
Compared with the Cliffd, we see that the optimal function value changes

from n−d+1/2 to n−d+1, and the optimal set changes from {1n} to {(xt−1, xt) |
(xt−1

1 , |xt|1) = (1, n − d + 1)}, which seems easier to be reached.

3.2 Runtime Analysis of the (1 + 1) EA

Here, we conduct the runtime analysis of the (1 + 1) EA optimizing CliffdTL

and will show that the expected runtime is reduced from Θ(nd) (for the orig-
inal Cliffd) to O(n lnn) conditional on an event (that happens with Ω(1)
probability).

We first list two lemmas that will be used in our proofs.

Lemma 2 (Cheronff Inequality [3]). Let X1, . . . , Xn be independent random
variables taking values in [0, 1]. Let X =

∑n
i=1 Xi. Let δ ≥ 0. Then

Pr[X ≥ (1 + δ)E[X]] ≤ exp

(
−min

{
δ2, δ

}
E[X]

3

)
.

Lemma 3 ([9]). For all 0 ≤ i < j ≤ n. Let mut(i, j) denote the probability that
a global mutation of a search point with i ones creates an offspring with j ones.
Then

mut(i, j)∑n
k=j mut(i, k)

≥ 1
2
.

Our main runtime result is shown in the following theorem.

When Does the Time-Linkage Property Help Optimization by EAs? 285

Theorem 1. Let d ∈ [3..n4]. Conditional on an event that happens with Ω(1)
probability, the expected runtime for the (1 + 1) EA to optimize CliffdTL is
O(n lnn).

Proof. We assume that the initial individual x1 has less than n − d number of
ones. Let X =

∑n
i=1 x1

i , then E[X] = n
2 . From Lemma 2, we have

Pr

[
n∑

i=1

x1
i ≥ 3n

4

]
= Pr

[
X ≥

(
1 +

1
2

)
E[X]

]
≤ exp

(
− n

24

)
.

Hence, we know the probability of |x1|1 < n − d is at least

1 − exp
(
− n

24

)
. (1)

Now we divide the whole process into two phases. The first phase ends when
an individual with at least n − d number of ones is reached for the first time.
Then the second phase starts, and ends when the optimum is reached.

We first consider the expected number of iterations to reach a solution with
at least n − d number of ones. From Definition 2, we know that for any solution
xt with |xt|1 ≤ n − d, CliffdTL (xt−1, xt) = |xt|1. Hence, before an individual
with at least n − d number of ones is reached, the process is identical to the
process of the original (1+1) EA (without considering the time-linkage property)
optimizing OneMax. That is, for any solution xt with |xt|1 = i, i < n − d, the
probability of generating an offspring with better fitness is

Pr
[|x̃t|1 ≥ i + 1 | |xt|1 = i

] ≥ n − i

n

(
1 − 1

n

)n−1

≥ n − i

en
,

and the expected number of iterations to reach a search solution with at least
n − d number of ones is at most

n−d−1∑
i=0

en

n − i
= en

n∑
i=d+1

1
i

≤ en lnn. (2)

Note if a solution with exactly n − d number of ones is generated during the
phase, it will be accepted. From Lemma 3, we know that with a probability at
least

1
2
, (3)

such a search solution indeed has n − d number of ones. In the following, we
consider the process (the second phase) after a search solution with n−d number
of ones is reached for the first time.

If the second phase starts from xt with (xt
1, |xt|1) = (1, n−d), we regard it as

a success if the offspring is 1n or has (xt
1, |x̃t|1) = (1, n − d + 1) and as a failure

if (x̃t
1, |x̃t|1) = (0, n − d). Note that only when a success or a failure happens

can xt enter into the next population. Hence, for other cases, xt will keep its

286 M. Li et al.

current status, that is, (xt
1, |xt|1) = (1, n − d). Besides, once a failure happens

((x̃t
1, |x̃t|1) = (0, n − d)), its offspring in the next generation survives only when

the previous considered success event happens or it returns to our starting status
xt with (xt

1, |xt|1) = (1, n− d). Therefore, let T1 denote the number of iterations
to witness a success, let T2 denote the total number of iterations that are spent
in the failure event and returning back before a success, and then we have

E[T1] =
1
p1

+ E[T2],

where p1 denotes the probability of a success event from xt with (xt
1, |xt|1) =

(1, n − d). It is not difficult to see that

p1 >

(
n − 1

n

)n−1
d

n
>

d

en
.

Now we calculate E[T2]. Let p2 denote the probability of a failure event from
xt with (xt

1, |xt|1) = (1, n − d). Then we know that

d

en2
<

1
n

d

n

(
1 − 1

n

)n−2

< p2 <
d

n2
.

Note that once a success event happens, the failure event will no longer occur.
Hence, we know the expected number of failures before a success is

p1 + p2
p1

− 1. (4)

Let p3 denote the probability to generate an offspring x̃t with (x̃t
1, |x̃t|1) =

(1, n − d) or x̃t = 1n from xt with (xt
1, |xt|1) = (0, n − d). Then we know

p3 >
1
n

n − d

n

(
1 − 1

n

)n−2

>
n − d

en2
.

Note that only the above kinds of offspring will survive. Hence, the expected
number of iterations of returning back or witness a success is 1

p3
. We pessimisti-

cally consider that x̃t with (x̃t
1, |x̃t|1) = (1, n − d) is reached (otherwise, the

success is already reached). Then we know

E[T2] =
(

p1 + p2
p1

− 1
)

1
p3

=
p2

p1p3
<

d
n2

d
en

n−d
en2

=
e2n

n − d
.

Hence, we have

E[T1] =
1
p1

+ E[T2] <
en

d
+

e2n

n − d
= en

(
1
d
+

e

n − d

)
. (5)

If the second phase starts from a solution xt with (xt
1, |xt|1) = (0, n − d), then

from the above analysis we know within 1
p3

< en2

n−d expected number of iterations,

When Does the Time-Linkage Property Help Optimization by EAs? 287

it moves to the case of xt with (xt
1, |xt|1) = (1, n − d) that we discussed before,

or reaches a success. That is, we only need additional en2

n−d expected number of
iterations compared to E[T1] to witness a success.

Recall that a success event requires to generate x̃t with |x̃t|1 = n or
(xt

1, |x̃t|1) = (1, n − d + 1). Now we calculate the probability that we witness
(xt

1, |x̃t|1) = (1, n−d+1) (the optimum) instead of 1n. From the above analysis,
we know that we possibly witness a success, from two cases, that is, from xt with
(xt

1, |xt|1) = (1, n − d) and from xt with (xt
1, |xt|1) = (0, n − d). For the former

case, both 1n and the optimum can be reached as a success, but for the latter
case, only the success of x̃t = 1n can happen. Let p4 denote the probability of
generating 1n from xt with (xt

1, |xt|1) = (1, n − d), and we know that

p4 <
1
nd

.

Together with p1, we know that for one success witnessed from (xt
1, |xt|1) =

(1, n − d), we reach the optimum with probability

1 − p4
p1

> 1 − e

dnd−1
. (6)

Let p5 denote the probability of generating 1n (the only success case) from
xt with (xt

1, |xt|1) = (0, n − d), and we know that

p5 = p4 <
1
nd

.

Together with p3, we know that for one time of leaving the failure status via
returning back or witness a success from xt with (xt

1, |xt|1) = (0, n − d), the
probability for leaving the failure status via returning back is

1 − p5
p3

> 1 − e

(n − d)nd−2
. (7)

Here, we consider the following artificial process. It is identical to the original
process except that it will not count it as a success when 1n is reached from xt

with (xt
1, |xt|1) = (0, n − d) (once it happens the process will directly return

back to (xt
1, |xt|1) = (1, n − d)), and ends when an optimum is reached for the

first time. It is not difficult to see that before 1n is reached for the first time,
two processes are identical. Now we calculate the probability of reaching an
optimum (ending the process) before 1n for the artificial process. To this aim,
we first estimate the total number of times of entering the failures, denoted as
T3. From (4), we know that

E[T3] =
p2
p1

<
e

n
.

From Markov inequality, we know

Pr [T3 ≥ e] ≤ 1
n

.

288 M. Li et al.

Hence,

Pr [T3 < e] ≥ 1 − 1
n

. (8)

Then from (6) (7) (8), we know that such probability is at least
(
1 − e

dnd−1

)(
1 − 1

n

) (
1 − e

(n − d)nd−2

)e

. (9)

Therefore, from (1) (3) (9) and (2) (5), we know that conditional on an event
that happens with probability at least

1
2

(
1 − exp

(
− n

24

))(
1 − e

dnd−1

) (
1 − 1

n

)(
1 − e

(n − d)nd−2

)e

= Ω(1),

the optimum is reached in expected

en lnn + en

(
1
d
+

e + n

n − d

)
= en

(
lnn +

1
d
+

n + e

n − d

)
= O(n lnn)

number of iterations.

The above theorem shows that changing the optimal function value to an
easy-to-reach one, CliffdTL is significantly easier to optimize by the (1+1) EA
compared to the expected runtime of Θ(nd) for the original Cliffd. As this
message is clearly conveyed, we do not intend to derive tighter estimates of con-
ditional probabilities, which might need more complicated calculations. Instead,
we conducted the experiments in Sect. 6, and the results indicate that such con-
ditional probabilities are actually very close to 1.

4 Same Optimal Function Value but Larger Optimal
Solution Set

Section 3 discussed the positive circumstance of the time-linkage property chang-
ing the optimal function value to an easy-to-reach one. In this section, we con-
sider one positive circumstance that the optimal function value is unchanged but
the optimal solution set becomes larger.

4.1 CLIFF′
dTL

Similar in Sect. 3, we resort to Cliffd function as a basic hard problem, and
construct a time-linkage variant with same optimal function value but with a
larger optimal solution set. We consider the following Cliff′

d as the example.

Definition 3 (Cliff ′
d). For any x = (x1, . . . , xn), the Cliff′

d : {0, 1}n → R is
defined by

Cliff′
d(x) =

{
|x|1, if |x|1 ≤ n − d

|x|1 − d + 1, otherwise

where |x|1 =
∑n

i=1 xi counts the number of ones.

When Does the Time-Linkage Property Help Optimization by EAs? 289

For Cliff′
d, the optimal function value is n − d+1 and the optimal solution set

is {1n}.
One may note that above Cliff′

d changes the constant component in the
original Cliffd from 1/2 to 1. With this modification, we now construct a time-
linkage variant with the same optimal function value of n − d + 1 but with a
larger optimal solution set. Formally, the time-linkage variant, called Cliff′

dTL,
is defined as follows.

Definition 4 (Cliff ′
dTL). Let n ∈ N. Cliff′

dTL : {0, 1}n × {0, 1}n → R is
defined by

Cliff′
dTL(x

t−1, xt) =

⎧⎪⎨
⎪⎩

n − d + 1, |xt|1 = n

|xt|1 − d + 1, |xt|1 − xt−1
1 ∈ [n − d + 1, n − 1]

|xt|1, else

where xt−1 = (xt−1
1 , ..., xt−1

n) ∈ {0, 1}n and xt = (xt
1, ..., x

t
n) ∈ {0, 1}n are two

consecutive solutions.

Figure 2 gives an example plot of Cliff′
dTL. It is identical to Cliff′

d if xt−1
1 =

0 but has the extra xt with |xt|1 = 31 as the optima, which are easier to reach
than 1n (the optimum of the original problem) if xt−1

1 = 1.

0 10 20 30 40
0

10

20

30

F
un

ct
io

n
V

al
ue

Optimum

0 10 20 30 40
0

10

20

30

F
un

ct
io

n
V

al
ue

Optimum

Fig. 2. Cliff′
dTL with (n, d) = (40, 10)

The optimal function value and optimal solution set of Cliff′
dTL is shown

in the following lemma.

Lemma 4. The optimal function value of Cliff′
dTL is n−d+1, and the optimal

solution set is {(xt−1, xt) | (xt−1
1 , |xt|1) = (1, n−d+1) or (xt−1

1 , |xt|1) = (∗, n)}.
Compared with Cliff′

d, we see that the optimal function value is still n−d+1
but the optimal solution set becomes larger.

290 M. Li et al.

4.2 Runtime Analysis of the (1 + 1) EA

Before we give the analysis of the (1+1) EA optimizing Cliff′
dTL, the following

theorem shows that the expected running time of the (1 + 1) EA on Cliff′
d is

Ω(nd−2). Due to space limit, we omit the proof here.

Theorem 2. Let 4 ≤ d ≤ n
4 , conditional on an event that happens with Ω(1)

probability, the expected runtime of the (1 + 1) EA on Cliff′
d is Ω(nd−2).

Now we have our main theorem of this section.

Theorem 3. Let max{2 lnn + 1, e2 + 1} ≤ d ≤ n
4 , conditional on an event

that happens with Ω(1) probability, the expected runtime of the (1 + 1) EA on
Cliff′

dTL is O(n lnn).

From Theorems 2 and 3, we could see that the expected runtime of Ω(nd−2) is
significantly reduced to O(n lnn) conditional on an event that happens with Ω(1)
probability. The reason is that the time-linkage property enlarges the optimal
solution set. Similar to the discussion at the end of Sect. 4, our experiments in
Sect. 6 will indicate that the above conditional probability is quite close to 1
in the actual runs.

5 Same Optimal Function Value and Optimal Solution
Set

Now, we discuss another positive circumstance in which the optimal function
value is unchanged after the time-linkage property is introduced. Different from
Sect. 4 that the optimal solution set changes, this section will show that even if
the optimal solution set is unchanged, the time-linkage property helps when the
intermediate good solution is more prone to be maintained.

5.1 JUMPkTL

Similar to the previous two sections, we will consider a multimodal benchmark
as a hard problem. Here, we restore another well-analyzed Jump benchmark [6]
(Definition 5) as an example, which has inspired many interesting results [1,5,
8,10,13,16,17].

Definition 5 (Jump). For any x = (x1, . . . , xn), the Jump : {0, 1}n → R is
defined by

Jump(x) =

{
n − |x|1, if |x|1 ∈ [n − k + 1..n − 1]
k + |x|1, else

where |x|1 =
∑n

i=1 xi counts the number of ones.

For Jump, the optimal function value is n + k and the optimal solution set
is 1n. The expected runtime of the (1 + 1) EA is O(nd).

We construct the following time-linkage variant, called JumpkTL, where the
gap size is smaller when the previous first bit has the value of 1.

When Does the Time-Linkage Property Help Optimization by EAs? 291

Definition 6. Let n ∈ N, k ∈ [1..n]. The JumpkTL function f : {0, 1}n ×
{0, 1}n → R is defined by

JumpkTL(xt−1, xt) =
{

n − |xt|1, |xt|1 + xt−1
1 ∈ [n − k + 1..n − 1]

k + |xt|1, else

where xt−1 = (xt−1
1 , ..., xt−1

n) ∈ {0, 1}n and xt = (xt
1, ..., x

t
n) ∈ {0, 1}n are two

consecutive solutions.

It is not difficult to see that the optimal function value and optimal solution set
are the same as the ones for the original Jump.

Figure 3 gives an example plot of JumpkTL. It is identical to Jump if xt−1
1 = 0

but one gap point (|xt|1 = n − 1 = 39) will have larger fitness value and become
prone to be maintained if xt−1

1 = 1.

0 10 20 30 40
0

10

20

30

40

F
un

ct
io

n
V

al
ue

Optimum

0 10 20 30 40
0

10

20

30

40

F
un

ct
io

n
V

al
ue

Optimum

Fig. 3. JumpkTL with (n, k) = (40, 10)

5.2 Runtime Analysis of the (1 + 1) EA

We first extract the situation starting from xt with JumpkTL (xt−1, xt) ≤ k into
the following lemma.

Lemma 5. Consider using the (1+1) EA to optimize JumpkTL. Assume that it
starts from xt with JumpkTL (xt−1, xt) ≤ k, then within en lnn expected number
of iterations a solution with fitness larger than k is reached for the first time.

Now we present our main theorem of this section.

Theorem 4. Let 0 < k ≤ n
2 , the expected running time of the (1 + 1) EA on

JumpkTL is O(nk−1).

Theorem 4 shows that the performance improvement can happen even if the
time-linkage property neither changes the optimal function value nor the optimal
solution set.

292 M. Li et al.

6 Experiments

Here we conduct the experiments to see how the (1+1) EA actually performs for
CliffdTL, Cliff′

dTL, and JumpkTL, and also to see the conditional probabilities
stated in Theorems 1 and 3.

Firstly for CliffdTL and Cliff′
dTL, we set n ∈ {40, 50, 60, 70, 80} and d = 10

to ensure that the inequality max{2 lnn + 1, e2 + 1} ≤ d ≤ n
4 (in Theorem 3)

holds. The (1 + 1) EA algorithm starts with a solution x1 with |x1|1 < n − d.
Experiments were conducted with 100 independent runs and terminated once an
optimal solution is reached for the first time.

Figure 4 plots the mean (with standard deviations) number of iterations for
the (1 + 1) EA to reach an optimum of CliffdTL and Cliff′

dTL for the first
time. For comparison, the curves of nd and nd−2 are plotted as rough indicators
of the runtime for Cliffd (Θ(nd) in [9]) and Cliff′

d (Ω(nd−2) in Theorem 2),
respectively. Additionally, the curve of 4n lnn is included to illustrate the runtime
performance of the (1+1) EA optimizing the time-linkage problem. We can easily
see that it is quite easier for the (1+1) EA to solve two time-linkage Cliffd than
the original Cliffd (Ω(nd) number of iterations) and Cliff′

d (Ω(nd−2) number
of iterations). Moreover, we also logged intermediate data to validate the Ω(1)
probability of the event in Theorems 1 and 3, showing the probability is very
closed to 1.

40 45 50 55 60 65 70 75 80

n

100

105

1010

1015

1020

N
um

be
r

of
 It

er
at

io
ns

Fig. 4. The mean (with standard deviations) number of iterations of the (1 + 1) EA
on CliffdTL and Cliff′

dTL with n ∈ {40, 50, 60, 70, 80} and d = 10 in 100 independent
runs.

For the JumpkTL problem, we set n ∈ {20, 25, 30, 35, 40} and d = 5 (where
the algorithm can reach the optimum in a reasonable time), also for 100 inde-
pendent runs. Same settings are conducted for optimizing the Jump problem for

When Does the Time-Linkage Property Help Optimization by EAs? 293

comparison. Table 1 collected the mean (with standard deviations) numbers of
iterations for the (1+1) EA to reach an optimum of JumpkTL and Jump for the
first time. The Mann-Whitney U test showed clear improvements for all tested
problem sizes, which verifies that the time-linkage problem JumpkTL is easier
for the (1 + 1) EA to optimize compared to the original Jump problem.

Table 1. The number of iterations of the (1+1) EA on Jump and JumpkTL (mean (std))
with n ∈ {20, 25, 30, 35, 40} and d = 5 in 100 independent runs. We also conducted a
Mann-Whitney U test with a confidence level of 0.99, indicating significant difference
in the runtime of the (1 + 1) EA on Jump and JumpkTL for each value of n.

Jump JumpkTL

n = 20 6,513,484 (6,048,982) 72,458 (81,162)
n = 25 23,799,940 (25,009,767) 187,023 (182,741)
n = 30 48,140,360 (44,635,768) 443,183 (420,484)
n = 35 127,194,355 (144,156,985) 665,242 (574,238)
n = 40 214,915,647 (209,601,405) 1,291,213 (1,192,885)

7 Conclusion

Although all existing theoretical works show that the time-linkage property
brings negative results, in this paper, we construct several time-linkage problems
showing that the time-linkage property may help the optimization by evolution-
ary algorithms. For the Cliffd problem, the time-linkage property changes the
optimal value to an easy-to-reach one, making it significantly easier to optimize.
By enlarging the optimal solution set but keeping the optimal value unchanged,
the Cliff′

d problem with time-linkage property is proven to be easier for the
(1 + 1) EA to reach the optima. In this last case, we took the Jump problem
as an example and showed that the time-linkage property can also help even if
both the optimal function value and optimal solution set are unchanged.

In summary, we conducted the first runtime analyses showing that the time-
linkage property can also help optimization by evolutionary algorithms in three
circumstances.

Acknowledgments. This work was supported by National Natural Science Foun-
dation of China (Grant No. 62350710797, 62306086, 62250710682), Science,
Technology and Innovation Commission of Shenzhen Municipality (Grant No.
GXWD20220818191018001), and Guangdong Basic and Applied Basic Research Foun-
dation (Grant No. 2019A1515110177).

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

294 M. Li et al.

References

1. Bian, C., Zhou, Y., Li, M., Qian, C.: Stochastic population update can provably
be helpful in multi-objective evolutionary algorithms. In: International Joint Con-
ference on Artificial Intelligence, IJCAI 2023, pp. 5513–5521. ijcai.org (2023)

2. Bosman, P.A.: Learning, anticipation and time-deception in evolutionary online
dynamic optimization. In: Genetic and Evolutionary Computation Conference
Workshop, GECCO 2005 Workshop, pp. 39–47. ACM (2005)

3. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization, pp. 1–87. Springer, Cham (2020). https://
arxiv.org/abs/1801.06733

4. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Genetic
and Evolutionary Computation Conference, GECCO 2010, pp. 1449–1456. ACM
(2010)

5. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784.
ACM (2017)

6. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276, 51–81 (2002)

7. Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strat-
egy and when not. In: Foundations of Computational Intelligence, FOCI 2007, pp.
25–32. IEEE (2007)

8. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that
crossover really can help. Algorithmica 34, 47–66 (2002)

9. Paixao, T., Pérez Heredia, J., Sudholt, D., Trubenova, B.: First steps towards a
runtime comparison of natural and artificial evolution. In: Genetic and Evolution-
ary Computation Conference, GECCO 2015, pp. 1455–1462. ACM (2015)

10. Rajabi, A., Witt, C.: Self-adjusting evolutionary algorithms for multimodal opti-
mization. Algorithmica 84, 1694–1723 (2022)

11. Sudholt, D.: Crossover speeds up building-block assembly. In: Genetic and Evolu-
tionary Computation Conference, GECCO 2012, pp. 689–702. ACM (2012)

12. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

13. Witt, C.: How majority-vote crossover and estimation-of-distribution algorithms
cope with fitness valleys. Theoret. Comput. Sci. 940, 18–42 (2023)

14. Yang, T., Zhou, Y.: Analysis of multi-objective evolutionary algorithms on fit-
ness function with time-linkage property. IEEE Trans. Evol. Comput. 28, 837–843
(2024)

15. Zheng, W., Chen, H., Yao, X.: Analysis of evolutionary algorithms on fitness func-
tion with time-linkage property. IEEE Trans. Evol. Comput. 25, 696–709 (2021)

16. Zheng, W., Doerr, B.: Theoretical analyses of multiobjective evolutionary algo-
rithms on multimodal objectives. Evol. Comput. 31, 337–373 (2023)

17. Zheng, W., Doerr, B.: Runtime analysis of the SMS-EMOA for many-objective
optimization. In: Conference on Artificial Intelligence, AAAI 2024, pp. 20874–
20882. AAAI Press (2024)

18. Zheng, W., Zhang, Q., Chen, H., Yao, X.: When non-elitism meets time-linkage
problems. In: Genetic and Evolutionary Computation Conference, GECCO 2021,
pp. 741–749. ACM (2021)

https://arxiv.org/abs/1801.06733
https://arxiv.org/abs/1801.06733

A First Running Time Analysis of the Strength
Pareto Evolutionary Algorithm 2 (SPEA2)

Shengjie Ren1,2, Chao Bian1,2, Miqing Li3, and Chao Qian1,2(B)

1 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
201300036@smail.nju.edu.cn, bianc@lamda.nju.edu.cn,

qianc@lamda.nju.edu.cn
2 School of Artificial Intelligence, Nanjing University, Nanjing, China

3 School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.
m.li.8@bham.ac.uk

Abstract. Evolutionary algorithms (EAs) have emerged as a predominant app-
roach for addressing multi-objective optimization problems. However, the theo-
retical foundation of multi-objective EAs (MOEAs), particularly the fundamen-
tal aspects like running time analysis, remains largely underexplored. Existing
theoretical studies mainly focus on basic MOEAs, with little attention given to
practical MOEAs. In this paper, we present a running time analysis of strength
Pareto evolutionary algorithm 2 (SPEA2) for the first time. Specifically, we prove
that the expected running time of SPEA2 for solving three commonly used
multi-objective problems, i.e., mOneMinMax, mLeadingOnesTrailingZeroes,
andm-OneJumpZeroJump, is O(µn · min{m logn, n}), O(µn2), and O(µnk ·
min{mn, 3m/2}), respectively. Here m denotes the number of objectives, and
the population size µ is required to be at least (2n/m+1)m/2, (2n/m+1)m−1

and (2n/m−2k+3)m/2, respectively. The proofs are accomplished through gen-
eral theorems which are also applicable for analyzing the expected running time
of other MOEAs on these problems, and thus can be helpful for future theoretical
analysis of MOEAs.

1 Introduction

Multi-objective optimization requires optimizing several objectives at the same time,
and it has been seen in many real-world scenarios. Since the objectives of a multi-
objective optimization problem (MOP) are usually conflicting, there does not exist a
single optimal solution, but instead a set of solutions which represent different opti-
mal trade-offs between these objectives, called Pareto optimal solutions. The objective
vectors of all the Pareto optimal solutions are called the Pareto front. The goal of multi-
objective optimization is to find the Pareto front or a good approximation of it.

Evolutionary algorithms (EAs) [1,23] are a large class of randomized heuris-
tic optimization algorithms inspired by natural evolution. They maintain a set of
solutions (called a population), and iteratively improve it by generating new solu-
tions and replacing inferior ones. The population-based nature makes EAs particu-
larly effective in tackling MOPs, leading to their widespread application across vari-
ous real-world domains [9,13,31,43,49]. Notably, there have been developed a mul-
titude of well-established multi-objective EAs (MOEAs), including non-dominated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 295–312, 2024.
https://doi.org/10.1007/978-3-031-70071-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_19&domain=pdf
https://doi.org/10.1007/978-3-031-70071-2_19

296 S. Ren et al.

sorting genetic algorithm II (NSGA-II) [15], strength Pareto evolutionary algorithm 2
(SPEA2) [50], S metric selection evolutionary multi-objective optimization algorithm
(SMS-EMOA) [2], and multi-objective evolutionary algorithm based on decomposition
(MOEA/D) [44].

In contrast to the wide applications of MOEAs, the theoretical foundation of
MOEAs, especially the essential aspect, running time analysis, is still underdeveloped,
which is mainly due to the sophisticated behaviors of EAs and the hardness of MOPs.
Early theoretical research primarily concentrates on analyzing the expected running
time of GSEMO [26] and SEMO [30] for solving a variety of multi-objective synthetic
and combinatorial optimization problems [4,18,26–28,33,34,38]. Note that GSEMO is
a simple MOEA which employs the bit-wise mutation operator to generate an offspring
solution in each iteration and keeps the non-dominated solutions generated-so-far in the
population, and SEMO is a variant of GSEMO which employs one-bit mutation instead
of bit-wise mutation. Furthermore, based on GSEMO and SEMO, the effectiveness of
some parent selection strategies [10,24,25,30], mutation operator [22], crossover oper-
ator [38], and selection hyper-heuristics [37], has also been studied.

Recently, researchers have begun to examine practical MOEAs. The expected run-
ning time of (μ + 1) SIBEA, a simple MOEA employing the hypervolume indicator
for population update, has been analyzed across various synthetic problems [7,17,35],
contributing to the theoretical understanding of indicator-based MOEAs. Subsequently,
attention has turned to well-established algorithms in the evolutionary multi-objective
optimization field. Huang et al. [29] investigated MOEA/D, assessing the effective-
ness of different decomposition methods by comparing running time for solving many-
objective synthetic problems. Additionally, Zheng et al. [46] conducted the first analysis
of the expected running time of NSGA-II by considering the bi-objective OneMinMax
and LeadingOnesTrailingZeroes problems. Bian et al. [6] analyzed the running time of
SMS-EMOA [2] for solving the bi-objective OneJumpZeroJump problem, and showed
that a stochastic population update method can bring exponential acceleration. More-
over, Wietheger and Doerr [40] demonstrated that NSGA-III [14] exhibits superior per-
formance over NSGA-II in solving the tri-objective problem 3OneMinMax. In a very
recent study, Lu et al. [32] analyzed interactive MOEAs (iMOEAs), pinpointing scenar-
ios where iMOEAs may work or fail. Some other works about well-established MOEAs
include [3,5,8,11,12,19–21,36,39,45,47,48].

However, the running time analysis of SPEA2, one of the most popular
MOEAs [50], has not been touched. SPEA2 employs enhanced fitness assignment and
density estimationmechanisms. The former improves the selection pressure towards the
Pareto-optimal front, while the latter helps maintain a diverse solution set by consider-
ing the density of surrounding solutions. In this paper, we analyze the expected run-
ning time of SPEA2 for solving three multi-objective problems, i.e., mOneMinMax,
mLeadingOnes-TrailingZeroes, and m-OneJumpZeroJump, which have been com-
monly used in the theory community of MOEAs [19,30,36,46–48]. Note that m ≥ 2
denotes the number of objectives. Specifically, we prove that the expected number
of fitness evaluations of SPEA2 for finding the Pareto front of the three problems is
O(μn ·min{m log n, n}), O(μn2), and O(μnk ·min{mn, 3m/2}), respectively, where
the population size μ is required to be at least (2n/m + 1)m/2, (2n/m + 1)m−1 and

Running Time Analysis of SPEA2 297

(2n/m − 2k + 3)m/2, correspondingly. The proofs are accomplished through general
theorems which can also be applied for analyzing the expected running time of other
MOEAs.

The rest of this paper is organized as follows. Section 2 introduces some preliminar-
ies. The general theorems on the running time of MOEAs are provided in Sect. 3, and
these theorems are applied to SPEA2 in Sect. 4 and other MOEAs in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Preliminaries

In this section, we first introduce multi-objective optimization. Then, we introduce the
analyzed algorithm, SPEA2. Finally, we present the mOneMinMax, mLeadingOnes-
Trailingzeroes and mOneJumpZeroJump problems considered in this paper.

2.1 Multi-objective Optimization

Multi-objective optimization seeks to optimize two or more objective functions concur-
rently, as presented in Definition 1. In this paper, we focus on maximization (though
minimization can be similarly defined) and pseudo-Boolean functions whose solution
space X = {0, 1}n. Given that the objectives of a practical MOP typically conflict
with each other, a canonical complete order within the solution space X does not exist.
Instead, we employ the domination relationship presented in Definition 2 to compare
solutions. A solution is deemed Pareto optimal if no other solution in X dominates it,
and the collection of objective vectors of all the Pareto optimal solutions is called the
Pareto front. The goal of multi-objective optimization is to identify the Pareto front or
its good approximation.

Definition 1 (Multi-objective Optimization). Given a feasible solution space X and
objective functions f1, f2, . . . , fm, multi-objective optimization can be formulated as

max
x∈X

f(x) = max
x∈X

(
f1(x), f2(x), ..., fm(x)

)
.

Definition 2 (Domination). Let f = (f1, f2, . . . , fm) : X → R
m be the objective

vector. For two solutions x and y ∈ X :

– x weakly dominates y (denoted as x � y) if for any 1 ≤ i ≤ m, fi(x) ≥ fi(y);
– x dominates y (denoted as x � y) if x � y and fi(x) > fi(y) for some i;
– x and y are incomparable if neither x � y nor y � x.

2.2 SPEA2

The SPEA2 algorithm [50], as presented in Algorithm 1, is a well-established MOEA
which employs a regular population P and an archive A. It starts from an initial popu-
lation of μ solutions and an empty archive A (lines 1–2). In each generation, it selects
the non-dominated solutions in P ∪ A and adds them into an empty set A′ (line 4). If
the size of A′ is larger than μ̄, SPEA2 uses the following truncation operator to remove

298 S. Ren et al.

Algorithm 1 SPEA2 [50]
Input: objective functions f1, f2..., fm, population size µ, archive size µ̄
Output: µ̄ solutions from {0, 1}n

1: P ← µ solutions uniformly and randomly selected from {0,1}n with replacement;
2: A = ∅;
3: while criterion is not met do
4: A′ ← non-dominated solutions in P ∪ A;
5: if |A′| > µ̄ then
6: reduce A′ by means of the truncation operator
7: else if |A′| < µ̄ then
8: fill A′ with dominated individuals in P and A
9: end if
10: A ← A′;
11: let P ′ = ∅, i = 0;
12: while i < µ do
13: select a solution from A uniformly at random;
14: generate x′ by flipping each bit of x independently with probability 1/n;
15: P ′ = P ′ ∪ {x′}, i = i+ 1
16: end while
17: P ← P ′

18: end while
19: return A

the redundant solutions (lines 5–6). Let σk
x denote the distance of x to its k-th nearest

neighbor in A′. We use x ≤d y to denote that x has a smaller distance to its neighbour
compared with y. That is, x ≤d y ⇐⇒ (∀0 < k < |A′| : σk

x = σk
y) ∨ (∃0 <

k < |A′| : [(∀0 < l < k : σl
x = σl

y) ∧ σk
x < σk

y]). The truncation operator itera-
tively removes an individual x ∈ A′ such that x ≤d y for all y ∈ A′, until |A′| = μ̄
(breaking a tie randomly). Note that once a solution is removed from A′, the σ value
will be updated. If the size of A′ is smaller than μ̄, then the dominated solutions in
P ∪ A are selected to fill the remaining slots according to their fitness (lines 7–8). The
fitness of a solution is calculated as follows. First, let S(x) = |{y ∈ A ∪ P | x � y}|
denote the strength of a solution x, i.e., the number of solutions dominated by x, and
let R(x) =

∑
y∈P∪A,y�x S(y). We can see that a solution with smaller R value is

preferred, and R(x) = 0 implies that x is non-dominated. Then, the fitness of a solu-
tion x is calculated as F (x) = R(x) + 1/(σk

x + 2). After calculating the fitness of the
dominated solutions in P ∪ A, the solutions with the smallest fitness are selected into
A′ such that the size of A′ equals to μ̄. After the modification of A′ finishes, the archive
A is set to A′ (line 10). Then, the population P of size μ is formed by mutating the
solutions selected from A (lines 11–17).

2.3 Benchmark Problems

Now we introduce three multi-objective problems, i.e., mOneMinMax, mLeading-
Ones-Trailingzeroes, and mOneJumpZeroJump, studied in this paper, where m ≥ 2
is a positive even number and denotes the number of objectives.

Running Time Analysis of SPEA2 299

The mOneMinMax problem presented in Definition 3 divides a solution into
m/2 blocks, and in each block, the number of 0-bits and the number of 1-bits
require to be maximized simultaneously. The Pareto front is F ∗ = {(i1, 2n/m −
i1, · · · , im/2, 2n/m − im/2) | i1, · · · , im/2 ∈ [0..2n/m]}, whose size is
(2n/m + 1)m/2, and the Pareto optimal solution corresponding to (i1, 2n/m −
i1, · · · , im/2, 2n/m − im/2) is the solution with ij 1-bits and (2n/m − ij) 0-bits in
the j-th block. We can see that any solution x ∈ {0, 1}n is Pareto optimal.

Definition 3 (mOneMinMax [47]) Suppose m is a positive even number, and n is a
multiple of m/2. The mOneMinMax problem of size n is to find n-bits binary strings
which maximize

f(x) = (f1(x), f2(x), · · · , fm(x))

with

fk(x) =

{∑2n/m
i=1 xi+n(k−1)/m, if k is odd,

∑2n/m
i=1 (1 − xi+n(k−2)/m), else.

The mLeadingOnesTrailingZeroes problem presented in Definition 4 also divides
a solution into m/2 blocks, and in each block, the number of leading 1-bits and the
number of trailing 0-bits require to be maximized simultaneously. The Pareto front is
F ∗ = {(i1, 2n/m − i1, · · · , im/2, 2n/m − im/2) | i1, · · · , im/2 ∈ [0..2n/m]}, whose
size is (2n/m + 1)m/2, and the Pareto optimal solution corresponding to (i1, 2n/m −
i1, · · · , im/2, 2n/m − im/2) is the solution with ij leading 1-bits and (2n/m − ij)
trailing 0-bits in the j-th block.

Definition 4. (mLeadingOnesTrailingZeroes [30]) Suppose m is a positive even num-
ber, and n is a multiple of m/2. The mLeadingOnesTrailingZeroes problem of size n is
to find n-bits binary strings which maximize

f(x) = (f1(x), f2(x), · · · , fm(x))

with

fk(x) =

{∑2n/m
i=1 Πi

j=1xj+n(k−1)/m, if k is odd,
∑2n/m

i=1 Π
2n/m
j=i (1 − xj+n(k−2)/m), else.

Before introducing themOneJumpZeroJump problem, we first introduce the single-
objective Jump problem, which aims at maximizing the number of 1-bits of a solution
except for a valley around the solution with all 1-bits. Formally, the Jump problem of
size n aims to find an n-bits binary string which maximizes

Jumpn,k(x) =

{
k + |x|1, if |x|1 ≤ n − k or |x|1 = n,

n − |x|1, else,

where 2 ≤ k ≤ n − 1 is a parameter and |x|1 denotes the number of 1-bits in x.
The mOneJumpZeroJump problem presented in Definition 5 also divides a solution

300 S. Ren et al.

into m/2 blocks, and in each block, it tries to optimize a Jump problem as well as a
counterpart of Jump problem with the roles of 1-bits and 0-bits exchanged. The Pareto
front is F ∗ = {(i1, 2n/m + 2k − i1, · · · , im/2, 2n/m + 2k − im/2) | i1, · · · im/2 ∈
[2k..2n/m] ∪ {k, 2n/m + k}} whose size is (2n/m − 2k + 3)m/2, and the Pareto
optimal solution corresponding to (i1, 2n/m+2k − i1, · · · , im/2, 2n/m+2k − im/2)
is the solution with (ij − k) 1-bits and (2n/m − ij + k) 0-bits in the j-th block.

Definition 5. (mOneJumpZeroJump [48]) Suppose m is a positive even number, and
n is a multiple of m/2. The mOneJumpZeroJumpn,k problem of size n is to find n-bits
binary strings which maximize

f(x) = (f1(x), f2(x), · · · , fm(x))

with

fi(x) =

{
Jump2n/m,k(x[n(i−1)/m+1..n(i+1)/m]), if i is odd,

Jump2n/m,k(x̄[n(i−2)/m+1..ni/m]), else,

where x̄ = (1 − x1, · · · , 1 − xn).

3 General Theorems for Running Time Analysis of MOEAs

In this section, we present Theorems 1, 2 and 3 that can be used to derive expected run-
ning time of general MOEAs for solving the mOneMinMax, mLeadingOnesTrailing-
Zeroes and mOneJumpZeroJump problems, respectively. These results will be applied
in Sect. 4 to derive the running time bounds of SPEA2 and applied in Sect. 5 to derive
the running time bounds of other MOEAs. In our analysis, we will use the general
concept of a MOEA preserving the non-dominated set, which is defined as follows:

Definition 6. If a non-dominated solution x appears in the combined population of
parent and offspring, then there will always be a solution y in the next generation such
that f(x) = f(y).

For different MOEAs, the proportion between the parent and offspring populations
varies. We assume that the parent population size is μ and the offspring population size
is cμ, where c ∈ [1/μ,O(1)]. For algorithms like SEMO, GSEMO, and SMS-EMOA,
only one solution is generated in each iteration, thus c = 1/μ, and for algorithms
like NSGA-II and NSGA-III, c = 1. Note that the running time of EAs is measured
by the number of fitness evaluations, which is the most time-consuming step in the
evolutionary process.

3.1 On the mOneMinMax Problem

We prove in Theorem 1 that the expected number of fitness evaluations for any MOEA
solvingmOneMinMax isO(μn·min{m log n, n}), if the algorithm uses uniform selec-
tion and bit-wise mutation or one-bit mutation to generate offspring solutions, and can
preserve the non-dominated set. The proof idea is as follows. First, we show that the

Running Time Analysis of SPEA2 301

probability of not finding a specific Pareto front point in O(mμn log n) and O(μn2) fit-
ness evaluations is at most n−m and e−n, respectively. Then, we use the union bound to
show that the probability of finding all Pareto front points in O(μn · min{m log n, n})
fitness evaluations is 1 − o(1). Note that this proof idea is inspired by Theorem 5.2
in [36], which analyzes NSGA-III solving mOneMinMax, and uses the union bound
to derive the probability of finding the whole Pareto front within T generations, after
deriving the probability of not finding a specific Pareto front point within T generations.
Our proof differs by considering more general scenarios, such as varying proportions
of parent and offspring populations and a larger number m of objectives.

Theorem 1. For any MOEA solving mOneMinMax, if the algorithm preserves the non-
dominated set with a maximum population size of μ, employs uniform selection to select
parent solutions, and employs bit-wise mutation or one-bit mutation to generate off-
spring solutions, then the expected number of fitness evaluations for finding the Pareto
front is O(μn · min{m log n, n}).
Proof. For the mOneMinMax problem, all the solutions are Pareto optimal, and thus
are non-dominated. Since the MOEA preserves the non-dominated set, any objective
vector will be preserved in the population once it is found.

First, we prove that for any objective vector v, the probability of not finding it
in O(mμn log n) fitness evaluations is at most n−m. For any solution x, we parti-
tion it into m/2 blocks, where the i-th (i ∈ [1..m/2]) block Bi = [(i − 1)(2n/m +
1) . . . i(2n/m)]. When there is a bit flip in block xBi

, one of f2i−1(x) and f2i(x) will
increase by 1, and the other one will decrease by 1. Therefore, x needs to flip at least
‖f(x) − v‖1 /2 bits to obtain v. Let dv = minx∈P ‖f(x) − v‖1 /2 denote the mini-
mum number of bits that require to be flipped to obtain v for all the solutions in the pop-
ulation P . Since dv = minx∈P ‖f(x) − v‖1 /2 ≤ ‖f(x) − v‖1 /2 ≤ ‖2v‖1 /2 = n,
and dv = 0 when there exists an x ∈ P such that f(x) = v, we have 0 ≤ dv ≤ n.
Since all the objective vectors will be preserved, dv cannot increase. Let the ran-
dom variable Xk, k ∈ [1..n] denote the number of generations with dv = k. Let
X :=

∑n
k=1 Xk. When dv = k, the probability of selecting an individual y from

the population such that ‖f(y) − v‖1 /2 = k is at least 1/μ. Since flipping any one of
the k bits corresponding to dv will reduce dv by 1, the probability that dv decreases is
at least (k/n) · (1− 1/n)n−1 ≥ k/(en) when using bit-wise mutation and at least k/n
when using one-bit mutation. In the following, we consider bit-wise mutation, while
the analysis for one-bit mutation holds analogously. In each generation, the probability
that dv decreases is at least

1 −
(
1 − k

eμn

)cμ

≥ 1 − e− ck
en ≥ ck

ck + en
≥ ck

(c + e)n
, (1)

where cμ is the size of the offspring population, the second inequality holds by 1+a ≤
ea for any a ∈ R, and the third inequality holds by k ≤ n/m. Let pk := ck/(c + e)n.
Hence, X1, . . . , Xn stochastically dominates independent geometric random variables
Y1, . . . , Yn, where the success probability of Yk is pk. That is for any λ ≥ 0, we have
P(Xk ≥ λ) ≤ P(Yk ≥ λ). Moreover, for Y :=

∑n
k=1 Yk, X stochastically dominates

302 S. Ren et al.

Y . By Theorem 16 in [16] we have:

P
(
X ≥ e + c

c
(1 + m)n log n

)
≤ P

(
Y ≥ e + c

c
(1 + m)n log n

)
≤ n−m. (2)

In each generation, the algorithm produces cμ offspring solutions, thus the probabil-
ity that the population contains no solution x with f(x) = v after cμ · (e + c)(1 +
m)n(log n)/c = (e + c)(1 + m)μn log n fitness evaluations is at most n−m.

Next, we prove that for any objective vector v, the probability of not finding it
in O(μn2) fitness evaluations is at most e−n. Let p′

k := ck/(ck + en). By Eq. (1),
we have X1, . . . , Xn stochastically dominates independent geometric random variables
Z1, . . . , Zn, where the success probability of Zk is p′

k. Applying Theorem 1 in [42] to
the variable Z :=

∑n
k=1 Zk, we have:

P
(
X ≥ 5en2

c

)
≤ P

(
Z ≥ 5en2

c

)
=≤ e− 1

4 min{ δ2
s , cδ

c+en } ≤ e−n , (3)

where δ = 5en2/c − en log n/c − n, E[Z] = en log n/c + n and s =
∑n

k=1 1/p′2
k =

n + 2en log n/c + (eπn)2/6c. Thus, the probability that the population contains no
solution x with f(x) = v after cμ ·5en2/c = 5eμn2 fitness evaluations is at most e−n.

Finally, we consider finding the whole Pareto front. Recall that for the
mOneMinMax problem, the size of the Pareto front is (2n/m + 1)m/2. Then, by
applying the union bound, the probability of finding the whole Pareto front in (e +
c)(1 + m)μn log n number of fitness evaluations is at least 1 − (2n/m + 1)m/2 ·
n−m ≥ 1 − (n + 1)m/2 · n−m = 1 − O(n−m/2) = 1 − o(1), and the prob-
ability of finding the whole Pareto front in 5eμn2 number of fitness evaluations is
at least 1 − (2n/m + 1)m/2 · e−n ≥ 1 − 3n/2 · e−n = 1 − o(1). The inequal-
ity holds because the derivative of (2n/m + 1)m/2 with respect to m is always pos-
itive when m ≤ n, implying that when m = n, (2n/m + 1)m/2 takes its max-
imum value, which is 3n/2. Combining the two parts, the whole Pareto front can
be found in min{(e + c)(1 + m)μn log n, 5eμn2} number of fitness evaluations
with probability 1 − o(1). Let each min{(e + c)(1 + m)μn log n, 5eμn2} fitness
evaluations to find Pareto front be an independent trial with success probability of
1 − o(1). Then, the expected number of evaluations to find the Pareto front is at most
(1 − o(1))−1 min{(e + c)(1 + m)μn log n, 5eμn2} = O(μn · min{m log n, n}). ��

Hence, if the MOEA preserves the non-dominated set, the expected number of fit-
ness evaluations for solving mOneMinMax is O(μn · min{m log n, n}). Specifically,
whenm is a constant,O(min{m log n, n}) = O(m log n), leading to an expected num-
ber of fitness evaluations of O(μn log n). Conversely, if the number m of objectives is
large, e.g., m = n/4, the expected number of fitness evaluations is O(μn2).

3.2 On the mLeadingOnesTrailingZeroes Problem

We prove in Theorem 2 that the expected number of fitness evaluations for any MOEA
solving mLeadingOnesTrailingZeroes is O(μn2). The proof idea is to divide the opti-
mization procedure into two phases, where the first phase aims at finding a point in the

Running Time Analysis of SPEA2 303

Pareto front. Let wi(x) := f2i−1(x)+ f2i(x) denote the sum of leading ones and trail-
ing zeroes of block xBi

. Let Wmax denote maxx∈P

∑m/2
i=1 wi(x). We prove that the

expected number of fitness evaluations for Wmax to reach n (i.e., a Pareto front point
is found) is at most O(μn2). The second phase aims at finding the whole Pareto front
extended from the Pareto front point found in the first phase. Similar to the analysis on
mOneMinMax, we prove that the probability of not finding a specific point in the Pareto
front within 6eμn2 number of fitness evaluations is at most e−n by applying Theorem
1 in [42]; by the union bound, the probability of finding the whole Pareto front within
O(μn2) number of fitness evaluations is at least 1− (2n/m+1)m/2 · e−n = 1− o(1).
Since the proof is similar to that of Theorem 4.3 in [36], and also resembles that of
Theorem 1, we omit the detailed proof here.

Theorem 2. For any MOEA solving mLeadingOnesTrailingZeroes, if the algorithm
preserves the non-dominated set with a maximum population size of μ, employs uniform
selection to select parent solutions, and employs bit-wise mutation or one-bit mutation
to generate offspring solutions, then the expected number of fitness evaluations for find-
ing the Pareto front is O(μn2).

Theorem 2 shows that for any MOEA preserving the non-dominated set, the
expected number of fitness evaluations for solving the mLeadingOnesTrailingZeroes
problem is O(μn2). Notably, although this result seems unrelated to the number m of
objectives, the Pareto front size of mLeadingOnesTrailingZeroes (i.e., (2n/m+1)m/2)
amplifies with increasing m. Since the population size μ needs to be larger than
(2n/m + 1)m/2 to preserve the non-dominated set, the running time ultimately rises
with the number m of objectives.

3.3 On the mOneJumpZeroJump Problem

We prove in Theorem 3 that the expected number of fitness evaluations for any MOEA
solving mOneJumpZeroJump is O(μnk · min{mn, 3m/2}). By Definition 5, if a solu-
tion x is a Pareto optimal, then for any block Bi, |xBi

|1 ∈ {0, n′} ∪ [k..n′ − k], where
n′ = 2n/m denotes the size of each block. We call x an internal Pareto optimum
if for any block Bi, |xBi

|1 ∈ [k..n′ − k], and we call x an extreme Pareto optimum
if there exists a block Bi such that |xBi

|1 ∈ {0, n′}. The proof idea is to divide the
optimization procedure into three phases, where the first phase aims at finding an inter-
nal Pareto front point, the second phase finishes after finding the whole internal Pareto
front whose analysis is similar to that of finding the Pareto front of mOneMinMax, and
the third phase focuses on finding the extreme Pareto front points from the edge of the
internal Pareto front. Due to space limitation, we omit some details of the proof, which
are provided in the supplementary material.

Theorem 3. For any MOEA solving mOneJumpZeroJumpn,k, if the algorithm pre-
serves the non-dominated set with a maximum population size of μ, employs uniform
selection to select parent solutions, and employs bit-wise mutation to generate offspring
solutions, the expected number of fitness evaluations for finding the Pareto front is
O(μnk · min{mn, 3m/2}).

304 S. Ren et al.

Proof. We divide the optimization procedure into three phases. The first phase starts
after initialization and finishes until an internal point in the Pareto front is found; the
second phase starts after the first phase and finishes until all internal points in the Pareto
front are found; the third phase starts after the second phase and finishes when all
extreme points in the Pareto front are found.

The first phase is to find an internal Pareto front point. If the initial population
contains an internal Pareto optimum, the first phase is completed. We consider that the
initial population does not contain an internal Pareto optimum. Then, for any solution x
in the population P , there exists a block Bi = [(i−1)n′+1..in′], i ∈ [1..m/2] such that
|xBi

|1 ∈ [0..k − 1]∪ [n′ − k +1..n′]. Without loss of generality, assume that |xBi
|1 ∈

[0..k − 1]. Then the probability of generating a solution y with |yBi
|1 ∈ [k, n′ − k]

from x is at least
(n′−|xBi

|1
k−|xBi

|1
)
(1 − 1

n)
n−(k−|xBi

|1)(1n)
k−|xBi

|1 ≥ 1
e (

1
mk)

k, where the

inequality holds by k ≤ n′/2. The same bound also applies to |xBi
|1 ∈ [n′ −k+1..n′].

Let J(x) denote the number of blocksBi such that |xBi
|1 ∈ [k..n′−k], and let Jmax :=

maxx∈P J(x). For a solution x∗ with J(x∗) = Jmax, it will not be dominated by any
solution y with J(y) < Jmax. Thus, Jmax will not decrease. When Jmax reaches m/2,
an internal Pareto front point is found. The probability of selecting the solution x∗ is
1/μ, and the probability of increasing Jmax by 1 through bit-wise mutation is at least
1
e (

1
mk)

k as analysed above. Therefore, in each generation, the probability of increasing

Jmax by 1 is at least 1−(1− 1
eμ (

1
mk)

k)cμ ≥ 1−e− c
e (1/mk)k ≥ c/(c+e(mk)k) , where

the inequalities hold by 1 + a ≤ ea for any a ∈ R. In each generation, the population
produces cμ offspring solutions, thus the expected number of fitness evaluations of the
first phase is at most (m/2) · cμ · (c + e(mk)k)/c = O(μmk+1kk).

The second phase is to find all internal Pareto front points. The analysis of the
second phase is similar to that of mOneMinMax. After finding an internal Pareto front
point, we first prove that the probability of not finding a specific internal Pareto front
point withinO(μn2) fitness evaluations is at most e−n. For any internal Pareto optimum
x, f2i−1(x) + f2i(x) = 2k + n′, and the value range is [2k, n′]. Hence, the size of
the internal Pareto front is (n′ − 2k + 1)m/2. By the union bound, the probability of
finding the whole internal Pareto front within O(μn2) fitness evaluations is at least
1 − (n′ − 2k + 1)m/2 · e−n = 1 − o(1).

The third phase is to find all extreme Pareto front points. Note that for any Pareto
optimum x, if there exists a block Bi such that |xBi

|1 ∈ {0, n′}, then we call x an
extreme Pareto optimum and xBi

an extreme block. Now, we use two bounds to show
the running time of the third phase.

First, we show that the expected number of fitness evaluations for finding all the
extreme points in the Pareto front is O(3m/2 · μnk). We divide the optimization pro-
cedure of the third phase into m/2 levels, and each solution in the i-th level contains
i extreme blocks. We first consider the running time of finding all the extreme Pareto
front points at level 1. After the second phase, all internal Pareto front points have been
found. Hence, for any block Bi, there exist at least σ1 := (n′ −2k+1)m/2−1 solutions
x such that |xBi

|1 = k. The probability of selecting such a solution as parent is at
least σ1/μ, and the probability of flipping k 1-bits to obtain y such that |yBi

|1 = 0 is
(1/nk) · (1− 1/n)n−k ≥ 1/(enk). The same result also applies for |xBi

|1 = n′ − k to
generate a solution y such that |yBi

|1 = n′. Therefore, in each generation, the probabil-

Running Time Analysis of SPEA2 305

ity of generating an extreme block is at least 1−(1−σ1/(eμnk))cμ ≥ 1−e−cσ1/(enk) ≥
cσ1/(cσ1 + enk), where the inequalities holds by 1 + a ≤ ea for any a ∈ R. Thus,
the expected number of fitness evaluations for generating an extreme block is at most
cμ · (cσ1 + enk)/cσ1 = O(μnk/σ1). Then, we consider finding all the solutions at
level 1 where Bi is an extreme block. This optimization process is similar to the second
phase, and the difference is no need to consider the block Bi. Therefore, the expected
number of fitness evaluations of this process is less than the second phase, which is
O(μn2). Because there can be m/2 positions with extreme blocks, and each extreme
block has 2 possible forms 0n′

and 1n′
, the expected number of evaluations for finding

all level 1 solutions is O(m/2 ·2 ·μnk/σ1)+O(m/2 ·2 ·μn2) = O(mμ(nk/σ1+n2)).
For other levels, the proof idea is similar, and the expected number of fitness evalua-
tions for finding all the Pareto front points at level i is O(

(
m/2

i

) · 2iμ(nk/σi + n2)),
where σi := (n′ − 2k + 1)m/2−i. Sum up the time from level 1 to level m/2, we have
O(

∑m/2
i=1

(
m/2

i

) · 2iμ(nk/σi + n2)) = O((2 + 1/(n′ − 2k + 1))m/2μnk + 3m/2μn2).
Since k ≤ n′/2, the inequality 1/(n′ − 2k + 1) ≤ 1 holds, implying that the expected
number of fitness evaluations for finding the extreme Pareto front is at mostO(3m/2nk).

Then we show that after the second phase, all the extreme Pareto front points can
be found in O(mμnk+1) number of evaluations with probability 1 − e−Ω(mn). After
the second phase, all internal Pareto front points have been found. Assume that a Pareto
front point v containing d extreme values (the objective value is k or n′+k) has not been
found, then there exists a solution x ∈ P such that except for the d extreme values of
v, the remaining objective values are all equal to v. Then, v could be extended from x
by generating d/2 extreme blocks. Let the random variable Xk, 1 ≤ k ≤ m/2, denote
the number of generations to generate the k-th extreme block. Let X :=

∑m/2
k=1 Xk. By

the analysis of extreme blocks, the probability of generating an extreme block in each
generation is at least c/(c + enk). Similar to the analysis of Eq. (3), by Theorem 1 in
[42], we have P (X ≥ mnk+1/c) ≤ e−Ω(mn). Thus, the probability that the population
contains no solution x with f(x) = v in cμ · (mnk+1/c) = mμnk+1 number of fitness
evaluations is at most e−Ω(mn). By the union bound, the probability of finding all the
extreme Pareto front points within mμnk+1 number of fitness evaluations is at most
1− ((n′ −2k+3)m/2 − (n′ −2k+1)m/2) ·e−Ω(mn) ≥ 1−nm/2e−Ω(mn) = 1−o(1).
Finally, combining the two bounds, the third phase needs O(μnk · min{mn, 3m/2})
expected number of fitness evaluations.

Combining the three phases, the upper bound on the expected number of fit-
ness evaluations for finding the whole Pareto front is O(μmk+1kk + μn2 + μnk ·
min{mn, 3m/2}) = O(μnk · min{mn, 3m/2}). ��

Theorem 3 shows that for any MOEA preserving the non-dominated set, the
expected number of fitness evaluations for solving the mOneJumpZeroJump problem
is O(μnk · min{mn, 3m/2}). Note that when m is a constant, the expected number of
fitness evaluations is O(μnk). Conversely, if the number m of objectives is large, e.g.,
m = n/4, the expected number of fitness evaluations is O(μnk+2).

306 S. Ren et al.

4 Application to Running Time Analysis of SPEA2

In this section, we first show that when the archive size of SPEA2 is large enough,
SPEA2 can preserve the non-dominated set. Then, we apply the results in the previous
section, i.e., Theorems 1, 2 and 3, to derive the running time of SPEA2.

4.1 Large Archive Preserves Non-Dominated Solutions

Throughout the process of SPEA2, the next population P consists of the mutated indi-
viduals from the archive A. That is, the archive A in SPEA2 actually plays the role
of population, while the population P acts as offspring. We now show that when the
archive size μ̄ is always at least the maximum cardinality of the set of non-dominated
solutions having different objective vectors for any m-objective function f , SPEA2 will
preserve the non-dominated set on f .

Lemma 4. For SPEA2 solving f , let S denote the non-dominated set of solutions in
the union of the population P and archive A. If the size μ̄ of archive is always no less
than |f(S)|, then SPEA2 preserves the non-dominated set.

Proof. Consider that all the non-dominated solutions in P ∪ A have been added to
A′ (line 4 of Algorithm 1). If the size of A′ is at most μ̄, then all the non-dominated
solutions will survive to the next generation. Thus, the lemma holds. If the size of A′

is larger than μ̄ (i.e., |S| > μ̄), SPEA2 will use the truncation operator to remove the
redundant solutions one by one, until |A′| = μ̄. Let Dz = {y ∈ A′ | f(z) = f(y)}.
Since μ̄ is at least |f(S)| and |S| > μ̄, there exists z ∈ A′ such that |Dz | > 1.
Note that σ1

x > 0 if |Dx | = 1, and σ1
x = 0 if |Dx | > 1. Hence, if |Dx | = 1, then

σ1
x > 0 = σ1

z , implying that z ≤d x. Thus, z will be removed before x, which implies
that the non-duplicated solutions (regarding the objective vectors) will not be removed
from A′. Therefore, the lemma holds. ��

By Lemma 4, we can set the size of the archive A accordingly, so that SPEA2
preserves the non-dominated set, which then allows us to apply Theorems 1 to 3 to
derive the expected running time of SPEA2.

4.2 Running Time of SPEA2 on Benchmark Problems

Let S denote the set of non-dominated solutions in the union of the popu-
lation P and archive A. In the following, we will give the maximum values
of |f(S)| when SPEA2 solves mOneMinMax, mLeadingOnesTrailingZeroes and
mOneJumpZeroJump, respectively, so as to determine the size of the archive. Then, by
applying Lemma 4, we provide the expected number of fitness evaluations for SPEA2
finding the Pareto front.

Theorem 5. For SPEA2 solving mOneMinMax, if the size μ̄ of the archive is at least
(2n/m + 1)m/2, uniform selection is employed to select parent solutions, and bit-wise
mutation or one-bit mutation is employed to generate offspring solutions, the expected
number of fitness evaluations for finding the Pareto front is O(μn · min{m log n, n}).

Running Time Analysis of SPEA2 307

Proof. Because any solution is Pareto optimal, |f(S)| is always at most the size of the
Pareto front. By Definition 3, the size of the Pareto front is (2n/m + 1)m/2, implying
that |f(S)| ≤ (2n/m + 1)m/2. According to Lemma 4 and Theorem 1, if the size μ̄ of
the archive in SPEA2 is at least (2n/m + 1)m/2, the whole Pareto front can be found
in O(μ̄n · min{m log n, n}) expected number of fitness evaluations. ��
Theorem 6. For SPEA2 solving mLeadingOnesTrailingZeroes, if the size μ̄ of the
archive is at least (2n/m+1)m−1, uniform selection is employed to select parent solu-
tions, and bit-wise mutation or one-bit mutation is employed to generate offspring solu-
tions, the expected number of fitness evaluations for finding the Pareto front is O(μn2).

Proof. By Lemma 4.2 in [36], the maximum cardinality of the set of non-
dominated solutions having different objective vectors is at most (2n/m + 1)m−1

for mLeadingOnes-Trailingzeroes, implying |f(S)| ≤ (2n/m + 1)m−1. According
to Lemma 4 and Theorem 2, if the size μ̄ of the archive in SPEA2 is no less than
(2n/m + 1)m−1, the whole Pareto front can be found in O(μ̄n2) expected number of
fitness evaluations. ��
Theorem 7. For SPEA2 solving mOneJumpZeroJump, if the size μ̄ of the archive is at
least (2n/m − 2k + 3)m/2, uniform selection is employed to select parent solutions,
and bit-wise mutation is employed to generate offspring solutions, the expected number
of fitness evaluations for finding the Pareto front is O(μnk · min{mn, 3m/2}).
Proof. By Lemma 3 in [48], if k ≤ n′/2, the maximum cardinality of the set of
non-dominated solutions having different objective vectors is at most (2n/m + 1)m/2

for mOneJump-ZeroJump, implying |f(S)| ≤ (2n/m − 2k + 3)m/2. According to
Lemma 4 and Theorem 3, if the archive size μ̄ ≥ (2n/m−2k+3)m/2, the Pareto front
can be found in O(μnk · min{mn, 3m/2}) expected fitness evaluations. ��

5 Application to Other Algorithms

In this section, we show that Theorems 1, 2 and 3 can be applied to other MOEAs
(including SEMO, NSGA-II, SMS-EMOA, etc.) to derive their expected running time,
which are consistent with previous results.

mOneMinMax: For the bi-objective OneMinMax problem (i.e., mOneMinMax with
m = 2), Giel and Lehre proved that the expected number of fitness evaluations for
SEMO finding the Pareto front is O(μn2) = O(n3), where the equality holds by μ ≤
n + 1. Zheng et al. [46] proved that for a population size μ exceeding 4 times the
Pareto front size (i.e., μ ≥ 4(n + 1)), NSGA-II preserves the non-dominated set. the
Pareto front can be found in O(μn log n) = O(n2 log n) expected number of fitness
evaluations. Similarly, Bian et al. [6] and Nguyen et al. [35] proved that when the
population size is greater than the Pareto front size (i.e., n + 1), both SMS-EMOA
and (μ + 1)SIBEA preserve the non-dominated set on OneMinMax, resulting in an
expected number of fitness evaluations of O(μn log n). These results are all consistent
with Theorem 1. For mOneMinMax with large constant m, Andre et al. [36] proved
that NSGA-III preserves the non-dominated set, if it employs a set of reference points

308 S. Ren et al.

Rp with p ≥ 4n
√

m. With a population size of μ ≥ (2n/m + 1)m/2, the expected
number of fitness evaluations is O(μn log n), which is consistent with Theorem 1.

mLeadingOnesTrailingZeroes: For the bi-objective LeadingOnesTrailingZeroes
problem (i.e.,mLeadingOnesTrailingZeroes withm = 2), Laumanns [30] and Giel [26]
proved that the expected number of fitness evaluations for SEMO and GSEMO find-
ing the Pareto front is O(n3). Brockhoff [7] proved that when the population size
is no less than the Pareto front size (i.e., n + 1), (μ + 1)SIBEA preserves the non-
dominated set on LeadingOnesTrailingZeroes, the Pareto front can be found in O(μn2)
expected number of fitness evaluations. Zheng et al. [46] proved that for the popula-
tion size at least 4(n + 1), NSGA-II preserves the non-dominated set and the expected
number of fitness evaluations is also O(μn2) = O(n3). These results are all con-
sistent with Theorem 2. For m ≥ 4, Laumanns [30] proved that the expected run-
ning time of SEMO is O(nm+1), which is consistent with the result in Theorem
2, because the maximal population size before finding the Pareto front is at most
(2n/m + 1)m−1 ≤ nm−1. Andre et al. [36] proved that NSGA-III preserves the non-
dominated set on mLeadingOnesTrailingZeroes, if it employs a set of reference points
Rp with p ≥ 4n

√
m. With a population size of μ ≥ (2n/m + 1)m−1, the expected

number of fitness evaluations is O(μn2), which is consistent with Theorem 2.

mOneJumpZeroJump: For the bi-objective OneJumpZeroJump problem (i.e., m-
OneJumpZeroJump with m = 2), Doerr et al. [22] proved that the expected number of
fitness evaluations for GSEMO finding the Pareto front is O(μnk) = O((n − 2k)nk),
where the equality holds by μ ≤ n − 2k + 3. When the population size is at least
4(n−2k+3) for NSGA-II [19] and (n−2k+3) for SMS-EMOA [6], both algorithms
preserve the non-dominated set on mOneJumpZeroJump and can find the Pareto front
within O(μnk) expected number of fitness evaluations. These results are all consistent
with Theorem 3. For m ≤ log n, Zheng and Doerr [48] proved that when the popula-
tion size is at least (2n/m − 2k + 3)m/2, SMS-EMOA preserves the non-dominated
set and can find the Pareto front within O(Mμnk) expected number of fitness evalua-
tions, where M = (2n/m − 2k + 3)m/2, while Theorem 3 shows that any MOEA that
can preserve the non-dominated set can find the Pareto front in O(3m/2μnk) expected
number of fitness evaluations, implying a tighter bound.

6 Conclusion and Discussion

In this paper, we give general theorems for analyzing the expected running time of
MOEAs on the three common benchmark problemes, mOneMinMax, mLeadingOnes-
Trailingzeroes and mOneJumpZeroJump. These theorems show that if the population
of MOEAs preserves the objective vectors of non-dominated solutions, their running
time can be upper bounded. We apply them to derive the expected running time of
SPEA2 for the first time, and also to analyze other MOEAs, deriving results consis-
tent with previously known ones. We hope these theorems can be useful for theoretical
analysis of MOEAs in the future. The theorems also suggest that when the population
size is large enough, the analytical behavior of MOEAs may tend to be similar. Thus, it
would be interesting to analyze the approximation performance of MOEAs with small
populations, to better understand their differences.

Running Time Analysis of SPEA2 309

In a parallel theoretical work, Wietheger and Doerr [41] proved near-tight run-
ning time guarantees for GSEMO on mOneMinMax, mCountingOnesCountingZeroes,
mLeadingOnesTrailingZeroes, and mOneJumpZeroJump, and also transferred similar
bounds to SEMO, SMS-EMOA, and NSGA-III. Their proof techniques are superior
and the bounds are tighter, as they not only considered the probability p of not finding
any Pareto front point within T generations but also refined this process by consider-
ing each block individually. They considered the probability p′ of not achieving the
optimization goal for each block within the given time. Using the union bound, they
showed p ≤ m′p′, where m′ is the number of blocks. Let M be the size of the Pareto
front. Then, the probability of finding the entire Pareto front within T generations is at
least 1 − Mp ≥ 1 − Mm′p′. Their analysis of the optimization of blocks using the
union bound allowed them to obtain tighter time bounds.

Acknowledgments. The authors want to thank the anonymous reviewers for their helpful com-
ments and suggestions. This work was supported by the National Science and Technology Major
Project (2022ZD0116600) and National Science Foundation of China (62276124). Chao Qian is
the corresponding author. The supplementary is available at arXiv.

References

1. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolution-
ary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on
dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

3. Bian, C., Qian, C.: Better running time of the non-dominated sorting genetic algorithm II
(NSGA-II) by using stochastic tournament selection. In: Proceedings of the 17th Interna-
tional Conference on Parallel Problem Solving from Nature (PPSN 2022), Dortmund, Ger-
many, pp. 428–441 (2022)

4. Bian, C., Qian, C., Tang, K.: A general approach to running time analysis of multi-objective
evolutionary algorithms. In: Proceedings of the 27th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2018), Stockholm, Sweden, pp. 1405–1411 (2018)

5. Bian, C., Ren, S., Li, M.Q., Qian, C.: An archive can bring provable speed-ups in multi-
objective evolutionary algorithms. In: Proceedings of the 33rd International Joint Conference
on Artificial Intelligence (IJCAI 2024), Jeju Island, South Korea (2024, to appear)

6. Bian, C., Zhou, Y., Li, M., Qian, C.: Stochastic population update can provably be helpful
in multi-objective evolutionary algorithms. In: Proceedings of the 32nd International Joint
Conference on Artificial Intelligence (IJCAI 2023), Macao, SAR, China, pp. 2191–2197
(2023)

7. Brockhoff, D., Friedrich, T., Neumann, F.: Analyzing hypervolume indicator based algo-
rithms. In: Proceedings of the 10th International Conference on Parallel Problem Solving
from Nature (PPSN 2008), Dortmund, Germany, pp. 651–660 (2008)

8. Cerf, S., Doerr, B., Hebras, B., Kahane, Y., Wietheger, S.: The first proven performance
guarantees for the non-dominated sorting genetic algorithm II (NSGA-II) on a combinato-
rial optimization problem. In: Proceedings of the 32nd International Joint Conference on
Artificial Intelligence (IJCAI 2023), Macao, SAR, China, pp. 5522–5530 (2023)

9. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving
Multi-objective Problems. Springer, New York (2007). https://doi.org/10.1007/978-0-387-
36797-2

https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2

310 S. Ren et al.

10. Covantes Osuna, E., Gao, W., Neumann, F., Sudholt, D.: Design and analysis of diversity-
based parent selection schemes for speeding up evolutionary multi-objective optimisation.
Theoret. Comput. Sci. 832, 123–142 (2020)

11. Dang, D.C., Opris, A., Salehi, B., Sudholt, D.: Analysing the robustness of NSGA-II under
noise. In: Proceedings of the 25th ACM Conference on Genetic and Evolutionary Computa-
tion (GECCO 2023). Lisbon, Portugal, pp. 642–651 (2023)

12. Dang, D.C., Opris, A., Salehi, B., Sudholt, D.: A proof that using crossover can guarantee
exponential speed-ups in evolutionary multi-objective optimisation. In: Proceedings of the
37th AAAI Conference on Artificial Intelligence (AAAI 2023), Washington, DC, pp. 12390–
12398 (2023)

13. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. Wiley, Chichester
(2001)

14. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-
point-based nondominated sorting approach, part I: solving problems with box constraints.
IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

16. Doerr, B.: Analyzing randomized search heuristics via stochastic domination. Theoret. Com-
put. Sci. 773, 115–137 (2019)

17. Doerr, B., Gao, W., Neumann, F.: Runtime analysis of evolutionary diversity maximization
for OneMinMax. In: Proceedings of the 18th ACM Conference on Genetic and Evolutionary
Computation (GECCO 2016), Denver, CO, pp. 557–564 (2016)

18. Doerr, B., Kodric, B., Voigt, M.: Lower bounds for the runtime of a global multi-objective
evolutionary algorithm. In: Proceedings of the 2013 IEEE Congress on Evolutionary Com-
putation (CEC 2013), pp. 432–439 (2013)

19. Doerr, B., Qu, Z.: A first runtime analysis of the NSGA-II on a multimodal problem. IEEE
Trans. Evol. Comput. 27, 1288–1297 (2023)

20. Doerr, B., Qu, Z.: From understanding the population dynamics of the NSGA-II to the first
proven lower bounds. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence
(AAAI 2023), Washington, DC, pp. 12408–12416 (2023)

21. Doerr, B., Qu, Z.: Runtime analysis for the NSGA-II: provable speed-ups from crossover. In:
Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI 2023), Washing-
ton, DC, pp. 12399–12407 (2023)

22. Doerr, B., Zheng, W.: Theoretical analyses of multi-objective evolutionary algorithms on
multi-modal objectives. In: Proceedings of the 35th AAAI Conference on Artificial Intelli-
gence (AAAI 2021), Virtual, pp. 12293–12301 (2021)

23. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2015).
https://doi.org/10.1007/978-3-662-44874-8

24. Friedrich, T., Hebbinghaus, N., Neumann, F.: Plateaus can be harder in multi-objective opti-
mization. Theoret. Comput. Sci. 411(6), 854–864 (2010)

25. Friedrich, T., Horoba, C., Neumann, F.: Illustration of fairness in evolutionary multi-
objective optimization. Theoret. Comput. Sci. 412(17), 1546–1556 (2011)

26. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In: Pro-
ceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC 2003), vol. 3, pp.
1918–1925 (2003)

27. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimiza-
tion. In: Proceedings of the 8th ACM Conference on Genetic and Evolutionary Computation
(GECCO 2006), Seattle, WA, pp. 651–658 (2006)

28. Horoba, C.: Analysis of a simple evolutionary algorithm for the multiobjective shortest path
problem. In: Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic
algorithms (FOGA 2009), Orlando, FL, pp. 113–120 (2009)

https://doi.org/10.1007/978-3-662-44874-8

Running Time Analysis of SPEA2 311

29. Huang, Z., Zhou, Y., Luo, C., Lin, Q.: A runtime analysis of typical decomposition
approaches in MOEA/D framework for many-objective optimization problems. In: Proceed-
ings of the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021), Vir-
tual, pp. 1682–1688 (2021)

30. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective evolutionary
algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput. 8(2), 170–182 (2004)

31. Liang, J., et al.: An evolutionary multiobjective method based on dominance and decomposi-
tion for feature selection in classification. SCIENCE CHINA Inf. Sci. 67(2), 120101 (2024)

32. Lu, T., Bian, C., Qian, C.: Towards running time analysis of interactive multi-objective evo-
lutionary algorithms. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence
(AAAI 2024), Vancouver, Canada (2024, in press)

33. Neumann, F.: Expected runtimes of a simple evolutionary algorithm for the multi-objective
minimum spanning tree problem. Eur. J. Oper. Res. 181(3), 1620–1629 (2007)

34. Neumann, F., Theile, M.: How crossover speeds up evolutionary algorithms for the multi-
criteria all-pairs-shortest-path problem. In: Proceedings of the 11th International Conference
on Parallel Problem Solving from Nature (PPSN 2010), Krakov, Poland, pp. 667–676 (2010)

35. Nguyen, A.Q., Sutton, A.M., Neumann, F.: Population size matters: rigorous runtime results
for maximizing the hypervolume indicator. Theoret. Comput. Sci. 561, 24–36 (2015)

36. Opris., A., Dang., D.C., Sudholt, D.: Runtime analyses of NSGA-III on many-objective prob-
lems. CORR abs/2404.11433 (2024)

37. Qian, C., Tang, K., Zhou, Z.H.: Selection hyper-heuristics can provably be helpful in evo-
lutionary multi-objective optimization. In: Proceedings of the 14th International Conference
on Parallel Problem Solving from Nature (PPSN 2016), Edinburgh, Scotland, pp. 835–846
(2016)

38. Qian, C., Yu, Y., Zhou, Z.: An analysis on recombination in multi-objective evolutionary
optimization. In: Proceedings of the 13th ACM Conference on Genetic and Evolutionary
Computation (GECCO 2011), Dublin, Ireland, pp. 2051–2058 (2011)

39. Ren, S., Qiu, Z., Bian, C., Li, M.Q., Qian, C.: Maintaining diversity provably helps in evolu-
tionary multimodal optimization. In: Proceedings of the 33rd International Joint Conference
on Artificial Intelligence (IJCAI 2024), Jeju Island, South Korea (2024, to appear)

40. Wietheger, S., Doerr, B.: A mathematical runtime analysis of the non-dominated sorting
genetic algorithm III (NSGA-III). In: Proceedings of the 32nd International Joint Conference
on Artificial Intelligence (IJCAI 2023), Macao, SAR, China, pp. 5657–5665 (2023)

41. Wietheger, S., Doerr, B.: Near-tight runtime guarantees for many-objective evolutionary
algorithms. CORR abs/2404.12746 (2024)

42. Witt, C.: Fitness levels with tail bounds for the analysis of randomized search heuristics. Inf.
Process. Lett. 114(1–2), 38–41 (2014)

43. Yang, P., Zhang, L., Liu, H., Li, G.: Reducing idleness in financial cloud via multi-objective
evolutionary reinforcement learning based load balancer. Sci. China Inf. Sci. 67(2), 120102–
(2024)

44. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposi-
tion. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

45. Zheng, W., Doerr, B.: Better approximation guarantees for the NSGA-II by using the current
crowding distance. In: Proceedings of the 24th ACM Conference on Genetic and Evolution-
ary Computation (GECCO 2022), Boston, MA, pp. 611–619 (2022)

46. Zheng, W., Doerr, B.: Mathematical runtime analysis for the non-dominated sorting genetic
algorithm II (NSGA-II). Artif. Intell. 325, 104016 (2023)

47. Zheng, W., Doerr, B.: Runtime analysis for the NSGA-II: proving, quantifying, and explain-
ing the inefficiency for many objectives. IEEE Trans. Evol. Comput. (2023, in press)

312 S. Ren et al.

48. Zheng, W., Doerr, B.: Runtime analysis of the SMS-EMOA for many-objective optimiza-
tion. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024),
Vancouver, Canada, pp. 20874–20882 (2024)

49. Zhou, Z.H., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories and Algorithms.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5956-9

50. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary
algorithm. TIK report 103 (2001)

https://doi.org/10.1007/978-981-13-5956-9

(Evolutionary) Machine Learning
and Neuroevolution

Population-Based Algorithms Built
on Weighted Automata

Gijs Schröder , Inge Wortel , and Johannes Textor(B)

Institute for Computing and Information Sciences, Radboud University,
Nijmegen, The Netherlands

{gijs.schroeder,inge.wortel,johannes.textor}@ru.nl

Abstract. Many algorithms in natural computing and computational
biology are population-based: genetic algorithms evolve candidate solu-
tions for optimization problems; artificial immune systems and learning
classifier systems maintain populations of rules. Using such algorithms at
very large population sizes (e.g., millions or billions) is computationally
expensive. Here, we develop a methodology for implementing population-
based models using weighted finite state machines (WFSMs) with exact
rational weights. For populations that can be represented as weighted sets
of strings, WFSMs can reduce memory use and runtime of population-
based algorithms by orders of magnitude. We demonstrate the generality
of our approach by constructing an immune-inspired anomaly detector
for string data and an evolutionary algorithm that solves Boolean satis-
fiability problems. The WFSM approach allows repurposing of advanced
algorithms developed for natural language processing, and should be
applicable to other population-based algorithms such as learning clas-
sifier systems.

Keywords: Simulation tools · Regular languages · Weighted automata

1 Introduction

Many algorithms in computer science perform a search, optimization, or learning
procedure by maintaining and evolving a set of points in some kind of search
space. Such population-based algorithms [4] encompass nature-inspired meta-
heuristics like evolutionary algorithms (EAs) [18], ant colony optimization [3],
particle swarm optimization [14], and artificial immune systems [33], but are
not only used in natural computing: various more classical algorithms such as
the approximate Bayesian computation method for parameter inference [28] or
simulated annealing can also be viewed as population-based.

This paper focuses on populations that can be represented as sets of strings
with associated weights, such as, for instance, EAs with real-valued fitness func-
tions. We ask a simple question: how can we efficiently implement such algo-
rithms when the population sizes are very large—say, in the millions? While
small populations are fine in some cases (even a simple 1+1-EA successfully
solves many problems), large populations can be required to tackle complex,
high-dimensional problems in many areas, such as anomaly detection by immune-
inspired classifier systems [29].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 315–332, 2024.
https://doi.org/10.1007/978-3-031-70071-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_20&domain=pdf
http://orcid.org/0000-0001-6803-3237
http://orcid.org/0000-0003-3362-5229
http://orcid.org/0000-0002-0459-9458
https://doi.org/10.1007/978-3-031-70071-2_20

316 G. Schröder et al.

An obvious approach to deal with large populations is parallelization, which
is typically straightforward and achieves linear runtime improvement. Here we
use a different approach that has been much less explored: population compres-
sion. While being more difficult to implement, it can, in some cases, achieve
superlinear or even exponential gains [20]. To our knowledge, the idea of popu-
lation compression first appeared in the field of artificial immune systems (AIS)
[11], where it was used to build the first polynomial-time immune-inspired clas-
sification algorithms, a feat that had previously been considered unachievable
as it was thought to be an NP-hard problem [32]. In these algorithms, pop-
ulation compression is achieved by representing the “detectors” comprising the
population—which are simply strings—as a finite state machine (FSM). For large
string sets with regular structure, FSMs can be exponentially smaller than an
explicit list of the population. Recently, the FSM approach was used to build a
computational model of T cell populations in the human immune system that
contained tens of millions of “detectors” and processed the entire human pro-
teome as input [35].

It is not straightforward to use FSM-based population compression meth-
ods in other population-based algorithms as existing methods are still relatively
limited. Crucially, FSMs represent populations as sets without multiplicity. This
means that all individuals in the population are qualitatively equal, limiting the
types of operations that can be performed on them. For instance, in an EA, we
may wish to sample new candidates for reproduction in a fitness-dependent man-
ner; this kind of operation is not supported by existing FSM-based approaches.

In this paper, we will extend population compression methods developed for
AIS in a manner that makes them useable for more general population-based
algorithms. Specifically, we offer the following contributions:

1. We present a population compression approach based on weighted FSMs
(WFSMs) with rational edge weights (Sect. 3). This approach allows us to
augment the compressed population with important information such as mul-
tiplicity or fitness.

2. We use WFSMs to implement a weighted version of positive selection, a
key AIS classification algorithm, and show that the addition of weights can
lead to higher accuracy and robustness compared to the unweighted baseline
(Sect. 4.2).

3. We use WFSMs to implement an EA that solves the Boolean satisfiability
problem (Sect. 5.2).

We have implemented our WFSM-based algorithms in C++, making heavy
use of the library OpenFST [1]. An implementation is available for download at
Zenodo [27].

2 Background

We consider strings x over some finite alphabet Σ. E.g., x = 0010 ∈ {0, 1}4
is a string consisting of 4 binary characters and x3 = 1 is its third character.

Population-Based Algorithms Built on Weighted Automata 317

The symbol � is always the length of some string. We write |S| to denote the
cardinality of a set S.

A population is a set of strings—e.g., the genotypes in an EA. A weighted
population consists of a population S and a mapping w : S �→ Q that associates
a rational number to each string in S (see Sect. 3 for why we choose rationals).
For clearer distinction, a population S is also called an unweighted population.
Unweighted populations are interchangeable with weighted populations with unit
weights.

The weights can have different interpretations: positive integer weights
could be used to simply store multiplicity of individuals in the population,
whereas fractional weights could represent each individual’s importance or fit-
ness. Weights in the interval (0, 1] could represent probabilities of being present
in the set.

In the following, let (S,wS), (T,wT), and (U,wU) each be weighted pop-
ulations. For simplicity, let wA(x) = 0 if x /∈ A and let f = g � h denote
f(x) = g(x) � h(x), where � is any operation. In a slight abuse of notation,
we define three binary operations for two populations (S,wS) (abbreviated as
S) and (T,wT) (abbreviated as T):

S � T = U is the sum of S and T , where U = S ∪ T and wU = wS + wT .
S ⩀ T = U is the product of S and T , where U = S ∩ T and wU = wS × wT .
S \ T = U is the set difference of S and T , where U = S \ T and wU = wS .
A weighted finite state machine (WFSM) over an alphabet Σ and a semiring

K is a 6-tuple M = (Q,E, σ, k, q0, F), where (Q,E) is a directed graph of states
as vertices, with initial state q0 ∈ Q and final states F ⊆ Q. Edges qi → qj are
labeled by characters σ : E �→ Σ and weights k : E �→ K. An example WFSM is
shown in Fig. 1B.

This M defines a language L(M) ⊆ Σ∗ and an associated function wM :
Σ∗ �→ K by its graph structure and edge labels. For q� ∈ F , an accepting path
π = q0 → . . . → q� is labeled x = σ(q0 → q1) . . . σ(q�−1 → q�) and has weight
k(π) =

∏�−1
j=0 k(qj → qj+1), where

∏
uses the product operator in K. The weight

wM (x) of a string x is the sum of all weights of accepting paths labeled with x,
or zero in absence of such paths.

A WFSM is deterministic if no two edges from the same source state are
labeled with the same character. A deterministic WFSM is called minimal if
it has the least number of states out of all deterministic WFSMs accepting
the same language and weights. To minimize a deterministic WFSM is to find
a corresponding minimal WFSM.

Ordinary FSMs without weight can be recovered from WFSMs by substitut-
ing for K the two-element Boolean algebra. If we let K = Q instead, then any
WFSM M defines a set of strings L(M) and an associated wM that together
constitute a weighted population. The three operations defined above can then
be implemented with weighted variants of union, intersection, and difference
constructions. Restricting ourselves to deterministic WFSMs, we can compress
these WFSMs by minimization.

318 G. Schröder et al.

2.1 Compressing Unweighted Populations

We now briefly review the existing approach from the AIS field where finite
state machines (FSMs) are used as compressed representations of populations.
This review delineates what this approach can already accomplish and where it
currently falls short.

The AIS algorithms we will consider are classifiers that are based on pop-
ulations of so-called detectors, where each detector is a string that represents
a small part of a set U (universe) of objects to classify. By extension, detector
populations can therefore represent (“cover”) subsets of U . Although this frame-
work is general and allows U to be any set, in this paper we focus on strings over
some alphabet Σ, where each string consists of � characters (U = Σ�).

In addition to the universe: U that represents the objects to be classified,
we define a set of detectors D; possibly U = D. A matching function m : D �→
2U , where 2U denotes the powerset of U , associates every detector with the
elements it recognizes. We define the inverse matching function m−1 : U �→ 2D

as m−1(x) = {d ∈ D | x ∈ m(d)}. In this setting, a population is simply a subset
of D.

Definition 1 (Matching Rules). Given an alphabet Σ and a string length �,
we define the following matching rules:

1. r-Contiguous matching: U = D = Σ�, mr(x) = {y ∈ U : ∃i ∈ {1, . . . , � − r +
1} : ∀j ∈ {i, . . . , i+r−1} : xj = yj}; in words, x and y have at least r identical
consecutive characters. The parameter r, called matching radius, controls the
number of strings each detector matches: increasing r means matching fewer
strings. This pattern matching rule is common in AIS.

2. r-Hamming matching: mr(x) = {y ∈ U : |{i : xi �= yi}| ≤ r}; in words, x
and y have at most r non-identical characters. Here, increasing the matching
radius r means matching more strings.

Using any such matching rule, we can build classification algorithms based
on detector populations. Inspired by the way that T cells are generated and
selected in real immune systems, there are two main population-based classifica-
tion algorithms that were studied in the AIS field. Both are so-called one-class
classification algorithms that take an input sequence S ∈ U∗ (also called self)
to construct a detector population P , which is then used to determine whether
the elements of a second input sequence T ∈ U∗ belong to the same class as the
elements of S:

Definition 2 (Positive and Negative Selection). For an input sequence S =
(s1, . . . , sn), S ∈ Un, a detector type D and a matching function m, we call a
detector population P ⊆ D
1. positively selected if P ⊆ ⋃

i m−1(si) is a set of detectors that match at least
one input string.

2. negatively selected if P ⊆ D \ ⋃
i m−1(si) is a set of detectors that do not

match any input string.

Population-Based Algorithms Built on Weighted Automata 319

Fig. 1. FSMs as compact representations of sets of strings. (A) FSMs encoding the
string set {a, b}� for � ∈ {1, 2, 3}. Although the string sets grow exponentially in size as
a function of �, FSM size is linear in �. (B) A weighted FSM, along with a table showing
the strings it contains and the associated weights for these strings. Path transitions are
labeled (character/weight). Each unique path represents a string (the concatenation of
every such character along the path) with its associated weight (the product of every
weight along the path).

A negatively (positively) selected population P is maximal if there is no strict
superset of P that is also negatively (positively) selected with respect to the same
input S. Given a population P and an element t ∈ U , we define the scoring
function P (y) = |P ∩ m−1(y)| as the number of detectors in P that match y.

For a positively selected population, the scoring function can be understood
as a normalcy score (a high value P (y) means that y is “similar to” S) whereas
for negative selection, the interpretation is the opposite (anomaly score). The
scores output by a positively or negatively selected population can be used for
threshold-based classification. Note that we did not define which specific detec-
tors are used, only which detectors could be in the population. A simple method
is generating detectors by rejection sampling. However, depending on the input,
rejection rates can be high [7,8], while at the same time huge populations can
be required to achieve acceptable classification results [29].

These issues motivated the development of population compression tech-
niques [11,12]. The basic idea is that FSMs can compactly represent large sets of
strings with shared structure (Fig. 1A). This representation has several advan-
tages. For any given population P , the smallest FSM that represents P can be
computed in polynomial time in the size of P . The operations that are required
to implement positively and negatively selected populations, such as union, inter-
section, set difference, and computation of cardinality, can all be efficiently per-
formed directly on the FSM representation. Since FSMs are generic data struc-
tures, this approach benefits from a large body of work done to develop efficient
FSM algorithms and high-quality, mature software implementations such as the
OpenFST framework [1]. The FSM-based approach can improve runtime by
orders of magnitude [30,31]. The key requirement is that we need to be able
to efficiently generate an FSM that represents the population m−1(si) (Defini-
tion 2); whether this is possible depends on the matching rule that is used.

If we are able to employ the FSM approach, we no longer need to gener-
ate populations by random sampling and can instead just directly use maximal
detector populations [30,31]. Interestingly, although positive and negative selec-

320 G. Schröder et al.

tion using randomly generated detectors can give different results, for many
matching rules this is not the case when maximal detector sets are used.

Remark 1. For the matching rules in Definition 1, positive and negative selection
with maximal detector sets are equivalent classifiers.

Proof. If P+ and P− are the maximal positively and negatively selected detector
populations w.r.t. an input S, then we have P+ ∪ P− = D and therefore |P+ ∩
m−1(y)| + |P− ∩ m−1(y)| = |m−1(y)|. Since |m−1(y)| is the same value for all
y ∈ U for the matching rules in Definition 1, the scoring function of negative
selection is a constant minus the scoring function of positive selection, and vice
versa.

Beyond positive and negative selection, further operations that could be per-
formed with FSM-compressed classifier populations include sampling from P or
incrementally modifying P [31]. However, some important limitations remain.
Crucially for classification tasks, negative and positive selection do not take into
account possible multiplicity of strings in the input sequences. In many real-world
cases, it is important to distinguish, say, an input element that occurs once in the
training data from another that occurs thousands of times. Moreover, AIS classi-
fiers process the entire input data only once. Many other population-based algo-
rithms modify the populations in more complex ways that require, for instance,
weighted sampling from the population or pruning of low-weight elements
from the population. Such operations are not supported by FSM-compressed
populations.

3 Weighted Population Compression

We extend the FSM-based population compression approach explained in the
previous section to weighted populations as defined in Sect. 2. We aim to
compress the weighted populations with WFSMs and to implement the three
weighted population operators using WFSM algorithms.

These WFSMs are preferably as small as possible. However, using conven-
tional floats for edge weights instead of rationals causes WFSMs to explode in
size with the number of operations performed on them. This is no minor issue;
for the algorithms described in the next section, this size explosion prevented
us from doing any testing on real data. We will demonstrate the issue and its
solution using a simple task.

In this simple task, a WFSM M is constructed to accept the language
{0, 1, 2}6 with unit weight for each string. Rather than constructing M directly,
single-string WFSMs are added successively in a binary tree recursion, minimiz-
ing intermediate and final WFSMs. This is similar to the procedure used for
weighted positive selection in Sect. 4.

Thanks to the minimization of the final result, even this indirect construction
should yield the minimal WFSM consisting of 7 states and 18 edges. In Fig. 2B,

Population-Based Algorithms Built on Weighted Automata 321

Fig. 2. Exact arithmetic helps keeping WFSMs small. (A) Weighted union between two
WFSMs, using exact and inexact arithmetic. With exact arithmetic the path weight
for bb is 1

7
× 7 = 1, which can be merged with ab’s path weight of 1 to obtain a

small WFSM (bottom left, blue). However, with inexact arithmetic this weight becomes
0.14×7 = 0.98, which cannot be merged like before, leading to a larger WFSM (bottom
right, red). (B) A (W)FSM accepting {0, 1, 2}6 is constructed by successive union of
single-string (W)FSMs in a binary tree recursion. With unweighted FSMs, compression
is achieved by minimization. With WFSMs with float weights, inaccuracies accumulate
and prevent states from being merged (red line). Exact rational artihmetic rescues the
desired behavior (blue line). Points show FSM sizes for different numbers of training
strings (with some jitter added in the x-direction to avoid overplotting). Lines show a
Loess smoothing of the data. (Color figure online)

we show how WFSM size grows with the number of strings contained in interme-
diate stages of computing M . An unweighted FSM implementation indeed con-
tains 7 states and 18 edges, whereas a WFSM implemented with float weights
produces a “minimal” M with 80 states and 237 edges. The issue stems from
a difference between minimizing unweighted FSMs and minimizing WFSMs. In
unweighted FSMs, two states can be merged into a single state if all of their edges
have the same character label and destination. In WFSMs—after redistributing
weights [25]—edges need also have the same weight label. This requirement is
hard to meet with inexact float arithmetic. Figure 2A (red line) demonstrates
how inexact arithmetic can lead to a increase in WFSM size.

Typical solutions for this problem with floats are quantization or using
approximate equality operators, both of which are implemented in OpenFST.
However, these strategies are ultimately unsuccessful at preventing error accu-
mulation when many repeated WFSM operations are performed, as will often
be necessary in population-based algorithms. Therefore, we instead implemented
weights using an exact rational representation from the Boost library [15], which
restored the equivalence with the unweighted FSM in the final output, with inter-
mediate stages being at most four times larger (Fig. 2B, blue line).

322 G. Schröder et al.

4 A WFSM-Based Artificial Immune System

We now apply the WFSM approach in two different ways. First, in this section,
we use it to construct a weighted version of an AIS classification algorithm, and
investigate its performance compared to the unweighted baseline. Second, in the
next section, we will use it to implement an EA.

4.1 Positive Selection Using WFSMs

Given the equivalence established by Remark 1, we focus our experiments on
positive selection. Consider the following weighted versions of the standard pos-
itive selection algorithm defined above:

For an input sequence S = (s1, . . . , sn) ∈ Un, a detector type D and a
matching function m, weighted positive selection uses the detector population
P =

⊎
i m−1(si) with weights w(d) = |{i : d ∈ m−1(si)}| where each detector

is weighted by the number of input samples it recognizes. The scoring function
Pw(t) assigns a normalcy score

∑
d∈P∩m−1(t) w(d) to every t ∈ U .

Algorithm 1: Weighted positive selection
input : Samples S = (s1, . . . , sk) ∈ Uk, T = (t1, . . . , tl) ∈ U l

output: Scores Dw(t) for each ti ∈ T
M ← ⊎n

i=1 M [si]
foreach i ∈ {1, . . . , l} do

output |M ⩀M [ti]|
end

We can implement weighted positive selection in a similar manner as done
previously for the unweighted version (Definition 2). An important prerequisite is
that for each input string s ∈ U , we are able to generate a WFSM M [s] containing
all detectors that recognize s with unit weights, i.e., wM [s](d) = 1(d ∈ m−1(s)), 1
being an indicator function. Earlier work shows how to construct such FSMs for
common matching rules [31]. Then we can implement weighted positive selection
as shown in Algorithm 1.

4.2 Probabilistic Classification

We now investigate whether and how this extension improves classifier perfor-
mance.

Standard unweighted negative and positive selection algorithms were based
on the assumption that the universe U of elements to be classified is disjointly
partitioned into “self” and “nonself” subsets. The goal was to estimate the bound-
ary between these two classes [13,32], which in theory can be solved perfectly
without taking the multiplicity of input strings into account: a single witness
string is enough to decide membership.

Population-Based Algorithms Built on Weighted Automata 323

Unfortunately, many real-world problems do not fit this assumption. For
example, suppose we were to distinguish language based on n-grams (short
sequences of letters). It is known that even short n-grams such as 3-grams contain
enough information to solve this task satisfactorily [9]. However, given enough
input text, almost every combination of 3 input letters likely occurs at least once
in the input regardless of the language (it has been pointed out that llj is not a
typical letter sequence in English but “only a killjoy would claim” it never occurs
[9]). This should make it critical to not only consider the presence or absence of
a string, but also its frequency. Interestingly, previous research has shown that
negative selection algorithms can nevertheless solve such problems reasonably
well [35]—but the amount of input text used in that study was relatively small.

One way to model the aforementioned type of classification problems is by
considering a “fuzzy membership function” f : x �→ [0, 1] that assigns a degree
of membership of each string to every class. Despite existing results on the per-
formance of negative selection on classification problems, we hypothesized that
unweighted AIS should perform poorly on such fuzzy problems.

To test our hypothesis, we first defined a very simple toy example of a fuzzy
classification problem. In this noisy bitstring problem, we consider random bit-
strings X(c, μ) where c ∈ {0, 1}� and 0 ≤ μ ≤ 1. X(c, μ) is generated by the
following algorithm: draw a random number x from a geometric distribution
with parameter 1 − μ. Let x′ = min(x, �). Flip x′ randomly chosen bits of c and
return the result. In particular, X(c, 0) is always c, and X(c, 1) is always the
bitwise complement of c.

One fuzzy classification problem is defined by membership functions f0 and
f1:

f0(x) = Prob(X(0�, μ) = x); f1(x) = Prob(X(1�, μ) = x)

Particularly, for 0 < μ < 1, every bitstring has a nonzero probability of occur-
rence in both X(c, 0) and X(c, 1), but for μ 1, we have for example that
f0(0�) � f1(0�). Our population D is now tasked with assigning a score D(t)
to every string such that the distributions D(X(0�, μ)) and D(X(1�, μ)) are as
different as possible—we will use the area under the receiver operating charac-
teristic curve (AUC) to measure this difference.

When simulating unweighted versions of positive selection, we found the
seemingly paradoxical effect that performance was reasonable for small input
samples, but then rapidly degraded for larger input samples (Fig. 3A, black line).
This occurred because with larger samples it became more and more likely to
find the center string of the “foreign” class in the input. By contrast, weighted
positive selection should not be “fooled” by such rare events because it can also
learn from the frequencies of patterns in the input strings. Indeed, while small
samples have little multiplicity and the two versions initially behaved very simi-
larly, the performance of weighted selection kept improving with larger samples
as expected (Fig. 3A, red line). Thus, we conclude that fuzzy classification prob-
lems can be difficult to solve using unweighted AIS classifiers, especially at large
sample sizes. Weighted positive selection performed better and was also more
robust to higher noise rates μ (Fig. 3B), which—similar to larger input sizes—

324 G. Schröder et al.

endanger performance by increasing the frequency of foreign-looking strings in
the training input.

A well-known problem with AIS classifiers is their sometimes extreme sensi-
tivity to the threshold parameter t that determines which strings are “similar”
[7,8,29,35]. We also found this effect for unweighted positive selection on noisy
bitstrings, where the “best” t additionally depended on input size (Fig. 3C). Inter-
estingly, we found that weighted positive selection was more robust to the choice
of t, with t = 2, 3, 4 now giving very similar performances throughout a range of
input sizes (Fig. 3D).

Fig. 3. Weighted and unweighted positive selection on the noisy bitstring problem.
Throughout, AUC (mean ± SEM) of 20 independent runs is shown for � = 8; default
values are μ = 0.6, t = 5, N = 250, and the test set contains 100 random samples per
class. Unweighted positive selection performs worse with increasing input size (A) and
at high noise (B). It is also more sensitive to the choice of the parameter t (C, D).
Dashed lines in (A,B) highlight the same parameter combination. Arrows represent
the values of μ and N for which the expected number of strings with a majority of
foreign bits in a training sample exceeds 1. (Color figure online)

These results suggest that on fuzzy classification problems, our weighted
WFSM-AISs outperform their unweighted counterparts and are less sensitive
to parameters like input size and detection threshold. The question remains:
was this an extreme example, or does the same apply to real-world datasets?

4.3 Language Anomaly Detection

We revisited the problem of language anomaly detection as considered previously
[35]. In that study, detector populations selected on English strings could detect
test strings from “anomalous“ languages among English strings reasonably well.
However, the training sets used were relatively small (< 1000 English strings,
using contiguous matching with t = 3)—small enough that foreign-looking 3-
grams are unlikely to appear in the training data. We therefore asked: would the
performance of such an unweighted AIS degrade as “unlikely” letter patterns do
start to appear among English training strings?

To test this hypothesis, we downloaded the published set of strings from [35],
as well as ∼800,000 English strings from the King James bible for training. From
these data, we extracted 3-letter strings, and used our WFSM-AIS to perform
both weighted and unweighted positive selection trained on randomly sampled

Population-Based Algorithms Built on Weighted Automata 325

inputs of up to 50,000 English strings. When detecting Latin among English
strings, we found that weighted positive selection outperforms its unweighted
counterpart at large input sizes (Fig. 4A,B).

The input size where unweighted selection starts to perform badly depended
on the threshold t; unlikely 2-grams might appear even in relatively small train-
ing sets of ∼100 strings, whereas the most unlikely 3-grams are rare enough
that they do not appear in training sets of up to ∼1000 strings. Nevertheless,
even these rare patterns eventually caused the performances of the weighted and
unweighted AISs to diverge as inputs reach a size of several thousands of strings
(Fig. 4A,B). Similar results were observed when substituting different languages
for the anomalous strings (Fig. 4C). The size of the effect depended on the gen-
eral similarity between English and the “anomalous” language considered—in line
with the intuition that adding weights should not help learn a difference that is
not there, such as when comparing English to more English.

All in all, our results demonstrate that when anomalous inputs have a non-
zero probability to appear among training data, unweighted AISs perform poorly
as the training set size increases. By contrast, weighted AISs are able to circum-
vent this issue by learning the information contained in the multiplicity in the
training data. These findings suggest that weights will be crucial when applying
AISs to real-world datasets.

5 A WFSM-Based Evolutionary Algorithm

We now turn our attention to applying the WFSM approach to a different kind
of algorithm. We design a simple EA that we apply to solve Boolean satisfiability
problems.

The Boolean satisfiability problem is to decide whether a given Boolean for-
mula has a truth assignment over its variables such that the formula is satisfied.
For our purposes, we define these problems as a set of n clauses, where each
clause is a set of literals, with literals being integers in 1, . . . , � or −1, . . . ,−�.
A truth assignment x is a string in {0, 1}�. Such an x satisfies a clause c when
there is some literal l in c, such that x|l| is 1 if l is positive and 0 if negative.
Otherwise, the clause is falsified. If there is an x that satisfies all of a problem’s
clauses, then the problem is satisfiable.

Most Boolean satisfiability problems are NP-hard, but some randomized
search heuristics, such as the WalkSAT algorithm [26], perform decently. In the
next section, we use WFSMs to devise a novel approach to tackle such problems.

326 G. Schröder et al.

Latin, t = 2

0.5

0.6

0.7

0.8

0.9
A

U
C

unweighted

weighted

A
English−
English

C
English−
medieval English

English−
Plautdietsch

Latin, t = 3

0.5

0.6

0.7

0.8

0.9

101 102 103 104

training strings

A
U

C

B
English−
Hiligaynon

101 102 103 104

training strings

English−
Tagalog

101 102 103 104

training strings

English−
Xhosa

101 102 103 104

training strings

Fig. 4. Language anomaly detection performance of a positive selection algorithm
drops for large training sets and is rescued by adding weights. 3-grams were extracted
from Latin or English strings, and (un)weighted positive selection performed with t-
contiguous matching against English strings for t = 2 (A) or t = 3 (B). Plots show the
AUC (mean ± SEM) of 20 independent runs for 100 test strings from each language.
English-English (C, top left) is a negative control experiment where both “normal” and
“anomalous” strings are taken from the same language.

5.1 A WFSM-Based Algorithm for Boolean Satisfiability Problems

The central idea behind our WFSM-based approach is best explained when com-
pared to our baseline, the well-known 1+1-EA that uses a population P = {x}
of size 1. In each step, each letter x is changed to a random other letter with
mutation probability pm, and x is replaced by x′ if w(x′) > w(x). Though simple,
the 1+1-EA can be very effective, and more sophisticated EAs do not necessar-
ily outperform it [5]. However, a potential issue for the 1+1-EA on satisfiability
problems is the glassiness of the solution space that some problems can exhibit
[22]. Glassy problems have a rugged fitness landscape full of local minima, which
the 1+1-EA could take a long time to escape from.

Our WFSM-based approach is based on the following idea: instead of moving
through the fitness landscape along individual trajectories, we can explore entire
subregions at once by constructing Hamming balls centered at a given candidate
solution and jointly evaluating the fitness of all strings in this Hamming ball.

This joint evaluation proceeds as follows. For each clause ci for i ∈ {1, . . . , n}
we preconstruct a WFSM Li that accepts local solutions: all strings that satisfy
the corresponding clause with unit weights. Then

⊎n
i=1(Li ⩀ B), with B being

our Hamming ball, results in a WFSM that contains all strings in B solving at
least one clause, with a weight equal to the number of clauses solved. Each Li

is pre-constructed by taking the complement of the easily constructed WFSM
that accepts strings that falsify ci.

Algorithm 2 outlines an FSM-based EA that capitalizes on this idea. Similar
to an EA, the algorithm proceeds in rounds where in each round a candidate for

Population-Based Algorithms Built on Weighted Automata 327

Algorithm 2: WFSM-based evolutionary algorithm for Boolean satisfia-
bility
input : Clauses c1, . . . , cn, Hamming radius r, pruning fraction p.
output: A string satisfying all clauses.
for i ∈ 1, . . . , n do

Li ← Σ� \ {x : x falsifies ci}
end
s ← sampled string from one of the Li

P ← ⊎n
i=1 (Li ⩀ {s})

while heaviest string in P weighs less than n do
s ← sampled string from P
B ← Hamming ball around s with radius r, unit weights
E ← ⊎n

i=1 (Li ⩀B)
P ← (P \ E) � E
P ← prune(P, p)

end
output heaviest string in P

“reproduction” is selected (sampled) proportionally to its fitness. The Hamming
ball around the chosen string is expanded (reproduction), the fitness of all off-
spring is evaluated, and the offspring is inserted into the population. At the end
of each round, a pruning is performed that removes all strings whose weights
are lower than p times the maximum fitness. Note that, unlike in most EAs, the
population size of this algorithm is not fixed.

5.2 The WFSM-Based Algorithm Escapes Local Optima

We investigated a collection of difficult satisfiability problems from SATLIB
called “Uniform Random-3-SAT” [17]. This collection consists of randomly gen-
erated problems with a fixed number of clauses and variables that are unusually
difficult to solve [6,23]. We expected such problems to have a glassy solution
landscape [19], and hypothesized that an EA operating in such a landscape
might benefit from Algorithm 2’s ability to support large population sizes.

We selected four satisfiable problems with 50 variables and 218 clauses at
random from the “Uniform Random-3-SAT” collection to run our EAs on. We
performed six runs of both EAs on each problem, cutting them short if no
solution is found in ten minutes. Algorithm 2 and the 1+1-EA both find strings
that solve at least 210 of the clauses within seconds (Fig. 5A). In all runs, our
1+1-EA got stuck in a local optimum after these first seconds. Algorithm 2 finds
new optima comparatively quickly. When Algorithm 2 finds a new optimum, its
population size falls (Fig. 5B), because the pruning step removes strings that
solve too few clause with respect to the newly found best string. During a stall,
the population grows, building up an increasingly large repository of high fitness
strings from which to expand further.

A single “clutch” of offspring consists of 20876 strings, whose fitness is eval-
uated concurrently in n + 1 automata operations. However, this large amount

328 G. Schröder et al.

Fig. 5. Algorithm 2’s population expands out of local optima. (A) Algorithm 2 (r = 3,
p = 0.99) and a 1+1-EA (pm = 0.02) running on four Boolean satisfiability problems.
Jitter is added in the y direction and the y-axis is interrupted at 210 clauses. The
diamond in the top right indicates a run for which in (B) population size is shown.
Vertical dotted lines indicate when more clauses are satisfied. (C) Cumulative number
of fitness evaluations for runs in the rightmost subplot of (A), counting two evaluations
of the same string twice. Jitter is added in the y direction.

of simultaneous fitness evaluations alone does not explain why Algorithm 2 find
the optimum faster; in fact, the 1+1-EA performs two orders of magnitude more
fitness evaluations per time unit (Fig. 5C). Taken together, a picture emerges
of how Algorithm 2 escapes local optima. Each round, a clutch of 20876 strings
is inserted into a population whose size never exceeds 20000. Almost all off-
spring does not survive their first iteration. Stringent selection notwithstanding,
the population keeps expanding into new territory, keeping above a “waterline”
set by pruning. When encountering higher territory, this “waterline” is raised
accordingly.

6 Discussion and Future Work

In this paper, we have developed and tested an approach to implement population
compression for population-based algorithms that use weighted strings. Our app-
roach is an extension of earlier work in the AIS field [20] that supports weighted
instead of unweighted populations. We have demonstrated that (1) the addition of
weights can considerably improve the performance and robustness of AIS algo-
rithms; (2) the addition of weights makes it possible to leverage the population
compression approach for implementing an EA. We are not aware of other EAs
based on (W)FSMs, although there are other approaches to represent populations
in compressed or implicit form [2,16,21]. In contrast to these approaches, FSMs
allow for mass operations performed on all strings simultaneously.

It is important to mention some limitations of our approach. Compared to
more standard implementations of a population-based algorithm, using WFSMs

Population-Based Algorithms Built on Weighted Automata 329

requires significantly more advanced algorithms and data structures. To some
extent, this is mitigated by the availability of WFSM libraries, but some issues
remain. First, building WFSM-based population algorithms may require merg-
ing very large numbers of small classifiers. The OpenFST framework we cur-
rently use implements WFSM union in a way that does not yield a minimal
result, such that we need to call minimization after every union to keep FSM
size manageable. Second, handling weights in WFSMs proved to be more chal-
lenging than we anticipated. Our use of exact rational algebra proved critical
to get our WFSM-AISs to work even on small input samples—without it, even
populations trained on as few as 1000 input characters could rapidly blow up
to 100 s of megabytes in size. While the use of rationals greatly improved this
and allowed us to perform the experiments reported in this paper, it is not a
complete solution because the rationals themselves could eventually “blow up”
and use numerators or denominators that are too large to be represented as
integers. While this did not cause any major issues in the experiments reported
in this paper, we expect it to become problematic when storing large numbers
of strings with very different weights at very different orders of magnitude.

On the other hand, these new issues that we encountered while using WFSMs
in a new application domain might lead to interesting research questions: how
can we develop fast and robust algorithms for use with very large numbers
of small FSMs and related operations on them? For unweighted FSMs with
a “levelled” structure that population models typically use (i.e., acyclic FSMs
where all paths between two nodes have the same length), Textor et al. [31]
implemented a custom FSM union algorithm that directly outputs a minimal
FSM. This could be extended to WFSMs in future work. Likewise, we could use
a directly determinizing union algorithm like the one by Mohri [24], created for
a similar use-case. Minimization may also be sped up by the algorithm of Eisner
[10]. Since WFSMs are generic data structures that are used in many different
fields, such research may be useful outside of the context of natural computing.
We look forward to working on such issues with researchers in the automata
community.

We expect our approach to be applicable to many population-based algo-
rithms. The most obvious candidate is perhaps the learning classifier system
(LCS) [34]. Surprisingly, the close similarity of AIS and LCS has not been
explored much in the literature—even though the original motivation behind
these algorithms is very different, a LCS can in fact be viewed as a more sophis-
ticated version of an AIS where positive or negative selection is only an initial
step to build the classifier population, which is then evolved further by rein-
forcement learning. We hypothesize that the WFSM framework developed in
this paper should be equally useful to increase the scale of LCS such that richer,
more interesting problems can be studied. We hope that the insights gleaned
from such work will allow us to better understand parallel distributed infor-
mation processing systems in Nature, including but not limited to the immune
system.

330 G. Schröder et al.

Acknowledgments. JT and GS were supported by NWO grant VI.Vidi.192.084
(to JT).
Disclosure of Interests. The authors do not declare any conflict of interest.

References

1. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: a general
and efficient weighted finite-state transducer library. In: Holub, J., Zdarek, J. (eds.)
CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-76336-9_3

2. Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algo-
rithm. In: Machine Learning Proceedings 1995, pp. 38–46. Elsevier (1995)

3. Blum, C.: Ant colony optimization: introduction and recent trends. Phys. Life Rev.
2(4), 353–373 (2005). https://doi.org/10.1016/j.plrev.2005.10.001

4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003). https://doi.
org/10.1145/937503.937505

5. Borisovsky, P., Eremeev, A.: Comparing evolutionary algorithms to the (1+1)-ea.
Theoret. Comput. Sci. 403(1), 33–41 (2008). https://doi.org/10.1016/j.tcs.2008.
03.008

6. Cheeseman, P.C., Kanefsky, B., Taylor, W.M., et al.: Where the really hard prob-
lems are. In: IJCAI, vol. 91, pp. 331–337 (1991)

7. D’haeseleer, P.: An immunological approach to change detection: theoretical
results. In: Proceedings 9th IEEE Computer Security Foundations Workshop.
IEEE Computer Society Press (1996). https://doi.org/10.1109/csfw.1996.503687

8. D’haeseleer, P., Forrest, S., Helman, P.: An immunological approach to change
detection: algorithms, analysis and implications. In: Proceedings 1996 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society Press (1996). https://
doi.org/10.1109/secpri.1996.502674

9. Dunning, T.: Statistical Identification of Language. Tech. Rep. MCCS 94-273, New
Mexico State University (1994)

10. Eisner, J.: Simpler and more general minimization for weighted finite-state
automata. In: Proceedings of the 2003 Human Language Technology Conference
of the North American Chapter of the Association for Computational Linguistics,
pp. 64–71 (2003). https://doi.org/10.3115/1073445.1073454

11. Elberfeld, M., Textor, J.: Efficient algorithms for string-based negative selection. In:
Andrews, P.S., et al. (eds.) ICARIS 2009. LNCS, vol. 5666, pp. 109–121. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03246-2_14

12. Elberfeld, M., Textor, J.: Negative selection algorithms on strings with efficient
training and linear-time classification. Theor. Comput. Sci. 412, 534–542 (2011).
https://doi.org/10.1016/j.tcs.2010.09.022

13. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in
a computer. In: Proceedings of 1994 IEEE Computer Society Symposium on
Research in Security and Privacy. IEEE Computer Society Press (1994). https://
doi.org/10.1109/risp.1994.296580

14. Gad, A.G.: Particle swarm optimization algorithm and its applications: a system-
atic review. Archiv. Comput. Methods Eng. 29(5), 2531–2561 (2022). https://doi.
org/10.1007/s11831-021-09694-4

15. Boost. Boost C++ libraries. https://www.boost.org

https://doi.org/10.1007/978-3-540-76336-9_3
https://doi.org/10.1007/978-3-540-76336-9_3
https://doi.org/10.1016/j.plrev.2005.10.001
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/937503.937505
https://doi.org/10.1016/j.tcs.2008.03.008
https://doi.org/10.1016/j.tcs.2008.03.008
https://doi.org/10.1109/csfw.1996.503687
https://doi.org/10.1109/secpri.1996.502674
https://doi.org/10.1109/secpri.1996.502674
https://doi.org/10.3115/1073445.1073454
https://doi.org/10.1007/978-3-642-03246-2_14
https://doi.org/10.1016/j.tcs.2010.09.022
https://doi.org/10.1109/risp.1994.296580
https://doi.org/10.1109/risp.1994.296580
https://doi.org/10.1007/s11831-021-09694-4
https://doi.org/10.1007/s11831-021-09694-4
https://www.boost.org

Population-Based Algorithms Built on Weighted Automata 331

16. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Trans. Evol. Comput. 3(4), 287–297 (1999). https://doi.org/10.1109/4235.797971

17. Hoos, H.H., Stützle, T.: Satlib: an online resource for research on sat. Sat 2000,
283–292 (2000)

18. Jansen, T.: Analyzing Evolutionary Algorithms: The Computer Science Perspec-
tive. Springer, Incorporated (2013). https://doi.org/10.1007/978-3-642-17339-4

19. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random
Boolean expressions. Science 264(5163), 1297–1301 (1994). https://doi.org/10.
1126/science.264.5163.1297

20. Liśkiewicz, M., Textor, J.: Negative selection algorithms without generating
detectors. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO 2010), pp. 1047–1054. ACM (2010). https://doi.org/10.1145/1830483.
1830673

21. Manso, A., Correia, L.: Genetic algorithms using populations based on multisets.
New Trends Artif. Intell. EPIA 2009, 53–64 (2009)

22. Martin, O.C., Monasson, R., Zecchina, R.: Statistical mechanics methods and phase
transitions in optimization problems. Theoret. Comput. Sci. 265(1–2), 3–67 (2001).
https://doi.org/10.1016/s0304-3975(01)00149-9

23. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of sat problems.
In: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI
1992), pp. 459–465. AAAI Press (1992)

24. Mohri, M.: On some applications of finite-state automata theory to natural lan-
guage processing. Nat. Lang. Eng. 2(1), 61–80 (1996). https://doi.org/10.1017/
S135132499600126X

25. Mohri, M.: Minimization algorithms for sequential transducers. Theoret. Comput.
Sci. 234(1–2), 177–201 (2000). https://doi.org/10.1016/S0304-3975(98)00115-7

26. Schoning, T.: A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. In: 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039). SFCS-99. IEEE Computer Society (1999). https://doi.org/10.
1109/sffcs.1999.814612

27. Schröder, G., Textor, J.: Population-based algorithms built on weighted automata
(implementation). Zenodo (2024). https://doi.org/10.5281/zenodo.12205008

28. Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods.
Proc. Natl. Acad. Sci. 104(6), 1760–1765 (Feb 2007). https://doi.org/10.1073/
pnas.0607208104

29. Stibor, T., Mohr, P., Timmis, J., Eckert, C.: Is negative selection appropriate
for anomaly detection? In: Proceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation. ACM (2005). https://doi.org/10.1145/1068009.
1068061

30. Textor, J.: A comparative study of negative selection based anomaly detection
in sequence data. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P.,
Nicosia, G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 28–41. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33757-4_3

31. Textor, J., Dannenberg, K., Liśkiewicz, M.: A generic finite automata based app-
roach to implementing lymphocyte repertoire models. In: Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation, pp. 129–136 (2014).
https://doi.org/10.1145/2576768.2598331

32. Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial
immune systems. Theor. Comput. Sci. 403(1), 11–32 (2008). https://doi.org/10.
1016/j.tcs.2008.02.011

https://doi.org/10.1109/4235.797971
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1126/science.264.5163.1297
https://doi.org/10.1126/science.264.5163.1297
https://doi.org/10.1145/1830483.1830673
https://doi.org/10.1145/1830483.1830673
https://doi.org/10.1016/s0304-3975(01)00149-9
https://doi.org/10.1017/S135132499600126X
https://doi.org/10.1017/S135132499600126X
https://doi.org/10.1016/S0304-3975(98)00115-7
https://doi.org/10.1109/sffcs.1999.814612
https://doi.org/10.1109/sffcs.1999.814612
https://doi.org/10.5281/zenodo.12205008
https://doi.org/10.1073/pnas.0607208104
https://doi.org/10.1073/pnas.0607208104
https://doi.org/10.1145/1068009.1068061
https://doi.org/10.1145/1068009.1068061
https://doi.org/10.1007/978-3-642-33757-4_3
https://doi.org/10.1145/2576768.2598331
https://doi.org/10.1016/j.tcs.2008.02.011
https://doi.org/10.1016/j.tcs.2008.02.011

332 G. Schröder et al.

33. Timmis, J., Knight, T., de Castro, L.N., Hart, E.: An Overview of Artificial Immune
Systems, pp. 51–91. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
662-06369-9_4

34. Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: a complete introduc-
tion, review, and roadmap. J. Artif. Evol. Appl. 2009, 1–25 (2009). https://doi.
org/10.1155/2009/736398

35. Wortel, I.M., Keşmir, C., de Boer, R.J., Mandl, J.N., Textor, J.: Is T cell negative
selection a learning algorithm? Cells 9(3), 690 (2020). https://doi.org/10.3390/
cells9030690

https://doi.org/10.1007/978-3-662-06369-9_4
https://doi.org/10.1007/978-3-662-06369-9_4
https://doi.org/10.1155/2009/736398
https://doi.org/10.1155/2009/736398
https://doi.org/10.3390/cells9030690
https://doi.org/10.3390/cells9030690

Automatic Brain Tumor Segmentation
Using Convolutional Neural Networks:
U-Net Framework with PSO-Tuned

Hyperparameters

Shoffan Saifullah1,2 and Rafa�l Dreżewski1(B)

1 Faculty of Computer Science, AGH University of Krakow, 30-059 Krakow, Poland
{saifulla,drezew}@agh.edu.pl, shoffans@upnyk.ac.id

2 Department of Informatics, Universitas Pembangunan Nasional Veteran
Yogyakarta, Yogyakarta 55281, Indonesia

Abstract. Accurate segmentation of brain tumors from magnetic reso-
nance imaging (MRI) data is imperative for precise diagnosis and treat-
ment planning. Manual segmentation, while accurate, is labor-intensive
and subject to human error. In this study, we propose an innovative app-
roach leveraging a modified convolutional neural network (CNN) archi-
tecture, U-Net, optimized using Particle Swarm Optimization (PSO) to
tackle this challenge. Our method achieves significantly improved seg-
mentation accuracy through pre-training hyperparameter tuning, partic-
ularly adjusting learning rates and dropout rates with PSO. Compared
to existing methods, we observe enhancements of up to 4 p.p. in the
Dice Similarity Coefficient (DSC) and 2 p.p. in the Jaccard Index (JI).
Using skip connections and dropout layers in CNN-U-Net enables the
effective capture of intricate features while mitigating overfitting, result-
ing in robust segmentation performance. Experimental results showcase
the superiority of our approach across different tumor classes, including
Meningioma, Glioma, and Pituitary, as well as overall, with maximum
DSC and JI values of 94.14% and 89.02%, respectively. Comparative
analysis against established techniques underscores the reliability and
robustness of our proposed method. By demonstrating the efficacy of
deep learning coupled with metaheuristic optimization in medical image
segmentation, our study contributes to advancing the field’s understand-
ing and applications. This research lays a foundation for future auto-
mated brain tumor segmentation developments, with implications for
clinical practice and patient care.

Keywords: Brain tumor segmentation · Convolutional neural
networks · Particle swarm optimization · Medical image analysis ·
Deep learning

1 Introduction

Brain tumors represent a significant health concern globally, with profound
implications for patients’ quality of life and survival rates [7,10]. These tumors
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 333–351, 2024.
https://doi.org/10.1007/978-3-031-70071-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_21&domain=pdf
http://orcid.org/0000-0001-6799-3834
http://orcid.org/0000-0001-8607-3478
https://doi.org/10.1007/978-3-031-70071-2_21

334 S. Saifullah and R. Dreżewski

can manifest in various forms, ranging from benign to malignant, and their accu-
rate diagnosis and treatment planning are paramount in clinical practice [22].
However, brain tumor segmentation from medical imaging data poses several
challenges [50], including tumor heterogeneity, irregular shapes, and variable
contrasts [32], making manual segmentation by radiologists laborious and prone
to subjective interpretations [2].

The importance of brain tumor segmentation lies in its critical role in guiding
treatment decisions, such as surgical planning, radiation therapy, and monitor-
ing treatment response [14,15,23]. Accurate delineation of tumor boundaries is
essential for optimizing treatment efficacy while minimizing damage to healthy
brain tissue [38,44]. Although manual segmentation [46,50] is considered the
gold standard, it is also time-consuming, subject to inter-observer variability,
and may not scale well to large datasets [3,28].

Recently, advancements in deep learning, particularly Convolutional Neural
Networks (CNNs), have revolutionized medical image analysis [1,48], offering
automated solutions for segmentation tasks [6]. Among these architectures, the
U-Net has emerged as a popular choice due to its ability to capture both local and
global context while preserving spatial information [12,47,59]. The U-Net archi-
tecture comprises an encoder-decoder structure with skip connections, enabling
precise segmentation by combining low-level and high-level features [5,13].

Previous research has demonstrated the efficacy of CNNs and U-Net in
addressing various challenges associated with medical image segmentation,
including brain tumor segmentation [4,17,49]. These methods leverage the rep-
resentational power of deep learning models to extract meaningful features from
raw image data, enabling accurate delineation of tumor regions [29,51]. However,
achieving optimal performance with these models often requires careful selection
and tuning of hyperparameters [24,38,52].

Hyperparameters such as learning rate and dropout [39] rate play crucial
roles in determining the performance [55] and generalization ability of U-Net
models. Learning rate controls the step size during gradient descent optimization,
influencing the convergence speed and stability of the training process. Dropout
regularization helps prevent overfitting by randomly deactivating neurons during
training, promoting model robustness [27].

While previous studies have explored various optimization techniques for U-
Net hyperparameters, such as grid search and random search, these methods
are computationally intensive and may not guarantee optimal results [55]. In
this study, we propose a novel approach to U-Net optimization using Particle
Swarm Optimization (PSO) to fine-tune hyperparameters, focusing specifically
on learning rate and drop-out. PSO is a metaheuristic optimization algorithm
inspired by social behavior in nature, wherein particles adjust their position in
the search space based on their experience and the experience of their neighbors.

By leveraging PSO to optimize U-Net hyperparameters, we aim to enhance
the segmentation performance of the model while reducing the computational
burden associated with traditional optimization methods. Our approach builds
upon the strengths of deep learning and metaheuristic optimization, offering a

Automatic Brain Tumor Segmentation Using CNN: U-Net with PSO 335

robust and efficient solution for automatic brain tumor segmentation from MRI
images.

The rest of the paper is divided into three parts. Section 2 details the materi-
als and methods, covering dataset, preprocessing, modified U-Net segmentation
architecture, integration of CNN-U-Net framework, and PSO-based hyperpa-
rameter tuning. Section 3 presents experimental results evaluating the proposed
PSO-tuned CNN-U-Net framework, analyzing strengths and limitations, and
comparing with existing methods. Lastly, Sect. 4 presents conclusions, empha-
sizing the significance of the proposed methodology in automatic brain tumor
segmentation, and suggests future research directions.

2 Materials and Methods

2.1 Dataset and Preprocessing

Our research used the dataset and preprocessing steps applied to enhance brain
MRI images before segmentation. The dataset, curated by Cheng et al. [9] and
available on Kaggle.com, comprises 3064 MRI images categorized into Menin-
gioma, Glioma, and Pituitary classes (708, 1426, and 930 images, respectively).
Each image has a resolution of 512 × 512 pixels and 24-bit depth, as illustrated
in Fig. 1.

Fig. 1. Sample brain MRI image dataset with Ground Truth (Mask) of (a) Menin-
gioma, (b) Glioma, and (c) Pituitary.

Our research initiates with preprocessing the MRI images to optimize their
quality and prepare them for segmentation tasks [42,43]. Essential preprocess-
ing techniques are employed to standardize image characteristics for efficient
processing and analysis. Resizing—images are resized to 225 × 225 pixels to
standardize dimensions for computational efficiency and to mitigate the over-
head. This resizing ensures uniformity, optimizes memory usage, and enhances
segmentation model efficiency. Conversion to 8-bit depth—images are converted
to 8-bit depth to focus on intensity information and simplify the processing. This
conversion optimizes memory utilization, streamlines segmentation algorithms,
and ensures compatibility across datasets for efficient grayscale processing.

336 S. Saifullah and R. Dreżewski

2.2 Modified CNN-U-Net Framework for Medical Image
Segmentation

This section presents a detailed exposition of the modified CNN-U-Net frame-
work tailored explicitly for medical image segmentation tasks. Our approach is
underpinned by a fusion of convolutional neural networks (CNNs) and the U-Net
architecture, augmented with several strategic modifications to enhance feature
extraction and segmentation accuracy.

At the core of our architecture (Fig. 2) lies the utilization of feature maps
P1, P2, P3, and P4 [61], acting as the encoder for input images. These feature
maps are generated through a hierarchical down-sampling process characterized
by down-sampling rates of 64, 128, 256, and 512, respectively. The feature maps,
denoted as P*, encode increasingly abstract representations of the input images,
facilitating the accurate delineation of foreground and background regions. This
hierarchical feature extraction mechanism enables the model to capture intricate
spatial and contextual information crucial for accurate segmentation.

Fig. 2. Modified U-Net architecture using feature maps and dropouts.

Furthermore, our architecture incorporates feature maps S1, S2, S3, and
S4 [56], representing feature maps from different scales in the decoding stages.
Each feature map from P* and S* is seamlessly fused through skip connections,
enabling the model to integrate high-level semantic information with low-level
spatial details. This fusion of features from multiple scales enhances the model’s
ability to localize and segment fine-grained structures in medical images, thereby
improving segmentation accuracy.

Integral to our modified framework, skip connections (Concate(skip feature))
merge feature maps from corresponding encoder and decoder layers. This opera-
tion concatenates the output from a previous layer to a subsequent layer, preserv-
ing crucial spatial context and aiding in accurate segmentation by reconnecting
lost details from deeper network layers. To combat overfitting—a common chal-
lenge in deep learning models—dropout layers are strategically placed within our

Automatic Brain Tumor Segmentation Using CNN: U-Net with PSO 337

network. These layers randomly deactivate a subset of neurons during training,
promoting a robust model that generalizes well to new, unseen data by ensuring
no single neuron is overly critical to the network’s output.

Each conv block (Convolutional Block) within our architecture consists of
several layers, including Conv2D layers, activation functions (typically ReLU),
and often batch normalization layers. These blocks are crucial for processing
input images through various filters to extract meaningful feature maps. Conv2D
refers to the two-dimensional convolutional layers that perform our model’s bulk
computational processing. These layers apply multiple filters to the input to
extract vital image features. The operation carried out by these layers involves
the convolution of the layer’s filters with the input, producing a tensor of outputs
that form the backbone of our feature learning mechanism.

In addition to architectural modifications, we propose the integration of
dropout regularization to enhance the robustness and generalization capabili-
ties of the CNN-U-Net framework. Dropout is strategically applied at various
network layers during training, effectively preventing overfitting by stochastically
dropping units from the network. This regularization technique encourages the
network to learn more robust and generalizable features, improving segmentation
performance on unseen data.

To optimize the performance and accuracy of our CNN-U-Net framework, we
adopt a metaheuristic approach for hyperparameter optimization. Metaheuristic
algorithms, such as Particle Swarm Optimization (PSO), can fine-tune critical
hyperparameters, including dropout and learning rates. This iterative optimiza-
tion process enables us to identify the optimal configuration of hyperparameters
that maximizes segmentation accuracy while minimizing the risk of overfitting.

2.3 Metaheuristics Algorithms—PSO Approach for Tuning
Hyperparameters

In this section, we delve into the utilization of metaheuristic algorithms, particu-
larly the Particle Swarm Optimization (PSO) approach, for finely tuning critical
hyperparameters within the U-Net architecture [16,60]. Specifically, we focus on
optimizing dropout rates and learning rates, which are pivotal elements influ-
encing model robustness and convergence during medical image segmentation
tasks.

Particle Swarm Optimization (PSO) is a potent optimization algorithm
inspired by the collective behavior of organisms, such as birds flocking or fish
schooling. Within PSO, a population of candidate solutions, termed particles,
traverses the search space, with each particle dynamically adjusting its posi-
tion based on its experience and the experiences of its neighbors [45]. Through
iterative updates, particles collectively converge towards the optimal solution.

The PSO-based tuning of the U-Net hyperparameters include the following
steps:

338 S. Saifullah and R. Dreżewski

– Initialization: the process begins with the initialization of a swarm of particles,
each representing a potential solution within the hyperparameter space. These
particles are initialized with random positions and velocities within predefined
ranges for dropout rates and learning rates.

– Evaluation: each particle evaluates its associated hyperparameter configura-
tion by training the U-Net model with the given dropout rates and learning
rates. The performance of each configuration is assessed using a predefined
objective function, typically based on segmentation accuracy metrics like the
Dice Similarity Coefficient (DSC) or Jaccard Index (JI).

– Update Personal and Global Bests: each particle maintains a record of its per-
sonal best position (the hyperparameter configuration that yielded the best
performance) and the global best position (the best configuration discovered
by any particle in the swarm). These positions are updated iteratively as
better solutions are found.

– Update Velocity and Position: through iterative updates, each particle adjusts
its velocity and position based on its experience and the experiences of its
neighbors. This adjustment is guided by the personal best position and global
best position, enabling particles to converge towards promising regions of the
search space.

– Convergence Criterion: the PSO algorithm iterates until a convergence cri-
terion is met, typically defined by a maximum number of iterations or a
threshold for performance improvement. Once the convergence criterion is
satisfied, the algorithm terminates, and the best hyperparameter configura-
tion discovered by the swarm is returned.

– Final Model Training: the U-Net model is trained using the best hyperparam-
eter configuration identified by the PSO algorithm. This involves retraining
the model with optimal dropout rates and learning rates to obtain the final
segmentation model.

The integration of PSO for tuning hyperparameters within the U-Net frame-
work offers a robust and efficient optimization technique for achieving opti-
mal segmentation accuracy. By leveraging swarm intelligence and collaborative
search dynamics, PSO enables the identification of near-optimal hyperparame-
ter configurations, thereby enhancing the performance and effectiveness of our
segmentation model. Through extensive experimentation and analysis, we eval-
uate the efficacy of PSO in optimizing dropout rates and learning rates for our
U-Net framework, providing valuable insights into the effectiveness of the PSO
approach for hyperparameter optimization in medical image segmentation tasks.

2.4 Evaluation Measures

In this section, we explore the evaluation measures utilized to assess the per-
formance of our proposed U-Net framework for brain tumor segmentation [34].
We employ a comprehensive set of metrics, including accuracy, loss, Dice Simi-
larity Coefficient (DSC), and Jaccard Index (JI), to quantify the effectiveness of
the model during both training and validation phases [45,47,57]. Additionally,

Automatic Brain Tumor Segmentation Using CNN: U-Net with PSO 339

these metrics are leveraged to evaluate the segmentation results obtained by the
model, providing insights into its segmentation accuracy and efficacy.

Accuracy and loss are fundamental metrics used to measure the performance
of machine learning models, including those used for medical image segmenta-
tion. Accuracy represents the ratio of correctly predicted instances to the total
number of instances in the dataset, providing a measure of the model’s overall
correctness. Loss, on the other hand, quantifies the discrepancy between the pre-
dicted outputs of the model and the ground truth labels. Standard loss functions
include categorical cross-entropy and mean squared error, which are optimized
during the training process to minimize prediction errors.

The Dice Similarity Coefficient (DSC) and Jaccard Index (JI) are widely used
metrics for evaluating the quality of segmentation results in medical imaging
tasks. These metrics provide measures of overlap or similarity between the pre-
dicted segmentation masks and the ground truth masks. The DSC, also known
as the F1 score, computes the similarity between two sets by measuring the inter-
section over the average of their sizes. It is defined as DSC = 2×|A∪B|

|A|+|B| , where A
represents the predicted segmentation mask and B represents the ground truth
mask. Similarly, the Jaccard Index (JI) computes the ratio of intersection to
union of two sets and is defined as JI = |A∩B|

|A∪B| .
During the training phase, accuracy and loss are computed iteratively to

monitor the performance of the model and guide the optimization process [54,58].
The model is trained to minimize the loss function while maximizing the accuracy
of the training data. In the validation phase, accuracy and loss are calculated
on a separate validation dataset to assess the generalization performance of the
model. This allows us to evaluate how well the model performs on unseen data
and identify potential overfitting or underfitting issues.

Once the model is trained and validated, segmentation results are evalu-
ated using the DSC and JI metrics [36]. These metrics quantify the degree of
correspondence between the predicted and ground truth masks, providing quan-
titative measures of segmentation accuracy and efficacy [21]. By employing a
comprehensive set of evaluation measures, including accuracy, loss, DSC, and
JI, we gain valuable insights into the performance of our U-Net framework for
brain tumor segmentation. These metrics enable us to assess the model’s effec-
tiveness during training and validation and evaluate the quality of segmentation
results, ultimately guiding the development and refinement of our segmentation
approach.

3 Results and Discussions

This section presents the outcomes and discussions of our study on automatic
brain tumor segmentation using the PSO-tuned CNN-U-Net framework. We ana-
lyze the results of hyperparameter optimization with PSO, evaluate the perfor-
mance of our method on brain tumor segmentation tasks, present segmentation
results, and compare our method with previous approaches. Through concise
analysis and discussion, we highlight the effectiveness and significance of our
proposed method.

340 S. Saifullah and R. Dreżewski

3.1 PSO-Based CNN-U-Net Hyperparameters Optimization

In this section, we delve into the performance analysis of our proposed PSO-
tuned CNN-U-Net framework, which aims to optimize hyperparameters such as
the learning rate and dropout to enhance segmentation accuracy.

Experimental research began with systematic exploration of various learning
rates and dropouts. The learning rate, responsible for determining the step size
during optimization, was varied from 10−4 to 10−2. In contrast, the dropout
rate, serving as a regularization technique to prevent overfitting, was explored
from 0.1 to 0.5. Through iterative experiments, we meticulously evaluated the
impact of different hyperparameter configurations on model convergence and
segmentation accuracy.

The optimization process is visualized in Fig. 3, which illustrates the con-
vergence behavior and performance trends of the PSO algorithm across various
combinations of learning rates and dropout rates. This visualization provided
valuable insights into the optimization process, highlighting the regions of the
hyperparameter space where the PSO algorithm converged most effectively, facil-
itating the identification of optimal hyperparameter configurations.

Fig. 3. Evaluation of PSO optimization for Meningioma (a), Glioma (b), Pituitary
(c), and All Images (d) with tuned hyperparameters of Learning Rate and Dropout,
depicting Accuracy and Loss metrics.

Automatic Brain Tumor Segmentation Using CNN: U-Net with PSO 341

To cater to the unique characteristics of each class of brain tumors, we con-
ducted class-specific optimization of hyperparameters. For instance, the Menin-
gioma class exhibited optimal segmentation results with the learning rate of
0.00058025 and the dropout of 0.23873308. Similarly, the Glioma class demon-
strated superior performance, with the learning rate of 0.00851653 and the
dropout of 0.05574959. The Pituitary class achieved enhanced segmentation
accuracy with the learning rate of 0.00231394 and the dropout of 0.34328752.

Furthermore, considering the dataset encompassing all classes, we identified
the most effective hyperparameter configuration. The learning rate of 0.00867392
and the dropout of 0.48442245 emerged as the optimal combination, demonstrat-
ing remarkable convergence and segmentation accuracy.

These findings underscore the significance of personalized parameter tun-
ing in maximizing segmentation performance across diverse classes of brain
tumors. The meticulous optimization of hyperparameters using PSO facilitated
the refinement of the CNN-U-Net framework, enhancing its ability to delineate
brain tumor boundaries accurately. These insights provide valuable guidance for
optimizing deep learning-based segmentation models for medical image analy-
sis, with implications for enhancing diagnostic accuracy and clinical decision-
making.

3.2 Performance of the Proposed Method

The performance evaluation of our proposed model on training and validation
sets over 50 epochs provides valuable insights into its efficacy in brain tumor
segmentation. Figure 4 illustrates the trends of key performance metrics, includ-
ing accuracy, loss, Dice Similarity Coefficient (DSC), and Jaccard Index (JI),
throughout the training process. The blue lines represent training metrics, while
the red lines depict validation metrics.

The graphical representation in Fig. 4 showcases a notable improvement in
performance metrics over successive iterations, indicating the effectiveness of
our model. Specifically, the accuracy of our model exhibits robust performance,
reaching up to 0.99 while maintaining a minimal loss of 0.008. The DSC and
JI metrics also demonstrate considerable efficacy, with values surpassing 0.90
and 0.82, respectively. These results demonstrate the suitability of the proposed
model for training and testing, emphasizing the efficacy of the applied meta-
heuristic PSO algorithm.

Furthermore, an in-depth analysis of the results obtained from the PSO-
tuned U-Net hyperparameters reveals significant performance enhancements, as
detailed in Table 1. Table 1 presents the performance metrics, including accuracy,
loss, DSC, and JI, for different classes of brain tumors during both training and
validation phases. For each class, the table comprises three rows representing
distinct hyperparameter configurations. The first row corresponds to the hyper-
parameters optimized using PSO. The second row represents a configuration
without dropout (DO), while the third row reflects a configuration with optimal
dropout (DO).

342 S. Saifullah and R. Dreżewski

Fig. 4. Performance graph of our proposed model: (a) Accuracy, (b) Loss, (c) Dice
Similarity Coefficient (DSC), and (d) Jaccard Index (JI), where blue-lines represent
training and red-lines represent validation. (Color figure online)

Table 1. Performance results of model evaluation during training and testing, show-
casing Accuracy, Loss, Dice Coefficient Similarity (DSC), and Jaccard Index (JI) based
on PSO-tuned hyperparameters, compared with configurations without Dropout (DO)
and with optimal DO settings, focusing on Learning Rate (LR) and Dropout (DO).

Hyperparameters Training Validation
Class

* LR DO Acc Loss DSC JI Acc Loss DSC JI

1 0.00058025 0.23873308 0.9987 0.0032 0.9432 0.8934 0.9986 0.0032 0.9414 0.8902

2 0.001 0 0.9986 0.0034 0.9402 0.8880 0.9984 0.0039 0.9344 0.8779Meningioma

3 0.001 0.5 0.9985 0.0037 0.9372 0.8827 0.9985 0.0036 0.9352 0.8793

1 0.00851653 0.05574959 0.9974 0.0061 0.9123 0.8398 0.9975 0.0058 0.9146 0.8436

2 0.001 0 0.9970 0.0070 0.9007 0.8206 0.9973 0.0065 0.9036 0.8255Glioma

3 0.001 0.5 0.9973 0.0063 0.9113 0.8381 0.9974 0.0060 0.9101 0.8360

1 0.00231394 0.34328752 0.9991 0.0021 0.9202 0.8541 0.9992 0.0020 0.9205 0.8546

2 0.001 0 0.9991 0.0021 0.9009 0.8222 0.9990 0.0024 0.9127 0.8417Pituitary

3 0.001 0.5 0.9988 0.0027 0.8996 0.8199 0.9988 0.0027 0.9033 0.8258

1 0.00867392 0.48442245 0.9984 0.0037 0.9300 0.8704 0.9985 0.0036 0.9312 0.8722

2 0.001 0 0.9983 0.0040 0.9263 0.8640 0.9983 0.0040 0.9253 0.8621All Images

3 0.001 0.5 0.9982 0.0044 0.9206 0.8543 0.9980 0.0048 0.9150 0.8449

*) 1: PSO Optimization; 2: configuration without DO; 3: configuration with optimal DO.

Automatic Brain Tumor Segmentation Using CNN: U-Net with PSO 343

For the Meningioma class, the optimized hyperparameters, with the learning
rate (LR) of 0.00058025 and the dropout rate (DO) of 0.23873308, yield impres-
sive results, achieving the accuracy of 0.9987 and the DSC of 0.9432 on the
training set. Similar trends are observed for the Glioma and Pituitary classes,
with optimized hyperparameters leading to substantial improvements in segmen-
tation accuracy and performance metrics.

Overall, the results demonstrate the efficacy of our proposed PSO-tuned
CNN-U-Net framework in accurately delineating brain tumor boundaries. The
meticulous optimization of hyperparameters using PSO enhances segmentation
accuracy and facilitates practical applications in medical image analysis. These
findings highlight the potential of our approach in improving diagnostic accuracy
and aiding clinical decision-making in neuroimaging.

3.3 Segmentation Results

The segmentation results comprehensively evaluate the proposed model’s per-
formance in identifying and outlining brain tumor regions. Table 2 presents a
detailed comparison between the predicted and ground truth masks and quan-
titative metrics, including the Dice Similarity Coefficient (DSC) and Jaccard
Index (JI).

Table 2. Results of brain tumor segmentation illustrating the Predicted Mask and
Overlap compared to the Original Image and Mask, according to evaluation metrics
including Dice Similarity Coefficient (DSC) and Jaccard Index (JI).

344 S. Saifullah and R. Dreżewski

For the Meningioma class, the segmentation accuracy is notably high, with
DSC values of 0.9204 and 0.9753 and corresponding JI values of 0.8252 and
0.9518. These metrics indicate a strong agreement between the predicted and
ground truth masks, suggesting that the model effectively captures the intricate
boundaries of Meningioma tumors. The high DSC and JI values indicate the
model’s ability to accurately segment Meningioma tumors, facilitating precise
tumor localization and characterization.

Similarly, the segmentation results for the Glioma class demonstrate robust
performance, with DSC values of 0.9520 and 0.9618 and JI values of 0.9085 and
0.9264. These findings underscore the model’s efficacy in accurately delineating
Glioma tumor regions. The high DSC and JI values reflect the model’s capability
to accurately capture the spatial extent of Glioma tumors, facilitating accurate
tumor segmentation and localization.

The segmentation model achieves favorable results in the Pituitary class,
yielding DSC values of 0.9495 and 0.9445 and JI values of 0.9038 and 0.8948.
These metrics highlight the model’s ability to accurately identify and segment
Pituitary tumors, contributing to its overall efficacy in tumor localization. The
high DSC and JI values underscore the model’s ability to accurately delineate
Pituitary tumor regions, facilitating precise tumor segmentation and character-
ization.

The observed high DSC and JI values across all tumor classes indicate the
robustness and accuracy of the proposed model in brain tumor segmentation.
The model’s ability to accurately delineate tumor regions demonstrates its poten-
tial for clinical applications, including computer-aided diagnosis and treatment
planning. Moreover, the segmentation results underscore the effectiveness of the
proposed methodology, highlighting its utility in automated brain tumor seg-
mentation for clinical decision-making.

3.4 Comparison of the Proposed Method with Other Approaches

In this section, we thoroughly compare our proposed method for brain tumor seg-
mentation and several existing techniques. We evaluate these methods based on
performance metrics such as the Dice Similarity Coefficient (DSC) and Jaccard
Index (JI), which are pivotal in assessing the accuracy of segmentation results.
Our experimental evaluation covers various classes of tumors, including Menin-
gioma, Glioma, and Pituitary, comparing our method with well-established
approaches such as ANN-AC [25], ANN-MACWE [53], U-Net Multimodal [40],
U-Net AT (OUAT) [20], Edge U-Net [30], and CNN-based [11] methods. Across
all tumor classes, our method consistently outperforms these existing approaches,
exhibiting notable percentage point (p.p.) differences in DSC and JI scores.

For instance (Table 3), our proposed method achieves excellent results with
DSC values above 91% for all three classes and JI values above 84%. Specifically,
in Meningioma segmentation, our method achieves remarkable DSC of 94.14%
and JI of 89.02%, surpassing the performance of ANN-AC [25] by 4.17 p.p. and
11.51 p.p., respectively. However, it slightly lags behind U-Net Multimodal by
0.45 p.p. for DSC in the Meningioma class. In the Glioma class, our method

Automatic Brain Tumor Segmentation Using CNN: U-Net with PSO 345

achieves DSC of 91.46% and JI of 84.36%, which is superior to most compared
methods but falls short by 0.3% points for DSC and 0.32% points for JI when
compared to U-Net Multimodal.

Table 3. Comparison of image segmentation results (Dice Similarity Coefficient (DSC)
and Jaccard Index (JI)) between the proposed method and other approaches for each
class of brain tumors (Meningioma, Glioma, and Pituitary).

Method Evaluation Measures

Meningioma Glioma Pituitary

DSC JI DSC JI DSC JI

ANN-AC [25] 0.8997 0.7751 0.6554 0.4342 0.8395 0.7359

ANN-MACWE [53] – 0.8598 – 0.7642 – 0.7684

U-Net Multimodal [40] 0.9459 – 0.7241 – 0.9108 –

U-Net AT (OUAT) [20] 0.8243 – 0.6077 – 0.7848 –

Edge U-Net [30] 0.888 0.7985 0.9176 0.8478 0.8728 0.77743

CNN-based [11] 0.894 – 0.779 – 0.813 –

Proposed Method 0.9414 0.8902 0.9146 0.8436 0.9205 0.8546

Moreover, our method is particularly effective in the Pituitary class, achieving
DSC of 92.05% and JI of 85.46%, surpassing Edge U-Net [30] by 4.77 p.p. and
7.717 p.p., respectively. Such performance results in the case of the Pituitary
class demonstrate the efficacy of our modified U-Net architecture in handling
diverse tumor characteristics.

Moving on to overall image segmentation (Table 4), we evaluate our method
against various existing techniques such as MST-based [33], CNN U-Net [37],
MAG-Net [18], Optimized U-Net [19], WBSO [31], Pipeline U-Net [26], Ensem-
ble U-Net-ResNet [41], Modified ResNet [8], and ResUnet-TL [35]. Our method
stands out by consistently achieving superior Dice Similarity Coefficient (DSC)
scores, recording a high of 93.12%, the best among all compared methods, indi-
cating precise identification and delineation of tumor boundaries.

However, while our DSC score is the highest, our Jaccard Index (JI) score
of 87.22% is lower by 5.82 p.p. compared to ResUnet-TL, which achieved JI of
93.04%. This gap underscores an area for potential refinement to improve our
method’s overall similarity and area overlap with the ground truth masks.

The success of our proposed method can be attributed to several factors,
including advanced optimization techniques, architectural modifications, and the
utilization of metaheuristic Particle Swarm Optimization (PSO) algorithm. By
optimizing key hyperparameters such as learning rate and dropout, our method
enhances the adaptability and robustness of the segmentation model, resulting
in more accurate delineation of tumor regions. The significant improvements
observed in DSC and JI metrics underscore the superiority of our method in
accurately capturing tumor boundaries and spatial overlap with ground truth
masks. The detailed evaluation and comparative analysis validate the effective-
ness of our method, positioning it as a valuable tool for medical imaging appli-
cations and clinical diagnosis.

346 S. Saifullah and R. Dreżewski

Table 4. Comparison of image segmentation results (Dice Similarity Coefficient (DSC)
and Jaccard Index (JI)) between the proposed method and other approaches for all
tumor classes.

Method Evaluation Measures

DSC JI

MST based [33] 0.8469 0.7742

CNN U-Net [37] 0.76 0.67

MAG-Net [18] 0.74 0.6

Optimized U-Net [19] 0.8232 0.82

WBSO [31] – 0.6646

Pipeline U-Net [26] – 0.8312

Ensemble U-Net-ResNet [41] 0.8731 0.7902

Modified ResNet [8] 0.83 0.84

ResUnet-TL [35] 0. 9237 0.9304

CNN-based [11] 0.828 –

Proposed Method 0.9312 0.8722

In conclusion, our proposed method enhances brain tumor segmentation
by demonstrating improved accuracy and adaptability compared to existing
approaches. The detailed evaluation and comparative analysis provided in this
section illustrate the potential of our method to segment brain tumor regions
from MRI images more effectively. While our results show notable improvements,
they represent a progressive development in the field rather than a breakthrough,
underscoring the need for further validation and research to thoroughly verify
our findings’ broader applicability.

4 Conclusion

This study introduced a novel approach to brain tumor segmentation utilizing a
modified CNN-U-Net framework optimized with Particle Swarm Optimization
(PSO) algorithm. We achieved improved segmentation accuracy by leveraging
advanced deep-learning techniques and metaheuristic optimization. Our method
effectively addressed the challenge of hyperparameter tuning by employing PSO
to optimize parameters like learning rate and dropout, resulting in enhanced seg-
mentation performance. Furthermore, integrating skip connections and dropout
layers in the CNN-U-Net architecture facilitated the capture of intricate features
while mitigating overfitting.

Through comprehensive experiments and evaluation, our proposed method
has demonstrated consistent performance across different classes of tumors,
including Meningioma, Glioma, and Pituitary, and for all images combined.
Comparative analysis against existing techniques revealed significant improve-
ments in the Dice Similarity Coefficient (DSC) and Jaccard Index (JI), highlight-
ing the efficacy and adaptability of our approach. These findings highlight the
potential of deep learning coupled with metaheuristic optimization algorithms
in advancing medical image segmentation, offering promising applications in
computer-aided diagnosis and treatment planning. Future research will focus on

Automatic Brain Tumor Segmentation Using CNN: U-Net with PSO 347

validating and extending the applicability of our approach to larger datasets and
various pathological conditions to further enhance its clinical utility.

Acknowledgement. This research was supported by the Polish Ministry of Science
and Higher Education funds assigned to AGH University of Krakow and by PLGrid
under grant no. PLG/2023/016757.

References

1. Abdou, M.A.: Literature review: efficient deep neural networks techniques for med-
ical image analysis. Neural Comput. Appl. 34(8), 5791–5812 (2022). https://doi.
org/10.1007/s00521-022-06960-9

2. Abdusalomov, A.B., Mukhiddinov, M., Whangbo, T.K.: Brain tumor detection
based on deep learning approaches and magnetic resonance imaging. Cancers
15(16), 4172 (2023). https://doi.org/10.3390/cancers15164172

3. Agravat, R.R., Raval, M.S.: A survey and analysis on automated glioma brain
tumor segmentation and overall patient survival prediction. Arch. Comput. Meth-
ods Eng. 28(5), 4117–4152 (2021). https://doi.org/10.1007/s11831-021-09559-w

4. Akter, A., et al.: Robust clinical applicable CNN and U-Net based algorithm for
MRI classification and segmentation for brain tumor. Expert Syst. Appl. 238,
122347 (2024). https://doi.org/10.1016/j.eswa.2023.122347

5. Al-Murshidawy, M.A.A., Al-Shamma, O.: A review of deep learning models (U-
Net architectures) for segmenting brain tumors. Bull. Electr. Eng. Inform. 13(2),
1015–1030 (2024). https://doi.org/10.11591/eei.v13i2.6015

6. Balwant, M.: A review on convolutional neural networks for brain tumor segmen-
tation: methods, datasets, libraries, and future directions. IRBM 43(6), 521–537
(2022). https://doi.org/10.1016/j.irbm.2022.05.002

7. Besnard, J., et al.: Social cognition in adult survivors of brain tumors: studying the
relationship between theory of mind and quality of life. Brain Inj. 38(3), 160–169
(2024). https://doi.org/10.1080/02699052.2024.2309246

8. Chatterjee, P., Das Sharma, K., Chakrabarti, A.: Weakly supervised learning in
domain transfer scenario for brain lesion segmentation in MRI. Multimedia Tools
Appl. (2024). https://doi.org/10.1007/s11042-023-17888-0

9. Cheng, J., et al.: Enhanced performance of brain tumor classification via tumor
region augmentation and partition. PLoS ONE 10(10), e0140381 (2015). https://
doi.org/10.1371/journal.pone.0140381

10. Choe, Y.H., Lee, S., Lim, Y., Kim, S.H.: Machine learning-derived model for pre-
dicting poor post-treatment quality of life in Korean cancer survivors. Support.
Care Cancer 32(3), 143 (2024). https://doi.org/10.1007/s00520-024-08347-z

11. Dı́az-Pernas, F.J., Mart́ınez-Zarzuela, M., Antón-Rodŕıguez, M., González-Ortega,
D.: A deep learning approach for brain tumor classification and segmentation using
a multiscale convolutional neural network. Healthcare 9(2), 153 (2021). https://
doi.org/10.3390/healthcare9020153

12. Esmaeilzadeh Asl, S., Chehel Amirani, M., Seyedarabi, H.: Brain tumors segmenta-
tion using a hybrid filtering with U-Net architecture in multimodal MRI volumes.
Int. J. Inf. Technol. 16(2), 1033–1042 (2024). https://doi.org/10.1007/s41870-023-
01485-3

13. Feng, Y., Cao, Y., An, D., Liu, P., Liao, X., Yu, B.: DAUnet: a U-shaped network
combining deep supervision and attention for brain tumor segmentation. Knowl.-
Based Syst. 285, 111348 (2024). https://doi.org/10.1016/j.knosys.2023.111348

https://doi.org/10.1007/s00521-022-06960-9
https://doi.org/10.1007/s00521-022-06960-9
https://doi.org/10.3390/cancers15164172
https://doi.org/10.1007/s11831-021-09559-w
https://doi.org/10.1016/j.eswa.2023.122347
https://doi.org/10.11591/eei.v13i2.6015
https://doi.org/10.1016/j.irbm.2022.05.002
https://doi.org/10.1080/02699052.2024.2309246
https://doi.org/10.1007/s11042-023-17888-0
https://doi.org/10.1371/journal.pone.0140381
https://doi.org/10.1371/journal.pone.0140381
https://doi.org/10.1007/s00520-024-08347-z
https://doi.org/10.3390/healthcare9020153
https://doi.org/10.3390/healthcare9020153
https://doi.org/10.1007/s41870-023-01485-3
https://doi.org/10.1007/s41870-023-01485-3
https://doi.org/10.1016/j.knosys.2023.111348

348 S. Saifullah and R. Dreżewski

14. Fernando, K.R.M., Tsokos, C.P.: Deep and statistical learning in biomedical imag-
ing: state of the art in 3D MRI brain tumor segmentation. Inf. Fusion 92, 450–465
(2023). https://doi.org/10.1016/j.inffus.2022.12.013

15. Galldiks, N., et al.: Contribution of PET imaging to radiotherapy planning and
monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol.
23(6), 881–893 (2021). https://doi.org/10.1093/neuonc/noab013

16. Ghosh, S., Singh, A., Kumar, S.: BBBC-U-Net: optimizing U-Net for automated
plant phenotyping using big bang big crunch global optimization algorithm.
Int. J. Inf. Technol. 15(8), 4375–4387 (2023). https://doi.org/10.1007/s41870-023-
01472-8

17. Guo, X., Lin, X., Yang, X., Yu, L., Cheng, K.T., Yan, Z.: UCTNet: uncertainty-
guided CNN-Transformer hybrid networks for medical image segmentation. Pat-
tern Recogn., 110491 (2024). https://doi.org/10.1016/j.patcog.2024.110491

18. Gupta, S., Punn, N.S., Sonbhadra, S.K., Agarwal, S.: MAG-Net: multi-task atten-
tion guided network for brain tumor segmentation and classification. In: Srirama,
S.N., Lin, J.C.-W., Bhatnagar, R., Agarwal, S., Reddy, P.K. (eds.) BDA 2021.
LNCS, vol. 13147, pp. 3–15. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-93620-4 1

19. Ingle, A., Roja, M., Sankhe, M., Patkar, D.: Efficient segmentation and classifi-
cation of the tumor using improved encoder-decoder architecture in brain MRI
images. Int. J. Electr. Comput. Eng. Syst. 13(8), 643–651 (2022). https://doi.org/
10.32985/ijeces.13.8.4

20. Isunuri, B.V., Kakarla, J.: Fast brain tumour segmentation using optimized U-Net
and adaptive thresholding. Automatika 61(3), 352–360 (2020). https://doi.org/10.
1080/00051144.2020.1760590

21. Jyothi, P., Singh, A.R.: Deep learning models and traditional automated techniques
for brain tumor segmentation in MRI: a review. Artif. Intell. Rev. 56(4), 2923–2969
(2023). https://doi.org/10.1007/s10462-022-10245-x

22. Kaur, G., Chaudhary, N.: Brain tumor detection using machine learning hybrid
approach. In: 2023 10th IEEE Uttar Pradesh Section International Conference
on Electrical, Electronics and Computer Engineering (UPCON), pp. 1076–1081.
IEEE. https://doi.org/10.1109/UPCON59197.2023.10434384

23. Khalighi, S., Reddy, K., Midya, A., Pandav, K.B., Madabhushi, A., Abedaltha-
gafi, M.: Artificial intelligence in neuro-oncology: advances and challenges in brain
tumor diagnosis, prognosis, and precision treatment. npj Precis. Oncol. 8(1), 80
(2024). https://doi.org/10.1038/s41698-024-00575-0

24. Kumar, G.M., Parthasarathy, E.: Development of an enhanced U-Net model for
brain tumor segmentation with optimized architecture. Biomed. Signal Process.
Control 81, 104427 (2023). https://doi.org/10.1016/j.bspc.2022.104427

25. Kumar, S.B., Panda, R., Agrawal, S.: Brain magnetic resonance image tumor
detection and segmentation using edgeless active contour. In: 2020 11th Inter-
national Conference on Computing, Communication and Networking Technologies
(ICCCNT), pp. 1–7. IEEE (2020). https://doi.org/10.1109/ICCCNT49239.2020.
9225296

26. Kumar Bhatt, S., Srinivasan, D.S., Prakash, P.: Brain tumor segmentation pipeline
model using U-Net based foundation model. Data Metadata 2, 197 (2023). https://
doi.org/10.56294/dm2023197

27. Lin, H., Zeng, W., Zhuang, Y., Ding, X., Huang, Y., Paisley, J.: Learning rate
dropout. IEEE Trans. Neural Netw. Learn. Syst. 34(11), 9029–9039 (2023).
https://doi.org/10.1109/TNNLS.2022.3155181

https://doi.org/10.1016/j.inffus.2022.12.013
https://doi.org/10.1093/neuonc/noab013
https://doi.org/10.1007/s41870-023-01472-8
https://doi.org/10.1007/s41870-023-01472-8
https://doi.org/10.1016/j.patcog.2024.110491
https://doi.org/10.1007/978-3-030-93620-4_1
https://doi.org/10.1007/978-3-030-93620-4_1
https://doi.org/10.32985/ijeces.13.8.4
https://doi.org/10.32985/ijeces.13.8.4
https://doi.org/10.1080/00051144.2020.1760590
https://doi.org/10.1080/00051144.2020.1760590
https://doi.org/10.1007/s10462-022-10245-x
https://doi.org/10.1109/UPCON59197.2023.10434384
https://doi.org/10.1038/s41698-024-00575-0
https://doi.org/10.1016/j.bspc.2022.104427
https://doi.org/10.1109/ICCCNT49239.2020.9225296
https://doi.org/10.1109/ICCCNT49239.2020.9225296
https://doi.org/10.56294/dm2023197
https://doi.org/10.56294/dm2023197
https://doi.org/10.1109/TNNLS.2022.3155181

Automatic Brain Tumor Segmentation Using CNN: U-Net with PSO 349

28. Lorenzen, E.L., et al.: A national study on the inter-observer variability in the
delineation of organs at risk in the brain. Acta Oncol. 60(11), 1548–1554 (2021).
https://doi.org/10.1080/0284186X.2021.1975813

29. Lotlikar, V.S., Satpute, N., Gupta, A.: Brain tumor detection using machine learn-
ing and deep learning: a review. Curr. Med. Imaging Formerly Curr. Med. Imaging
Rev. 18(6), 604–622 (2022). https://doi.org/10.2174/1573405617666210923144739

30. Gab Allah, A.M., Sarhan, A.M., Elshennawy, N.M.: Edge U-Net: brain tumor
segmentation using MRI based on deep U-Net model with boundary informa-
tion. Expert Syst. Appl. 213, 118833 (2023). https://doi.org/10.1016/j.eswa.2022.
118833

31. Mano, A., Anand, S.: Method of multi-region tumour segmentation in brain MRI
images using grid-based segmentation and weighted bee swarm optimisation. IET
Image Proc. 14(12), 2901–2910 (2020). https://doi.org/10.1049/iet-ipr.2019.1234

32. May, J.L., Garcia-Mora, J., Edwards, M., Rossmeisl, J.H.: An illustrated scoping
review of the magnetic resonance imaging characteristics of Canine and Feline
brain tumors. Animals 14(7), 1044 (2024). https://doi.org/10.3390/ani14071044

33. Mayala, S., Herdlevær, I., Haugsøen, J.B., Anandan, S., Gavasso, S., Brun, M.:
Brain tumor segmentation based on minimum spanning tree. Front. Signal Process.
2 (2022). https://doi.org/10.3389/frsip.2022.816186

34. Micallef, N., Seychell, D., Bajada, C.J.: Exploring the U-Net++ model for auto-
matic brain tumor segmentation. IEEE Access 9, 125523–125539 (2021). https://
doi.org/10.1109/ACCESS.2021.3111131

35. Murmu, A., Kumar, P.: A novel Gateaux derivatives with efficient DCNN-Resunet
method for segmenting multi-class brain tumor. Med. Biol. Eng. Comput. 61(8),
2115–2138 (2023). https://doi.org/10.1007/s11517-023-02824-z

36. Natarajan, A., Kumarasamy, S.: Efficient segmentation of brain tumor using FL-
SNM with a metaheuristic approach to optimization. J. Med. Syst. 43(2), 25
(2019). https://doi.org/10.1007/s10916-018-1135-y

37. Raghu, S., Lakshmi, T.A.: Brain Tumor detection based on MRI Image Segmen-
tation Using U-Net. Ann. RSCB 26(1), 579–594 (2022)

38. Ranjbarzadeh, R., Zarbakhsh, P., Caputo, A., Tirkolaee, E.B., Bendechache, M.:
Brain tumor segmentation based on optimized convolutional neural network and
improved chimp optimization algorithm. Comput. Biol. Med. 168, 107723 (2024).
https://doi.org/10.1016/j.compbiomed.2023.107723

39. Ravikiran, H.K., Jayanth, J., Sathisha, M.S., Bindu, K.: Optimizing sheep breed
classification with bat algorithm-tuned CNN hyperparameters. SN Comput. Sci.
5(2), 219 (2024). https://doi.org/10.1007/s42979-023-02544-z

40. Razzaghi, P., Abbasi, K., Shirazi, M., Rashidi, S.: Multimodal brain tumor detec-
tion using multimodal deep transfer learning. Appl. Soft Comput. 129, 109631
(2022). https://doi.org/10.1016/j.asoc.2022.109631

41. Roshan, S., Tanha, J., Zarrin, M., Babaei, A.F., Nikkhah, H., Jafari, Z.: A deep
ensemble medical image segmentation with novel sampling method and loss func-
tion. Comput. Biol. Med., 108305 (2024). https://doi.org/10.1016/j.compbiomed.
2024.108305

42. Saifullah, S., Dreżewski, R.: Enhanced medical image segmentation using CNN
based on histogram equalization. In: 2023 2nd International Conference on Applied
Artificial Intelligence and Computing (ICAAIC), pp. 121–126 (2023). https://doi.
org/10.1109/ICAAIC56838.2023.10141065

43. Saifullah, S., Dreżewski, R.: Modified histogram equalization for improved CNN
medical image segmentation. Procedia Comput. Sci. 225(C), 3021–3030 (2023).
https://doi.org/10.1016/j.procs.2023.10.295

https://doi.org/10.1080/0284186X.2021.1975813
https://doi.org/10.2174/1573405617666210923144739
https://doi.org/10.1016/j.eswa.2022.118833
https://doi.org/10.1016/j.eswa.2022.118833
https://doi.org/10.1049/iet-ipr.2019.1234
https://doi.org/10.3390/ani14071044
https://doi.org/10.3389/frsip.2022.816186
https://doi.org/10.1109/ACCESS.2021.3111131
https://doi.org/10.1109/ACCESS.2021.3111131
https://doi.org/10.1007/s11517-023-02824-z
https://doi.org/10.1007/s10916-018-1135-y
https://doi.org/10.1016/j.compbiomed.2023.107723
https://doi.org/10.1007/s42979-023-02544-z
https://doi.org/10.1016/j.asoc.2022.109631
https://doi.org/10.1016/j.compbiomed.2024.108305
https://doi.org/10.1016/j.compbiomed.2024.108305
https://doi.org/10.1109/ICAAIC56838.2023.10141065
https://doi.org/10.1109/ICAAIC56838.2023.10141065
https://doi.org/10.1016/j.procs.2023.10.295

350 S. Saifullah and R. Dreżewski

44. Saifullah, S., Dreżewski, R.: Advanced medical image segmentation enhancement:
a particle-swarm-optimization-based histogram equalization approach. Appl. Sci.
14(2), 923 (2024). https://doi.org/10.3390/app14020923

45. Saifullah, S., Drezewski, R.: Improved brain tumor segmentation using modified
u-net based on particle swarm optimization image enhancement. In: Genetic and
Evolutionary Computation Conference (GECCO 2024 Companion), Melbourne,
VIC, Australia. ACM, New York (2024). https://doi.org/10.1145/3638530.3654339

46. Saifullah, S., Dreżewski, R.: Redefining brain tumor segmentation: a cutting-edge
convolutional neural networks-transfer learning approach. Int. J. Electr. Comput.
Eng. (IJECE) 14(3), 2583 (2024). https://doi.org/10.11591/ijece.v14i3.pp2583-
2591

47. Saifullah, S., Pranolo, A., Dreżewski, R.: Comparative analysis of image enhance-
ment techniques for braintumor segmentation: contrast, histogram, and hybrid
approaches. E3S Web Conf. 501, 1020 (2024). https://doi.org/10.1051/e3sconf/
202450101020

48. Singh, A.K., Mishra, A.: Revolutionizing brain tumor diagnosis: harnessing convo-
lutional neural networks for enhanced prediction and classification. In: 2024 IEEE
International Conference on Computing, Power and Communication Technolo-
gies (IC2PCT), pp. 245–250. IEEE (2024). https://doi.org/10.1109/IC2PCT60090.
2024.10486347

49. Srinivasan, S., Durairaju, K., Deeba, K., Mathivanan, S.K., Karthikeyan, P., Shah,
M.A.: Multimodal biomedical image segmentation using multi-dimensional U-
convolutional neural network. BMC Med. Imaging 24(1), 38 (2024). https://doi.
org/10.1186/s12880-024-01197-5

50. Suhirman, S., Saifullah, S., Hidayat, A.T., Kusuma, M.A., Drezewski, R.: Real-time
mask-wearing detection in video streams using deep convolutional neural networks
for face recognition. Int. J. Electr. Comput. Eng. (IJECE) 14(1), 1005 (2024).
https://doi.org/10.11591/ijece.v14i1.pp1005-1014

51. Talukder, M.A., et al.: An efficient deep learning model to categorize brain tumor
using reconstruction and fine-tuning. Expert Syst. Appl. 230, 120534 (2023).
https://doi.org/10.1016/j.eswa.2023.120534

52. Tandel, G.S., Tiwari, A., Kakde, O.: Performance enhancement of MRI-based brain
tumor classification using suitable segmentation method and deep learning-based
ensemble algorithm. Biomed. Signal Process. Control 78, 104018 (2022). https://
doi.org/10.1016/j.bspc.2022.104018

53. Thias, A.H., Al Mubarok, A.F., Handayani, A., Danudirdjo, D., Rajab, T.E.: Brain
tumor semi-automatic segmentation on MRI T1-weighted images using active con-
tour models. In: 2019 International Conference on Mechatronics, Robotics and Sys-
tems Engineering (MoRSE), pp. 217–221. IEEE (2019). https://doi.org/10.1109/
MoRSE48060.2019.8998651

54. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmenta-
tion based on cascaded convolutional neural networks with uncertainty estimation.
Front. Comput. Neurosci. 13 (2019). https://doi.org/10.3389/fncom.2019.00056

55. Wojciuk, M., Swiderska-Chadaj, Z., Siwek, K., Gertych, A.: Improving classifica-
tion accuracy of fine-tuned CNN models: impact of hyperparameter optimization.
Heliyon 10(5), e26586 (2024). https://doi.org/10.1016/j.heliyon.2024.e26586

56. Xie, Y., et al.: An omni-scale global-local aware network for shadow extraction in
remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 193, 29–44 (2022).
https://doi.org/10.1016/j.isprsjprs.2022.09.004

https://doi.org/10.3390/app14020923
https://doi.org/10.1145/3638530.3654339
https://doi.org/10.11591/ijece.v14i3.pp2583-2591
https://doi.org/10.11591/ijece.v14i3.pp2583-2591
https://doi.org/10.1051/e3sconf/202450101020
https://doi.org/10.1051/e3sconf/202450101020
https://doi.org/10.1109/IC2PCT60090.2024.10486347
https://doi.org/10.1109/IC2PCT60090.2024.10486347
https://doi.org/10.1186/s12880-024-01197-5
https://doi.org/10.1186/s12880-024-01197-5
https://doi.org/10.11591/ijece.v14i1.pp1005-1014
https://doi.org/10.1016/j.eswa.2023.120534
https://doi.org/10.1016/j.bspc.2022.104018
https://doi.org/10.1016/j.bspc.2022.104018
https://doi.org/10.1109/MoRSE48060.2019.8998651
https://doi.org/10.1109/MoRSE48060.2019.8998651
https://doi.org/10.3389/fncom.2019.00056
https://doi.org/10.1016/j.heliyon.2024.e26586
https://doi.org/10.1016/j.isprsjprs.2022.09.004

Automatic Brain Tumor Segmentation Using CNN: U-Net with PSO 351

57. Yamanakkanavar, N., Lee, B.: Using a patch-wise m-net convolutional neural net-
work for tissue segmentation in brain MRI images. IEEE Access 8, 120946–120958
(2020). https://doi.org/10.1109/ACCESS.2020.3006317

58. Yaqub, M., et al.: State-of-the-Art CNN optimizer for brain tumor segmentation
in magnetic resonance images. Brain Sci. 10(7), 427 (2020). https://doi.org/10.
3390/brainsci10070427

59. Zhang, H., et al.: Efficient brain tumor segmentation with lightweight separa-
ble spatial convolutional network. ACM Trans. Multimedia Comput. Commun.
Appl. (2024). https://doi.org/10.1145/3653715. https://dl.acm.org/doi/10.1145/
3653715

60. Zhang, L., Peng Lim, C., Liu, C.: Enhanced bare-bones particle swarm optimiza-
tion based evolving deep neural networks. Expert Syst. Appl. 230, 120642 (2023).
https://doi.org/10.1016/j.eswa.2023.120642

61. Zhou, T., Yu, Z., Cao, Y., Bai, H., Su, Y.: Study on an infrared multi-target
detection method based on the pseudo-two-stage model. Infrared Phys. Technol.
118, 103883 (2021). https://doi.org/10.1016/j.infrared.2021.103883

https://doi.org/10.1109/ACCESS.2020.3006317
https://doi.org/10.3390/brainsci10070427
https://doi.org/10.3390/brainsci10070427
https://doi.org/10.1145/3653715
https://dl.acm.org/doi/10.1145/3653715
https://dl.acm.org/doi/10.1145/3653715
https://doi.org/10.1016/j.eswa.2023.120642
https://doi.org/10.1016/j.infrared.2021.103883

Learning Discretized Bayesian Networks
with GOMEA

Damy M. F. Ha1(B) , Tanja Alderliesten1 , and Peter A. N. Bosman2

1 Leiden University Medical Center, Radiotherapy, Leiden, The Netherlands
D.M.F.ha@lumc.nl, T.Alderliesten@lumc.nl

2 Centrum Wiskunde and Informatica, Evolutionary Intelligence, Amsterdam,
The Netherlands

peter.bosman@cwi.nl

Abstract. Bayesian networks model relationships between random vari-
ables under uncertainty and can be used to predict the likelihood
of events and outcomes while incorporating observed evidence. From
an eXplainable AI (XAI) perspective, such models are interesting as
they tend to be compact. Moreover, captured relations can be directly
inspected by domain experts. In practice, data is often real-valued. Unless
assumptions of normality can be made, discretization is often required.
The optimal discretization, however, depends on the relations modelled
between the variables. This complicates learning Bayesian networks from
data. For this reason, most literature focuses on learning conditional
dependencies between sets of variables, called structure learning. In
this work, we extend an existing state-of-the-art structure learning app-
roach based on the Gene-pool Optimal Mixing Evolutionary Algorithm
(GOMEA) to jointly learn variable discretizations. The proposed Dis-
cretizing Bayesian Network GOMEA (DBN-GOMEA) obtains similar or
better results than the current state-of-the-art when tasked to retrieve
randomly generated ground-truth networks. Moreover, leveraging a key
strength of evolutionary algorithms, we can straightforwardly perform
DBN learning multi-objectively. We show how this enables incorporat-
ing expert knowledge in a uniquely insightful fashion, finding multiple
DBNs that trade-off complexity, accuracy, and the difference with a pre-
determined expert network.

Keywords: Bayesian networks · Evolutionary Algorithms ·
Multi-objective Optimization · Explainable AI · Discretization

1 Introduction

Bayesian Networks (BNs) [14,20] are probabilistic graphical models that model
relationships between random variables under uncertainty. The structure of the
relationships between variables is captured in a Directed Acyclic Graph (DAG).
The process of optimizing the DAG to fit given (tabular) data as good as possible,
which is often called structure learning, has been extensively researched in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 352–368, 2024.
https://doi.org/10.1007/978-3-031-70071-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_22&domain=pdf
http://orcid.org/0000-0003-2495-9681
http://orcid.org/0000-0003-4261-7511
http://orcid.org/0000-0002-4186-6666
https://doi.org/10.1007/978-3-031-70071-2_22

Learning Discretized Bayesian Networks with GOMEA 353

literature (e.g., [14,19]) and applied to many real-world applications, including
in the medical domain [7,21,28], geology and environmental modeling domain
[2,16,22], and (risk and safety) management [11,23,29].

In the real-world scenarios, it is not uncommon to have a mix of discrete
and continuous random variables. Achieving optimal incorporation of continu-
ous variables is however not straightforward. In the literature, there are various
methods to extend discrete BNs with continuous variables. For example, a com-
mon method is to call upon a domain expert, who is tasked to pre-discretize
continuous variables before structure learning or to model the continuous vari-
ables with a parametric distribution. It might however be difficult to consult a
domain expert or they might not always be able to correctly model the vari-
ables. Non-parametric modelling of variables [5,12] on the other hand, does
not require expert knowledge. However, in non-parametric models, normality
is usually assumed. Discretization techniques [8–10,16,26] offer an alternative
as neither expert knowledge is required a priori, nor must the assumption of
normality hold. The optimal discretization however, depends on the relations
modelled between the variables, necessitating simultaneous optimization.

In this work, we extend a state-of-the-art structure learning approach based
on the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) family of
algorithms [19] to jointly learn variable discretizations. The proposed Discretiz-
ing Bayesian Network GOMEA (DBN-GOMEA) is compared to the existing
state-of-the-art DBN learning algorithm on randomly generated problems. For
the task of retrieving randomly generated ground-truth networks, we find that
DBN-GOMEA obtains similar or better performance than the state-of-the-art.
Moreover, leveraging key strengths of EAs in multi-objective optimization, it is
possible to straightforwardly perform DBN learning multi-objectively. The pro-
posed approach is fundamentally different from e.g., [27], where a bi-objective
search is performed on (proxies of) the accuracy and complexity and e.g., [1],
where prior knowledge is included in the search by altering prior model proba-
bilities according to expert knowledge. Our multi-objective approach leverages
a tri-objective search to incorporate expert knowledge in a uniquely insightful
fashion that enables finding multiple DBNs that trade-off (proxies of) model
accuracy, complexity, and difference to a pre-determined expert network. The
code is available at: https://github.com/damyha/dbn_gomea.

2 Discrete Bayesian Networks

A BN B is defined using a DAG G, which represents X = {X1, · · · ,XN} ran-
dom variables. For each random variable Xi there is a node in G with which
a (conditional) probability distribution P (Xi|pa(Xi)) is associated, where the
probability of Xi is conditioned on the parent nodes of Xi in G, i.e., pa(Xi). An
example of G is shown in Fig. 1, where pa(X3) = {X1,X2}, and X3 is a par-
ent of X4. Node X3, together with spouse X6 are also parents of X5. Given G
and all conditional probabilities Θ, the probability distribution over all variables
(data features) X can be written as a product of the individual conditional node
probabilities, as is shown in Eq. 1.

https://github.com/damyha/dbn_gomea

354 D. M. F. Ha et al.

P(X1, · · · ,XN) =
N∏

i=1

P(Xi|pa(Xi)) (1)

Fig. 1. Example of a DAG representing a BN (black) and all possible edges (grey).
(Color figure online)

2.1 BN-GOMEA

In recent work, a state-of-the-art score-based BN structure learning algorithm
was developed, called BN-GOMEA [19]. BN-GOMEA employs an Evolutionary
Algorithm (EA) from the Gene-pool Optimal Mixing Evolutionary Algorithm
(GOMEA) family. BN-GOMEA was found to outperform other EAs, greedy
hill-climbing, and tabu-list based algorithms such as Ordering-Based Search,
Sparse Candidate, and Max-Min Hill-Climbing. In this work, we will build upon
BN-GOMEA. Therefore, key features of BN-GOMEA will be summarized.

In BN-GOMEA, BN structures are learned by encoding BNs as a string of
discrete variables, one for each possible edge between two random variables i
and j (i �= j). The value each variable can take is 0, meaning no edge between
i and j, 1, meaning a directed edge from i to j or 2, meaning a directed edge
from j to i. The encoding uses �total = N

2 (N − 1) variables to represent all
edges in a network of N random variables. An example of a BN with a genotype
representation is given in Fig. 1. The encoding, however, permits cyclic networks.
A repair operator involving depth-first search is used to remove any detected
cycles. During the depth-first search, the last edge that completes a cycle is
removed.

BN-GOMEA employs a linkage model that captures interdependencies
between problem variables. The type of linkage model used, consists of Fam-
ily of Subset (FOS) elements. Each FOS element is a set of indices indicating
dependencies between problem variables identified by those indices. The FOS
elements used in BN-GOMEA are governed by a linkage tree (Lt), a hierarchi-
cal clustering structure that follows from merging groups of variables iteratively

Learning Discretized Bayesian Networks with GOMEA 355

until one set containing all variables remains. Each set of variables in the hierar-
chical clustering is a FOS element used by BN-GOMEA. Hierarchical clustering
is performed using the mutual information metric and using the population to
compute the required probabilities. The Gene-pool Optimal Mixing (GOM) vari-
ation operator in BN-GOMEA subsequently leverages this Lt. Each solution in
the population undergoes GOM. First, the solution is cloned. Then, the Lt is
traversed in a random order. For each FOS element in the Lt, a random donor
solution is selected from the population. The variables indicated by the FOS ele-
ment are then copied from the donor to the offspring solution. Changes resulting
in worse fitness are reverted, otherwise they are kept.

Other than the GOM operator, BN-GOMEA’s excellent performance is also
attributed to the ability to employ partial evaluations. Each GOM step only
changes part of a solution. Partial evaluations allow efficient recalculations of
fitness if only few variables are changed. This requires decomposable fitness
functions, which is the case for BN-GOMEA’s BDeu function, a commonly used
BN learning fitness function [6]. Another reason for BN-GOMEA’s success is
that a local search operator is additionally used. Upon initialization and after
creating offspring using GOM, local search is applied to every solution. The
local search operator traverses all variables in a random order and assesses the
fitness when an alternative value is used for a variable, i.e., any value in {0, 1, 2}
different from the current value. Only if the best option result in a better fitness
value, the variable value is changed accordingly.

Finally, BN-GOMEA also makes use of an Interleaved Multi-start Scheme
(IMS), which runs multiple populations of various sizes side by side, avoiding
the need to tune the population size manually. Specifically, the IMS ensures that
a population of size npop, executes 4 generations before a population of 2 · npop
executes a single generation, starting from a base population of size 2.

3 Discretization of Continuous Random Variables
in Bayesian Networks

3.1 DBN-GOMEA

We extend BN-GOMEA such that continuous random variables can be taken into
consideration without the need to discretize them a priori, i.e., the variables are
discretized during structure learning. We refer to this extension as Discretizing
BN-GOMEA (DBN-GOMEA).

First, the BDeu score used in BN-GOMEA is replaced by a density-based
fitness function. Reasons are: 1) Discretization turns the continuous data into a
histogram, which is essentially still a probability density function (that assumes a
uniform data distribution within each bin (also referred to as discretization)). 2)
The BDeu with discretization inherently maximizes the log-likelihood by placing
all continuous samples into a single bin, since the likelihood of being in a single
bin becomes 1.

The fitness function that is used is the log-likelihood calculated across these
densities, as is shown in Eq. 2, where xi ∈ R

N is a training sample i from a

356 D. M. F. Ha et al.

training data set of size n. To make the fitness invariant to the data range, the
data is normalized to [0, 1] prior to calculating the densities. This is similar to
what has been done in [26]. As a penalty term, the penalty term in the BIC score
[25] is used, where the model complexity C(G) is dependent on the number of
parent discretizations: |pa(Xi)|, the number of discretizations of Xi: |Xi|, and
n, as shown in Eq. 3. This results in the fitness function displayed in Eq. 4.

LL(X, G) =
n∏

i=1

log(fdensity(xi)) (2)

C(G) =
N∑

i=1

|pa(Xi)| · (|Xi| − 1) · log(n
2
) (3)

fitness(X, G) = LL(X, G) − C(G) (4)

To discretize continuous variables, we consider two common discretization
methods in this paper, namely: Equal-Width (EW) and Equal-Frequency (EF).
In EW discretization, data is split into ‘k’ equally ranged bins. In EF discretiza-
tion, data is sorted and split into ‘k’ equally filled bins. In DBN-GOMEA, to
facilitate discretization, the discretization count k for each continuous random
variable is optimized by appending all k’s to BN-GOMEA’s solution represen-
tation. I.e., the representation is enlarged with Nc variables where Nc is the
number of continuous variables.

Because the solution representation is altered, the local search opera-
tor of BN-GOMEA is changed accordingly. DBN-GOMEA retains the local
search operator for the network topology. For problem variables that repre-
sent discretization counts, their values are increased and decreased by one, i.e.,
{k − 1, k + 1}, when performing local search. Discretization counts are further-
more constrained to a minimum and maximum value. In this work, the dis-
cretizations are constrained to a range of 2 to 15 to keep computation times
feasible.

3.2 LDBN: The Current State-of-the-Art

In [8], a discretization method is proposed that finds a discretization Λ that
maximizes a likelihood score, given a BN structure. The method uses Bayes’
rule to maximize: P (Λ) · P (D|Λ), where P (Λ) is the prior of a discretization
policy and P (D|Λ) is the probability of the data given the discretization policy.
The likelihood is formulated by making assumptions, one of which is that the
prior probability of a discretization boundary between two unique consecutive
sample values is proportional to their difference. Dynamic programming is used
to maximize the likelihood. By doing pre-calculations, the discretization runtime
is reduced to O(r · n2), where r is a constant and n is the sample size.

In [8], LDBN is introduced as a state-of-the-art algorithm that combines the
Bayesian discretization method with a structure learning algorithm. Structure
learning in LDBN proceeds by first applying EW discretization to all continuous

Learning Discretized Bayesian Networks with GOMEA 357

random variables, where the number of discretizations is the largest number of
instantiations amongst all discrete random variables. Subsequently, an arbitrary
random variable is selected as a starting point. The remaining random variables
are randomly selected and sequentially added to the BN structure as child nodes.
An edge between the potential child node and BN structure materializes when
the K2 score of the network improves when adding the edge. Upon edge addition,
the Bayesian discretization is applied on the new node and its Markov blanket
in a sequentially random order. Given the inherent randomness in both the
structure learning and discretization process, LDBN executes both processes
multiple times. We kindly refer the interested reader to [8] for more details.

3.3 Post-structure Learning Discretization

In the literature, EW and EF discretization are commonly used. However, real-
world data rarely align perfectly with EW or EF distributions. The Bayesian
method performs a more fined-grained optimization. However, as later will be
shown, it is computationally expensive, especially compared to EW and EF
discretization. Consequently, it might be interesting to refine the discretization
boundaries post structure learning.

In this paper, we perform discretization with the Bayesian method men-
tioned above after structure learning on networks obtained with EW and EF
discretization. For comparison, we use a state-of-the-art real-valued optimiza-
tion algorithm (Real-Valued GOMEA (RV-GOMEA) [3,4]) to optimize the bin
boundaries using the density fitness function (Eq. 4). This may increase the like-
lihood of the learned BN, without changing the complexity. For this boundary
optimization all boundaries are encoded in a single solution. Rather than directly
optimizing the boundaries, the unique data values u of each continuous random
variable are sorted, after which the bin boundaries are optimized as sample
indices. The boundary at sample index i is defined as the midway point between
unique sample ui and ui+1. Compared to direct boundary optimization, opti-
mizing the sample indices makes the flat landscape between samples indices to
be of equal size.

4 Multi-objective Learning

A major limitation of Single-Objective (SO) BN learning is that the weight of
the complexity term is not straightforward to set [27]. Furthermore, an expert
may have their own beliefs about what the Bayesian network should look like.
Taking a Multi-Objective (MO) perspective can offer a solution to these issues.
First, with MO search, the user does not need to set the penalty factor a priori.
Furthermore, the search returns many networks from which a domain expert can
choose a network that matches (partly) with their own prior belief or discover
new knowledge this way.

A straightforward way to do MO search is to optimize (a proxy of) accuracy
and model complexity as in e.g., [27]. For GOMEA, MO variants exist that are

358 D. M. F. Ha et al.

direct extensions of the SO versions, necessitating no further adaptions the geno-
type or the variation operator. Using the density function as is, an MO problem
formulation can be straightforwardly obtained by using Eq. 2 and 3 as separate
objectives. See Sect. 4.1 for more on this. The networks obtained through the
MO search, or a subset thereof, can then be shown to an expert, who chooses
the most appropriate network, trading off the fit to the data and the complexity
of the network. The inclusion of expert knowledge however, could provide addi-
tional guidance to the search by optimizing a third objective: the distance to
an a priori determined expert network. To this end, we use the Kullback-Leibler
divergence (KL) as shown in Eq. 5, where P (X) is the probability distribution of
the expert network, Q(X) is the probability distribution of a candidate network,
and X is the sample space. The KL divergence is 0 when two probability dis-
tributions are identical, and is larger than 0 otherwise. An example of solutions
in objective space of an MO run is shown in Fig. 2. Figure 2 shows the trade-
off between density against complexity, with the KL divergence to the expert
network projected as a heat-map. The expert and ground truth networks are
also shown, along with the respective BNs. BNs of 2 solutions surrounding the
ground truth are also shown.

DKL(P ||Q) =
∑

X∈X
P (X) log

(
P (X)
Q(X)

)
(5)

Fig. 2. Example of an approximation front of an MO run along with the ground truth
and expert networks. BNs of solutions surrounding the ground truth are also shown.

4.1 MO-DBN-GOMEA

For the MO optimization, the Multi-Objective version of GOMEA (MO-
GOMEA) [18] is used. MO-GOMEA can similarly exploit partial evaluations
to achieve enhanced efficiency. MO-GOMEA uses domination-based optimiza-
tion, i.e., it uses the concept of Pareto dominance to find better solutions (test
for improvements). A solution is said to Pareto dominate another solution if it

Learning Discretized Bayesian Networks with GOMEA 359

is not worse in any objective and better in at least one objective. In this work,
we will build upon MO-GOMEA to create MO-DBN-GOMEA. Therefore, key
features of MO-GOMEA will be briefly summarized.

Given m objectives to be optimized, a population in MO-GOMEA is par-
titioned into c clusters of equal sizes. For each cluster, an Lt is learnt, similar
as in Sect. 2.1. The m clusters with the best mean objective values are selected
to optimize the respective individual objective functions using the SO GOM
operator. For the remaining clusters, the MO GOM operator is used. Different
from SO GOM, an altered solution is accepted in MO GOM if: 1) the altered
solution dominates the unaltered solution, 2) the altered solution has the same
objective values, 3) the altered solution is not dominated by any solution in the
elitist archive. In this work we used an elitist archive with a maximum size of
10,000 solutions to maximize solution collection while balancing computation
time. Which solutions to accept into the archive once the limit is reached, is
governed by an adaptive gridding technique. For details, see [18].

MO-GOMEA uses the IMS to regulate its population size and number of
clusters c. By default, the population size starts at 8 and is multiplied by 2 for
every new population. The number of clusters starts at m + 1, and is incremented
by 1 for every new population.

We extended MO-GOMEA to solve discrete problems beyond only binary
problems by following the suggestions in [18]. The most important change, is
replacing the binary Lt with the discrete Lt of [19]. Furthermore, the BN struc-
ture representation, as proposed in Sect. 2 is integrated into MO-GOMEA. The
new structure learning algorithm is dubbed MO-DBN-GOMEA.

5 Experiments and Results

5.1 Network Generation

In this work, randomly generated BN structures and probability distributions
are used to assess the performance of the algorithms. The network generator
algorithm of [13] is used to generate random BNs. Probability distributions are
generated using a novel method described below. Data sets are subsequently
sampled from the ground truth networks to use for learning. In [13], random
BN structures are generated under constraints. The maximum number of parent
random variables is set to 6. The maximum number of edges in a network is
set to be at most 40% of all possible edges �total. These constraints have been
chosen, such that networks can be evaluated within reasonable time.

The probability distributions are randomly generated by first categorizing
the random variables into discrete and continuous. Each network contains 10%
discrete random variables with a minimum of at least one discrete variable. Both
discrete and continuous random variables are then randomly assigned between
2 and 6 discretizations. E.g., 5 discretizations can produce the following sample
values: {1, 2, 3, 4, 5}. A discrete probability table is then generated for each ran-
dom variable, that maps the possible parent values to a probability of a specific
discretization value. The probability tables are generated in three ways: EW, EF

360 D. M. F. Ha et al.

or random probability distributions. For EF probability distributions, the prob-
ability of sampling any value is equiprobable. For EW and random probability
distributions, random probability tables are generated.

Discrete samples can now be retrieved. For the continuous variables, however,
the discrete probability tables must be converted into continuous probability
distributions. For this, a mapping is generated that maps each discrete value
to a continuous range from which values can be uniformly sampled. E.g., if a
continuous random variable has 3 discretizations with ranges: [1.0, 2.0〉, [2.0, 2.5〉,
[2.5, 3.5〉, and a discrete value of 2 is sampled, a continuous sample is produced
by uniformly sampling from [2.0, 2.5〉. The sample ranges are designed to be
adjacent and non-overlapping, and are randomly generated. For EW probability
distributions, the sample ranges are set to be equally spaced. For EF and random
probability distributions, the sample ranges are determined randomly.

5.2 Metrics

Algorithm performance is evaluated using network structure metrics, specifically
the accuracy and sensitivity. The accuracy quantifies the proportion of correctly
identified edges TP and correctly identified absent edges TN in a candidate
network relative to all possible edges �total of the ground truth network (see
Eq. 6). Sensitivity measures the proportion of correctly identified edges TP as a
proportion of the total edges in the ground truth network: �edges (see Eq. 6). For
TP , directionality of the edge is not considered, due to intrinsic limitations of
score-based functions on identifying correct edge directionality. Note that this
definition is different from other works such as e.g., [17]. The performance of the
discretization, with respect to the ground truth network, is evaluated with the
KL divergence as previously outlined in Sect. 4.

Accuracy =
TP + TN

�total
Sensitivity =

TP

�edges
(6)

5.3 Single-Objective Scalability

Single-Objective Scalability in Terms of Sample Size.
The scalability in terms of sample size is shown for various algorithms in Fig. 3.
For this, 30 ground truth networks with 8 random variables each were generated
with EW, EF and random probability distributions. For the KL divergence,
50.000 test samples are generated. DBN-GOMEA with EW, EF, and Bayesian
Discretization (BD), as well as the algorithm from [8] (LDBN) are compared.
DBN-GOMEA-EF and DBN-GOMEA-EW are run on an Intel E5-2690, utilizing
one core, 2GB of memory and 24 h of computation time per run. The memory
requirements of BD scale with O(n2). Therefore, LDBN and DBN-GOMEA-BD
are run on a newer E5-4650 with 20GB of memory per run. As only one E5-4650
was available, it was infeasible to execute all algorithms on the E5-4650.

Learning Discretized Bayesian Networks with GOMEA 361

Figure 3 shows that, in general, DBN-GOMEA with the appropriate dis-
cretization techniques finds better network structures as well as better KL diver-
gence when the sample size grows. DBN-GOMEA-EW furthermore obtains per-
fect network retrieval for EW distributions, given ≥ 6400 samples. Conversely,
DBN-GOMEA-EF fails to achieve perfect network retrieval on EF distributions
because the EF data, being sampled from the ground truth network, is not per-
fectly EF distributed. In contrast, EW discretization is less sensitive to variations
in EW distributed data. Interestingly, Bayesian Discretization often runs out of
memory when the sample size grows. The time at which the best solution of
a run was found (Time until best solution) therefore plummets, as only a few
small networks are evaluated. For small sample sizes however, excluding in case
of EW distributions, DBN-GOMEA-BD can find better network structures and
similar or better KL divergence compared to other DBN-GOMEA variants.

Fig. 3. Scalability in terms of sample size for 30 random networks with 8 random
variables having EW, EF and Random probability distributions. Solid lines represent
medians, while shaded areas cover the interquartile ranges. Arrows on the y-axis indi-
cate metric improvement direction.

Testing Differences in the KL Divergence of Random Distributions.
To validate the results, differences in the KL divergence of the random probabil-

362 D. M. F. Ha et al.

ity distributions are examined with a Mann-Whitney U statistical test. Pair-wise
testing is done with respect to the best average results. This results in 18 tests.
Table 1 displays the mean ± the standard deviation of the KL divergence. Note
that the mean is different than median shown in Fig. 3. The best average results
or statistically equivalent results are shown in bold. An alpha value of 0.05 is used
and is Bonferroni corrected for 45 tests as 27 more tests will later be performed.
Table 1 shows that DBN-GOMEA-EF is the best, with DBN-GOMEA-BD being
comparable when there a few samples.

Table 1. The average KL divergence and standard deviations with respect to the
ground truth networks with random distributions (Fig. 3, right column) for various
algorithms. The best average and statistically equivalent KL divergences are in bold.

Number
of samples

DBN-GOMEA-
EW

DBN-GOMEA-
EF

DBN-GOMEA-
BD

LDBN

200 1.57 ± 0.58 0.94 ± 0.21 1.62 ± 0.89 3.43 ± 1.27
400 1.45 ± 0.59 0.83 ± 0.19 1.16 ± 0.78 3.39 ± 1.17
800 1.38 ± 0.61 0.73 ± 0.18 0.94 ± 0.65 3.37 ± 1.24
1600 1.32 ± 0.64 0.64 ± 0.17 1.02 ± 0.73 2.66 ± 1.48
3200 1.26 ± 0.64 0.57 ± 0.18 1.82 ± 1.43 –
6400 1.21 ± 0.66 0.50 ± 0.17 – –
12800 1.16 ± 0.66 0.46 ± 0.17 – –
25600 1.09 ± 0.63 0.43 ± 0.18 – –
51200 1.07 ± 0.62 0.41 ± 0.18 – –

Single-Objective Scalability in Terms of Random Variables.
The scalability in terms of the number of random variables (i.e., nodes) in a
network is shown in Fig. 4. For this, 30 ground truth networks, with random
probability distributions, are generated per ground truth network size. Each run
was performed using 500 training samples, on a single core of an AMD Genoa
9654, with 2GB of memory and a computation budget of 24 h.

Figure 4 shows that DBN-GOMEA-BD obtains more accurate and more sen-
sitive network structures if there are only a few nodes. However, this superiority
diminishes beyond more than 12 nodes. The time it takes to find the best solu-
tion however nears the computation budget of 24 h. This raises the question if
DBN-GOMEA-BD needs more time to converge. The network metrics obtained
by other algorithms for more than 12 nodes seem to be similar.

Testing Differences in the KL Divergence.
Despite having similar network structures, the KL divergence varies per algo-
rithm due to differences in discretizations. To test for statistical differences, a

Learning Discretized Bayesian Networks with GOMEA 363

Fig. 4. Scalability in terms of random variables. For each network size on the x-axis,
30 ground truth networks with 500 samples and random probability distributions were
generated. Solid lines represent medians, while shaded areas cover the interquartile
ranges. Arrows on the y-axis indicate metric improvement direction.

Mann-Whitney U statistical test is performed. Pair-wise testing is done with
respect to the best average results. This results in 27 tests. Table 2, shows the
mean ± the standard deviation of the KL divergence. The results with the best
average and statistically equivalent results are shown in bold. An alpha value
of 0.05 is used, with a Bonferroni correction of 45 as 18 tests were already
performed. Table 2 shows that, similar to Table 1, DBN-GOMEA-EF performs
best, with DBN-GOMEA-BD performing comparably when there are few ran-
dom variables.

Table 2. The average KL divergence ± the standard deviation of various algorithms
optimized on 30 ground truth networks with 500 samples and random probability
distributions (Fig. 4, 3rd plot from the left) for various number of random variables.
The best KL scores and the statistically equivalent results are marked in bold.

Random
Variables

DBN-GOMEA-
EW

DBN-GOMEA-
EF

DBN-GOMEA-
BD

LBDN

4 0.58 ± 0.45 0.29 ± 0.14 0.45 ± 0.40 1.11 ± 0.81
6 0.98 ± 0.56 0.51 ± 0.16 0.57 ± 0.40 2.31 ± 0.86
8 1.26 ± 0.51 0.78 ± 0.18 1.09 ± 0.63 3.04 ± 1.05
10 2.11 ± 0.69 1.15 ± 0.22 1.89 ± 1.16 4.42 ± 1.35
12 2.57 ± 0.91 1.54 ± 0.25 3.02 ± 1.06 4.63 ± 1.07
14 3.29 ± 0.93 1.98 ± 0.28 4.49 ± 1.32 6.42 ± 1.46
16 3.47 ± 0.82 2.32 ± 0.29 5.69 ± 1.25 6.97 ± 1.73
18 4.32 ± 1.06 2.76 ± 0.30 6.95 ± 1.43 7.85 ± 1.74
20 4.66 ± 0.82 3.14 ± 0.33 8.33 ± 1.77 8.35 ± 1.52

364 D. M. F. Ha et al.

5.4 Post-Structure Learning Discretization

Figures 3 and 4 showed that DBN-GOMEA-EW and DBN-GOMEA-EF retrieve
relatively accurate networks relatively fast. However, both algorithms perform
a coarse discretization compared to e.g., BD. To explore post-structure learning
effects, network structures from Fig. 3, obtained using DBN-GOMEA-EW and
DBN-GOMEA-EF on data with random probability distributions, undergo fur-
ther discretization using BD and RV-GOMEA. BD and RV-GOMEA were both
given a computation budget of 24 h and were run on an E5-4650 with 20GB of
memory and E5-2690 with 2GB of memory, respectively.

The effect of further discretization after completing structure learning,
together with the original obtained network structure and discretization is shown
in Fig. 5. Note that the initial 24 h spent on structure learning is not included in
Fig. 5. Figure 5 shows that when RV-GOMEA is applied (purple and orange), the
median KL divergence improves compared to not doing post-structure learning
discretization (red and blue) regardless whether EW or EF discretization was
used to obtain the structure. Conversely, the BD method worsens the KL diver-
gence in case of limited samples. Beyond 12800 samples, BD runs out of memory.

Fig. 5. Networks structures with random probability distributions of Fig. 3, obtained
using DBN-GOMEA-EW/EF, are further discretized. Solid lines represent medians,
while shaded regions covert the interquartile ranges. Arrows on the y-axis indicate the
metric improvement direction.

5.5 Multi-objective Experiment

Additional to the ground truth networks, expert networks that represent domain
expert hypotheses are also generated. Expert networks mirror the ground truth
by copying 50% of the edges of the ground truth (randomly selected), i.e., 50%
of �edges. This is similar to what has been done in [1]. Additionally, after copying
edges, the expert networks also randomly generate edges that do not appear in

Learning Discretized Bayesian Networks with GOMEA 365

the ground truth network. The number of incorrect edges is also set to 50% of
�edges. Expert networks with cycles are rejected and resampled. For the contin-
uous variables, the experts randomly discretize the data randomly into 2 to 4
bins.

We compare MO-DBN-GOMEA with EW and EF discretization. SO algo-
rithms DBN-GOMEA-EW and DBN-GOMEA-EF are also run. In an explain-
able AI setting, overly complex networks might face rejection by an expert. For
this reason, proposed networks with a complexity (Eq. 3) larger than 10 times
the expert network are assigned a constraint value proportionate to the differ-
ence in complexity. This threshold, however, is problem- and expert dependent
and here only serves as an example. The number of maximum discretizations is
also decreased from 15 to 9 to reduce the complexity of proposed solutions.

The results of the MO search on 30 randomly generated networks with 10
random variables and random probability distributions is shown in Fig. 6 for var-
ious sample sizes. Each run was performed on a single core of an AMD Genoa
9654, with 2GB of memory and a computation budget of 24 h. The first two
columns of Fig. 6 show the network accuracy with respect to the ground truth
and expert networks. For the MO algorithms, the most accurate solutions in the
elitist archive are displayed per run. For the SO algorithms, the final solution’s
network accuracy is shown. Interestingly, MO algorithms outperform SO algo-
rithms in terms of network accuracy, including better accuracy with respect to
the expert networks due to the explicit additional objective. The gap in accuracy
between MO and SO with respect to the ground truth narrows, however, with
increasing sample sizes. In Fig. 6, the KL divergence is also shown. For the MO
algorithms, the best KL divergence is shown amongst all solutions with the high-
est network accuracy. For the SO algorithms, the final solution’s KL divergence
is shown. Interestingly, both the MO and SO algorithms using EF discretization
obtain similar KL divergence to the ground truth network.

Fig. 6. MO vs SO scalability in terms of sample size on ground truth networks with
10 nodes, random probability distributions, and random expert networks. The solid
lines are medians, while the shaded areas encompass the first and third quartiles. The
arrows on the y-axis point in the direction of improvement per metric.

366 D. M. F. Ha et al.

6 Discussion

In the solution encoding, network variables can take three values, namely:
{0, 1, 2}. When e.g., Equal Width (EW) or Equal Frequency (EF) discretiza-
tion is applied, the number of discretizations for every continuous variable is also
encoded in the solution, which can take a value between 2 and a maximum value.
Due to differing value ranges for network and discretization variables, the linkage
tree tends to cluster discretization variables together, in the lower parts of the
tree. Mixing the network variables and discretization variables could potentially
speed up the optimization, as graphically, discretization variables and edges are
structurally related. For this, normalizing the mutual information could help.

In Sect. 5.3, the effect of the sample size on the network accuracy was shown.
Despite large sample sizes, DBN-GOMEA-EF was unable to fully re-obtain the
EF ground truth network. Conversely, DBN-GOMEA with Bayesian Discretiza-
tion (BS) obtained better KL divergence than DBN-GOMEA-EF for smaller
sample sizes. This suggests the need for more scalable and sophisticated dis-
cretization techniques, beyond EW and EF discretization. An interesting app-
roach would be to use a mixed-integer algorithm, such as [15,24]. The integer-
based network structure encoding could then simultaneously be optimized with
the real-valued bin boundary optimization.

In this work, a multi-objective Bayesian network learning algorithm was also
introduced. However, only EW and EF discretization have been ran, because
BD was found to be too computationally expensive to run.

In some real-world domains, blindly trusting machine learning models is not
acceptable from a legal aspect. The multi-objective approach proposed in this
work however could be useful when used as an advisory model, as it provides the
possibility to inspect multiple possible models and trade-off between complexity
and accuracy. We therefore consider exploring the potential added value of our
approach from an explainable AI perspective, by having domain experts interact
with the found works, to be interesting future work.

7 Conclusion

In this work, for the first time, a full Bayesian network learning algorithm based
on a modern model-based EA (GOMEA) is presented, which discretizes continu-
ous variables while performing structure learning. The single-objective variant of
the proposed algorithm (DBN-GOMEA) obtains similar or better results than
the state-of-the-art when tasked to retrieve randomly generated ground-truth
networks. The multi-objective variant of the proposed algorithm (MO-DBN-
GOMEA) not only obtains similar or better the results than the single-objective
variant, it also enables incorporating expert knowledge in a uniquely insightful
fashion, finding multiple discrete Bayesian networks that trade-off complexity,
accuracy, and the difference with a pre-determined expert network.

Learning Discretized Bayesian Networks with GOMEA 367

Acknowledgements. This research is part of the research programme Open Com-
petition Domain Science-KLEIN with project number OCENW.KLEIN.111, which is
financed by the Dutch Research Council (NWO). We also thank NWO for the Small
Compute grant on the Dutch National Supercomputer Snellius.

References

1. Amirkhani, H., Rahmati, M., Lucas, P.J.F., Hommersom, A.: Exploiting experts’
knowledge for structure learning of Bayesian networks. IEEE Trans. Pattern
Anal. Mach. Intell. 39(11), 2154–2170 (2017). https://doi.org/10.1109/TPAMI.
2016.2636828

2. Beuzen, T., Marshall, L., Splinter, K.D.: A comparison of methods for discretizing
continuous variables in Bayesian networks. Environ. Model. Softw. 108, 61–66
(2018)

3. Bouter, A., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Exploiting linkage
information in real-valued optimization with the real-valued gene-pool optimal
mixing evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2017), pp. 705–712. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3071178.3071272

4. Bouter, A., Bosman, P.A.N.: A joint python/c++ library for efficient yet accessible
black-box and gray-box optimization with gomea. In: Proceedings of the Compan-
ion Conference on Genetic and Evolutionary Computation (GECCO 2023), pp.
1864–1872. Association for Computing Machinery, New York (2023). https://doi.
org/10.1145/3583133.3596361

5. Bubnova, A.V., Deeva, I., Kalyuzhnaya, A.V.: Mixbn: library for learning Bayesian
networks from mixed data. Procedia Comput. Sci. 193, 494–503 (2021)

6. Buntine, W.: Theory refinement on Bayesian networks. In: Proceedings of the Sev-
enth Conference on Uncertainty in Artificial Intelligence (UAI 1991), pp. 52–60.
Morgan Kaufmann Publishers Inc., San Francisco (1991)

7. de Campos, L.M., Cano, A., Castellano, J.G., Moral, S.: Bayesian networks classi-
fiers for gene-expression data. In: 2011 11th International Conference on Intelligent
Systems Design and Applications, pp. 1200–1206 (2011). https://doi.org/10.1109/
ISDA.2011.6121822

8. Chen, Y.C., Wheeler, T.A., Kochenderfer, M.J.: Learning discrete Bayesian net-
works from continuous data. J. Artif. Int. Res. 59(1), 103–132 (2017)

9. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued
attributes for classification learning. In: Proceedings of the 13th International Joint
Conference on Artificial Intelligence, pp. 1022–1029. Morgan Kaufmann, Chambery
(1993)

10. Friedman, N., Goldszmidt, M.: Discretizing continuous attributes while learning
bayesian networks. In: Saitta, L. (ed.) Proceedings of the Thirteenth International
Conference on Machine Learning. Morgan Kaufmann, San Francisco (1996)

11. Hosseini, S., Ivanov, D.: Bayesian networks for supply chain risk, resilience and
ripple effect analysis: a literature review. Exp. Syst. Appl. 161, 113649 (2020)

12. Ickstadt, K., et al.: Nonparametric Bayesian networks. In: Bayesian Statistics
9. Oxford University Press, Oxford (2011). https://doi.org/10.1093/acprof:oso/
9780199694587.003.0010

13. Ide, J.S., Cozman, F.G., Ramos, F.T.: Generating random Bayesian networks with
constraints on induced width. In: Proceedings of the 16th European Conference on
Artificial Intelligence (ECAI 2004), pp. 353–357. IOS Press, NLD (2004)

https://doi.org/10.1109/TPAMI.2016.2636828
https://doi.org/10.1109/TPAMI.2016.2636828
https://doi.org/10.1145/3071178.3071272
https://doi.org/10.1145/3583133.3596361
https://doi.org/10.1145/3583133.3596361
https://doi.org/10.1109/ISDA.2011.6121822
https://doi.org/10.1109/ISDA.2011.6121822
https://doi.org/10.1093/acprof:oso/9780199694587.003.0010
https://doi.org/10.1093/acprof:oso/9780199694587.003.0010

368 D. M. F. Ha et al.

14. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques - Adaptive Computation and Machine Learning. The MIT Press, Cambridge
(2009)

15. Li, R., et al.: Mixed integer evolution strategies for parameter optimization. Evo-
lution. Comput. 21(1), 29–64 (2013). https://doi.org/10.1162/EVCO_a_00059

16. Lima, M.D., Nassar, S.M., Rodrigues, P.I.R., Filho, P.J.F., Jacinto, C.M.: Heuris-
tic discretization method for Bayesian networks. J. Comput. Sci. 10(5), 869–878
(2014)

17. Liu, Z., Malone, B., Yuan, C.: Empirical evaluation of scoring functions for
Bayesian network model selection. BMC Bioinformatics 13, S14 (2012). https://
doi.org/10.1186/1471-2105-13-S15-S14

18. Luong, N.H., La Poutré, H., Bosman, P.A.: Multi-objective gene-pool optimal mix-
ing evolutionary algorithm with the interleaved multi-start scheme. Swarm Evol.
Comput. 40, 238–254 (2018)

19. Orphanou, K., Thierens, D., Bosman, P.A.N.: Learning Bayesian network struc-
tures with Gomea. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2018), pp. 1007–1014. Association for Computing Machinery,
New York (2018). https://doi.org/10.1145/3205455.3205502

20. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

21. Reijnen, C., et al.: Preoperative risk stratification in endometrial cancer (endorisk)
by a Bayesian network model: a development and validation study. PLOS Med.
17(5), 1–19 (2020). https://doi.org/10.1371/journal.pmed.1003111

22. Ropero, R.F., Renooij, S., van der Gaag, L.C.: Discretizing environmental data for
learning Bayesian-network classifiers. Ecol. Model. 368, 391–403 (2018)

23. Rostamabadi, A., Jahangiri, M., Zarei, E., Kamalinia, M., Alimohammadlou, M.:
A novel fuzzy Bayesian network approach for safety analysis of process systems;
an application of HFACS and SHIPP methodology. J. Clean. Prod. 244, 118761
(2020)

24. Sadowski, K.L., Thierens, D., Bosman, P.A.: GAMBIT: a parameterless model-
based evolutionary algorithm for mixed-integer problems. Evolution. Comput.
26(1), 117–143 (2018). https://doi.org/10.1162/evco_a_00206

25. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
26. Suzuki, J.: Learning bayesian network structures when discrete and continuous

variables are present. In: van der Gaag, L.C., Feelders, A.J. (eds.) Probabilistic
Graphical Models, pp. 471–486. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11433-0_31

27. Wu, T., Qian, H., Liu, Z., Zhou, J., Zhou, A.: Bi-objective evolutionary Bayesian
network structure learning via skeleton constraint. Front. Comput. Sci. 17(6)
(2023). https://doi.org/10.1007/s11704-023-2740-6

28. Zhao, G., Feng, Q., Chen, C., Zhou, Z., Yu, Y.: Diagnose like a radiologist: hybrid
neuro-probabilistic reasoning for attribute-based medical image diagnosis. IEEE
Trans. Pattern Anal. Mach. Intell. 44(11), 7400–7416 (2022). https://doi.org/10.
1109/TPAMI.2021.3130759

29. Zhou, Z., Yu, X., Zhu, Z., Zhou, D., Qi, H.: Development and application of a
bayesian network-based model for systematically reducing safety risks in the com-
mercial air transportation system. Saf. Sci. 157, 105942 (2023)

https://doi.org/10.1162/EVCO_a_00059
https://doi.org/10.1186/1471-2105-13-S15-S14
https://doi.org/10.1186/1471-2105-13-S15-S14
https://doi.org/10.1145/3205455.3205502
https://doi.org/10.1371/journal.pmed.1003111
https://doi.org/10.1162/evco_a_00206
https://doi.org/10.1007/978-3-319-11433-0_31
https://doi.org/10.1007/978-3-319-11433-0_31
https://doi.org/10.1007/s11704-023-2740-6
https://doi.org/10.1109/TPAMI.2021.3130759
https://doi.org/10.1109/TPAMI.2021.3130759

Pareto-Informed Multi-objective Neural
Architecture Search

Ganyuan Luo1 , Hao Li1 , Zefeng Chen1(B) , and Yuren Zhou2

1 School of Artificial Intelligence, Sun Yat-sen University, Zhuhai, China
{luogy7,lihao75}@mail2.sysu.edu.cn, chenzef5@mail.sysu.edu.cn

2 School of Software Engineering, Sun Yat-sen University, Zhuhai, China
zhouyuren@mail.sysu.edu.cn

Abstract. Aiming at the auto-design of powerful neural architectures
with a requirement of compromising multiple objectives, this paper intro-
duces a novel approach called Pareto-informed Multi-objective Neural
Architecture Search (PiMO-NAS), which employs a solution generator
influenced by Tchebycheff decomposition to explore the objective space
of multi-objective NAS. Our methodology initiates with a transforma-
tion of discrete search space into continuous form, followed by iterative
solution optimization, in which Gaussian Process (GP) surrogate mod-
els are utilized to establish a mapping from decision space to objective
space. Subsequently, a solution generator, directed by preference vectors
from the objective space, is designed to generate decision vectors to map
the weights from the objective space back to the decision space. This
solution generator is further optimized based on the gradients derived
from the GP models. To ensure diversity in the solution pool, the solu-
tion generator synthesizes new candidate solutions guided by preference
vectors generated by a well-designed adaptive sampler. In order to ver-
ify the performance of the proposed PiMO-NAS, a series of experiments
were conducted within two typical NAS search spaces (i.e., the Once-
For-All(OFA) and AutoFormer based ones, covering both convolutional
neural networks and vision transformers), and more than 30 state-of-the-
art NAS methods and models were employed for performance compar-
isons. Experimental results showcase that our approach can outperform
most peers in terms of search time and solution quality, and has fan-
tastic ability to efficiently discover high-performing neural architectures.
In the OFA-based search spaces, compared with the MSuNAS, the pro-
posed PiMO-NAS was able to achieve similar performance in two-thirds
of the number of iterations, thereby saving about 24% of the search
time. In the AutoFormer-based search space, we successfully approached
a strong baseline formed by a single-objective evolutionary algorithm
with restricted parameter quantities, approximating the entire Pareto
front in a comparable timeframe.

Keywords: Neural architecture search (NAS) · Multi-objective
optimization · Surrogate · Pareto front

This research is supported by the National Natural Science Foundation of China under
Grants 62206313 and 62232008.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 369–385, 2024.
https://doi.org/10.1007/978-3-031-70071-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_23&domain=pdf
http://orcid.org/0009-0009-8635-1162
http://orcid.org/0009-0005-0267-4310
http://orcid.org/0000-0003-3743-5254
http://orcid.org/0000-0002-0497-0835
https://doi.org/10.1007/978-3-031-70071-2_23

370 G. Luo et al.

1 Introduction

Fig. 1. Solutions obtained by our proposed
PiMO-NAS in the AutoFormer-small space.
Solutions obtained by PiMO-NAS outper-
forms previous SOTA models like DeiT
and RegNetY. Note that PiMO-NAS only
needs a single search of 2.16 GPU days
to obtain numerous good-quality solutions
(over 200), while AutoFormer needs three
rounds of searches (each of which spent 1.83
GPU days) to obtain three good-quality
solutions.

In recent years, a paradigm shift
in computer vision has been wit-
nessed with the advent of neural
networks such as convolutional neu-
ral networks(CNNs)[18–20,29,34] and
vision transformers (ViTs)[12,25,37,
37]. Pioneering the revolution of deep
learning (DL), CNNs have estab-
lished themselves as a cornerstone in
the DL field, thanks to their excep-
tional capability in handling image
data. Meanwhile, ViTs have demon-
strated remarkable capabilities in cap-
turing long-range dependencies, a fea-
ture critical for understanding com-
plex visual contexts, which marked a
significant departure from CNNs[17].
However, the quest for efficient and
powerful neural architectures in com-
puter vision raises a critical ques-
tion: how to balance multiple conflict-
ing objectives (such as accuracy and
model size)? As the success of CNNs
and ViTs in visual recognition is con-
tingent upon the meticulous architecture design, it requires substantial com-
putational resources and expert knowledge. This challenge has prompted the
exploration of neural architecture search (NAS) methods, which automates the
process of architectural design, leading to models that are both efficient and
accurate[1,21,24,32].

Among these, one-shot NAS (OSNAS) method innovatively decouples
the training and searching phases in the process of neural architecture
optimization[2,6,24,30,31]. A number of distinct approaches have showcased
the versatility and efficiency of one-shot NAS in different contexts. For exam-
ple, the AutoFormer[6], an OSNAS method based on weight entanglement, is
demonstrated to provide plug-and-play ViTs for different budgets. This approach
effectively identifies the optimal ViT configurations that balance computational
efficiency and high performance in visual tasks. Similarly, Once-For-All (OFA)[3]
represents an application of OSNAS extending to CNNs. Developed by Cai et al.,
the OFA trains a diverse and comprehensive supernet capable of adapting to a
wide range of hardware constraints and efficiency requirements with progressive
shrinking technique (Fig. 1).

This work primarily focuses on multi-objective neural architecture search on
one-shot NAS search space. Drawing inspiration from the key idea of Pareto
set learning[23], we develop an innovative approach, named Pareto-Informed

Pareto-Informed Multi-objective Neural Architecture Search 371

Multi-Objective Neural Architecture Search (PiMO-NAS for short), to address
a crucial challenge in deploying neural networks across varied budgets.

In brief, our major contributions in this paper are summarized as three-fold.

1. A simplified yet effective method is developed to relax the traditionally rigid
discrete search space of NAS, and an innovative integration of Pareto set
learning into one-shot NAS is put forward.

2. A novel adaptive sampler that can dynamically generate preference vectors is
designed to address the challenge in terms of the inequality in sub-problems
caused by uneven improvements in hypervolume across different Tchebycheff
decomposition vectors. This can endow with our proposed PiMO-NAS algo-
rithm a strong capability of adapting to diverse search spaces.

3. Our proposed PiMO-NAS algorithm is systemically compared with more
than 30 state-of-the-art NAS methods and models. This comparative analysis
showcases the potential of PiMO-NAS, highlighting its superior performance
in balancing multiple objectives in neural architecture search.

The structure of this paper is organized as follows. Section 2 delves into the
foundations of multi-objective NAS and also provides a detailed exposition on
Pareto set learning, outlining its principles and relevance in the context of NAS.
Section 3 elaborates the details of our proposed PiMO-NAS algorithm. Section 4
is dedicated to the experimental studies of our research, including the design
of our experiments and the experimental results. Section 5 summarizes the key
findings and contributions of our work.

2 Preliminaries

2.1 Multi-objective NAS

The NAS aims to automate the process of designing optimal neural architectures,
finding the best neural network parameters by performing optimization within a
predefined search space. In the search space, neural networks can be encoded as
directed acyclic graphs (DAGs) of a series of hidden states and operations[14]:
st = ot(st−1), where st represents the t-th hidden layer and ot is a specific oper-
ation (e.g., fully connection, convolution, pooling and activation functions) for
converting st−1 to st. Sometimes, the encoding could be simplified to vectors. For
instance, in AutoFormer, the neural network is encoded as a vector in the form
of [Embed dim, MLP ratio, Head Num, Depth Num], allowing representation as
discrete vectors[6].

At this point, the NAS process can be described as a problem of maximiz-
ing/minimizing a specific objective function (i.e., neural architecture’s perfor-
mance indicator, such as test set accuracy) within the search space. In practice,
evaluating a neural architecture requires training on a training set Dtrain and
then testing on a test set Dtest, often consuming a large amount of time. One-shot
NAS partially mitigates this issue through methods like parameter sharing[31]
and weight entanglement[6], but the evaluation process remains costly compared

372 G. Luo et al.

with common optimization problems. Further, in real-world applications, accu-
racy is usually not the only objective to optimize and a trade-off among different
conflicting objectives needs to be pursued. Particularly, when balancing multi-
ple indicators (such as model complexity and error rate on test data), the NAS
process becomes an expensive multi-objective optimization problem:

min
α∈A

F(α) = (f1(α), f2(α), . . . , fm(α)) (1)

where the symbol α denotes a neural architecture in the search space A, and
F : A → R

m is an m-dimensional vector-valued objective function.
In practical multi-objective NAS problems, it is often impossible to find a

single solution that simultaneously optimizes multiple indicators such as com-
putation cost and accuracy. Therefore, the problem evolves into the intricate
challenge of identifying the Pareto front (PF) across varying trade-offs. Previous
works have simplified the problem into a constrained single-objective optimiza-
tion problem[6]. Alternatively, the problem can be further transformed into an
unconstrained single-objective optimization problem through scalarization, as
seen in the works of Cai et al.[4] and Tan et al.[35]. Another prevalent approach
is to search for a set of non-dominated solutions to approximate the PF, sub-
sequently applying multi-objective optimization algorithms, such as the NSGA
algorithm[26,27].

2.2 Pareto Set Learning (PSL)

In the field of expensive multi-objective optimization, earlier methods generally
employ surrogate models that map the decision space to the objective space to
find a collection of well-distributed non-dominated solutions. Unlike conventional
approaches that seek to identify a representative set of such solutions, the PSL
adopts an inverse approach. It utilizes a surrogate model from the objective
space back to the decision space, aiming to predict a broad approximation of
the decision variables that could generate Pareto optimal outcomes[23]. This
process is facilitated by a set model that maps all valid trade-off preferences
Λ = {λ ∈ R

m
+ |∑m

i=1 λi = 1} to their corresponding Pareto solutions, thus
enabling the exploration of the entire PF by modifying the trade-off preferences.

Specifically, the PSL employs the so-called augmented Tchebycheff approach
to scalarize the multi-objective optimization problem, and aims to find optimal
parameters θ∗ for the set model x∗(λ) = hθ∗(λ) which could generate a competi-
tive solution set Mpsl = {x∗(λ)|λ ∈ Λ} for augmented Tchebycheff scalarization
gtch_aug(x|λ), where

hθ∗(λ) = arg min
x∈X

gtch_aug(x|λ),∀λ ∈ Λ (2)

The deployment of set models in PSL has not only made the traversal through
the multi-dimensional space of preferences delineated by λ more straightforward
but also more efficient. This efficiency gain is pivotal for enabling the utiliza-
tion of hypervolume-based improvement strategies in batch selection, which is
formalized as

Pareto-Informed Multi-objective Neural Architecture Search 373

Bhv = {x∗(λ) | ΔHV (x∗(λ),Mpsl) > 0, λ ∈ Λ} (3)

where Bhv denotes the set of batch-selected solutions, and ΔHV (x∗(λ),Mpsl)
quantifies the hypervolume improvement contributed by the new solution x∗(λ)
over the current Pareto set Mpsl. This selection approach optimizes the trade-off
exploration by quantitatively measuring the expansion of the PF, thereby pro-
viding a methodological advancement in the field of multi-objective optimization
that is both effective and computationally viable.

3 Method

In this section, we delineate our methodological framework for PiMO-NAS. Ini-
tially, we expound upon the definitions and compositions of our search spaces,
which are derived from AutoFormer[6] and OFA[3] search spaces. These spaces,
characterized by their discrete nature, present limitations for the PSL technique.
Subsequently, we introduce our novel framework designed to estimate the func-
tion landscape, employing a synergistic approach that integrates a surrogate
model with a recurrent solution generator[10]. Lastly, we propose an adaptive
sampling strategy tailored to form a more balanced PF.

3.1 Search Space

In order to validate the effectiveness of PiMO-NAS, while considering the inher-
ent differences between CNNs and ViTs, we selected typical one-shot NAS spaces
from OFA (for CNNs) and AutoFormer (for ViTs) as our exploration grounds.

OFA Search Space. As part of our methodology, we utilize the Once-For-All
approach, which offers a comprehensive search across several dimensions crucial
for optimizing CNNs. These dimensions include depth, input resolution, width,
and kernel size[3]. For a detailed exploration of these parameters, refer to our
online supplementary materials[28] , where we follow the configuration settings
of MSuNAS [26] and detail our parameter choices and methodology.

AutoFormer Search Space. To optimize the ViT architecture, we employ
an AutoFormer-based search methodology, which segments the architecture into
critical dimensions such as Embedding Dimension, MLP Ratio, Head Number,
and Depth[6]. Detailed parameter exploration for these dimensions is extensively
described in our online supplementary materials[28].

Continuous Transformation of Search Space. Similar to many NAS prob-
lems, both OFA and AutoFormer employ discrete search spaces to encode neural
architectures. In our approach, we map the domain of discrete encoding simply
onto the range [0, 1], thus transforming the problem into minimizing a cost func-
tion in a continuous real space regarding an n-dimensional decision vector. To
restrict the ineffective space generated by zero-padding, we introduce a masking
technique that will be further elaborated in Sect. 3.2.

374 G. Luo et al.

3.2 Pareto-Informed Adaptive Search

Task Formulation. After implementing the aforementioned encoding and
transformation of search space, we relaxed the decision space for both OFA-based
and AutoFormer-based search spaces into a continuous domain. Consequently,
the multi-objective NAS problem considered in this paper is transformed into a
multi-objective optimization problem on a continuous space, and can be formal-
ized as the following parametric bi-objective optimization problem:

min
x∈X

F(x) = (Error(x), Params(x)) (4)

where F denotes the objective vector consisting of two objective functions (i.e.,
m = 2), x represents the decision vector embodied as x = (x1, x2, . . . , xn), xi ∈
[0, 1], and X ⊆ R

n is the search space (also known as decision space).
Building on this bi-objective optimization problem, we developed PiMO-NAS

for searching its PF in an iterative optimization manner. In a nutshell, each
iteration of our proposed PiMO-NAS divides the fixed-length continuous neural
architecture search process into three critical phases, which will be elaborated
in the followings.

Surrogate-Model-Based PF Estimation. In the first phase of our approach,
it is crucial to estimate the overall PF, which necessitates the use of a surrogate
model. Drawing inspiration from Pareto set learning[23] and referencing the
analysis in MSuNAS[26], we opt for Gaussian Process (GP) as our surrogate,
and we independently run a GP model for each objective function.

At the onset of our algorithm, we employ Latin Hypercube Sampling (LHS) to
select a set of candidate solutions from the search space. Besides, our initial pop-
ulation also includes both all-ones and all-zeros decision vectors to estimate the
functional boundaries. These solutions are then evaluated on the ImageNet[11]
dataset to generates data for the training of our GP surrogate model.

Once the evaluations are completed, we normalize the results to align with
the GPs. The GPs are then executed to perform regression analysis on this data,
and the regression’s outcome is an estimate of the overall function landscape.

Exploration via Solution Generator. In the second phase, we aim to thor-
oughly explore the landscape of the estimated objective function space. To
achieve this, we utilize a solution generator, which is designed to operate under
the guidance of a preference vector (denoted as λ). The solution generator’s
primary task is to produce optimal solutions for single-objective minimization
problems, as determined by the augmented Tchebycheff scalarization approach as
Eq. (5), guided by the given preference vector λ in Λ = {λ ∈ R

m
+ |∑m

i=1 λi = 1}.

ĝtch_aug(x|λ) = max
1≤i≤m

{
λi

∣
∣
∣f̂i(x) − (z∗

i − ε)
∣
∣
∣
}
+ ρ

m∑

i=1

λif̂i(x) (5)

Pareto-Informed Multi-objective Neural Architecture Search 375

where ρ > 0 and ε > 0 are small positive scalars used in [22], z∗ = (z∗
1 , . . . , z∗

m)
is the ideal vector, and f̂i(x) is the lower confidence bound (LCB) for the i-th
objective function provided by the corresponding GP surrogate model.

Given the block-wise stacked architecture inherent in both OFA-based and
AutoFormer-based search spaces, we drew inspiration from works like [31,35]
to devise our solution generator. This generator is based on a Gated Recurrent
Unit (GRU) architecture[10] as shown in Fig. 2.

Fig. 2. Illustration for each iteration of our proposed PiMO-NAS. (1) GP surrogate
model is utilized for estimating the function landscape from evaluated solutions. Note
that we independently run a GP model for each objective function. (2) Solution Gen-
erator is responsible for generating the expected optimal solutions based on arbitrary
target function preferences Λ = {λ ∈ R

m
+ | ∑m

i=1 λi = 1}.

The solution generator Gθ(·) initiates its operation by mapping a preference
vector λ to an embedding using a linear layer. This embedding serves as the
initial hidden state h0 for the GRU. Subsequently, various linear heads, tailored
to the specific stages of the model architecture, generate different types of deci-
sion variables. These heads operate in distinct stages, ensuring that the variable
generation is aligned with the structural of the neural network blocks.

Building upon the foundation laid by the GP approximation of the func-
tion landscape, our solution generator Gθ(·), where θ denotes the parameters of
Gθ(·), embarks on a journey of exploration, guided by a set of preference vec-
tors {λb}B

b=1 obtained via random sampling. The solution generator’s purpose
is to probe the approximated terrain, seeking to enhance the lower bounds of
performance for the solutions it generates through gradient descent:

θ ← θ − η
B∑

b=1

∇θ ĝtch_aug(x = Gθ(λb)|λb) (6)

376 G. Luo et al.

In addition, it is noteworthy that the nature of our search space involves
models with variable depth, while our encoding scheme employs fixed-length
vectors. To address this discrepancy, we introduce a masking technique for the
solutions generated beyond their designated depth limits. Specifically, a mask is
applied to map the excess portions of the solution to zero. This approach ensures
consistency with the zero-padding scheme previously established for managing
the dimensionality of decision vectors in our search space.

Batch Selection with Adaptive Sampler. In the final phase of each itera-
tion, we focus on the generation and evaluation of candidate solutions derived
from an extensive exploration of the function landscape. We design an adaptive
sampler to dynamically generate preference vector as exploration direction:

λ = (w, 1 − w), w ∈ [0, 1] (7)

where w is the weight of the first objective, and we feed λ into the solution
generator. The sampler achieves this by dividing the sampling domain of weight
w into K equal intervals and tracking the outcomes of candidate solutions gen-
erated from each interval. It maintains a record of the number of solutions from
each interval that are accepted for costly evaluation Neval = (N (1)

eval, N
(2)
eval, . . .),

and the sampling of preference is converted into a two-stage process:

P (I = Ik) =
1/N

(k)
eval

∑K
k=1 1/N

(k)
eval

, for k = 1, 2, . . . ,K (8)

w ∼ U(l(k), u(k)) (9)

where N
(k)
eval represents the number of solutions generated from w ∈ Ik, and K is

the total number of distinct intervals Ik = [l(k), u(k)] = [(k − 1)/K, k/K]. This
discretization allows for a more controlled exploration of the solution space.

Once the sampling process is completed, the preference vectors are input
into the solution generator to obtain candidate solutions for the subproblems.
These candidate solutions are then subjected to a batch selection process that
filters the most promising subset to advance the search process. The batch selec-
tion procedure is guided by the expected hypervolume improvement within the
framework of GP:

ΔHV (F̂(Xcand)) = HV (yt−1 ∪ F̂(Xcand)) − HV (yt−1) (10)

where Xcand are the candidate solutions generated by the solution generator from
a batch of weight vectors. The term yt−1 represents the performance indicators of
the solution set that has been evaluated in previous iterations, and F̂(·) denotes
the estimated performance indicators provided by the GP models.

Pareto-Informed Multi-objective Neural Architecture Search 377

Summary of PiMO-NAS The complete framework of our PiMO-NAS algo-
rithm is encapsulated and presented as Algorithm 1. In our comprehensive frame-
work, we have incorporated the GP estimation, landscape exploration, and solu-
tion generation processes as mentioned above. Notably, unlike typical continuous
optimization problems, the inherent discreteness of the original space in our prob-
lem leads to many slightly different solutions in the relaxed space being identical
when evaluated by the function. To circumvent this, we applied a deduplication
step when selecting solutions for evaluation, thereby avoiding redundant and
costly evaluation procedures.

Algorithm 1: PiMO-NAS Framework
Input: F(x) as Eq. (4); Exploration Iter: T ; Training Batch Size: B; Training

Iter: Niter; Interval Seperation Num: K; Number of Solutions
Generated per Iteration: P ;

Output: {xT ,yT } and Solution Generator GθT (·)
1 Randomly sample initial population {x0,y0 = F(x0)};
2 for t = 1 to T do
3 Train GPs based on {xt−1,yt−1};
4 Initialize θt of solution generator Gθt ;
5 for i = 1 to Niter do
6 Sample preferences {λb}B

b=1 ∼ Λ;
7 Update θt using gradient descent as in Eq. (6);
8 end
9 Sample P intervals with replacement denoted as {I(p)}P

p=1 via the adaptive
sampler in Eq. (8);

10 Sample P preference vectors {λ(p) = [w(p), 1 − w(p)], w(p) ∈ I(p)}P
p=1;

11 Generate solutions Xp = {Gθt(λ
(p))}P

p=1;
12 Find non-repetitive subset Xcand with highest ΔHV from Xp;
13 xt ← xt−1 ∪ Xcand;
14 yt ← yt−1 ∪ F(Xcand);
15 end

4 Experiments

In this section, we introduce the experimental framework utilized to evaluate
the proposed PiMO-NAS method. The central aim of our experiments is to
demonstrate the effectiveness of PiMO-NAS by applying it within two specific
one-shot NAS spaces: the AutoFormer space [6] and an OFA-based space shared
with MSuNAS[26].

4.1 OFA-Based Search Space

We applied PiMO-NAS to the same NAS space as MSuNAS, starting with a pop-
ulation of 100. In each iteration, a solution generator with a hidden layer of 128

378 G. Luo et al.

dimensions was used. Throughout the training, we randomly sampled 20 prefer-
ences per iteration, over 2000 iterations, until convergence. Using the Adaptive
Sampler, 15 preferences were sampled to generate candidate solutions. The final
selection involved screening 8 solutions based on expected hypervolume improve-
ment for evaluation on the ImageNet dataset. The exploration process, spanning
30 epochs, revealed comparative insights between PiMO-NAS and MSuNAS. It
is important to highlight that in our implementation within MSuNAS, GPs were
utilized as surrogate models. We emphasize that the choice of surrogate model
type used in MSuNAS is kept consistent with our framework.

Fig. 3. Left: Hypervolume curves. The reference point was set at [8.426, 0.284], repre-
senting the worst values for each objective in the initial population. Right: Solutions
obtained at the end of the search.

As shown in Fig. 3, an early observation was that PiMO-NAS exhibited a
faster rate of hypervolume increase compared to MSuNAS. This indicates PiMO-
NAS’s efficient exploration and utilization of the surrogate model’s estimated
space. Specifically, after approximately 20 iterations (corresponding to 160 sam-
ples), the hypervolume achieved by PiMO-NAS approaches the results obtained
by MSuNAS after 30 iterations. Furthermore, the Pareto solution set associated
with PiMO-NAS not only exhibits a significantly larger hypervolume but also
a denser distribution compared to that of MSuNAS at 30 iterations. Therefore,
even when accounting for the overhead of training the solution generator, PiMO-
NAS achieves a 1.24x speedup compared to the MSuNAS method for equivalent
hypervolume results. Additionally, as the cost per solution evaluation increases,
the relative expenditure of the Solution Generator in the total search time will
further diminish. This reduction is expected to further extend the performance
gap between PiMO-NAS and MSuNAS.

We also analyzed a total of 240 candidate solutions sampled by PiMO-
NAS and MSuNAS as Fig. 4. We found that, compared with the nearly normal
distribution sampling of different parameter-volume architectures by MSuNAS
in the search space, PiMO-NAS, guided by GP evaluations, can sample more
points with lower parameter volumes, effectively enhancing the dominance of
the obtained solutions, approaching the true Pareto front. After introducing the

Pareto-Informed Multi-objective Neural Architecture Search 379

Fig. 4. Comparison of the search results of PiMO-NAS and MSuNAS. Upper: Distri-
bution of Params and Error Rate of candidates sampled by PiMO-NAS and MSuNAS.
Lower: The Kendall’s Tau of points sampled by PiMO-NAS and MSuNAS.

adaptive sampler, PiMO-NAS can obtain a smoother sampling curve and signifi-
cantly increase the sampling of large-volume models, compensating for the short-
coming in sampling density in the high parameter-volume region to some extent.
Notably, we calculated the Kendall’s rank correlation coefficient of the sampled
solutions and found that the samples obtained by the PiMO-NAS method more
purposefully explore trade-off solutions.

4.2 AutoFormer-Based Search Space

We further explored the AutoFormer-based search space using the PiMO-NAS
method, while employing the genetic algorithm based AutoFormer with a pre-
defined parameter range from the original paper of AutoFormer as a strong
baseline. Following the genetic algorithm’s design in the original study, we used
a population of 50 and conducted 20 iterations. For PiMO-NAS, we started
with a sample size of 200, sampling 20 instances per iteration over 40 rounds, a
design balancing sampling efficiency and the cost of GP. Both our approach and
the AutoFormer’s genetic algorithm sampled 1000 instances, with the results
depicted in Fig. 5.

In our observations, after 1000 samples, the PiMO-NAS method effectively
covered the search results of the genetic algorithm within the predefined param-
eter range. Notably, in both Supernet-Small and Supernet-Base spaces, PiMO-
NAS managed to cover the optimal solutions obtained by three rounds of the
genetic algorithm within its 1000 samples, while AutoFormer itself requires 3,000
samples in total across these iterations.

380 G. Luo et al.

Fig. 5. Solutions obtained by PiMO-NAS on the AutoFormer-based search space.
The variants of AutoFormer with distinct superscripts (i.e., 1-7) indicate the search
results obtained under different parameter range restrictions, as detailed in sup-
plementary materials [28] In Supernet-Small space, the PF obtained by PiMO-
NAS (with only 1,000 samples) can efficiently cover the results obtained by
AutoFormer2+AutoFormer3+AutoFormer4 (each of which consumes 1,000 samples,
thus producing a combined total of 3,000 samples). A similar phenomenon also occurs
in Supernet-Base space.

4.3 Performance Comparisons of PiMO-NAS versus Existing SOTA
Methods/Models

Finally, we conducted 20 iterations on the same space as MSuNAS with 100
random samples. In each iteration, we generated and evaluated eight candidate
solutions. After completing the search, we fine-tuned the obtained solutions on
the ImageNet dataset for 200 epochs. These solutions were named PiMO-NAS-O-
T/S/B where ‘O’ denotes the OFA-based search space. The solutions were then
ranked according to their FLOPs. Table 1 displays the performance of our models
on the ImageNet dataset. The networks discovered by PiMO-NAS demonstrated
strong competitiveness with the MSuNAS method, while requiring significantly
less searching time.

For the results on the AutoFormer-based search space as presented in
Table 2, we named the search results PiMO-NAS-A-T/S/B, where ‘A’ denotes
the AutoFormer-based search space, categorized according to the search space
divisions. We successfully achieved results comparable to those obtained in the
original AutoFormer paper, which uses a genetic algorithm with a restricted
parameter range. This corroborates that PiMO-NAS has effectively approxi-
mated the Pareto frontier in the AutoFormer space after 1,000 samples .It is
important to note that while PiMO-NAS utilized slightly more searching time,
it achieved dozens to hundreds of Pareto solutions in one round of search on
the AutoFormer search space, as opposed to the original algorithm where each
solution is obtained with one round of search involving 1,000 samplings. This
implies that when multiple deployments are needed, PiMO-NAS won’t exhibit

Pareto-Informed Multi-objective Neural Architecture Search 381

Table 1. Comparison results on OFA-based search space for the ImageNet classification
task. The time required for supernet training and fine-tuning is not included.

Model Type Search Cost
(GPU days)

Top-1
Acc. (%)

#Params
(M)

Flops
(M)

MobileNetV3[19] combined - 75.2 5.4 219
ShuffleNetV2[29] manual 72.6 - 299
RCNet [46] auto 9 74.7 4.7 471
SPOSNAS [16] auto 13 74.8 5.3 465
MnasNet-A1 [35] auto 3800 75.2 3.9 312
EEEA-Net-C1 [36] auto 0.52 74.3 5.1 137
MOEA-PS [41] auto 5.2 73.6 4.7 -
PiMO-NAS-O-T(Ours) auto 0.81 75.2 5.6 153
FairNAS-A [9] auto 12 77.5 5.9 392
MixPath-B [8] auto 10.3 77.2 5.1 378
NSGANetV2-m [26] auto 1 78.3 7.7 312
PiMO-NAS-O-S(Ours) auto 0.81 77.7 6.1 362
FP-DARTS [39] auto 2.44 76.3 7.2 598
PNAG-170 [15] auto 0.7 80.3 10 606
NSGANetV2-xl [26] auto 1 80.4 8.7 593
PiMO-NAS-O-B(Ours) auto 0.81 80.2 7.44 576

Table 2. Comparison results on AutoFormer-based search space for the ImageNet clas-
sification task. The time required for supernet training and fine-tuning is not included.
† indicates the results we reproduce using open-source code provided by the authors
of AutoFormer.

Model Type Search Cost
(GPU days)

Top-1
Acc. (%)

#Params
(M)

Flops
(G)

ViT-Ti[12] manual - 74.5 5.7 1.4
PVT-Tiny [38] manual - 75.1 13.2 1.9
DeiT-Tiny [37] manual - 72.2 5.7 1.2
ViTAS-C [33] auto 32 74.7 5.6 1.3
AutoFormer-Tiny†[6] auto 1.83 75.1 6 1.4
PiMO-NAS-A-T(Ours) auto 2.16 75.1 5.7 1.6
T2T-VIT-14 [43] manual - 81.7 21.5 6.1
SWIN-T [25] manual - 82.3 29 4.5
GLiT-Small [5] manual - 80.5 24.6 4.4
CrossFormer-T [40] manual - 81.5 27.7 2.9
PoolFormer-S24 [42] manual - 80.3 21.3 3.4
TF-TAS-S [45] auto 0.5 80.5 24.6 3.2
As-ViT-S [7] auto 0.5 81.2 29 5.3
ViTAS-F [33] auto 32 80.5 27.6 6.0
AutoFormer-Small†[6] auto 1.83 81.6 23.9 4.8
PiMO-NAS-A-S(Ours) auto 2.16 81.6 21.4 4.3
T2T-VIT-19 [43] manual - 82.2 39.2 9.8
EAT-B [44] manual - 82 86.6 14.8
ConViT-S+ [13] manual - 82.2 48 10.0
GLiT-Base [5] manual - 82.3 96.1 17.0
PoolFormer-M48 [42] manual - 82.5 73.4 11.6
AutoFormer-Base†[6] auto 1.83 82.3 52.7 10.3
PiMO-NAS-A-B(Ours) auto 2.16 82.3 51.7 10.8

382 G. Luo et al.

a significant time disadvantage compared to zero-shot NAS methods like TF-
TAS[45].

5 Conclusion

This work introduced the Pareto-Informed Multi-Objective Neural Architec-
ture Search (PiMO-NAS) method, offering a significant stride in the domain
of multi-objective NAS. By integrating the technique of Pareto set learning with
a one-shot NAS framework, our approach adeptly balances multiple conflicting
objectives, such as accuracy and model size, within neural architecture search.
Our experiments within the OFA-based and AutoFormer-based search spaces
showcased that PiMO-NAS could efficiently cover the search results of genetic
algorithms, exemplifying its efficacy in discovering Pareto-optimal solutions.

PiMO-NAS was observed to outperform baselines in terms of hypervolume
metric, indicating its proficiency in exploring the search space. Moreover, the
adaptive sampler introduced in our methodology promoted diversity and cir-
cumvented local optima, further solidifying the robustness of PiMO-NAS.

Ultimately, the models discovered by PiMO-NAS achieved competitive accu-
racy on the ImageNet dataset, underlining the practicality of our method in real-
world scenarios. The innovative blend of techniques within PiMO-NAS paves the
way for future research in the efficient and effective exploration of complex neu-
ral architecture landscapes. Our findings and the developed method contribute
a valuable addition to the field of NAS, promising to streamline the design of
high-performing neural networks for diverse computational budgets.

This work has certain limitations, similar to those observed in studies like
MSuNAS, wherein the precision of GP-based landscape estimation of objective
functions may vary across distinct datasets, potentially impacting the quality of
solution generation in PiMO-NAS. Additionally, the complexity of GP regression
is tied to the number of samples, typically exhibiting a computational complexity
of O(n3). This results in progressively longer iteration times for PiMO-NAS. In
future research, we plan to optimize the cost of the Gaussian Process in this
context and explore the potential of hybrid or adaptive surrogate models within
the PiMO-NAS framework.
Disclosure of Interest. The author declares no competing interests as defined by
Springer Nature, or other interests that might be perceived to influence the results
and/or discussion reported in this manuscript.

References

1. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures
using reinforcement learning (2016). arXiv preprint arXiv:1611.02167

2. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Smash: one-shot model architecture
search through hypernetworks (2017). arXiv preprint arXiv:1708.05344

3. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: Train one network
and specialize it for efficient deployment (2019). arXiv preprint arXiv:1908.09791

http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1708.05344
http://arxiv.org/abs/1908.09791

Pareto-Informed Multi-objective Neural Architecture Search 383

4. Cai, H., Zhu, L., Han, S.: Proxylessnas: Direct neural architecture search on target
task and hardware (2018). arXiv preprint arXiv:1812.00332

5. Chen, B., et al.: Glit: neural architecture search for global and local image trans-
former. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 12–21 (2021)

6. Chen, M., Peng, H., Fu, J., Ling, H.: Autoformer: searching transformers for visual
recognition. In: Proceedings of the IEEE/CVF international conference on com-
puter vision, pp. 12270–12280 (2021)

7. Chen, W., Huang, W., Du, X., Song, X., Wang, Z., Zhou, D.: Auto-scaling vision
transformers without training (2022). arXiv preprint arXiv:2202.11921

8. Chu, X., Lu, S., Li, X., Zhang, B.: Mixpath: a unified approach for one-shot neural
architecture search. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 5972–5981 (2023)

9. Chu, X., Zhang, B., Xu, R.: Fairnas: rethinking evaluation fairness of weight shar-
ing neural architecture search. In: Proceedings of the IEEE/CVF International
Conference on computer vision, pp. 12239–12248 (2021)

10. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling (2014). arXiv preprint arXiv:1412.3555

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: 2009 IEEE conference on computer vision and
pattern recognition, pp. 248–255. IEEE (2009)

12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image
recognition at scale (2021)

13. d’Ascoli, S., et al.: Improving vision transformers with soft convolutional inductive
biases. In: International conference on machine learning, pp. 2286–2296. PMLR
(2021)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
15. Guo, Y., et al.: Pareto-aware neural architecture generation for diverse computa-

tional budgets. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2247–2257 (2023)

16. Guo, Z., et al.: Single path one-shot neural architecture search with uniform sam-
pling. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XVI 16, pp. 544–560. Springer (2020)

17. Han, K., et al.: A survey on vision transformer. IEEE Trans. Pattern Anal. Mach.
Intell. 45(1), 87–110 (2022)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778 (2016)

19. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF
international conference on computer vision, pp. 1314–1324 (2019)

20. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708 (2017)

21. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.P.: Neural
architecture search with Bayesian optimisation and optimal transport. Adv. Neural
Inf. Process. Syst. 31 (2018)

22. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation
for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput.
10(1), 50–66 (2006)

23. Lin, X., Yang, Z., Zhang, X., Zhang, Q.: Pareto set learning for expensive multi-
objective optimization. Adv. Neural. Inf. Process. Syst. 35, 19231–19247 (2022)

http://arxiv.org/abs/1812.00332
http://arxiv.org/abs/2202.11921
http://arxiv.org/abs/1412.3555

384 G. Luo et al.

24. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search (2018).
arXiv preprint arXiv:1806.09055

25. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted win-
dows. In: Proceedings of the IEEE/CVF international conference on computer
vision, pp. 10012–10022 (2021)

26. Lu, Z., Deb, K., Goodman, E., Banzhaf, W., Boddeti, V.N.: Nsganetv2: evolu-
tionary multi-objective surrogate-assisted neural architecture search. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part I 16, pp. 35–51. Springer (2020)

27. Lu, Z., et al.: Nsga-net: neural architecture search using multi-objective genetic
algorithm. In: Proceedings of the genetic and evolutionary computation conference,
pp. 419–427 (2019)

28. Luo, G., Li, H., Chen, Z., Zhou, Y.: Supplementary materials of "pareto-
informed multi-objective neural architecture search" (2024). https://github.com/
SYSU22214881/PiMO-NAS

29. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for
efficient cnn architecture design. In: Proceedings of the European conference on
computer vision (ECCV), pp. 116–131 (2018)

30. Peng, Y., Song, A., Ciesielski, V., Fayek, H.M., Chang, X.: PRE-NAS: predictor-
assisted evolutionary neural architecture search. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 1066–1074 (2022)

31. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture
search via parameters sharing. In: International conference on machine learning,
pp. 4095–4104. PMLR (2018)

32. Real, E., et al.: Large-scale evolution of image classifiers. In: International confer-
ence on machine learning, pp. 2902–2911. PMLR (2017)

33. Su, X., et al.: Vitas: Vision transformer architecture search (2021). arXiv e-prints
pp. arXiv–2106

34. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826 (2016)

35. Tan, M., et al.: Mnasnet: platform-aware neural architecture search for mobile. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pp. 2820–2828 (2019)

36. Termritthikun, C., Jamtsho, Y., Ieamsaard, J., Muneesawang, P., Lee, I.: EEEA-
Net: an early exit evolutionary neural architecture search. Eng. Appl. Artif. Intell.
104, 104397 (2021)

37. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
conference on machine learning, pp. 10347–10357. PMLR (2021)

38. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense pre-
diction without convolutions. In: Proceedings of the IEEE/CVF international con-
ference on computer vision, pp. 568–578 (2021)

39. Wang, W., Zhang, X., Cui, H., Yin, H., Zhang, Y.: FP-DARTS: fast parallel differ-
entiable neural architecture search for image classification. Pattern Recogn. 136,
109193 (2023)

40. Wang, W., et al.: Crossformer: a versatile vision transformer hinging on cross-scale
attention. In: International Conference on Learning Representations (2021)

41. Xue, Y., Chen, C., Słowik, A.: Neural architecture search based on a multi-objective
evolutionary algorithm with probability stack. IEEE Trans. Evol. Comput. 27(4),
778–786 (2023)

http://arxiv.org/abs/1806.09055
https://github.com/SYSU22214881/PiMO-NAS
https://github.com/SYSU22214881/PiMO-NAS

Pareto-Informed Multi-objective Neural Architecture Search 385

42. Yu, W., et al.: Metaformer is actually what you need for vision. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10819–
10829 (2022)

43. Yuan, L., et al.: Tokens-to-token vit: training vision transformers from scratch on
imagenet. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 558–567 (2021)

44. Zhang, J., et al.: Analogous to evolutionary algorithm: designing a unified sequence
model. Adv. Neural. Inf. Process. Syst. 34, 26674–26688 (2021)

45. Zhou, Q., et al.: Training-free transformer architecture search. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10894–10903 (2022)

46. Zong, Z., Cao, Q., Leng, B.: RCNet: reverse feature pyramid and cross-scale shift
network for object detection. In: Proceedings of the 29th ACM International Con-
ference on Multimedia, pp. 5637–5645 (2021)

A Variable-Length Fuzzy Set Representation
for Learning Fuzzy-Classifier Systems

Hiroki Shiraishi1(B) , Rongguang Ye2 , Hisao Ishibuchi2 ,
and Masaya Nakata1

1 Department of Electrical Engineering and Computer Science,
Yokohama National University, Yokohama 240-8501, Japan

shiraishi-hiroki-yw@ynu.jp, nakata-masaya-tb@ynu.ac.jp
2 Department of Computer Science and Engineering,

Southern University of Science and Technology, Shenzhen 518055, China
yerg2023@mail.sustech.edu.cn, hisao@sustech.edu.cn

Abstract. This paper introduces a novel Learning Fuzzy-Classifier
System (LFCS) that incorporates variable-length fuzzy sets in rule
antecedents to enhance classification accuracy and mitigate overfitting
in real-world data scenarios. Traditional LFCSs utilize fixed-length fuzzy
sets, which can limit their performance, especially when the rule set size
is restricted in high-dimensional input space. The proposed algorithm,
Fuzzy-UCSv (i.e., the Fuzzy-UCS classifier system with a variable-length
fuzzy set representation), addresses these limitations by allowing the
number of fuzzy sets per dimension in rule-antecedents to vary. Fuzzy-
UCSv aims to tackle two primary challenges identified in LFCS: the
unnecessary optimization of membership functions for irrelevant features
and the difficulty in forming optimal classification boundaries with a sin-
gle membership function per feature. By optimizing the number of mem-
bership functions for each rule using an evolutionary algorithm, Fuzzy-
UCSv acquires rules that ignore non-contributing features and effec-
tively cover complex input spaces, significantly improving test accuracy
without increasing the risk of overfitting. Experimental results demon-
strate that Fuzzy-UCSv outperforms conventional Fuzzy-UCS and other
machine learning techniques in terms of test accuracy.

Keywords: Learning Fuzzy-Classifier Systems · Supervised Learning ·
Membership Functions · Variable-Length Representation

1 Introduction

Learning Fuzzy-Classifier Systems (LFCSs) [40] represent a paradigm in evolu-
tionary machine learning that employs an evolutionary algorithm to search for
an accurate and general set of fuzzy rules [11]. An LFCS works as a classifier that
adaptively divides the input space into multiple subspaces using fuzzy sets in the
rule-antecedents, with individual fuzzy rules making local classification decisions
within each subspace. This divide-and-conquer approach is particularly effective

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 386–402, 2024.
https://doi.org/10.1007/978-3-031-70071-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_24&domain=pdf
http://orcid.org/0000-0001-8730-1276
http://orcid.org/0000-0002-7759-1254
http://orcid.org/0000-0001-9186-6472
http://orcid.org/0000-0003-3428-7890
https://doi.org/10.1007/978-3-031-70071-2_24

A Variable-Length Fuzzy Set Representation for LFCSs 387

for tasks with large and complex input spaces, such as those encountered in
real-world data mining [14,31,35].

In LFCSs, setting appropriate membership functions in the rule-antecedents
is crucial for effectively dividing the input space. Increasing the number of param-
eters and complicating the shape of membership functions allows for the produc-
tion of more flexible classification boundaries. However, this flexibility enhance-
ment increases the risk of overfitting to the training data and typically requires
more time for parameter optimization [22,31]. Consequently, simple membership
functions such as interval-based [36], triangular [27], and Gaussian [37] are com-
monly used. This paper uses the triangular membership function, which consists
of three real-valued parameters (left, center, and right vertices [27]).

For a d-dimensional classification task, each input in the antecedent part of
a fuzzy rule generated by LFCS has one fuzzy set (i.e., a triangular membership
function). Accordingly, the rule-antecedent of a rule is always represented by a
fixed-length real-valued string of length 3d. Two problems can be identified in
this regard:

Problem 1. Because an LFCS requires membership functions to be specified
even for features that do not contribute to classification, it is necessary to
optimize the parameters of the membership functions for unnecessary fea-
tures as well. This can degrade the performance of LFCS, especially for high-
dimensional tasks.

Problem 2. A rule can cover only one subspace. Therefore, if the training data
points for a class are distributed across multiple subspaces, at least as many
rules as there are subspaces must be optimized. This limitation can degrade
the performance of LFCS, especially in scenarios where the rule set size is
restricted (i.e., where no more rules than the number of subspaces can be
allocated).

To address these problems, this paper proposes an LFCS using rule
antecedents with variable-length fuzzy sets for the first time and aims to verify its
effectiveness. Specifically, the number of membership functions assigned to each
dimension i of the rule-antecedent of fuzzy rule k is extended from the conven-
tional single function to mk

i ∈ N0 functions. An evolutionary algorithm optimizes
the number of membership functions for each rule. The system aims to acquire
rules that do not place membership functions for non-contributing dimensions
i (mk

i = 0, i.e., equivalent to Don’t Care) and place multiple membership func-
tions for difficult-to-divide dimensions i (mk

i > 1), thus addressing the problems
1 and 2 simultaneously. This paper extends the sUpervised Fuzzy-Classifier Sys-
tem (Fuzzy-UCS) [28], designed for single-label classification tasks, to the case
of the variable-length fuzzy sets in rule-antecedents. We call the extended sys-
tem Fuzzy-UCSv. It is important to note that this approach can also be applied
to other LFCS variants, such as those for function approximation tasks [9] and
multi-label classification tasks [26].

The paper is organized as follows: Sect. 2 reviews relevant literature. Section 3
outlines Fuzzy-UCS. Section 4 details our proposed algorithm. Section 5 presents
comparative experiments using real-world classification tasks. The results of the

388 H. Shiraishi et al.

experiments are then evaluated and discussed. Finally, Sect. 6 concludes the
paper.

2 Related Work

Bacardit et al. [3] proposed a rule representation to improve scalability in high-
dimensional real-valued input tasks within BioHEL [4], a variant of Learning
Classifier Systems (LCSs) [15] that uses non-fuzzy (i.e., crisp) rules. They intro-
duced an attribute list in each rule, which holds the indices of dimensions
important for classification. By optimizing only the parameters of the interval-
shaped membership functions corresponding to these indices, BioHEL achieved
improved learning efficiency and classification accuracy. Later, Urbanowicz et
al. [39] extended this rule representation to handle classification tasks involving
both discrete and real values.

Arif et al. [2] introduced a rule representation in an LCS known as XCSR [41],
where two real-valued parameters that define the interval-shaped membership
function (the lower limit li and the upper limit ui) are set to the lower and
upper ends of the input space domain, respectively. This approach creates a
pseudo Don’t Care condition. The system, termed XCSR#, exhibited improved
performance in high-dimensional text data classification tasks with sparse data
compared to traditional XCSR. The performance of XCSR#, based on learning
optimality theory [23], was evaluated by Nakata and Browne [23] and succeeded
in completely solving a 37-dimensional real-valued multiplexer problem [41] for
the first time.

Arif et al. [1] proposed XCSRCFC, a method that replaces the interval-based
representation in XCSR with a tree-like structure based on genetic program-
ming called code fragments. These code fragments in XCSRCFC are binary tree
structures with a maximum depth of two, where each terminal node is assigned
an interval [li, ui] and the function set is {NOT, OR, NOR, AND, NAND}.
Consequently, XCSRCFC, similar to the rule representations by Bacardit and
Urbanowicz, can avoid encoding unnecessary dimensions as intervals. Experi-
ments demonstrated that XCSRCFC outperformed XCSR in convergence per-
formance on high-dimensional text data classification tasks. However, due to the
complexity of the code fragment structure, it required more learning iterations
than XCSR to converge.

In summary, previous research has addressed only Problem 1 mentioned in
Sect. 1 and has not resolved Problem 2. Furthermore, all the aforementioned
studies focused on LCS with interval-shaped non-fuzzy rules; to our knowledge,
no studies have explored LFCS with fuzzy rules.

3 Fuzzy-UCS

Fuzzy-UCS [28] is a LFCS that integrates supervised learning with a steady-state
genetic algorithm (GA) [13] to evolve fuzzy rules online. This system alternates
between two phases: the training phase and the test phase. Within the training

A Variable-Length Fuzzy Set Representation for LFCSs 389

phase, Fuzzy-UCS searches for accurate and maximally general rules. Conversely,
during the test phase, the system applies these acquired rules to infer a class
for a new unlabeled data point. This section briefly explains Fuzzy-UCS for a
d-dimensional n-class single-label classification task with a class label set C =
{ci}n

i=1. For detailed explanations, kindly refer to [27,28].

3.1 Knowledge Representation

A d-dimensional fuzzy rule k is expressed by:

IF x1 is Ak
1 and · · · and xd is Ak

d THEN ck WITH wk, (1)

where Ak = (Ak
1 , ..., Ak

d) is an rule-antecedent vector, ck ∈ C = {c1, ..., cn} is
a rule-consequent class, and wk ∈ [0, 1] is a rule-weight. Each variable xi is
conditioned by a fuzzy set Ai for ∀i ∈ {1, ..., d}. A fuzzy set Ak

i is defined as
Ak

i = (ak
i , bk

i , ck
i) by vertices of a triangle ak

i , bk
i , ck

i ∈ R (ak
i ≤ bk

i ≤ ck
i).

The membership degree μAk(x) ∈ [0, 1] of an input vector x ∈ [0, 1]d with
the rule k is computed using μAk(x) =

∏d
i=1 μAk

i
(xi), where μAk

i
: [0, 1] → [0, 1]

is the membership function of the fuzzy set Ak
i . If the value of xi is unknown,

the system handles the missing value by specifying μAk
i
(xi) = 1.

Each rule k has five primary parameters: (i) a fitness F k ∈ (−1, 1], reflecting
the classification accuracy of rule k; (ii) a weight vector vk = (vk

i)n
i=1 ∈ [0, 1]n,

indicating the confidence with which rule k predicts each class ci for a matched
input (the largest element of vk is used as wk in Eq. (1)); (iii) a correct matching
vector cmk = (cmk

i)n
i=1 ∈ (R+

0)n, where each element cmk
i is the sum of the

matching degrees for training data points from class ci; (iv) an experience expk ∈
R+

0 , calculating the accumulated contribution of rule k in classifying training data
points; and (v) a numerosity numk ∈ N0, indicating the number of copies of rule
k present in the population, which is a necessary parameter because the GA
may produce rules with duplicate rule-antecedent and consequent pairs. These
parameters are continuously updated throughout the training phase.

3.2 Training Phase

At the beginning of the iteration, the population [P] is initialized as an empty
set. All rules are stored in [P]. At the time t, the system receives an input x
from a training dataset that belongs to class c∗. Subsequently, a match set [M]
is formed as [M] = {k ∈ [P] | μAk(x) > 0}.

After [M] is formed, the system constructs a correct set [C] = {k ∈ [M] |
ck = c∗}. If

∑
k∈[C] μAk(x) < 1, the covering operator generates a new rule

kcov such that μAkcov (x) = 1. After forming [C], the parameters of all rules k
in [M] are updated as follows: the experience expk is updated using expk ←
expk + μAk(x); the correct matching vector cmk for each class ci is updated
using cmk

i ← cmk
i + μAk(x) if ci = c∗, otherwise it remains unchanged; the

weight vector vk for all ci is updated using vk
i ← cmk

i /expk; and the fitness F k

390 H. Shiraishi et al.

is updated as F k ← vk
max − ∑

i|i�=max vk
i [16], where the system subtracts the

values of the other weights from the maximum weight vk
max. Finally, the highest

weight vk
max in the weight vector vk and its corresponding class label cmax are

designated as the rule-weight wk and the rule-consequent class ck in Eq. (1),
respectively.

After the rules are updated, a steady-state GA is applied to [C]. The GA is
activated when the average time since the GA was last applied to a rule in [C]
exceeds the hyperparameter θGA. When the GA is activated, two parent rules
from [C] are selected through tournament selection [8], with the tournament size
determined by the hyperparameter τ . In Fuzzy-UCS, tournament selection pro-
ceeds as follows: (i) A random sample of τ × ∑

k∈[C]|Fk≥0 numk rules is selected
from [C], excluding any rules with negative fitness; (ii) The rule k with the high-
est value of (F k)ν · μAk(x), where ν is a hyperparameter controlling selection
pressure, is chosen as the parent rule from the sample obtained in (i). The two
parent rules kp1 and kp2 are replicated as two child rules kch1 and kch2, after
which crossover and mutation are applied to the child rules with probabilities χ
and pmut, respectively. The two child rules are inserted into [P], and two rules are
deleted if the total number of rules in [P],

∑
k∈[P] numk, exceeds the maximum

ruleset size N .

3.3 Test Phase

When an input vector x from a test dataset is provided, all sufficiently trained
rules participate in voting for the predicted class. First, the number of votes,
votei, for each class ci in the set of classes C, is calculated using votei =∑

k∈[M]|ck=ci∧expk>θexploit
vk, where vk = F k ·μAk(x) ·numk represents the num-

ber of votes that rule k casts for the rule-consequent class ck, and θexploit ∈ R+

is a hyperparameter. Finally, the class receiving the most votes is output as the
system’s inference result.

4 The Proposed Algorithm

This section introduces Fuzzy-UCSv, an enhanced version of Fuzzy-UCS that
utilizes rule-antecedents with variable-length fuzzy sets. The key features of
Fuzzy-UCSv are as follows:

– Unlike Fuzzy-UCS, where the rule-antecedent comprises a fixed-length fuzzy
set vector (i.e., each variable xi is conditioned by a single fuzzy set, Ak

i),
Fuzzy-UCSv uses a variable-length fuzzy set vector. Here, the variable xi is
conditioned by mk

i ∈ N0 fuzzy sets, represented as Ak
i =

(
Ak

i,1, ..., A
k
i,mk

i

)
.

– The length of each rule’s antecedent is optimized by the GA.

The following subsections provide a detailed description of the modifications
made to Fuzzy-UCS. It is important to note that while Fuzzy-UCS(v) in this
paper uses a triangular-shaped membership function for the rule-antecedent, it
can incorporate any type of membership function, such as interval-shaped [36],
trapezoidal-shaped [33] and Gaussian-shaped [37].

A Variable-Length Fuzzy Set Representation for LFCSs 391

4.1 Knowledge Representation

In Fuzzy-UCSv, a d-dimensional fuzzy rule k is expressed by:

IF x1 is Ak
1 and · · · and xd is Ak

d THEN ck WITH wk. (2)

The notation in the rule-antecedent of Eq. (2) is as follows:

– The rule-antecedent vector Ak =
(
Ak

1 ,Ak
2 , ...,Ak

d

)
is represented by a fixed-

length vector of length d ∈ N.
– Each variable xi is conditioned by a variable-length vector that we call the

rule-antecedent fuzzy set vector, Ak
i =

(
Ak

i,1, A
k
i,2, ..., A

k
i,mk

i

)
, where mk

i ∈ N0

is the length of Ak
i .

– The j-th rule-antecedent fuzzy set in the i-th dimension is defined by Ak
i,j =

(
ak

i,j , b
k
i,j , c

k
i,j

)
where ak

i,j , b
k
i,j , c

k
i,j ∈ R (ak

i,j ≤ bk
i,j ≤ ck

i,j) are the vertices of a
triangle.

Therefore, while the number of rule-antecedent parameters in Fuzzy-UCS is
3d, in Fuzzy-UCSv, it becomes

∑d
i=1 3mk

i .
Figures 1 and 2 show the rule landscapes for Fuzzy-UCS (with fixed-length

fuzzy set vectors) and Fuzzy-UCSv (with variable-length fuzzy set vectors),
respectively. The green and orange points represent training data points belong-
ing to classes c1 and c2, respectively. In the tasks shown on the left side of Figs. 1
and 2, it is obvious that only x1 is crucial for classifying class c1. However, in
Fuzzy-UCS, membership functions are also (unnecessarily) optimized for x2,
which is irrelevant for classification, highlighting Problem 1 outlined in Sect. 1.
Conversely, Fuzzy-UCSv effectively addresses this problem by representing x2

as a Don’t Care condition. Additionally, in the tasks shown on the right side of
Figs. 1 and 2, the data points for class c1 are spread across six subspaces. While
Fuzzy-UCS requires at least six rules to cover the data points for class c1, since
a single rule can only cover one subspace, indicating Problem 2 in Sect. 1. On
the other hand, Fuzzy-UCSv can cover multiple subspaces with a single rule by
incorporating multiple fuzzy sets for each variable.

Comparative experiments and discussions on the effectiveness of fixed- and
variable-length fuzzy set vectors are given in Sect. 5.1.

4.2 Membership Degree Calculation

In Fuzzy-UCSv, the calculation of the membership degree between a given input
x and a rule k, μAk(x), is given by μAk(x) =

∏d
i=1 μAk

i
(xi), where μAk

i
(xi) is

given by:

392 H. Shiraishi et al.

Fig. 1. Examples of a rule in Fuzzy-UCS (with fixed-length fuzzy set vectors).

Fig. 2. Examples of a rule in Fuzzy-UCSv (with variable-length fuzzy set vectors).

μAk
i
(xi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if Ak
i = (),

min

⎧
⎨

⎩
1,

mk
i∑

j=1

μAk
i,j

(xi)

⎫
⎬

⎭
otherwise,

(3)

where μAk
i,j

: [0, 1] → [0, 1] is the membership function of the fuzzy set Ak
i,j .

Ak
i = () indicates that Ak

i is a zero-length vector, which is equivalent to a
vector of empty sets.

As indicated by Eq. (3), if there is no fuzzy set in the i-th dimension of the
rule-antecedent (i.e., mk

i = 0 is satisfied), then that dimension is treated as Don’t
Care, and the membership degree μAk

i
(xi) becomes 1, which is the maximum

A Variable-Length Fuzzy Set Representation for LFCSs 393

possible value. On the other hand, if there are fuzzy sets present (i.e., mk
i ≥ 1 is

satisfied), the membership degree μAk
i
(xi) is set to the value aggregated by the

�Lukasiewicz T-conorm operator (i.e., min{1, a + b}) [28] from the membership
degrees μAk

i,j
(xi) of each fuzzy set Ak

i,j for ∀j ∈ {1, . . . , mk
i }.

4.3 Covering Operator

In Fuzzy-UCSv, the covering operator generates a new rule kcov with rule-
antecedent vector Akcov =

(
Akcov

1 ,Akcov
2 , ...,Akcov

d

)
for an input vector x ∈ [0, 1]d

defined by:

∀i ∈ {1, ..., d} : Akcov
i =

⎧
⎨

⎩

() if U [0, 1) < P# or xi is a missing value,
(
Akcov

i,j

)ninit

j=1
otherwise,

(4)

where U [0, 1) is a uniformly distributed random number in the range [0, 1); P#

is a hyperparameter that indicates the probability of treating each dimension
of the rule-antecedent as Don’t Care; and ninit ∈ N is a hyperparameter that
determines the number of fuzzy sets for each input i of the created fuzzy rule.

The j-th rule-antecedent fuzzy set in the i-th dimension of rule kcov, Akcov
i,j =

(
akcov

i,j , bkcov
i,j , ckcov

i,j

)
, is given by:

∀j ∈ {1, . . . , ninit} : akcov
i,j = U [−0.5, xi], bkcov

i,j = xi, ckcov
i,j = U [xi, 1.5]. (5)

Comparative experiments and discussions on the effects of the value of ninit

are given in Sect. 5.2.

4.4 Rule Discovery

In Fuzzy-UCSv, as in Fuzzy-UCS, crossover and mutation operators are applied
to the child rules kch1 and kch2. During these operations, the system optimizes
the parameters of the rule-antecedent fuzzy sets (vertices of a triangle) associated
with each rule, along with the length of the rule-antecedent fuzzy set vector.

Crossover Operator. In Fuzzy-UCSv, the system applies uniform crossover
to the rule-antecedent fuzzy set vectors Ak

i (where k ∈ {kch1, kch2}).
If

∣
∣
∣Akch1

i

∣
∣
∣ =

∣
∣
∣Akch2

i

∣
∣
∣, meaning mkch1

i = mkch2
i , then for each j-th fuzzy set

Ak
i,j , the parameters akch1

i,j and akch2
i,j , bkch1

i,j and bkch2
i,j , ckch1

i,j and ckch2
i,j are swapped

with a probability of 0.5.
If mkch1

i �= mkch2
i , the uniform crossover is similarly applied up to the min-

imum length of Ak
i . For indices j beyond this range, elements Akch1

i,j and Akch2
i,j

(one of them is an empty set) from Akch1
i and Akch2

i are swapped with a probabil-
ity of 0.5. For instance, if Akch1

i,j = ∅ and Akch2
i,j = (a, b, c), then with a probability

of 0.5, Akch1
i,j becomes (a, b, c), and Akch2

i,j becomes ∅.

394 H. Shiraishi et al.

Mutation Operator. In Fuzzy-UCSv, the mutation operator is applied to
the rule-antecedent fuzzy set vectors Ak

i =
(
Ak

i,1, A
k
i,2, ..., A

k
i,mk

i

)
for rule ∀k ∈

{kch1, kch2}.
With a probability pmut, the system mutates the parameters ak

i,j , bk
i,j , and ck

i,j

of the triangular membership function for each antecedent fuzzy set Ak
i,j(∀j ∈

{1, ...,mk
i }). The mutation of the center vertex bk

i,j follows the following equation:

bk
i,j ← U [

bk
i,j − (bk

i,j − ak
i,j) · m0, b

k
i,j + (ck

i,j − bk
i,j) · m0

]
, (6)

where m0 ∈ (0, 1] is a hyperparameter defining the maximum mutation extent.
Subsequently, if rule k is accurate (i.e., F k > F0) and not generated by crossover,
the left vertex ak

i,j and the right vertex ck
i,j are mutated using Eq. (7):

ak
i,j ← U

[

ak
i,j − bk

i,j − ak
i,j

2
m0, a

k
i,j

]

, ck
i,j ← U

[

ck
i,j , c

k
i,j +

ck
i,j − bk

i,j

2
m0

]

. (7)

Otherwise, Eq. (8) is used:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ak
i,j ← U

[

ak
i,j − bk

i,j − ak
i,j

2
m0, a

k
i,j +

bk
i,j − ak

i,j

2
m0

]

,

ck
i,j ← U

[

ck
i,j − ck

i,j − bk
i,j

2
m0, c

k
i,j +

ck
i,j − bk

i,j

2
m0

]

.

(8)

Equation (7) is intended to enforce the generalization of rule k when the rule is
guaranteed to be accurate by the system. If not, Eq. (8) is used to execute either
generalization or specialization. This setting enhances the evolutionary pressure
to acquire a set of rules that are both accurate and general [27,31].

Furthermore, with a probability pmut, a newly generated fuzzy set Anew =
(anew, bnew, cnew) is added to Ak

i . Specifically, the system first establishes the
parameters (anew, bnew, cnew) of the triangular membership function representing
Anew using Eq. (5). Then, the system updates Ak

i by appending Anew:

Ak
i ← (

Ak
i , Anew

)
. (9)

Lastly, if Ak
i is not empty, then with a probability pmut, a fuzzy set is ran-

domly removed from Ak
i =

(
Ak

i,1, A
k
i,2, ..., A

k
i,mk

i

)
.

In summary, our mutation operator applies equal probabilistic pressure to
either increase or decrease the number of fuzzy sets. This dynamic adaptation
helps prevent the excessive growth of the number of fuzzy sets and Don’t Care
conditions, ensuring they do not become larger than necessary.

5 Experiments

This section utilizes 20 real-world datasets in Table 1 from the UCI Machine
Learning Repository [12] and Kaggle Dataset collection. These datasets are
selected due to their inherent challenges in data classification, such as the pres-
ence of missing values and class imbalance issues [24].

A Variable-Length Fuzzy Set Representation for LFCSs 395

Table 1. Properties of the 20 real-world datasets. The columns describe: the identifier
(ID.), the name (Name), the number of instances (|D|), the total number of features
(d), the number of classes (n), and the source (Ref.).

ID. Name |D| d n Ref. ID. Name |D| d n Ref.

brs Breast cancer Wisconsin 699 9 2 [12] pdy Paddy Leaf 6000 3 4 [18]

can Cancer 599 30 2 [17] pis Pistachio 2148 16 2 [34]

col Column 3C weka 310 6 3 [12] pmp Pumpkin 2499 12 2 [20]

dbt Diabetes 768 8 2 [12] rsn Raisin 900 7 2 [10]

ecl Ecoli 336 7 8 [12] seg Segment 2310 19 7 [12]

frt Fruit 898 34 7 [19] soy Soybean 683 35 19 [12]

gls Glass 214 9 6 [12] tae Teaching assistant evaluation 151 5 3 [12]

hcl Horse colic 368 22 2 [12] wne Wine 178 13 3 [12]

irs Iris 150 4 3 [12] wpb Wisconsin prognostic breast cancer 198 33 2 [12]

mam Mammographic masses 961 5 2 [12] yst Yeast 1484 8 10 [12]

5.1 Experiment 1: Fixed Vs. Variable-Length Fuzzy Sets

We compare the performance of Fuzzy-UCS and Fuzzy-UCSv to investigate the
impact of variable-length fuzzy sets on the performance of LFCS in situations
where the maximum number of rules N is limited (N = 500) and in situations
where a sufficient number of rules is provided (N = 2000).

Experimental Setup. The hyperparameters for Fuzzy-UCS are set to the same
values as those in previous studies [27,38,39]: N ∈ {500, 2000}, F0 = 0.99, ν = 1,
χ = 0.8, pmut = 0.04, δ = 0.1, m0 = 0.1, θGA = 50, θdel = 50, θexploit = 10,
τ = 0.4, and P# = 0.33. Fuzzy-UCSv retains the same parameter settings as
Fuzzy-UCS, except for ninit = 1. Uniform crossover is employed in the GA.
The number of training epochs is fixed at 50, and each data attribute value is
normalized to a real number in the range [0, 1]. The performance metric is the
average classification accuracy on the training and test data across 30 trials,
utilizing shuffle-split cross-validation with 90% of the data for training and 10%
for testing. Additionally, to verify statistical significance, the Wilcoxon signed-
rank test is applied for each dataset at a significance level of 0.05.

Results and Discussion. Table 2 presents the summary of results.
From Table 2, it is evident that Fuzzy-UCSv achieves improvements in test

accuracy across many datasets without significantly deteriorating test accuracy
compared to Fuzzy-UCS, for both N ∈ {500, 2000}. Therefore, irrespective of the
value of N , variable-length fuzzy sets contribute to enhancing the test accuracy
of LFCSs. Particularly in high-dimensional datasets with greater than or equal
to 30 dimensions, at the setting of N = 500, Fuzzy-UCSv achieves significant
improvements in test accuracy (25.32% in can, 75.60% in frt, 52.61% in soy,
and 3.50% in wpb). This indicates that variable-length fuzzy sets are particularly
effective in high-dimensional datasets and when the maximum number of rules
is constrained.

On the other hand, in some cases, Fuzzy-UCS demonstrates significantly
higher training accuracy than Fuzzy-UCSv. Specifically, with N = 2000, Fuzzy-

396 H. Shiraishi et al.

Table 2. Summary of results from Experiment 1, displaying average training and test
accuracy (%). Statistical results of the Wilcoxon signed-rank test are summarized with
symbols wherein “+”, “−”, and “∼” represent that the classification accuracy of the
conventional Fuzzy-UCS is significantly better, worse, and competitive compared to
that obtained by the proposed Fuzzy-UCSv, respectively. Green-shaded values denote
the best values. The “p-value” is derived from the Wilcoxon signed-rank test.

N = 500 N = 2000

Train Test Train Test

Fuzzy- Fuzzy- Fuzzy- Fuzzy- Fuzzy- Fuzzy- Fuzzy- Fuzzy-

ID. UCS UCSv UCS UCSv UCS UCSv UCS UCSv

brs 95.52 − 96.56 94.43 − 96.33 96.44 ∼ 96.63 94.29 − 96.10

can 68.00 − 93.60 67.72 − 93.04 94.38 + 92.66 89.12 − 91.99

col 84.25 ∼ 83.99 80.54 ∼ 79.46 81.61 ∼ 82.09 78.92 ∼ 78.49

dbt 77.12 ∼ 77.35 73.94 ∼ 74.85 78.50 + 77.87 73.90 ∼ 74.94

ecl 88.31 ∼ 88.07 84.51 ∼ 84.71 87.60 − 88.34 85.00 ∼ 86.08

frt 8.391 − 85.12 8.333 − 83.93 81.79 − 86.15 76.59 − 82.04

gls 80.56 + 78.87 65.00 ∼ 67.42 80.49 ∼ 81.65 65.00 − 70.30

hcl 60.05 − 73.23 57.30 − 70.18 86.61 + 85.57 67.66 ∼ 70.45

irs 95.26 − 95.75 94.67 ∼ 95.56 95.04 − 95.83 94.00 ∼ 95.78

mam 82.35 ∼ 82.55 80.96 − 81.99 81.22 − 81.93 81.13 ∼ 81.96

pdy 84.60 ∼ 84.30 84.44 ∼ 83.95 87.77 ∼ 87.73 87.40 ∼ 87.74

pis 87.10 + 86.74 86.33 ∼ 85.97 87.68 + 87.21 86.59 ∼ 86.19

pmp 87.61 ∼ 87.45 86.87 ∼ 86.41 87.74 ∼ 87.64 86.71 ∼ 86.81

rsn 85.78 ∼ 85.78 85.48 ∼ 85.89 85.93 ∼ 85.90 85.93 ∼ 85.89

seg 91.20 − 93.74 90.79 − 93.35 95.36 − 95.88 93.82 − 95.15

soy 5.434 − 61.30 5.072 − 57.68 67.39 − 95.07 60.58 − 87.15

tae 69.95 ∼ 68.35 53.33 ∼ 54.58 64.30 + 62.35 51.46 ∼ 51.46

wne 98.08 + 96.50 94.26 ∼ 92.22 99.29 + 97.77 95.00 ∼ 95.37

wpb 74.85 − 79.64 72.67 − 76.17 91.03 − 96.82 61.50 − 74.17

yst 54.01 − 56.06 51.83 − 53.62 63.09 ∼ 63.19 59.53 ∼ 59.73

+/ − / ∼ 3/9/8 - 0/9/11 - 6/7/7 - 0/7/13 -

p-value 0.123 - 0.00558 - 0.411 - 0.000420 -

UCS exhibits significantly higher training accuracy in six datasets and signif-
icantly lower in seven datasets compared to Fuzzy-UCSv. This indicates that
when N is sufficiently large, Fuzzy-UCS can achieve training accuracy compa-
rable to that of Fuzzy-UCSv. However, Fuzzy-UCS did not significantly out-
perform Fuzzy-UCSv in test accuracy in any of the datasets. This could be
attributed to scenarios like those depicted on the right side of Figs. 1 and 2,
where class data points are distributed across multiple subspaces. Fuzzy-UCS
attempts to cover one subspace with one specific fuzzy rule, as illustrated in
Fig. 1. When N is sufficiently large, Fuzzy-UCS can generate rules with optimal
rule-weights and rule-fitness for each subspace, enabling precise classification of
training data. However, this specificity can lead to overfitting, as indicated in
Table 2. For instance, while Fuzzy-UCS shows significantly higher training accu-
racy than Fuzzy-UCSv in the can problem, its test accuracy is significantly lower.
Conversely, Fuzzy-UCSv, by aiming to classify multiple subspaces with a single
general fuzzy rule, might not classify training data as accurately as Fuzzy-UCS
but effectively avoids overfitting, thereby enhancing generalization performance
on test data.

A Variable-Length Fuzzy Set Representation for LFCSs 397

Table 3. Summary of results from Experiment 2. Symbols “+”, “−”, and “∼” rep-
resent that the classification accuracy of the variant of Fuzzy-UCSv is significantly
better, worse, and competitive compared to that obtained by Fuzzy-UCS, respectively.
“Rank” and “Position” denote each system’s overall average rank obtained by using
the Friedman test and its position in the final ranking, respectively. Green- and peach-
shaded values denote the best and the worst, respectively. The “pHolm-value” is derived
from the Holm-adjusted Wilcoxon signed-rank test.

Train Test

Fuzzy-UCS
Fuzzy-UCSv

Fuzzy-UCS
Fuzzy-UCSv

ninit = 1 ninit = 2 ninit = 3 ninit = 1 ninit = 2 ninit = 3

Rank 1.90 1.65 2.80 3.65 2.68 1.73 2.60 3.00
Position 2 1 3 4 3 1 2 4
+/ − / ∼ - 7/6/7 2/13/5 2/15/3 - 7/0/13 5/3/12 5/4/11

p-value - 0.411 0.0192 0.00639 - 0.000420 0.571 0.498
pHolm-value - 0.411 0.0385 0.0192 - 0.00126 0.996 0.996

5.2 Experiment 2: On the Effects of ninit for Fuzzy-UCSv

We compare the performance of Fuzzy-UCS and Fuzzy-UCSv to investigate the
impact of the hyperparameter ninit, which controls the number of fuzzy sets held
by the rules generated by the covering operator, in Fuzzy-UCSv.

Experimental Setup. For Fuzzy-UCS and Fuzzy-UCSv, the hyperparame-
ters are consistent with those in Experiment 1, except that N = 2000. For
Fuzzy-UCSv, ninit ∈ {1, 2, 3}. The number of training epochs for all systems is
fixed at 50, and statistical significance is verified using the same procedure as in
Experiment 1 (cf. Sect. 5.1). Additionally, to compare the overall performance,
a Friedman test with Holm’s post-hoc test is conducted at a significance level of
0.05.

Results and Discussion. Table 3 presents the summary of results.
Table 3 indicates that the only ninit setting that significantly improved test

accuracy over Fuzzy-UCS was ninit = 1. The settings of ninit ∈ {2, 3} yielded
significantly worse training accuracy compared to Fuzzy-UCS, and they did not
show any significant differences in test accuracy. Furthermore, there were no
datasets where the test accuracy was significantly worse than Fuzzy-UCS for the
ninit = 1 setting; however, there were three and four datasets, respectively, for the
ninit = 2 and ninit = 3 settings where the test accuracy was worse. In other words,
the ninit ∈ {2, 3} settings tend to cause underfitting of the training data for some
datasets, which, in turn, reduces test accuracy. This underfitting is attributed to
an over-generalization of the rules [21], caused by some dimensions of the rule-
antecedent holding more fuzzy sets than necessary. As mentioned in Sect. 4.4, the
Fuzzy-UCSv mutation operator applies equal pressure to increase and decrease
the number of fuzzy sets. Additionally, as highlighted in recent research [32],
many L(F)CSs, including Fuzzy-UCS, lack a mechanism to remove over-general
rules explicitly. Therefore, if ninit is set too high (e.g., 3), it requires extensive
learning to optimize the number of fuzzy sets in the rule to an appropriate value
via the GA (i.e., rule specialization).

398 H. Shiraishi et al.

Table 4. Summary of results from Experiment 3. Symbols “+”, “−”, and “∼” represent
that the existing algorithm is significantly better, worse, and competitive compared to
Fuzzy-UCSv, respectively. “Rank”, “Position”, “p-value”, “pHolm-value”, and green-
and peach-shaded values should be interpreted as in Table 3.

Train Test
Scikit-

UCS
Fuzzy- Fuzzy- Scikit-

UCS
Fuzzy- Fuzzy-

ID. MLP UCS UCSv MLP UCS UCSv

brs 96.90 + 97.62 + 96.44 ∼ 96.63 96.24 ∼ 95.86 ∼ 94.29 − 96.10
can 93.50 + 97.43 + 94.38 + 92.66 92.98 ∼ 91.93 ∼ 89.12 − 91.99
col 67.63 − 77.19 − 81.61 ∼ 82.09 66.88 − 72.26 − 78.92 ∼ 78.49
dbt 72.89 − 77.88 ∼ 78.50 + 77.87 70.35 − 72.38 − 73.90 ∼ 74.94
ecl 52.89 − 77.69 − 87.60 − 88.34 52.84 − 74.51 − 85.00 ∼ 86.08
frt 77.36 − 93.51 + 81.79 − 86.15 77.04 − 83.44 + 76.59 − 82.04
gls 39.17 − 65.47 − 80.49 ∼ 81.65 36.52 − 56.36 − 65.00 − 70.30
hcl 82.74 − 89.99 + 86.61 + 85.57 77.12 + 63.51 − 67.66 ∼ 70.45
irs 76.67 − 84.59 − 95.04 − 95.83 74.44 − 82.44 − 94.00 ∼ 95.78
mam 79.31 − 83.13 + 81.22 − 81.93 79.42 − 80.72 ∼ 81.13 ∼ 81.96
pdy 86.99 − 89.27 + 87.77 ∼ 87.73 87.12 − 88.22 ∼ 87.40 ∼ 87.74
pis 86.67 − 87.33 ∼ 87.68 + 87.21 85.88 ∼ 85.81 ∼ 86.59 ∼ 86.19
pmp 86.74 − 87.63 ∼ 87.74 ∼ 87.64 86.21 − 86.31 ∼ 86.71 ∼ 86.81
rsn 85.77 ∼ 84.88 − 85.93 ∼ 85.90 85.67 ∼ 83.81 − 85.93 ∼ 85.89
seg 89.02 − 95.42 − 95.36 − 95.88 89.35 − 93.46 − 93.82 − 95.15
soy 88.52 − 95.28 ∼ 67.39 − 95.07 86.86 ∼ 65.41 − 60.58 − 87.15
tae 56.64 − 59.80 − 64.30 + 62.35 55.62 ∼ 50.00 ∼ 51.46 ∼ 51.46
wne 94.50 − 94.23 − 99.29 + 97.77 90.19 − 87.78 − 95.00 ∼ 95.37
wpb 76.39 − 95.45 − 91.03 − 96.82 76.00 + 68.00 − 61.50 − 74.17
yst 52.86 − 60.32 − 63.09 ∼ 63.19 52.93 − 55.86 − 59.53 ∼ 59.73

Rank 3.70 2.20 2.10 2.00 2.95 3.05 2.48 1.53
Position 4 3 2 1 3 4 2 1
+/ − / ∼ 2/17/1 6/10/4 6/7/7 - 2/12/6 1/12/7 0/7/13 -

p-value 3.62E-5 0.330 0.411 - 0.0153 0.000105 0.000420 -
pHolm-value 0.000109 0.660 0.660 - 0.0153 0.000315 0.000839 -

Based on these observations, ninit should be set to 1 to balance between rule
generalization and specialization.

5.3 Experiment 3: Comparison of Fuzzy-UCSv to Several Machine
Learning Techniques

To comprehensively evaluate the performance of Fuzzy-UCSv, we compare it
with a representative classifier from the scikit-learn library [29], the Multi-Layer
Perceptron Neural Network (Scikit-MLP), along with the sUpervised Classifier
System (UCS) [5], which is currently the most successful LCS in supervised
learning [25,31], and Fuzzy-UCS. While Scikit-MLP classifies data points using
a single global model (a neural network) that covers the entire input space, UCS
and Fuzzy-UCS(v) classify data points using multiple local models (rules).

Experimental Setup. The hyperparameters for Scikit-MLP are set to the
default values provided by the scikit-learn library. For UCS, the hyperparameters
are configured as follows [27,38,39]: N = 2000, acc0 = 0.99, β = 0.2, ν = 1, χ =
0.8, pmut = 0.04, δ = 0.1, m0 = 0.1, r0 = 1.0, θGA = 50, θdel = 50, τ = 0.4, P# =

A Variable-Length Fuzzy Set Representation for LFCSs 399

0.33, with the unordered bound hyperrectangular representation [36] employed for
the rule-antecedent. For Fuzzy-UCS and Fuzzy-UCSv, the hyperparameters are
consistent with those in Experiment 2 (cf. Sect. 5.2). For Fuzzy-UCSv, ninit = 1.
The number of training epochs for all systems is fixed at 50, and statistical
significance is verified using the same procedure as in Experiment 2.

Results and Discussion. Table 4 presents the summary of results.
From Table 4, we can observe that our proposed Fuzzy-UCSv significantly

outperforms the three conventional systems in terms of test accuracy. In addi-
tion, Table 4 shows that among all systems, only Fuzzy-UCSv avoids recording
the worst test accuracy, i.e., no peach cells. Furthermore, 10 out of 20 cells on test
accuracy are depicted in green, i.e., Fuzzy-UCSv records the best test accuracy.
This result underscores the effectiveness of Fuzzy-UCSv across various real-world
datasets. An interesting observation is that the non-fuzzy system, UCS, achieves
the best training accuracy in seven datasets, which is matched by Fuzzy-UCSv.
However, UCS only records the best test accuracy for two datasets and signifi-
cantly underperforms compared to Fuzzy-UCSv in terms of test accuracy. This
result is consistent with previous research [31], which shows that non-fuzzy rules
are more prone to overfitting on training data. Furthermore, as shown in a recent
study [30], constructing a single global model that covers the entire input space
for a problem can be time-consuming both in terms of model training and evalu-
ation. This tendency is even more pronounced for complex models such as neural
networks, as shown in Table 4.

In summary, Fuzzy-UCSv exploits the advantages of fuzzy rules, such as
the suppression of overfitting and the robustness against uncertainty [31], while
adaptively constructing multiple simple local models (i.e., fuzzy rules) using the
divide-and-conquer principle. This approach demonstrates that Fuzzy-UCSv can
effectively solve complex tasks such as real-world data mining.

6 Concluding Remarks

This paper introduced Fuzzy-UCSv, an LFCS that utilizes variable-length fuzzy
sets in rule-antecedents. We aimed to develop a set of fuzzy rules capable of dis-
regarding irrelevant features for classification while effectively covering training
data points distributed in multiple subspaces with a single rule. Fuzzy-UCSv
demonstrated superior performance on real-world data classification problems,
exhibiting significantly better test accuracy than Fuzzy-UCS, which employs
conventional fixed-length fuzzy sets, as well as two other machine learning tech-
niques while mitigating overfitting on training data.

In future work, we plan to explore the efficacy of variable-length fuzzy sets
in a broader range of tasks beyond single-label classification problems, such
as regression, reinforcement learning, and multi-label classification problems,
using different LFCS variants besides Fuzzy-UCS, e.g., [6,9,26]. Additionally,
while this study employed the �Lukasiewicz T-conorm operator for membership

400 H. Shiraishi et al.

degree aggregation, future research should examine the impact of using alterna-
tive operators, such as the Maximum T-conorm operator [7], on the performance
of Fuzzy-UCSv.

Acknowledgements. This work was supported by Japan Society for the Promotion of
Science KAKENHI (Grant No. JP23KJ0993), National Natural Science Foundation of
China (Grant No. 62250710163, 62376115), and Guangdong Provincial Key Laboratory
(Grant No. 2020B121201001).

Disclosure of Interests. The authors declare that they have no conflict of interest.

References

1. Arif, M.H., Iqbal, M., Li, J.: Extracting and reusing blocks of knowledge in learning
classifier systems for text classification: a lifelong machine learning approach. Soft.
Comput. 23, 12673–12682 (2019)

2. Arif, M.H., Li, J., Iqbal, M., Peng, H.: Optimizing XCSR for text classification.
In: 2017 IEEE Symposium on Service-Oriented System Engineering (SOSE), pp.
86–95. IEEE (2017)

3. Bacardit, J., Burke, E.K., Krasnogor, N.: Improving the scalability of rule-based
evolutionary learning. Memetic Comput. 1, 55–67 (2009)

4. Bacardit, J., Stout, M., Hirst, J.D., Sastry, K., Llora, X., Krasnogor, N.: Automated
alphabet reduction method with evolutionary algorithms for protein structure pre-
diction. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, pp. 346–353 (2007)

5. Bernadó-Mansilla, E., Garrell-Guiu, J.M.: Accuracy-based learning classifier sys-
tems: models, analysis and applications to classification tasks. Evol. Comput.
11(3), 209–238 (2003)

6. Bishop, J.T., Gallagher, M., Browne, W.N.: A genetic fuzzy system for inter-
pretable and parsimonious reinforcement learning policies. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pp. 1630–1638
(2021)

7. Buckley, J., Siler, W.: A new t-norm. Fuzzy Sets Syst. 100, 283–290 (1998)
8. Butz, M.V., Sastry, K., Goldberg, D.E.: Tournament selection: stable fitness pres-

sure in XCS. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L.D., Roy, R.,
O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M.,
Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K.A., Jonoska,
N., Miller, J. (eds.) Genetic and Evolutionary Computation — GECCO 2003, pp.
1857–1869. Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https://doi.org/
10.1007/3-540-45110-2 83

9. Casillas, J., Carse, B., Bull, L.: Fuzzy-XCS: a Michigan genetic fuzzy system. IEEE
Trans. Fuzzy Syst. 15(4), 536–550 (2007)

10. Çinar, İ, Koklu, M., Taşdemir, Ş: Classification of raisin grains using machine
vision and artificial intelligence methods. Gazi Mühendislik Bilimleri Dergisi 6(3),
200–209 (2020)

11. Debie, E., Shafi, K.: Implications of the curse of dimensionality for supervised
learning classifier systems: theoretical and empirical analyses. Pattern Anal. Appl.
22(2), 519–536 (2019)

https://doi.org/10.1007/3-540-45110-2_83
https://doi.org/10.1007/3-540-45110-2_83

A Variable-Length Fuzzy Set Representation for LFCSs 401

12. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

13. Goldberg, D.E.: The design of innovation: lessons from and for competent genetic
algorithms, vol. 1. Springer (2002). https://doi.org/10.1007/978-1-4757-3643-4 12

14. Guendouzi, W., Boukra, A.: A new differential evolution algorithm for cooperative
fuzzy rule mining: application to anomaly detection. Evol. Intel. 15(4), 2667–2678
(2022)

15. Holland, J.H.: Escaping brittleness: the possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. Mach. Learn. Artif. Intell. App-
roach 2, 593–623 (1986)

16. Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classi-
fication systems. IEEE Trans. Fuzzy Syst. 13(4), 428–435 (2005)

17. Kaggle: Cancer data. https://www.kaggle.com/datasets/erdemtaha/cancer-data.
Accessed 22 June 2024

18. Kaggle: Paddy leaf images (aman). https://www.kaggle.com/datasets/torikul1401
29/paddy-leaf-images-aman. Accessed 22 June 2024

19. Koklu, M., Kursun, R., Taspinar, Y.S., Cinar, I.: Classification of date fruits into
genetic varieties using image analysis. Math. Probl. Eng. 2021, 1–13 (2021)

20. Koklu, M., Sarigil, S., Ozbek, O.: The use of machine learning methods in classifi-
cation of pumpkin seeds (cucurbita pepo l.). Genetic Resources Crop Evol. 68(7),
2713–2726 (2021)

21. Lanzi, P.L.: An analysis of generalization in the XCS classifier system. Evol. Com-
put. 7(2), 125–149 (1999)

22. Lanzi, P.L., Wilson, S.W.: Using convex hulls to represent classifier conditions. In:
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 1481–1488 (2006)

23. Nakata, M., Browne, W.N.: Learning optimality theory for accuracy-based learning
classifier systems. IEEE Trans. Evol. Comput. 25(1), 61–74 (2020)

24. Nakata, M., Takadama, K.: An empirical analysis of action map in learning classi-
fier systems. SICE J. Contr. Measure., Syst. Integr. 11(3), 239–248 (2018)

25. Nazmi, S., Homaifar, A., Anwar, M.: An effective action covering for multi-label
learning classifier systems: a graph-theoretic approach. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 340–348 (2021)

26. Omozaki, Y., Masuyama, N., Nojima, Y., Ishibuchi, H.: Evolutionary multi-
objective multi-tasking for fuzzy genetics-based machine learning in multi-label
classification. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), pp. 1–8. IEEE (2022)

27. Orriols-Puig, A., Casillas, J.: Fuzzy knowledge representation study for incremental
learning in data streams and classification problems. Soft. Comput. 15(12), 2389–
2414 (2011)

28. Orriols-Puig, A., Casillas, J., Bernadó-Mansilla, E.: MFuzzy-UCS: a Michigan-style
learning fuzzy-classifier system for supervised learning. IEEE Trans. Evol. Comput.
13(2), 260–283 (2008)

29. Pedrefosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

30. Preen, R.J., Wilson, S.W., Bull, L.: Autoencoding with a classifier system. IEEE
Transactions on Evolutionary Computation (2021)

31. Shiraishi, H., Hayamizu, Y., Hashiyama, T.: Fuzzy-UCS revisited: self-adaptation
of rule representations in Michigan-style learning fuzzy-classifier systems. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 548–557
(2023)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-1-4757-3643-4_12
https://www.kaggle.com/datasets/erdemtaha/cancer-data
https://www.kaggle.com/datasets/torikul140129/paddy-leaf-images-aman
https://www.kaggle.com/datasets/torikul140129/paddy-leaf-images-aman

402 H. Shiraishi et al.

32. Shiraishi, H., Hayamizu, Y., Sato, H., Takadama, K.: Absumption based on over-
generality and condition-clustering based specialization for XCS with continuous-
valued inputs. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pp. 422–430 (2022)

33. Shoeleh, F., Hamzeh, A., Hashemi, S.: Towards final rule set reduction in XCS: a
fuzzy representation approach. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, pp. 1211–1218 (2011)

34. Singh, D., et al.: Classification and analysis of pistachio species with pre-trained
deep learning models. Electronics 11(7), 981 (2022)

35. Stein, A., Nakata, M.: Learning classifier systems: from principles to modern sys-
tems. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pp. 498–527 (2021)

36. Stone, C., Bull, L.: For real! XCS with continuous-valued inputs. Evol. Comput.
11(3), 299–336 (2003)

37. Tadokoro, M., Sato, H., Takadama, K.: XCS with weight-based matching in VAE
latent space and additional learning of high-dimensional data. In: 2021 IEEE
Congress on Evolutionary Computation (CEC), pp. 304–310. IEEE (2021)

38. Tzima, F.A., Mitkas, P.A.: Strength-based learning classifier systems revisited:
effective rule evolution in supervised classification tasks. Eng. Appl. Artif. Intell.
26(2), 818–832 (2013)

39. Urbanowicz, R.J., Moore, J.H.: ExSTraCS 2.0: description and evaluation of a
scalable learning classifier system. Evol. Intell. 8(2), 89–116 (2015)

40. Valenzuela-Rendón, M.: The fuzzy classifier system: motivations and first results.
In: Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature: 1st
Workshop, PPSN I Dortmund, FRG, October 1–3, 1990 Proceedings, pp. 338–342.
Springer Berlin Heidelberg, Berlin, Heidelberg (1991). https://doi.org/10.1007/
BFb0029774

41. Wilson, S.W.: Get Real! XCS with continuous-valued inputs. In: Lanzi, P.L., Stolz-
mann, W., Wilson, S.W. (eds.) Learning Classifier Systems: From Foundations to
Applications, pp. 209–219. Springer Berlin Heidelberg, Berlin, Heidelberg (2000).
https://doi.org/10.1007/3-540-45027-0 11

https://doi.org/10.1007/BFb0029774
https://doi.org/10.1007/BFb0029774
https://doi.org/10.1007/3-540-45027-0_11

Evolvable Hardware and Evolutionary
Robotics

Exploring Proprioceptive Feedback
in the Evolution of Modular Robots

Babak Hosseinkhani Kargar(B) , Karine Miras , and A. E. Eiben

Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands
{b.hosseinkhanikargar,k.dasilvamirasdearaujo,a.e.eiben}@vu.nl

Abstract. We investigate an evolvable robot system where the body
provides proprioceptive sensory signals to the controller (brain) about
the positions of the joints. The key aspect we consider is whether all
joints should be sensed or if sensing fewer joints would be better. We
research this matter based on a test suite of twenty-two robots with
various shapes and sizes and implement a system where the controller
and the sensory signal system evolve together. Experiments with this
system show that the evolved solutions use signals only from a fraction
of the joints (25–51%) and perform better than the baseline, where all
signals are used. This effect was observed across the majority of the test
suite.

Keywords: Evolutionary Robotics · Proprioception · Efficiency

1 Introduction

Evolutionary Robotics (ER) is transforming the field of robotics by harvesting
the potential of natural evolution principles [11], enabling robot adaptation in
dynamic environments. ER plays a crucial role in pushing the boundaries of
autonomous systems and, in the long term, should allow for robots that present
high levels of adaptability. Nevertheless, one current shortcoming within ER
studies is that when the body is also evolving with the controller (brain), the
use of open-loop controllers is abundant [9,14–16,18,21]. Such controllers are
usually composed of Central Pattern Generators (CPGs), which can be modeled
as equations that produce an oscillatory output [13]. Because of their rhyth-
mic nature, CPGs present the potential to address simple tasks like locomotion
regardless of the lack of sensory input.

When contemplating the challenges posed by the simultaneous evolution of
the body and controller due to frequent search space shifting, the appeal of CPGs
is evident. On the other hand, the use of open-loop controllers is regrettable given
that a robot is defined as “an artificial device that can sense its environment and
purposefully act on or in that environment” [31]. Although CPGs have been
shown to be effective for simple tasks in static environments [17,19], their use
has led to the creation of robots that lack awareness about the environment
and also about their own body in the environment. This limitation is critical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 405–418, 2024.
https://doi.org/10.1007/978-3-031-70071-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70071-2_25&domain=pdf
http://orcid.org/0000-0003-4841-0597
http://orcid.org/0000-0003-4942-3488
http://orcid.org/0000-0002-3106-4213
https://doi.org/10.1007/978-3-031-70071-2_25

406 B. Hosseinkhani Kargar et al.

because robots that are “blind” to environmental conditions would be unable to
cope with any dynamism in the environment.

In biology, the awareness of an organism about its environment is referred
to as exteroception [20], and it involves processing signals of sensors that cap-
ture the properties of what is external to the organism. Exteroception has been
investigated in ER, for instance, focusing on sensory layout [12,29].

Regarding the internal states of an organism, there are two main sensing cat-
egories: interoception, which comprises the reading of physiological signals [7],
and proprioception, which regards the awareness that an organism has about
the positions of its movable body parts [24,32]. While proprioception is useful
for fine-tuning motor skills, e.g., coordination, it can also be useful to perceive
the environment. Although proprioception does not allow the robot controller
to sense the external environment directly, proprioceptive information allows
the robot controller to infer environmental states because of how these states
change in response to certain actions. For these reasons, proprioception can be
very useful for ER and has been explored in the literature [2–4,19,23,25]. For
instance, demonstrating the benefits of proprioception complementary to exte-
roception [23], and including proprioceptive feedback in the study of ontogenetic
development [4]. However, we are unaware of any investigation that specifically
addressed the effects of filtering proprioceptive signals.

In traditional machine learning approaches, it is common knowledge that
including unnecessary variables in a model can reduce performance due to noise
introduction [8]. Nevertheless, because such models are not embodied, propri-
oception does not apply. Conversely, embodied machines like robots can sense
their own bodies through proprioception. Unlike exteroceptive signals, which
could involve aspects of the environment that do not affect the robot, proprio-
ceptive signals describe the robot itself. Therefore, it is not obvious whether any
data should be ignored when dealing with proprioceptive signals.

Such consideration leads to questioning the need for thorough proprioceptive
sensing. To address this matter, the current study evolves populations of robots
that can proprioceptively sense their joints. In one of the experiments, robots
can sense all of their joints; in another experiment, not all joints may be sensed.
Through these experiments, we investigate the following hypothesis: Applying
proprioceptive sensing in a limited number of joints is more effective than its
application across all joints.

2 Methodology

2.1 Robot Framework and Morphology

Revolve [28] is a ER framework developed at the Vrije Universiteit Amsterdam,
which forms the foundation of our experimental setup. Revolve utilizes the mor-
phological (body) design space of modular robots from RoboGen [1], but sim-
ulated using MuJoCo [30] physics engine. A robot body morphology configures
three different types of modules (Fig. 1).

Exploring Proprioceptive Feedback in the Evolution of Modular Robots 407

Fig. 1. Example of a robot body morphology. The yellow module is the head of the
robot, the blue blocks are passive body parts, and the red modules (made of two parts)
are active joints (motors). (Color figure online)

To isolate effects from body evolution, the body morphologies utilized in all
current experiments are not evolvable, but fixed. These morphologies (Fig. 2)
were derived from a previous study that produced a diverse set of morpholo-
gies [10]. Their selection process focused on two primary criteria: morphological
viability - ensuring that the robots were capable of effective performance, and
diversity in design - to cover a broad range of morphological traits.

Fig. 2. The robot morphologies test suite. Each picture shows one of the 22 robot
morphologies used in the experiments.

2.2 Control Architecture

Artificial Neural Network. We utilize a feedforward Artificial Neural Net-
work (ANN) as a closed-loop controller (brain). Both the weights and topology
of the networks are subject to evolution. We chose to evolve the topologies

408 B. Hosseinkhani Kargar et al.

instead of using fixed ones because the most suitable ANN topology for each
body morphology was not known beforehand. The networks receive propriocep-
tive sensory signals (joint rotations) as inputs. The output neurons utilize ‘tanh’
as their activation function, ranging from −1 to 1, and are used to actuate the
robot by setting new joint rotations.

Fig. 3. Schematic representation of the neural network controller and signal filtering
mask application. S represents sensors, O represents outputs, and t is the time-step.

Signal Filtering Mask. To experiment with different levels of proprioceptive
signal usage, we implemented a binary mask that filters out proprioceptive sen-
sory signals. This mask determines which signals are provided to the network.
The mask size is the same as the number of joints (potential signals), and it is
applied by multiplying the value of the signal by the value of the mask (0 or
1). Therefore, when the value of the mask is 0, the signal has no effect on the
controller.

This way, the controller phenotype is the network, and this network is
adjusted by the mask, defining calculations to be performed inside the input
nodes.

Oscillators. Because CPGs produce rhythmic patterns, they are expected to
produce smooth gaits. Therefore, we decided to modulate the proprioceptive
signals with signals derived from oscillators. This was achieved by summing the
proprioceptive signal to the signal of a sine function. This way, proprioceptive
signals influenced the amplitude of the produced wave. The sinusoidal function
is represented as sin(t). The calculation performed within each input node is
defined by Eq. 1.

ci = si ×maski + sin(t) (1)

where si is the original signal of sensor i, ci is the transformed value of this
sensor, maski is the binary value that transforms or not si to zero, and t is the
timestep of the robot life. The oscillatory patterns are introduced through the
inputs of the network as opposed to outputs, to guarantee that evolution will
not simply exploit the benefits of the oscillators while dodging the challenge of
optimizing proprioceptive signals.

Exploring Proprioceptive Feedback in the Evolution of Modular Robots 409

Figure 3 illustrates the controller phenotype, combining all three aspects
described above: the neural network incorporating the mask and the oscillators.

2.3 Evolutionary Algorithm

The controller genotype is a direct representation formed by two different com-
ponents: the ANN and the signal-filtering mask. Each one of them is represented
using a distinct data structure, and they are used together in the mapping func-
tion to produce the final controller phenotype: the ANN utilizing a specific mask.

ANN. The evolution of the ANN involves a modified use of the MultiNEAT
library [6]. Unlike the standard NeuroEvolution of Augmenting Topologies
(NEAT) algorithm [27], our implementation does not include speciation nor fit-
ness sharing. Instead, we utilize only the variation operators of NEAT (crossover
and mutation), applied according to the minimality principle: minimal connec-
tions between inputs and outputs and then growing more neurons and connec-
tions incrementally.

Signal Filtering Mask. The signal filtering mask is a binary string. This
mask is initialized by generating a random binary string (0 or 1) with a size
corresponding to the number of active joints in the robot morphology. Crossover
might be performed using single-point crossover, and mutation is applied using
bit-flipping.

Selection. A number n = 100 of parent pairs is selected using tournament
selection with k = 2 (one tournament per parent of the pair), and each pair
generates one offspring. The union operation is performed on the sets of parents
and offspring. The resulting set of individuals is considered for survival selection:
a number p = 100 of individuals is selected by performing p tournaments with
k = 2.

Robots are evaluated in the environment for a period of 20 seconds. The fit-
ness function measures the speed (cm/second) of the robot in the y axis (positive
values are better). This function is defined with Eq. 2:

f =
yt − y0

t
(2)

where y0 is s the position of the robot in the y axis at the beginning of the
evaluation period, and yt is the position of the robot in the y axis at the end of
the evaluation period.

410 B. Hosseinkhani Kargar et al.

2.4 Experimental Setup

We evolved populations of controllers using two different experimental setups:

– All signals : The robot controller utilizes all sensory signals available. This
serves as a baseline for the alternative setup.

– Filtered signals: The robot controller might utilize only part of the sensory
signals available because it has a mask able to filter out signals. This filtering
was described in Sect. 2.2.

Populations were evolved for 150 generations and experiments were repeated
independently 10 times. For the artificial neural network (ANN), the mutation
and crossover probabilities were set to 0.2 and 0.8 respectively, while for the
mask, these probabilities were 0.004 for mutation and 0.64 for crossover. These
hyperparameters were selected based on a combination of preliminary exper-
iments and existing literature to achieve a balance between exploration and
exploitation in the evolutionary process. A summary of all experimental param-
eters is provided in Table 1.

Table 1. Summary of Experimental Parameters

Parameter Value

Evaluation in seconds 20
Experiment Repetitions 10
Population Size 100
Offspring Size 100
Number of Generations 150
Crossover Probability (Neural Network) 0.8
Mutation Probability (Neural Network) 0.2
Crossover Probability (Mask) 0.64
Mutation Probability (Mask) 0.004

3 Results and Discussion

3.1 How Filtering Affects Robot Performance

We start by analyzing the effects of filtering sensory signals on robot perfor-
mance. Table 2 shows the metrics of performance and sensory signal usage for
the two experimental setups. Supporting the main hypothesis, filtering brought
about significant performance gains for most of the morphologies tested. The
progression of the searches across the generations is shown for the smallest and
largest morphologies in Figs. 4 and 5: there was no significant improvement to
the robot with the lowest number of joints and a great improvement to the robot
with the highest number of joints.

Exploring Proprioceptive Feedback in the Evolution of Modular Robots 411

Table 2. Speed (performance) gain and sensory signal usage of different robot mor-
phologies. Speed, gain, and usage were averaged over the robots in the last generation
of each experiment. Speed gain measures the speed increase, comparing the results
obtained from the all signals experiments to those obtained from the filtered signals
experiments: filtered−all

all
. Ratio of used signals refers to the percentage of non-filtered

sensory signals in the filtered signals experiment. Significance is the p-value of the t-test
that compares the speed between the two experimental setups in the final generation.

Morphology Joints Size Speed (all signals) Speed (filtered signals) Speed gain (%) Ratio of used signals (%) Significance

blokky 5 15 1.99 2.07 4.00 51.00 0.216
gecko 6 13 3.82 4.45 16.00 42.00 0.111
squarish 6 13 2.00 2.62 31.00 38.00 0.001
snake 8 16 2.96 3.96 34.00 32.00 0.114
ant 8 17 3.22 4.31 34.00 35.00 0.007
tinlicker 8 15 2.80 2.98 7.00 39.00 0.476
spider 8 17 5.55 7.00 26.00 35.00 0.013
babya 8 16 3.70 4.32 17.00 29.00 0.163
park 8 14 2.50 2.69 8.00 25.00 0.147
stingray 9 15 2.25 2.74 22.00 35.00 0.014
insect 9 12 3.16 4.26 35.00 36.00 0.016
queen 9 14 2.76 3.14 14.00 39.00 0.032
garrix 10 15 2.37 3.28 38.00 32.00 0.000
pentapod 10 15 2.87 4.34 51.00 39.00 0.001
babyb 10 21 4.15 5.71 38.00 27.00 0.051
ww 10 15 3.72 5.29 42.00 30.00 0.013
zappa 11 15 3.85 5.35 39.00 34.00 0.016
penguin 12 19 7.43 10.04 35.00 31.00 0.063
linkin 12 15 3.03 6.13 103.00 26.00 0.000
longleg 12 15 2.44 4.03 66.00 26.00 0.004
turtle 13 20 1.82 2.64 45.00 27.00 0.016
salamander 14 25 2.58 3.98 54.00 26.00 0.027

We inspect performance further by correlating these different metrics to ver-
ify the relationship between performance, sensory signal usage, and the number
of joints. Figure 6 shows that the usage of sensory signals is negatively correlated
with performance gain and the number of joints (Fig. 6-a and 6-b, respectively).
In other words, there was a greater performance gain when more filtering was
applied, and evolution applied more filtering to morphologies with more degrees
of freedom (more joints). Additionally, the performance gain is positively cor-
related with the number of joints (Fig. 6-c): morphologies with more degrees of
freedom had more performance gain. These different correlations suggest that
while filtering benefits performance for most of the morphologies, this benefit
intensifies when robots have more joints. Importantly, while a higher number of
joints also means a larger body size, there is a weak relationship between size
and performance gain (Fig. 6-d) compared to the relationship between number
of joints and performance gain (Fig. 6-c), corroborating the idea that the gains
are related to greater degrees of freedom.

412 B. Hosseinkhani Kargar et al.

Fig. 4. Blokky - morphology with the lowest number of joints.

Fig. 5. Salamander - morphology with the highest number of joints.

Exploring Proprioceptive Feedback in the Evolution of Modular Robots 413

Fig. 6. Correlations between different metrics. a: negative correlation between perfor-
mance gains and the ratio of used sensors. b: negative correlation between the number
of joints and the ratio of used sensors. c: positive correlation between performance gains
and the number of joints. d: weak positive correlation between performance gains and
size of robots. Each dot regards each of the 22 morphologies. The different metrics are
described in the caption of Table 2, where this same data is presented in more detail.

3.2 Impact of Oscillators on Proprioceptive Signal Filtering

Because the controllers utilized a combination of proprioceptive sensory signals
with rhythmic patterns generated by oscillators, it is difficult to isolate how
much of the gait success was derived from the rhythmic patterns and how much
was derived from proprioceptive sensing. Considering that rhythmic patterns are
commonly and successfully used to control robot locomotion [22], it is sensible to
wonder if the rhythmic signals were responsible for gait success while propriocep-
tive signals were actually detrimental. This could have happened, for instance,
because of determined flaws in the chosen architecture and algorithmic parame-
ters. In this hypothetical scenario, reducing proprioceptive sensing could improve
performance simply because proprioception does not help at all. Therefore, we
conducted control experiments in which the oscillators were not included in the
controller for the morphologies with the lowest and highest number of joints.

414 B. Hosseinkhani Kargar et al.

Fig. 7. Blokky without oscillators.

Fig. 8. Salamander without oscillators.

Exploring Proprioceptive Feedback in the Evolution of Modular Robots 415

Results of these control experiments showed that the effects observed in the
main experiments remain present: filtering was either neutral (Blokky) or benefi-
cial (Salamander) even when the controller relied only on proprioceptive sensory
signals (Figs. 7 and 8).

Beyond serving as a control, these results showed that the choice of not filter-
ing proprioceptive sensory signals can be even more detrimental when controllers
do not contain oscillators. While the speed of the salamander remained around
4cm/s in the setup that allows filtering, the speed dropped from around 2cm/s
to around 1cm/s in the setup without filtering.

3.3 Sensory Signal Filtering Analysis

We analyzed the filtering evolved for all of the different body morphologies to
verify if there was any pattern, e.g., a relationship between morphological traits
and filtering. Nevertheless, we did not observe any patterns of filtering. Figure 9
shows the gecko morphology as an example: the diagram uses colors of variable
intensity to indicate more or less usage of each sensor. The diagram includes all
individuals in the final generation of all independent runs.

Fig. 9. Evolved pattern of used signals for the gecko morphology in the final generation.
A higher number means more used (non-filtered) signals.

4 Conclusion

This study addressed the impact of filtering proprioceptive signals usage when
evolving robot controllers. Considering that adding unnecessary variables to a
model is commonly detrimental in traditional machine learning, the posited
hypothesis intended to verify if this issue remains present in a context where
the variables describe the robot itself.

The hypothesis proved partially true because applying proprioceptive sensing
in a limited number of joints was more effective than its application across all

416 B. Hosseinkhani Kargar et al.

joints for most of the tested morphologies. In some cases, utilizing a limited
number of joints was not more effective but equally effective. In general, robots
with more degrees of freedom benefited more from sensory signal filtering –
this was surprising because a robot with more degrees of freedom can produce
more intricate motion and, therefore, might be expected to need more fine-
tuning (more proprioceptive sensing). Finally, the detrimental effect of using too
many proprioceptive signals was more severe when the controller did not include
oscillators. One possible explanation for this is that oscillatory patterns reduce
the dependency of the controller on the proprioceptive apparatus.

These results illuminate the potential of strategic sensor signal filtering, lead-
ing to a more effective and efficient evolutionary search. Filtering sensory signals
decreases the risk of information overload, allowing the controller to make more
accurate decisions. One relevant aspect driving these improvements is the con-
cept of tailored sensory strategies [26]. The controllers can focus on the most rele-
vant data by customizing the sensory filtering to each specific body configuration,
enhancing decision-making. This approach to sensory filtering shares conceptual
similarities with the feature selection process in machine learning [5,33], particu-
larly in the context of preventing over-fitting and noise reduction. Although our
method does not focus on speeding up training - remember that we control the
number of parameters - it aligns with the fundamental goals of feature selection.
In machine learning, feature selection aims to enhance model performance by
choosing the most relevant data inputs. This is analogous to selectively filtering
sensory signals in robotic systems. Such a parallel suggests a useful intersection
between evolutionary robotics and machine learning, where techniques used in
one domain can offer valuable insights and advancements in the other. A brief
video summary of our study can be found at link online1.

To conclude, the present study opens new avenues for robot design and
control, demonstrating the potential benefits of proprioceptive sensory signal
reduction. One limitation of the study is that the morphologies utilized were
pre-determined. Future work should investigate if the observed effects are sus-
tained when evolving the body morphology together with the controller and
sensory signal usage. Moreover, we do not know if the observed effects would
be the same for different tasks and environments. Finally, considering that the
network topologies were evolvable in the baseline and alternative experiments,
in both cases it was possible for evolution to prevent or weaken connections
regarding detrimental signals. Nevertheless, the inclusion of a filtering mask in
the alternative experiment proved more effective, though the reason for this is
not yet fully understood.

1 https://youtu.be/iwezrs7BcZI.

https://youtu.be/iwezrs7BcZI

Exploring Proprioceptive Feedback in the Evolution of Modular Robots 417

References

1. Auerbach, J., et al.: RoboGen: robot generation through artificial evolution. In:
Artificial Life Conference Proceedings, pp. 136–137. MIT Press One Rogers Street,
Cambridge, MA 02142-1209, USA Journals-Info . . . (2014)

2. Bongard, J.C.: Evolved sensor fusion and dissociation in an embodied agent. In:
Proceedings of the EPSRC/BBSRC International Workshop Biologically-Inspired
Robotics: The Legacy of W. Grey Walter, pp. 102–109 (2002)

3. Bongard, J.C., Pfeifer, R.: A method for isolating morphological effects on evolved
behaviour (2002)

4. Bongard, J.C., Pfeifer, R.: Evolving complete agents using artificial ontogeny.
In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species.
Springer, Cham (2003). https://doi.org/10.1007/978-4-431-67869-4_12

5. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new
perspective. Neurocomputing 300, 70–79 (2018)

6. Chervenski, P., Ryan, S.: Multineat, project website (2012). https://www.
multineat.com

7. Craig, A.D.: Interoception: the sense of the physiological condition of the body.
Curr. Opin. Neurobiol. 13(4), 500–505 (2003)

8. D’Amario, V., Srivastava, S., Sasaki, T., Boix, X.: The data efficiency of deep
learning is degraded by unnecessary input dimensions. Front. Comput. Neurosci.
16, 760085 (2022)

9. De Carlo, M., Zeeuwe, D., Ferrante, E., Meynen, G., Ellers, J., Eiben, A.E.: Influ-
ences of artificial speciation on morphological robot evolution. In: 2020 IEEE Sym-
posium Series on Computational Intelligence (SSCI), pp. 2272–2279. IEEE (2020)

10. van Diggelen, F., Ferrante, E., Harrak, N., Luo, J., Zeeuwe, D., Eiben, A.: The
influence of robot traits and evolutionary dynamics on the reality gap. IEEE Trans.
Cogn. Dev. Syst. 15(2), 499–506 (2021)

11. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.: Evolutionary robotics: what,
why, and where to. Front. Robot. AI 2, 4 (2015)

12. Heinerman, J., Rango, M.: Evolution, individual learning, and social learning in a
swarm of real robots. In: 2015 IEEE Symposium Series on Computational Intelli-
gence, pp. 1055–1062. IEEE (2015)

13. Huang, H.J., Ferris, D.P.: Computer simulations of neural mechanisms explaining
upper and lower limb excitatory neural coupling. J. Neuroeng. Rehabil. 7, 1–13
(2010)

14. Jelisavcic, M., Kiesel, R., Glette, K., Haasdijk, E., Eiben, A.: Analysis of Lamar-
ckian evolution in morphologically evolving robots. In: Artificial Life Conference
Proceedings, pp. 214–221. MIT Press One Rogers Street, Cambridge, MA 02142-
1209, USA Journals-Info . . . (2017)

15. Kriegman, S., Cheney, N., Bongard, J.: How morphological development can guide
evolution. Sci. Rep. 8(1), 13934 (2018)

16. Kriegman, S., et al.: Scalable sim-to-real transfer of soft robot designs. In: 2020 3rd
IEEE International Conference on Soft Robotics (RoboSoft), pp. 359–366. IEEE
(2020)

17. Liu, C., Chen, Y., Zhang, J., Chen, Q.: CPG driven locomotion control of
quadruped robot. In: 2009 IEEE International Conference on Systems, Man and
Cybernetics, pp. 2368–2373. IEEE (2009)

18. Luo, J., Miras, K., Tomczak, J., Eiben, A.E.: Enhancing robot evolution through
Lamarckian principles. Sci. Rep. 13(1), 21109 (2023)

https://doi.org/10.1007/978-4-431-67869-4_12
https://www.multineat.com
https://www.multineat.com

418 B. Hosseinkhani Kargar et al.

19. Luo, J., Tomczak, J., Miras, K., Eiben, A.E.: A comparison of controller architec-
tures and learning mechanisms for arbitrary robot morphologies. In: 2023 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 1518–1525. IEEE
(2023)

20. Marques, V., Ursi, S., Lima, E., Katon, G.: Environmental perception: notes on
transdisciplinary approach. Sci. J. Biol. Life Sci. 1(2), 1–9 (2020)

21. Miras, K.: Exploring the costs of phenotypic plasticity for evolvable digital organ-
isms. Sci. Rep. 14(1), 108 (2024)

22. Pasandi, V., Sadeghian, H., Keshmiri, M., Pucci, D.: An integrated programmable
CPG with bounded output. IEEE Trans. Autom. Control 67(9), 4658–4673 (2022)

23. Phillips, A., du Plessis, M.: Towards the incorporation of proprioception in evo-
lutionary robotics controllers. In: 2019 Third IEEE International Conference on
Robotic Computing (IRC), pp. 226–229. IEEE (2019)

24. Proske, U., Gandevia, S.C.: The proprioceptive senses: their roles in signaling body
shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697
(2012)

25. Röfer, T.: Evolutionary gait-optimization using a fitness function based on pro-
prioception. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.)
RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 310–322. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32256-6_25

26. Shamaiah, M., Banerjee, S., Vikalo, H.: Greedy sensor selection: leveraging sub-
modularity. In: 49th IEEE Conference on Decision and Control (CDC), pp. 2572–
2577. IEEE (2010)

27. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

28. Stuurman, A., Weissl, O., Chiang, T.C., Zeeuwe, D.: ci-group/revolve2: 1.0.1, Jan-
uary 2024. https://doi.org/10.5281/zenodo.10518564

29. Talamini, J., Medvet, E., Bartoli, A., De Lorenzo, A.: Evolutionary synthesis of
sensing controllers for voxel-based soft robots. In: Artificial Life Conference Pro-
ceedings, pp. 574–581. MIT Press One Rogers Street, Cambridge, MA 02142-1209,
USA Journals-Info . . . (2019)

30. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control.
In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE (2012)

31. Winfield, A.: Robotics: A Very Short Introduction. OUP Oxford, Oxford (2012)
32. Yeon, J., et al.: A sensory-motor neuron type mediates proprioceptive coordination

of steering in C. elegans via two TRPC channels. PLoS Biol. 16(6), e2004929 (2018)
33. Zhao, T., Zheng, Y., Wu, Z.: Feature selection-based machine learning modeling

for distributed model predictive control of nonlinear processes. Comput. Chem.
Eng. 169, 108074 (2023)

https://doi.org/10.1007/978-3-540-32256-6_25
https://doi.org/10.5281/zenodo.10518564

Author Index

A
Adak, Sumit 53
Alderliesten, Tanja 352
Antipov, Denis 19, 86, 181

B
Bian, Chao 295
Bosman, Peter A. N. 352

C
Cerf, Sacha 102
Chen, Zefeng 369

D
Dang, Duc-Cuong 230, 246
Deng, Renzhong 264
Doerr, Benjamin 197, 264
Dreżewski, Rafał 333

E
Eiben, A. E. 405

F
Fajardo, Mario Alejandro Hevia 213
Florescu, Cella 70

G
Gadea Harder, Jonathan 149

H
Ha, Damy M. F. 352
Hosseinkhani Kargar, Babak 405

I
Ishibuchi, Hisao 386

K
Kaufmann, Marc 70
Kötzing, Timo 86
Krejca, Martin S. 197

L
Lee, Jiwon 133
Lehre, Per Kristian 117, 213
Lengler, Johannes 3, 70, 102
Li, Hao 369
Li, Mingfeng 264, 280
Li, Miqing 295
Lin, Shishen 117
Liu, Jie 264
Luo, Ganyuan 369

M
Miras, Karine 405

N
Nakata, Masaya 386
Neumann, Aneta 19, 149, 181
Neumann, Frank 19, 36, 149, 166, 181

O
Opris, Andre 230, 246

Q
Qian, Chao 295

R
Radhakrishnan, Aishwarya 86
Ren, Shengjie 295
Rudolph, Günter 166

S
Saifullah, Shoffan 333
Schaller, Ulysse 70
Schröder, Gijs 315
Shiraishi, Hiroki 386
Sturm, Konstantin 3
Sudholt, Dirk 230, 246
Sun, Ao 280
Sutton, Andrew M. 19, 133

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15150, pp. 419–420, 2024.
https://doi.org/10.1007/978-3-031-70071-2

https://doi.org/10.1007/978-3-031-70071-2

420 Author Index

T
Textor, Johannes 315

W
Weeks, Noé 197
Witt, Carsten 36, 53
Wortel, Inge 315

X
Xie, Wen 280

Y
Yao, Xin 280
Ye, Rongguang 386

Z
Zheng, Weijie 264, 280
Zhou, Yuren 369

	 Preface
	 Organization
	 Contents – Part III
	Theoretical Aspects of Nature-Inspired Optimization
	Self-adjusting Evolutionary Algorithms are Slow on a Class of Multimodal Landscapes
	1 Introduction
	1.1 Our Result

	2 Notation and Preliminaries
	3 Properties of the SA-(1,)-EA
	4 Lower Runtime Bounds
	5 Experiments
	6 Conclusion
	References

	Runtime Analysis of Evolutionary Diversity Optimization on a Tri-Objective Version of the (LeadingOnes, TrailingZeros) Problem
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 GSEMOD
	2.2 Diversity Measures
	2.3 LOTZ k Problem

	3 Optimal Diversity
	4 Runtime Analysis of Covering All Fitness Values
	5 Runtime Analysis of Diversity Optimization
	6 Experiments
	6.1 Sum of Imbalances
	6.2 Sorted Imbalances Vector

	7 Conclusion
	References

	Sliding Window 3-Objective Pareto Optimization for Problems with Chance Constraints
	1 Introduction
	2 Algorithms
	3 Runtime Analysis of 3D Sliding Window Algorithm
	4 Experiments
	References

	Runtime Analysis of a Multi-valued Compact Genetic Algorithm on Generalized OneMax
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Framework
	5 Genetic Drift for the r-Valued cGA
	6 Runtime Analysis
	7 Experiments
	8 Conclusion
	References

	Faster Optimization Through Genetic Drift
	1 Introduction
	1.1 Our Results
	1.2 Discussion of the Setup and Related Work

	2 Setting
	2.1 The Algorithm: The cGA with Hypothetical Population Size K
	2.2 The Benchmark: Dynamic BinVal
	2.3 Terminology

	3 Dynamics of the Marginal Probabilities
	4 Lower Bound on the Runtime
	5 Upper Bound on the Runtime for the Conservative Regime
	6 Upper Bound on the Runtime for the Aggressive Regime
	7 Simulations
	References

	Greedy Versus Curious Parent Selection for Multi-objective Evolutionary Algorithms
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Linear Multi-objective Functions
	5 SEMO and GSEMO on OMC
	6 Novelty Search
	7 Counter-Example for Phenotype-Based Methods
	8 Anti-aligned LFC
	References

	How Population Diversity Influences the Efficiency of Crossover
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Unbiased Offspring Generation Mechanisms

	3 Analysis of the (+ 1) GA on LeadingOnes for Different Population Regimes
	3.1 The Vanilla (+ 1) GA Is Not Faster Than the Vanilla (1 + 1) EA for O(n/log2 n).
	3.2 Breaking Ties Towards Diversity Speeds up the (2 + 1) GA

	4 Conclusion
	References

	Overcoming Binary Adversarial Optimisation with Competitive Coevolution
	1 Introduction
	2 Preliminaries
	2.1 Diagonal Games
	2.2 Drift Analysis Toolbox

	3 Traditional Evolutionary Algorithm Cannot Solve Diagonal Efficiently
	4 Competitive Coevolution Solves Diagonal Efficiently
	4.1 Characteristic Lemma for Alternating Update
	4.2 Phase 1
	4.3 Phase 2

	5 Experiments
	5.1 Settings
	5.2 Results

	6 Discussion and Conclusion
	References

	Evolving Populations of Solved Subgraphs with Crossover and Constraint Repair
	1 Introduction
	1.1 Background

	2 Preliminaries
	2.1 Generalized Allelic Crossover

	3 A Population-Based Subgraph GA for k-Vertex Cover
	3.1 Variation Operators and Controlling Population Growth
	3.2 Constraint Repair Operator

	4 Runtime Analysis
	5 Experiments
	6 Conclusion
	References

	Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Maximum Matching Problem and Diversity Optimization
	2.2 Diversity Measure
	2.3 Initial Population
	2.4 Algorithms
	2.5 Drift Theorems

	3 Runtime Analysis for Complete Bipartite Graphs
	4 Runtime Analysis for Paths
	5 Empirical Analysis
	5.1 Experimental Setup
	5.2 Methodology
	5.3 Complete Bipartite Graphs
	5.4 Paths

	6 Conclusions
	References

	Archive-Based Single-Objective Evolutionary Algorithms for Submodular Optimization
	1 Introduction
	2 Preliminaries
	3 (1+)-EA Without Archive
	3.1 Algorithm
	3.2 Uniform Constraint
	3.3 General Constraint

	4 (1+1)-EA with Archive
	4.1 Algorithm
	4.2 Analysis

	5 Experimental Investigations
	6 Conclusions
	References

	Local Optima in Diversity Optimization: Non-trivial Offspring Population is Essential
	1 Introduction
	2 Preliminaries
	2.1 Diversity Optimization
	2.2 Vertex Cover
	2.3 The Considered EAs

	3 Locally Optimal Population
	3.1 The Simple Example
	3.2 Extending the Example to Arbitrary Population and Problem Sizes

	4 Large Offspring Populations Are Effective
	5 Conclusion
	References

	Proven Runtime Guarantees for How the MOEA/D: Computes the Pareto Front from the Subproblem Solutions
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The MOEA/D
	5 Runtime Analysis
	5.1 First Phase
	5.2 Second Phase

	6 Conclusion
	References

	Ranking Diversity Benefits Coevolutionary Algorithms on an Intransitive Game
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Level-Based Theorem

	4 What is a Good Evaluation Environment?
	5 An Example Archive with Efficient Runtime on Bilinear
	6 Enforcing Diversity Without an Archive
	6.1 Balancing of Populations Across n and n
	6.2 Runtime Analysis Sketch

	7 Conclusions
	References

	On the Equivalence Between Stochastic Tournament and Power-Law Ranking Selection and How to Implement Them Efficiently
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Proving Asymptotic Equivalence
	4 Differences in Implementation
	4.1 Power-Law Ranking
	4.2 Tournament Selection

	5 Empirical Results
	5.1 Experimental Setup
	5.2 Results on Low Dimension Problems
	5.3 Results on High Dimension Problems

	6 Conclusions
	References

	Level-Based Theorems for Runtime Analysis of Multi-objective Evolutionary Algorithms
	1 Introduction
	2 Preliminaries
	2.1 The Fitness-Level Method
	2.2 Multi-objective Benchmark Functions
	2.3 Multi-objective Evolutionary Algorithms

	3 General Level-Based Theorems for Elitist Algorithms
	4 Applying Level-Based Theorems to Multi-objective EAs
	5 Conclusions
	References

	Runtime Analysis for State-of-the-Art Multi-objective Evolutionary Algorithms on the Subset Selection Problem
	1 Introduction
	2 Preliminaries
	2.1 Characteristics
	2.2 Pareto Optimization

	3 NSGA-II Efficiently Approximates
	3.1 NSGA-II
	3.2 Performance Analysis

	4 SMS-EMOA Also Efficiently Approximates
	4.1 SMS-EMOA
	4.2 SMS-EMOA with Stochastic Population Update

	5 Experiments
	5.1 Sparse Regression as an Application
	5.2 Experimental Results and Analyses

	6 Conclusion
	References

	When Does the Time-Linkage Property Help Optimization by Evolutionary Algorithms?
	1 Introduction
	2 Preliminaries
	3 Different But Easy-to-Reach Optimal Function Value
	3.1 Cliff dTL
	3.2 Runtime Analysis of the (1 + 1) EA

	4 Same Optimal Function Value but Larger Optimal Solution Set
	4.1 Cliff'dTL
	4.2 Runtime Analysis of the (1 + 1) EA

	5 Same Optimal Function Value and Optimal Solution Set
	5.1 Jump kTL
	5.2 Runtime Analysis of the (1 + 1) EA

	6 Experiments
	7 Conclusion
	References

	A First Running Time Analysis of the Strength Pareto Evolutionary Algorithm 2 (SPEA2)
	1 Introduction
	2 Preliminaries
	2.1 Multi-objective Optimization
	2.2 SPEA2
	2.3 Benchmark Problems

	3 General Theorems for Running Time Analysis of MOEAs
	3.1 On the mOneMinMax Problem
	3.2 On the mLeadingOnesTrailingZeroes Problem
	3.3 On the mOneJumpZeroJump Problem

	4 Application to Running Time Analysis of SPEA2
	4.1 Large Archive Preserves Non-Dominated Solutions
	4.2 Running Time of SPEA2 on Benchmark Problems

	5 Application to Other Algorithms
	6 Conclusion and Discussion
	References

	(Evolutionary) Machine Learning and Neuroevolution
	Population-Based Algorithms Built on Weighted Automata
	1 Introduction
	2 Background
	2.1 Compressing Unweighted Populations

	3 Weighted Population Compression
	4 A WFSM-Based Artificial Immune System
	4.1 Positive Selection Using WFSMs
	4.2 Probabilistic Classification
	4.3 Language Anomaly Detection

	5 A WFSM-Based Evolutionary Algorithm
	5.1 A WFSM-Based Algorithm for Boolean Satisfiability Problems
	5.2 The WFSM-Based Algorithm Escapes Local Optima

	6 Discussion and Future Work
	References

	Automatic Brain Tumor Segmentation Using Convolutional Neural Networks: U-Net Framework with PSO-Tuned Hyperparameters
	1 Introduction
	2 Materials and Methods
	2.1 Dataset and Preprocessing
	2.2 Modified CNN-U-Net Framework for Medical Image Segmentation
	2.3 Metaheuristics Algorithms—PSO Approach for Tuning Hyperparameters
	2.4 Evaluation Measures

	3 Results and Discussions
	3.1 PSO-Based CNN-U-Net Hyperparameters Optimization
	3.2 Performance of the Proposed Method
	3.3 Segmentation Results
	3.4 Comparison of the Proposed Method with Other Approaches

	4 Conclusion
	References

	Learning Discretized Bayesian Networks with GOMEA
	1 Introduction
	2 Discrete Bayesian Networks
	2.1 BN-GOMEA

	3 Discretization of Continuous Random Variables in Bayesian Networks
	3.1 DBN-GOMEA
	3.2 LDBN: The Current State-of-the-Art
	3.3 Post-structure Learning Discretization

	4 Multi-objective Learning
	4.1 MO-DBN-GOMEA

	5 Experiments and Results
	5.1 Network Generation
	5.2 Metrics
	5.3 Single-Objective Scalability
	5.4 Post-Structure Learning Discretization
	5.5 Multi-objective Experiment

	6 Discussion
	7 Conclusion
	References

	Pareto-Informed Multi-objective Neural Architecture Search
	1 Introduction
	2 Preliminaries
	2.1 Multi-objective NAS
	2.2 Pareto Set Learning (PSL)

	3 Method
	3.1 Search Space
	3.2 Pareto-Informed Adaptive Search

	4 Experiments
	4.1 OFA-Based Search Space
	4.2 AutoFormer-Based Search Space
	4.3 Performance Comparisons of PiMO-NAS versus Existing SOTA Methods/Models

	5 Conclusion
	References

	A Variable-Length Fuzzy Set Representation for Learning Fuzzy-Classifier Systems
	1 Introduction
	2 Related Work
	3 Fuzzy-UCS
	3.1 Knowledge Representation
	3.2 Training Phase
	3.3 Test Phase

	4 The Proposed Algorithm
	4.1 Knowledge Representation
	4.2 Membership Degree Calculation
	4.3 Covering Operator
	4.4 Rule Discovery

	5 Experiments
	5.1 Experiment 1: Fixed Vs. Variable-Length Fuzzy Sets
	5.2 Experiment 2: On the Effects of ninit for Fuzzy-UCSv
	5.3 Experiment 3: Comparison of Fuzzy-UCSv to Several Machine Learning Techniques

	6 Concluding Remarks
	References

	Evolvable Hardware and Evolutionary Robotics
	Exploring Proprioceptive Feedback in the Evolution of Modular Robots
	1 Introduction
	2 Methodology
	2.1 Robot Framework and Morphology
	2.2 Control Architecture
	2.3 Evolutionary Algorithm
	2.4 Experimental Setup

	3 Results and Discussion
	3.1 How Filtering Affects Robot Performance
	3.2 Impact of Oscillators on Proprioceptive Signal Filtering
	3.3 Sensory Signal Filtering Analysis

	4 Conclusion
	References

	Author Index

