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Preface

Two years ago, in 2022, the international conference on Parallel Problem Solving from
Nature (PPSN) returned to where it all started in 1990, namely to Dortmund, Germany.
It was great to see that the community had overcome the pandemic and gathered with
more than 100 participants attending in person.

On the last day of the conference, during the closing ceremony, we got the chance
to propose the University of Applied Sciences Upper Austria (FH OÖ) as organizers
and the Softwarepark Hagenberg as the location for PPSN 2024. We were convinced
that FH OÖ as the (with respect to research and development) strongest university of
applied sciences in Austria could be the ideal choice as host for PPSN 2024, especially
as we presented the research group Heuristic and Evolutionary Algorithms Laboratory
(HEAL), one of the most active groups in evolutionary algorithms in Austria, as the core
group of the organization team. After some weeks, we were delighted to hear from the
steering committee that we were chosen as organizers and Hagenberg as the location for
this year’s edition of PPSN.

We are pleased that a record number of researchers followed our call by submitting
their papers for review. We received 294 submissions from which the program chairs
selected the top 101 after an extensive peer-review process, which corresponds to an
acceptance rate of 34.35%. Not all decisions were easy to make, but we benefited greatly
from the careful reviews provided by the international program committee. With an
average of 2.86 reviews per paper, most of the submissions received three reviews,
while some received two. This led to a total of 840 reviews. Thanks to these reviews, we
were able to decide about acceptance on a solid basis.

The papers included in these proceedings were assigned to 12 clusters, entitled
Combinatorial Optimization, Genetic Programming, Fitness Landscape Modeling and
Analysis, Benchmarking and Performance Measures, Automated Algorithm Selection
and Configuration, Numerical Optimization, Bayesian- and Surrogate-Assisted Opti-
mization, Theoretical Aspects of Nature-Inspired Optimization, (Evolutionary) Machine
Learning and Neuroevolution, Evolvable Hardware and Evolutionary Robotics, Multi-
objective Optimization and Real-World Applications which can hardly reflect, the true
variety of research topics presented in the proceedings at hand. Following the tradition
and spirit of PPSN, all papers were presented as posters. The eight poster sessions con-
sisting of 12 or 13 papers each were compiled orthogonally to the clusters mentioned
above to cover the range of topics as widely as possible. As a consequence, participants
with different interests would find some relevant papers in every session and poster
presenters were able to discuss related work in sessions different from their own.

As usual, the conference started with two days of workshops and tutorials (Saturday
andSunday), followed by three days of poster sessions and invited plenary talks (Monday
to Wednesday). We are delighted that three highly renowned researchers from up-and-
coming, related research fields accepted our invitation to give a keynote speech, which
was be the first item on the program over the three days of the conference.
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Two of our keynote speakers are young professors at excellent academic institutions,
namely Oliver Schütze (Cinvestav-IPN, Mexico City) and Richard Küng (JKU Linz,
Austria); the third keynoter is a researcher at Google Deepmind, namely Bernardino
Romera-Paredes, with an equally impressive scientific record.

Needless to say, the success of such a conference depends on authors, reviewers, and
organizers. We are grateful to all authors for submitting their best and latest work, to
all the reviewers for the generous way they spent their time and provided their valuable
expertise in preparing these reviews, to the workshop organizers and tutorial presenters
for their contributions to enhancing the value of the conference, and to the local organizers
who helped to make PPSN XVIII happen.

Last but not least, wewould like to thank Softwarepark Hagenberg and theUniversity
of Applied Sciences Upper Austria for the donations.Weare grateful for the long-standing
support of Springer to this conference series. Finally, we thank the RISC Software and
Software Competence Center Hagenberg for providing financial backing.
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Abstract. On the multi-objective optimization problems (MOP), the
dominance-resistant solution (DRS) refers to the solution that has infe-
rior objective values but is difficult to dominate by other solutions. Prior
studies have affirmed that DRSs are prevalent across MOPs and difficult
to eliminate, leading to substantial performance deterioration in many
multi-objective evolutionary algorithms (MOEAs). In this paper, we pro-
pose a metric inspired by proper Pareto optimality and then develop a
selection strategy based on this metric (SPP) to mitigate the negative
impact of DRSs. Furthermore, we implement SPP on multi-objective
evolutionary algorithm based on decomposition (MOEA/D) and call the
new algorithm MOEA/D-SPP. Specifically, the algorithm employs the
penalty-based boundary intersection method to scalarize the MOP. Sub-
sequently, SPP is integrated into the environmental selection. The strat-
egy measures and sorts a set of solutions such that DRSs can be identified
and removed. Finally, weight vectors are adjusted, thereby enhancing
the population diversity. In experimental studies, MOEA/D-SPP out-
performs five state-of-the-art MOEAs on DRS-MOPs, demonstrating the
promising application of SPP.

Keywords: Multi-objective optimization · Dominance-resistant
solution · Evolutionary algorithm · Proper Pareto optimality

1 Introduction

Numerous real-world challenges, such as logistics dispatch and printed-circuit
board assembly, necessitate the simultaneous consideration of multiple conflict-
ing objectives [11,27,43]. These optimization problems are called multi-objective
optimization problems (MOPs), which have the general form as follows:

min. f(x) = (f1(x), . . . , fm(x))ᵀ,

s.t. x ∈ Ω,
(1)

where x = (x1, . . . , xn)ᵀ represents the decision vector, also known as the solu-
tion, and Ω ⊂ R

n signifies the feasible region. The mapping f : R
n → R

m
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encompasses m objective functions, and f(x) is the objective vector correspond-
ing to x. Some fundamental concepts used in this paper are established below.

Definition 1. Given two vectors u,v ∈ R
m, u is said to dominate v, iff ui ≤

vi for every i ∈ {1, . . . , m} and uj < vj for at least one j ∈ {1, . . . , m}.
Definition 2. A decision vector x∗ and the corresponding objective vector f(x∗)
are Pareto-optimal, if there is no x ∈ Ω such that f(x) dominates f(x∗).

Definition 3. The set of all Pareto-optimal solutions is called the Pareto set
(denoted as PS), and its image in the objective space is called the Pareto front
(denoted as PF).

Definition 4 (From [13]). A decision vector x ∈ Ω is properly Pareto-
optimal if it is Pareto-optimal and if there is some real number M > 0 such
that for each fi and each x′ satisfying fi(x′) < fi(x), there exists at least one fj
such that fj(x) < fj(x′) and

fi(x) − fi(x′)
fj(x′) − fj(x)

≤ M. (2)

Many investigations recognize the prevalence of dominance-resistant solu-
tions (DRSs) within the feasible region of MOPs, exerting a considerable impact
on the performance of various multi-objective evolutionary algorithms (MOEAs)
[2,42,44]. The corresponding test problems denoted as DRS-MOPs are designed,
such as mDTLZ [35] and MOP-CH [34]. A DRS has satisfactory values in at least
one objective but exhibits significant deficiencies in others [18]. In other words,
DRSs are close to the boundaries of the feasible objective region and remain
distant from the PF. They are apart from Pareto-optimal, while few solutions
can dominate them. Therefore, DRSs often persist as non-dominated solutions
within the evolutionary population. For example, in Fig. 1, point B is located
on the boundary parallel to the f3 axis. Notably, B is markedly inferior to the
objective vector on the PF, yet it is dominated solely by the objective vectors on
line AB (i.e., red line in Fig. 1). B is recognized as dominance-resistant, due to
the low possibility of discovering objective vector dominating B via evolutionary
approaches. In addition, the boundary where B is situated is specifically named
the hardly dominated boundary (HDB) [35]. This is because the objective vector
on the HDB can improve only one objective value to obtain a better one.

Coping strategies have been developed in recent years according to the
categories of MOEAs (i.e., dominance-based MOEAs [8], decomposition-based
MOEAs [45], and indicator-based MOEAs [12]). Dominance-based MOEAs
commonly incorporate relaxed forms of Pareto dominance [7,10,18,29,44].
Decomposition-based MOEAs utilize effective decomposition methods [14,15,
30]. Indicator-based ones employ the environmental selection based on the hyper-
volume contribution [1,12,16]. However, the existing MOEAs encounter chal-
lenges in effectively addressing DRS-MOPs concerning convergence and diver-
sity. In this paper, we propose a metric based on proper Pareto optimality. To
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Fig. 1. Visual representations of a DRS-MOP from three distinct perspectives.

test the potential of this metric, we adopt multi-objective evolutionary algo-
rithm based on decomposition (MOEA/D) [45] as the backbone. The proposed
MOEA/D variant called MOEA/D-SPP achieves competitive performance in the
experiments. The contributions of this paper are encapsulated in the following:

1. The PPO metric, inspired by proper Pareto optimality, is introduced. The
PPO metric of DRS is generally large. As a result, it emerges as a valuable
tool for discerning DRSs effectively.

2. SPP, a selection strategy based on the PPO metric for decomposition-based
MOEAs, is designed. It assesses and ranks a solution subset of the population,
enabling the identification and exclusion of DRSs.

3. MOEA/D-SPP, an MOEA/D variant incorporating the newly devised selec-
tion strategy, is proposed. Additionally, a mechanism for weight vector adjust-
ment is integrated to augment the population diversity.

The remainder of this paper is organized as follows. Section 2 introduces the
motivation of this paper. Section 3 elaborates on the details of MOEA/D-SPP.
Section 4 presents the numerical experiments to demonstrate the performance of
MOEA/D-SPP. Finally, Sect. 5 concludes this paper and discusses future works.

2 Motivation

2.1 Metric Based on Proper Pareto Optimality

A solution x is properly Pareto-optimal when the maximum decrement among
some objectives is satisfactory only at the cost of a finite increment in the others.
The Definition 4 is equivalent to a properly Pareto-optimal decision vector x ∈ Ω
satisfying that:

h(x,x′) =
max

1≤i≤m
fi(x) − fi(x′)

max
1≤j≤m

fj(x′) − fj(x)
≤ M < ∞, (3)

where x′ ∈ Ω and max1≤j≤m fj(x′) − fj(x) > 0. We define a metric built upon
h(x,x′). We refer to this metric as the PPO metric, which is formulated by:
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MS(x) = max
x′∈S

h(x,x′) = max
x′∈S

⎛
⎝

max
1≤i≤m

fi(x) − fi(x′)

max
1≤j≤m

fj(x′) − fj(x)

⎞
⎠ , (4)

where S is a solution set and f(x) �= f(x′).

Fig. 2. Two scenarios of the solution set S on a DRS-MOP.

Firstly, we examine how the PPO metric works on the solution set with DRSs.
Recall that some objective values of the DRS are very poor while others are good.
DRSs have a quite large value of the PPO metric. For example, Fig. 2(a) shows an
example to illustrate how the PPO metric works on an MOP having DRSs. The
solution set S is composed of three individuals A(0.25, 0.25, 1.75), B(0.25, 0.35,
1.05), and C(0.3, 0.25, 0.45), where A and B are DRSs. The PPO metric values
are MS(A) = h(A, C) = 26, MS(B) = h(B, C) = 12, and MS(C) = h(C,
B) ≈ 0.083, respectively. We can find that the PPO metric of DRS is larger
because DRSs are extremely inferior to other solutions in some objectives.

Secondly, we investigate the solution set without DRSs. Figure 2(b) shows an
example of the solution set without DRSs. The solutions are all on the PF. The
solution set S is composed of three individuals A(0.45, 0.25, 0.35), B(0.15, 0.4,
0.45), and C(0.3, 0.25, 0.45). The PPO metric values are MS(A) = h(A, B) = 2,
MS(B) = h(B, C) = 1, and MS(C) = h(C, B) = 1, respectively. We can find
that these values are generally small. This is because the largest difference in any
objective is bound by the range of the PF. We also observe that these objective
vectors have different PPO metric values. The calculation of the metric is based
on the difference in the objectives, and thus different distributions of solutions
can lead to distinct metric values. In other words, the distances between solutions
and the density of solutions can affect the PPO metric values.

In short, The PPO metric is a potential criterion for identifying DRSs. When
MS(x) is quite large, x strikes a poor trade-off between some objectives. We
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can remove DRSs by removing the solutions that have large PPO metric val-
ues. Moreover, an additional scheme for the PPO metric is required to avoid
accidentally eliminating a good solution.

2.2 MOEA/D

MOEA/D uses weight vectors and scalarization methods to convert an MOP into
many single-objective optimization subproblems and solves these subproblems
collaboratively. The effectiveness of MOEA/D is demonstrated in addressing
various MOPs [36–38]. The performance of MOEA/D highly depends on the
scalarization methods, and different scenarios may require different scalarization
methods [19,46]. However, only some existing scalarization methods can cope
with DRSs. For example, the penalty boundary intersection (PBI) method [45]
fails as found in [34]. We suggest employing the PPO metric, which enables the
application of any scalarization method in scenarios involving DRSs. S in the
PPO metric is specified as Si containing several closest solutions to the i-th
subproblem and the offspring oi. Thereafter, the DRSs with respect to the i-th
subproblem can be distinguished.

In the following section, we propose MOEA/D-SPP, which selects solutions
based on the PPO metric. The PBI method is used in MOEA/D-SPP. Let w
be a weight vector and z∗ be the ideal point, and the mathematical expression
defining the PBI-based subproblem is as follows:

min. gpbi(x|w, z∗) = d1 + θd2, (5)

where

d1 =
|(f(x) − z∗)ᵀ w|

‖w‖2 ,

d2 =
∥∥∥∥f(x) − z∗ − d1

w
‖w‖2

∥∥∥∥
2

.

(6)

θ is a penalty parameter and we adopt θ = 10 in this paper. Additionally,
DRS-MOPs are often characterized by irregular PFs, while the performance of
MOEA/D is also influenced by the shape of the PF [20,35,40,41]. Therefore,
when applying MOEA/D to address DRS-MOPs, adjusting the weight vectors
is also important to enhance its performance.

3 Algorithm

3.1 Framework

The framework of MOEA/D-SPP is outlined in Algorithm 1. The two key algo-
rithmic components, namely IdentifyDRS and AdjustWeights, are detailed
in Algorithm 2 and Algorithm 3, respectively. IdentifyDRS is the selection
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strategy based on the PPO metric. AdjustWeights can adjust weight vectors
properly. We adopt a multistage procedure [9]: the first stage is the same as
MOEA/D-PBI; IdentifyDRS is introduced in the second stage; IdentifyDRS
still executes and AdjustWeights improves the diversity finally.

Algorithm 1. MOEA/D-SPP
Input: N (population size); Gmax (maximum number of generations); T (neighbor-

hood size); ϑstage, and a (control parameters).
Output: P (the final population).
1: Generate a random population P = {x1, . . . ,xN};
2: Generate the set of weight vectors W = {w1, . . . ,wN}, and assign T neighboring

subproblems for each subproblem (denote the neighborhood of the i-th subproblem
as Bi);

3: Set isUsed ← false;
4: for gen = 1 to Gmax do
5: for each subproblem (i = 1, . . . , N) do
6: Select solutions from Bi to generate the offspring oi;
7: if gen > ϑstage then
8: (P, flag) ← IdentifyDRS (P, oi, T , a);
9: if flag = false then

10: Continue;
11: end if
12: end if
13: Update the Bi with oi;
14: end for
15: if gen > 2 · ϑstage and isUsed = false then
16: W ← AdjustWeights (P);
17: isUsed ← true;
18: end if
19: end for

The algorithm first initiates the population P and the set of weight vectors W
and determines neighbors for each weight vector (lines 1–2). The neighborhood
of the i-th subproblem is denoted as Bi. Subsequently, isUsed is introduced,
which represents the evolutionary stage. In MOEA/D-SPP, different goals are
achieved at different stages. It is set to 0 initially (line 3). After the initialization,
the algorithm iterates over each subproblem. For the subproblem with index i in
each generation (line 5), the algorithm first selects solutions from Bi to generate
the offspring oi (line 6). Subsequently, if the generation number gen surpasses
the control parameter ϑstage, the IdentifyDRS component is executed. This
component employs the PPO metric to identify DRSs (lines 7–8). If the offspring
oi is considered to be a DRS (i.e., flag = false), the algorithm skips updating
Bi with oi and proceeds to the next subproblem (lines 9–11). Otherwise, oi

is used to update Bi according to the PBI method (line 13). If gen ≤ ϑstage,
the IdentifyDRS component remains inactive and the subproblem is updated
regularly. Moreover, if gen surpasses 2 · ϑstage and isUsed = false (line 15),
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the AdjustWeights component is invoked only once. The weight vectors are
adjusted to the appropriate distribution according to the current population,
thereby enhancing the population diversity in subsequent iterations (line 16). It
indicates AdjustWeights is used and let isUsed be true (line 17). Finally, the
population P is returned as the output of the algorithm.

3.2 Selection Strategy Based on PPO Metric (SPP)

The IdentifyDRS component, as illustrated in Algorithm 2, plays a crucial role
within the MOEA/D-SPP framework. It employs the PPO metric to assess the
acceptance of new solutions and the removal of old ones, which can effectively
distinguish the DRSs.

Algorithm 2. IdentifyDRS (P,oi, T, a)
Input: P (the population); oi (the offspring); T (the neighborhood size) and a (control

parameter).
Output: P (the updated population); flag (the symbol indicating whether to accept

the offspring).
1: Si ← {T solutions closest to wi, oi};
2: Compute the PPO metric for each solution in Pi according to Eq. (4);
3: xworst ← argmax

x∈Si

{MSi(x)};

4: if oi is xworst or MSi(oi) ≥ a then
5: flag ← false;
6: return;
7: else
8: flag ← true;
9: end if

10: if MSi(xworst) ≥ N1/(m−1) then
11: repeat
12: x′ ← Randomly select from Si;
13: until MSi(x

′) ≤ a or x′ = arg min
x∈Si

{MSi(x)}
14: Replace the solution in P corresponding to xworst with x′;
15: end if

The algorithmic component initiates by constructing a set Si comprising the
T solutions closest to the weight vector wi and the offspring oi (line 1). For each
solution in Si, the PPO metric is computed according to Eq. (4) (line 2). The
solution with the worst PPO metric value, denoted as xworst, is identified (line
3). Thereafter, the algorithm checks whether the current offspring oi is xworst or
if its PPO metric value exceeds the predefined value a (line 4). If either condition
is met, the offspring is deemed to have poor quality. Then the offspring should
not be accepted and the algorithm returns flag of false and the unchanged P
(lines 5–6). Otherwise, the offspring is considered suitable to be accepted and
let flag be true (line 8).
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As mentioned in Sect. 2.1, the PPO metric values of the solutions on the PF
are related to the population density. The density of uniform sampling points
suffers from the curse of dimensionality and the density is proportional to q1/p,
where p is the space dimension and q is the sample size [3,17]. We adopt the
threshold of N1/(m−1) considering that the PF is an (m − 1) dimensional mani-
fold. Specifically, when the PPO metric of xworst exceeds N1/(m−1) (line 10), the
algorithm substitutes the solution in P that corresponds to xworst by randomly
selecting a suitable solution from Si (lines 11–14).

3.3 Adjustment of Weight Vectors

The AdjustWeights component, shown in Algorithm 3, aims to improve the
diversity of the population. It generates a set of new weight vectors based on the
distribution of solutions in the current population.

Algorithm 3. AdjustWeights (P)
Input: P (the population).
Output: W (the set of weight vectors).
1: p ← Estimate a parameter via P for the PF shape [24];
2: R ← Generate a set of uniformly distributed weight vectors;
3: wi ← 1 − w

1/p
i for i = 1, . . . , m and every w ∈ R;

4: W ← ∅;
5: for i = 1 to m do
6: wtmp ← arg min

w∈R
wi;

7: W ← W ∪ wtmp;
8: R ← R \ wtmp;
9: end for

10: while |W| < N do

11: wtmp ← argmax
w∈R

{
min
v∈W

||w − v||2
}

;

12: W ← W ∪ wtmp;
13: R ← R \ wtmp;
14: end while

To estimate the shape of the PF, the component is inspired by [24] to estimate
the PF shape by finding the most consistent contour curve of the modified Lp-
norm distance (line 1). This estimation works as follows:

1. Firstly, compute the modified Lp-norm distances for objective vectors of P
using candidate values of p (p > 0). The set of distances is denoted as Gp=
{g(x|p) | x ∈ P} where g(x|p) = (

∑m
i=1(1 − fi(x))p)

1/p.
2. Secondly, select the p value with smallest standard deviation of Gp.

In other words, the estimation determines a value of p.
After that, a sufficiently large set of uniformly distributed weight vectors R is

generated by using the two-layer weight vectors generation method [6,23] (line 2).
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The endpoints of weight vectors in R are located on the unit simplex. With p
and R, the desired weight vectors can be obtained. Each w ∈ R is transformed
based on the value of p (line 3). The transformation method is consistent with
the aforementioned estimation method. Then, a subset W is selected from R.
The component finds m extreme weight vectors as initialized elements in W
(lines 5–8). In line 6, we can find that the extreme weight vectors represent
those having the lowest value on at least one objective. The remaining (N − m)
weight vectors for W are chosen from R one by one (lines 10–14). Sparse weight
vectors are prioritized for selection. The sparsity of a weight vector is defined
in line 11. In other words, the sparsity is the minimum Euclidean distance from
the weight vector to the one within W.

4 Numerical Experiments

4.1 Benchmark Problems

In this section, we assess the proposed MOEA/D-SPP on mDTLZ1-mDTLZ4
[35]. These test problems exhibit two common features: 1) irregularity in the PF
shape (e.g., the PF of mDTLZ1 is an inverted triangle); and 2) complexity in the
feasible objective region (e.g., all problems exhibit HDBs). Note that an MOP
featuring more than 3 objectives is viewed as a many-objective optimization
problem. We consider 3 and 5 as two settings of the objective dimension. The
number of decision variables is set to 10 for 3-objective problems and 12 for
5-objective problems in each instance.

Each algorithm undergoes 30 independent runs on each test instance. The
population size is set to 105 for 3-objective instances and 210 for the 5-objective
instances. The maximum number of function evaluations is set to 105,000 (i.e.,
105×1000) for the 3-objective case and 252,000 (i.e., 210×1200) for the 5-
objective case. All experiments are conducted on the PlatEMO platform [32].

4.2 Evaluation Metrics

The inverted generational distance (IGD) metric [4] and the hypervolume (HV)
metric [47] are employed for assessing the performance of the obtained solu-
tion sets. IGD calculates the average distances from each objective vector to its
nearest reference point of the PF. A smaller IGD value indicates a better per-
formance of the algorithm. HV describes the size of the region covered by the
obtained objective vectors and the reference point. A larger HV value represents
the better performance of the algorithm.

The mean metric values are employed to show the statistical performance
of each algorithm on each test problem [22,26,39]. Statistical analysis of the
differences between mean metric values is conducted using Wilcoxon’s rank-sum
test at a significance level of 0.05 [21]. The symbols “+”, “−”, and “=” denote
that the compared algorithm performs statistically better than, worse than, and
equal to MOEA/D-SPP, respectively.
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4.3 Compared Algorithms

We conduct a comparative analysis of our proposed algorithm against five rep-
resentative MOEAs. The parameters of algorithms are configed according to the
corresponding references. NSGA-II [8] is a classical dominance-based MOEA
utilizing the Pareto dominance criterion and employing crowding distance for
diversity evaluation. MOEA/D-Gen [15] utilizes generalized decomposition, with
parameters δ and ρ set to 0.01. mNSGA-II [31] addresses DRSs by modify-
ing objective values, with control parameter α set to 0.01. PMEA [28] incor-
porates preprocessing and penalty mechanisms, with parameter r set to 1.5.
MOEA/D-OMDEA [33] integrates the OM-dominance criterion, with parame-
ters α1 = 0.25, α2 = 0.1, τ = 0.7, and K = 30 for 3-objective cases and K = 50
for 5-objective cases.

In our compared algorithms, the control parameters in MOEA/D-SPP are
established as a = 2 and ϑstage = 300. In general, the neighborhood size T for
MOEA/D variants is set to 
N/10�. All the algorithms except for MOEA/D-
OMDEA employ the simulated binary crossover and polynomial mutation [5]
to generate new solutions. The distribution indexes are set to 20. Besides, the
crossover and mutation probabilities are configured at 1 and 1/ n respectively.
MOEA/D-OMDEA follows the operators outlined in [25].

4.4 Comparison Results

The mean IGD and HV metric values achieved by algorithms on all instances
are presented in Tables 1 and 2 respectively. The best result for each problem is
highlighted in bold. the standard deviations of means are in parentheses.

In Table 1, MOEA/D-SPP exhibits the best mean IGD metric values on
3-objective mDTLZ1, mDTLZ2, and mDTLZ3. Furthermore, according to
Wilcoxon’s rank-sum test, MOEA/D-SPP outperforms NSGA-II, MOEA/D-
Gen, mNSGA-II, PMEA, and MOEA/D-OMDEA on 7, 5, 6, 6, and 6 out of
8 instances, respectively. In contrast, it is significantly outperformed by NSGA-
II, MOEA/D-Gen, and MOEA/D-OMDEA on 1, 2, and 1 out of 8 problems. In
summary, MOEA/D-SPP demonstrates a substantial improvement in terms of
the IGD metric compared to these competitors.

In Table 2, the best HV result of each instance is achieved by the follow-
ing algorithms: MOEA/D-SPP on mDTLZ1-mDTLZ3 and PMEA on mDTLZ4.
According to Wilcoxon’s rank-sum test, MOEA/D-SPP outperforms NSGA-II,
MOEA/D-Gen, mNSGA-II, PMEA, and MOEA/D-OMDEA on 8, 7, 7, 6, and 7
out of 8 instances, respectively. It is only outperformed by mNSGA-II, PMEA,
and MOEA/D-OMDEA on 1, 2, and 1 out of 8 instances. Overall, MOEA/D-
SPP also demonstrates advantages over these peer algorithms in terms of the
HV metric.

The overall result of the IGD metric conforms to that of the HV metric.
The proposed MOEA/D-SPP exhibits competitive performance with respect to
both IGD and HV metrics on 3-objective and 5-objective mDTLZ1-mDTLZ4.
Furthermore, Friedman tests are conducted to compare MOEA/D-SPP with five
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Table 1. Means and standard deviations of IGD metric values obtained by algorithms.

IGD m NSGA-II MOEA/D-Gen mNSGA-II PMEA MOEA/D-OMDEA MOEA/D-SPP

mDTLZ1 3 1.0787e+0 - 2.9330e-2 - 2.6286e-2 - 3.1430e-2 - 1.7657e-1 - 2.1800e-2
(1.35e+0) (4.38e-5) (1.66e-3) (1.37e-3) (1.04e-1) (1.06e-2)

mDTLZ2 3 1.1600e-1 - 6.9634e-2 - 6.3331e-2 - 1.0411e-1 - 7.6944e-2 - 5.4112e-2
(8.91e-3) (2.69e-4) (2.01e-3) (2.18e-2) (9.40e-3) (9.91e-4)

mDTLZ3 3 2.0386e+0 - 6.9580e-2 - 6.4027e-2 - 9.8289e-2 - 1.2934e-1 - 5.8790e-2
(2.67e+0) (3.35e-4) (4.02e-3) (1.47e-2) (5.10e-2) (4.06e-3)

mDTLZ4 3 1.3340e-1 - 1.1960e-1 - 8.0513e-2 = 7.9877e-2 = 7.7648e-2 = 1.1494e-1
(1.26e-2) (1.17e-1) (1.56e-2) (1.05e-2) (4.84e-3) (1.71e-1)

mDTLZ1 5 2.8688e+1 - 5.7983e-2 - 1.5148e-1 - 9.6846e-2 - 2.7975e-1 - 5.6686e-2
(1.63e+1) (2.61e-5) (1.91e-2) (6.68e-3) (8.98e-2) (3.45e-3)

mDTLZ2 5 2.4618e-1 - 1.4887e-1 + 2.1538e-1 - 2.8372e-1 - 1.8211e-1 + 1.9844e-1
(1.52e-2) (5.02e-4) (9.02e-3) (2.84e-2) (1.12e-2) (2.47e-2)

mDTLZ3 5 4.7116e+1 -1.4780e-1 + 3.9344e-1 - 3.1063e-1 - 4.4687e-1 - 2.1978e-1
(3.55e+1) (9.80e-4) (2.75e-2) (3.63e-2) (1.21e-1) (3.01e-2)

mDTLZ4 5 2.8455e-1 + 2.1408e-1 = 2.2922e-1 =2.1218e-1 = 3.3439e-1 - 3.0939e-1
(1.69e-2) (4.45e-2) (1.61e-2) (1.78e-2) (3.08e-2) (2.05e-1)

±/= 1/7/0 2/5/1 0/6/2 0/6/2 1/6/1 –

Table 2. Means and standard deviations of HV metric values obtained by algorithms.

HV m NSGA-II MOEA/D-Gen mNSGA-II PMEA MOEA/D-OMDEA MOEA/D-SPP

mDTLZ1 3 2.8699e-2 - 5.1641e-1 - 5.0487e-1 - 4.7351e-1 - 1.8425e-1 - 5.2067e-1
(2.79e-2) (4.89e-4) (5.16e-3) (7.56e-3) (1.46e-1) (3.01e-2)

mDTLZ2 3 8.6691e-1 - 1.0237e+0 - 1.0207e+0 - 1.0152e+0 - 1.0011e+0 - 1.0340e+0
(2.51e-2) (1.35e-4) (4.13e-3) (9.03e-3) (7.03e-3) (1.16e-3)

mDTLZ3 3 3.5195e-2 - 1.0234e+0 - 1.0227e+0 - 9.9438e-1 - 8.4447e-1 - 1.0314e+0
(4.30e-2) (5.67e-4) (6.07e-3) (1.06e-2) (1.26e-1) (4.75e-3)

mDTLZ4 3 7.9821e-1 - 8.7509e-1 - 9.5801e-1 +9.9996e-1 + 9.7326e-1 + 8.8277e-1
(3.41e-2) (1.38e-1) (5.06e-2) (4.33e-2) (7.34e-3) (1.83e-1)

mDTLZ1 5 2.6754e-5 - 6.6176e-2 - 1.2345e-2 - 2.4288e-2 - 1.7688e-3 - 7.7432e-2
(1.47e-4) (3.26e-4) (3.16e-3) (3.63e-3) (2.09e-3) (6.42e-3)

mDTLZ2 5 1.8242e-1 - 3.9667e-1 - 2.6287e-1 - 4.4651e-1 - 4.0032e-1 - 4.6319e-1
(2.20e-2) (1.50e-3) (1.41e-2) (4.40e-3) (6.41e-3) (2.30e-3)

mDTLZ3 5 0.0000e+0 - 4.0003e-1 - 3.3793e-2 - 2.8197e-1 - 8.9890e-2 - 4.6964e-1
(0.00e+0) (1.87e-3) (1.70e-2) (1.41e-2) (7.18e-2) (3.11e-3)

mDTLZ4 5 1.3682e-1 - 3.0907e-1 = 2.0975e-1 - 4.3240e-1 + 1.1367e-1 - 3.0900e-1
(1.55e-2) (6.46e-2) (2.81e-2) (4.44e-3) (3.24e-2) (1.30e-1)

±/= 0/8/0 0/7/1 1/7/0 2/6/0 1/7/0 –
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Table 3. Average ranks of representative algorithms and MOEA/D-SPP obtained by
Friedman test.

IGD HV

NSGA-II 5.625 5.875
MOEA/D-Gen 2.5 2.625
mNSGA-II 3 3.75
PMEA 3.5 2.75
MOEA/D-OMDEA 4.125 4.375
MOEA/D-SPP 2.25 1.625

Fig. 3. The approximate set with the median IGD metric value on 3-objective
mDTLZ1.

other algorithms. Table 3 reveals that MOEA/D-SPP achieves the best average
rankings across both metrics, signifying its superior performance over the other
algorithms. We visualize the approximate set of each algorithm on 3-objective
mDTLZ1 in Fig. 3. The approximate set with the median IGD metric value
among 30 runs is selected. These figures reveal that only MOEA/D-SPP discov-
ers a well-distributed solution set across the entire PF, effectively balancing the
convergence and diversity.
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4.5 Effectiveness Analysis

The proposed MOEA/D-SPP utilizes the PBI method and introduces two key
algorithmic components: IdentifyDRS and AdjustWeights. To investigate
the individual effectiveness of each component within the proposed algorithm,
several ablation experiments are conducted. MOEA/D-SPP is compared with
the following three variants:

– V-a: MOEA/D-SPP without the execution of any of the two components. In
such a case, its behavior is identical to that of MOEA/D-PBI.

– V-b: MOEA/D-SPP without AdjustWeights.
– V-c: MOEA/D-SPP without IdentifyDRS.

Experimental results are presented in Table 4 and Table 5. The results show
that MOEA/D-SPP outperforms other variants of MOEA/D-SPP in terms of
both IGD and HV metrics across most instances. According to Table 6, V-a
demonstrates competitive overall performance compared to V-b and V-c. On
the one hand, IdentifyDRS eliminates DRSs and fosters population conver-
gence. Thus it may make the population lack diversity in V-b. On the other hand,
AdjustWeights estimates the PF shape using the population with DRSs in V-c,
making the estimation highly inaccurate. Therefore, MOEA/D-SPP simultane-
ously employs the two strategies, striking a better balance between convergence
and diversity and having the best performance.

Table 4. Means and standard deviations of IGD metric values obtained by MOEA/D-
SPP and its variants.

IGD m V-a V-b V-c MOEA/D-SPP

mDTLZ1 3 4.5380e-2 - 3.0038e-2 - 9.3394e-2 - 2.1800e-2
(4.19e-3) (3.72e-4) (4.27e-2) (1.06e-2)

mDTLZ2 3 7.3003e-2 - 7.8833e-2 - 7.5943e-2 - 5.4112e-2
(7.08e-4) (4.13e-3) (1.41e-3) (9.91e-4)

mDTLZ3 3 7.3931e-2 - 1.0710e-1 - 9.7051e-2 - 5.8790e-2
(1.35e-3) (9.50e-3) (4.08e-2) (4.06e-3)

mDTLZ4 3 1.8893e-1 - 1.5781e-1 - 2.1567e-1 - 1.1494e-1
(1.72e-1) (1.56e-1) (2.21e-1) (1.71e-1)

mDTLZ1 5 1.7306e-1 - 8.4131e-2 - 1.0720e-1 - 5.6686e-2
(1.12e-3) (5.13e-3) (5.07e-3) (3.45e-3)

mDTLZ2 5 3.3092e-1 - 3.2329e-1 -1.5836e-1 + 1.9844e-1
(3.07e-3) (1.80e-2) (6.90e-3) (2.47e-2)

mDTLZ3 5 3.0808e-1 - 3.2506e-1 -2.1385e-1 = 2.1978e-1
(1.91e-3) (2.00e-2) (1.70e-2) (3.01e-2)

mDTLZ4 5 3.5856e-1 - 3.3311e-1 - 3.8760e-1 - 3.0939e-1
(1.85e-2) (1.38e-1) (1.96e-1) (2.05e-1)

±/= 0/8/0 0/8/0 1/6/1 –



16 K. Li et al.

Table 5. Means and standard deviations of HV metric values obtained by MOEA/D-
SPP and its variants.

HV m V-a V-b V-c MOEA/D-SPP

mDTLZ1 3 4.1774e-1 - 5.0819e-1 - 2.8524e-1 -5.2067e-1
(1.54e-2) (1.65e-3) (7.52e-2) (3.01e-2)

mDTLZ2 3 1.0157e+0 - 1.0089e+0 - 9.6192e-1 -1.0340e+0
(1.51e-3) (3.93e-3) (6.11e-3) (1.16e-3)

mDTLZ3 3 1.0143e+0 - 1.0001e+0 - 9.0952e-1 -1.0314e+0
(3.27e-3) (4.86e-3) (1.02e-1) (4.75e-3)

mDTLZ4 3 7.2188e-1 - 8.5774e-1 = 6.6940e-1 -8.8277e-1
(2.49e-1) (2.18e-1) (2.02e-1) (1.83e-1)

mDTLZ1 5 4.6000e-2 - 7.0221e-2 - 3.1131e-2 -7.7432e-2
(7.03e-5) (2.16e-3) (3.29e-3) (6.42e-3)

mDTLZ2 5 2.9611e-1 - 4.0922e-1 - 4.3055e-1 -4.6319e-1
(2.94e-3) (4.33e-3) (3.80e-3) (2.30e-3)

mDTLZ3 5 3.3234e-1 - 4.0958e-1 - 3.0990e-1 -4.6964e-1
(4.40e-3) (5.13e-3) (1.18e-2) (3.11e-3)

mDTLZ4 5 2.3319e-1 - 3.0144e-1 = 1.3606e-1 -3.0900e-1
(5.87e-2) (1.03e-1) (1.10e-1) (1.30e-1)

±/= 0/8/0 0/6/2 0/8/0 –

Table 6. Average ranks of MOEA/D-SPP and its variants obtained by Friedman test

IGD HV

V-a 3 2.875
V-b 2.875 2.375
V-c 2.875 3.75
MOEA/D-SPP1.25 1

5 Conclusion

In this study, we have introduced the PPO metric and proposed MOEA/D-
SPP. The PPO metric aims to identify DRSs, while MOEA/D-SPP implements
it to alleviate the adverse effects of DRSs. AdjustWeights, namely the one-
shot weight vector adjustment in MOEA/D-SPP, further enhances the popu-
lation diversity. To comprehensively assess the efficacy of the proposed algo-
rithm, we have conducted experimental evaluations on benchmarks of DRS-
MOPs, specifically 3-objective and 5-objective mDTLZ1-mDTLZ4. The per-
formance of MOEA/D-SPP is compared against five representative MOEAs.
The obtained results reveal the promising performance of MOEA/D-SPP in
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addressing DRS-MOPs. Additionally, ablation experiments have validated the
effectiveness of each algorithmic component in MOEA/D-SPP.

In the future, we plan to extend the applicability of the PPO metric to
other categories of MOEAs (i.e., dominance-based MOEAs and indicator-based
MOEAs), aiming to enhance their performance in addressing DRS-MOPs. We
also intend to delve into real-world scenarios involving DRSs and apply our
algorithm.
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Abstract. Multi-objective evolutionary algorithms (MOEAs) are pow-
erful optimizers that are capable of solving black-box multi-objective
optimization problems. Due to their stochastic nature, local search meth-
ods, including directed search algorithms, have been proposed to guide
search directions in the decision variable space. In particular, recent stud-
ies have shown that the inclusion of local hypervolume-based gradient
methods can lead to better convergence rates. In this paper, a set-based
method of estimating hypervolume gradients without additional func-
tion evaluations or Jacobian information is proposed and integrated with
SMS-EMOA to form a steady-state MOEA. The proposed algorithm
is compared to some widely-used MOEAs on two- and three-objective
benchmark suites, outperforming all other algorithms on all 6/6 two-
objective problems and 12/17 three-objective problems.

Keywords: Multi-objective optimization · Multi-objective
evolutionary algorithm · Hypervolume indicator · Hypervolume
gradients

1 Introduction

We focus on the domain of continuous box-constrained multi-objective optimiza-
tion problems (MOP):

min
x∈Q

F (x), (1)
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where Q ⊂ R
n denotes the domain bounded by l, u ∈ R

n, i.e., Q = {x ∈
R

n | li ≤ xi ≤ ui, i = 1, . . . , n}, and F : Q → R
M is the map defined by the

individual objectives fi : Q → R, i = 1, . . . ,M , i.e., F (x) = (f1(x), . . . , fM (x))T .
Effective multi-objective evolutionary algorithms (MOEA) exist under condi-

tions where F might be non-differentiable or discontinuous. Three key categories
of MOEAs underpin many current approaches [22]:

1. NSGA-II and SPEA2 represent a class of dominance-based MOEAs that
favors solutions based on the Pareto criterion [5,25].

2. MOEA/D and similar decomposition-based MOEAs decompose multi-
objective problems into single-objective problems [23].

3. Indicator-based MOEAs, like SMS-EMOA, focus on maximizing or minimiz-
ing indicators such as the hypervolume indicator [1].

One critical characteristic of MOEAs is their stochastic search process [7].
Local search methods that incorporate spatial information (from the vicinity of
existing individuals) and temporal information (from previously archived popu-
lations) have been developed to guide the search direction of the decision vari-
ables [10,11,13,14]. One such implementation, called HIGA-MO, exploits hyper-
volume gradients by using them with a gradient ascent algorithm [20]. Hyper-
volume, defined as the volume in the objective space covered by the members of
a solution set [26], is a metric of exceptional importance as it underscores both
convergence and diversity of the solutions (i.e., it is Pareto-compliant) [6]. Steer-
ing solutions toward regions with higher hypervolume using the hypervolume
gradients, then, offers an elegant approach to increase the solution quality [15].
However, precise computation of the hypervolume gradients may required finite
difference methods, and therefore necessitates additional function evaluations.

As a remedy, we introduce a set-based method, HVGSA, which extracts infor-
mation from historical populations to approximate the hypervolume gradients
(Sect. 2). This eliminates the need for additional function evaluations and com-
puting Jacobians. Then, HVGSA is integrated into a steady-state SMS-EMOA,
blending the latter’s stochastic search power with the former’s deterministic con-
vergence (Sect. 3). We show that the resulting HVGSA-EMOA generally outper-
forms widely-used algorithms for selected benchmarks (Sect. 4).

2 HVGSA

2.1 Naive Formulation

Gradient subspace approximation (GSA) is a set-based method that estimates
the gradients of a multivariate scalar function [16,17,19]. In hypervolume GSA
(HVGSA), the hypervolume indicator replaces said multivariate scalar function.
The problem to select the μ best elements with respect to hypervolume can be
expressed as the optimization problem

max
X⊂Q
|X|=µ

HVset(X), (2)
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where HVset is a set function that maps a set to its hypervolume with respect to
some reference point. We stress that considering a set X = {x(1), . . . , x(μ)} ⊂ R

n

of cardinality μ is the same as considering a point X in R
μn. To see this, con-

sider X = (x(1)
1 , . . . , x

(1)
n , x

(2)
1 , . . . , x

(2)
n , . . . , x

(μ)
1 , . . . , x

(μ)
n )T ∈ R

μn. Hereby, x
(i)
j

denotes the j-th coordinate of x(i). For example, the set A = {(1, 2)T , (3, 4)T } ⊂
R

2 can be represented by the point A = (1, 2, 3, 4)T ∈ R
4.

Consequently, problem (2) can be viewed as a single-objective optimization
problem of dimension μn in the decision space. It may be expressed as

max
X∈Rµn

HV (X), (3)

where HV : Rμn → R. Hereafter we stick with the point representation.
Assume we are given a point X0 ∈ R

μn designated for local search. In the
context of MOEAs, X0 represents a population with μ individuals in an n-
dimensional decision space. The ideal search direction would certainly be the
direction of the steepest hypervolume ascent,

v∗ :=
∇HV (X0)

‖∇HV (X0)‖2 , (4)

which is the solution of

max
v∈Rµn

〈∇HV (X0), v〉 s.t. ‖v‖22 = 1. (5)

Before establishing a gradient-free formulation, we must first elucidate how
hypervolume gradients aid in computing v∗ from limited neighborhood infor-
mation. In addition to hypervolume gradients, assume we are given r points
X1, . . . ,Xr ∈ R

μn in the neighborhood of X0 (from historical populations), we
can compute a best-fit approximation v∗

S of v∗ within the r-dimensional subspace
S := span(v1, . . . , vr), where

vi :=
Xi − X0

‖Xi − X0‖2 , i = 1, . . . , r. (6)

Then, for every v ∈ S ⊂ R
μn there exists a λ ∈ R

r such that v = V λ, where

V = (v1, . . . , vr) ∈ R
μn×r. (7)

Restricting problem (5) to S (since we will only have access to the neighbor-
hood information in Sect. 2.2), it can be expressed as

max
λ∈Rr

〈∇HV (X0),
r∑

i=1

λivi〉 s.t. ‖
r∑

i=1

λivi‖22 = 1. (8)

Problem (8) can be solved in two steps: (i) computing the weight vector λ
via solving the following normal equation system

V T V λ = V T ∇HV (X0), (9)



HVGSA-EMOA 23

and (ii) arriving at the approximate search direction v∗
S . A more detailed proof

is supplied in [16], in which Schütze et al. considered the Karush-Kuhn-Tucker
system of (8) and derived the normalized search direction as

v∗
S =

V λ∗

‖V λ∗‖2 , (10)

where λ∗ is the solution of (9).

2.2 Gradient-Free Realization

We now develop a gradient-free approach. Suppose in addition to X1, . . . ,Xr ∈
R

μn in the neighborhood of X0, we are further supplied with their hypervolume
values HV (X0) and HV (Xi), i = 1, . . . , r, we turn to the right hand side of (9)
and note its i-th component

(V T ∇HV (X0))i = ∇HV (X0)T vi =
HV (Xi) − HV (X0)

‖Xi − X0‖2 + O(‖Xi − X0‖2),
(11)

which follows from Taylor approximation. Hence, using

di :=
HV (Xi) − HV (X0)

‖Xi − X0‖2 , i = 1, . . . , r, (12)

and d = (d1, . . . , dr)T ∈ R
r, we can, instead of (9), solve the system

V T V λ = d, (13)

which is entirely accessible from the given neighborhood information. In partic-
ular, by solving (13) and (10), we may obtain λGSA ∈ R

r and vGSA ∈ R
μn,

respectively, without any gradient information.

2.3 Gradient Ascent

Using the approximated search direction above, an iteration of HVGSA behaves
as follows: given the current iterate X̃j where the subscript j in this case indicates
the iteration count, the search direction vGSA

j obtained via (13) and (10) in this
iteration is used to perform the gradient ascent algorithm:

X̃j+1 = X̃j + ηvGSA
j , (14)

where η > 0 is the step size.
Recall that X̃j ∈ R

μn is a vector representation of the actual population
Xj ⊂ R

n. We could similarly partition vGSA
j into μ elements of n-dimensional

vectors, i.e. vGSA
j = (ν(1)

j , . . . , ν
(μ)
j ), and update Xj individual-wise. This yields:

x
(i)
j+1 = x

(i)
j + ην

(i)
j , i = 1, . . . , μ. (15)
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2.4 Examples

We illustrate the effect of HVGSA (14) on two examples. First, we consider
HVGSA as a standalone algorithm. The problem CONV2 given by F : Q → R

2

F (x) =
(

x2
1 + x2

2

(x1 − 10)2 + x2
2

)
, (16)

where Q = [0, 10]× [−5, 5] has as Pareto set the line segment connecting (0, 0)T

and (10, 0)T . We set μ = 5 and select the initial population (point) X̃0 = X0 =
{a

(1)
0 , . . . , a

(5)
0 } randomly within Q. The dimension of (3) is hence μn = 2·5 = 10.

As a standalone algorithm, we compute artificial neighborhood information
X1, . . . ,Xr by sampling x

(j)
i in the vicinity of x

(j)
0 , i = 1, . . . , r, j = 1, . . . , μ.

Then, from (14) we compute the next population X̃1 with a small step size
η. We repeat this process until the difference of the norm of two consecutive
populations goes below a predefined threshold.

Fig. 1. Application of HVGSA on CONV2 using two initial populations. Above: X0 is
“far” from the Pareto set. Below: X0 is already “close” to the Pareto set.

Figure 1 shows a numerical result of HVGSA on two such trajectories using
r = 5. In both cases, the populations move toward the optimal 5-element HV
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approximation set for this problem (using the reference point R = (101, 101)T ).
Through sampling, each iteration costs r HV evaluations and rμn function eval-
uations. This could be significantly improved by utilizing information previously
computed within an MOEA, as shown in the next example.

Consider the test problem ZDT2 using n = 30 decision variables. As a start-
ing point we use the 50-th population of SMS-EMOA from an arbitrary run. With
a population size of μ = 100, the dimension of (3) is hence μn = 3000. First, we
apply (14) using the 50-th population (X̃50 = X0, recall that the subscript for
X̃ represents the iteration count) together with the previous r = 10 populations
(X̃49 = X1, . . . , X̃40 = X10). Using (14) and the fixed step size η = 0.05, we may
compute X̃51. Furthermore, the generated set is again stored as neighborhood
information, and therefore we can use X̃51 = X0, X̃50 = X1, . . . , X̃41 = X10 and
again compute a new population using this setting.

Figure 2 shows the results for this approach after 10 and 30 iterations. Due to
internal storage of the function values and the hypervolume values, these results
come with a cost of 10 and 30 HV evaluations, and no additional function eval-
uations apart from the newly generated set are required. Had the HV gradients
been approximated using the forward difference quotient, each step would have
required 3,000 HV evaluations, leading to 30,000 and 90,000 HV evaluations with
the same number of steps. While the use of actual gradients leads to (slightly)
better results, it comes with an impractical amount of computational cost.

Fig. 2. Application of the HVGSA approach on a population obtained by SMS-EMOA
on the problem ZDT2. Shown are the results after 10 and 30 iterations using the fixed
step size η = 0.05.

3 HVGSA-EMOA

Efficient as it may be, HVGSA on its own lacks the ability to escape local extrema
and to precisely locate ideal solutions. As a result, its performance on benchmark
problems is incomparable to the widely-used MOEAs. To address these issues,
we propose HVGSA-EMOA. We outline its three components:
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1. Team selection: a subset of elite individuals is selected from the popula-
tion based on their hypervolume contributions. This ensures the search only
focuses on the most promising solutions.

2. HVGSA employment: the selected team undergoes HVGSA, where we gather
neighborhood information from an external archive, and through a combina-
torial trick we take advantage of limited neighborhood information.

3. Environmental selection: A reduction algorithm is applied to the generated
solutions from both the HVGSA and the evolutionary steps.

Algorithm 1: HVGSA-EMOA
A more detailed pseudocode as well as the source code are provided in
https://github.com/HisaoLabSUSTC/HVGSA-PPSN2024
1 Function HVGSA-EMOA(Algorithm, Problem)

/* Part 0: parameter specification */
2 (r, k, η, teamCap, rest) ← (50, 10, 50, 5, 10)
3 Population ← Problem.Initialization()
4 Archive.Store(Population)
5 ref ← Max(Population) × 1.1
6 while Algorithm.notTerminated() do

/* Part 1: team selection */
7 team ← TeamSelection(Population)

/* Part 2: HVGSA */
8 team ← HVGSA(team, rest, Archive)

/* Part 3: environmental selection */
9 for i = 1 to Size(team) do

10 Population ← Reduce(Population ∪ {teami})
11 end
12 for i = 1 to Problem.N − Size(team) do
13 Offspring ← GenerateOne(Population)
14 Archive.Store(Offspring)
15 Population ← Reduce(Population ∪ {Offspring})
16 end
17 ref ← max(Population) × 1.1
18 end

3.1 Team Selection

In Sect. 2.4, when we considered the test problem ZDT2 with n = 30, μ = 100
and r = 10, the search dimension of (3) reaches a staggering 3000. Now consider
the linear system (13), we know from (7) that the dimension of V in this case
is 3000 × 10. Two concerns are immediate: i) approximating the best direction
in a 3000-dimensional space with a 10-dimensional subspace can be a drastic

https://github.com/HisaoLabSUSTC/HVGSA-PPSN2024
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undershot, and ii) the matrix multiplication V T V can be very inefficient due to
the large size of the search dimension.

We resolve these two concerns by selecting a team that is smaller than the
entire population. In this paper, this team size is capped at teamCap = 5. The
resulting search dimension of ZDT2 is now 150 or below.

Following the idea proposed in [11] where elite solutions are selected for the
local search step, we derive an elitist criterion for the nondominated front. We
assign a probability pteam to each individual within the population P :

pteam(xi) =

{
0 if xi ∈ Pdominated

exp(−λ·rank(xi))
|Pnondom| if xi ∈ Pnondom

, i = 1, . . . , μ, (17)

where pteam is the probability of xi to be chosen as a search team member.
If xi ∈ Pdominated, then it should not be considered an elite individual fit for
local search. If, on the other hand, xi ∈ Pnondom, then it should be assigned a
nonzero probability following a discretized exponential distribution based on its
hypervolume contribution ranking rank(xi). In our algorithm, λ = 1, and the
denominator |Pnondom| is used as a normalization constant. With each solution
selection, the probability distribution is renormalized. The most likely configu-
ration is naturally the search team composed of the teamCap = 5 individuals
with the highest hypervolume contribution.

Notice that the size of the search team can be less than teamCap if the
nondominated front doesn’t have enough solutions to fill the search team.

Let us summarize the team selection step:

1. Team size limitation: computational efficiency is improved with smaller teams,
facilitating rapid HVGSA computations.

2. Elite team composition: top hypervolume contributors within the nondomi-
nated front are selected for local search, enhancing search effectiveness.

3.2 HVGSA Employment

With an elite team, our search space shrinks significantly: μteamn 
 μP n. We
now revise how neighborhood information is obtained. Previously, we used r
closest populations. A better method is to use an archive that stores all the
solutions that cost function evaluations (this includes the initial population, the
solutions generated from HVGSA, and the offsprings in the evolutionary step).

For pragmatic reasons, we bound our archive with at most Mn solutions,
where M is the dimension of the objective space. When this limit is reached,
new solutions replaces old solutions as such:

1. If the new solution dominates any old solution, the old solution is discarded
and the new solution is stored.

2. Otherwise, the new solution(s) is temporarily stored. At the end of one
Store() call, we compute the pairwise distance of all points in the archive.
We truncate points with the smallest distances to their nearest neighbors.
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Recall that we reduced the search dimension of ZDT2 from 3000 to 150 in
Sect. 3.1. Even so, a 10-dimensional subspace remains insufficient for estimating
hypervolume gradients. Referring to the search team as X0 and its i-th member
as teami, i = 1, . . . , teamCap, we introduce two parameters:

1. k = 10 (k-nearest neighbors): we find the k closest points team(j)
i , j = 1 . . . , k,

in the archive for each member of the search team. If we have a team size
of 5, this gives us a maximum of 50 individuals selected within the archive.
These neighbors appear as non-red filled circles in Fig. 3. k should not be too
large, for then nearness and estimation precision is not guaranteed.

2. r = 50 (permutation selection): instead of simply taking all the closest
neighbors to each team member (X1 := (team(1)

1 , . . . , team(1)
5 )T ) as a neigh-

bor of X0, all the second-closest neighbors to each team member (X2 :=
(team(2)

1 , . . . , team(2)
5 )T ) as the next neighbor, etc. We can choose any per-

mutation of those k neighbors. There are μk
team such choices, and r = 50

of them are selected for HVGSA. In Fig. 3, the left image shows a permu-
tation (blue filled circles) where the neighbor is (team(1)

1 , . . . , team(1)
5 )T . On

the right, only one individual is changed (team(2)
2 ), but the resulting vector

points in a different direction in the search space of (3).

Fig. 3. Illustration of 10-NN on 5 individuals within a 2-dimensional decision space.
Left: selecting the indices [1, 1, 1, 1, 1] in terms of closeness as the neighbor. Right:
selecting the indices [1, 2, 1, 1, 1].

Going back to the ZDT2 example, we now have a 50-dimensional subspace
within an 150-dimensional search space. This gives a higher confidence of the
gradient approximation. With such a local search algorithm, we next consider
its share of resource with respect to the evolutionary steps [8,11]. Two design
problems are to be addressed: i) the frequency of the local search step, and ii)
the choice between a small or large step size.

An ablation study is performed and an optimal configuration is found to
invoke 1 HVGSA step every rest = 10 evolutionary steps, together with the
usage of a large learning step η = 50. The reasons are twofold:
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1. Every HVGSA step updates at most teamCap = 5 individuals at once. That
is, only 5 function evaluations are required every 10 iterations. When μ = 100
and FE = 10000, 100 evolutionary steps will be performed, which invokes 10
HVGSA steps and a total of 50 extra function evaluations.

2. We justify the large step size (η = 50) with the following considerations: i)
in the early stages of MOEAs, it can rapidly drive the search team toward
the Pareto front, significantly improving convergence (as demonstrated in
Sect. 4), and ii) in the worst-case scenario, 50 wasted function evaluations are
unlikely to significantly harm the performance of the underlying EMOA.

3.3 Environmental Selection

The underlying EMOA, then, is of crucial importance since it directly deter-
mines the performance of HVGSA-EMOA. We choose SMS-EMOA because of
its strong performance, alignment with the usage of hypervolume, and its steady-
state property.

MOEAs possess a steady-state property when they generate and evaluate
one offspring at a time. This guarantees non-decreasing quality of solution. In
SMS-EMOA, this offspring is compared to the existing population based on its
hypervolume contribution. The individual with the least hypervolume contri-
bution is then discarded by calling Reduce() (see Algorithm 2). It sorts the
augmented population into nondominated fronts, and eliminates the individual
with the least exclusive hypervolume contribution in the last front.

This ensures improvement in the overall hypervolume. Therefore, we apply
the Reduce() function to each member of the search team after the HVGSA step
as well. This corresponds to line 9–11 in Algorithm 1. Since the team is smaller
than the needed population, we populate the next generation with SMS-EMOA’s
steady-state offspring generation (line 12-16 of Algorithm 1).

Algorithm 2: Reduce(Population)
1 Function Reduce(P)
2 {Front1, . . . , Frontv} ← fast-nondominated-sort(P)
3 worst ← argmins∈Frontv [ΔS (s, Frontv)]
4 return (P\{worst})

Here, ΔS (s,Frontv) := HV (Frontv) − HV (Frontv\{s}).
*We observed an unexpected increase in performance on certain problems due

to an implementation issue where solutions in the search team undergo Reduce()
despite the HVGSA step not being invoked. This results an initial duplication
of nondominated solutions with high hypervolume contributions (otherwise it
couldn’t be selected for HVGSA). In PlatEMO, repeated solutions both have
zero hypervolume contribution and will be subsequently eliminated during the
next environmental selection if no dominated solutions exist. We have decided
to keep this design as the added selection pressure makes convergence faster.
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4 Experimental Results

Complete results are displayed as supplementary materials at our GitHub page.
We evaluated HVGSA-EMOA on established test problems and compared it
against widely-used MOEAs using the average hypervolume as well as average
hypervolume progression across 50 runs. Specifically, our methodology involves a
population size of 100, 10000 function evaluations per run, and data aggregation
across 50 independent runs with the hypervolume progression metrics captured
at 20 evenly-spaced intervals across the 10000 function evaluations.

We implemented HVGSA-EMOA on the PlatEMO platform [18] and bench-
marked it against established algorithms (NSGA-II, NSGA-III, SMS-EMOA,
MOEA/D, SPEA2) available within PlatEMO. In all experiments, MOEA/D
uses the Tchebycheff decomposition method. We replaced the original hyper-
volume calculation with the WFG algorithm [21] from the STK toolbox for
enhanced contribution calculations and addressed a minor boundary solution
bias in the reference point calculation. We used the hypervolume metric for
performance evaluation due to its effectiveness in quantifying solution quality.

4.1 2D Problems

For 2D problems, we tested our algorithm on the ZDT test suite, which was first
introduced in [24]. HVGSA-EMOA demonstrated superior hypervolume conver-
gence on all ZDT problems (excluding ZDT4) and achieved the highest average
hypervolume on ZDT4 despite the initial slow convergence (Table 1, Fig. 4). A
large step size caused the HVGSA step to drastically improve our algorithm’s
performance in the early stages of the problem.

Fig. 4. Hypervolume convergence plot (averaged over 50 runs) against function evalu-
ations for the ZDT test suite.
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Table 1. Average hypervolume aggregated over 50 runs on 2D test suites (parenthesis:
standard deviation; highlight: best).

Problem M D NSGA-II MOEA/D SPEA2 SMS-EMOA HVGSA-EMOA

ZDT1 2 30 8.5413e−1 (3.54e−3) - 8.3604e−1 (1.38e−2) - 8.4991e−1 (4.61e−3) - 8.6440e−1 (2.30e−3) -8.7176e−1 (8.94e−4)
ZDT2 2 30 5.0740e−1 (3.03e−2) - 4.6550e−1 (7.40e−2) - 4.8923e−1 (6.02e−2) - 4.7942e−1 (7.21e−2) -5.3836e−1 (1.16e−3)
ZDT3 2 30 7.0851e−1 (6.63e−3) - 6.8321e−1 (2.07e−2) - 7.0463e−1 (6.96e−3) - 7.1628e−1 (8.09e−3) -7.2276e−1 (7.90e−3)
ZDT4 2 10 6.3339e−1 (1.59e−1) = 6.4461e−1 (9.88e−2) = 5.8441e−1 (1.86e−1) - 4.6501e−1 (2.15e−1) -6.5725e−1 (1.57e−1)
ZDT4C 2 10 3.3407e−1 (2.23e−1) - 2.1720e−2 (7.93e−2) - 2.9770e−1 (2.12e−1) - 2.9267e−1 (2.03e−1) -4.9145e−1 (3.40e−1)
ZDT6 2 10 4.9964e−1 (5.78e−2) - 5.8577e−1 (7.04e−3) - 4.8347e−1 (5.33e−2) - 5.0550e−1 (4.29e−2) -6.1144e−1 (2.99e−5)
+/-/ = 0/5/1 0/5/1 0/6/0 0/6/0

We analyzed ZDT4’s unique challenges and proposed a simplified problem,
ZDT4C. In the original ZDT4 problem, the variable bounds are x1 ∈ [0, 1],
xi ∈ [−5, 5], i = 2, . . . , n = 30. ZDT4C solves a smaller problem where the
variables are bounded in the unit hypercube, i.e. xi ∈ [0, 1], i = 1, . . . , n = 30.
It is surprising to see that conventional MOEAs struggle to solve the simpli-
fied ZDT4C, yet performs quite well on the ZDT4 problem. This is due to the
way polynomial mutation is implemented. Described in the appendix of [4], the
polynomial mutation dynamically scales its search power based on the size of
the search space. Simulated binary crossover (SBX), introduced in [3], exhibits
a similar scaling behavior. Both operators, adapted from their binary coun-
terparts, try to impose a probabilistic search behavior based on the available
search space. Inspired by this observation, we implemented the rest parameter
(explained at the end of Sect. 3.2) to strategically allocate more resource toward
evolving around local regions following a gradient-based directional boost. On
multimodal problems, gradient steps often become ineffective, leading to search
stagnation in local extrema. This necessitates a greater reliance on evolutionary
mechanisms.

4.2 3D Problems

We evaluated our algorithm on 3D problems using the DTLZ, IDTLZ, and WFG
test suites [2,9,12]. In higher-dimensional spaces, the elitist property of our algo-
rithm becomes less significant due to the increasing prevalence of nondominated
solutions. Additionally, our fixed step size (η = 50) likely reduced optimal con-
vergence in this context. Consequently, the striking performance gains observed
with ZDT problems were less frequent. Still, our algorithm reached the best
result at the end of 10000 function evaluations in 12 (out of 17) problems. These
findings suggest the potential benefits of an adaptive step-size implementation
and a more robust dominance strategy.

In Fig. 5, we have selected some distinct problems (see Table 2) where
HVGSA-EMOA performs better (top row) and performs on par (bottom row)
with the other algorithms. A discernible pattern of problems that HVGSA-
EMOA performs well on is not immediately clear, but in future work we will
continue to monitor and improve the performance of our algorithm on higher-
dimensional problems.
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Table 2. Average hypervolume aggregated over 50 runs on 3D test problems (paren-
thesis: standard deviation; highlight: best).

Problem M D NSGA-III MOEA/D SPEA2 SMS-EMOA HVGSA-EMOA

DTLZ1 3 7 6.8257e−1 (4.19e−1) = 7.1124e−1 (4.02e−1) = 6.5528e−1 (4.47e−1) = 6.4943e−1 (4.49e−1) = 6.5869e−1 (4.56e−1)
DTLZ2 3 12 7.3996e−1 (9.29e−4) - 7.0500e−1 (2.28e−3) - 7.3292e−1 (2.20e−3) - 7.5473e−1 (1.14e−4) = 7.5474e−1 (1.41e−4)
DTLZ4 3 12 6.4601e−1 (1.64e−1) - 4.3733e−1 (2.27e−1) - 5.8635e−1 (1.77e−1) - 5.9196e−1 (1.77e−1) - 7.5468e−1 (1.59e−4)
DTLZ5 3 12 2.5744e−1 (1.42e−3) - 2.5928e−1 (1.44e−4) - 2.6387e−1 (4.44e−4) - 2.6651e−1 (2.64e−5) = 2.6652e−1 (2.69e−5)
DTLZ6 3 12 2.4957e−1 (3.61e−2) - 2.5857e−1 (8.85e−3) - 2.6055e−1 (3.76e−2) - 2.6658e−1 (8.05e−5) - 2.6660e−1 (9.89e−6)
DTLZ7 3 22 4.8990e−1 (1.92e−2) - 4.5235e−1 (1.10e−2) - 5.2100e−1 (7.99e−3) - 5.5082e−1 (4.42e−2) - 5.7125e−1 (1.96e−2)
IDTLZ1 3 7 1.0054e−1 (9.70e−2) = 1.5104e−1 (8.97e−2) = 1.4528e−1 (1.12e−1) = 1.2318e−1 (1.13e−1) = 1.3235e−1 (1.16e−1)
IDTLZ2 3 12 6.8599e−1 (4.10e−3) - 6.8611e−1 (1.03e−3) - 6.9895e−1 (2.08e−3) - 7.1662e−1 (1.72e−3) + 7.1493e−1 (3.00e−3)
WFG1 3 12 8.6217e−1 (4.90e−2) - 1.0242e +0 (6.82e−2) = 9.2936e−1 (6.99e−2) - 1.0299e +0 (3.40e−2) = 1.0354e +0 (4.76e−2)
WFG2 3 12 1.2140e +0 (6.22e−3) - 1.1428e +0 (3.24e−2) - 1.2107e +0 (2.89e−2) - 1.2417e +0 (1.99e−2) = 1.2437e +0 (4.02e−3)
WFG3 3 12 4.7365e−1 (1.09e−2) - 4.7338e−1 (2.10e−2) - 4.8239e−1 (9.67e−3) - 5.3072e−1 (6.45e−3) = 5.3010e−1 (5.91e−3)
WFG4 3 12 7.0645e−1 (4.75e−3) - 6.7092e−1 (6.17e−3) - 6.9563e−1 (5.19e−3) - 7.4539e−1 (1.92e−3) = 7.4516e−1 (1.69e−3)
WFG5 3 12 6.7248e−1 (4.89e−3) - 6.1147e−1 (5.37e−3) - 6.6364e−1 (6.10e−3) - 6.9648e−1 (4.28e−3) - 6.9780e−1 (3.49e−3)
WFG6 3 12 6.3361e−1 (1.78e−2) - 5.9302e−1 (3.12e−2) - 6.3351e−1 (1.97e−2) - 6.7112e−1 (1.74e−2) = 6.7504e−1 (2.03e−2)
WFG7 3 12 7.1051e−1 (3.67e−3) - 6.7461e−1 (7.43e−3) - 7.0756e−1 (4.04e−3) - 7.5404e−1 (7.91e−4) = 7.5413e−1 (6.10e−4)
WFG8 3 12 5.8913e−1 (5.21e−3) - 5.6240e−1 (1.25e−2) - 5.8674e−1 (5.14e−3) - 6.3020e−1 (3.58e−3) = 6.3160e−1 (3.16e−3)
WFG9 3 12 6.7323e−1 (1.00e−2) - 6.1065e−1 (4.23e−2) - 6.6516e−1 (9.06e−3) - 7.2037e−1 (4.17e−3) - 7.2101e−1 (1.96e−2)
+// = 0/15/2 0/14/3 0/15/2 1/5/11

Fig. 5. Selected hypervolume convergence plot (averaged over 50 runs) against func-
tion evaluations for 3D problems. Above: HVGSA performs well on those problems.
Below: HVGSA performs poorly on those problems, but still manages to increase the
performance of SMS-EMOA.

5 Conclusions and Future Work

In this work, we have proposed HVSGA, a set-based method to estimate hyper-
volume gradients without using additional function evaluations or Jacobian infor-
mation. We have further combined HVGSA with SMS-EMOA to form HVGSA-
EMOA, and observed a significant improvement in the convergence rate on
benchmarked two- and three-objective problems. In particular, when comput-
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ing hypervolume gradients, HVGSA uses almost no extra function evaluations,
whereas a forward difference method would require an impractical amount. Based
on these observations, we are thrilled about HVGSA’s potential and are actively
working on constraint handling and on generalizing HVGSA-EMOA to many-
objective problems.

Our source code of HVGSA-EMOA as well as supplementary materials are
available at: https://github.com/HisaoLabSUSTC/HVGSA-PPSN2024.
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Abstract. Hypervolume subset selection (HSS) plays an important role
in various aspects of the field of evolutionary multi-objective optimiza-
tion, such as environmental selection and post-processing for decision-
making. The goal of these problems is to find the optimal subset that
maximizes the hypervolume from a given candidate solution set. Many
methods have been developed to solve or approximately solve different
types of HSS problems. However, existing approaches cannot effectively
solve HSS problems with a large number of objectives within a short com-
putation time. This drawback directly limits their applicability as a com-
ponent for developing new EMO algorithms. In this paper, we propose
a novel learning-to-rank based framework, named LTR-HSS, for solving
the challenging HSS problems with a large number of objectives. The
experimental results show that, compared to other state-of-the-art HSS
methods, our proposed LTR-HSS requires a shorter computation time
to solve HSS problems with large numbers of objectives while achieving
superior or competitive hypervolume performance. This demonstrates
the potential of our method to be integrated into algorithms for many-
objective optimization.

Keywords: Hypervolume subset selection · Multi-objective
optimization · Machine learning

1 Introduction

Recently, subset selection has received considerable attention from the evolution-
ary multi-objective optimization (EMO) [8] community. From the perspective of
the optimization mechanism, subset selection is intrinsically involved in differ-
ent stages of the entire EMO process. For example, the initial population can be
considered as selecting a subset from the decision space with a specific popula-
tion size. During the evolutionary stages, the environmental selection is always
performed, which aims to select a good subset from the parent and offspring
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solutions as the next generation [3,27]. In an EMO algorithm with an exter-
nal archive, subset selection is an essential post-processing procedure to select a
pre-specified number of representative solutions for the decision-makers [14,30].

Different criteria can be used for subset selection, including IGD [9], IGD+
[15], hypervolume (HV) [34] and R2 [13]. Among these criteria, subset selection
based on hypervolume has been extensively investigated due to the widespread
use of HV as a performance indicator in multi-objective optimization. Hypervol-
ume subset selection (HSS) [1] aims to select the optimal solution subset from
the candidate solution set that has the best hypervolume value within a given
cardinality limit. Mathematically, for a given candidate solution set S, an HSS
problem with the k cardinality limit aims to find the optimal subset S∗

sub that
satisfies:

S∗
sub = arg max

Ssub∈S,|Ssub|=k

HV (Ssub) (1)

It is usually very challenging to find the exact optimal solution to HSS prob-
lems, especially when the number of objectives of the candidate solutions is large.
Actually, an HSS problem is NP-hard when the number of objectives exceeds
two [1]. Some heuristic and handcrafted methods [7,18,22] have been proposed
to search for the near-optimal solutions to the HSS problems with large num-
bers of objectives. However, they usually require an excessively long computation
time due to the expensive hypervolume contribution calculation (HVC) in high-
dimensional spaces. For example, solving a 10-objective HSS problem using the
currently most efficient greedy HSS algorithm [7] can take hundreds or thousands
of seconds in computation time. This limitation directly makes their application
in many-objective optimization impractical, such as integrated as a component
to develop new EMO algorithms [18,27]. Therefore, there is currently a growing
need to develop efficient methods for solving HSS in high-dimensional spaces
while maintaining high performance.

However, the design of new powerful algorithms for HSS requires extensive
domain knowledge by experts, such as a deep understanding of the properties of
hypervolume [28]. In recent years, machine learning methods have shown remark-
able success in solving problems in the field of multi-objective optimization
[23,32,33]. Using machine learning methods provides the advantage of avoiding
the need for intricate heuristic algorithm design, while also facilitating efficient
end-to-end output through a trained model.

In this paper, we propose to develop a machine learning-based method for effi-
ciently solving high-dimensional HSS problems, which is referred to as Learning-
to-Rank HSS (LTR-HSS) framework. More specifically, the original HSS problem
is formulated as a sequential decision-making problem. We address the solution
selection by ranking the remaining candidate solutions where a utility function
is learned for ranking. A novel loss function is intricately designed by fully con-
sidering the interrelationship between the already selected solutions and each
remaining candidate during the ranking process. To evaluate the effectiveness of
our proposed LTR-HSS framework, we conduct extensive experiments on high-
dimensional HSS problems with different shapes of candidate solution sets. The
experimental results show that the proposed LTR-HSS significantly outperforms
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the state-of-the-art HSS algorithms in terms of efficiency (i.e., shorter running
time) while achieving competitive hypervolume performance. In addition, we
demonstrate the good generalization ability of our proposed framework in solv-
ing different scales of HSS problems.

The rest of the paper is organized as follows: In Sect. 2, we review existing
hypervolume subset selection work based on different types of methods. Section 3
elaborates on the detailed introduction of the proposed LTR-HSS framework.
The experimental studies are shown in Sect. 4. Finally, in Sect. 5, the conclusion
is given.

2 Related Work

Currently, there exist the following methods for solving HSS problems:

Exact Algorithms: One type of method for HSS involves the design of
exact algorithms to find the optimal subset. In early studies [4,5,20], exact algo-
rithms were designed for two-objective problems. Then, those algorithms were
extended to multi-objective problems with three or more objectives [10,11]. Since
the search for the optimal subset is time-consuming, exact algorithms are appli-
cable only for two-objective problems or small candidate sets of multi-objective
problems with three or more objectives. These exact algorithms cannot solve HSS
problems with a large number of objectives, which is the focus of our research
in this paper. Actually, there is no existing method that can exactly search for
optimal solutions to HSS problems in high-dimensional objective spaces.

Greedy Algorithms. Another type of HSS method is to greedily search
for a good (i.e., near-optimal) subset of the HSS problem. In [12], an efficient
greedy algorithm for two-objective problems was proposed. In [17], a simple
greedy inclusion algorithm was used for multi- and many-objective problems.
Currently, the efficiency of those greedy algorithms has been improved by using
two ideas. One idea [7] is to avoid unnecessary calculations of hypervolume con-
tributions. The other idea [28] is to decrease the computation time for hyper-
volume contribution calculations using an approximate calculation method [25].
Greedy algorithms clearly decrease the computation time for HSS. However, the
quality of obtained subsets is not always very good.

Local search Methods. Local search-based methods have also been used
for solving HSS problems. The basic idea is to iteratively update the selected
subset by replacing the inferior solution within the subset with the solution with
a higher HVC from a candidate set [2]. Recently, some advanced methods [21,22]
have been proposed to improve the efficiency of basic local search methods for
HSS. The local search-based methods ensure that the HV of the selected subset
does not decrease as the iterations progress. However, their efficiency can heavily
depend on the distribution of solutions in the candidate solution set. It is not
unusual that a long computation time is still required to achieve a good subset
when solving HSS problems with a large number of objectives.
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Evolutionary Methods. Recently, some researchers have tried to use evolu-
tionary algorithms to solve HSS problems [25,26]. Their basic idea is to formulate
the original subset selection problems as a two-objective optimization problem,
where the first objective is the original optimization objective (i.e., Eq. (1)) and
the second objective is the cardinality (i.e., the number of solutions in the selec-
tion subset) [16]. Although these algorithms can achieve a theoretically guaran-
teed approximation performance (e.g., 1 − 1/e approximation), they still have
difficulties in solving HSS problems with a large number of objectives within a
short computation time to be seamlessly integrated into EMO algorithms.

3 Proposed Framework

In this section, we introduce our proposed framework LTR-HSS. Our idea is to
formulate the original HSS problem in (1) as a sequential decision-making prob-
lem. Then, at each decision iteration, we select the solution among the remaining
candidate set that has the largest utility relative to the previously selected solu-
tion set. To accomplish our LTR-HSS framework, the most challenging problem
is to learn a model for solution utility calculation, where the definition of the
utility function and loss function are required.

3.1 Definition of Utility Function

As we have explained, during the sequential solution selection process, the solu-
tions are ranked according to their utility and the one with the largest utility
value is selected to add the subset. Considering that the hypervolume measures
both the convergence and diversity of a solution set simultaneously, the utility
function should depend on the convergence features and diversity features of a
solution. Thus, in this paper, we propose to define the utility function U of a
solution xi as follows:

U(xi, S) = wc
TFc(xi) + wd

TFd(xi, S),∀xi ∈ Z/S (2)

where Z is the candidate set and S is the previously selected solution set; Fc

and Fd denote the convergence feature and diversity feature of solution xi; wc

and wd are the learnable parameters. Actually, any definition of the utility
function and the corresponding learnable model can be applied to our proposed
framework. For example, we can use neural networks to model the utility function
as U(xi, S) = wT

Θc
Fc(xi)�wT

Θd
Fd(xi, S),∀xi ∈ Z/S, where � can be any specific

mathematical operator.
The next step is to define the convergence feature vector Fc and the diversity

feature vector Fd . Intuitively, the convergence of a solution depends on each of
its objective values (i.e., its location in the objective space), while its diversity
is influenced by its diversity relationship (treated as distance relation) with the
previously selected subset. Thus, we propose to define the convergence feature
vector and the diversity feature vector in the following ways.
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The convergence feature vector of a solution xi is calculated as a RM+1

vector:
Fc(xi) = [x1

i − r1, x2
i − r2, ..., xM

i − rM , vi]� (3)

where vi is the individual hypervolume of solution xi, r = [r1, r2, ..., rM ] is the
reference point, and xj

i denotes the j-th objective value of solution xi.
The diversity feature vector of a solution xi is calculated as a 6-dimensional

vector using representative distance features:

Fd(xi, S) = [f1
d (xi, S), f2

d (xi, S), ..., f6
d (xi, S)]� (4)

where each element is a distance-related calculation of solution xi with the pre-
viously selected solution set S as follows:

f1
d (xi, S) = min

xj∈S
Cosine-Similarity(xi, xj). (5)

f2
d (xi, S) = max

xj∈S
Cosine-Similarity(xi, xj). (6)

f3
d (xi, S) =

1
|S|

∑

xj∈S

Cosine-Similarity(xi, xj). (7)

f4
d (xi, S) = min

xj∈S
Distance(xi, xj). (8)

f5
d (xi, S) = max

xj∈S
Distance(xi, xj). (9)

f6
d (xi, S) =

1
|S|

∑

xj∈S

Distance(xi, xj). (10)

In Eq. (5)–(10), Cosine-Similarity denotes the operation that measures
the similarity (i.e., angle distance) between two vectors of an inner product
space, and Distance denotes the operation that measures the Euclidean dis-
tance between two vectors.

3.2 Definition of Loss Function

Motivated by the sequential decision-making process, we propose to learn the
model parameter through maximum likelihood estimation. That is, the param-
eter values of the proposed utility model are optimized to maximize the like-
lihood of the solution selection process described by the model, based on the
ranking list that was actually observed. Suppose we have the training dataset
D = {Xi, Yi}N

i=1, where the Xn denotes the candidate solution set, Yn denotes
the corresponding ranking list, and N is the number of training data pairs. Then,
the model parameter can be optimized by maximizing the empirical likelihood
of the observed training dataset D:

Maximize E(Xi,Yj)∈D[logP (Yi|Xi)] (11)
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where P (Yi|Xi) represents the probability of generating the ranking list Yi for
the given solution set Xi. Therefore, we can define the loss for training the model
as the likelihood loss of the generation probability:

Loss = − 1
N

N∑

i=1

logP (Yi|Xi) (12)

Intuitively, we can view the solution selection process as iteratively selecting
the top-ranked solution from the remaining candidates. For each pair of training
data {Xi, Yi}, the generation probability P (Yi|Xi) is calculated as follows:

P (Yi|Xi) = P (xy(1), xy(2), ..., xy(l)|Xi)
= P (xy(1)|Xi)P (xy(2)|Xi\S1)...P (xy(l)|Xi\Sl−1)

(13)

where y(i) denotes the index of solution ranked at position i in the ranking list
Yi, xy(i) denotes the solution ranked at position y(i), and Si =

{
xy(1), ..., xy(i)

}

denotes the previously selected solutions until the i-th iteration; l denotes the
length of the ranking list (i.e., the number of solutions in the candidate set).

We assume the solution selection probability is only determined by its utility
value. Then, the generation probability can be defined as follows:

P (xy(j)|Xi\Sj−1) =
exp

{
U(xy(j), Sj−1)

}
∑l

k=j exp
{
U(xy(k), Sj−1)

} (14)

Then, we can calculate P (Yi|Xi) as follows:

P (Yi|Xi) =
l∏

j=1

P (xy(j)|Xi\Sj−1)

=
l∏

j=1

exp
{
U(xy(j), Sj−1)

}
∑l

k=j exp
{
U(xy(k), Sj−1)

}

(15)

Finally, the loss function is calculated as follows:

Loss = − 1
N

N∑

i=1

logP (Yi|Xi)

= −
N∑

i=1

l∑

j=1

log
exp

{
U(xy(j), Sj−1)

}
∑l

k=j exp
{
U(xy(k), Sj−1)

}

(16)

where each utility function can be calculated by combining Eq. (2) with the
convergence feature vector Eq.(3) and diversity feature vector Eq. (4).

3.3 Optimization and Prediction

With the defined loss function, we introduce the optimization process and pre-
diction process in this subsection.
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Algorithm 1: Optimization Algorithm
Input : training data D = {Xi, Yi}N

i=1, learning rate η, iteration Niter, batch
size Nbatch;

Output: learnable parameter wc and wd

Initialize model parameter wc and wd ;
1 for i ← 1 to Niter do
2 for j ← 1 to N/Nbatch do
3 Sample a mini-batch;
4 Calculate the batch loss according to Eq. (16);

5 Compute gradient: ∇wc
(i) and ∇wd

(i);

6 Update model: wc = wc − η × ∇wc
(i);

wd = wd − η × ∇wd
(i);

Algorithm 2: Prediction
Input : candidate solution set X, model parameter wc and wd , number of

selected solutions k;
Output: selected subset S
Initialize S ← ∅;

1 for i ← 1 to k do
2 Calculate the utility value for each solution in X\S according to Eq. (2);
3 y ← argmaxxj∈X\SU(xj , S);

4 S ← S ∪ y;

First, to generate the training dataset, we adopt a similar strategy as pro-
posed in [29]. To enable our proposed method to handle HSS problems with
solution sets of different shapes, we sample solutions from unit lp spheres with
different curvatures p to construct the candidate solution set. More specifically,
we first randomly sample a point x ∈ Rm using an exponential power distri-
bution with density f(x) = 1

2Γ (1+1/p)e
−|x|p , where Γ (t) =

∫ ∞
0

xt−1e−xdx is the
Gamma function. Then, we obtained the sampled point s = |x|/‖x‖p. We iterate
this process until enough points are sampled to construct the candidate solution
set. Note that a random curvature value p ∈ [0.5, 2] is chosen in each iteration.
Since the optimal subsets for HSS problems with large numbers of objectives are
not available, we use the solution ranking list obtained by LGI-HSS algorithms
as the labels of the training dataset. For each number of objectives, we generate
10,000 solution sets with the same size of 100 using different curvature values p
as the training dataset.

With the training dataset, we use stochastic gradient descent to optimize the
model as shown in Algorithm 1. We first initialize the model parameters using
values drawn from the normal distribution. During each epoch of the training
phase, we randomly sample a mini-batch to calculate the gradient for the model
parameters, which are then used to update the model. In our experiments, we
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use Adam [19], an effective gradient-based optimization method with an adaptive
learning rate. The learning rate is set to η = 10−4. We use the default settings
in PyTorch [24] for all other parameters of Adam. The number of epochs for
training the model is set to 100, and the batch size is set to 64 during each
training epoch.

After obtaining the trained model, we can predict the sequentially selected
solutions until we obtain the final solution subset. We generate the test candidate
solution sets using the same manner as generating the training dataset. For a
given candidate solution set X, as shown in Algorithm 2, we first initialize an
empty subset S. Then, in each iteration, we calculate the utility value for each
of the unselected solutions in X\S using the trained model parameter according
to Eq. (2). The solution with the largest utility value is selected to add into the
subset S. This selection process is repeated until k solutions are selected as the
final subset.

4 Experimental Studies

4.1 Experimental Settings

1) Problem Setting: We extensively evaluate the performance of the proposed
LTR-HSS using different HSS problems with a large number of objectives. For
the number of objectives, we consider 8-, 10-, and 12-objective HSS problems
cases. Each candidate solution set is configured to contain 100 points. For each
number of objectives, we generate 100 candidate solution sets using 100 different
random sphere parameters p (i.e., each of the 100 candidate solution sets has
different shapes from each other).

2) Algorithms Setting: Our proposed LTR-HSS is compared to state-of-
the-art methods for solving HSS problems, mainly including LGI-HSS [7] and
GAHSS [28]. LGI-HSS is currently the most efficient greedy HSS algorithm
that employs the exact hypervolume contribution calculation. GAHSS is also
designed to solve the HSS problems with a large number of objectives, which
uses an R2-based method to approximately calculate the hypervolume contri-
bution. We select these two methods for the main comparison because all other
methods, such as local search methods (e.g., APL-HSS) and evolutionary meth-
ods (PROSS), cannot search for a subset with satisfactory hypervolume within
a limited computation time. That is, these methods cannot efficiently solve HSS
problems with a large number of objectives in our experimental settings. How-
ever, we still compare these methods with our proposed LTR-HSS to illustrate
this point, including APL-HSS [22], PROSS [25], DSS [31], and CSS-MEA [6].

3) Parameter Setting: For GAHSS, the number of direction vectors is set
to 300 for the main comparison. We also examine other different specifications
of the number of direction vectors. All other compared algorithms use their
default parameter settings. For a fair comparison, the reference point is set
to (1.1, ..., 1.1)m for the hypervolume calculation used during all the algorithm
implementations and performance evaluations.
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The proposed LTR-HSS is coded in Python and all the experiments
are measured on an Intel Core i7-8700K CPU with 16 GB of RAM, run-
ning in Windows 10. All codes and datasets in this work can be found at:
https://github.com/HisaoLabSUSTC/LTRHSS-PPSN2024.

4.2 Performance Comparison

We show the computation time results of the proposed LTR-HSS and compared
algorithms in Table 1 (with the number of selected solutions set to k = 50).
Table 1 shows the total computation time of 100 test problems achieved by each
algorithm and their average rank performance. We also calculate the speedup
in latency (i.e., time of compared algorithm

time of LTR-HSS ) achieved by LTR-HSS as evaluated in
[28]. We can see that our proposed LTR-HSS has the shortest computation time
among the compared algorithms. The average rank of 1 for LTR-HSS indicates
that the proposed method is always faster than other algorithms across HSS
problems with different numbers of objectives and shapes. We also observe that
LTR-HSS achieves a significant speedup compared to LGI-HSS. Furthermore, the
speedup attained by LTR-HSS in comparison to LGI-HSS and GAHSS becomes
more pronounced as the number of objectives increases. These results clearly

Table 1. Comparison of the proposed LTR-HSS and other HSS methods in terms of
computation time (in seconds). We report the total time of solving 100 test problems
(k = 50) and the average rank performance of each method.

LGI-HSS GAHSS LTR-HSS(Ours) LGI-HSS
LTR-HSS

GAHSS
LTR-HSS

8-objective Total time 25.2741 4.0091 3.0608 8.2574 1.3098

Avg. rank 3 2 1 / /

10-objective Total time 159.5903 4.3844 3.1597 50.5081 1.3876

Avg. rank 3 2 1 / /

12-objective Total time 962.1576 4.9726 3.2578 295.3432 1.5264

Avg. rank 3 2 1 / /

Table 2. Comparison of the proposed LTR-HSS and other HSS methods in terms of
hypervolume. We report the average value of solving 100 test problems (k = 50) and
the average rank performance of each method.

LGI-HSS GAHSS LTR-HSS LTRHSS−LGI-HSS
LGI-HSS

LTRHSS−GAHSS
GAHSS

8-objective Avg. HV 1.8233 1.8094 1.8147 −0.0088 0.0043

Avg. rank 1 2.78 2.22 / /

10-objective Avg. HV 2.1664 2.1352 2.1533 −0.0054 0.0092

Avg. rank 1 2.95 2.05 / /

12-objective Avg. HV 2.6165 2.5696 2.6006 −0.0065 0.0140

Avg. rank 1 2.96 2.04 / /

https://github.com/HisaoLabSUSTC/LTRHSS-PPSN2024
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Fig. 1. The achieved hypervolume performances when selecting different numbers of
solutions of compared algorithms in a single run.

show the better applicability of the proposed LTR-HSS for many-objective opti-
mization.

Table 2 shows the average hypervolume of the final subset achieved by each
compared algorithm across 100 test problems. We also calculate the hypervol-
ume improvement rate of LTR-HSS with respect to LGI-HSS and GAHSS (i.e.,
HV of LTR-HSS - HV of compared algorithm

HV of compared algorithm ), as evaluated in [28]. We can observe that
LGI-HSS achieves the best performance in terms of hypervolume, which is con-
sistent with our intuition. This is because LGI-HSS uses the exact hypervolume
contribution calculation, while our method uses a utility model trained from
the selection process of LGI-HSS. However, as we have shown in Table 1, LGI-
HSS becomes very time-consuming as the number of objectives increases, which
limits its applicability for solving HSS problems with more than 10 objectives.
Considering the small hypervolume improvement rate of LTR-HSS with respect
to LGI-HSS, our proposed method is superior when applied to many-objective
optimization. When compared to GAHSS, LTR-HSS achieves higher hypervol-
ume performance. Also, the advantage of LTR-HSS over GAHSS becomes more
pronounced as the number of objectives increases, since the average rank of LTR-
HSS becomes smaller and the hypervolume improvement rate becomes larger as
shown in Table 2. Considering the shorter computation time of LTR-HSS, our
proposed method completely outperforms GAHSS.

We also evaluate the performance of the proposed LTR-HSS when selecting
different numbers of solutions (i.e., different k in Eq. (1)). Figure 1 shows the
achieved hypervolume performances when selecting different numbers of solu-
tions of compared HSS algorithms in a single run. We can clearly observe that
LTR-HSS can always achieve very similar hypervolume performance to that of
LGI-HSS when selecting different numbers of solutions. Considering the signif-
icantly longer computation time required by LGI-HSS, our proposed LTR-HSS
can effectively serve as a replacement for LGI-HSS in many-objective optimiza-
tion.
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Fig. 2. Hypervolume improvement rate of LTRHSS with respect to GAHSS on each
candidate solution set and the average hypervolume improvement rate for HSS with
8-objective, 10-objective, and 12-objective candidate solution sets.
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Fig. 3. The comparison between LTR-HSS and GAHSS in terms of the average hyper-
volume performances and computation time. We examine GAHSS with different num-
bers of direction vectors, as illustrated as the numbers in the figures.

When compared to GAHSS, as shown in Fig. 1, LGI-HSS consistently shows
better hypervolume performance when selecting different numbers of solutions.
In Fig. 2, we further plot the hypervolume improvement rate of LTR-HSS with
respect to GAHSS for each of the 100 test problems and their average result.
We can see that the hypervolume improvement rate is larger than zero when
selecting different numbers of solutions for almost all the 100 test problems. The
average hypervolume improvement rate is also larger than zero. These results
show that the proposed LTR-HSS always has a stable better performance than
GAHSS.

In Fig. 3, we further compare the performances of the LTR-HSS with GAHSS
by setting GAHSS with different numbers of direction vectors, which serves
as a parameter controlling the trade-off between accuracy and complexity.
We evaluate GAHSS with the following numbers of direction vectors: |Λ| =
50, 100, 200, 300, 500, 800, 1000, and 1500. From Fig. 3, we can observe that the
proposed LTR-HSS always outperforms GAHSS in terms of both hypervolume
and computation time, even when tuning the parameter of GAHSS.

4.3 Comparison with Other State-of-the-Art HSS Methods

Some other advanced methods also have been developed for solving HSS prob-
lems. However, these methods have difficulties in effectively solving HSS prob-
lems with a large number of objectives within a limited computation time. In
other words, they cannot be integrated into EMO algorithms due to their inef-
ficiency. In this subsection, we compare the proposed LTR-HSS with other rep-
resentative HSS methods to emphasize this point, including PROSS, APL-HSS,
CSS-MEA, and DSS. PROSS is a state-of-the-art evolutionary algorithm for
solving subset section problems, which is an improved version of the previous
algorithm POSS. APL-HSS is a newly proposed local search HSS method that
outperforms other existing HSS methods based on local search. We also compare
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Fig. 4. The comparison between LTR-HSS and the other four HSS methods in terms
of the hypervolume performances and computation time in a single run.

two general subset selection methods that usually achieve satisfactory perfor-
mance: the distance-based subset selection (DSS) [31] and the clustering subset
selection based on k-means (CSS-MEA) [6].

Figure 4 shows curves of their achieved hypervolume performance over com-
putation time in a single run. Note that PROSS and ALP-HSS are iterative
algorithms, and their performance improves as the computation time increases.
We can observe that LTR-HSS always outperforms CSS-MEA and DSS in terms
of hypervolume of the obtained final subset, while their computation times are
all very short with no significant differences. CSS-MEA and DSS can solve HSS
problems with a large number of objectives, since they are general subset selec-
tion methods without any specific mechanism for handling HVC calculation or
approximate HVC calculation. When compared to PROSS and APL-HSS, the
proposed LTR-HSS achieves better performance in terms of both hypervolume
and computation time, even after a long iteration of PROSS and APL-HSS.
Only on 8-objective HSS after a long computation time, APL-HSS can achieve
a similar hypervolume performance as LTR-HSS. However, when handling HSS
problems with a larger number of objectives, APL-HSS exhibits clear inferior-
ity compared to LTR-HSS. In other words, both APL-HSS and PROSS cannot
effectively solve HSS problems with a large number of objectives within a short
computation time, which directly limits their applicability to existing EMO algo-
rithms. These experimental results demonstrate the superiority of our proposed
LTR-HSS over other state-of-the-art HSS methods.

5 Conclusion

In this paper, we proposed a learning-to-rank based framework for hypervolume
subset selection, which is called LTR-HSS. We compared our proposed method
with other state-of-the-art HSS methods. The experimental results showed our
proposed LTR-HSS can efficiently solve HSS problems with large numbers of
objectives within a very short computation time while achieving very good
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hypervolume performance. More specifically, our LTR-HSS outperforms other
HSS methods in terms of both computation time and hypervolume performance,
besides LGI-HSS. When compared to LGI-HSS, our LTR-HSS is significantly
faster while achieving competitive hypervolume performance. Considering the
extremely long computation time of LGI-HSS, our proposed LTR-HSS is supe-
rior to all existing HSS methods when solving HSS problems with large numbers
of objectives.

There are two primary research directions in the future. First, since our
proposed LTR-HSS serves as a general framework, we will explore the use of more
sophisticated models (e.g., deep neural networks) to define the utility function
for improving the current performance. Secondly, we will investigate integrating
the proposed HSS method as a component for developing new EMO algorithms.
This is primarily aimed at addressing the limitation of the indicator-based SMS-
EMOA, which struggles to efficiently handle problems with a large number of
objectives in a reasonable computation time.
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Abstract. In the evolutionary multi-objective optimization (EMO)
community, it is well known that the convergence ability of dominance-
based multi-objective evolutionary algorithms (MOEAs) is severely dete-
riorated on many-objective problems with more than three objectives. In
this paper, we clearly demonstrate that the convergence ability of NSGA-
II deteriorates even in the case of three objectives. Our experimental
results on multi-objective knapsack and traveling salesman problems
with 2–6 objectives show that NSGA-II starts to deteriorate the qual-
ity of the current population after a number of generations even when
it is applied to three-objective problems. Surprisingly, NSGA-III also
shows a similar performance deterioration. We analyze the search behav-
ior of NSGA-II, NSGA-III, three versions of MOEA/D, and SMS-EMOA.
Then, we explain the reason for the performance deterioration of NSGA-
II and NSGA-III, which exists in the environmental selection mecha-
nism of each algorithm. Another interesting observation is that NSGA-II
has the best or second best performance (next to MOEA/D with the
weighted sum) among the examined algorithms on many-objective prob-
lems in early generations before it starts to show performance deteriora-
tion.

Keywords: Multi-objective optimization · Pareto dominance-based
algorithms · Evolutionary multi-objective optimization

1 Introduction

In the evolutionary multi-objective optimization (EMO) community, it has been
repeatedly pointed out in the literature [14,17] that the convergence ability of
Pareto dominance-based multi-objective evolutionary algorithms (MOEAs) such
as NSGA-II [8] and SPEA2 [19] is severely deteriorated on many-objective prob-
lems with more than three objectives. This is because almost all solutions in
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the current population quickly become non-dominated in many-objective opti-
mization. Some studies also pointed out that the difficulty of many-objective
optimization does not simply depend on the number of objectives [12,15]. How-
ever, it can be viewed as a general consensus in the EMO community that
dominance-based MOEAs do not work well on many-objective problems with
more than three objectives. This general consensus also implies that dominance-
based MOEAs work well on multi-objective problems with two or three objec-
tives.

In this paper, we present counter-examples to this consensus using NSGA-II.
We examine the anytime performance of NSGA-II on multiobjective traveling
salesman problems (MOTSP) and multi-objective knapsack problems (MOKP)
with 2–6 objectives. Our experimental results clearly show that the quality of the
current population starts to deteriorate in the middle of the execution of NSGA-
II even in the case of only three objectives. Before this deterioration (i.e., in early
generations), NSGA-II shows better performance than well-known algorithms
such as MOEA/D [18], NSGA-III [7] and SMS-EMOA [3] even for six-objective
MOTSP and MOKP. That is, our experimental results show that NSGA-II works
well on many-objective problems (in early generations) and NSGA-II does not
work well on three-objective problems (in later generations). These observations
are clearly different from the above-mentioned consensus in the EMO community.
We also demonstrate that NSGA-III shows a similar performance deterioration
in the middle of its evolution.

None of the above-mentioned interesting observations is obtained when we
start with a randomly generated initial population. This may be the reason why
they have not been reported in the literature. In combinatorial optimization, it is
not realistic in many cases to use a random initial population since (i) randomly
generated solutions are far away from Pareto fronts and (ii) domain-specific
heuristics are often available for single-objective problems. That is, the perfor-
mance of MOEAs can be drastically improved by adding heuristic solutions to a
random initial population [5,9,10]. All of the above-mentioned interesting obser-
vations are obtained from our experiments only when a few heuristic solutions are
added to random initial solutions. We examine NSGA-II, two implementations of
NSGA-III (in PlatEMO [16] and pymoo [4], three versions of MOEA/D [18] with
different scalarizing functions, and SMS-EMOA [3]. In early generations (e.g.,
until the 100th generation), NSGA-II shows higher performance than the other
algorithms (except for MOEA/D with the weighted sum) even for six-objective
problems. Then, NSGA-II starts to deteriorate the quality of the current pop-
ulation even for three-objective problems. Surprisingly, NSGA-III also shows a
similar performance deterioration. After reporting these interesting observations,
we examine the reason why NSGA-II (and NSGA-III) shows such a performance
deterioration even for three-objective problems.

This paper is organized as follows: In Sect. 2, we show the anytime perfor-
mance of NSGA-II and other MOEAs for MOTSP and MOKP with 2–6 objec-
tives using a purely random initial population. In Sect. 3, we perform the same
experiments as in Sect. 2 using a random initial population with a few heuristic
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solutions. We also examine the search behavior of NSGA-II in detail for three-
objective problems in Sect. 3. Finally, Sect. 4 concludes this paper.

2 Performance Evaluation of NSGA-II Using Random
Initial Solutions

In this section, we first examine the performance of NSGA-II [8] on MOTSP
and MOKP problems using randomly generated initial populations. For com-
parison, we also examine the performance of MOEA/D [18] (representative
of decomposition-based MOEAs), SMS-EMOA [3] (representative of indicator-
based MOEAs), and NSGA-III [7] (an improved version of NSGA-II for handling
many-objective optimization problems).

2.1 Test Problems

In our study, the multi-objective travelling salesman problem (MOTSP) and
multi-objective knapsack problems (MOKP) are used to evaluate the perfor-
mance of different MOEAs. We generate different MOTSP and MOKP with two
to six objectives, respectively.

The MOTSP is an extended version of the standard TSP problem, where
there exist multiple costs of travel between each pair of cities. Formally, for an
m-objective MOTSP problem, given a set of nodes V = {1, ..., n} and m cost
matrices C = {C1, ..., Cm}, the goal is to minimize each of the m cost objectives.
The k-th cost objective is defined as:

fk(x) =
∑

i∈V

∑

j∈V,j �=i

ckijxij , k ∈ {1, ...,m} (1)

where ckij is the elements of Ck that denotes the k-th cost of travel between node
i and j, and xij is 1 if there exists an edge between node i and j, otherwise 0. In
our experiments, for each m-objective TSP problem, we generate m independent
matrices by assigning each pair of cities with m numbers as the costs, which are
randomly drawn from the interval [0,1).

For MOKP, we convert the multi-objective 0–1 knapsack problems proposed
in [20] to the minimization problems by multiplying each objective by −1 and
enforcing each objective to be positive. An m-objective 0–1 knapsack problem
with n items is formulated as follows:

Minimize F (x) = (f1(x), f2(x), ..., fm(x)), (2)

subject to
n∑

j=1

bijxj ≤ ci, i = 1, 2, ...,m, (3)

xj ∈ {0, 1}, j = 1, 2, ..., n. (4)

where fi(x) =
∑n

j=1 aij(1 − xj) and ci = p
∑n

j=1 bij for i = 1, 2, ...,m. In this
formulation, aij is the profit of item j according to knapsack i, bij is the weight
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of item j according to knapsack i, and ci is the capacity of knapsack i with p
control the capacity size. In this paper, we generate different MOKPs with 500
items, where aij and blj were randomly specified as integers in the interval [10,
100] and p is set to 0.5 (i.e., capacity is specified as 50% of the total weights).

2.2 Parameter Settings

For the parameter settings, the population size N is set to 91 for two- and
three-objective problems, 120 for four-objective problems, 210 for five-objective
problems, and 258 for six-objective problems. The termination condition for
each algorithm is set to 5,000 generations. All experiments are performed on the
PlatEMO platform [16].

For SMS-EMOA, we use the exact hypervolume calculation for two- to four-
objective problems and the approximated hypervolume calculation [2] for five-
and six-objective problems. As for NSGA-III, it has been recently reported that
a different implementation of the normalization mechanism can strongly affect
its performance for multi-objective combinatorial problems [11]. To ensure the
reliability of the experimental results, it’s worth noting that we also implement
a pymoo [4] version of NSGA-III that uses a different normalization mechanism
from the PlatEMO [16] implementation of NSGA-III for a comparison purpose.
For MOEA/D, we use the weighted sum, modified Tchebycheff, and penalty
boundary intersection (PBI) functions as the scalarizing functions, denoted as
MOEA/D-WS, MOEA/D-mTche, and MOEA/D-PBI, respectively. The original
MOEA/D randomly assigns initial solutions to each weight vector. In our study,
each initial solution is carefully assigned to its corresponding weight vector based
on the best scalarizing function value.

We conduct 21 independent runs of each algorithm on each test problem. The
hypervolume (HV) [21] is used as the indicator for the performance evaluation.
For MOTSP and MOKP, which are the minimization problems, the reference
point for calculating HV is defined as [9]:

ref = Fmax + 0.1 × (Fmax − Fmin) (5)

where Fmax = (fmax
1 , fmax

2 , ..., fmax
m ) and Fmin = (fmin

1 , fmin
2 , ..., fmin

m ) are
the maximum and minimum objective values ever found by all compared algo-
rithms in our computational experiments, respectively. The final hypervolume
value of the population at each generation is normalized by dividing it by the
hypervolume of Fmin (which can be viewed as an estimated ideal point).

2.3 Experimental Results

Figure 1 and Fig. 2 show the average HV values over 5000 generations for MOTSP
and MOKP problems, respectively, with randomly generated solutions are used
as the initial population for the seven compared MOEAs.

We can observe that the performance of NSGA-II is similar to MOEA/D,
SMS-EMOA, and NSGA-III on two-objective and three-objective problems.
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Fig. 1. Average HV for two-objective, three-objective, four-objective, five-objective,
and six-objective TSP problems over 5000 generations, obtained from 21 runs. Ran-
domly generated solutions are used as the initial population.

Fig. 2. Average HV for two-objective, three-objective, four-objective, five-objective,
and six-objective KP problems over 5000 generations, obtained from 21 runs. Randomly
generated solutions are used as the initial population.
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However, the performance of NSGA-II is clearly inferior to MOEA/D and
SMS-EMOA on four-, five- and six-objective problems. Moreover, the difference
between NSGA-II and the others increases with the number of objectives. These
observations are consistent with reported results in the literature [12], which indi-
cate that NSGA-II usually cannot achieve satisfying performance when solving
many-objective problems (i.e., problems with more than three objectives).

In general, none of these algorithms show significant degradation in perfor-
mance throughout the evolutionary process. Based on these results, it appears
that these algorithms are capable of maintaining and utilizing good solutions in
the current generation. It is important to note that the performance stagnation
observed in NSGA-III (i.e., its performance cannot be improved after around
1000 generations as indicated by the yellow line in Fig. 1) is due to the nor-
malization mechanism implemented in PlatEMO, which has been explained in
[11]. With pymoo’s normalization mechanism implemented, NSGA-III exhibits
improved performance, as shown by the pink line in Fig. 1.

3 Performance Evaluation of NSGA-II Using Heuristic
Initial Solutions

In this section, we examine the performance of the seven MOEAs with random
initial populations including a few heuristic solutions. The details of how to
obtain the heuristic solutions are explained in the following subsections.

3.1 Heuristic Solutions for MOTSP and MOKP

In this study, we generate (m + 1) heuristic solutions for MOTSP and MOKP
by using the following methods.

First, for a problem with m objective [f1(x), f2(x), ..., fm(x)], we decompose
the original multi-objective problem into (m + 1) single-objective problems by
using the weighted sum scalarization:

g(x) = w1f1(x) + w2f2(x) + ...+ wmfm(x) (6)

where w1, w2, ..., wm are the elements of a given weight vector w. In this paper,
for a m-objective problem, we consider to use the (m+1) weight vectors includ-
ing: m extreme weight vectors: [w1 = (1, 0, ..., 0),w2 = (0, 1, ..., 0), ...,wm =
(0, 0, ..., 1)], and one center weight vector: wm+1 = (1/m, 1/m, ..., 1/m). Then,
we can obtain (m + 1) decomposed single-objective optimization problems. By
solving each of these problems, we obtain (m+ 1) heuristic solutions.

For MOTSP, we use a greedy algorithm to solve each decomposed single-
objective problem as follows. The cost between two cities of a decomposed single-
objective TSP is the weighted sum of the cost between them corresponding to
each objective. For example, the cost between two cities p and q with a given
weight vector w = (w1, w2, ..., wm) is: dw (p, q) = w1d1(p, q) +w2d2(p, q) + . . .+
wmdm(p, q), where di(p, q), i = 1, 2, ...,m is the cost between two cities p and
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q corresponding to the i-th objective. From an arbitrary node as the starting
point, we successively pick the node that results in the smallest weighted sum
cost when moving from the previously selected node. We conduct the greedy
algorithm by examining all nodes as the starting point. The resulting tour with
the smallest cost is chosen as the heuristic solution corresponding to the given
weight vector.

Fig. 3. Average HV for two- to six-objective TSP problems over 5000 generations,
obtained from 21 runs. (m+ 1) heuristic solutions together with other randomly gen-
erated solutions are used as the initial population.

For MOKP, given a weight vector w, the original MOKP is decomposed into
a single-objective KP with the optimization objective outlined in Eq. (2), subject
to Eqs. (3)–(4), which can be viewed as an integer programming (IP) problem.
In our experiments, we use MOSEK [1] as the solver based on the YALMIP
[13] optimization framework to solve the formulated IP problem. The obtained
solution is used as the heuristic solution to the single-objective KP.

3.2 Experimental Results

Figure 3 and Fig. 4 show the average HV values over 5000 generations for MOTSP
and MOKP problems, respectively, with the (m+1) heuristic solutions included
in the initial population together with other randomly generated solutions for
the seven compared MOEAs. We can see from the comparison with the previous
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Fig. 4. Average HV for two- to six-objective KP problems over 5000 generations,
obtained from 21 runs. (m+ 1) heuristic solutions together with other randomly gen-
erated solutions are used as the initial population.

results in Fig. 1 and Fig. 2 that initial populations with a few heuristic solutions
have much higher HV values than with pure random initial solutions.

On the two-objective MOTSP and MOKP, no performance deterioration is
observed for all the seven compared MOEAs. That is, the search mechanisms of
these MOEAs can keep heuristic solutions in the current population when han-
dling two-objective problems. However, when the number of objectives is more
than two (i.e., three to six objectives), the achieved hypervolume performance of
NSGA-II keeps decreasing after around 500 generations. That is, whereas NSGA-
II can efficiently utilize heuristic solutions in early generations (since the HV
performance is even better than other MOEAs in the early generations), it can
delete good solutions in the middle of execution and deteriorate the quality of the
current population by the generation updates even on three-objective problems.
Similar performance deterioration is also observed for NSGA-III and NSGA-
III (pymoo). However, for MOEA/D and SMS-EMOA, no such performance
deterioration is observed. These observations indicate that certain mechanisms
of NSGA-II (and NSGA-III) struggle to handle such multi-objective problems
even in scenarios with only three objectives, which contradicts our intuition.

3.3 Search Behavior Analysis of NSGA-II

We first analyze the reason for the performance deterioration of NSGA-II as
follows. At the environmental selection step of NSGA-II, we need to select N



60 C. Gong et al.

Fig. 5. Number of non-dominated solutions in the merged population across genera-
tions when using NSGA-II with heuristic solutions to solve three- and two-objective
TSP. The red line indicates the population size, and the blue curve is the average result
over 21 runs. (Color figure online)

Fig. 6. (a) The solution distribution at the 1000th generation in a single run using
NSGA-II with heuristic solutions to solve 3-objective TSP; (b) Average distance
between the center heuristic solution and its closest solution in the merged popula-
tion across generations.

solutions as the next population from the merged population with the size of
2N (i.e., the combination of the current population and offspring). Figure 5 (a)
shows the number of non-dominated (ND) solutions in the merged population
at different generations when using NGSA-II to solve the three-objective TSP
in a single run. We can see that the number of non-dominated solutions quickly
increases over 100% of the population size 91 (i.e., the red line in Fig. 5 (a)).
Therefore, all these ND solutions reside in the first front as well as the last
front, where no more solutions can be accommodated. Following the mechanism
of NSGA-II, in this scenario, N (i.e., 91) solutions are chosen from the ND
solutions set completely depending on their crowding distance. If there exist
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solutions that are close to the heuristic solutions, as shown in Fig. 6 (a), these
heuristic solutions will have a small value of crowding distance which results in
their elimination from the current population.

To further validate this explanation, we illustrate the survival status of the
(m+1) heuristic solutions and their corresponding front number (i.e., the front to
which they belong) in Fig. 7 (a) and Fig. 7 (b), respectively. For example, in Fig. 7
(a), “1” means that the solution survives after the environmental selection and
“0” otherwise. In Fig. 7 (a), a front number of “1” or “2” denotes that the solution
is in the first or second front, respectively, while “0” indicates that the solution
has been eliminated from the current population. In Fig. 7 (a), we can see that
the extreme heuristic solutions (i.e., E1 and E3) and the center heuristic solution
(i.e., C4) cannot survive in the current population after certain generations. In
Fig. 7 (b), for heuristic solutions C4 and E1, their front numbers jump from “1”

Fig. 7. The survival status of heuristic solutions in the environmental selection of
NSGA-II and their corresponding front number when solving three- and two-objective
TSP in a single run. For the survival of heuristic solutions, “1” denotes that they
survive in the environmental selection and “0” otherwise. For the front number, “1” and
“2” denotes that the solution is in the first front and second front, respectively, and “0”
denotes it is removed from the current population.
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to “0”. It means that these two solutions are eliminated since they have a worse
crowding distance value. As for heuristic solution E3, its front number changes
from “1” to “2”, indicating a better solution that dominates it is produced which
results in its elimination.

Since the good heuristic solutions E1 and C4 are removed from the current
population with no better solutions produced as a replacement, the hypervolume
of NSGA-II degrades as shown in Fig. 3. Actually, it is challenging to regenerate
the center heuristic solution (or a similar good solution) once it has been elimi-
nated. To demonstrate it, in Fig. 6 (b), we plot the distance between the center
heuristic solution and its closet solution in the current population. We can see
that the distance keeps increasing across the generations, which suggests that the
solutions in the population have worse convergence towards the central Pareto
front. It means that after the removal of the center heuristic solution, NSGA-II
focuses solely on enhancing diversity without being able to improve convergence.
All the performance deterioration of NSGA-II for four- to six-objective problems
can also be attributed to these explanations.

As a comparison, in Fig. 5 (b), we plot the number of ND solutions in the
merged population for using NSGA-II to solve two-objective TSP. We can see
that the number of ND solutions is almost always smaller than the population
size. In this scenario, heuristic solutions as ND solutions will survive until better
solutions (i.e., solutions that dominate heuristic solutions) are generated. We
also plot the survival curve and front number curve for two-objective TSP in a
single run in Fig. 7 (c) and (d). We observe that the front numbers of heuristic
solutions E1 and C3 jump from “1” to “2”, which indicates that better solutions
are generated to replace them. Although these two heuristic solutions cannot
survive in the current population, the generated better solutions can serve as
their replacements which explains why the hypervolume will not degrade.

3.4 Search Behavior Analysis of Other MOEAs

Similar to NSGA-II, NSGA-III (and NSGA-III (pymoo)) also experiences a
performance deterioration as shown in Fig. 3 and Fig. 4. Here, we explain this
phenomenon for NSGA-III as follows. Figure 8 (a) shows the number of non-
dominated solutions across generations for NSGA-III on 3-objective TSP. We
can observe that the number of ND solutions quickly increases over 100% of
the population size. In this scenario, all these ND solutions including heuristic
solutions compete for survival completely based on the niche-preservation oper-
ation proposed in NSGA-III. More specifically, first, a set of reference vectors
is generated by using Das and Dennis’s approach [6]. Since currently each ref-
erence vector has no associated solutions, a random reference vector is selected
and the solution that has the shortest perpendicular distance to it will be added
to the current population. This process is repeated until a total of N solutions
are selected. Therefore, there is a high possibility that the heuristic solutions
cannot survive when they have a large perpendicular distance to the reference
vectors. Figure 9 (a) and (b) show the survival curve and front number curve of
using NSGA-III to solve three-objective TSP in a single run, respectively. We
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can observe that all the heuristic solutions E1-3 and C4 cannot survive after
certain generations. Also, their front numbers jump from “1” to “0”, which indi-
cates these heuristic solutions are removed from the current population without
any better solutions being generated to take their place. The removal of these
heuristic solutions without replacement makes it difficult to reproduce such good
solutions when losing their important domain knowledge. This directly leads to
the performance deterioration of NSGA-III.

Fig. 8. Number of non-dominated solutions in the merged population across genera-
tions when using NSGA-III with heuristic solutions to solve three- and two-objective
TSP.

Fig. 9. The survival status of heuristic solutions in the environmental selection of
NSGA-III and their corresponding front number when solving three-objective TSP in
a single run.

Another interesting phenomenon is that NSGA-III shows an earlier per-
formance deterioration than NSGA-II. This is because the extreme heuristic
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solutions are more likely to be removed from the current population in ear-
lier generations when using NSGA-III compared to NSGA-II, as shown in
the comparison between Fig. 9 (a) and Fig. 7 (a). The high possibility of the
removal of the extreme heuristic solutions for NSGA-III in earlier generations
is also rational. As we have explained, the survivals of these heuristic solu-
tions in NSGA-III completely depend on their perpendicular distances to ref-
erence vectors. Since the extreme heuristic solutions are generated by solv-
ing the weighted sum scalarization in Eq. (6) with m extreme weight vectors:
[w1 = (1, 0, ..., 0),w2 = (0, 1, ..., 0), ...,wm = (0, 0, ..., 1)], they locate at the m
corners of an inverted triangular shape in the objective space. The reference vec-
tors, however, are generated using Das and Dennis’s approach, which samples
from a triangular shape. As a result, there is a significant distance between the
extreme heuristic solutions and the reference vectors, leading to the removal of
heuristic solutions from the current population in the earlier generations.

Fig. 10. The survival status of heuristic solutions in the environmental selection of
MOEA/D-PBI and MOEA/D-mTche and their corresponding front number when solv-
ing three-objective TSP in a single run.

For MOEA/D with different scalarization functions, we observe no such per-
formance deterioration. It indicates that MOEA/D can keep heuristic solutions
in the current population and utilize them. For example, Fig. 10 shows the sur-
vival status when using MOEA/D-PBI and MOEA/D-mTche to solve three-
objective TSP in a single run. We can see that all the heuristic solutions always
survive in the current population. As we have explained for NSGA-II and NSGA-
III, their non-dominated sorting mechanism will not work when the number of
ND solutions exceeds the population size. However, the survival of solutions in
MOEA/D depends on their scalarization values. Since the scalarization calcula-
tion of a solution considers both the convergence of the solution to the Pareto
front and its distance to the reference vectors, the heuristic solutions will always
have better scalarization values since they have very good convergence towards
the Pareto front, which leads to their survival in the current population. In
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other words, the environmental selection mechanism of MOEA/D will always
consider the dominance relationships between solutions, even when the number
of non-dominated solutions exceeds the population size.

For SMS-EMOA, its environmental selection mechanism ensures that solu-
tions with larger hypervolume contributions survive. Consequently, its hyper-
volume performance consistently increases through the generation updates. In
other words, the heuristic solutions can always survive until many solutions that
have larger hypervolume contributions than them are generated.

4 Conclusion

In this paper, we demonstrated that the number of generations has much larger
effects on the performance of NSGA-II on multi- and many-objective combina-
torial optimization problems than the number of objectives. When we used a
random initial population including a few heuristic solutions, NSGA-II showed
better performance than other MOEAs in early generations (e.g., at the 100th
generation) even for six-objective problems. In later generations, NSGA-II con-
tinued to deteriorate the quality of the current population. Finally, it showed
poor performance at the final generation (10,000th generation) even for three-
objective problems. NSGA-III also showed a similar performance deterioration.
Our detailed search behavior analysis of NSGA-II found the following reasons
for the above-mentioned observations. In early generations, heuristic initial solu-
tions are not removed from the population since they are non-dominated and the
number of non-dominated solutions in the merged current and offspring popula-
tion is smaller than the population size. As a result, good solutions are generated
from the heuristic initial solutions. Then, at some generations, the number of
non-dominated solutions becomes larger than the population size. As a result,
the selection of solutions for the next generation is mainly based on the crowding
distance, which can remove good solutions (and well-converged solutions) from
the population. This leads to continuous performance deterioration in later gen-
erations even in the case of three objectives. A similar explanation can be given
to the performance deterioration of NSGA-III.

Our experimental results clearly demonstrated that the consensus in the
EMO community about the performance of dominance-based MOEAs is not
always applicable to multi-objective combinatorial optimization. Our observa-
tions can be used for the design of practically useful high-performance MOEAs
for multi-objective combinatorial optimizations. This is because combinatorial
optimization problems often have domain-specific heuristics to quickly generate
good initial solutions. This is also because real-world problems are often expen-
sive (i.e., a small number of generations is often used as a termination condi-
tion). One future research topic is to improve the performance of NSGA-II and
NSGA-III by preventing their performance deterioration in later generations. We
may need some additional mechanism to assign higher fitness to well-converged
non-dominated solutions than other non-dominated solutions. Another future
research topic is to utilize the high performance of NSGA-II in early generations
in order to improve the performance of other MOEAs.
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Abstract. Many-objective optimization (MaO) is a basic issue in vari-
ous research areas. Although Pareto optimality is a common criterion for
MaO, it may bring many troubles when facing a huge number (e.g., up
to 100) of objectives. This paper provides a new perspective on MaO by
introducing a many-objective cover problem (MaCP). Given m objec-
tives, MaCP aims to find a solution set with size k (1 < k � m) to
cover all objectives (i.e., each objective can be approximately optimized
by at least one solution in this set). We prove the NP-hard property of
MaCP and develop a clustering-based swarm optimizer (CluSO) with
a convergence guarantee to tackle MaCP. Then, we propose a decou-
pling many-objective test suite (DC-MaTS) with practical significance
and use it to evaluate CluSO. Extensive experimental results on various
test problems with up to 100 objectives demonstrate both the efficiency
and effectiveness of CluSO, while also illustrating that MaCP is a feasible
perspective on MaO.

Keywords: Multi-objective optimization · Many-objective
optimization · Particle swarm optimization · Clustering

1 Introduction

In many real-world problems such as drug design [26], route planning [34], and
data mining [33], it is very often that multiple objectives should be optimized
simultaneously. Generally, these problems with multiple objectives to be opti-
mized are termed multi-objective optimization problems (MOPs) [48]. If an
MOP has more than three objectives, it can be further referred to as a many-
objective optimization problem (MaOP) [28]. Due to the complicated relation-
ships between different objectives, how to effectively solve MaOPs has become
an emerging issue, which is often referred to as many-objective optimization
(MaO) [28].

Currently, an MaOP is often tackled by finding a solution set using Pareto
optimality [4]. The solutions in this set should be non-dominated to each other
(i.e., for any two solutions in the set, one is superior to the other in at least one
objective), and the objective values of all solutions in this set should approximate
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or reach the whole Pareto front (PF). Based on this idea, numerous algorithms
have been designed in recent years, and many-objective evolutionary algorithms
(MaOEAs) [28] have become the mainstream methodologies.

Fig. 1. An illustration of MaCP with m = 6 and k = 3. {f1, f2, f3, f4, f5, f6} are six
objectives desired to be minimized simultaneously, and a solution set X =

{
x1, x2, x3

}

can be discovered to cover all objectives.

However, when the number of objectives is extremely large (e.g., up to 100),
the dimensionality of PF can be as large as (m− 1) [46], where m is the number
of objectives. Thus, using Pareto optimality may generate a tremendous number
of non-dominated solutions, which easily brings the following three troubles [28]:

– The whole PF can be difficult to reach or approximate.
– The computational overhead can be very high.
– The selection of suitable solutions can be troublesome for decision-makers.

In view of these potential troubles, how to effectively solve MaOPs with a huge
number of objectives remains a pending issue [28]. Therefore, there is a need
to develop a novel methodology that can effectively tackle numerous objectives
while directly providing decision-makers with a desirable number of solutions.

To this end, we introduce the idea of cover to MaO and propose a many-
objective cover problem (MaCP). Similar to many classical covering problems
such as set cover [21] and vertex cover [15], MaCP aims to discover a solu-
tion set with size k (1 < k � m) to cover all objectives (i.e., each objective
can be approximately optimized by at least one solution in this set). Figure 1
gives an illustration of MaCP with m = 6 and k = 3, where the six objectives
{f1, f2, f3, f4, f5, f6} are desired to be minimized simultaneously, and a solution
set X =

{
x1, x2, x3

}
can be found to cover all objectives (i.e., {f1, f2}, {f3, f4},

and {f5, f6} can be approximately optimized by x1, x2, and x3, respectively).
Therefore, as long as MaCP is well addressed, we can directly provide decision-
makers with a desirable number of solutions when facing many objectives.

We provide an explicit mathematical definition for MaCP and prove its NP-
hard property. Then, We develop a clustering-based swarm optimizer (CluSO)
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to solve MaCP and demonstrate its convergence property. Inspired by the idea
of particle swarm optimization (PSO) [25], CluSO classifies all objectives into
different clusters and iteratively optimizes a particle swarm under the guidance
of the current best solution set and the global best solution set. When reaching
the maximal number of iterations, the global best solution set is returned as the
final solution set for MaCP.

While CluSO is developed to optimize many objectives, we argue that most
existing many-objective test suites (MaTSs) are perhaps not suitable for validat-
ing its performance. A major reason is that, despite their arbitrarily large number
of objectives, these test problems can be well addressed by a small number of
solutions. Some compelling examples can be observed in DTLZ [14]. For DTLZ1-
6, the first (m − 1) objectives can be optimized by a solution x = [x1, ..., xd]T

with x1 = 0 or 1, where d is the problem dimension. For DTLZ7, the first (m−1)
objectives can be optimized by a solution x = [0, ..., 0, xd]T . Thus, if we aim to
cover all the objectives in these MaTSs, only two solutions are enough (i.e., one
for the first (m − 1) objectives, and another for the last one). Similar phenom-
ena can also be found in other common MaTSs such as WFG [22] and MaF
[9], which shows that they are unsuitable for evaluating CluSO. In fact, in many
real-world scenarios, the optimal solutions of different objectives are often differ-
ent [12,17,24], which motivates us to propose an new MaTS, termed decoupling
MaTS (DC-MaTS). For each test problem in DC-MaTS, the optimal solution of
each objective is different to each other, which makes it practically significant
and very suitable for evaluating CluSO.

The contributions of this paper are summarized as follows.

– We provide a novel perspective on many-objective optimization (MaO) by
introducing a many-objective cover problem (MaCP), which aims to directly
provide decision-makers with a desirable number of solutions when facing
many objectives.

– We prove the NP-hard property of MaCP and develop a clustering-based
swarm optimizer (CluSO) with a convergence guarantee to solve MaCP.

– We propose a decoupling many-objective test suite (DC-MaTS) with practical
significance and use it to evaluate CluSO. Extensive experimental results
on various test problems with up to 100 objectives demonstrate both the
efficiency and effectiveness of CluSO, while also illustrating that MaCP is a
feasible perspective on MaO.

2 Related Work

2.1 Many-Objective Optimization

Currently, Pareto optimality is the main criterion for MaOPs, and MaOEAs are
the mainstream methodologies. Based on Pareto optimality, numerous methods
have been developed to enhance the capabilities of MaOEAs in solving MaOPs,
which can be classified into three types [28]: dominance-based, decomposition-
based, and indicator-based methods. Dominance-based methods mainly enhance
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the selection pressure on non-dominated solutions by modified dominance rela-
tionships such as ε-dominance [27], θ-dominance [44], and grid-dominance [43].
Decomposition-based methods focus on decomposing MaOPs into multiple sub-
problems for optimization using techniques such as aggregation functions [45],
reference points [13], and reference vectors [8]. Indicator-based methods, the
third category, guide the selection of solutions using performance indicators such
as hypervolume [20], R2 [3], and inverted generational distance (IGD) [23].

While these methods can effectively improve the diversity and convergence
of solutions, they still face significant challenges such as computational cost
and decision-making for selecting solutions. To enhance computational efficiency,
some methods attempt to introduce surrogate models [10,37,47]. Additionally,
to assist decision-makers in selecting solutions, some methods explore further
subset selection from the obtained solution set [5,19,40]. However, it is still
difficult for these methods to deal with a huge number (e.g., up to 100) of
objectives. Therefore, we propose introducing MaCP as a new perspective on
MaO, aiming to effectively tackle numerous objectives while directly providing
decision-makers with a desirable number of solutions.

2.2 Covering Problems

In many real-world scenarios, it is often necessary to select a representative part
of data from a large collection to fulfill specific objectives, which has led to the
development of various covering problems. Classical covering problems mainly
focus on two types of data structures: sets and graphs [38]. The main idea of these
problems is to find a subset or subgraph to satisfy some covering objectives, such
as minimum set cover [21], maximum set packing [41], minimum hitting set [39],
minimum vertex cover [15], maximum clique [42], and minimum dominating set
[18]. Building upon these fundamental problems, numerous practical applications
have been proposed and studied, including facility location [36], sensor placement
[35], and influence maximization [31]. Owing to the NP-hard nature of these
problems and the impracticality of exhaustive search, many heuristic methods
have been developed to address them [31,35,36].

In this paper, we serve many objectives using a small number of solutions,
which aligns well with the aims of these covering problems. Thus, we introduce
the idea of cover to MaO by proposing MaCP.

3 Problem Formulation

Similar to the definitions of many covering problems, we explicitly define MaCP
as the following form.

Definition 1 (Many-Objective Cover Problem). Given a set of m (m ≥ 4)
objectives F = {f1(x), f2(x), . . . , fm(x)} with x ∈ D ⊂ R

d (D is the decision
space) and an integer k with 1 < k � m, MaCP aims to find a set of k solutions
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X =
{
x1,x2, . . . ,xk

} ⊂ D to minimize the following objective function:

G(X) =
m∑

i=1

min1≤j≤kfi(xj). (1)

Similar to many MaO studies [28], we consider bounded continuous D in this
paper. When k = 1, MaCP reduces to the simple aggregation with equal weights
on all objectives. When k = m, it is to find the best solution for each objective
independently. Thus, we consider the non-trivial case of 1 < k � m. Moreover,
a solution set for MaCP is called a many-objective cover set (MaCS). Next, we
demonstrate the complexity of MaCP.

Theorem 1 (NP-hard Property). MaCP is NP-hard.

Proof. We prove this theorem by reducing MaCP to another NP-hard problem.
Specifically, We consider an instance of MaCP by setting fi(x) as

fi(x) = ‖vi − x‖2, (2)

where vi ∈ D is a constant vector and ‖vi − x‖2 denotes the squared Euclidean
distance between vi and x. Thus, the objective function of this instance is

G′(X) =
m∑

i=1

min1≤j≤k‖vi − xj‖2. (3)

From the form of G′(X), we can find that the aim of this instance is to find k
centers

{
x1,x2, . . . ,xk

}
for m points {v1,v2, . . . ,vm} such that each point can

be assigned to the optimal center, which is consistent with the aim of discrete
clustering problem (DCP) [16]. Since DCP is NP-hard when k > 1 [16], we can
prove the NP-hard property of MaCP and conclude the proof of Theorem 1.

4 Algorithm Design

In MaCP, each solution xj is responsible for optimizing at least one objective,
and the objectives optimized by xj can be regarded as an objective cluster.
Thus, we can use C =

{
c1, c2, . . . , ck

}
to denote the set of objective clusters,

where cj includes the objectives optimized by xj . Then, MaCP can be regarded
as detecting a suitable C for all objectives and finding the optimal solution from
each cluster. Based on this idea, CluSO is designed to address MaCP, of which
the pseudo-code is provided in Algorithm 1. At a high level, it mainly contains
two phases: initialization (lines 1–4) and iterative optimization (lines 5–10).

In the first phase, a particle swarm Ω = {ω1, ω2, . . . , ωs} is randomly initial-
ized. Each particle ωl ∈ Ω (l = 1, 2, . . . , s) holds a position vector pl ∈ R

d and a
velocity vector vl ∈ R

d. The position vector denotes a candidate solution, while
the velocity vector indicates a potential optimization direction. For convenience,
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we use P =
{
p1,p2, . . . ,ps

}
and V =

{
v1,v2, . . . ,vs

}
to record the sets of posi-

tion and velocity vectors, respectively. Then, ei =
[
fi(p1), fi(p2), . . . , fi(ps)

]T

is used to denote the objective embedding regarding fi, as the fi values of these
s solutions can directly reflect some properties of fi. Thus, we can obtain a
set of objective embeddings E = {e1,e2, . . . ,em}. After that, regarding the
objective embeddings as the features for all objectives, the k-means clustering
algorithm [1] is leveraged to classify all objectives into k clusters and obtain
the set of objective clusters C =

{
c1, c2, ..., ck

}
. Next, two important solution

sets, Xcur and Xglo, are initialized as Xcur = Xglo =
{
q1, q2, . . . , qk

}
, where

qj = argminpl∈P

∑
fi∈cj fi(pl). Among them, Xcur denotes the best MaCS in

current P (termed current best MaCS), while Xglo represents the best MaCS
found so far (termed global best MaCS).

In the second phase, P , V , Xcur, Xglo, and C will experience an iterative
optimization process. When the number of iterations reaches T , CluSO stops
and returns Xglo as the final obtained MaCS. In the following sections, we will
demonstrate the iterative optimization process in detail and theoretically analyze
the convergence property of CluSO.

Algorithm 1: CluSO
Input: objective number: m; problem dimension: d, solution number: k;

swarm size: s; iteration number: T ; learning parameters: α, β;
Output: global best MaCS: Xglo.

1 Randomly initialize the sets of position and velocity vectors:
P, V ← InitPV (s, d);

2 Get the set of objective embeddings based on the objective values of all position
vectors in P : E ← ObjEmb(P, m);

3 Initialize the set of objective clusters using the k-means clustering algorithm:
C ← ObjClu(E, k);

4 Initialize the current best and global best MaCSs: Xcur, Xglo ← InitX(P, C);
5 for t = 1 to T do
6 Update P and V : P, V ← UpdatePV (P, V, Xcur, Xglo, C, α, β);
7 Update Xcur: Xcur ← UpdateXC(P, C);
8 Update Xglo: Xglo ← UpdateXG(Xcur, Xglo);
9 Update C: C ← UpdateC(Xglo);

10 end

4.1 Iterative Optimization

We first introduce the optimization process for P and V . In the original single-
objective PSO framework [25], each particle uses the personal best position and
the global best position to guide the optimization for its position and velocity
vectors. However, in CluSO, the solutions in Xcur and Xglo are responsible
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for optimizing different objective clusters, and the performance of particles on
different objective clusters also varies. Thus, for each particle, we record the
objective cluster that achieves the best performance and guide the optimization
of its position and velocity vectors using the solutions that are responsible for
optimizing this objective cluster in Xcur and Xglo. Specifically, for particle ωl,
the most suitable solutions in Xcur and Xglo for guiding the optimization of pl

and vl are xcur,ϕ and xglo,ϕ, respectively, where ϕ = argmin1≤j≤k

∑
fi∈cj fi(pl).

Thereby, similar to the original single-objective PSO framework [25], pl and vl

will be updated according to the following rules:

vl ← r1v
l + αr2(xcur,ϕ − pl) + βr3(xglo,ϕ − pl),

pl ← pl + vl,
(4)

where r1, r2, r3 ∈ [0, 1]d are three random vectors; α, β ∈ (0,+∞) are two
human-determined learning parameters. Then, after the update of P , Xcur will
be updated as

Xcur ← {
xcur,1,xcur,2, . . . ,xcur,k

}
, (5)

where xcur,j = argminpl∈P

∑
fi∈cj fi(pl). Next, Xglo will be updated as the one

in Xcur or Xglo that has better objective function value, which means that

Xglo ← argminX∈{Xcur,Xglo} G(X). (6)

Finally, Xglo =
{
xglo,1,xglo,2, . . . ,xglo,k

}
will be further used to update the

objective clusters in C. Specifically, for cj , it will be updated by

cj ←
{

fi|fi(xglo,j) ≤ fi(xglo,j′
), 1 ≤ j′ ≤ k

}
. (7)

4.2 Convergence Analysis

Theorem 2 (Convergence Property). In CluSO, P , V , Xcur, Xglo, and C
will converge to equilibria.

Proof. We first demonstrate the convergence of P and V . Given that the update
of position and velocity vectors in P and V constantly obeys the rules in (4), we
use the expected value of r1, r2, r3 to rewrite (4) as the following form:

vl ← 0.5vl + 0.5α(xcur,ϕ − pl) + 0.5β(xglo,ϕ − pl),

pl ← pl + vl.
(8)

Let pl(t) and vl(t) denote the state of pl and vl in iteration t, respectively. Then,
(8) can be further rewritten as

vl(t + 1) = 0.5vl(t) + η
(
ρ − pl(t)

)
,

pl(t + 1) = pl(t) + vl(t + 1),
(9)
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where
η = 0.5(α + β),

ρ =
α

α + β
xcur,ϕ(t) +

β

α + β
xglo,ϕ(t).

(10)

From the view of dynamical system, (9) can be simplified to the following dynam-
ical equation:

Y(t + 1) = AY(t) +B, (11)

where
Y(t) =

[
vl(t)
pl(t)

]
,A =

[
0.5 −η
0.5 1 − η

]
,B =

[
ηρ
ηρ

]
. (12)

Then, the eigenvalues of A, termed σ, satisfy

σ2 − (1.5 − η)σ + 0.5 = 0, (13)

where
σ1 = 0.75 − 0.5η + 0.5

√
(1.5 − η)2 − 2,

σ2 = 0.75 − 0.5η − 0.5
√

(1.5 − η)2 − 2.
(14)

Since η = 0.5(α + β) > 0, we can find that

|σ1| < 1, |σ2| < 1. (15)

Based on the theories of dynamical system [6,7,11], (15) indicates that the
dynamical system in (11) can converge to an equilibrium Ȳ, i.e., Ȳ(t+1) = Ȳ(t)
holds. Thus, according to (11) and (12), we have

Ȳ =
[
0
ρ

]
. (16)

which proves the convergence of P and V . Then, according to the lines 5–10 in
Algorithm 1, we can find that Xcur, Xglo, and C can also converge when P and
V reach equilibria. Thus, Theorem 2 holds.

5 Experimental Analysis

To demonstrate that MaCP is a feasible perspective on MaO, this section con-
ducts a series of experiments to verify the efficiency and effectiveness of CluSO.
First, we illustrate our proposed test suite DC-MaTS in detail, followed by a
brief introduction to the baselines for comparison. After that, we present and
analyze the corresponding experimental results. All experiments are conducted
on a personal computer equipped with a 3.0GHz Intel Core i7 processor.
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5.1 Test Problems

Similar to many common MaTSs [9,14,22], our proposed DC-MaTS has the
following standard form:

fi(x) = −g(xi) +
1

d − 1

(

−g(xi) +
d∑

a=1

g(xa)

)

, i = 1, 2, . . . ,m, (17)

where x = [x1, x2, . . . , xd]
T denotes a solution with 0 ≤ xa ≤ 1 and d ≥ m,

and g(x) is a monotonically increasing function with x ∈ [0, 1], g(0) = 0, and
g(1) = 1. Thus, we can find that fi(x) ∈ [−1, 1] and the optimal solution to
fi(x) is x∗ = [x∗

1, x
∗
2, . . . , x

∗
d]

T where x∗
i equals 1 and all other elements equal

0. This property shows that the optimal solution of each objective is different
to each other, which aligns with many real-world scenarios [12,17,24]. Then, we
consider some common functions and give four concrete problems of DC-MaTS:

– g(x) = x (DC-MaTS1).
– g(x) = x2 (DC-MaTS2).
– g(x) =

√
x (DC-MaTS3).

– g(x) = sin 0.5πx (DC-MaTS4).

In this paper, we set d = m for simplicity and use these four types of problems
with different settings of m and k (termed DC-MaTS(m,k)) to evaluate CluSO.

5.2 Baselines

To the best of our knowledge, there has not been any algorithm other than
CluSO that is specifically designed for solving MaCP. Thus, we compare CluSO
to some commonly-used MaOEAs including MOEA/D [45], NSGA-III [13], and
RVEA [8]. It should be noted that the purpose of the comparison is not to
demonstrate the superiority of CluSO, which is perhaps predictable as the algo-
rithm is specifically designed for the proposed MaCP, while the others are not.
Instead, we would like to illustrate that MaCP is a feasible perspective on MaO,
and the practically significant problems in NC-MaTS are challenging for existing
MaOEAs. From this perspective, the comparison serves as a moderate spur to
inspire more upcoming algorithms designed from the perspective of MaCP.

For a fair comparison, the code of CluSO is implemented by Python, and
these three baselines are all implemented by the Pymoo package [2] in Python.
With a trial-and-error process, the parameters with similar meanings in CluSO
and baselines are uniformly set as follows: swarm (population) size s = 600 and
iteration number T = 100. Besides, the learning parameters in CluSO are set as
α = β = 1, and other parameters in baselines are all set to default values.

A very important point is that all these baselines address MaOPs from the
perspective of Pareto optimality. In all test environments, they return a large-
size set (termed U , |U | � k) of non-dominated solutions rather than directly
providing k solutions like CluSO. For a fair comparison, the greedy algorithm, a
widely-used solution selection method for decision-makers [5,19,40], is adopted
to select the best k solutions from U as the final output of these baselines.
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5.3 Experimental Results

We first evaluate the effectiveness (G(X)) and efficiency (computational time)
of CluSO on different problems of DC-MaTS. Similar to some related studies
[29,30,32], we conduct 10 independent runs for each algorithm and report the
corresponding results in Table 1 and Table 2, where the bold numbers indicate
the best results. In all 16 instances of DC-MaTS, CluSO achieves the best G(X)
value, and its computational time is only 9% ∼ 19% of the best baseline. The
main reason is that all these baselines address these MaOPs from the perspec-
tive of Pareto optimality. When facing numerous objectives, they conduct many
comparisons between solutions and generate a large number of non-dominated
solutions, thus consuming lots of time and resulting in unremarkable G(X) val-
ues. By contrast, CluSO solves these MaOPs from the perspective of MaCP and
avoids many unnecessary calculations, thus obtaining better G(X) values in an
efficient manner.

However, the experimental results in Table 1 and Table 2 can also bring the
following two questions:

– Do the objective values obtained by CluSO distribute evenly? In other words,
is CluSO’s optimal performance achieved by sacrificing certain objectives?

– For baselines, can the optimal solution set selected by the greedy algorithm
represent their performance well?

Table 1. The means and standard deviations of G(X) and computational time (CT/s)
obtained by CluSO and all baselines on DC-MaTS1 and DC-MaTS2.

MOEA/D NSGA-III RVEA CluSO
G(X) CT G(X) CT G(X) CT G(X) CT

DC-MaTS1 –3.29 99.48 –5.74 124.91 –4.40 81.98 –8.26 7.60
(25,3) (±0.19) (±2.91) (±0.26) (±5.95) (±0.16) (±3.67) (±0.50) (±0.13)
DC-MaTS1 –1.55 152.51 –7.91 208.57 –7.68 146.70 –16.06 13.75
(50,5) (±0.17) (±7.88) (±0.23) (±8.61) (±0.16) (±6.18) (±0.89) (±0.13)
DC-MaTS1 –2.86 206.83 –13.41 296.81 –14.01 204.40 –23.31 19.63
(75,7) (±0.36) (±15.72) (±0.54) (±20.17) (±0.40) (±15.83) (±0.85) (±0.08)
DC-MaTS1 –4.29 227.87 –20.91 325.55 –22.57 210.39 –30.29 25.55
(100,9) (±0.66) (±28.79) (±1.05) (±27.20) (±0.79) (±26.30) (±1.25) (±0.15)
DC-MaTS2 –2.02 101.62 –6.13 113.81 –4.47 82.33 –8.64 8.51
(25,3) (±0.26) (±3.41) (±0.18) (±3.73) (±0.20) (±3.62) (±0.49) (±0.14)
DC-MaTS2 –1.36 154.15 –9.01 200.42 –5.83 139.81 –16.34 15.79
(50,5) (±0.20) (±8.33) (±0.79) (±15.13) (±0.24) (±3.23) (±0.59) (±0.26)
DC-MaTS2 –3.40 219.41 –15.88 301.29 –11.87 203.71 –24.04 23.04
(75,7) (±0.53) (±22.24) (±1.10) (±24.02) (±1.08) (±17.12) (±1.18) (±0.41)
DC-MaTS2 –4.75 231.37 –25.81 329.95 –15.61 209.27 –31.80 30.14
(100,9) (±0.77) (±24.33) (±1.75) (±21.18) (±1.85) (±21.84) (±1.19) (±0.70)
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Table 2. The means and standard deviations of G(X) and computational time (CT/s)
obtained by CluSO and all baselines on DC-MaTS3 and DC-MaTS4.

MOEA/D NSGA-III RVEA CluSO
G(X) CT G(X) CT G(X) CT G(X) CT

DC-MaTS3 –3.17 98.78 –4.94 115.92 –4.26 82.89 –6.98 8.50
(25,3) (±0.15) (±3.15) (±0.15) (±5.69) (±0.10) (±4.13) (±0.32) (±0.24)
DC-MaTS3 –1.07 152.88 –6.73 202.08 –7.00 142.41 –13.20 15.38
(50,5) (±0.10) (±4.79) (±0.14) (±7.64) (±0.17) (±10.07) (±0.40) (±0.10)
DC-MaTS3 –1.98 211.80 –10.93 298.11 –12.17 207.36 –18.59 21.52
(75,7) (±0.28) (±22.45) (±0.31) (±23.10) (±0.56) (±20.16) (±0.81) (±0.11)
DC-MaTS3 –2.86 228.14 –15.72 319.37 –17.61 213.35 –23.94 29.62
(100,9) (±0.59) (±25.63) (±0.61) (±31.67) (±0.27) (±23.51) (±1.05) (±0.54)
DC-MaTS4 –4.04 104.99 –5.34 114.97 –4.65 87.37 –9.29 11.45
(25,3) (±0.20) (±4.99) (±0.17) (±4.51) (±0.28) (±4.75) (±0.66) (±0.18)
DC-MaTS4 –1.37 157.86 –6.71 209.17 –6.78 152.30 –16.77 21.68
(50,5) (±0.22) (±9.55) (±0.25) (±12.38) (±0.27) (±6.00) (±0.97) (±0.17)
DC-MaTS4 –2.08 224.66 –11.36 306.13 –11.93 218.11 –24.82 32.77
(75,7) (±0.20) (±25.83) (±0.31) (±27.29) (±0.51) (±21.93) (±0.96) (±0.33)
DC-MaTS4 –2.87 229.07 –17.00 346.41 –18.26 226.23 –31.56 43.33
(100,9) (±0.39) (±29.03) (±0.87) (±34.78) (±1.15) (±28.44) (±1.52) (±0.37)

To answer these two questions, we further present the objective values of
complete non-dominated solution sets (obtained by all baselines) and k solu-
tions (generated by CluSO) on all objectives of different DC-MaTS1 problems,
as shown in Fig. 2. It can be observed that the distribution of objective values
obtained by CluSO is highly uniform. Moreover, when the total number of objec-
tives is 25, 50, 75, and 100, CluSO achieves optimal results on 64% (16/25), 82%
(41/50), 76% (57/75), and 84% (84/100) of the objectives, respectively, which
shows the powerful capability of CluSO in optimizing many objectives and also
demonstrates that MaCP is a feasible perspective on MaO.
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Fig. 2. The objective values of complete non-dominated solution sets (obtained by
all baselines) and k solutions (generated by CluSO) on all objectives of different DC-
MaTS1 problems.

6 Conclusion

In this paper, we provide a new perspective on many-objective optimization by
introducing a many-objective cover problem (MaCP), which aims to discover
a few solutions to cover many objectives. We prove the NP-hard property of
MaCP and develop a clustering-based swarm optimizer (CluSO) with a conver-
gence guarantee to solve it. Then, we propose a decoupling many-objective test
suite (DC-MaTS) with practical significance to evaluate CluSO. Extensive exper-
imental results demonstrate both the efficiency and effectiveness of CluSO, which
shows the potential to tackle problems with one hundred or even more objec-
tives by optimizing MaCP. In the future, we plan to further analyze the nature
of MaCP and design more strategies to enhance the performance of CluSO.
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Abstract. In the combinatorial optimization field, Knowledge Discov-
ery (KD) mechanisms (e.g., data mining, neural networks) have received
increasing interest over the years. KD mechanisms are based upon two
main procedures, being the extraction of knowledge from solutions, and
the injection of such knowledge into solutions. However, in a multi-
objective (MO) context, the simultaneous optimization of many con-
flicting objectives can lead to the learning of contradictory knowledge.
We propose to develop a Solution-based KD (SKD) mechanism suited to
MO optimization. It is integrated within two existing metaheuristics: the
Iterated MO Local Search (IMOLS) and the MO Evolutionary Algorithm
based on Decomposition (MOEA/D). As a case study, we consider a bi-
objective Vehicle Routing Problem with Time Windows (bVRPTW), to
define accordingly the problem-dependent knowledge of the SKD mech-
anism. Our experiments show that using the KD mechanism we propose
increases the performance of both IMOLS and MOEA/D algorithms.

Keywords: Knowledge Discovery · Multi-objective Optimization ·
Combinatorial Optimization · Routing Problems

1 Introduction

Efficient exploration of the search space is a key element of solving discrete
optimization problems. Indeed, the search space is a set of regions containing
solutions of different quality, from which it may be more or less difficult to
escape. In this paper, we assume that solutions in the same region share com-
mon characteristics and, by wisely combining them, it is possible to reach more
interesting regions with better-performing solutions. This assumption was veri-
fied on Solomon’s benchmark, where 40% (resp. 25%) of arcs are shared between
close (high-quality) solutions in instances with tight (resp. wide) time windows.
In addition, this assumption is used by PILS [1], in which the structure of local
optima guides the exploration towards regions that are difficult to reach by sim-
ple local search (LS) algorithms.
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Knowledge Discovery (KD) processes have already received various interests,
in single-objective [1,11,23] and in multi-objective (MO) [18,24,32] optimiza-
tion. In particular, the concept of innovization introduced by Deb et al. [10],
focuses on the dependency between the decision variables of a solution to help
an optimization algorithm to reach specific parts of the objective space. We inves-
tigate a different approach by using the representation of the solution (here, as
a permutation) instead of directly using the decision variables. Our approach
finds echoes in Estimation of Distribution Algorithms [22], and more recently in
linkage learning for permutation problems [13], although our approach exploits
only frequent common structures found instead of using bayesian networks to
learn more precise dependencies between variables.

In this article, we further develop the notion of Solution-based Knowledge Dis-
covery (SKD) metaheuristics, by extending the construction of knowledge groups
developed in [18]. This work leads to a new model coherent with MO optimiza-
tion algorithms. We instantiate the model with the Iterated MOLS (IMOLS) [5]
and the MO Evolutionary Algorithm based on Decomposition (MOEA/D) [34].

Since the extraction and injection procedures are themselves dependent on
the problem studied, we decided to base our study on a bi-objective Vehicle
Routing Problem with Time Windows (bVRPTW) already presented in [19]. In
this problem, we minimize the total traveling cost and waiting time of drivers,
which are conflicting objectives [7]. Indeed, when a driver arrives too early a
waiting time is incurred, increasing the duration of the route for the driver.
Considering real-life situations (e.g. food delivery, medical transportation), this
additional time may incur satisfaction issues. Moreover, in the classical version
of the VRPTW, the first objective to optimize is the number of vehicles, which
is a discrete objective function, and then the total traveled distance is minimized
as a second objective. However, the use of two continuous objectives (the total
cost and the total waiting time) together allows the generation of fronts that
contain, in general, many more non-dominated solutions, and it is better suited
to a MO context, especially when knowledge is extracted from solutions.

The article is structured as follows: Section 2 presents MO optimization con-
cepts and the IMOLS and MOEA/D metaheuristics. Our contribution, the SKD
metaheuristic, is presented in Sect. 3. The model is integrated into IMOLS and
MOEA/D in Sect. 4. Section 5 presents the problem and defines the knowledge
to extract and inject in this context. In Sect. 6 our experimental protocol is
presented and the results obtained are discussed. We conclude in Sect. 7.

2 Context

2.1 Multi-objective Optimization

A Multi-objective Combinatorial Optimization Problem (MoCOP) is commonly
formalized as follows [8]:

(MoCOP ) =
{

Optimize F (x) = (f1(x), f2(x), . . . , fn(x))
s.t. x ∈ D,

(1)
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where n ≥ 2 objective functions fi have to be optimized, x is a vector of decision
variables, and D is the set of solutions. The objective space is the image of F .

We say that a solution x dominates a solution y, noted x ≺ y in a minimiza-
tion context, if and only if for all i ∈ {1 . . . n}, fi(x) ≤ fi(y) and there exists
j ∈ {1 . . . n} such that fj(x) < fj(y). The dominance relation induces a partial
order in the solution space. Indeed, there exist pairs of solutions that cannot be
compared to each other. Such solutions are said to be non-dominant .

A Pareto front is defined as a set of non-dominated solutions. A feasible
solution x∗ ∈ D is called Pareto optimal if and only if there is no solution x ∈ D
such that x ≺ x∗. We solve a MoCOP by finding all the Pareto optimal solutions,
which form together the Pareto optimal set. The image of the Pareto optimal
set by the objective function F provides the true Pareto front.

To compare Pareto fronts, and thus the algorithms providing them, many
indicators have been developed [27]. In this paper, we consider the unary hyper-
volume (uHV) [35] metric. It is defined relatively to a reference point Zref ,
generally (1.001, . . . , 1.001), and requires that the objectives of the solutions are
normalized between 0 and 1. This indicator is to be maximized and allows a good
evaluation of the front’s accuracy, diversity, and cardinality. Geometrically, the
uHV represents the volume of the objective space (bounded by Zref ) covered by
the members of a non-dominated set of solutions.

Many metaheuristics based on LS techniques, called MOLS [5], or using evo-
lutionary algorithms, like Non-Dominated Sorting Genetic Algorithm (NSGA-
II) [9], and MOEA/D [34], have been designed to solve MO problems. The fol-
lowing sections focus on iterated MOLS (Sect. 2.2) and MOEA/D (Sect. 2.3).

2.2 Iterated MOLS

A MOLS is an algorithm that iteratively explores solutions selected from a cur-
rent population, by using LS procedures, accepts candidates during the search,
and then updates an external archive of non-dominated solutions. We refer to
the survey of Blot et al. [5], for a comprehensive overview of all possible mech-
anisms related to the conception of MOLS. A large part of MOLS algorithms
is Pareto-based, meaning that they rely on the dominance criterion to accept
neighbors during the search, contrarily to aggregation-based ones, which aggre-
gate the different objectives to turn the problem into single-objective optimiza-
tion. Among the Pareto-based algorithms, we find the Dominance-based MOLS
(DMLS) algorithms [20] and the Pareto LS (PLS) [25].

In addition, it is possible to consider iterated MOLS (IMOLS), which mimic
iterated LS, by using a perturbation procedure as a restart when a particular
condition is reached (e.g., convergence of the MOLS).

2.3 MOEA/D

MOEA/D [34], is a genetic algorithm widely studied in the literature [33],
approximating the Pareto front by decomposing the MO problem into sev-
eral scalar objective subproblems. There exist many ways to generate M scalar
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problems, but in every case, it requires a set of weight vectors w1, . . . , wM .
A weight vector w = (w1, . . . , wn) is such that, ∀i ∈ {1, . . . , n} wi ≥ 0 and∑n

i=1 wi = 1, where n is the number of objectives considered. During the exe-
cution of MOEA/D, a population of solutions is maintained, where the i-th
solution of the population is the best solution found for the i-th subproblem.
Usually, a random permutation of the subproblems is defined in the beginning
so that subproblems are always solved in the same order. Subproblems are iter-
atively solved, by applying a genetic step composed of crossover and mutation
operators. When the subproblem i is optimized, two solutions from the popula-
tion are selected for the crossover step. To perform that selection, two neighbor
subproblems of subproblem i (included) are chosen, knowing that the neighbor-
hood of a subproblem contains the m subproblems associated with the closest
(for the Euclidean distance) weight vectors to weight vector wi. The mutation is
commonly replaced by a LS [6,15,17], to intensify the search in the regions iden-
tified with the crossover. If the final solution obtained is better than the initial
solution considered for the subproblem, then it is replaced. The final solution
is also tentatively added to an external archive storing the best non-dominated
solutions found during the search and returned once the termination criterion of
the algorithm is reached.

2.4 Unified View of IMOLS and MOEA/D

Fig. 1. The proposed unified view for
IMOLS and MOEA/D metaheuristics.

Fig. 2. The unified view integrating
the three steps of the SKD.

This section shows the structural similarities between IMOLS and MOEA/D
through a unified view. Our motivation behind this unification is to show how our
knowledge discovery mechanism (SKD), presented in Sect. 3, can be integrated
into algorithms sharing the same structural properties.

The IMOLS and MOEA/D frameworks can be abstracted with the following
four main steps: Selection, Exploitation, Update, and Perturbation. The
Fig. 1 shows how these steps interact together. The Exploitation step is used
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for intensification while the Perturbation one for diversification. A cycle is
defined as a succession of a fixed number of iterations of the three first steps (i.e.,
Selection, Exploitation, and Update). When a cycle ends, a Perturbation
occurs, if a specific criterion is met, to update the current population before the
next Selection, and so forth, until a termination criterion is reached (generally
based on time or number of iterations). An external archive is maintained to track
the best non-dominated solutions found and is finally returned. The steps are
discussed below with details about their instantiation in IMOLS and MOEA/D.

The Selection step chooses one or several solutions to explore in the current
population, initialized with the initial front provided. This choice can be done
randomly, or following a criterion to focus on a specific region of the objective
space. In IMOLS, the selection is directly performed from the current population.
In MOEA/D, each subproblem is sequentially selected, and consequently, the
associated solution is explored.

Exploitation is the intensification step of the algorithm where the search
focuses on specific regions of the search space. During this step, the neighborhood
of the selected solutions is exploited, until a criterion is reached, to generate new
(better) candidate solutions. In IMOLS, the exploitation consists of accepting
either non-dominated or dominating neighbors of the selected solutions, con-
sidering a reference set. Consequently, many iterations are needed to reach out
to a Pareto local optima. In MOEA/D the exploitation consists of applying a
single-objective LS [14], for the selected subproblem, until a local optimum is
reached.

When new solutions are found after the exploitation, the Update step ten-
tatively integrates them into the external archive and the current population.
While the external archive generally relies on bounded mechanisms, it is possible
to adopt different strategies to update the current population (e.g., replacement
of the solution explored, keeping non-dominated solutions in priority).

In neighborhood-based algorithms and evolutionary ones, it is necessary to
perturb solutions to escape regions with local optima. The Perturbation gen-
erates new solutions to be explored by applying random moves, destroy and
repair mechanisms, or genetic operators. It acts like a diversification step where
new regions of the search space can be identified and then explored. After the
perturbation, the solutions are used to create a new current population, and a
new cycle is started. In IMOLS, the perturbation relies on LS mechanisms. In
MOEA/D, it corresponds to a crossover.

In the next section, we present the SKD mechanism. Its integration in IMOLS
and MOEA/D is presented in Sect. 4.

3 Solution-Based Knowledge Discovery

3.1 Global Overview and Main Issues

In [18], the concept of knowledge groups is introduced. The idea is to divide the
objective space into regions each representing a knowledge group. A knowledge
group gathers structural elements of the solutions of the same region. If the
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approach was promising, many obstacles remain and have to be tackled to ensure
a model, that can be easily integrated into various MO algorithms. The first issue
concerns the creation of knowledge groups. The creation proposed in [18] was
dependent on the aggregations used in MOEA/D, which highly restricted its
range of applications. Our proposition, detailed in Sect. 3.2 overcomes this limit,
allowing many more integration possibilities. Then, the interaction between the
extraction (resp. injection) procedure and the groups newly created, is presented
in Sect. 3.3 (resp. Sect. 3.4). Although the interactions remain similar to those
described in [18], we present them in a more flexible way to allow a better
integration in metaheuristics.

3.2 Creation of Knowledge Groups

The problem is associating each knowledge group with a region of the objective
space. We consider that each group is related to a representative, inducing the
region of the group. In the following, we consider, for simplicity purposes, a
bi-objective space. We propose two strategies to create the kG representatives
of the groups. The first one, represented in Fig. 3, with kG = 5 representatives
named gi, generates kG uniformly spread weight vectors. Then, to evaluate the
proximity of a solution to a group we aggregate the objectives of the solution
by using the weight vector associated with the group. This strategy is a simple
variant of [18] allowing to use it in other algorithms than MOEA/D. The second
strategy, represented in Fig. 4, links the extreme points of the current front with
a straight line. Then, kG points (including the extreme points) are regularly
created on the line. Each created point corresponds to a representative of a
group. The proximity of a solution to a group is then evaluated by the Euclidean
distance between the objective vector of the solution and the representative.
With this second strategy, it is possible (and recommended) to dynamically
update the representatives of each group, before the extraction, if the extreme
points vary. In both figures, each point of the Pareto front is linked to its closest
representative, which leads to different distributions for each construction.

3.3 Extraction and Knowledge Groups

The extraction procedure is presented in Algorithm 1. It is possible to deactivate
the extraction until a certain execution time is reached, to balance low-quality
and high-quality solutions. In the following, we activate the procedure with no
delay, at the beginning of the execution, since an initial front is provided.

For the extraction procedure, a learning set L of solutions generated during
the execution of the algorithm is provided. However, MO algorithms explore
plenty of solutions during their execution (e.g., MOLS), and learning from all of
them would scramble the knowledge added to the groups. Consequently, a subset
of L that contains only the solutions that undergo the extraction procedure is
considered. Here, we suggest to keep only the non-dominated solutions of L. In
particular, it allows the learning to focus on the most interesting solutions. Please



Solution-Based Knowledge Discovery for Multi-objective Optimization 89

Fig. 3. Creation of groups based on
weight vectors (denoted WG).

Fig. 4. Creation of groups based on
extrema points (denoted EG).

note that other possibilities may be taken into account as a random sample or
a mix of dominated and non-dominated solutions.

Once L is filtered, knowledge is extracted from each remaining solution x. It is
then added to the de closest groups (function SelectGroups, l.4 of Algorithm 1)
of x, following the evaluation of the proximity between a solution and a group
provided in Sect. 3.2. The parameter de allows the control of the diversification
of the mechanism: smaller values correspond with fewer groups being updated.
Then, the elements of knowledge are added to the corresponding groups, and a
score (e.g., the frequency of appearance) reflecting the relevance of each element
is updated. However, we choose not to allow the same solution to contribute
more than once to a group, to avoid the bias induced by local optima. The set
L is emptied after updating the groups.

The construction of L and the function Filter used in Algorithm 1 are
presented in Sect. 4 since they are algorithm-dependent. The functions Extract
(l.3) and Update (l.5), being problem-dependent, are presented in Sect. 5.2.

Algorithm 1: Extraction procedure.
Input: A the current archive, G the knowledge groups, L the learning set, and

de the number of groups to update.
Output: The updated knowledge groups.

1 S ← Filter(L)
2 for x ∈ S do
3 K ← Extract(x)
4 G = {G1, . . . , Gde} ← SelectGroups(G, de, x)
5 Update(G,K)

6 L ← ∅
7 return G
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3.4 Injection and Knowledge Groups

At that point, all the solutions from the current population undergo the injection
procedure presented in Algorithm 2.

First, the knowledge to inject has to be selected. Likewise for the extraction
(see the SelectGroups function), a subset of di groups containing the closest
groups to x is created. Again, this parameter controls the diversification of the
mechanism. The function SelectOne applied to the di candidate groups selects
the final group, that will produce the knowledge to inject in the solution x. It can
be done at random, or following a specific criterion if a group is preferred. Then,
some knowledge is selected from the resulting group with the SelectKnowledge
function. In particular, the selection of the knowledge should use the scores of
the elements in the group. In that case, it is possible to select the elements with
the highest score or by means of a roulette wheel mechanism. Each element k of
knowledge is tentatively injected into a solution x′ (initially x) using the function
Inject. All solutions accepted (e.g. those non-dominating x′) during the injec-
tion of k are added to a set S′. The next solution x′ to undergo the injection can
be replaced by taking one of the solutions of S′ (function SelectNextSolution).
For that choice, it is possible to select a solution at random, with a dominance
criterion, or with an aggregation when it is defined. Finally, after the injection
of all the elements of knowledge, all the accepted solutions are returned.

SelectOne (l.2), SelectKnowledge (l.3), and SelectNextSolution (l.7)
used in Algorithm 2 are defined in Sect. 4 since they are algorithm-dependent.
The problem-dependent function Inject (l.6) is defined in Sect. 5.2.

Algorithm 2: Injection procedure.
Input: G the knowledge groups, x the current solution, and di the number of

candidate groups.
Output: Accepted solutions.

1 G = {G1, . . . , Gdi} ← SelectGroups(G, di, x)
2 G′ ← SelectOne(G)
3 K ← SelectKnowledge(G′)
4 S ← ∅
5 x′ ← x
6 for k ∈ K do
7 S′ ← Inject(k, x′)
8 x′ ← SelectNextSolution(S′, x′)
9 S ← S ∪ S′

10 return S

3.5 Integration of SKD Into the Unified View

The Solution-based Knowledge Discovery (SKD) uses knowledge groups and the
procedures of extraction and injection suited to MO algorithms. The Unified
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View presented in Sect. 2.4 contains successive steps of intensification and diver-
sification. The intensification is usually the core of the MO algorithms where
identified regions of the search space are deeply explored using an underlying
local knowledge given by the neighborhood. In this section, we integrate the
SKD into MO algorithms using our unified view (see Fig. 1). We aim to improve
the diversification phase, by exploring larger regions of the search space with the
knowledge stored in the groups.

At the beginning of the execution, given the initial front provided, the knowl-
edge groups are created following one strategy presented in Sect. 3.2.

Applying the extraction procedure at every iteration would result in a lot of
noise for the knowledge groups. In particular, waiting a few iterations allows the
learning set to contain more interesting solutions. Hence, the Extraction step
should be applied only after the end of a cycle, on a subset of explored solutions.

Any solution can undergo the injection but, like the Extraction, applying
it to all the explored solutions would waste computational resources. Thus, we
consider that the injection should be applied only after the end of a cycle and
more precisely after the Perturbation if it occurred or after the Extraction
otherwise. After the injection, a new cycle (i.e., an intensification step) is started
by updating the archive and the current population. These remarks lead to the
conception of the model presented in Fig. 2.

4 SKD for IMOLS and MOEA/D

4.1 SKD for IMOLS

We follow the DMLS model originally introduced by Liefooghe et al. [20]. The
problem’s representation, the solution evaluation, and the neighborhood struc-
ture are defined in Sect. 5.1 with the problem. The algorithm starts from an
initial front given by the user, integrated into a bounded archive, A, of size Ua,
representing the current population. The archive is bounded by using the crowd-
ing distance [9]. Then, Uc randomly selected solutions from the archive (among
the not entirely explored ones) form the set to explore. The DMLS algorithm
iteratively explores the selected solutions. During the LS, the neighborhood of a
solution x is explored until a non-dominated solution, considering all solutions
of A, is found [4]. If no solution is found, x is tagged as explored and is no longer
selected during the current cycle, moreover tagged solutions cannot be selected
during the LS. If any, the accepted solution is tentatively added to A.

In the iterated variant, we manage a second (unbounded) archive, A∗, con-
taining the best non-dominated solutions found during the execution. After lc
iterations (denoting the length of a cycle), the uHV of A is evaluated, and the
solutions of A are integrated into A∗. Before starting a new cycle, if all solutions
of A are tagged as explored or the uHV has not been increased by at least euHV

after two consecutive cycles, a perturbation step occurs. During this step, all tags
are removed from solutions, all elements from A are tagged as explored and a
new archive A is created by perturbing solutions from A∗. To perturb a solution
x, we apply three moves of the LS, with the following acceptance criterion: a
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solution y is accepted when ∀i ∈ {1, . . . , n}, fi(y) ≤ (1+εp) ·fi(x), with εp ∈ R
+,

allowing a slight relaxation of the objectives of x to test the dominance relation.
This version of IMOLS is called RIMOLS.

Following the steps presented in Sect. 3.5, the extraction and injection proce-
dures are added to RIMOLS. The variant using the weights (resp. the extrema) to
create the groups is called WGIMOLS (resp. EGIMOLS). Concerning the extrac-
tion procedure, we have to define how the learning set is managed and how
its elements are filtered. Every solution tentatively added to A after the explo-
ration step should be added to the learning set, since it may produce interest-
ing knowledge to exploit. We only keep non-dominated solutions to filter the
solutions of the learning set. Concerning the injection procedure, it is sequen-
tially applied to all the solutions from A. The SelectOne, SelectKnowledge,
and SelectNextSolution functions from Algorithm 2 are defined hereafter.
The SelectOne function chooses the group that gives the knowledge to inject.
Here, we choose the group randomly. For the SelectKnowledge function, we
rely on the scores of the elements learned. We consider Ni elements, randomly
selected among the Nf elements with the highest scores, as it was done in [1].
More details are given in Sect. 5.2 in the context of the problem. Finally, for
the SelectNextSolution function, the initial solution is returned (x in Algo-
rithm 2). Indeed, since we work with a MOLS algorithm, we prefer staying locally
around the solution by attempting to inject knowledge into it rather than try-
ing to highly optimize the solution. Finding a better solution is interesting, but
could dominate a large part of the archive, resulting in a loss of diversity.

4.2 SKD for MOEA/D

Now we provide an instantiation of MOEA/D, called RMOEAD, following the
framework described in Sect. 2.3. We consider scalar problems obtained with a
weighted sum of the objectives. Contrary to Tchebycheff decomposition, it does
not require a reference point. Given a weight vector w, the fitness of a solution
is defined as the following quantity: g(x|w) =

∑n
i=1 wi · fi(x). However, all the

solutions of the true Pareto front can not be obtained with such aggregations.
In the following, we generate M weight vectors uniformly distributed, assuming
that is enough to obtain diverse subproblems. A Partially Mapped Crossover
(PMX) [16] is applied with probability ppmx. Among the two generated solutions,
only one is randomly chosen to keep the population’s size constant. When the
crossover is not applied, the solution associated with the i-th subproblem is kept.
The mutation is a LS detailed in Sect. 5.1, and applied with probability pls.

Following the steps presented in Sect. 3.5, the extraction and injection proce-
dures are added to RMOEAD. The variant using the weights (resp. the extrema)
to create the groups is called WGMOEAD (resp. EGMOEAD). For the extrac-
tion procedure, we keep the idea exposed in Sect. 4.1. Each solution tenta-
tively added to the external archive (Update step of Fig. 1), is added to the
learning set. Then, the knowledge is extracted from non-dominated solutions
of the learning set. The injection procedure is applied to all the solutions of
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the current population (i.e., the best solution of each subproblem). The func-
tions SelectOne and SelectKnowledge are the same as presented in Sect. 4.1,
but SelectNextSolution differs. The next solution is the best (considering the
aggregation of the associated subproblem) accepted during the injection.

5 Case Study: Bi-objective VRPTW

5.1 Presentation

See [19] for a detailed formalization of the bi-objective VRPTW (bVRPTW)
considered. The bVRPTW calls for the determination of routes such that the
traveling cost (i.e. the sum of the Euclidean distance between consecutive cus-
tomers) and the total waiting time (i.e. the sum of the waiting times induced by
an early arrival to deliver a customer) are simultaneously minimized. Moreover,
each solution of the bVRPTW needs to satisfy the following constraints: each
route starts and ends at a specific location (called depot), each customer is vis-
ited by exactly one route, the sum of the demands of the customers in any route
does not exceed the capacity of the vehicles, and time windows are respected
(late arrivals are not allowed).

A solution to the problem is encoded as a customer permutation and evalu-
ated with the split algorithm provided by [26], providing a feasible solution. For
this study, we consider the operators Relocate, Swap, and 2-opt∗. These sim-
ple operators are largely used in LS algorithms for routing problems [28] since
they can produce a large neighborhood, and allow an easy incremental evalua-
tion. The Relocate operator moves one customer from its current position to
another location. The Swap operator exchanges in the solution the position of
two customers. The 2-opt∗ operator generalizes the 2-opt, by involving different
routes. In RMOEAD a Randomized Variable Neighborhood Descent is applied
for exploitation [19,30], where the order of the operators is kept during descent
(until a local optimum is reached) but shuffled each time the LS is applied. In
RIMOLS, the order of the operators is randomized too, but the search stops at
the first accepting neighbor. Only feasible solutions are considered.

5.2 Knowledge Related to a Solution

In this section, the remaining Extract and Update (resp. SelectKnowledge and
Inject) functions from the Algorithm 1 (resp. Algorithm 2), are defined to suit
the bVRPTW context. These functions are inspired by the Pattern Injection LS
(PILS) method [1]. It is an optimization method relying on frequent patterns
from high-quality solutions to explore vast neighborhoods. PILS has already
been integrated into the Hybrid Genetic Search [31] and the Guided LS [2] to
solve the Capacitated Vehicle Routing Problem (CVRP).

In routing problems, patterns are defined as sequences of consecutive cus-
tomers on a route without the depot. Those with a size between 2 and sp
are extracted from generated solutions by Extract. In particular, a route
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r = (0, v1, . . . , v|r|, 0), contains max(|r| − k + 1, 0) patterns of size k. Once the
patterns are extracted, Update adds them to corresponding groups. If the pat-
tern already belongs to the group, its frequency is incremented. Otherwise, it is
added with a frequency of one. Different groups may have different frequencies
for the same pattern. A pattern becomes frequent when its frequency exceeds a
threshold lf .

For the injection, SelectKnowledge randomly selects a pattern size among
{2, . . . , sp} to not bias the selection towards smaller, more numerous, patterns.
Then, Ni patterns are randomly chosen among the Nf most frequent patterns of
the corresponding size (without repetition). Only patterns tagged frequent can
be selected. Given a pattern and a solution x, the Inject function creates a
solution from x containing the pattern provided, as explained in [1] (except that
reversed fragments are discarded due to time windows). First, arcs connecting
the pattern are removed, thus creating partial routes, which are reconnected
(with an exhaustive search) to form feasible solutions. Several solutions may be
accepted during the reconstruction step. In IMOLS, all non-dominated solutions
are accepted, while solutions with better fitness are accepted in MOEA/D.

6 Experimental Study

6.1 Choice of Parameters Value

The tuning of the parameters for the RMOEAD variant comes from previous tun-
ing with irace [21] and we refer to [19] for a detailed analysis of the parameters.
M = 40 subproblems are created, with m = 10 neighbors. At most 2 neighbors
may have their solution replaced during the update step. The crossover is applied
with probability ppmx = 1.00, and the LS with probability pls = 0.10.

For RIMOLS, the parameters are chosen to be fair with RMOEAD. The archive
limit is set to Ua = 40. Each iteration, Uc = 1 solution is explored. The pertur-
bation occurs when the uHV does not increase by at least euHV = 10−2, and
during the perturbation, εp = 0.02. A cycle performs lc = 100 iterations.

The parameters value of EGMOEAD and WGMOEAD (resp. EGIMOLS and
WGIMOLS) are similar and their values follow the recommendation made in [19].
ppmx is set to 0.50. There are kG = 20 knowledge groups. The maximum size sp
of extracted patterns is set to 8 (resp. 5) for instances of class 2 (resp. class 1)
since large (resp. short) routes are designed. The knowledge is added to de = 1
group, and the knowledge to inject is provided by at most di = 1 group. Ni = 100
patterns of the same size are tentatively injected into each solution. They are
selected among the Nf = 250 most frequent patterns of the corresponding size
in the group. The threshold frequency for patterns is set to lf = 2.

6.2 Experimental Protocol

The experiments are run on two computers “Intel(R) Xeon(R) CPU E5-2687W
v4 @ 3.00 GHz”, with 24 cores each. Our framework is implemented in the jMet-
alPy framework [3]. The source code and our results are available on a Git1.
1 https://gitlab.univ-lille.fr/clement.legrand4.etu/skd integration.

https://gitlab.univ-lille.fr/clement.legrand4.etu/skd_integration
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The Solomon [29] and the Gehring and Homberger [12] benchmarks are com-
monly used to evaluate the performance of MO algorithms. Solomon’s bench-
mark contains instances with up to 100 customers. Customers can be randomly
located (R), clustered (C), or mixed (RC). Each category is divided into two
classes. Instances of class 1 have tighter time windows than instances of class 2,
which are less constrained. Gehring and Homberger’s benchmark uses a similar
instance generation but considers a larger number of customers.

To fairly compare the algorithms, they are all initialized with the same fronts.
Hence, we generate 30 initial fronts (available on Git) for each instance. In
IMOLS, the initial front is directly used as the initial population, however, in
MOEA/D, each subproblem is initialized with the best solution of the front.

The six algorithms are then executed over 30 seeds on each instance. The
termination criterion for each run is set to 10 (resp. 20) minutes for instances
of size 100 (resp. 200). The average uHV obtained over the 30 runs is compared
with Pairwise Wilcoxon tests with Bonferroni correction.

6.3 Results

Table 1. Average uHV (×103) of the algorithms on the different categories of instances.
RMOEAD and RIMOLS are the reference algorithms. EGMOEAD, WGMOEAD, EGIMOLS,
and WGIMOLS are the learning variants. Gray cells are statistically better comparing
all algorithms, i.e., the six rows. Bold values represent the best-performing algorithms
when MOEA/D (resp. IMOLS) variants are compared together (i.e., three rows each).

Size 100 200

Category C R RC C R RC

Class C1 C2 R1 R2 RC1 RC2 C1 C2 R1 R2 RC1 RC2

RMOEAD 833 888 805 773 776 792 703 613 755 668 733 702

WGMOEAD 904 912 834 795 784 808 793 788 800 741 806 792

EGMOEAD 856 902 806 778 762 792 744 740 784 723 774 765

RIMOLS 923 966 850 761 837 766 822 746 754 654 758 619

WGIMOLS 970 987 886 814 844 823 885 826 811 761 854 830

EGIMOLS 958 986 885 807 844 814 875 835 814 751 842 814

Table 1 summarises the results obtained. Detailed results per instance are
available on the Git provided. First, RIMOLS returns better results than RMOEAD

except on instances R2 and RC2 of size 100, and RC2 of size 200. Indeed,
instances of category 2 are less constrained, leading to a bigger exploration space.
In that case, it seems preferable to use MOEA/D rather than IMOLS to intensify
the search. However, this consideration does not apply to C2 instances, probably
due to the presence of clusters, leading to more local optima.
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We can see that using SKD (no matter the strategy used to create the
groups) positively impacts RIMOLS in all instances. The same conclusion holds
for RMOEAD except on RC1 instances of size 100, with EG groups. Moreover,
using SKD is even more beneficial in instances of bigger sizes.

In MOEA/D, using the strategy with the weight vectors to create the groups
is statistically better than using the other one. Probably because the algorithm
itself uses weight vectors to decompose the search space. Concerning the IMOLS
algorithm, both strategies are often equivalent, but using the weight vectors
leads to slightly better results. Thus, this strategy should be preferred in general.
Additionally, using SKD allows the creation of more diversified Pareto fronts for
MOEA/D and IMOLS (see Fig. 5 for comparison).

Fig. 5. Results of the execution on instance RC2 2 6 (run 6), from the Gehring and
Homberger set. The associated hypervolume and size of the final fronts (blue dots) are
shown, as well as the reference front (orange dots). (Color figure online)

7 Conclusion

In this paper, we proposed to extend the mechanism of [18] to develop a solution-
based KD mechanism, called SKD, which extracts knowledge from solutions
and injects knowledge to explore new regions of the solution space. The mech-
anism is mainly based on the creation of knowledge groups, dividing the objec-
tive space. Here, two creation strategies for the groups are developed and com-
pared. Any MO algorithm that can be an instantiation of the unified algorithm
presented in Fig. 1, can be extended by integrating SKD as shown in Fig. 2.
Then, we integrated SKD into two MO algorithms (IMOLS and MOEA/D) to
solve a bi-objective routing problem, and we defined accordingly the algorithm-
dependent components and the problem-dependent knowledge. Experiments
were performed over instances with different characteristics of size and structure.
In most cases, using SKD increases the performance of the original algorithm,
showing an interest in our developed mechanism. Moreover, creating the groups
with the weight vector strategy seems more profitable.

Future works should investigate the impact of the initialization on SKD.
More precisely, the time to start the learning may impact the resolution and
further analysis may be beneficial. Finally, it could be interesting to investigate
the possibility of transferring the knowledge learned from one instance to another
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without starting from scratch again. This may be done by detecting similarities
in the instances.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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Abstract. Multi-objective route planning is a prominent but computa-
tionally expensive optimisation problem of everyday life. Reusing knowl-
edge from similar route planning problems could enhance the perfor-
mance and the sustainability of routing algorithms. The goal of this
paper is to adapt the concept of innovization to route planning and in
this way extract knowledge from Pareto-optimal solutions. As part of
the adaptation, we design a multi-objective evolutionary algorithm for
routing and introduce a novel local search for routing problems called
Perimeter Mutation Local Search. We evaluate our proposed approach
on multi-objective time-dependent routing problems to see what knowl-
edge can be gained and whether this knowledge can improve a multi-
objective evolutionary algorithm. Our results show that we can extract
knowledge using the introduced innovization for route planning. This
knowledge is used to improve a multiobjective evolutionary algorithm
by reducing computational effort. With only about 40 % of previously
necessary function evaluations, we manage to produce similar optimisa-
tion results. This is particularly beneficial for mobile applications with
limited available computational resources.

Keywords: Innovization · Time-Dependent Route Planning · Multi-
objective Evolutionary Algorithms

1 Introduction

Route planning is an important optimisation problem of everyday life, affect-
ing many people and various industries. In the past, front-seat passengers were
often the ones reading maps and providing direction. Nowadays, this task is
mostly performed by routing algorithms of Intelligent Transport Systems (ITSs).
Nonetheless, optimising multiple objectives for routes remains a challenging and
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computationally expensive problem. This especially affects mobile applications
like ITSs where few computational resources are available. Ideally, we could reuse
knowledge from similar routing problems to enhance the performance of routing
algorithms. The innovization methodology [11] gives instructions for extracting
knowledge from Pareto-optimal solutions of optimisation problems. The identi-
fied, reusable principles could save computation time of algorithms which would
make the use of multi-objective algorithms for routing more viable in every-
day life. This could result in a quality of life improvement for drivers through
additional decision-making support and personalisation options for routes. In
addition, reusing knowledge to accelerate routing algorithms increases the sus-
tainability of algorithms and decreases energy consumption.

However, innovization cannot simply be applied to routing problems because
such problems has complex decision variables and constraints, and often non-
differentiable objective functions. To the best of our knowledge, there are no pre-
vious works attempting to use innovization on route planning problems. There-
fore, the main goal of this paper and its primary contribution is the development
of an innovization for route planning, an adaption of the original innovization.
In addition, we assess what knowledge can be gained from a real-world prob-
lem using our methodology and whether the gained knowledge can improve an
multi-objective evolutionary algorithm (MOEA). Improvement is measured as
an increase in efficiency or in normalised hypervolumes of final Pareto fronts,
or as a reduction of the total number of function evaluations required. For the
innovization for route planning, we construct a MOEA for routing and pro-
pose a novel local search method for routing problems called Perimeter Muta-
tion Local Search (PMM-LS). The experiments are executed on multi-objective
time-dependent routing problems which optimise travel time, travel time vari-
ability and ease of driving. Travel times are time-dependent, and are based on the
Uber Movement Speeds dataset [30] for Berlin in January 2020. The proposed
method and the evaluation are based on the work in [27].

The rest of this paper is structured as follows. We start by relating this paper
to other work in Sect. 2. In Sect. 3, we present our innovization for route planning
methodology including our novel local search PMM-LS. The evaluation of the
knowledge extraction and algorithm improvement using our proposed approach
follows in Sect. 4. Finally, Sect. 5 concludes this paper and presents ideas for
future work.

2 Related Work

The work most similar to our route planning approach is that of Kanoh and
Hara [21]. With time-dependent travel time, route length and ease of driving,
they define similar objective functions. Unlike us, they use cellular automata [20]
to calculate traffic prediction before the optimisation. Moreover, we utilise Non-
dominated Sorting Genetic Algorithm II (NSGA-II) while they propose a combi-
nation of the Dijkstra algorithm [12] and a genetic algorithm with different opera-
tors than ours. Liu et al. [23] also use NSGA-II with Node Based Crossover (NBX)
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but other steps of their evolutionary algorithm (EA) differ from this paper. Fur-
thermore, they have similar objective functions which are total vehicular emission
cost, time-dependent travel time, number of turns, and route length. Although the
authors utilise real-world data too, they only test their method on a single path
planning problem in a much smaller road network than studied in this paper.

To the best of our knowledge, there is no work using innovization for prob-
lems in the area of route planning. Coello Coello et al. [6] applied innovization to
a related problem, a bi-objective travelling salesman problem. They discovered
that some edges are rarely part of Pareto-optimal solutions. As an innovized
principle, authors suggest excluding these infrequent edges during optimisation
to lower computational effort. In route planning, the value of this type of knowl-
edge is limited since it is not often reusable in complex road networks. There,
routes for various route planning problems often use different streets, even when
planning in the same city.

3 Innovization for Route Planning

Deb and Srinivasan proposed a 6-step innovization methodology [11] which
extracts knowledge from Pareto-optimal solutions to potentially accelerate the
solving process of similar optimisation problems. The Pareto-optimal solutions
are obtained with a multi-objective optimisation method and verified for a high
confidence in the results of the innovization. For verification, the authors use
Benson’s method [2] to determine possible, dominating solutions for some clus-
tered solutions, compute extreme solutions and apply the normal constraint
method (NCM) [24]. Finally, similarities, properties of variables or their relation
ensuring the Pareto-optimality of solutions are identified as resuable, innovised
principles. Benson’s method and NCM define auxiliary problems which can also
be defined for route planning problems. However, route planning problems usu-
ally have disconnected feasible regions due to complex decision variables and
constraints such as road networks, as well as often non-differentiable objective
functions. Therefore, methods such as the simplex algorithm or gradient-based
approaches are not applicable to the auxiliary problems for route planning. The
only viable alternative would be to use a metaheuristic, but then guarantees
from the verification methods would no longer hold. To the best of our knowl-
edge, there are no other verification methods applicable to routing problems. For
this reason, we propose the adapted version of the original innovization method
shown in Fig. 1.

In the first part, a Pareto front of a route planning problem is computed using
our MOEA explained in Subsect. 3.1. As proposed for the original innovization,
the MOEA is reused for the single-objective evolutionary algorithms (SOEAs)
by defining only one objective at a time. Since finding extreme points for rout-
ing problems is hard due to their deceptiveness, it is possible that the SOEAs
return previously undiscovered extreme points instead of verifying existing ones.
Trivially, we only keep the non-dominated set of the Pareto front along with any
newly found extreme points. Our novel local search PMM-LS, specialised for
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Fig. 1. Process of innovization for route planning

route planning applications, is executed on the extended front instead of Ben-
son’s method or NCM. For PMM-LS see Subsect. 3.2. Inserting new extreme
points from single-objective runs into the front before PMM-LS improves the
results of the local search because, due to the deceptiveness of routing problems,
new solutions can help reveal entire new parts of the Pareto front.

Based on the obtained, modified front, we perform an analysis preparation
step. First, we compute the correlation coefficients between different route char-
acteristics and our objectives. As route characteristics, we choose the number of
traffic signals along a route and the percentages of street types. For street types,
we distinguish between motorways, main roads, residential streets and other or
unclassified streets. We then compute a decision space clustering before plot-
ting pairs of objectives for the clusters. Furthermore, we recommend visualising
clusters of routes on a map for the analysis. For the decision space clustering,
we apply Ordering Points To Identify the Clustering Structure (OPTICS) [1]
with automatic cluster extraction. OPTICS can handle arbitrarily shaped clus-
ters with different densities and noise. Another advantage of this method is that
only the MinPts parameter for identifying core points has to be set. We employ
the heuristic MinPts = number of objectives + 2 by Ester et al. [14]. As the
distance function in decision spaces, we utilise the discrete Fréchet distance [13]
with Euclidean distance between node coordinates. The other parameter ε for
the neighbourhood size can simply be fixed to infinity. However, lower ε values
can limit the runtime of the algorithm. In contrast to the original innovization,
we perform the clustering after inserting new extreme points and conducting a
local search because PMM-LS often returns dominating solutions which could
change the clustering structure. Additionally, we do not cluster in the objective
space but in the decision space. Similarities, that can be found for objective
space clusters, are often too problem-specific due to the deceptiveness of route
planning and the complexity of decision variables.

In the final step, we analyse Pareto-optimal solutions and materials from the
analysis preparation step for any commonality principles. For route planning
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problems, analysing fronts separately may result in the extraction of knowl-
edge, such as shared edges, which is too problem-specific. Therefore, we propose
combining the analysis of modified fronts from multiple runs, for example with
different start and end points or with different departure times.

3.1 Multi-Objective Evolutionary Algorithm

As in the original innovization, we use NSGA-II [10] as our MOEA. Adapted
steps are explained in the following paragraphs. To encode our route planning
problems, we want to employ a natural encoding which is suitable for real-
world data. Since we represent our road network as a graph, chromosomes are a
sequence of node indices from a given start node to a destination node. This way,
similar chromosomes have similar fitness values. Feasible individuals must have
an edge between each pair of consecutive nodes. Otherwise, we give a penalty of
100, 000 to each objective per missing edge. As paths may have different lengths
in reality, our encoding has variable length. To avoid unnecessary function evalu-
ations, population sizes are chosen dynamically for every route planning problem
based on its difficulty. We estimate the difficulty by the length of the shortest
path lsp between start and end point. Therefore, we compute the population size
as kN ·lsp rounded to the nearest multiple of ten, where kN acts as a scaling coef-
ficient. Concerning our stopping criterion, we follow the recommendation from
the original innovization to let the MOEA run for a large number of generations
for a high confidence in the innovization results. Since this is problem-specific, we
terminate if improvements in the objective space are less than Δf for Δg consec-
utive generations. This ensures that the algorithm is stopped after diversification
and converging of the algorithm are finished [4]. Stopping criteria are evaluated
over multiple generations to make the termination more robust. As a fall-back,
we stop the algorithm after gmax generations.

The Creation of the Initial Population is done using guided random walks
since standard random walks take too long in complex road networks. Each walk
starts at the given start point nO and ends when the predefined destination nD

is reached. Looking from any current node, we remove visited neighbours from
the selection pool unless no other option remains. For simplicity, self-loops are
disallowed. We do not disallow revisiting nodes altogether since random walks
could otherwise get stuck if all neighbours were already visited. We move in
direction of the node that is closest to the direction of our destination with a
probability of pD. The other 1− pD chance is evenly distributed among the rest
of the neighbours. This guidance is a trade-off between the diversity of initial
populations and runtime. However, the direction towards the goal can sometimes
be misleading and the random walk gets stuck in a circle. If the current node
has been visited at least ten times and all neighbours have already been visited,
we choose a successor uniformly at random from all neighbours to get out of any
loops but continue the random walks afterwards for more diverse individuals.

The Node Based Crossover (NBX), to the best of our knowledge, was first
described by Munetomo et al. [25] and has only later been termed NBX [5]. When
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Fig. 2. Visualisation of the Perimeter Mutation Operator

two paths share common nodes other than the start and end point, they can be
intuitively recombined with a one-point crossover at one of the common nodes.
If two parents share no common points, a one-point crossover at a randomly
placed cut is performed. The random placement excludes cuts after start and
before end points. The resulting individuals are repaired with the shortest path
between the nodes before and after the cut.

The Perimeter Mutation Operator (PMM) is largely inspired by the
Perimeter Mutation Operator by Weise [32]. As visualised in Fig. 2, the idea
is to replace a random part of the path x by an alternative route. First, we
choose random mutation start and end indices within wsmin % to wsmax % of
the chromosome length |x| apart. This encourages that the mutation is only a
small change, but that an alternative route can be found. Since this does not
always work, we recommend setting the mutation probability pm higher than
the common 1/number of decision variables [8] or 1/|x| in our case. Secondly,
we determine the middle node between mutation start and end. We find all
nodes within a circle around this middle point with a radius of mr times the dis-
tance between mutation start and end node. Distances are calculated using the
great-circle distance. We randomly select one of the nodes which is not already
on the path. Finally, we replace the path between mutation start and end node
with the shortest path between both nodes via the chosen alternative node.

3.2 Perimeter Mutation Local Search

As a local search method, we propose a novel approach called Perimeter Muta-
tion Local Search (PMM-LS) based on our version of PMM. It is more systematic
than the small mutations of few individuals during the run of an EA. The goal of
PMM-LS is finding solutions dominating individuals in the extended front Pres

from the second step of our innovization for route planning. The pseudocode of
PMM-LS is detailed in Algorithm 1. For every individual in Pres, alternative
routes are created using PMM. The mutation is applied for every possible muta-
tion window of wsmax % of the chromosome length. Instead of selecting only
one alternative node as for the MOEA, all possible alternative routes are gener-
ated. After each set of mutations, the sliding window is moved by step size Δw.
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After all alternative routes for all individuals have been computed, only the set
of non-dominated individuals of Pres and alternative routes is kept. These steps
are repeated for any newly found individuals until no more new individuals were
discovered. Finally, the method returns a locally improved Pareto front.

Algorithm 1. PMM-LS(Pres)
P = Pres; Xnew = Pres

while Xnew �= ∅ do
Pold = P
for x ∈ Xnew do

wstart = 0; wend = wstart+round(|x| · wsmax)
while wend ≤ |x| do

centre = middle_point(x[wstart], x[wend])
radius = {v ∈ V | dist(v, centre) ≤ mr·dist(x[wstart], x[wend])}
for nodealt ∈ radius do

P = P ∪ replace(x, wstart, wend, nodealt)
wstart = wstart + Δw; wend = wend + Δw

P = non-dominated_set(P )
Xnew = P\Pold

return P

4 Analysis

For our experiments, we implement the methodology from Sect. 3 in Python
using the pymoo framework [3] for our MOEA. As recommended for the origi-
nal innovization, our parameter setting in Table 1 encourages a high confidence
in the innovization results rather than fast convergence. The three most influ-
ential parameters at the top of the table are tuned. Due to time restrictions,
the other parameters are set to values which we observed to work well during
implementation and preliminary experiments. Results are to be interpreted in
the context of the chosen parameter setting. Subsection 4.1 introduces the route
planning problems we ran our experiments on. It also covers how time-dependent
speeds were calculated based on the Uber Movement Speeds dataset for Berlin
in January 2020 [30]. Subsection 4.2 thereafter covers the knowledge extraction
from our innovization experiments. Innovized principles from this subsection are
used for the experiments for the final Subsect. 4.3 where we examine whether an
improvement of our MOEA is achieved. The code, the complete specifications
for our experiments and some tabular results are available online1.

4.1 Multi-Objective Time-Dependent Route Planning Problems

Our experiments are run on multi-objective time-dependent route planning
problems which we identify by a 6-tuple

(
(ft, fv, fs) , G, nO, nD, w0, t0

)
. As

defined by Eq. 1, the 6-tuples represent specific problems with objective func-
tions (ft, fv, fs), road network G, start point nO, destination nD, departure
1 https://doi.org/10.5281/zenodo.10979116.

https://doi.org/10.5281/zenodo.10979116
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Table 1. Parameter setting for experiments with our innovization variant. Some values
are changed as part of the innovized principles

parameter value

scaling coefficient for population size kN 4.0

probability of choosing neighbour in direction of destination nD pD 0.9

mutation probability pm 0.25

difference in indicators required for termination Δf 0.0025
number of generations considered for robust termination Δg 25
maximum number of generations gmax 200

minimum percentage of chromosome length for PMM window size wsmin 10
maximum percentage of chromosome length for PMM window sizewsmax 20
radius coefficient for PMM mr 0.8

step size for PMM-LS sliding window Δw 1

day w0 and departure time t0. The goal is to find vehicular paths which connect
the given nO and nD in G and which minimise the three conflicting objective
functions explained below. For time-dependent problems, some of the informa-
tion changes with time, but planning is generally done offline. In our case, the
travel times of edges depend on the time and whether it is the weekend (w = 1) or
not (w = 0). The road network is defined as a property graph G = (V,E) which
is directed and allows for attributing properties to nodes V and edges E [26].
Nodes are assigned indices as identifiers (IDs). Each edge (u, v) has travel time
attributes {ttwh

uv | ∀w ∈ {0, 1} ∀h ∈ [0, 23], ttwh
uv ∈ R≥0}. They are based on the

length of edges and hourly average speed attributes swh
uv for during the week and

on weekends. Additionally, edges are assigned a number of traffic signals sgnuv

encountered when traversing an edge in direction from u to v.

min
(
ft(x,w0, t0) =

|x|−1∑

i=0

ttwiti
x[i]x[i+1] + sgnx[i]x[i+1] · 20,

fv(x,w0, t0) =

√√
√
√ 1

13

6∑

i=-6

max
(
0, ft(x,w0, t0 + i · 15) − tt

)2
,

fs(x) =
|x|−2∑

i=0

180◦ − ∠
(
x[i], x[i + 1], x[i + 2]

) )

s.t. x ∈ {
(n0, . . . , nl) | l ∈ N+;n0, . . . , nl ∈ V ;n0 = nO;nl = nD;

∀ i ∈ {0, . . . , l − 1} (ni, ni+1) ∈ E
}

w0 ∈ {0, 1}
t0 ∈ {hh : mm : ss | hh ∈ [0, 23];mm, ss ∈ [0, 59]}

(1)
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The Travel Time Objective ft , unlike the shortest path, depends on multiple
factors such as speed limits, varying congestion or traffic signals [22]. We compute
the travel time of a route x in seconds using the formula in Eq. 1. |x| denotes the
length of route x. The variables wi and ti calculate the current time and whether
it is the weekend when reaching node i. Like Kanoh [19], we give a penalty of
20 s for each traffic light along the route.

The Travel Time Variability Objective fv , also called travel time reliabil-
ity, is another important factor for route choice [15]. It is mostly defined as the
expected value of travel time, its variance or a combination of both [17,18,28,31].
Unlike these definitions, approaches employing a semi-standard deviation (SSD)
of travel times [33,34] only minimise the risk of arriving too late at a destination.
Since this is in the interest of most drivers, we use the upper SSD over varying
departure times. As defined in Eq. 1, we measure the travel time variability of
a route x in the interval {t0 + i · 15 | i = -6,−5, . . . , 6} which is 90 min before
and after a planned departure time in 15 min increments. tt refers to the mean
of all 13 travel times observations. Hourly travel times of an edge are linearly
interpolated depending on the minute of each observation. If this was not done,
the algorithm would be encouraged to minimise travel time variability by taking
detours until the next hour starts and thereby lower or no variability was reached
for certain edges.

The Ease of Driving Objective fs is inspired by Kanoh and Hara [21].
It prioritises the driving comfort which does not necessarily coincide with the
fastest or most reliable path. For example, taking smaller roads through resi-
dential areas may avoid congested roads but is strenuous due to more turns.
Therefore, our third objective maximises the ease of driving by minimising the
sum of degrees of turning needed to drive along a route as specified in Eq. 1.
∠

(
x[i], x[i + 1], x[i + 2]

)
computes the angle between edges (x[i], x[i + 1]) and

(x[i+1], x[i+2]) at node x[i+1]. Note that a turn can mean anything between
a U-turn (180◦) and a straightforward crossing of an intersection (0◦). We sub-
tract the turning angle from 180◦ since the sum of turning angles could simply
be maximised by making routes longer. Some aspects such as avoiding congested
streets, which also maximise the ease of driving, are already encouraged by our
other objectives.

Speed Attributes swh
uv are exclusively based on historical speed data from the

Uber Movement Berlin Speeds dataset [30]. This dataset contains mean hourly
speeds and their standard deviation recorded from a sufficient number of Uber
trips for Berlin street segments in January 2020. The two main advantages of this
dataset are that it is publicly available and in an easily machine-readable CSV
format. The biggest limitation of this dataset is the sparseness of the data, espe-
cially on smaller roads such as residential streets. Another problem is that the
OpenStreetMap (OSM) start and end IDs of street segments provided by Uber



Innovization for Route Planning 109

Fig. 3. Flows of the interpolated road
network for the centre of Berlin (dashed
polygon) at 8 pm during the week

Table 2. Classes of innovization experi-
ments for different sets of route planning
problems

length of
routes in km

time of day (average
flow in network)

weekend?

medium
(3.5, 7]

4 pm (worst, 75.3 %),
8 pm (medium, 85.5 %),
4 am (best, 97 %)

no

medium 8 pm yes, no

short [0, 3.5],
long (7, ∞]

8 pm no

Movements often do not match node IDs in the OSM drive network. Therefore,
we preprocess the dataset by matching IDs to the closest edges and averaging
speeds where multiple entries exist. Still, around 7 % of the data points cannot be
matched. Since the data in the centre of Berlin is a little less sparse and less dis-
connected, we limit our road network to the polygon that is marked by a dashed
line in Fig. 3. Still, only 14 % of edges have data for at least one hour of the
day. To improve computation times, we further simplify the graph by removing
interstitial nodes, multiples of edges between node pairs and dead ends. Lastly,
we calculate speed attributes missing in the dataset by iteratively interpolating
the flow from the respective incoming edges of u and the outgoing edges of v. We
define the flow ρwh

uv of an edge (u, v) at hour h with weekend categorisation w

as ρwh
uv = swh

uv

smax
uv

where smax
uv is the maximum allowed speed on edge (u, v). Unas-

signed speed attributes are assumed to have 100 % flow at the beginning of the
interpolation. The resulting, interpolated network graph is depicted in Fig. 3 for
8 pm during the week.

4.2 Knowledge Extraction

This subsection examines what knowledge can be gained from applying our
innovization variant to problems from Subsect. 4.1. To extract representative
knowledge, we compare three classes of innovization experiments for different
sets of route planning problems, as listed in Table 2. Based on the diameter
of the polygon of the centre of Berlin, we categorise routes by length accord-
ing to the straight line distance between their origin and their destination. We
randomly selected a set of ten representative routes for each length category.
Medium-length routes are shown in Fig. 4a as an example. To create harder
short route planning problems, their start and end points are limited to points
of interest in the centre of Berlin based on [29]. Since the median correlation
between main roads percentage and number of signals was relatively high across
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Fig. 4. (a) Shortest paths of ten medium-length routing problems. (b, c) Decision
space clustering for two medium-length problems at rush hour with different colours
for different clusters, excluding noise

all experiments, we only consider the former in the analysis. We extracted the
following four innovized principles.

Updated Creation of Initial Populations Across all experiments, Pareto-
optimal routes can usually be separated into two groups. The first closely follows
the straight line from start to destination and is often similar to the shortest
path, as seen in Fig. 4b. This group exhibits lower travel times but higher turning
degrees. The opposite normally holds for the second group like in Fig. 4c which
uses a high percentage of main roads and motorways. This is consistent with the
median Spearman correlation between the main roads percentage and the travel
time of 0.597, respectively the degrees of turning of -0.663. In some experiments,
only one of the two groups exists, such as for Fig. 4c, or both groups overlap.
An overlap occurs, for example, if the straight line routes mostly use main roads
as in Fig. 4b. Otherwise, the routes in the second group might take detours to
use main roads and motorways which trivially lead to longer travel times. We
observe a positive correlation between maximum detour length and route length.

With this knowledge, we adapt the creation of the initial population by split-
ting it in half. The first half is still created using guided random walks but pD is
increased to 95 % to follow the straight line path more closely. Nonetheless, we
no longer use the shortest path as a replacement when the creation gets stuck.
This encouraged the optimisation to get stuck in local optima more easily since
the shortest path is initially significantly better than individuals generated by
guided random walks, but it can be misleading. Instead, we now finish stuck indi-
viduals by inserting the shortest path from the current node to the destination.
The other half of individuals prefer main roads and motorways. When choosing
the next edge, the outgoing edges are sorted first by street type, and second
by their orientation towards the destination. To allow detours correlating with
the length of the routes, the probability of choosing the most preferred edge is
85 % for short routes, 80 % for medium-length routes and 75 % for long routes.
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However, since some destinations are only reachable via residential roads, we
switch to a guided random walk again, when the destination is less than 250m
away.

Exclusion of the fv Objective Since Pareto-optimal solutions from our
innovization experiments return relatively low values for the travel time variabil-
ity, we conducted some additional MOEA runs without fv. The worst recorded
function value is a travel time variability of 2.25 seconds with and without the
objective. Everyday drivers are unlikely to be concerned about a risk of being
a couple of seconds too late. A p-value of around 0.5 from a two-tailed Mann-
Whitney U test confirms that the impact on the worst-case travel time variability
of the Pareto-optimal solutions is insignificant. However, we hypothesise that the
small function values are not due to the design of the objective but rather due
to the sparseness of the dataset used. Through averaging and interpolation, we
likely levelled out peaks in the data.

Interestingly, the additional MOEA runs also show that the travel time vari-
ability objective is responsible for small protrusions in routes that are visible, for
example at the bottom of Fig. 4b. It appears that it is sometimes more reliable,
for instance, to make a right turn and a U-turn to get back on the same road
instead of just crossing straight through an intersection.

Decrease in Population Size and Increase in Exploration Leaving the
second objective function out, makes the route planning problems easier to solve.
The median number of Pareto-optimal solutions found by our EA is reduced to
less than a fifth when optimising without fv. Therefore, we can decrease the
scaling coefficient kN from 4.0 to 2.5 to avoid unnecessary function evaluations.

Exemplary experiments have also shown that optimisations easily get stuck
in local optima without the travel time variability objective. Getting stuck in
local optima is a known problem for NSGA-II. To mitigate this problem, NSGA-
II with controlled elitism [9] is used. This method encourages lateral diversity
by keeping individuals from all fronts according to a geometric distribution with
reduction rate r. In our case, setting r = 0.2 and increasing pm to 35 % for
optimisations on the weekend has worked well in exemplary tests.

4.3 Algorithm Improvement

We now want to examine whether the innovized principles from Subsect. 4.2 can
improve the efficiency or the results of our MOEA. We compare our original route
planning MOEA (oMOEA) from Subsect. 3.1 to an adapted version (iMOEA)
which implements the four innovized principles. Both algorithms are run on 100
randomly generated route planning problems. For the evaluation, we compute
the efficiency, the quality of the final results and the total number of function
evaluations for both algorithms.

First, we compare the efficiency of both algorithms. Based on Gupta, Ong
and Feng [16], we define the efficiency of an optimisation algorithm on problem
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Fig. 5. (a) Evolution of the median hypervolume over generations for all experiments.
Translucent areas show the respective 95 % confidence intervals. (b) Normalised hyper-
volumes of final results per algorithm and (c) total number of function evaluations
needed to achieve the final results

instance P as the normalised hypervolume HVt(P ) of solutions achieved in t
time-steps on a designated computer. Consequently, this metric is independent
of any hardware and the optimal Pareto front does not need to be known. In
our case, t is 26 because that is the maximum number of generations computed
for all runs. Since we test our algorithms on different route planning problems
which can return highly different fronts, we normalise all function values fm
for each objective m using f norm

m = fm−z∗
m

znad
m −z∗

m
with ideal point z∗ and nadir

point znad [7]. We use (1.05, 1.05, 1.05) as a reference point. Since we omit the
second objective from the optimisation in the iMOEA, it is also disregarded in
all hypervolume computations. The oMOEA still uses fv, but we compute the
set of non-dominated solutions without the fv values before any hypervolume
calculations. This only excludes irrelevant solutions that have a slightly better
travel time variability but are worse for all other objectives. As shown in Fig. 5a,
median hypervolumes from all experiments evolve almost identically over gener-
ations for both algorithms. The efficiency is virtually the same according to our
definition because the median hypervolume of the iMOEA is only about 0.003
worse than that of the oMOEA after the 26th generation. The insignificance of
the difference is supported by a p-value of approximately 0.4 from a two-tailed
Mann-Whitney U test.

Since we allow early termination, we also compare the final results from all
runs. In Fig. 5b, we can see that hypervolumes of final results are better when
using the oMOEA. The median hypervolume of the oMOEA is around 0.79
while the one for the iMOEA is slightly worse at 0.72. However, a two-tailed
Mann-Whitney U test results in a p-value of 0.15, indicating that the difference
in hypervolume is not significant. Remarkably, Fig. 5c demonstrates that the
number of total functions evaluations for runs of the iMOEA is much lower than
that of the oMOEA. In total, the iMOEA with 1,090,099 evaluations needs only
about 40 % of the oMOEA with 2,813,520 evaluations.
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5 Conclusion

In this paper, we presented innovization for route planning which is an adapted
version of the innovization by Deb and Srinivasan [11]. We introduced PMM-
LS, a local search for routing problems which systematically explores the neigh-
bourhoods of routes. Using innovization for route planning, we extracted four
innovized principles from multi-objective time-dependent route planning prob-
lems that can be reused for other route planning problems in Berlin. One of
the major discoveries is that Pareto-optimal routes can typically be separated
into two groups. The first group consists of routes that are close to the linear
path from start to end point. These solutions usually exhibit lower travel times
but higher degrees of turning. The second group is a set of longer routes that
take faster roads and that have higher travel times but lower degrees of turning.
The other main finding is that the travel time variability objective can be omit-
ted because the differences in values are insignificant for decision makers. The
overall small values can be due to limitations of the chosen dataset. In future,
the impact of the travel time variability objective should be re-evaluated on a
dataset with sufficient speed data, especially for use cases such as emergency
services. Alternatively, more sophisticated approaches using estimation models
for travel times or real-time traffic information could be integrated.

Lastly, we have shown that we can improve a MOEA using extracted knowl-
edge. While the efficiency remained virtually the same and the quality of the
final results was only insignificantly worse, we managed to drastically decrease
the number of necessary function evaluations to two fifths. Consequently, similar
quality solutions can be produced with far less computational effort using the
knowledge extracted with our innovization for route planning methodology. This
is particularly valuable for applications, where limited computational resources
are available, such as mobile devices which are often utilised for routing.

As for the original innovization method, one limitation of innovization for
route planning is its computation speed. Generally, this is not a drawback since
innovization is intended to be used only once for knowledge extraction [11]. The
benefit of the methodology arises from using extracted knowledge for speeding up
optimisations of similar problems. Nevertheless, a trade-off between computation
time and completeness of PMM-LS is possible via the parameters Δw, wsmin

and wsmax. Moreover, only applying PMM-LS to a few well-distributed solu-
tions as in the original innovization is possible. Furthermore, PMM-LS might
be improved by search strategies besides the current greedy approach, by the
integration into Variable Neighbourhood Search to break out of local optima, or
by more exploration through a gradually decreasing mutation window. Future
work could also accelerate the innovization process by parallelising some steps
or by employing a heuristic for setting problem-specific ε-values for OPTICS.
A verification method for the Pareto-optimality of solutions, that can handle
route planning problems, would also be a beneficial development. The analysis
step could be extended by including more route characteristics. In general, we
intend to use innovization for route planning with other datasets or for differently
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defined path planning problems in future work to also verify the generalisability
of algorithm improvements by our methodology.
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Abstract. Creating diverse sets of high-quality solutions has become an
important problem in recent years. Previous works on diverse solutions
problems consider solutions’ objective quality and diversity where one
is regarded as the optimization goal and the other as the constraint. In
this paper, we treat this problem as a bi-objective optimization problem,
which is to obtain a range of quality-diversity trade-offs. To address this
problem, we frame the evolutionary process as evolving a population of
populations, and present a suitable general implementation scheme that
is compatible with existing evolutionary multi-objective search methods.
We realize the scheme in NSGA-II and SPEA2, and test the methods
on various instances of maximum coverage, maximum cut and minimum
vertex cover problems. The resulting non-dominated populations exhibit
rich qualitative features, giving insights into the optimization instances
and the quality-diversity trade-offs they induce.

Keywords: Multi-Objective Optimization · Evolutionary Diversity
Optimization

1 Introduction

Diverse solutions problems, seeking multiple maximally distinct solutions of
high-quality instead of a single solution, have been studied for several decades
[4,15,16,18–21,23,24]. They aim to fill the gaps in practical considerations left
by traditional optimization. A set of diverse solutions provides robustness in
order to deal with changes in the problems, which necessitate changes in current
solutions. It also gives the users the choices to address the gaps between the
problem models and real-world settings, frequently seen in complex applications
with factors that are hard to define or measure [40]. Furthermore, diverse solu-
tion sets give the decision makers rich information about the problem instance
by virtue of being diverse, which helps augment decision making capabilities.
While there are methods to enumerate high-quality solutions, having too many
overwhelms the decision makers [18], and a small, diverse subset can be more
useful. It is also known that k-best enumeration tends to yield highly similar
solutions, motivating the use of diversification mechanisms [22,46,49].
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The diverse solutions problems have been studied as an extension to many
important and difficult problems. These include constraint satisfaction and opti-
mization problems [23,35,39], SAT and answer set problem [13,27], and mixed
integer programming [9,18,41]. Recent fixed-parameter tractable algorithms for
various graph-based vertex problems [4] inspired considerations of other combi-
natorial structures such as trees, paths [20,21], matching [15], independent sets
[16], and linear orders [2]. Furthermore, general frameworks have been proposed
for diverse solutions to any combinatorial problem [19,24].

This area of research manifested in Evolutionary Computation literature as
Evolutionary diversity optimization (EDO). The idea was investigated as early
as in the work of Ronald [37] and Zechman and Ranjithan [50,51], motivated by
practical concerns in real-world problems. The topic was then studied by Ulrich
et al. with emphasis on conceptual frameworks [43,44] and has subsequently
gained significant attention within the evolutionary computation community.
This represents a shift in perspective on diversity, from a necessity in evolution-
ary search to an optimization goal. Incidentally, around the same time, aspects
of evolutionary searches other than diversity were also investigated to address
issues that motivated EDO, such as high-performance regions [33] and solution’s
robustness [8,42].

Studies on EDO typically involve defining a search space S, an objective
function f (to be maximized), a quality threshold T , a diversity measure d, an
integer r and applying evolutionary algorithms to solve the optimization problem

max
P ∈2S : |P |=r

d(P), s .t . ∀x ∈ P , f (x) ≥ T . (1)

Under this paradigm, evolutionary techniques have been investigated in comput-
ing diverse Traveling Salesperson Problem (TSP) solutions [11,31,32], knapsack
packings [6], minimum spanning trees [7], and submodular optimization solu-
tions [28]. On the other hand, EDO has seen application in generating images
with varying features [1], or to compute diverse TSP instances [5,17] useful for
automated algorithm selection and configuration [26]. Different indicators for
measuring the diversity of sets of solutions in such as the star discrepancy [29]
or those from the area of evolutionary multi-objective optimization [30] have
been considered in this paradigm as well.

In this work, we address the treatment of objective quality and diversity of
solutions as equal optimization goals. In practice, users may not have enough
information about the problem instance in order to formulate quality or diver-
sity criteria that would lead to meaningful optimization outcomes. We re-frame
the problem as finding a range of quality-diversity trade-offs which hopefully
provides such information to an extent, as well as giving a collection of diverse
solution sets to choose from. This approach involves an atypical way of look-
ing at the evolutionary process: each population (i.e., set of solutions) is a unit
of evolution, with its own fitness. We describe a basic implementation scheme
under this paradigm, which can be realized directly in existing evolutionary algo-
rithms. Concrete examples of its realization are given using NSGA-II and SPEA2
in finding diverse solutions to maximum cut, maximum coverage and minimum
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vertex cover instances. Experimental investigations give trade-offs of highly var-
ied natures across problems, revealing interesting characteristics of the objective
landscapes. Furthermore, these results indicate that the diverse solutions prob-
lems can be reasonably addressed under the proposed bi-objective optimization
paradigm.

Recently, there have been studies that consider multi-objective optimiza-
tion within the Quality-Diversity paradigm [36,47]. These investigations look
at the integration of multiple objectives into the task of filling the behavioral
characteristics space. We remark that these are different from the application
of multi-objective optimization within this work, which is set up to tackle the
quality-diversity trade-offs directly.

This paper is structured as follows. We include the bi-objective optimization
formulation in Sect. 2. The implementation scheme is described in Sect. 3, which
is realized in the experimental investigations detailed in Sect. 4. We conclude the
paper in Sect. 5.

2 Evolutionary Multi-objective Diversity Optimization

Given an objective function f over a space of feasible solution S, the classical
optimization problem is specified with maxx ∈S f (x).1 In addition, given a diver-
sity measure d, an set-aggregating function F , and integer r , we consider the
following bi-objective problem

max
P ∈2S : |P |=r

(f1, f2), f1(P) := F { f (x) : x ∈ P}, f2(P) := d(P).

Intuitively, the problem asks to find a set of r solutions representing the best
trade-off between diversity and aggregated objective quality. Note this formula-
tion differs from the existing EDO paradigm (Eq. (1)) in that it does not involve
a quality threshold. This makes our formulation suitable for opaque instances for
which the appropriate thresholds (in relation to a certain goal) are not known.

We consider two aggregating functions in this work: minimum (F := min) and
average (F := avg). The former consideration models the worst-case robustness
requirement on a solution set, and the latter relaxes this requirement to average-
case. As for diversity, we look at distance sum measure, frequently considered
in dispersion problems [14,45] and recent works on diverse solutions [4,19–21].
We give precise definitions in later sections, as it depends on the underlying
optimization problem (as specified by f and S).

As with many multi-objective problems, the actual computational goal is to
find a set of non-dominated trade-offs w.r.t. the objectives. Let fi be the i-th
objective function, we say solution x dominates solution y (x � y) if mini { fi (x)−
fi (y)} ≥ 0, and strong dominance occurs (x � y) if, in addition, maxi { fi (x) −
fi (y)} > 0. Thus, a set of solutions is non-dominated if it contains no pair that
exhibits dominance relation.

1 This and subsequent formulation also apply to minimization, with trivial differences.
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The problem requires searching in the population space 2S rather than the
solution space S. Most EAs evolve a population of solutions, whereas we are
interested in evolving a population of “populations”. As such, for the rest of this
paper, we modify the classical terminologies in literature to fit the context of the
problem. We use “solution” to refer to an element x ∈ S, whose quality is f (x).
Furthermore, “individual” refers to a set of solutions, i.e., an element I ∈ 2S , and
“population” refers to a set of individuals2.

3 Implementing Populations as Individuals

As the problem we consider is fundamentally a bi-objective optimization prob-
lem, applying existing bi-objective optimizers would be, in principle, sufficient
in solving it. In this section, we discuss several considerations regarding the
implementation of such algorithms that are unique to this problem.

3.1 Individual Representation

In typical EAs, a population is evolved via the selection-variation-replacement
paradigm. However, in this work, we treat populations as individuals, so as to
apply standard variation operations on the entire set of solutions directly, effec-
tively performing the 3-step procedure in one 1-step procedure. This is to both
simplify the overall algorithm, and ease restrictions on the variation neighbor-
hood in the population space. As such, an individual should be represented in a
way that both encodes the information about the solution set and allows efficient
implementation of variation operators.

In this work, we adopt the simple concatenation scheme: let xi be the repre-
sentation of the i-th solution in the individual I , I is represented by x1x2 . . . xr .
For instance, if xi is a n-length bit string, then I is encoded in a rn-length bit
string, in which each solution is encoded directly as a substring. Having indi-
vidual representation mirroring solution representation allows each solution to
undergo variation when it is applied to the individual, and in the same manner.
For example, performing standard bit mutation on the individual essentially does
the same to each solution, with the same bit-flip probability. While the scheme
is not applicable as-is to non-linear3 solution representations, it suffices for our
applications.

3.2 Recombination

We see that the concatenation representation is not unique: the solutions order-
ing itself encodes redundant information in the context of the problem. While
positional-bias-free operations (e.g., standard bit mutation) are unaffected by

2 “Set” is used loosely: they are technically multisets as self-avoidance is not enforced.
3 One could extend this scheme to any solution representation with recursive structure

(e.g., tree–subtree, string–substring, vector–subspace projection).
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such an artefact, the same cannot be said for recombination as a means to
transmit parents’ genetic information to offspring. Ensuring transmission of such
redundant information may limit the flexibility of the operation, so it should be
removed from the process.

Here, we choose to remove such information prior to recombination by shuf-
fling the solutions’ positions in one of the parents. This allows each solution in
one parent individual to be recombined with any solution in the other parent
individual with equal probability. Note that it is sufficient to do this to one
parent individual since the solution-to-solution mapping between the parents is
what matters, not the ordering itself. Additionally, this scheme introduces an
additive Θ(r ) overhead, which is small compared to the Θ(rn) time cost of the
recombination.

4 Problem Settings and Experiments

Here, we realize our proposed scheme into concrete algorithms, and perform
experimental investigations in max coverage, max cut and min vertex cover
problems, all of which are NP-hard. These combinatorial problems are formu-
lated in a way that affords us insights on achievable diversity and its interplay
with solution quality; this eases contextualizing and interpreting the results. We
select instances from standard benchmark suites and, as we will see, observe
qualitatively varied results across problems.

For these graph problems, a solution is a subset of vertices, and the standard
representation is indicator vector as bit-string: each bit corresponds to a vertex
and assumes value 1 if and only if it is a member of the subset. Our scheme
implies that each individual is represented as a rn-length bit-string where n is
the number of vertices. Also, we use Hamming distance to compute diversity
among solutions within an individual, which is the size of two sets’ symmetric
difference: |AΔB |. The sum of Hamming distances among a set of bit-strings can
be computed and updated efficiently without calculating pairwise distances4. For
consistency, we use set operators with bit-string notations, e.g., x ∈ I denotes a
solution x being in an individual I .

The problems impose upper bounds or lower bounds on the sizes of feasible
solutions, which we can use to derive upper bounds on diversity. Let V be a
ground set, n := |V |, S := {Z ⊆ V : |Z | ≤ b} for some integer b ≥ 0, and the
diversity function d(I ) :=

∑
x,y∈I |xΔy | (each pair is counted once), then we have

max
P ∈2S : |P |=r

d(P) = д(n,b, r ) := nq(r − q) +m(r − 2q − 1), (2)

where h = min{b,n/2}, and m ∈ [0,n),q are integers such that �r/2	 �h	 +


r/2� 
h� = qn + m. Intuitively, d(I ) is maximized when the number of 1 (or
0) values in I are as close to being equal across bits as possible, and as close
to r/2 as possible. The reader can confirm that such a configuration under the
4 The former takes Θ(rn) arithmetic operations, and the latter takes Θ(k) where k is

the number of changed bits.
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restriction specified by S yields the right hand side of Eq. (2) when plugged into
d. We note that the restriction imposed by the graph problems can be explicit
as in cardinality constraint, and implicit in the form of optimal objective value.

We use the well-known NSGA-II [10] and SPEA2 [52] algorithms with our
proposed scheme and the following setting, unless stated otherwise. Specifically,
we use implementations in jMetal 5.11 of these algorithms and their standard
components [12], and unlisted parameters are assigned the default values.

– Initialization: Uniform random
– Output set size: r ∈ {10, 20}
– Population/Offspring pool size: N = 20
– Parent selection: Binary tournament
– Crossover method, rate: Uniform crossover, 80%
– Mutation method, strength: Standard bit mutation5, χ = 0.5/n
– Evaluation budget: 5rnN
– Number of independent runs per instance: 20

To handle constraint in max coverage and min vertex cover, we penalize the
objectives with violation degree. The constraint violation degree of an individual
is the sum of such degrees over its solutions: C(I ) :=

∑
x ∈I C(x). We detail the

settings in the next sections.

4.1 Maximum Cut

Given an undirected graphG = (V ,E)6, max cut problem asks to find a solution in

argmax
x ⊆V

f (x) := |{e ∈ E : |e ∩ x | = 1}|.

We see that measuring diversity in the vertex space is inappropriate due to f
being symmetric. By taking any solution x , and duplicating it and V \ x , we
get a population of maximum diversity д(n,n, r ) where д is given in Eq. (2),
and arbitrary quality, effectively reducing the optimal front into a singular point
regardless of graph structure. Therefore, we choose to measure diversity in the
edge space instead. Let the cut edges of x be E(x) := {e ∈ E : |e ∩ x | = 1}, we
have the following fitness functions:

– Minimum objective setting: f1(I ) := minx ∈I f (x).
– Average objective setting: f1(I ) := 1

r

∑
x ∈I f (x).

– f2(I ) :=
∑

x,y∈I |E(x)ΔE(y)|.

The aforementioned insight implies we can upper bound diversity by д(|E |,OPT , r )
where OPT is the max cut value. We use the five unweighted instances in G-
set benchmark [48], containing 800 vertices each, and whose optimal values
are known. These values significantly exceed |E |/2, meaning for these instances,

5 We find higher mutation strengths yield lower final diversity.
6 Each edge is regarded as a set of two vertices that are its endpoints.
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Fig. 1. Unions of final populations across all runs on Max Cut instances. “MIN” indi-
cates the minimum objective setting being used for f1 while “AVG” indicates average
objective setting. For each run, dominated points are excluded.

as cuts in an individual I approach the optimal, more cut edges become over-
represented in I , diminishing f2(I ). Thus, if the (collective) quality exceeds |E |/2,
its correlation to diversity is negative, otherwise it is positive. Such conflict
between fitnesses should induce rich non-dominated fronts with clear shapes.
Note the bound д(|E |,OPT , r ) might not be tight since not every edge subset
constitutes a cut.

The final populations are visualized in Fig. 1 and Modified Inverted Gener-
ational Distance (IGD+), Hypervolume (HV)7 and numbers of non-dominated
individuals are reported in Table 1. In the table, IGD+ and HV denote values
normalized against the extreme objective and diversity values, while IGD+* and
HV* are normalized against the best non-dominated fronts aggregated from all
runs. Boldface denotes greater medians between two algorithms with statistical
significance indicated by Wilcoxon signed-rank tests at 99% confidence level.
The same procedure is used in subsequent experiments.

Overall, the algorithms find many individuals on the non-dominated fronts
between 81% and 92% of the optimal, consistently across instances. This reveals
rich trade-offs, aligning with our intuition regarding quality-diversity correlation.
For these instances, 82% of the optimal cut is approximately |E |/2, a point

7 Smaller IGD+ and greater HV indicate better trade-offs. More comprehensive dis-
cussions on performance indicators can be found in [3].
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Table 1. Medians of indicator scores and numbers of non-dominated individuals across
runs on Max Cut instances. Boldface denotes greater medians between two algorithms
with statistical significance via Wilcoxon signed-rank tests (α = 1%).

Inst. r NSGA-II SPEA2
IGD+ HV IGD+* HV* # IGD+ HV IGD+* HV* #

Min objective G1 10 0.490440.46656 1.9078e-30.99578 200.49342 0.459724.4738e-3 0.98118 20
20 0.487150.46116 1.0426e-30.9969 200.48897 0.457342.3626e-3 0.98864 20

G2 10 0.489820.46735 2.3060e-30.99428 200.49276 0.460585.2202e-3 0.97989 20
20 0.486010.46213 1.1482e-30.99718 200.48792 0.458452.2096e-3 0.98923 20

G3 10 0.490410.46697 2.1430e-30.99505 200.49297 0.460365.3971e-3 0.98098 20
20 0.486580.46151 1.0371e-30.99761 200.48854 0.457832.3923e-3 0.98966 20

G4 10 0.494310.46269 1.9890e-30.99442 200.49703 0.4562 4.8654e-3 0.9804920
20 0.493650.45447 1.2396e-30.99538 200.49527 0.451512.3533e-3 0.9889 20

G5 10 0.491790.46542 1.9920e-30.99573 200.49457 0.458685.2354e-3 0.98133 20
20 0.489320.45888 1.2962e-30.99697 200.49097 0.455462.2058e-3 0.98954 20

Average objective G1 10 0.493250.49447 3.2364e-30.99462 200.49434 0.48454 3.5350e-3 0.9746320
20 0.484410.48895 2.0149e-30.99706 200.48512 0.482592.6200e-3 0.9841 20

G2 10 0.492370.49567 3.5111e-30.99393 200.49372 0.485344.3330e-3 0.97323 20
20 0.4831 0.49009 2.0846e-30.99641 200.48407 0.483782.6630e-3 0.98358 20

G3 10 0.492650.49475 3.0740e-30.99376 200.49398 0.484613.9748e-3 0.9734 20
20 0.483660.48965 2.0681e-30.99707 200.48436 0.483242.4223e-3 0.98401 20

G4 10 0.496680.49053 3.0533e-30.99359 200.49812 0.480783.9520e-3 0.97384 20
20 0.490480.48229 2.1208e-30.99644 200.49158 0.476442.4823e-3 0.98434 20

G5 10 0.494130.49325 3.0788e-30.99418 200.49542 0.483363.9952e-3 0.97424 20
20 0.486270.48687 1.8234e-30.99703 200.48706 0.480722.2280e-3 0.98443 20

below which we predict the quality-diversity correlation to be positive. This is
supported by the shape of the obtained non-dominated fronts within this range,
observed more clearly in minimum objective settings.

We see NSGA-II and SPEA2 perform similarly on these instances. Their
output non-dominated fronts largely overlap, which small differences in shapes.
Inspecting indicators suggests that NSGA-II consistently produces better trade-
offs than SPEA2’s with statistically significant differences. However, these dif-
ferences are small in relative magnitude.

We observe that the algorithms consistently reach plateaus before exhausting
the budgets. As the Hamming distance sum is easy to maximize, this gives us
confidence that the outputs approximate well the high diversity extreme of the
optimal fronts. On the other hand, we know there are individuals on the high-
quality (low-diversity) end of the fronts that the algorithms fail to approximate
as closely. Doing so requires improving the objective quality of all solutions
simultaneously. Therefore, expanding the front toward the high-quality end may
call for the use of high-performing white-box heuristics.
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Fig. 2. Unions of final populations across all runs on Max Coverage instances. “MIN”
indicates the minimum objective setting being used for f1 while “AVG” indicates aver-
age objective setting. For each run, dominated points are excluded.

4.2 Maximum Coverage

Given an undirected graph G = (V ,E) and threshold B, max coverage asks to
find a solution in

argmax
x ⊆V : |x | ≤B

f (x) := |x ∪ {v ∈ V : ∃u ∈ x , {v,u} ∈ E}|.

The constraint violation function on a solution is given by C(x) :=max{|x |−B, 0}.
We define the fitness functions:

– Minimum objective setting: f1(I ) := minX ∈I f (X ) if I is feasible, f1(I ) := −C(I )
otherwise.

– Average objective setting: f1(I ) := 1
r

∑
x ∈I :C(x )=0 f (x) −C(I ).

– f2(I ) :=
∑

x,y∈I |xΔy | − r |V |C(I ).
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Table 2. Medians of indicator scores and numbers of non-dominated individuals across
runs on Max Coverage instances. Boldface denotes greater medians between two algo-
rithms with statistical significance via Wilcoxon signed-rank tests (α = 1%).

Inst. r NSGA-II SPEA2
IGD+ HV IGD+* HV* # IGD+ HV IGD+* HV* #

Min objective frb30-15-1-10 10 0.15929 0.81026 0.029592 0.93453 2 0.20494 0.74484 0.070245 0.85907 2
20 0.1832 0.77547 0.031759 0.94084 2 0.19708 0.76149 0.044568 0.92388 2

frb30-15-1-15 10 0.10914 0.86323 0.025463 0.9374 2 0.20583 0.7614 0.11083 0.82681 3
20 0.12695 0.83641 0.02194 0.96042 1 0.14855 0.80815 0.042557 0.92797 2

frb30-15-2-10 10 0.16417 0.80583 0.027673 0.94845 2 0.21283 0.73197 0.079468 0.86151 2
20 0.17935 0.7798 0.021634 0.956 2 0.19764 0.76273 0.038031 0.93507 2

frb30-15-2-15 10 0.10548 0.87193 0.019205 0.96324 2.5 0.17837 0.78967 0.079967 0.87237 2.5
20 0.12098 0.84317 0.019826 0.96042 2 0.15161 0.80867 0.048502 0.92112 2

frb35-17-1-10 10 0.13118 0.8378 0.03164 0.93202 2 0.2302 0.72143 0.10349 0.80256 2
20 0.15653 0.80693 0.024794 0.94912 1 0.19487 0.74615 0.093325 0.87763 2

frb35-17-1-15 10 0.12243 0.84888 0.03123 0.94851 3 0.2624 0.69466 0.1835 0.77619 4
20 0.13673 0.81768 0.025891 0.94968 2 0.22212 0.7338 0.12012 0.85226 3

frb40-19-1-10 10 0.17484 0.78967 0.044668 0.90275 2 0.292 0.67112 0.097538 0.76722 3
20 0.2006 0.75525 0.038091 0.92657 1 0.27879 0.64764 0.14262 0.79455 2

frb40-19-1-15 10 0.14224 0.8172 0.031981 0.91518 3 0.28658 0.66474 0.092133 0.74444 4
20 0.14977 0.80752 0.021691 0.9544 2 0.30992 0.62822 0.19501 0.74249 2

Average objective frb30-15-1-10 100.27011 0.67792 0.066477 0.81149 6 0.21687 0.73174 0.035662 0.87592 5
200.25191 0.68919 0.16121 0.81487 3 0.16947 0.7829 0.048992 0.92568 2.5

frb30-15-1-15 100.28312 0.69755 0.096594 0.82766 6 0.20168 0.77957 0.027407 0.92498 6
200.2467 0.72253 0.13882 0.82469 4 0.15011 0.82141 0.041561 0.93754 3

frb30-15-2-10 10 0.25897 0.68825 0.049847 0.84212 7 0.21594 0.73583 0.028128 0.90033 6
200.24879 0.69083 0.13418 0.8167 3 0.15323 0.79726 0.030719 0.94252 2.5

frb30-15-2-15 100.26177 0.71947 0.053042 0.85601 7 0.20224 0.77967 0.018827 0.92764 5
200.22441 0.74949 0.050041 0.84491 3 0.14728 0.82496 0.019408 0.93 4

frb35-17-1-10 10 0.26252 0.69361 0.095864 0.82278 5 0.2524 0.70518 0.083781 0.83649 5
200.27384 0.67771 0.091109 0.75009 3 0.17247 0.78145 0.039561 0.86492 3

frb35-17-1-15 10 0.31072 0.65554 0.061725 0.84496 6.5 0.32269 0.64837 0.070474 0.83571 6.5
200.38841 0.57861 0.23436 0.6746 3 0.20157 0.75954 0.046485 0.88555 4

frb40-19-1-10 10 0.29465 0.65239 0.069837 0.82183 7 0.26244 0.68673 0.050005 0.86509 5
200.44666 0.50248 0.23174 0.60785 3 0.28296 0.65226 0.081098 0.78904 3

frb40-19-1-15 10 0.3006 0.66013 0.046622 0.87708 7 0.35017 0.61199 0.078987 0.81312 6.5
200.45212 0.51614 0.20746 0.65887 3 0.28312 0.67128 0.050441 0.85692 3

We find that the algorithm struggles to maintain feasibility of many solutions
simultaneously8, so we use a modified mutation operator. It flips each 1-bit with
probability χ (C(x)+1), 0-bit with probability χ , where x is the solution it belongs
to. This reduces generation of infeasible offspring and mitigates stagnation, with
small overhead.

We use the complement of BHOSLIB instances obtained from [38], denoted
with {graphname}–{threshold}. While these graphs are sparse, the coverage
functions they induce exhibit high degrees of multimodality, i.e., there are many
distant near-optimal local optima. This means we can expect the optimal non-
dominated front to be close to (OPT ,д(n,B, r )), the former being the maximum

8 Preliminary runs with standard mutation yield no feasible outputs when r = 20.



Evolutionary Multi-objective Diversity Optimization 127

coverage value and the latter being the diversity upper bound. Note that we
can construct a feasible individual I with f2(I ) = д(n,B, r ), implying the bound
is tight and always meets the optimal front at an individual.

The results are shown in Fig. 2 and Table 2. The algorithms return individuals
with high objective values, and relatively small variations along this dimension.
This leads to fewer non-dominated individuals from each run, as only few fitness
values are occupied. Furthermore, most output individuals have high diversity,
reaching above 80% of the upper bound in many instances. High Hypervolumes
and small Inverted Generational Distances against (OPT ,д(n,B, r )) indicate that
the output non-dominated fronts occupy a large part of the fitness space; this
implies that the optimal front is close to (OPT ,д(n,B, r )), as we suspect.

The two algorithms seem to perform similarly on these instances. The fronts
produced by NSGA-II have slightly higher diversity than those by SPEA2 in
the minimum objective settings, while the rest see large overlaps. The achieved
indicators show mixed comparisons. In min objective setting, NSGA-II achieves
better non-dominated fronts in most cases. In average objective setting, SPEA2
reaches better indicator scores, at greater frequency when r = 20.

4.3 Minimum Vertex Cover

Given an undirected graph G = (V ,E), min vertex cover asks to find a solution in

argmax
x ⊆V

f (x) := |V \ x | s .t . ∀e ∈ E, e \ x � ∅.

The constraint violation function on a solution is the number of edges not covered
C(x) := |{e ∈ E : e ∩ x = ∅}|. We define the fitness functions:

– Minimum objective setting: f1(I ) := minX ∈I f (x) if I is feasible, f1(I ) := −C(I )
otherwise.

– Average objective setting: f1(I ) := 1
r

∑
x ∈I :C(x )=0 f (x) −C(I ).

– f2(I ) :=
∑

x,y∈I |xΔy | − r |E |C(I ).

In addition, we implement a simple repair heuristic used in [34]. After mutation,
infeasible solutions are repaired with the procedure outlined in Algorithm 1. This
incurs an additive Θ(|E |) overhead per infeasible solution, similar to the time cost
of feasibility checking9. When this heuristic is used, C(I ) is not computed.

We choose nine hard BHOSLIB instances and complement of three DIMACS
instances for the maximum clique problem [25]. BHOSLIB instances contain only
large vertex covers, so maximizing objective correlates with maximizing diversity
as both involves minimizing common selected vertices. This also means there are
few possible objective values among feasible solutions, so we can expect the non-
dominated fronts returned by the algorithms to be sparse. Meanwhile, selected
DIMACS graphs are regular, inducing diverse sets of minimum vertex covers.
This means we can expect the optimal non-dominated fronts in these instances
to be close to (OPT ,д(n,OPT , r )) where OPT is the optimal objective value.
9 The cost is further reduced by streamlining repairing with evaluation.
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Algorithm 1: Repair heuristic for Max Vertex Cover [34]
Input: G = (V ,E), x ⊆ V
Output: x

1 for 0-bit i in x in random order do
2 if i is incident to an edge not covered by x then
3 xi ← 1, update covered edges;
4 for 1-bit j in x in random order do
5 if j is adjacent to no vertex in V \ x then
6 x j ← 0;

Fig. 3. Unions of final populations across all runs on Max Vertex Cover instances.
“MIN” indicates the minimum objective setting being used for f1 while “AVG” indicates
average objective setting. For each run, dominated points are excluded.

The results are shown in Fig. 3 and Table 3. We see both algorithms with the
repair heuristic consistently converge at a single non-dominated individual. In
BHOSLIB instances, this individual is mapped to approximately 50% of optimal
objective and diversity upper bound, resulting in Hypervolumes at roughly 25%
of the entire fitness space. In DIMACS instances, this individual is mapped to
the best theoretical trade-off consisting of (OPT ,д(n,OPT , r )), agreeing with our
intuition. The small number of returned non-dominated individuals could be
explained by the limited number of distinct fitness values a feasible individual
can assume, combined with the positive correlation between maximizing the
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Table 3. Medians of indicator scores across runs on Max Vertex Cover instances.
Medians of IGD+*, HV* and numbers of non-dominated points are 0, 1, 1, respectively,
for both algorithm in all instances, with no statistically significant differences.

Inst. r NSGA-II SPEA2

IGD+ HV IGD+ HV

Min objective frb30-15-1 10 0.70711 0.25 0.70711 0.25

20 0.69762 0.25676 0.69762 0.25676

frb30-15-2 10 0.70711 0.25 0.70711 0.25

20 0.69762 0.25676 0.69762 0.25676

frb30-15-3 10 0.70711 0.25 0.70711 0.25

20 0.69762 0.25676 0.69762 0.25676

frb35-17-1 10 0.72731 0.23592 0.72731 0.23592

20 0.72182 0.2397 0.72182 0.2397

frb35-17-2 10 0.72731 0.23592 0.72731 0.23592

20 0.72182 0.2397 0.72182 0.2397

frb35-17-3 10 0.72731 0.23592 0.72731 0.23592

20 0.72182 0.2397 0.72182 0.2397

frb40-19-1 10 0.74246 0.22562 0.74246 0.22562

20 0.74069 0.22682 0.74069 0.22682

frb40-19-2 10 0.74246 0.22562 0.74246 0.22562

20 0.74069 0.22682 0.74069 0.22682

frb40-19-3 10 0.74246 0.22562 0.74246 0.22562

20 0.74069 0.22682 0.74069 0.22682

hamming6-2 10 0 1 0 1

20 0 1 0 1

hamming8-2 10 0 1 0 1

20 0 1 0 1

hamming10-2 10 0 1 0 1

20 0 1 0 1

Average objective frb30-15-1 10 0.70711 0.25 0.70711 0.25

20 0.69762 0.25676 0.69762 0.25676

frb30-15-2 10 0.70711 0.25 0.70711 0.25

20 0.69762 0.25676 0.69762 0.25676

frb30-15-3 10 0.70711 0.25 0.70711 0.25

20 0.69762 0.25676 0.69762 0.25676

frb35-17-1 10 0.72731 0.23592 0.72731 0.23592

20 0.72182 0.2397 0.72182 0.2397

frb35-17-2 10 0.72731 0.23592 0.72731 0.23592

20 0.72182 0.2397 0.72182 0.2397

frb35-17-3 10 0.72731 0.23592 0.72731 0.23592

20 0.72182 0.2397 0.72182 0.2397

frb40-19-1 10 0.74246 0.22562 0.74246 0.22562

20 0.74069 0.22682 0.74069 0.22682

frb40-19-2 10 0.74246 0.22562 0.74246 0.22562

20 0.74069 0.22682 0.74069 0.22682

frb40-19-3 10 0.74246 0.22562 0.74246 0.22562

20 0.74069 0.22682 0.74069 0.22682

hamming6-2 10 0 1 0 1

20 0 1 0 1

hamming8-2 10 0 1 0 1

20 0 1 0 1

hamming10-2 10 0 1 0 1

20 0 1 0 1
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two fitnesses. The latter explains the observation that whenever multiple non-
dominated individuals are returned, they are all dominated by the one individual
the searches seem to converge at in the same instance.

We see NSGA-II and SPEA2 perform similarly under the same configuration
across instances. Their achieved indicators are identical in most instances, and no
statistically significant difference is detected in the rest. Furthermore, the repair
heuristic produces clear improvements over non-repair variants, with roughly
35% run-time overhead. The non-repair variants also fail to produce comparable
trade-offs within 150% the evaluation budgets.

We observe similar output individuals across instances within the same class
(e.g., prefixed by “frb30-15”), resulting in identical median indicator scores. This
indicates the similarity in the objective landscapes induced by these graphs.
In addition, the outputs are similar between min objective setting and average
objective setting. The choice of f1 does not seem to influence the behaviors of
the algorithms on these instances.

5 Conclusions

In this work, we study a bi-objective optimization formulation of the diverse
solutions problem, where different trade-offs between solutions objective quality
and diversity are evolved. This formulation requires that the output be a col-
lection of solution sets, in exchange for eliminating the need to set quality or
diversity criteria. We present an implementation scheme that treats a set of solu-
tions as an individual, and handles the inherent symmetry in diversity measures.
We realize the scheme in NSGA-II and SPEA2, and test the methods on various
maximum cut, maximum coverage and minimum vertex cover instances. The
results reveal insights on the optimization instances to which diverse solutions
are computed, and confirm that the bi-objective optimization paradigm can be
used to address the diverse solutions problem.

We remark that moving from solution spaces to populations spaces introduces
extra complexity to the search processes in a way that seems to frustrate black-
box approaches. It appears that this additional difficulty can be overcome by
problem-specific heuristics, as observed in our investigation with min vertex
cover. We speculate that state-of-the-art for this problem will involve memetic
algorithms and hybrid approaches.
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Abstract. We present an evolutionary optimizer incorporating knowl-
edge transfer through forward and inverse surrogate models for solving
multiobjective problems, within a stringent computational budget. For-
ward knowledge transfer is employed to fully exploit solution-evaluation
datasets from related tasks by building Bayesian forward multitask sur-
rogate models that map points from decision to objective space. Inverse
knowledge transfer via Bayesian inverse multitask models makes possi-
ble the creation of high-quality solution populations in decision space
by mapping back from preferred points in objective space. In contrast
to prior work, the proposed method can improve the overall convergence
performance to multiple Pareto sets by fully exploiting information avail-
able for diverse multiobjective problems. Empirical studies conducted on
benchmark and real-world multitask multiobjective optimization prob-
lems demonstrate the faster convergence rate and enhanced inverse mod-
eling accuracy of our algorithm compared to state-of-the-art algorithms.
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1 Introduction

In various real-world scenarios, decision-makers (DMs) confront the challenges
of simultaneously considering multiple conflicting criteria when choosing a spe-
cific optimal solution [27,33,34]. Such problems are commonly formulated as
multiobjective optimization problems (MOPs) [4]. The defining characteristic of
MOPs is the absence of a single solution that universally outperforms others
across all criteria. Thus, the primary aim in addressing an MOP is to identify
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Pareto optimal solutions, mapping to the Pareto front (PF) of optimal perfor-
mance trade-offs in the objective space. Evolutionary algorithms (EAs), with the
inherent population-based nature, are well suited for MOPs [9], through evolving
and maintaining a solution set iteratively. The obtained solution set can approxi-
mate the PF with well-distributed solutions, enabling DMs to assess performance
trade-offs and subsequently select the preferred solution(s) a posteriori [29,39].

While EAs have effectively addressed MOPs, a notable drawback is their
data-hungry nature, necessitating massive evaluations to converge upon a set of
nondominated solutions. This characteristic renders EAs unsuitable to directly
tackle expensive MOPs, especially those demanding time-consuming computer
simulations or intricate real-world experiments. To overcome this challenge,
leveraging inexpensive surrogate models can aid algorithmic evolution, reduc-
ing the budget for expensive evaluations. Notable algorithms in this domain
include ParEGO [28], MOEA/D-EGO [48], EHVI [15], and SMS-EGO [37]. How-
ever, these algorithms still require a sufficient number of evaluated samples to
construct informative surrogate models, thus necessitating a generous function
evaluation budget. This necessity has been termed as the cold start issue.

Integrating knowledge transfer capabilities into algorithms has emerged as
a promising strategy to address cold starts. By allowing algorithms to learn
from optimization experiences across related tasks, they often exhibit faster
convergence [10,21]. Notably, transfer evolutionary optimization and evolution-
ary multitasking have attracted significant attention as effective approaches in
this regard [2,17,21,45]. These methodologies recognize that real-world problems
rarely exist in isolation, allowing knowledge from various tasks to be adaptively
reused, thereby enhancing convergence. The efficacy of these algorithms is heav-
ily influenced by the strategy employed for knowledge transfer. Over the past
decades, several knowledge transfer techniques have been proposed and incorpo-
rated into the EA to enhance performance. This paper focuses on a recent app-
roach termed inverse transfer, which has shown promise in addressing expensive
MOPs [32]. This technique leverages Bayesian inverse models that map points
on the PF back to their corresponding nondominated solutions in the decision
space to achieve knowledge transfer. For instance, Liu et al. [32] introduced
invTrEMO, a novel transfer optimization algorithm showcasing the capability
to expedite convergence by harnessing implicit knowledge inherent in the source
data. Moreover, invTrEMO generates accurate inverse models as a byproduct,
facilitating the generation of nondominated solutions tailored to user preferences
on demand. However, it is crucial to note that Bayesian inverse models typically
assume one-to-one mappings from the PF to Pareto optimal solutions, grounded
in the Karush-Kuhn-Tucker conditions [7]. This assumption constrains Bayesian
inverse models to be trained solely based on nondominated samples, limiting the
utilization of the information embedded in dominated samples across different
tasks, and potentially impeding the overall efficacy of the approach.

To overcome the limitations of invTrEMO, we introduce a novel extension,
forward-inverse transfer evolutionary multiobjective optimizer (F-invTrEMO).
This enhanced method integrates both forward and inverse transfer techniques
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to maximize information utilization. By combining these two approaches, F-
invTrEMO harnesses the strengths of both forward and inverse transfer, enabling
more comprehensive knowledge transfer across multiple optimization tasks. The
forward transfer component leverages all evaluated samples to capture correla-
tions in function landscapes across all task domains, enhancing the accuracy of
Bayesian forward models to effectively guide the optimization process. Mean-
while, the inverse transfer aspect collaboratively utilizes nondominated samples
across related tasks, enabling the Bayesian inverse models to map preference vec-
tors from the objective space to the search distribution [24,40]. This distribution
facilitates the generation of promising offspring solutions by harnessing knowl-
edge from multiple tasks, thus guiding the evolutionary process. This forward-
inverse transfer mechanism can hopefully upgrade the ability to exploit inter-task
information across related MOPs [25] including composites manufacturing [23],
path planning [1], model compression [8] and hyperspectral unmixing [46].

In this paper, we primarily focus on addressing the more challenging multi-
task multiobjective optimization problems with F-invTrEMO, rather than the
sequential transfer optimization problems [22]. This broader focus aims to fur-
ther validate the effectiveness of the proposed method. The main contributions
of this paper can be summarized as follows:

– We present a novel algorithm named F-invTrEMO. A distinctive feature of
F-invTrEMO is its incorporation of both forward and inverse transfer tech-
niques to steer the optimization process. This approach allows F-invTrEMO
to capitalize on information from both dominated and nondominated evalu-
ated samples across diverse tasks, thereby maximizing the utilization of avail-
able data for improved optimization outcomes.

– We demonstrate that integrating both forward and inverse transfer mecha-
nisms not only accelerates convergence but also yields more precise Bayesian
inverse models for approximating the Pareto fronts of individual tasks.

– We validate the superiority of our method across a spectrum of multitask opti-
mization problems, encompassing benchmark problems, a set of engineering
optimization problems, and hyperparameter optimization problems.

The remainder of this paper is organized as follows. Section 2 introduces
the basic concepts and the related work. Section 3 introduces the proposed F-
invTrEMO framework. The effectiveness of the proposed framework is justified
by experimental analysis in Sect. 4, and Sect. 5 concludes the paper.

2 Preliminaries

2.1 Multitask Multiobjective Optimization

Considering the synergies inherent in MOPs, multitask multiobjective optimiza-
tion concurrently solves a set of MOPs by leveraging information across these
problem domains [16,22]. Let fk,i(·), where k ∈ {1, . . . , K} and i ∈ {1, . . . , m},
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be the ith objective on the kth optimization task, without loss of generality, the
multitask MOP is defined as follows:

∀Tk, k ∈ {1, . . . , K},

min : Fk(xk) = (fk,1(xk), . . . , fk,m(xk)), s.t. xk ∈ Ωk ⊂ R
d

(1)

where Tk denotes the kth task setting, Fk(·) represents the objective function
vector corresponding to the kth task setting, xk = (xk,1, . . . , xk,d) denotes the
solution corresponding to the kth task setting, and Ωk signifies the decision
space corresponding to the kth task setting. In this paper, we assume that each
objective function is expensive to evaluate, imposing a constraint on the evalu-
ation budget allocated for each task. The key concepts [4] associated with the
formulation in (1) are explained as follows:

– (Pareto Dominance) Solution x(a)
k is said to Pareto dominate another solu-

tion x(b)
k on the kth task setting, if ∀i ∈ {1, 2, . . . ,m}, fk,i(x

(a)
k ) ≤ fk,i(x

(b)
k )

and ∃i′ ∈ {1, 2, . . . ,m} such that fk,i′(x(a)
k ) < fk,i′(x(b)

k ).
– (Pareto Optimal Solutions) Solution x∗

k is said to be Pareto optimal on
the kth task setting if there are no other candidate solutions that can domi-
nate x∗

k.
– (Pareto Set) Pareto set (PS) consists of all the Pareto optimal solutions.
– (Pareto Front) The image of the Pareto set in the objective space is referred

to as the Pareto front (PF).

The result of (1) can be represented as a set of Pareto optimal solution sets:

PSk = {x(1)∗
k ,x(2)∗

k ,x(3)∗
k , . . .}, S =

K⋃

k=1

PSk, (2)

where x(·)∗
k is a Pareto optimal solution of the kth task, PSk is a Pareto optimal

solution set of the kth task setting, and S is the optimal set of solution sets.

2.2 Decomposition-Based Multiobjective Optimization

The fundamental concept behind decomposition-based multiobjective optimiza-
tion is to decompose a MOP into a series of single-objective subproblems through
the utilization of a specific scalarization function [47]. By solving these subprob-
lems individually, a finite set of Pareto optimal solutions can be obtained. In this
paper, we concentrate on augmented Tchebycheff scalarization [28,30], selected
for its simplicity and suitability for non-convex Pareto fronts. This technique
combines objective functions using the following expression, which remains con-
sistent across tasks:

f tch(x|w) = max
1≤i≤m

{wi · (fi(x) − (z∗
i − ε))} + ρ

M∑

i=1

wifi(x), (3)
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where fi(x) is the ith objective of a specific MOP, w is known as the pref-
erence vector sampled from a (m − 1) dimensional simplex (i.e., w ∈ W =
{(w1, w2, ..., wm)T |∑m

i=1 wi = 1, wi ∈ [0, 1]}), z∗
i is the ideal objective function

value (i.e., minimal possible value) for the ith objective, the coupled term (z∗
i −ε)

is the utopia objective value by maintaining ε as a small positive value for the
ith objective, and ρ is a sufficiently small scalar weight.

2.3 Gaussian Process

To address expensive objective functions, Gaussian Processes (GPs) [38] are
commonly employed as the surrogate to facilitate a data-efficient problem-solving
process. This method has been widely applied in various multiobjective optimiza-
tion techniques, including ParEGO [28], MOEA/D-EGO [48], EHVI [15], and
SMS-EGO [37]. In this paper, we also opt for GP as the surrogate model, where
we assume f ∼ GP(μ, κ(x,x′)), where μ represents the mean function with a zero
prior, and κ is a kernel function that encapsulates the correlation between input
data points. Given sampled data D = {(x(i), y(i))}N

i=1 with noise ε(i) ∼ N (0, σ2
ε ),

the predicted posterior distribution of the GP model, N (μ(x(∗)), σ2(x(∗))), for
a query x(∗) can be computed as follows:

μ(x(∗)) = kᵀ
∗(Σ + σ2

ε IN )−1y, (4)

σ(x(∗)) = κ∗∗ − kᵀ
∗(Σ + σ2

ε IN )−1k∗. (5)

where κ∗∗ = κ(x(∗),x(∗)), k∗ is the kernel vector between x(∗) and the data in
D, Σ is an N × N matrix with elements Σp,q = κ(x(p),x(q)), p, q ∈ {1, . . . , N},
IN is a N × N identity matrix, and y is the vector of the noisy observations.

2.4 Inverse Modeling in Multiobjective Optimization

Inverse modeling has emerged as a powerful tool in the domain of multiobjec-
tive optimization, offering innovative strategies for navigating optimization and
enabling DMs to generate preferred trade-off solutions on demand. Under the
premise that the Karush-Kuhn-Tucker conditions hold, PS and PF are both
(m − 1)-dimensional piecewise manifolds under mild conditions [14], enabling
inverse models to facilitate the mapping of solutions from the objective space
back into the decision space. It is noteworthy that the input for inverse mod-
els can encompass not only objective function values [7,24] but also preference
vectors [20,30,31]. In this paper, we specifically explore the mapping from pref-
erence vectors to decision variables. This approach allows DMs to articulate
their preferences more easily without delving deeply into the intricacies of the
PF topology [40]. GP models are utilized to map a preference vector w to the
jth decision variable as Ψ−1

j (w), where Ψ−1
j ∼ GP(μj , κj(w,w′)). By amal-

gamating all d mappings, the inverse prediction [Ψ−1
1 (w), Ψ−1

2 (w), . . . , Ψ−1
d (w)]

is obtained. To train the inverse GP models, a dataset Dinv = {(w(l),x(l))}Nnd

l=1

should be provided first, where w(l) is the preference vector corresponding to the
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nondominated solution x(l). It’s worth noting that the multiobjective optimizer
used may not be decomposition-based, and therefore, well-defined subproblems
with associated preference vectors may not be specified beforehand. As a general
strategy, the following fomulation can be employed to derive w(l) for x(l) based
on objective function values:

w
(l)
i =

c
(l)
i∑M

i=1 c
(l)
i

, i ∈ {1, . . . , M}, (6)

where c
(l)
i =

∑m
v=1(fv(x(l))−(z∗

v−ε))

(fi(x(l))−(z∗
i −ε))

, ensuring the preference vector w(l) can corre-
spond to the aggregated solution in the objective space.

Terminate?
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w x

f1,1

f1,2

f2,1

f2,2

f3,1

f3,2

f1,1

f1,2

f2,1

f2,2

f

f3,2

Nondominated 

Solutions and 

Inverse Model

yes

no

Initialization

Problem
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Inverse Multitask

Modeling

Solution Generation

and Evaluation

Fig. 1. Workflow of the proposed F-invTrEMO. Inverse modeling considers only non-
dominated solutions while forward modeling considers all the solutions.

3 Forward-Inverse Transfer for Multitask Multiobjective
Optimization

This section elucidates the methodology of the proposed F-invTrEMO. We com-
mence by delineating the workflow of the proposed method and demonstrate how
to incorporate forward and inverse transfer into the optimization process. Subse-
quently, we introduce multitask Gaussian Process (MTGP) models [3] including
forward MTGP and inverse MTGP that enable forward and inverse transfer.

3.1 General Framework of F-InvTrEMO

The general workflow of the F-invTrEMO can be detailed in Fig. 1 and
Algorithm 1, and the steps are explained as follows:
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– Initialization: In this step, Ninit solutions are generated and evaluated for
each task, thus forming the initial datasets {DM

1 , . . . ,DM
K }, where DM

k =
{(x(l)

k ,Fk(x(l)
k ))}Nk

l=1 and Nk = Ninit.
– Problem Decomposition: In each iteration, we sample a randomly selected

preference vector w(t) ∈ W and scalarize the MOPs into single-objective
optimization problems based on (3). The resultant dataset for task k can be
denoted as Dtch

k = {Xk,yk} = {(x(l)
k , y

(l)
k )}Nk

l=1, and y
(l)
k = f tch

k (x(l)
k ) + ε(l)

represents a noisy observation of the scalarized output corresponding to the
k-th task, with ε(l) being additive Gaussian noise with zero mean.

– Forward Multitask Modeling: In each iteration, a forward MTGP model
is constructed to guide the optimization process for each task. Notably, in
the context of F-invTrEMO, the forward model prediction for each task is
designed to approximate the augmented Tchebycheff function as defined in
(3) and the training set for the forward MTGP model is Dtch

k , k ∈ {1, . . . .K}.
It is important to note that the datasets for the forward MTGP models contain
both dominated and nondominated samples, enabling the algorithm to fully
utilize information from all the data.

– Inverse Multitask Modeling: To construct inverse models, the dataset
Dinv

k is generated for the kth task by only leveraging the nondominated sam-
ples within DM

k . To be specific, given multitask MOPs with d-dimensional
decision variable for each task, d datasets are included in dataset Dinv

k as

Dinv
k,j = {Wk,Xk,j} = {(w(l)

k ,x(l)
k,j)}Nnd

k

l=1 , j ∈ {1, . . . , d}, containing pairs

of nondominated solutions x(l)
k and corresponding preference vectors w(l)

k

obtained according to (6). Subsequently, d independent inverse MTGP mod-
els are trained based on {Dinv

1 , . . . Dinv
K } to map the preference vectors to

nondominated solutions in the decision space.
– Evolutionary Solution Generation: For each solving task, a candidate

solution is generated, and the corresponding dataset is updated. For the kth
task, given w(t), the inverse MTGP provides a search distribution charac-
terized by a Gaussian distribution. Subsequently, a set of offspring solutions
Uk is produced by sampling according to this search distribution. We utilize
the upper confidence bound (UCB) acquisition function to select the most
promising solution x(t)

k from Uk for the kth task. In the case of a minimiza-
tion problem, the UCB function is formulated as −μfmt(xu) + β · σfmt(xu),
where β is a predefined parameter balancing exploration and exploitation,
μfmt(xu) and σfmt(xu) are the predictive mean and standard deviation for
a given query xu by the forward MTGP. The selected x(t)

k is then evaluated
by the objective function of the kth task, denoted as Fk(x(t)

k ). Finally, the
dataset DM

k is updated by appending {(x(t)
k ,Fk(x(t)

k ))} to it.

Steps 5 to 20 in Algorithm 1 are repeated until the termination condition is
met. The algorithm then returns the inverse MTGP models and the nondomi-
nated solutions corresponding to each optimization task.
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Algorithm 1: The workflow of F-invTrEMO
Input: Task size K, Initialization budgets Ninit, Dimension size d, Sample size

of offspring solutions NS , Objective functions Fk for each task k,
Predefined preference vector set W.

Output: Pareto optimal solutions for each task, Inverse model for each
dimension

1 foreach task k do
2 Initialize Ninit solutions for the kth task, thus forming dataset

DM
k = {(x

(l)
k ,Fk(x

(l)
k ))}Nk=Ninit

l=1

3 end
4 t ← 0
5 while t < tmax do

6 Sample a preference vector w(t) randomly from W
7 foreach task k do

8 Scalarize DM
k based on (3) and w(t) to obtain dataset

Dtch
k = {(x

(l)
k , y

(l)
k )}Nk

l=1

9 end

10 Build a forward MTGP model N (μfmt(x
(∗)), σ2

fmt(x
(∗))) using ∪K

k=1Dtch
k

11 foreach dimension j do

12 Generate k datasets Dinv
k,j = {(w

(l)
k ,x

(l)
k,j)}Nnd

k
l=1 , (k ∈ {1, . . . , K}) based on

nondominated samples in DM
k and (6)

13 Build an inverse MTGP model N (μimt,j(w
(∗)
k∗ ), σ2

imt,j(w
(∗)
k∗ )) using

{Dinv
1,j , . . . , Dinv

K,j} for the j-th decision variable

14 end
15 foreach task k do

16 Let w
(∗)
k = w(t), then sampling a set Uk of NS offspring solutions based

on the prediction provided by the inverse MTGP models

17 Select solution x
(t)
k = argmaxxu∈Uk

−μfmt(xu) + σfmt(xu)

18 DM
k ← DM

k ∪ {(x
(t)
k ,Fk(x

(t)
k ))}

19 end
20 t ← t + 1

21 end

3.2 Multitask Gaussian Process as Forward and Inverse Models

Within the F-invTrEMO framework, the incorporation of MTGP models in both
forward and inverse modeling1 aims to thoroughly exploit sampled data across
multiple tasks, thus enhancing information utilization. The iterative refinement
of both forward and inverse modeling mutually benefits each other, resulting in
improved approximation of the PF during and after optimization.

Distinguishing itself from canonical GP models outlined in equations (4) and
(5), the primary innovation of MTGP lies in the formulation of a multitask kernel
function [3], as expressed below:

1 The training process of the MTGP model can be found in [19].
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κmt((xinput, a), (x′
input, b)) = κtasks(a, b) · κ(xinput,x′

input) (7)

Here, xinput and x′
input represent arbitrary input vectors, κtasks assesses the

similarity among tasks, and κ mirrors the kernel functions in standard GPs, as
delineated in equation (5). Within the context of this paper, the task indices a
and b refer to the ath and bth optimization tasks, respectively. Subsequently, we
will elucidate on the construction of the forward and inverse MTGP models.

– Forward MTGP Building: In each iteration, we construct a forward
MTGP for the optimization tasks, mapping decision variables to aggregated
objective values based on (3). The training set for task k during forward mod-
eling is Dtch

k . Subsequently, the posterior distribution of the forward MTGP
can be formulated as follows:

μfmt(x
(∗)
k∗ ) = k̄ᵀ

fmt,∗(Σ̄fmt + Λfmt)−1ȳ (8)

σfmt(x
(∗)
k∗ ) = κfmt((x

(∗)
k∗ , k∗), (x(∗)

k∗ , k∗))−
k̄ᵀ

fmt,∗(Σ̄fmt + Λfmt)−1k̄fmt,∗
(9)

where k̄fmt,∗ is the multitask kernel vector between the input x(∗)
k∗ and all the

inputs in {X1, . . . ,XK}, Σfmt is the overall multitask kernel matrix corre-
sponding to the forward MTGP, ȳ is the vector with all the weighted outputs
in {y1, . . . ,yK} where every single output can be obtained with the prefer-
ence vector w and (3), and Λfmt is the additive noise variance matrix of the
forward MTGP.

– Inverse MTGP Building: For inverse modeling, we establish an inverse
MTGP model for each dimension of decision variables across all tasks. Given
the training dataset {Dinv

1 , . . . Dinv
K }, the posterior distribution for a query

preference vector w(∗)
k∗ , N (μimt,j(w

(∗)
k∗ ), σimt,j(w

(∗)
k∗ )) can be computed using

the formula (10) and (11) with the kernel function (7).

μimt,j(w
(∗)
k∗ ) = k̄ᵀ

imt,∗j(Σ̄imt,j + Λimt,j)−1X̄j (10)

σimt,j(w
(∗)
k∗ ) =κimt,j((w

(∗)
k∗ , k∗), (w(∗)

k∗ , k∗))−
k̄ᵀ

imt,∗j(Σ̄imt,j + Λimt,j)−1k̄imt,∗j

(11)

where k̄imt,∗j is the multitask kernel vector between the input w(∗)
k∗ and all the

inputs in {W1, . . . ,WK}, Σimt,j is the multitask kernel matrix corresponding
to the jth inverse MTGP, X̄j contains all the outputs in {X1,j , . . . ,XK,j} and
Λimt,j is the additive noise variance matrix corresponding to the jth inverse
MTGP.



144 T. Wei et al.

Table 1. IGD results on benchmark problems and real-world problems.

Problems Tasks ParEGO PSL-MOBO F-invTrEMO

mDTLZ-1 Task-1 0.0897 (0.0214) − 0.1307 (0.0512) −0.0611 (0.0051)

Task-2 0.1538 (0.0780) ≈ 0.1877 (0.0699) ≈0.1528 (0.1200)

Task-3 0.1282 (0.0281) − 0.1876 (0.0955) −0.0731 (0.0099)

Task-4 0.1630 (0.0331) − 0.2571 (0.0812) −0.1182 (0.0718)

mDTLZ-2 Task-1 0.1305 (0.0113) − 0.1708 (0.0149) −0.1135 (0.0083)

Task-2 0.1656 (0.0207) − 0.1798 (0.0185) −0.1489 (0.0174)

Task-3 0.1598 (0.0184) − 0.2537 (0.0836) −0.1328 (0.0150)

Task-4 0.3054 (0.0590) − 0.4187 (0.1235) −0.1439 (0.0154)

mDTLZ-3 Task-1 0.4371 (0.1679) − 0.7681 (0.0535) −0.2726 (0.0277)

Task-2 0.5621 (0.1276) − 0.8203 (0.0347) −0.3059 (0.0399)

Task-3 0.4907 (0.1474) − 0.8142 (0.0624) −0.2833 (0.0356)

Task-4 0.5843 (0.1082) − 0.8922 (0.0571) −0.3241 (0.0305)

EO Task-1 0.0152 (0.0024) − 0.0549 (0.0100) −0.0095 (0.0011)

Task-2 0.0159 (0.0020) − 0.0518 (0.0132) −0.0102 (0.0017)

Task-3 0.0142 (0.0026) − 0.0526 (0.0090) −0.0104 (0.0013)

HPO-1 Task-1 0.0208 (0.0030) − 0.0180 (0.0013) −0.0170 (0.0028)

Task-2 0.0222 (0.0023) − 0.0264 (0.0022) −0.0169 (0.0012)

Task-3 0.0418 (0.0041) ≈ 0.0606 (0.0226) − 0.0420 (0.0134)

HPO-2 Task-1 0.0277 (0.0043) − 0.0338 (0.0021) −0.0220 (0.0053)

Task-2 0.0227 (0.0027) − 0.0226 (0.0026) −0.0160 (0.0016)

4 Experimental Studies

In this section, we assess the effectiveness of F-invTrEMO using various mul-
titask multiobjective optimization problems, encompassing benchmark prob-
lems [32,40], an engineering optimization problem [41], and hyperparameter opti-
mization problems [36]. We compare F-invTrEMO with the classical ParEGO,
which only incorporates single-task forward GP models, and the state-of-the-art
PSL-MOBO [30], which includes both single-task forward and inverse models.
For all the methods, the evaluation budget for each task in optimizing the mul-
titask MOPs is set to 100 evaluations, with an initialization budget Ninit of 20.
During scalarization in each algorithm iteration, the weight ρ is fixed at 0.05. For
the UCB function, the parameter β is set to 0.5. Due to the page limit, we intro-
duce more experiments for comparison with a recent multiobjective Bayesian
optimization method [35] and experiments as per advanced performance indica-
tors including IGD+ [26] and hypervolume [49] in the supplementary file [44].
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4.1 Problem Settings

Benchmark Problems. Three base problems are formulated based on the well-
established DTLZ benchmark [11], following the methodology outlined in prior
research [40]. By adjusting the parameters in these base problems, three sets of
multitask modified DTLZ (referred to as mDTLZ) problems can be generated
[32,40]. In our experiment, the dimension of the decision space for all mDTLZ
optimization tasks is set to six. Additional detailed information about the base
problems can be found in the supplementary file [44], with insights into the
corresponding parameters provided in [32,40].

Real-World Problems. Our real-world problems include an engineering opti-
mization problem (EO) and two hyperparameter optimization problems (HPO).

It is commonplace to seek optimal engineering designs for components under
diverse conditions, such as varying load cases or production materials. In such
scenarios, obtaining high-quality solutions corresponding to each environment
is imperative. Our case study centers on an engineering optimization problem
known as the four-bar truss design problem [6]. We endeavor to identify a set
of optimal designs for the four-bar truss under three distinct load cases. Further
details regarding the parameter settings of the design problem are available in
the supplementary file [44], while the formulation of objectives can be found
in [41].

Hyperparameter optimization is a classical topic in the field of machine learn-
ing [18]. The configuration of hyperparameters for machine learning models can
impact the model performance, computational resources, and interpretability to
decision-makers. In this paper, we apply F-invTrEMO to generate optimal hyper-
parameter sets concurrently across diverse related tasks. We consider the follow-
ing two scenarios. The first problem set (HPO-1) contains three hyperparameter
optimization problems. The three optimization problems adjust the hyperpa-
rameters of the same machine-learning model, XGBoost [5], but on three dis-
tinct classification tasks including credit approval, medical diagnosis, and speech
classification problems. The second problem set (HPO-2) contains two hyper-
parameter optimization problems. The two optimization problems adjust the
hyperparameters of distinct but related machine learning models (i.e., XGBoost
in ‘gbtree’ mode and ‘dart’ mode.) on the same classification task, medical diag-
nosis problem [36].

All the hyperparameter optimization case studies are implemented using the
framework of YAHPO Gym [36]. Each task for a problem set is a tri-objective
hyperparameter tuning, targetting at classification accuracy, model RAM, and
model interpretability. Further details can be found in the supplementary file [44]
and OpenML problems [43].

4.2 Performance Metrics

We involve two metrics to assess the performance of the algorithms, including the
inverted generational distance (IGD) [42] and root mean square error (RMSE).
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The Inverted Generational Distance (IGD) is a commonly utilized metric in
multiobjective optimization. It quantifies the Euclidean distance between the
objective function values of the obtained nondominated solution sets and the
true PF. For the kth task, the corresponding IGD value is computed as follows:

IGDk =
1

Nr

Nr∑

r=1

min{||Fk(x(r)
opt,k) − Fk(x(1)

k )||2,

. . . , ||Fk(x(r)
opt,k) − Fk(x(Nnd

k )
k )||2}

(12)

Table 2. RMSE results on benchmark problems and real-world problems.

Problems Tasks PSL-MOBO F-invTrEMO

mDTLZ-1 Task-1 0.3021 (0.0744) − 0.0721 (0.0173)

Task-2 0.3828 (0.0770) ≈ 0.4250 (0.2263)

Task-3 0.3790 (0.0837) − 0.1592 (0.0780)

Task-4 0.4019 (0.0787) − 0.3568 (0.1691)

mDTLZ-2 Task-1 0.3501 (0.1321) − 0.0679 (0.0295)

Task-2 0.2997 (0.0146) − 0.1436 (0.0219)

Task-3 0.7010 (0.1819) − 0.1700 (0.0454)

Task-4 0.9420 (0.1361) − 0.3248 (0.1767)

mDTLZ-3 Task-1 1.0219 (0.0310) − 0.6946 (0.0392)

Task-2 1.0430 (0.0429) − 0.7412 (0.0325)

Task-3 1.0562 (0.0457) − 0.7830 (0.0361)

Task-4 1.1166 (0.0747) − 0.8301 (0.0423)

EO Task-1 0.2211 (0.0242) ≈ 0.2173 (0.0054)

Task-2 0.2290 (0.0261) − 0.2144 (0.0067)

Task-3 0.2225 (0.0372) ≈ 0.2046 (0.0053)

HPO-1 Task-1 0.1818 (0.1143) − 0.0943 (0.0721)

Task-2 0.1663 (0.1558) − 0.0626 (0.0125)

Task-3 0.1881 (0.0545) − 0.1273 (0.0411)

HPO-2 Task-1 0.1855 (0.1075) − 0.0811 (0.0476)

Task-2 0.1572 (0.1612) − 0.0694 (0.0260)

where {x(1)
opt,k, . . . ,x(Nr)

opt,k} represents a set of true Pareto optimal solutions that

correspond to well-distributed points along the Pareto front, and x(1)
k , . . . ,x(Nnd

k )
k
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denote the nondominated solutions obtained in task k by the optimizer. In this
paper, Nr is set to 2000.2

The RMSE aims to measure the accuracy of the obtained inverse models.
Given a test set Dopt,k = {(w(r)

opt,k,x(r)
opt,k)}Ntest

r=1 , where w(r)
opt,k is the preference

vector corresponding to x(r)
opt,k. Since the goal of the inverse model is to satisfy

DM’s preferences articulated in the objective space, we calculate the RMSE of
the kth task in the objective space as:

RMSEk =

√∑Nr

r=1 ||Fk(x(r)
opt,k) − Fk(x(r)

pred,k)||22
Nr

(13)

where x(r)
pred,k is the prediction of the inverse models with respect to w(r)

opt,k. The

predicted means of the inverse models are taken as the prediction x(r)
pred,k.

4.3 Results

In Tables 1 to 3, numbers with indicators (+), (−) and (≈) imply that the
compared algorithm is better than, worse than, or similar to F-invTrEMO at
95% confidence level as per the Wilcoxon signed-rank test.

Table 3. IGD and RMSE results on benchmark problems for F-invTrEMO with and
without forward multitask GP (invTrEMO).

Problems Tasks IGD RMSE

invTrEMO F-invTrEMO invTrEMO F-invTrEMO

mDTLZ-1 Task-1 0.0820 (0.0126) − 0.0611 (0.0051) 0.1174 (0.0358) − 0.0721 (0.0173)

Task-2 0.1264 (0.0699) ≈ 0.1528 (0.1200) 0.4857 (0.2244) ≈ 0.4250 (0.2263)

Task-3 0.1203 (0.0301) − 0.0731 (0.0099) 0.3181 (0.1851) − 0.1592 (0.0780)

Task-4 0.1457 (0.0427) ≈ 0.1182 (0.0718) 0.4911 (0.2010) − 0.3568 (0.1691)

mDTLZ-2 Task-1 0.1157 (0.0074) ≈ 0.1135 (0.0083) 0.0637 (0.0244) ≈ 0.0679 (0.0295)

Task-2 0.1284 (0.0118) + 0.1489 (0.0174) 0.1466 (0.0484) ≈ 0.1436 (0.0219)

Task-3 0.1350 (0.0120) ≈ 0.1328 (0.0150) 0.1556 (0.0273) ≈ 0.1700 (0.0454)

Task-4 0.2192 (0.1015) − 0.1439 (0.0154) 0.3360 (0.1605) ≈ 0.3248 (0.1767)

mDTLZ-3 Task-1 0.3090 (0.1115) − 0.2726 (0.0277) 0.7355 (0.0633) − 0.6946 (0.0392)

Task-2 0.4589 (0.1682) − 0.3059 (0.0399) 0.8288 (0.1004) − 0.7412 (0.0325)

Task-3 0.3103 (0.0743) − 0.2833 (0.0356) 0.7837 (0.0650) ≈ 0.7830 (0.0361)

Task-4 0.3941 (0.1475) − 0.3241 (0.0305) 0.8403 (0.0803) ≈ 0.8301 (0.0423)

2 For benchmark problems, the ground truth solutions serve as the reference solution
set. For real-world problems, bi-objective and tri-objective reference solution sets
are obtained using NSGA-II [13] and NSGA-III [12] with population size 500 and
generation size 1000, similar to [40].
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Fig. 2. The IGD convergence trends of the mDTLZ-1 problem with four tasks and the
HPO-1 problem with three tasks provided by ParEGO, PSL-MOBO, and F-invTrEMO
(a) The mDTLZ-1 problem. (b) The HPO-1 problem.

Comparison with ParEGO and PSL-MOBO. In Table 1, we present a
summary of the IGD (mean and standard deviation) obtained by ParEGO,
PSL-MOBO, and F-invTrEMO after 100 evaluations with 10 independent runs.
Notably, F-invTrEMO outperforms the other methods in terms of IGD results
for 18 out of the 20 tasks, indicating a better convergence of F-invTrEMO than
its two competitors. Additionally, in Fig. 2, we illustrate the convergence trends
of ParEGO, PSL-MOBO, and F-invTrEMO on mDTLZ-1 and HPO-1 problems.
Figure 2 demonstrates that F-invTrEMO exhibits faster convergence compared
to both ParEGO and PSL-MOBO. These results underscore the capability of
F-invTrEMO to achieve superior convergence outcomes.

In addition to evaluating convergence performance, we also assess the accu-
racy of the obtained inverse models. Since only PSL-MOBO provides inverse
models, Table 2 presents the RMSE results obtained by PSL-MOBO and F-
invTrEMO. The findings indicate that, for 17 out of the 20 tasks, F-invTrEMO
achieves superior RMSE values, suggesting that F-invTrEMO can produce more
accurate inverse models through knowledge transfer across multiple tasks.

Ablation Study. In F-invTrEMO, we incorporate the forward transfer to maxi-
mize the utilization of information from both dominated and nondominated sam-
ples across distinct tasks based on the inverse transfer model. This study ver-
ifies the forward transfer’s effectiveness by comparing F-invTrEMO that fully
exploits the interplay between forward transfer and inverse transfer models with
invTrEMO that is solely based on inverse transfer models. The obtained IGD
and RMSE results are presented in Table 3. Our analysis reveals that the con-
vergence of F-invTrEMO is significantly improved with the inclusion of a forward
MTGP model. In terms of both IGD and RMSE results, F-invTrEMO outperforms
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invTrEMO in 7 out of the 12 tasks on IGD and 5 of 12 tasks on RMSE. These find-
ings suggest that by leveraging information from both dominated and nondomi-
nated samples corresponding to different tasks, the algorithm enhances both the
convergence of the optimization and the accuracy of the inverse models.

5 Conclusion

In this paper, we incorporate knowledge transfer in both forward and inverse
surrogate modelling for multiobjective optimization. It’s argued that both for-
ward and inverse models encounter the challenge of data scarcity. Both forward
and inverse knowledge transfer are employed to alleviate this problem. Forward
knowledge transfer improves convergence performance, while inverse knowledge
transfer enhances the quality of approximating PF, both by utilizing the avail-
able information across distinct tasks through multitask modeling. The results
are compared with those using only surrogate models without forward or inverse
knowledge transfer across benchmark problems and real-world problems. These
studies indicate that the proposed mechanism can enhance both the conver-
gence performance and PF approximation results in multitask multiobjective
optimization under strict computational constraints.
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Abstract. Despite significant progress in the field of mathematical
runtime analysis of multi-objective evolutionary algorithms (MOEAs),
the performance of MOEAs on discrete many-objective problems is lit-
tle understood. In particular, the few existing bounds for the SEMO,
global SEMO, and SMS-EMOA algorithms on classic benchmarks are
all roughly quadratic in the size of the Pareto front.

In this work, we prove near-tight runtime guarantees for these three
algorithms on the four most common benchmark problems OneMinMax,
CountingOnesCountingZeros, LeadingOnesTrailingZeros, and OneJump-
ZeroJump, and this for arbitrary numbers of objectives. Our bounds
depend only linearly on the Pareto front size, showing that these MOEAs
on these benchmarks cope much better with many objectives than what
previous works suggested. Our bounds are tight apart from small poly-
nomial factors in the number of objectives and length of bitstrings. This
is the first time that such tight bounds are proven for many-objective
uses of these MOEAs. While it is known that such results cannot hold
for the NSGA-II, we do show that our bounds, via a recent structural
result, transfer to the NSGA-III algorithm.

Keywords: evolutionary multi-objective optimization · runtime
analysis · SMS-EMOA · NSGA · theory

1 Introduction

Evolutionary algorithms such as the SMS-EMOA, NSGA-II, or MOEA/D are
among the most successful approaches to tackle optimization problems with
several conflicting objectives [7,33]. Despite the challenges stemming from the
often complex population dynamics in multi-objective evolutionary algorithms
(MOEAs), the analysis of MOEAs via theoretical means has made considerable
progress in the last twenty years. Starting with simplistic algorithms such as
the simple evolutionary multi-objective optimizer (SEMO) [21] and the global
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SEMO [16], this line of research has now reached the maturity to deal with state-
of-the-art algorithms such as the MOEA/D, NSGA-II, NSGA-III, and SMS-
EMOA [4,22,26,28].

However, this progress so far was mostly restricted to the analysis of MOEAs
on bi-objective optimization problems. In particular, the few existing mathemati-
cal runtime analyses for the SEMO, global SEMO, and SMS-EMOA [3,20,31] for
problems with general number m of objectives show runtime guarantees roughly
quadratic in the size of the Pareto front; the recent work [29] proves that the
NSGA-II cannot optimize the OneMinMax problem in time better than expo-
nential in the size of the Pareto front when the number of objectives is three
or more. These results could give the impression that MOEAs have significant
difficulties in dealing with larger numbers of objectives, clearly beyond the mere
increase of the size of the Pareto front with increasing numbers of objectives.

In this work, we revisit this twenty years old question and prove signifi-
cantly stronger performance guarantees, which give a different impression. More
specifically, we analyze the runtimes of the SEMO, global SEMO, SMS-EMOA,
and NSGA-III on the OneMinMax (OMM), CountingOnesCountingZeros

(COCZ), LeadingOnesTrailingZeros (LOTZ), and OneJumpZeroJump

(OJZJ) problems for a general (even) number m of objectives. We prove run-
time guarantees showing that these algorithms compute the Pareto fronts of
these problems in an expected time (number of function evaluations) that is
linear in the size of the largest set of incomparable solutions (apart from small
polynomial factors in the number m of objectives and the bitstring length n).
For all benchmarks except LOTZ and OJZJ with large jump size, this number
coincides with or is close to the size of the Pareto front. Since naturally the size
of the Pareto front is a lower bound for these runtimes, these guarantees are
tight apart from the small factors. In the bi-objective case (m = 2) our results
match the state-of-the-art bounds (apart from constant factors).

Together with the parallel and independent work on the NSGA-III [25], these
are the first that tight runtime guarantees for these MOEAs for general numbers
of objectives, and they improve significantly over the previous results with their
quadratic dependence on the Pareto front size.

We are optimistic that our methods can also be applied to other MOEAs. We
discuss some sufficient conditions for transferring the obtained bounds. We argue
that they are fulfilled by SMS-EMOA and NSGA-III, but we believe that our
arguments can also be applied to variants of the NSGA-II that do not suffer from
the problems detected in [29], e.g., the NSGA-II with the tie-breaker proposed
in [15], and to the (μ + 1) SIBEA [5].

2 Previous Work

The mathematical runtime analysis of randomized search heuristics is an active
area of research for more than 30 years now, see [1,13,19,24,34]. Since around 20
years ago, also the runtime of multi-objective evolutionary algorithms (MOEAs)
has been analyzed with mathematical means. Starting with simple toy algorithms
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like the simple evolutionary multi-objective optimizer (SEMO) [21] or the global
SEMO (GSEMO) [16], the field has steadily progressed and is now able to also
predict the runtimes of state-of-the-art algorithms such as the MOEA/D [22],
NSGA-II [32], NSGA-III [26], and the SMS-EMOA [4].

Looking closer at the results obtained, we note that the vast majority of the
runtime analyses of MOEAs consider only bi-objective problems. The sporadic
results regarding more than two objectives appear less mature, and the runtime
guarantees are far from the (mostly trivial) existing lower bounds.

One natural reason for the additional difficulty of runtime analyses for many-
objective problems, visible from comparing the proofs of results for two and
for more objectives, is the richer structure of the Pareto front. In bi-objective
problems, the Pareto front has a one-dimensional structure. Hence the typical
runtime analysis first estimates the time to find some solution on the Pareto
front and then regards how the MOEA progresses along the Pareto front in the
only two directions available. For problems with more objectives, the Pareto
front is higher-dimensional, and hence there are many search trajectories from
the first solution on the Pareto front to a particular solution.

The main runtime results for more than two objectives are the following.
Already the journal version [20, Section V] of the first runtime analysis work on
MOEAs [21] contains two many-objective runtime results, namely proofs that
the SEMO computes the Pareto front of mCOCZ and mLOTZ (which are
the m-objective analogues of the classic COCZ and LOTZ benchmarks) with
problem size n and even number m ≥ 4 of objectives in an expected number of
O(nm+1) function evaluations. While the result for mLOTZ naturally extends
the O(n3) bound for the bi-objective LOTZ problem, the same is not true for
mCOCZ, where the bi-objective runtime guarantee is O(n2 log n). Considerably
later, the bounds for mCOCZ were slightly improved in [3], namely to O(nm)
for m > 4 and to O(n3 log n) for the special case m = 4. As often in the runtime
analysis of MOEAs, the complicated population dynamics prevented the proof
of any interesting lower bounds, so only the trivial bound Ω(nm/2Θ(m)−m/2),
which is the size of the Pareto front for both problems, is known.

Huang, Zhou, Luo and Lin [18] analyzed how the MOEA/D [27] optimizes
the benchmarks mCOCZ and mLOTZ. As the MOEA/D decomposes the multi-
objective problem into several single-objective subproblems and solves these in a
co-evolutionary way, this framework is fundamentally different from the MOEAs
regarded in this work, so we do not discuss these results in more detail.

Surprisingly, the NSGA-II [9] has enormous difficulties with discrete many-
objective problems. Zheng and Doerr [29] showed that this prominent algorithm
with any population size that is linear in the Pareto front size cannot optimize
the OMM problem in polynomial time (in expectation) when the number of
objectives is three or more. The proof of this result suggests that this is an
intrinsic problem of the crowding distance, and that similar negative results
hold for the other benchmark problems in this work.

The NSGA-III [8] might cope better with more objectives, however, this was
proven only for the 3-objective OMM problem, where a runtime guarantee of
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O(Nn log n) function evaluations was shown in [26] (when the population size
N is at least the size (n

2 +1)2 of the Pareto front). In a very recent parallel and
independent work, [25] generalized the property of the NSGA-III used in the
analyses of the 3-objective OMM problem to arbitrary benchmarks and numbers
of objectives. They used this property to prove the runtime of the NSGA-III (for
a proper choice of reference points and population size μ) to be O(μn log n) on
mOMM and mCOCZ, and O(μn2) on mLOTZ, for arbitrary but constant and
even m. Our results on the NSGA-III heavily rely on their proven property and
extend their results to arbitrary, non-constant numbers of objectives.

Very recently [31], the runtime of the GSEMO and the SMS-EMOA [2] on
the OJZJk problem for arbitrary (even) numbers m of objective was shown to be
O(M2nk) and O(μMnk), respectively, where M = (2 n

m − 2k + 3)m/2 is the size
of the Pareto front of this problem and μ ≥ M denotes the size of the population
of the SMS-EMOA.

We note that all bounds discussed in this section except for the ones of the
NSGA-III are quadratic in the Pareto front size, times some small polynomial
in m and n. As our results will show, this quadratic dependence is not necessary
and merely stems from the difficulty to analyze many-objective MOEAs.

3 Preliminaries

Let N = {1, 2, . . .} and for n ∈ N, let [n] = {1, . . . , n}. Whenever we are speak-
ing of how close one bitstring is to another, we are referring to their Hamming
distance. Many of our proofs rely on two well-known bounds in probability the-
ory, which we give here for completeness and reference in our proofs by name.
First, a union bound states for some finite set of events {E1, . . . , E�} that the
probability of any of the events happening is at most the sum over the individual
probabilities, that is, Pr[

⋃
i∈[�] Ei] ≤ ∑

i∈[�] Pr[Ei]. Second, we employ a variant
of the Chernoff bound. Let X1, . . . , X� be independent random variables with
values in {0, 1} and let X =

∑
i∈[�] Xi. Then for any 0 < δ < 1 we have

Pr[X ≤ (1 − δ)E[X]] ≤ exp
(− 1

2δ2E[X]
)
.

In particular, Pr[X ≤ 1
2E[X]] ≤ exp(− 1

8E[X]).

3.1 Multi-objective Optimization

Let m ∈ N. An m-objective function f is a tuple (f1, . . . , fm) such that fi : Ω →
R for some search space Ω, for all i ∈ [m]. We define the objective value of x ∈ Ω
to be f(x) = (f1(x), . . . , fm(x)). There is usually no solution that maximizes all
m objective functions at the same time. For x, y ∈ Ω we write x � y if and
only if fi(x) ≥ fi(y) for all i ∈ [m] and say that x dominates y. If additionally
fj(x) > fj(y) for some j ∈ [m], we say that x strictly dominates y and write
x � y. A solution x ∈ Ω is Pareto-optimal if it is not strictly dominated by any
other solution. The Pareto front is the set of objective values of Pareto-optimal
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solutions. Given an algorithm and an objective function, we are interested in
the number of function evaluations until the population covers the Pareto front,
that is, until for all values p on the Pareto front there is a solution x in the
population such that f(x) = p. We note that all algorithms analyzed in this work
in each iteration create one new individual and thus only require one function
evaluation per iteration. Thus we simply analyze the number of iterations until
the Pareto front is covered and remark here that the initial population also has
to be evaluated (1 evaluation for the SEMO and GSEMO, μ iterations for the
SMS-EMOA with population size μ).

All the objective functions we consider are defined on the search space of
bitstrings of length n for n ∈ N. For m = 2m′ objectives, they are obtained by
partitioning individuals into m′ blocks of size b = n

m′ and applying a bi-objective
function to each block. For some individual x ∈ {0, 1}n and i ∈ [m′], we define
xi to be the ith block of x, that is the substring from xb(i−1)+1 to xbi. We define
|xi|1 =

∑ib
j=(i−1)b+1 xj (and |xi|0 = b − |xi|1) to denote the number of 1-bits

(and 0-bits) in the ith block.

3.2 Benchmarks

We evaluate the algorithms on four established multi-objective benchmarks.

mOneMinMax (mOMM). The objective function mOMM translates the well-
established OneMax benchmark in a setting with m = 2m′ objectives for some
m′ ∈ N. Intuitively, the bitstring is divided into m′ equally sized blocks that
each contribute two objectives, the number of 1-bits and the number of 0-bits
in that block. The bi-objective case of m′ = 1 was proposed by [17] and later
generalized to arbitrary m′ [29]. Let b,m′ ∈ N and n = bm′. For all x ∈ {0, 1}n,
define mOMM(x) = (f1(x), . . . , fm(x)) where for all i ∈ [m′]

f2i(x) = |xi|1 and f2i−1(x) = b − |xi|1.
The benchmark mOMM is special in the sense that each of the SOMM

m :=
(

n
m′ + 1

)m′
possible objective values lies on the Pareto front.

mCountingOnesCountingZeros (mCOCZ). The COCZ benchmark and its
multi-objective variant mCOCZ [20] are closely related to OMM and mOMM.
However, the objectives cooperate on the first half of the bitstring and only
the second half is evaluated just like for mOMM. Formally, let m′ ∈ N,
b ∈ 4N, n = 2bm′, and m = 2m′. Then for all x ∈ {0, 1}n, define mCOCZ(x) =
(f1(x), . . . , fm(x)) where for all i ∈ [m′]

f2i(x) =
bm′
∑

j=1

xj +
ib∑

j=ib+1

xbm′+j and f2i−1(x) =
bm′
∑

j=1

xj +
ib∑

j=ib+1

1 − xbm′+j .

Observe that SCOCZ
m = ( n

2m′ + 1)m
′

is the size of Pareto front for the mCOCZ

problem and also the maximum size of any set of pairwise non-dominating
individuals.
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mLeadingOnesTrailingZeros (mLOTZ). The objective function mLOTZ

is the many objective variant of the bi-objective LOTZ benchmark [20]. Intu-
itively, it has two objectives per block, one being the number 1-bits up to the
first 0-bit and the other being the number of 0-bits behind the last 1-bit. For-
mally, let b,m′ ∈ N, n = bm′, and m = 2m′. Then for all x ∈ {0, 1}n, define
mLOTZ(x) = (f1(x), . . . , fm(x)) where for all i ∈ [m′]

f2i(x) =
ib∑

j=(i−1)b+1

j∏

j′=1

xj′ and f2i−1(x) =
ib∑

j=(i−1)b+1

ib∏

j′=j

1 − xj′ .

Observe that S̄LOTZ
m = SOMM

m = ( n
m′ +1)m

′
is the size of Pareto front for the

mLOTZ problem. However, the size SLOTZ
m of the largest incomparable set is

asymptotically tightly bounded by SLOTZ
m ≤ ( n

m′ +1)2m′−1 [25] and thus almost
quadratic in S̄LOTZ

m .

mOneJumpZeroJumpk (mOJZJk). The objective function mOJZJk is the
recently introduced many objective variant [31] of the bi-objective OJZJ bench-
mark [14]. It has two objectives per block, one for the number of 1-bits and
one for the number of 0-bits. However, it has a fitness valley with decreasing
objective value if the number of 0-bits or 1-bits is in [k], where k is a parameter
of the benchmark. Formally, let b,m′ ∈ N, n = bm′ and m = 2m′. Then for all
x ∈ {0, 1}n, define mOJZJk(x) = (f1(x), . . . , fm(x)) where for all i ∈ [m′]

f2i(x) = Jumpk(xi) and f2i−1(x) = ZeroJumpk(xi) with

Jumpk(x) =

{
|x|1 + k, if |x|1 ≤ b − k or |x|1 = b;
b − |x|1, else;

ZeroJumpk(x) =

{
|x|0 + k, if |x|0 ≤ b − k or |x|0 = b;
b − |x|0, else.

We assume 2 ≤ k ≤ n
2m′ . The 2-objective OJZJ benchmark with jumps

of size k has a Pareto front of size n − 2k + 3 [14]. Thus, the Pareto front
of mOJZJk, which corresponds to OJZJ in m′ individual blocks of size n

m′ ,

is of size S̄OJZJ
m =

(
n

m′ − 2k + 3
)m′

. As the objective value is defined by the
number of 1-bits in each block, the size SOJZJ

m,k of a largest set of pairwise non-

dominating individuals is upper bounded by SOJZJ
m,k ≤ (

n
m′ + 1

)m′
= SOMM

m . Note
that SOJZJ

m,k ≈ S̄OJZJ
m for small values of k, which is typically assumed.

3.3 SEMO and GSEMO

The SEMO and GSEMO start the first generation with a single, random indi-
vidual in the population. In each iteration, they uniformly at random choose
an individual from the current population and mutate it to a new solution x′.
Now they remove all solutions from the population that are dominated by x′

and add x′ to the population if and only if it is not strictly dominated by a
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solution in the population, see Algorithm 1. This way, the population stores
exactly one individual for each encountered objective value that is not strictly
dominated by any other encountered objective value. Observe that by evaluating
the objective function only once after a new individual is created and storing the
value for future comparisons, the number of evaluations is exactly the number
of generations (plus 1 for the initial individual). The only difference between the
SEMO and the GSEMO is the mutation step. While the SEMO uniformly at
random selects one bit of the parent and flips that bit to create an offspring,
the GSEMO independently flips each bit of the parent with some probability p.
Here we assume the conventional mutation rate p = 1

n .

Algorithm 1: (Global) SEMO
Input : objective function f = (f1, . . . , fm),

length of bitstrings n with n
m

∈ N

1 Generate x0 ∈ {0, 1}n uniformly at random and let P0 := {x0}
2 for t = 1, 2, . . . do
3 Select x from Pt−1 uniformly at random and let x′ := mutate(x)
4 Pt := {p ∈ Pt−1 | x′ �� p}
5 if there is no p ∈ Pt such that p � x′ then
6 Pt := Pt ∪ {x′}

4 Mathematical Analyses of GSEMO

We start our contribution by giving upper bounds on the optimization time of
the GSEMO on the four benchmarks. Afterward, in Sect. 5, these results are
transferred to other MOEAs as well. To start our analysis, we observe that
for these benchmarks the size of any set of incomparable solutions is at most
SOMM

m , SCOCZ
m , SLOTZ

m , or SOJZJ
m,k , respectively. Consequently, these are upper

bounds on the population size in any iteration of the GSEMO.

4.1 mONEMINMAX

If a bitstring has ai bits of value 1 in the ith block for all i ∈ [m′], we call it an
(a1, a2, . . . , am′)-bitstring. We abbreviate the notation of vectors of the Pareto
front from (n−a1, a1, n−a2, a2, . . . , n−am′ , am′) to (a1, a2, . . . , am′). Define the
set Cm to contain all bitstrings for which each of the m′ blocks consists either
only of 1-bits or only of 0-bits (“corners”). Observe that |Cm| = 2m′

and that
each bitstring in Cm is the unique individual of the respective objective value.
For the upper bound, we separately bound the time until all individuals in Cm

are in the population, see Lemma 1, and then analyze how from this point on all
other individuals are generated, see Lemma 2. The following theorem combines
these results to bound the total optimization time.
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Theorem 1. Let m′ ∈ N and m = 2m′. Consider the GSEMO optimizing
mOMM. Let T denote the number of iterations until the population matches
the complete Pareto front and let t be

(
ln(2)m′ + 2

ln(n)
+ 16

m′2 + 2m′

n
+ 2

)

eSOMM
m n ln(n) + 1.

Then T ≤ t with high probability and E[T ] ≤ (1 − 1
n )

−2t.

Proof. Let t1 and t2 be the optimization times in Lemmas 1 and 2. We have
t ≥ t1+	t2
 by observing ln(n) ≥ ln(m′) and ln(n)+1 ≥ ln(n+1) ≥ ln

(
n

m′ + 1
)
.

Thus, T ≤ t with a high probability of at least (1 − 1
n )

2. We employ a simple
restart argument to obtain an upper bound on the expected value of T , analyz-
ing the success of each sequence of t iterations separately. Each sequence of t
iterations fails to cover the Pareto front with probability at most 1 − (1 − 1

n )
2.

Due to the convergence of the geometric series we have

E[T ] ≤
∞∑

i=0

(

1 −
(

1 − 1
n

)2
)i

t =
(

1 − 1
n

)−2

t. ��

Lemma 1. Let m′ ∈ N and m = 2m′. Consider the GSEMO optimizing
mOMM and let T denote the number of iterations until the population contains
Cm. Then

T ≤
(

ln(2)
m′

ln(n)
+ 2

)

eSOMM
m n ln(n)

with probability at least 1 − 1
n .

Proof. We first prove a tail bound for the time TC until the population contains
the corner bitstring 1n. By the symmetry of mOMM, this bound applies to
all other elements in Cm as well. Hence, applying a union bound over the tail
bounds for the individual elements in Cm yields a bound on the time until all
elements are covered.

Let x be a member of the population with maximum number of 1-bits. Let
i = n − |x|1 be the number of 0-bits of x. Then the probability of sampling an
individual that has i − 1 many 0-bits in the next iteration is at least 1

SOMM
m

· i ·
1
n · (1 − 1

n )
n−1 ≥ i

enSOMM
m

= pi, by choosing x as parent, flipping any one of its
0-bits, and not flipping any other bit. Hence, E[TC ] ≤ ∑n

i=1
1
pi

.
For 1 ≤ i ≤ n, let Xi be independent geometric random variables, each with

success probability pi, and let X =
∑n

i=1 Xi. Then X stochastically dominates
TC , and thus a tail bound for X also applies to TC . By Theorem 1.10.35 in
[11], a tail bound for sums of geometric random variables with harmonic success
probabilities, for all δ ≥ 0 we have

Pr[TC ≥ (1 + δ)eSOMM
m n ln(n)] ≤ Pr[X ≥ (1 + δ)eSOMM

m n ln(n)] ≤ n−δ.
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By the symmetry of the problem and operators, the bound also holds for all
other elements in Cm. Let δ = m′ logn(2) + 1. A union bound helps to give a
tail bound on the time T until the population contains all elements in Cm. The
probability that T ≤ (m′ logn(2) + 2)eSOMM

m n ln(n) is at least

1 − |Cm|·Pr[TC ≥ (m′ logn(2) + 2)eSOMM
m n ln(n)]

≥ 1 − 2m′
n−m′ logn(2)−1 = 1 − 1

n .

We note that this applies for arbitrary starting configurations, as all that we
assumed about the initial population was that it is non-empty. ��
Lemma 2. Let m′ ∈ N and m = 2m′. Consider the GSEMO optimizing
mOMM starting with a population that contains at least all individuals in Cm.
Let T denote the number of iterations until the population matches the complete
Pareto front and let

t = max

{

1, 8
m′(m′ ln

(
n

m′ + 1
)
+ ln(m′) + ln(n))

n

}

· 2eSOMM
m n.

Then T ≤ 	t
 with probability at least 1 − 1
n .

Proof. Consider any objective value v = (a1, a2, . . . , am′) on the Pareto front.
Let c0 ∈ Cm be any closest corner to an (a1, a2, . . . , am′)-bitstring. We bound the
time until an (a1, a2, . . . , am′)-bitstring is generated by bounding the time until
a marked individual c becomes an (a1, a2, . . . , am′)-bitstring. Let initially c = c0.
Whenever the individual c creates an offspring c′ by flipping exactly one bit and
c′ is closer to any (a1, a2, . . . , am′)-bitstring than c, we update c to be c′. We also
replace c by c′ whenever an individual c′ with the same objective value replaces
c in the population. The time until the population contains an (a1, a2, . . . , am′)-
bitstring is at most the time until c is an (a1, a2, . . . , am′)-bitstring. We first
bound the probability that after t iterations there are exactly ai bits of value 1
in the ith block of c, for any fixed 1 ≤ i ≤ m′. By symmetry, suppose without
loss of generality that ai ≤ n

2m′ and the ith block of c0 to be 0n/m′
. All c we will

encounter have between 0 and ai bits with value 1. The probability of creating
an offspring of c in the next iteration that flips one of the at least n

2m′ bits of
value 0 in the ith block and no other bit is at least

1
SOMM

m

· n

2m′ · 1
n

·
(

1 − 1
n

)n−1

≥ 1
2em′SOMM

m

=: p.

After ai ≤ n
2m′ such iterations, c contains the correct number of 1-bits in the

ith block. Thus, for the time Ti until the ith block of c is correct we have
E[Ti] ≤ ai

p . For j ∈ [	t
], let Xj be independent random variables, each with a

Bernoulli distribution with success probability p. Let X =
∑�t�

j=1 Xj . Then, due
to stochastic domination, Pr[Ti > 	t
] ≤ Pr[X < ai] ≤ Pr[X ≤ ai]. By observing
E[X] = p	t
 ≥ n

m′ we have

Pr[X ≤ ai] ≤ Pr
[
X ≤ n

2m′
]

≤ Pr
[

X ≤ 1
2
E[X]

]

.
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Applying a Chernoff bound yields

Pr[Ti > 	t
] ≤ exp
(

−1
8
E[X]

)

≤ exp
(
− ln(m′) − m′ ln

( n

m′ + 1
)

− ln(n)
)
.

Using a union bound over all blocks gives that any fixed objective value on the
Pareto front is not sampled in t iterations with probability at most

exp
(
− ln(m′) − m′ ln

( n

m′ + 1
)

− ln(n)
)
m′ = exp

(
−m′ ln

( n

m′ + 1
)

− ln(n)
)
.

Let E denote the event that after 	t
 iterations there is still an objective
value (a1, a2, . . . , am′) such that the respective individual c does not contain the
correct number 1-bits in any block. By applying a union bound we have

Pr[E] ≤ exp
(
−m′ ln

( n

m′ + 1
)

− ln(n)
)
SOMM

m = exp(− ln(n)) =
1
n

by observing SOMM
m = exp(m′ ln( n

m′ + 1)). ��

4.2 mCOUNTINGONESCOUNTINGZEROS

Due to the similarity between mOMM and mCOCZ, our previous proofs can
be adapted to also work for mCOCZ. We first show that with probability at
least 1− 1

n the population after 2eSCOCZ
m n ln(n) iterations contains an individual

such that the cooperative, first half is maximized. From this point on, we employ
the same ideas as for Theorem 1 by only considering individuals with maximum
cooperative part. More details are placed in the supplementary material.1

Theorem 2. Let m′ ∈ N and m = 2m′. Consider the GSEMO optimizing
mCOCZ. Let T denote the number of iterations until the population matches
the complete Pareto front and let t be

(
ln(2)m′ + 2

ln(n)
+ 16

m′2 + 2m′

n
+ 4

)

eSCOCZ
m n ln(n) + 1.

Then T ≤ t with high probability and E[T ] ≤ (1 − 1
n )

−3t.

Comparing the bounds for mOMM and mCOCZ on bitstrings of the same
length, we note that the bound for mCOCZ is smaller than the one on mOMM

as SCOCZ
m ≈ 2−m/2SOMM

m .

4.3 mLEADINGONESTRAILINGZEROS

In contrast to mOMM and mCOCZ, for mLOTZ the probability to transform a
solution of a certain objective value into one where one of the values changed by
1 is less depending on the objective value itself. In fact, this probability is at least
1 Supplementary material is available at https://arxiv.org/abs/2404.12746.

https://arxiv.org/abs/2404.12746


Near-Tight Runtime Guarantees for Many-Objective EAs 163

1
eSLOTZ

m n for all objective values. Employing a similar strategy as in the proof of
Lemma 2, but starting from the initial individual gives the following Theorem 3.
This strategy is not compromised by the fact that some intermediate solutions
might vanish from the population when strictly dominated. In that case, the
dominating solutions actually are at least as close to a desired solution as the
dominated one. Details are given in the supplementary material.

Theorem 3. Let m′ ∈ N and m = 2m′. Consider the GSEMO optimizing
mLOTZ. Let T denote the number of iterations until the population matches
the complete Pareto front and let

t = max

{

1,
4m′2 ln

(
n

m′ + 1
)
+ 8m′ ln(n)

n

}

2eSLOTZ
m

n2

m′ .

Then T ≤ 	t
 with high probability and E[T ] ≤ (1 − 1
n )

−1	t
.
While, unlike our other bounds for the GSEMO, this result does not improve
over the existing O(n2m′−1) bound [20], we note that our bound applies to all
choices for the numbers of objectives while the previous one assumed it to be
constant.

4.4 mONEJUMPZEROJUMPk

We define the set Km,k = {(a1, . . . , am′) | ai ∈ {k, n
m′ − k} for all i ∈ [m′]} to

contain all objective values of individuals that in each block have either exactly
k bits of value 0 or exactly k bits of value 1. Further, we define the set Cm,k =
{(a1, . . . , am′) | ai ∈ {0, k, n

m′ − k, n
m′ } for all i ∈ [m′]} to contain all objective

values of individuals that in each block have either only 1-bits, only 0-bits,
exactly k bits of value 0, or exactly k bits of value 1.

For the mOJZJk benchmark, we separately consider three phases: the time
until Km,k is covered, the time until Cm is covered, and the time until the
remaining Pareto front is covered. While the first and third phase roughly com-
pare to Lemmas 1 and 2, the second phase dominates the running time. There,
progress is made by jumping over the valley of low fitness, which for any fixed
block takes time in eSOJZJ

m,k nk as the only way is to simultaneously flip the k bits.
The bounds we obtain for the mOJZJk benchmark are only applicable if m′ ≥ 2.
For the case m′ = 1, we thus refer to previous results in the literature, which
show that the expected number of iterations until the GSEMO solves 2OJZJk is
at most eSOJZJ

2,k ( 32nk + 2n ln(	n
2 
) + 3) [30]. Details on the proofs are placed in

the supplementary material.

Theorem 4. Let m′ ∈ N≥2 and m = 2m′. Consider the GSEMO optimizing
mOJZJk. Let T denote the number of iterations until the population matches
the complete Pareto front and let

t =
(
ln(4)m′ + ln(n)

ln(m′)
+ 1

)

3e ln(m′)SOJZJ
m,k nk.
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Then T ≤ t with high probability . Further,

E[T ] ≤
(

1 − 1
m′

)−1( ln(4)m′

ln(m′)
+ 2

)

3e ln(m′)SOJZJ
m,k nk.

5 Runtime Results for the SEMO, SMS-EMOA,
and NSGA-III

We started our mathematical runtime analysis of many-objective MOEAs with
an analysis of the GSEMO, the most prominent MOEA in theoretical works. We
are very optimistic that our general methods apply to many other MOEAs as
well. We discuss sufficient conditions to extend our results to other MOEAs and
demonstrate this on the SEMO, an algorithm prominent in theory, as well as
the SMS-EMOA and NSGA-III, algorithms often used in practical applications.

Note that all our proofs for upper bounds for the GSEMO only rely on three
properties of the algorithm:

1. Once a solution x is generated, all future populations contain a solution y
such that y � x.

2. The chance to select an individual from the population for mutation is at least
1
S , where S is typically an upper bound on the size of sets of incomparable
solutions. The bounds on the runtime will include a factor of S.

3. The employed mutation operator is bitwise mutation with a chance of 1
n to

flip a bit. Other mutation operators are possible but might affect the bounds
and ability to solve some benchmarks at all, as we discuss for the SEMO.

While the latter two properties enable progress to be made, the first one is
responsible for not loosing already made progress, that is, not loosing any desired
solutions and intermediate solutions on the path to a desired solution.

5.1 SEMO

The only difference between the SEMO and GSEMO is the mutation step. While
the GSEMO flips each bit independently with probability 1

n , the SEMO uni-
formly at random selects any bit and flips it. This makes it impossible for the
SEMO to solve mOJZJk, as argued for the bi-objective case [14]. By the same
reasoning, the SEMO cannot solve mOJZJk for any m. Nevertheless, the SEMO
is able to solve all other benchmarks discussed in this work. In fact, we note that
in all proofs, except for the ones concerning mOJZJk, our arguments exclusively
build on improvements by flipping exactly one bit. Thus, not only do all proven
results immediately transfer, but actually improve by a factor e, that previously
accounted for the probability of no other bit than the desired one flipping.

Theorem 5. Consider the SMS-EMOA optimizing mOMM, mCOCZ, or
mLOTZ. Then the respective bounds for the GSEMO as given by Theorems 1, 2,
and 3, divided by e, also hold for the SEMO.
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Algorithm 2: SMS-EMOA with population size μ

Input : objective function f = (f1, . . . , fm),
length of bitstrings n with n

m
∈ N

1 Let P0 := {x1, . . . , xµ}, where each xi ∈ {0, 1}n is generated independently and
uniformly at random

2 for t = 1, 2, . . . do
3 Select x from Pt−1 uniformly at random and let x′ := mutate(x)
4 Divide Rt := Pt ∪ {x′} into fronts F1, . . . , Fi∗ , by fast-non-dominated-sort()

[9].
5 Pick z′ ∈ argminz∈Fi∗ Δr(z, Fi∗) uniformly at random and let Pt := Rt \ z′

5.2 SMS-EMOA

The SMS-EMOA works with a population of fixed size μ. Similar to the
(G)SEMO, it produces one offspring solution in each generation. We consider
the SMS-EMOA using bit-wise mutation just like employed by the GSEMO.
While the (G)SEMO only relies on the (strict) domination relation to select the
surviving solutions for the next generation, the SMS-EMOA sorts solutions into
fronts F1, . . . , Fi∗ , where each front contains all pairwise not strictly dominat-
ing solutions that are not yet represented in an earlier front. Then one element
of Fi∗ is removed to reduce the population size back to μ, namely one with
smallest hypervolume contribution. For some set S and reference point r, the
hypervolume of S is HVr(S) = L(⋃

u∈S{h ∈ R
m | r ≤ h ≤ f(u)}), where L is

the Lebesgue measure. The hypervolume contribution of an individual of an
individual x ∈ F is Δr(x, F ) = HVr(F ) − HVr(F \ {x}). Since we only regard
maximization problems with non-negative objective values, as common, we use
the reference point r = (−1, . . . ,−1). Algorithm 2 states the SMS-EMOA in
pseudocode.

Our results for the GSEMO transfer to the SMS-EMOA if μ is at least as the
largest set of incomparable solutions. The central observation is that then, once
the population of the SMS-EMOA contains an individual x, all future generations
will contain at least one individual x′ such that f(x′) � f(x) [31, Lemma 4],
yielding the first of the three above mentioned properties. For the second and
third one, we note that the chance to select an individual for mutation is simply
1
μ and bitwise mutation is applied. This yields the results as for the GSEMO
though μ replaces the factor S in all runtime bounds.

Theorem 6. Consider the SMS-EMOA optimizing one of mOMM, mCOCZ,
mLOTZ, or mOJZJk, let S denote the size of the largest incomparable set of
solutions, and let the population size be μ ≥ S. Then the respective bounds for the
GSEMO given by Theorems 1-4, multiplied by μ

S , also hold for the SMS-EMOA.

5.3 NSGA-II and NSGA-III

We briefly summarize the NSGA-II and NSGA-III and refer to [26] for details.
The algorithms work with a population of fixed size μ. Each iteration, every



166 S. Wietheger and B. Doerr

individual produces an offspring, here we assume by bitwise mutation. The com-
bined population of size 2μ is sorted into ranks, each containing all solutions only
dominated by those with lower rank. The new generation of size μ is selected by
prioritizing lower rank solutions. As a tiebreaker, the NSGA-II employs crowding
distance while the NSGA-III uses reference points in the solution space.

As discussed in the introduction, the NSGA-II struggles for m > 2 objectives.
Our proofs do not transfer as, even with a large population, the NSGA-II can
lose non-dominated objective values as proven for mOMM in [29].

In contrast, the NSGA-III preserves non-dominated solutions for reason-
able choices of the population size and reference points [25]. Each individual
is mutated with probability 1

S = 1 in each generation, eliminating the factor S
from the running time. However, every generation requires μ ≥ S fitness evalu-
ations.

Theorem 7. Consider the NSGA-III optimizing mOMM, mCOCZ,mLOTZ,
or mOJZJk, let S denote the size of the largest incomparable set of solutions and
fmax denote the largest fitness value over all solutions and objectives. Assume
μ ≥ S and the NSGA-III to employ a set of reference points Rp as defined in
[25] with p ≥ 2m3/2fmax. Then the respective bounds for the GSEMO as given
by Theorems 1-4 multiplied by μ

S , also hold for the NSGA-III.

6 Conclusion

In this work, we revisited the problem of proving performance guarantees for
MOEAs dealing with more than two objectives. In the first major progress after
the initial work on this question twenty years ago [20], we proved runtime guaran-
tees for three classic algorithms on four classic benchmarks that are all (except
for mLOTZ) linear in the size of the Pareto front (apart from small factors
polynomial in n and m), in contrast to the previous bounds, which were all
quadratic in the size of the Pareto front. Our results thus suggest that MOEAs
cope much better with many-objective problems than known. In fact, our work
hints at that the performance loss observed with increasing number of objectives
in experiments is caused by the increasing size of the Pareto front rather than
by particular algorithmic difficulties of many-objective optimization.

An obvious next step in this research direction would be to advance from
synthetic benchmarks to classic combinatorial optimization problems, e.g., the
multi-objective minimum spanning tree problem regarded so far only for two
objectives [6,10,23]. A technical challenge would be to determine the runtimes
for the many-objective LOTZ problem, where we do not have the obvious lower
bound of the Pareto front size. We note, though, that lower bounds for LOTZ
are already very difficult in the bi-objective setting [12].
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Abstract. Multi-Objective Evolutionary Algorithms have proven to
be very effective when solving Multi-Objective Optimization Problems.
However, their performance decreases significantly when solving large
scale problems, which can have hundreds or thousands of variables.
Although several algorithms have been proposed to tackle this problem in
the recent years, most of them are designed for continuous problems, and
only a few focus on binary ones. In this paper, we propose a modification
to multi-objective random one-bit climbers that achieves better perfor-
mance in large scale binary problems by learning the trend of the values
of the decision variables from previously found solutions and applying
that information to decide which ones to focus on when executing the
bit climb. We present the implemented algorithm, compare its perfor-
mance to other well known evolutionary algorithms and study some of
its properties.

Keywords: Multi-objective optimization · Multi-objective bit
climbers · Evolutionary algorithms · Large scale binary problems ·
Decision space reduction · MNK-Landscapes

1 Introduction

In real-world applications, optimization problems often have multiple concur-
ring objectives that need to be optimized simultaneously, in which the improve-
ment of one objective is often accompanied by the detriment of others [11].
These problems, known as Multi-Objective Optimization Problems (MOPs), can
often be solved by Multi-Objective Evolutionary Algorithms (MOEAs). MOEAs
use methods analogous to natural evolution, such as selection, mutation and
crossover, to iterate over candidate solutions, until a satisfactory set of solutions
are found [10,11].

Various types of MOEAs have been proposed following four main approaches
to implement selection. Namely, Pareto dominance [10,11], decomposition
[16,28], performance indicators [7,9,31], and relaxations of Pareto dominance
[1,13,18]. These algorithms have been applied successfully in a broad range of
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application domains. However, despite all the progress we have seen in algorithm
development, MOEAs require further improvements to perform an efficient opti-
mization on problems of increased difficulty induced by variable interactions [4],
large-scale search spaces [19], many objective functions [5,25], and various shapes
of the Pareto optimal front [27].

In this work, our interest is in improving MOEAs for large-scale multi-
objective optimization problems (LSMOPs), where usually the number of vari-
ables is in the order of hundreds or thousands. LSMOPs have proven to be
very challenging for traditional MOEAs to solve, whether the decision space is
continuous or discrete [23].

Several MOEAs for LSMOPs have been proposed in recent years, tackling
this challenge with different approaches [15,23]. The methods used to solve them
can be classified in two major categories. Variable grouping splits the solutions,
either randomly or heuristically, into multiple parts and optimizes them sepa-
rately, as used in CCGDE3 [6], LMEA [29], and others. Decision space reduc-
tion reduces the dimension of the problems by using a transformation function
that converts the original problem into a smaller representation, such as WOF
[30], or by using some techniques such as unsupervised learning to decrease the
number of decision variables, such as MOEA/PSL [22]. In addition, other novel
approaches have been proposed, such as DGEA [14], which uses an adaptive off-
spring generation method to create superior solutions, and SparseEA [21], which
guides the operators based on the non-dominated scores of variables. Most of
these MOEAs developed for LSMOPs focus on continuous search spaces and
only a few, such as LMEA, SparseEA, and MOEA/PSL, have been applied with
relative success to discrete binary search spaces. Further research is required
to understand better the principles that lead to an efficient search on binary
LSMOPs and the development of effective algorithms.

From this standpoint, in this paper, we focus on bi-objective binary optimiza-
tion and present a Multi-Objective Random One-Bit Climber with a Weighted
Permutation (moRBC-WP), aiming to improve the performance of a conven-
tional moRBC when solving LSMOPs. Conventional moRBCs have proven to be
very effective MOEAs for solving MOPs with up to 100 variables [3]. The mod-
ified moRBC-WP aims to achieve better performance by learning the trend of
the value of each decision variable from previously found solutions and applying
this information to selectively climb the bits estimated to be the most impactful
to finding better solutions.

The remainder of this paper is organized as follows. Section 2 introduces the
basic concepts of MOPs and presents MNK-Landscapes, the benchmark prob-
lems that we use in our study. Then, Sect. 3 explains moRBC and its shortcom-
ings when solving LSMOPs. Next, Sect. 4 introduces the proposed algorithm,
moRBC-WP, detailing the changes done to moRBC. Section 5 shows the experi-
mental results and discussions related to the performance comparison with other
well known MOEAs, NSGA-II [12], MOEA/D [28], SparseEA and moRBC, takes
a deeper look at some of moRBC-WP’s properties, and studies the change in
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performance of moRBC-WP when varying its added parameter. Finally, Sect. 6
presents the conclusions of our study and some ideas for future works.

2 MNK-Landscapes

Binary MOPs can be mathematically represented as (1):

maximize f = (f1(x), f2(x), . . . , fM (x))
subject to x = (x1, x2, . . . , xN ), xi ∈ {0, 1} ,

(1)

where M functions fi need to be simultaneously optimized, and the solutions are
represented by an array of binary values of size N . A popular binary MOP that
is used as benchmark problem is the MNK-Landscape, which is a multi-objective
version of an NK-Landscape.

NK-Landscapes are mathematical models with flexible number of variables
and landscape ruggedness, configurable via their input parameters N and K,
respectively [17]. A multi-objective version was then introduced with the addition
of a third input parameter, M , that details the number of objectives [2]. These
MNK-Landscapes can be mathematically represented as (2):

fi(x) =
1
N

N∑

j=1

fi,j(xj , z
(i,j)
1 , z

(i,j)
2 , . . . , z

(i,j)
Ki︸ ︷︷ ︸

Ki bits interacting with xj

), i = 1, 2, . . . ,M , (2)

where fi,j : BKi+1 → R gives the fitness contribution of bit xj to fi(·), and
z
(i,j)
1 , . . . , z

(i,j)
Ki

are the Ki bits interacting with bit xj in the string x. This means
that the fitness value of the bit xj is depending not only on its own value, but
also on the other K bits that it interacts with. A higher K creates a more rugged
landscape, which makes the problem more difficult to solve [2,20]. Note that a
different model of epistatic interactions among variables is randomly specified
for each fitness function.

We have chosen to use MNK-Landscapes as the benchmark problem for our
experiments since its flexibility allow us to create large scale problems by setting
N to large values, as well as to control the degree of interaction between variables
by adjusting the epistatic interactions K.

3 moRBC

The Multi-Objective Random One-Bit Climber (moRBC) is an MOEA that has
proven to be very effective at solving MOPs [3]. moRBC is a (1+1) algorithm
that creates one offspring from one parent solution at each iteration by apply-
ing a 1-bit mutation operator according to a permutation PO that determines
the exploration order of the decision variables. moRBC decides which solution
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survives among the parent and offspring based on their Pareto dominance1. The
algorithm starts its execution with a randomly created parent solution and a
randomly generated permutation order PO of size N . Then, a child is created
by flipping the first variable given by PO. If the child dominates the parent, the
parent is deleted, the child replaces the parent (the algorithm climbs to a better
solution), and exploration continues with the new parent. If the parent domi-
nates the child, then the child is deleted and the exploration continues with the
current parent. If they are non-dominated, the child is tagged as not-climbed,
added to an archive of non-dominated solutions, and the search continues with
the current parent. Each time an offspring is created, the variable subject to
mutation is given by the next element in PO. When the algorithm has searched
through all the decision variables of the same parent, it means that it has found
a dominance 1-bit local optima solution, which is tagged as climbed, saved to
the non-dominated archive, and the search is restarted. The restart is done by
selecting a new solution as a parent from the not-climbed non-dominated solu-
tions in the archive and randomly generating a new PO. If no solutions are
available, then it is restarted with a randomly generated solution. The archive is
kept to a maximum size by non-dominated sorting and crowding distance [11].
For more details regarding moRBC, in-depth analysis on its performance and
comparison with other MOEAs, refer to [3].

To illustrate the performance of moRBC, we compare it to other well-known
algorithms, NSGA-II and MOEA/D when solving MNK-Landscapes with M = 2
objectives, N = {100, 200, . . . , 1000} variables and K = 5 epistatic interactions.
Figure 2a shows the final Hypervolume (HV) after 2,000,000 fitness evaluations
of NSGA-II, MOEA/D and moRBC, among other MOEAs studied in this paper.
The parameters used in this experiment are detailed in Sect. 5.1. We can see that
moRBC performs significantly better than the other two MOEAs in problems
with N > 300, but its performance rapidly decreases with higher N , showing its
limitations when solving LSMOPs.

4 MoRBC-WP

Here, we present the developed algorithm, moRBC-WP. It introduces two major
changes to the original moRBC. First, it learns the trend of the values of previ-
ously found solutions by updating a weight array every time a new solution is
created. Second, these weights are use to decide which bits should be flipped or
skipped by the algorithm during the climb. Since the developed algorithm assigns
weights that are used alongside the original moRBC’s permutation order, we
name it “moRBC-Weighted Permutation”, or moRBC-WP. The overall frame-
work of the algorithm is shown in Algorithm 1, and detailed as follows.

1 Given two solutions s1 and s2 and assuming a maximization problem, s1 is said to
Pareto dominate s2, denoted s1 � s2, if and only if ∀fi(s1) ≥ fi(s2) and ∃fj(s1) >
fj(s2), where i and j ∈ {1, 2, . . . , M}. If neither s1 � s2 nor s2 � s1, they are said
to be non-dominated between each other.
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Algorithm 1: General framework of moRBC-WP.
Data: N , δ

1 i ← 0; // Index of the elements in PO
2 steps ← 0; // Counts the variables visited (flipped or skipped)

3 archive ← ∅; // Initializes an empty archive

4 parent ← New random parent;
5 PO ← Create new permutation order randomly;
6 W ← Initialize weights at their default value of 0.5;
7 while termination criteria not fulfilled do
8 flip ← FlipDecision(parent, W , PO[i]); // Fig. 1a and Algorithm 2

9 if flip = TRUE then
10 child ← mutate(parent, PO [i ]);
11 if child � parent then // Child dominates parent

12 parent ← child;
13 steps ← 0;
14 W ← UpdateWeights(δ, child,W , N); // Algorithm 3

15 else if parent � child then// Parent dominates child

16 delete child;
17 W ← UpdateWeights(δ, parent,W , N); // Algorithm 3

18 else // Child and parent are non-dominated

19 archive ← UpdateArchive(child);

20 W ← UpdateWeights( δ
2
, child,W , N); // Algorithm 3

21 steps + +;
22 i ← (i + 1)%N ; // Circularly iterate to the next position in PO
23 W ← DecayWeights(W , N);
24 if steps = N then // All bits in the parent have been visited

25 archive ← UpdateArchive(parent);
26 parent ← restart(); // Restart strategy from moRBC

27 i ← 0;
28 steps ← 0;
29 PO ← Create new permutation order randomly;
30 W ← Reset weights to 0.5;

31 return archive;

To learn from the previously found solutions and apply that information to
decide which bits to climb, we add a new array W of size N (the number of
variables of the problem being solved), that stores weights corresponding to each
decision variable of the solutions. They are real numbers that start at a default
value of 0.5 and can vary between 0 and 1. The i-th weight W [i] defines the
tendency of the value of the i-th decision variable, where a weight closer to 0 or
1 indicates a higher chance for that variable value to be 0 or 1, respectively.

moRBC-WP initialization is the same as moRBC, creating a starting random
parent and a randomized permutation order (lines 1 to 5).

On a given i-th iteration, moRBC-WP decides whether to flip or skip the
PO[i]-th bit based on W (line 8), as described in Fig. 1a, Algorithm 2 and as
follows. A random real number rand, from 0 to 1, is generated and compared to
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Algorithm 2: FlipDecision
(parent, W , PO[i])
Data: parent, W , PO, i

1 rand ← random(0, 1);

2 if parent[PO[i]] = 0 then

3 if rand > W [PO[i]] then

4 return FALSE;

5 else

6 return TRUE;

7 else

8 if rand > W [PO[i]] then

9 return TRUE;

10 else

11 return FALSE;

Algorithm 3: UpdateWeights (w,
x, W , N)
Data: w, x[N ], W [N ], N

1 for i ← 0 to N do
2 if x[i] = 0 then
3 if W [i] ≥ w then
4 W [i] ← W [i] − w;
5 else
6 W [i] ← 0;

7 else
8 if W [i] ≤ w then
9 W [i] ← W [i] + w;

10 else
11 W [i] ← 1;

12 return W ;

the corresponding weight of that bit, W [PO[i]]. If the current bit is 0 and rand >
W [PO[i]], then the algorithm skips that bit, otherwise it flips it. Analogously,
if the bit is 1 and rand > W [PO[i]], then it will flip it, or else it will be skipped.

Fig. 1. Flowchart for bit climbs and weight updates.

Then, if the bit is flipped, a child is generated (line 10) and its Pareto dom-
inance is compared with its parent to select the surviving individual, as done in
moRBC (lines 11-13, 15-16 and 18-19). In addition, W is updated accordingly,
as illustrated in Fig. 1b. If the child dominates the parent, the weight is updated
by a value δ in relation to the decision variables of the child (line 14), if it is
dominated, it is updated by a value δ in relation to the parent (line 17), and
if it is non-dominated, then it is updated by a value δ

2 in relation to the child
(line 20). Note that, at a given iteration, only one bit is flipped, but all weights
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are updated. If the decision variable is 0, then its corresponding weight will be
decremented by a value w (δ or δ

2 ), or else it will be incremented by that value.
In addition, moRBC-WP ensures that the weights stay within their range of 0
to 1 by truncating them if they would go over these values. A more detailed
descriptions is shown in Algorithm 3.

Since constantly adding or subtracting values to the weights would ultimately
make their values reach their lower and upper limits of 0 or 1, we also add a
decay factor, 0.1 × δ, which makes all weights decay towards the default value
of 0.5 in every fitness evaluation loop (decrementing if it is higher than 0.5, or
incrementing if it is lower than 0.5) (line 23). This ensures that the algorithm
does not get stuck in local optima and can move to higher ranked solutions, as
past weight values are forgotten over time.

When all variables of the parent have been visited following PO (line 24),
moRBC-WP updates the archive, restarts the search and creates a new PO as
done in morBC (lines 25-29). In addition, it resets W to its default values of 0.5
(line 30).

5 Experiments, Results and Discussions

5.1 Experimental Setup

To study and compare the performance of the proposed moRBC-WP, we also
experiment with four other algorithms. Namely, NSGA-II [12], MOEA/D [28],
SparseEA [21], and moRBC [3]. SparseEA is an MOEA proposed for solv-
ing sparse LSMOPs and is one of the few MOEAs in the literature that the
authors explicitly claim it can be used to solve binary LSMOPs. Although MNK-
Landscapes are not sparse problems, we use SparseEA to gain a better under-
standing of the proposed method and of the algorithm itself. It is implemented
using the selection framework of NSGA-II, in which their main differences lie in
the way SparseEA creates its initial population and the mechanism it uses to
guide recombination and mutation. NSGA-II does not specialize in LSMOPs but
serves as a reference to assess the performance of SparseEA. Similarly, moRBC
serves as a reference to assess moRBC-WP’s performance. MOEA/D was not
proposed for LSMOPs, but its decomposition approach in objective space may
help focus the search around smaller promising regions in decision space, which
could translate into better performance solving LSMOPs.

For all MOEAs we use a population size of 100 individuals. In NSGA-II
and MOEA/D we apply two-point crossover with probability of 1.0 and one-bit
mutation with probability 1/N . In MOEA/D we set the neighborhood size to
10 and the weights are generated as described in [26]. These parameter values
were chosen as they are commonly used in the literature. It would interesting
to investigate their effect on the performance of their respective MOEAs on
future works. moRBC-WP is configured with δ = 0.002 when solving MNK-
Landscapes with N ≤ 600, and δ = 0.02 for N > 600. Additional fine tuning of
this parameter can be done to obtain better performance in more specific settings
of the problem being solved, but we have obtained satisfactory results with those
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values. We do a more in-depth analysis on the impact of δ in a later section in
this paper. The algorithms were executed for 2,000,000 fitness evaluations, or
20,000 generations.

We use MNK-Landscapes with M = 2 objectives, N = {100, 200, . . . , 1000}
variables and K = 5 as benchmark problems to study the scalability of the algo-
rithms in the number of variables. In addition, we solve MNK-Landscapes with
M = 2, N = 500 and K = {5, 6, 7, 8, 9, 10} to analyze the performance of the
MOEAs when solving problems with higher interaction between variables. The
variables are randomly correlated between each other and independent between
objectives.

The performance of the MOEAs studied in this paper are evaluated by
the Hypervolume metric [32] with reference point at [0.0, . . . , 0.0], as MNK-
Landscapes used here are maximization problems. In addition, we use the
Wilcoxon rank sum test with a significance level of 0.05 to perform statisti-
cal analysis between the HV results obtained by the algorithms. All results are
obtained from 30 randomly generated MNK-Landscape instances per configura-
tion. Overall, we use 450 problem instances in our study.

5.2 Performance Comparison

In this section, we first compare the performance of the algorithms increasing the
number of decision variables N while keeping constant the number of epistatic
interactions K between variables. Figure 2a shows the HV of the MOEAs when
solving MNK-Landscapes with N = {100, 200, . . . , 1000} and fixed K = 5. We
can see that in problems with N = 100, moRBC still performs better than any
other algorithm, as previously described in Sect. 3. However, for higher values of
N , moRBC-WP outperforms all the MOEAs studied. This shows the increase
in performance from the original moRBC that can be achieved when selectively
climbing only a fraction of the decision variables.

Fig. 2. HV of NSGA-II, MOEA/D, SparseEA, moRBC and moRBC-WP after
2,000,000 fitness evaluations when solving MNK-Landscapes with different N and K.
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Table 1. HV of all MOEAs when solving 30 instances of each MNK-Landscape con-
figuration, where the best results are highlighted in gray.

Problem NSGA-II MOEA/D SparseEA moRBC moRBC-WP

N = 100 5.6681e-01 − 5.6680e-01 − 5.6157e-01 − 5.9143e-01 + 5.9024e-01

K = 5 (1.073e-02) (1.038e-02) (1.311e-02) (7.189e-03) (5.861e-03)

N = 200 5.5493e-01 − 5.6072e-01 − 5.5621e-01 − 5.6788e-01 ≈ 5.6881e-01

K = 5 (9.877e-03) (9.739e-03) (9.951e-03) (6.762e-03) (4.900e-03)

N = 300 5.4283e-01 − 5.5257e-01 − 5.4650e-01 − 5.5650e-01 − 5.6026e-01

K = 5 (8.132e-03) (7.784e-03) (8.389e-03) (5.717e-03) (4.194e-03)

N = 400 5.3728e-01 − 5.5141e-01 ≈ 5.4365e-01 − 5.4696e-01 − 5.5354e-01

K = 5 (6.251e-03) (6.131e-03) (8.556e-03) (6.326e-03) (4.431e-03)

N = 500 5.3488e-01 − 5.4584e-01 − 5.3849e-01 − 5.3992e-01 − 5.4979e-01

K = 5 (7.584e-03) (5.014e-03) (5.842e-03) (6.148e-03) (5.797e-03)

N = 600 5.2862e-01 − 5.4130e-01 − 5.3326e-01 − 5.3210e-01 − 5.4464e-01

K = 5 (6.5614e-03) (4.9126e-03) (4.5502e-03) (5.1718e-03) (4.8374e-03)

N = 700 5.2466e-01 − 5.3775e-01 − 5.3072e-01 − 5.2219e-01 − 5.3994e-01

K = 5 (4.8207e-03) (3.4875e-03) (4.7178e-03) (4.8080e-03) (4.5470e-03)

N = 800 5.2290e-01 − 5.3610e-01 ≈ 5.2615e-01 − 5.1367e-01 − 5.3751e-01

K = 5 (5.9765e-03) (4.3873e-03) (4.3766e-03) (6.1600e-03) (4.6279e-03)

N = 900 5.2234e-01 − 5.3413e-01 − 5.2553e-01 − 5.0514e-01 − 5.3687e-01

K = 5 (6.2188e-03) (4.6546e-03) (4.9707e-03) (4.3371e-03) (3.4072e-03)

N = 1000 5.1720e-01 − 5.3245e-01 − 5.2215e-01 − 4.9773e-01 − 5.3525e-01

K = 5 (3.8922e-03) (4.0543e-03) (4.2035e-03) (4.5120e-03) (5.2929e-03)

N = 500 5.3072e-01 − 5.4197e-01 − 5.3477e-01 − 5.4009e-01 − 5.4707e-01

K = 6 (7.773e-03) (4.537e-03) (5.421e-03) (5.924e-03) (4.197e-03)

N = 500 5.2646e-01 − 5.3763e-01 − 5.3068e-01 − 5.3980e-01 − 5.4559e-01

K = 7 (6.104e-03) (4.783e-03) (4.347e-03) (5.054e-03) (4.047e-03)

N = 500 5.2429e-01 − 5.3623e-01 − 5.2560e-01 − 5.3709e-01 ≈ 5.4065e-01

K = 8 (6.572e-03) (5.110e-03) (6.567e-03) (6.869e-03) (4.594e-03)

N = 500 5.1829e-01 − 5.2999e-01 − 5.2229e-01 − 5.3244e-01 − 5.3519e-01

K = 9 (4.879e-03) (6.684e-03) (4.132e-03) (4.638e-03) (3.119e-03)

N = 500 5.1428e-01 − 5.2521e-01 − 5.1603e-01 − 5.2923e-01 ≈ 5.3080e-01

K = 10 (6.244e-03) (5.671e-03) (5.775e-03) (4.337e-03) (4.437e-03)

Table 2. Time taken in seconds to execute all 2,000,000 fitness evaluations when
solving an MNK-Landscape with N = 500 and K = 5.

NSGA-II MOEA/D SparseEA moRBC moRBC-WP

Runtime
(s)

198.120
(5.110)

193.156
(3.654)

187.429
(5.312)

143.902
(4.542)

172.568
(1.881)

Although MOEA/D is not designed for LSMOPs, it performs very well for
problems with high N . This is likely due to the fact that MNK-Landscapes
present a very uniform distribution in the search space, which is advantageous
for the decomposition method adopted by MOEA/D.

On the other hand, SparseEA, although designed for LSMOPs, shows low HV
values in all MNK-Landscape configurations. This is likely due to two factors.
First, MNK-Landscapes are not sparse problems, which is the focus of SparseEA.
Second, we analyze problems with high level of interactions between variables,
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which is not taken into account by SparseEA when ranking and scoring the
reference solutions, used to create the initial population and to guide crossover
and mutation. However, note that SparseEA performs better than NSGA-II for
problems with 300 or more variables.

Next we compare the algorithms keeping constant the number of variables
while increasing the number of epistatic interactions between variables. Figure 2b
shows the HV of the MOEAs when solving MNK-Landscapes with fixed N = 500
and K = {5, 6, 7, 8, 9, 10}. It is possible to note that the performance of moRBC-
WP remains higher than all other MOEAs for all configurations studied here,
showing that morBC-WP can maintain its performance even with problems with
higher interaction between variables. it is worth noting that moRBC approaches
moRBC-WP as K increases. Further investigation with problems with K > 10
can be interesting to better understand the balance between exploration and
exploitation of the decision variables in problems with high espistasis.

Table 1 summarizes all the results obtained by showing the mean HV and
standard deviation in parenthesis after 2,000,000 evaluations of the 5 MOEAs
studied. “−”, “+” and “≈” symbols next to the mean HV values indicate whether
they are significantly worse, better or statistically similar to the HV of moRBC-
WP according to the Wilcoxon rank sum test. It can be seen that apart from
the problems with N = 100, morBC-WP outperforms all other MOEAs.

Figure 3a shows the HV transition of NSGA-II, MOEA/D, SparseEA,
moRBC and moRBC-WP over fitness evaluations when solving MNK-
Landscapes with M = 2, N = 500 and K = 7. First, we can note that the
increase in HV of moRBC is very slow throughout its run, which reflects its
nature of exploring all bits one at a time until it finds a local optima and restarts
the search, and highlights its low performance when solving LSMOPs. However,
when applying the weighted permutation of moRBC-WP, we can see that its HV
increases much more quickly, surpassing and remaining above all other MOEAs
after about 300,000 fitness evaluations.

Fig. 3. Results when solving MNK-Ladscapes with N = 500 K = 7.
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Figure 3b shows the population found by each MOEA at the end of their
execution, after 2,000,000 fitness evaluations, in the 2-dimensional search space,
when solving one instance of an MNK-Landscape with N = 500 and K = 7. It
can be clearly seen that the solutions in moRBC-WP have higher fitness values
than the other MOEAs. They also show good distribution over the objective
space, although not as spread as in MOEA/D, as this algorithm can focus on
solutions at the extreme points of the objective space with some of its weights
[28].

Another important factor when solving LSMOPs is the computational cost
of the solvers, as it might not be feasible to wait for the solver to reach high
HV values if they take too long to finish their execution. Here we compare the
execution time of the MOEAs studied when run in a MacBook Pro (2021) Apple
M1 Pro Chip with 10-Core CPU and 32GB of RAM. Table 2 shows the execution
time in seconds of all MOEAs when solving the MNK-Landscapes with N = 500
and K = 5 after 2,000,000 evaluations. Here, we can emphasize the weakness of
NSGA-II and SparseEA, as they show worse HV performance while also having
high execution time. MOEA/D also shows high execution time, which is due to
the fact that it has to update the neighboring solutions on every generation.
moRBC is faster than all other solvers, as it simply mutates solutions bit by
bit, without any crossover operator or other complicated sorting techniques.
However, as previously shown, it does not perform well in LSMOPs. Finally, we
can see that moRBC-WP finishes its executions faster than NSGA-II, MOEA/D
and SparseEA while still presenting higher HV values. When compared to the
original moRBC, the execution time of moRBC-WP is impacted by the updates
of W and the decision making to whether to flip or skip a given bit.

Fig. 4. Change in the weights W of moRBC-WP when solving MNK-Landscapes with
N = 500 and K = 5.



180 F. H. Ide et al.

Fig. 5. Number of skipped bits by moRBC-WP.

5.3 moRBC-WP Analysis

In this section, we further understand how moRBC-WP works by analyzing the
features added to the original moRBC. More specifically, we study the change
in the weights W , the number of skipped bits over the fitness evaluations and
the effect of the parameter δ in the performance of the algorithm.

First, we study the added weight array W by analyzing the change of each
weight value over the run of the algorithm. We solve one instance of an MNK-
Landscape with N = 500 and K = 5, and show in Fig. 4a the value of the first
50 weights of W , in the vertical axis, through all 2,000,000 fitness evaluations,
in the horizontal axis, in which a white block means that the weight value in
that position is 0 and a black block means that it is 1. We can see that no weight
value reaches the extremes of either 0 or 1, indicating that the ideal values for
their respective variables have not been found yet. In addition, most of the bits
switch between darker and lighter colors over time, meaning that the algorithm
is constantly finding better values for these variables, likely when it escapes local
optima to move towards higher ranked ones.

Figure 4b shows the weights of the entire W array over the first 160,000
fitness evaluations, which is when the algorithm has completed 3 restarts. Note
that weights with the same values are overlapped. We can see that they all
start at the default weight value of 0.5, and rapidly move towards the range
limits of 0 or 1. As it advances through the fitness evaluations, the algorithm
gains more confidence in the value of the decision variables, which is reflected
by the weights getting closer to either 0 or 1. It is also possible to see more
clearly the moments when the weights are moving towards opposite directions
in the y-axis as the algorithm finds more suitable values to their corresponding
decision variables. Additionally, in this problem instance, note that the weights
are reset to the default value of 0.5 around the 70,000th, 125,000th and 160,000th
fitness evaluations, which are when all variables of the parent have been visited
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without finding a child that dominates the parent, and the algorithm restarts
the search and resets W . As more restarts happen, the weights values are less
spread, indicating that the algorithm is gaining more confidence in the values
of the variables. Nevertheless, they are still allowed to switch from 0 to 1 and
vice-versa, as we can see the lines crossing across the y-axis of the graph.

Next, we study the bits that are skipped by moRBC-WP during its run.
Figure 5a shows the average number of skipped bits for each non-dominated
solution found by moRBC-WP over fitness evaluations when solving MNK-
Landscapes with N = 500 and K = 5. We can see that moRBC-WP starts
by skipping around 360 bits per solution, then quickly decreases and plateaus to
around 320 bits until it finishes its execution, with small fluctuations throughout
the entire run. This highlights the importance of the learning portion of the algo-
rithm, as it allows morBC-WP to dynamically vary the number of bits that are
skipped in order to obtain good performance when solving the MNK-Landscapes.

Then, we analyze the number of skipped bits when varying N . We solve
MNK-Landscapes with N = {100, 200, . . . , 1000} and K = 5, and plot the aver-
age number of skipped bits over N in Fig. 5b. For problems with N ≤ 600,
the number of skipped bits grows linearly as N increases, which explains why
moRBC-WP can, to some extent, perform well as N increases with a fixed
δ = 0.002. However, it does not skip enough bits to maintain its performance for
problems with N > 600, which is why we set δ = 0.02 in those problems, which
is reflected by the sudden increase in the number of skipped bits in the plot.

Fig. 6. HV of moRBC-WP when solving MNK-Landscapes with N = 500 and K = 5
with different parameter values.

Next, we investigate the impact of the parameter δ in the robustness and
performance of moRBC-WP. First, we analyze the robustness of the parameter δ,
i.e., the impact a change on its value has on the performance of moRBC-WP [8].
Figure 6a shows the HV of moRBC-WP solving MNK-Landscapes with N = 500
and K = 5, varying δ = {0.001, 0.002, 0.003, 0.004}. Note that, apart from a
slightly faster increase in HV at earlier fitness evaluation in configurations with
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higher δ values, the performance is similar between all configurations, specially
when comparing the final HV after 2,000,000 fitness evaluations. This shows that
the algorithm is not very sensitive to small changes in δ and indicating that, when
fine tuning δ, satisfactorily good results can be achieved, even though its ideal
value for the current problem’s configuration have not been found.

Lastly, we analyze the individual impact of changing one rate of weight
change of W. Here, we keep δ = 0.002, as done in all other experiments, but
detach the rate of weight change when a dominated solution is found (line
17 of Algorithm 1), here referred as δparent�child. Figure 6b shows the HV of
moRBC-WP when solving MNK-Landscapes with N = 500 and K = 5, vary-
ing δparent�child = {0.002, 0.004, 0.01, 0.02}. We can see that higher δparent�child

cause moRBC-WP to quickly increase the HV in earlier fitness evaluations. How-
ever, the algorithm converges to lower levels of HV in later fitness evaluations.
Although not shown here, similar behaviors are observed when independently
varying the rate of weight changes when a dominant or non-dominated solution
is found and when the weights are decayed. This shows that there is a trade-
off between quicker convergence and higher final HV values when independently
configuring these parameters. As a consequence, it also shows that a practitioner
can independently fine tune the rates of weight changes attached to each Pareto
dominance condition based on the their need for a faster HV convergence at
early fitness evaluations or higher HV values in more time consuming runs.

6 Conclusions

In this paper, we have presented an improvement to the traditional moRBC,
named moRBC-WP, that boosts its performance when solving binary LSMOPs
by implementing a method that learns from previously found solutions, and
applies that information to decide which variables should be focused on when
executing the bit climbs.

To study the developed algorithm, we have compared them to well known
binary MOEAs, NSGA-II, MOEA/D, SparseEA and moRBC, and shown that
moRBC-WP has overall better performance than all the MOEAs compared, and
fast execution time in relation to the MOEAs studied. Then, we further ana-
lyzed the proposed algorithm by studying the weight array added, the number
of bits that are skipped over its run, and studied the effect of the newly intro-
duced parameter by analyzing its effect on the algorithm’s performance and the
robustness of the algorithm to changes in the parameter’s value.

In future works, we would like to improve moRBC-WP by implementing a
method to automatically determine the optimal values of its parameter, as well
as making it dynamic, so its value can change over time according to trends
in the solutions found. In addition, we believe that we can further improve the
performance of moRBC-WP by changing its restart strategy and its trunca-
tion method. Finally, we would like to solve problems with more objectives and
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different correlation between variables, including higher number of interactions
and different types of interactions, such as correlation between objectives [24],
as well as solving different problem, such as real-world ones.
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Abstract. Inverse model (IM) is a method for tailoring solutions to
decision-makers based on their preferences. Existing approaches are often
trained by the final solution set (as training data) obtained from a
multi-objective evolutionary algorithm (MOEA). The final solution set
obtained by MOEA usually has a limited number of samples. However,
model training will perform poorly when there are few samples in the
final solution set. To further improve the performance of the model, we
propose an unbounded archive-based inverse model (UAIM) to enhance
the quality of the trained inverse model. We first create an unbounded
archive to collect all non-dominated solutions during the execution of
MOEA. Unlike IM, UAIM is trained using all solutions in the archive.
Moreover, for a decision maker’s preference, an alternative solution from
the archive is considered if the suggested solution is inferior to the alter-
native solution in the archive. UAIM thus may provide more reliable
suggested solutions for decision-makers. To better evaluate algorithms,
we propose two indicators that can measure the matching degree between
the suggested solution and the decision maker’s preference. We demon-
strate that the proposed UAIM is superior to IM on ten problems.

Keywords: Decision Maker · Inverse Model · Multi-Objective
Optimization

1 Introduction

In multi-objective optimization problems (MOPs), conflicting objectives need to
be optimized and no single solution can optimize all objectives simultaneously.
Multi-objective evolutionary algorithms (MOEAs) are one of the most effective
ways to solve MOPs. Various MOEAs have been proposed to find solutions
with different optimal trade-offs among all objectives [1–3]. These solutions are
called Pareto optimal solutions in the decision space. The set comprising all
Pareto optimal solutions is termed the Pareto set, and their image in objective
space is known as the Pareto front. MOEAs iteratively optimize all solutions
in the population by setting a certain population size. With the development of
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Fig. 1. Diagram of inverse model training and inference. The yellow points are the
training data, and the black vector is the preference vector. (Color figure online)

MOEAs, they can already obtain uniform solutions on different shapes of Pareto
fronts (e.g., irregular, disconnected, etc.) [4–6].

However, the continuous Pareto front typically exhibits an infinite number of
solutions. The limited number of solutions obtained by a multi-objective evolu-
tionary algorithm (MOEA) can not fully represent the continuous Pareto front.
A crucial challenge in MOEAs lies in approximating the continuous Pareto front.
To address this challenge, some researchers use a hyperplane or polynomial func-
tion to fit the Pareto front [7,8]. In other words, they use the objective values of
the solutions obtained by the MOEA to estimate the parameters of the hyper-
plane or polynomial function. For example, let α be a hyper-parameter and fi be
the i-th objective.

∑m
i=1 fi

α = 1 is used to approximate the Pareto front. This
kind of approach aims to fit a continuous Pareto front in the objective space.
However, the continuous Pareto front obtained in this way loses its relationship
with the decision space (i.e., the Pareto set might not be obtained).

Recently, the inverse model has been proposed to learn continuous Pareto
front [9]. In the literature, Suresh et al. [9] proposed an inverse model to map
the preference vectors in the objective space to the values of decision variables.
In this way, the inverse model could learn the mapping from the decision-maker’s
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preferences to corresponding solutions, i.e., the decision-maker can get an exclu-
sive solution by simply providing a preference. The current inverse model usually
uses the final solution set obtained from the MOEA as training data. However,
The MOEA generally can only obtain a fixed number (population size) of solu-
tions, and the small amount of training data makes training the inverse model
difficult. The solutions predicted by the inverse model may deviate from the
decision-maker’s expectations if the inverse model is poorly trained. As shown
in Fig. 1, Fig. 1(a) presents the inverse model fitting the training data. Figure 1(b)
shows the inference stage of the inverse model. When the model outputs a sug-
gested solution given a preference vector, we expect the evaluated solution (pink
point) to lie on the preference vector and close to the Pareto front. However,
when the model is not trained well, the evaluated solution (purple point) may
be located far from the preference and the Pareto front.

To further improve the quality of solutions provided by the inverse model
to decision-makers, we propose an Unbounded Archive-based Inverse Model
(UAIM). By storing all non-dominated solutions in an unbounded external
archive [10,11], we improve the quality of the inverse model in two key aspects.
First, instead of utilizing only the final solution set for training, we incorporate
all non-dominated solutions that have been evaluated to train the inverse model.
This approach enhances the reliability of the inverse model’s predictions, as the
training data size can be increased by hundreds or even thousands of times.
Second, incorporating the unbounded archive is beneficial during the inference
stage. Sometimes, the solution stored in the archive may outperform the sug-
gested solution. Hence, we treat the solution in the archive as an alternative
solution. If the performance of the suggested solution is worse than the solu-
tion in the archive, we use the solution from the archive. These dual strategies
collectively enhance the quality of solutions provided to decision-makers.

Our contributions are summarized as follows:

– We propose a novel unbounded archive-based inverse model (UAIM). UAIM
uses all solutions in the archive training the inverse model, which improves the
predictive ability of the model. In the inference phase, we combine solutions
from the archive to replace inferior suggested solutions.

– We design two new indicators to evaluate the matching degree of solutions
obtained by decision-makers. The proposed indicators couple the preferences
of decision-makers.

– The experimental results validate that the proposed method is significantly
better than IM on ten benchmarks.

2 Related Work

There are many MOEAs [12–15] are designed to solving multi-objective opti-
mization problems. Unfortunately, these methods only generate a limited num-
ber of solutions, thereby the Pareto front obtained by those methods cannot
be fully approximated. For example, IM-MOEA [16] utilizes the Gaussian pro-
cess to estimate the objective values of some random samples from objective
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space. They create a Gaussian model for each objective and each cluster of pop-
ulation. In a continuous MOP with m objectives, the Pareto set usually is a
m − 1-dimensional manifold [17]. Although this kind of machine learning-based
method can get a better final solution set, they can only obtain a small part
of the Pareto front. In addition, some studies directly learn a model using the
obtained solution set in the objective space. For example, paλ-MyDE [7] and
RIB-EMOA [8] use a polynomial function to fit the solution set in the objective
space. MMEA [18] uses a hyperplane with scaling parameters to estimate the
Pareto front. GFM-MOEA [19] is an improvement of MMEA, which makes the
power term of each objective variable as a parameter. Although these methods
can accurately estimate the Pareto front, they cannot obtain solutions in the
corresponding decision space. Therefore, this method for estimating the Pareto
front is of limited use.

Recently, MORM [16] uses the inverse model to map the objective space to
the decision space. Then, objective values of the final population are input to the
inverse model and further evaluate the predicted solution. In this way, MORM
can more accurately estimate the Pareto front by generating more solutions. The
method of Anirudh et al. [9] replaces the input of the inverse model with pseudo-
weights, which can provide a suggested solution for each point on the Pareto
front. Although it can potentially estimate solutions on the entire Pareto front,
each preference mapped by the inverse model is not perfect (i.e., the solution
deviates significantly from the decision maker’s expectations).

3 Background

3.1 Multi-objective Optimization

A multi-objective optimization problem (MOP) with m objectives and d decision
variables can be defined as follows:

min
x∈X⊆Rd

f(x) = (f1(x), f2(x), ..., fm(x)), (1)

where x is the decision variables in the decision space X and f(x) is the objective
functions: Rd → R

m. No single solution can simultaneously optimize all objective
functions. The goal of solving MOP is to find all Pareto optimal solutions with
different trade-offs on the Pareto front. Often, objective vectors are compared
using Pareto domination. The widely used definitions of MOP are described as
follows:

Definition 1. (Pareto Domination). A solution x1 is said to dominate
another solution x2, denoted as x1 ≺ x2, if and only if fi(x1) ≤ fi(x2),∀i ∈
{1, . . . , m} and ∃ j ∈ {1, ...,m} such that fj(x1) < fj(x2).

Definition 2. (Pareto Optimal Solution). Solution x1 is called a Pareto
optimal solution if there does not exist a solution x2 such that x2 ≺ x1.
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Definition 3. (Pareto Set and Pareto Front). The set of all Pareto opti-
mal solutions is called Pareto set (denoted as Mps). The Pareto front P(Mps)
is the image of the Pareto Set.

P(Mps) = {f(x) : x ∈ Mps}
Many indicators have been designed to measure the performance of evolution-

ary multi-objective algorithms in approximating the Pareto front. For example,
when the actual Pareto front is known, we can use indicators such as GD [20]
and IGD [21] to measure the algorithm’s performance. Hypervolume [22] can be
used when the actual Pareto front is unknown.

Definition 4. (Hypervolume). The hypervolume (HV) indicator, HV (P(X), r)

is m-dimensional Lebesgue measure λM of the region dominated by P(X) and
bounded from below by a reference point r ∈ R

m.

3.2 Inverse Model for Decision Making

The inverse model is a method that maps the decision space from the objective
space. For a set of preference vectors Λ (it can be arbitrary), Inverse model φ
takes the preference vector set Λ as the input and the decision variables X as the
output, i.e., X̂ = φ(f(Λ),θ), where θ is the parameter of the inverse model. The
inverse model can approximate the entire Pareto set by inputting continuous
preference vectors. In addition, another role of the inverse model is to use the
inverse model to provide solutions for decision makers [9].

Fig. 2. The process of providing a solution for a given decision maker and testing
algorithm.

As shown in Fig. 2, this work focuses on providing a solution for arbitrary
decision-makers. In the practical scenario, the framework can return a solution
(independently) for the preferences of any decision-maker. In the scenario of
testing the framework’s performance, we evaluate all algorithms using uniform
preferences.
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Fig. 3. Framework of UAIM. The green and yellow regions denote the training and
inference stages, respectively. (Color figure online)

4 Unbounded Archive-Based Inverse Model

This section presents an unbounded archive-based inverse model (UAIM), an
advanced inverse model used to provide the solution to any decision-maker. As
shown in Fig. 3, UAIM first stores all non-dominated solutions in the process of
MOEA for training rather than only training the inverse model on final solutions.
Then, we design a mechanism to replace inferior solutions suggested by the
trained inverse model. In the inference stage, some of the inaccurate solutions
suggested by the inverse model will be replaced using solutions from the archive.
For the remainder of this section, we describe the core components of UAIM and
propose suitable performance indicators.

4.1 Archive Construction

We can obtain a final solution set with size N (population size) when using
an evolutionary algorithm to solve the problem in Equation (1). Then, we can
train an inverse model on the final solution set. However, MOEAs generally can
only obtain solutions with a predefined population size. The number of solutions
in the final solution set is usually a few hundred or dozens. Learning an inverse
model using such a limited number of solutions is usually insufficient. The inverse
model can have better performance if there is sufficient training data.

As shown in Fig. 3, an empty archive (A) is initialized at the beginning
to collect training data, which will collect all non-dominated solutions. Next,
the evolutionary algorithm is used for optimization. In each generation, when
a new solution set Gi(i = 1, 2, ..., T ) is obtained by the evolution algorithm,
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the non-dominated solution set (G
′
i) is selected from Gi. After that, we select

non-dominated (ND) solution set Ai−1 from the combination of G
′
i and Ai−1,

i.e., Ai = ND(G
′
i ∪ Ai−1). A can collect all non-dominated solutions when the

evolutionary algorithm terminates. All collected non-dominated solutions are
used to train the inverse model. Usually, the number of solutions in A is much
larger than N , so the inverse model may perform better for suggesting solutions
to decision-makers.

4.2 Unbounded Archive Training

Since the scale of the target value in the solution set cannot be determined,
we need to normalize it to an applicable scale. To design an inverse model that
can provide solutions to any preferences given by decision-makers, we need to
construct a mapping from preference vectors to decision vectors. First, we use
normalization to change the minimum value of the objective vector of solutions
in archive to zeros:

p′(x) =
f(x) − fmin

fmax − fmin
, (2)

where x ⊆ A, fmin, and fmax are the minimum and maximum objective value
of each objective in the unbounded archive A. To provide a solution for the
decision-maker’s preference more conveniently, we set the sum of the preference
vector to one. The final preference vector p is:

p(x) =
p

′
(x)

||p′(x)||1 , (3)

where ||p′
(x)||1 represents the L1 norm. The inverse model β ∈ B can map

preference vectors to a solution in the decision space, i.e., x̂ = φ(p(x);β). The
mean squared error J(β) is used as loss function of the inverse model:

J(β) = E(p,x)∼(Λ,Pps)(φ(p;β) − x)2, (4)

where Λ is the preference vector set and Pps is the Pareto set distribution. We
approximate Λ and Pps and minimize the mean squared error based on the
collected training data, as follows:

argminβ∈B
1
K

K∑

i=1

(φ(pi;β) − xi)2, (5)

where A is the unbounded archive obtained in Sect. 4.1 and P̃ is calculated by
Eq. (2) and (3). K is the number of training data in the unbounded archive.
Then, we calculate the gradient of Equation (5) for optimizing the model.
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Fig. 4. Four situations in the replacement mechanism. The solution α is the output of
the inverse model given the preference vector p, and the yellow point is the solution in
the archive. Solution β is the solution closest to preference vector p. The purpose of the
replacement mechanism is to determine whether β is more suitable for the preference
vector p than α.

4.3 Unbounded Archive Replacement Mechanism

A common phenomenon is that the inverse model can provide perfect suggested
solutions for some preference vectors but not for others. There is a possibility
that some other solutions in training data are better than the suggested solutions
provided by the inverse model. Therefore, we propose a replacement mechanism
to improve the quality of suggested solutions when the solution given by the
inverse model is worse than the training data. As shown in Fig. 4, the suggested
solution α is provided by the inverse model for the preference vector p. The
solution β closest to the preference vector in the training data is selected for
comparison with the solution α. Here are four possible situations:

1) The solution β dominates solution α, it means that β is no worse than α
each objective, therefore, we provide β to preference vector p.

2) The solution α dominates solution β, it means that α is worse than β each
objective. Therefore, we provide α to the preference vector p.

3) Solution α and β do not dominate each other, we believe that β is the best
for the preference vector p if θα ,p > θβ ,p . In this case, β is provided to the
preference vector p.

4) Solution α and β do not dominate each other, we believe that α is the best
for the preference vector p if θα ,p < θβ ,p . In this case, β is provided to the
preference vector p.



194 R. Ye et al.

Fig. 5. Calculation of HV under different decision-makers. Different color vectors repre-
sent the specific preferences, and the corresponding color points represent the solutions
suggested to decision-makers. The gray is the HV value. The red line is the true Pareto
front, and the white point is the reference point. (Color figure online)

4.4 Performance Indicators

HV and IGD are the two most commonly used performance indicators in multi-
objective optimization. They are used to evaluate the quality of the obtained
solution set. However, when providing a solution set for a group of decision-
makers, we mainly consider the suitability of each solution for the corresponding
decision-maker. Currently, the evaluation of the solution set by HV and IGD
has a shortcoming in our case. As shown in Fig. 5, it gives a simple example
to illustrate why HV is insufficient for evaluation. The two subgraphs plot the
solutions provided to decision-makers by different algorithms. The figures show
that the first algorithm is more suitable for the decision-maker’s preferences
because solutions of the first algorithm falls on preference vectors. However, we
can see that the HV values obtained by the solutions in the two figures are the
same (the gray areas are the same).

To address the bove mentioned issue, we couple the calculation of HV with
the decision-maker’s preferences. The matching degree of each solution to the
preference vector in HV is considered. Specifically, we calculate the angle between
each preference vector p and the objective value of the corresponding solution
φθ (p), For a given set of preference vectors Λ and F = f(φθ (Λ)), the average
deviation angle is:

θ =

∑
f ∈F,p∈Λ arccos ( f ·p

‖f ‖·‖p‖ )

|Λ| , (6)

where |Λ| is the number of decision-makers. Then, the new performance indi-
cator is HVθ =

π
2 −θ

π
2

HV . The newly designed performance indicator contains
the penalty of each solution for the decision-maker. We also propose another
decision-maker-based average distance (AD) metric to evaluate the quality of
the solution set where the Pareto front is known:
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AD =

∑
f ∈F,ft∈Pb ‖f − f b‖2

|F | , (7)

where Pb is the best solution set in the true Pareto front for the given preference
Λ. Different from IGD [21], we first pre-select Pareto optimal solutions from the
Pareto set according to the preference vector set Pb. Then, we calculate the
average distance corresponding to Pb and F . AD is calculated based on the
distance after preference vector matching. As a result, AD is a more suitable
indicator than IGD in the decision-making scenario.

5 Experiments

We examine the performance of UAIM on extensive benchmarks with various
parameters, including the number of decision variables (d), the number of objec-
tives (m), and the shape of the Pareto front. We consider five types of Pareto
front as follows:

– Linear [3]: DTLZ1 (d=5, m=3).
– Convex [23,24]: ZDT2 (d=30, m=2), Convex-DTLZ2 (d=10, m=3) and

Convex-DTLZ4 (d=10, m=3).
– Concave [3,23]: ZDT1 (d=30, m=3), DTLZ2 (d=10, m=3) and DTLZ4

(d=10, m=3).
– Disconnected [3,23]: ZDT3 (d=30, m=2) and DTLZ5 (d=10, m=3).
– Degenerated [3]: DTLZ5 (d=10, m=3).

We use NSGA-II to solve the multi-objective optimization problems. In the
setting of NSGA-II, generation (T ) and population size (N) are set to 200 and 55,
respectively. UAIM is compared with NSGA-II and the inverse model (IM). To
fairly compare the learning-based methods (IM and UAIM) and the evolution-
based method NSGA-II, 495 uniform preference vectors are used as inputs to
IM and UAIM for obtaining corresponding solutions. Then, we use the HVθ

(proposed in Sect. 4.4) and AD to measure the performance of all algorithms and
run each algorithm three times to calculate the mean and standard deviation of
HVθ and AD. The larger the HVθ value, the better the performance; the smaller
the AD value, the better the performance. UAIM is implemented in pymoo [25]
and pytorch [26]. All experiments used one NVIDIA GeForce RTX 2080 Ti GPU
(11GB RAM). The code is available at https://github.com/rG223/UAIM.

5.1 Results

In Table 1, we evaluate all methods using HVθ and AD. Among the two objec-
tive problems (ZDT1-3), IM has advantages over NSGA-II in ZDT1 and ZDT2
problems but has no advantage in ZDT3 problems. This is because the Pareto
front of ZDT3 is disconnected, some preference vectors have no intersection with
the Pareto front. The proposed method UAIM achieves the best performance in

https://github.com/rG223/UAIM
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Table 1. Comparison of the mean and standard deviation of algorithms in terms of
HVθ and AD on ten benchmarks.

Problem Indictor Method
NSGA-II IM UAIM

ZDT1 (D=30) HVθ ↑ 0.8546±0.0003 0.8649±0.0010 0.8677±0.0001

AD ↓ 0.0091±0.0002 0.0049±0.0006 0.0012±0.0002

ZDT2 (D=30) HVθ ↑ 0.5280±0.0009 0.5327±0.0008 0.5354±0.0000

AD ↓ 0.0080±0.0005 0.0034±0.0009 0.0011±0.0001

ZDT3 (D=30) HVθ ↑ 1.0186±0.0005 1.0026±0.0139 1.0208±0.0002

AD ↓ 0.0080±0.0004 0.0144±0.0017 0.0011±0.0001

DTLZ1 (D=5) HVθ ↑ 0.1234±0.0005 0.0813±0.0266 0.1324±0.0018

AD ↓ 0.0356±0.0008 0.1253±0.0630 0.0287±0.0036

DTLZ2 (D=10) HVθ ↑ 0.6165±0.0109 0.6554±0.0079 0.7122±0.0021

AD ↓ 0.0965±0.0045 0.0408±0.0024 0.0263±0.0178

DTLZ4 (D=10) HVθ ↑ 0.6267±0.0052 0.6061±0.0204 0.7075±0.0037

AD ↓ 0.0921±0.0016 0.1032±0.0124 0.0226±0.0023

DTLZ5 (D=10) HVθ ↑ 0.2912±0.0026 0.2942±0.0092 0.2918±0.0002

AD ↓ 0.0085±0.0001 0.0162±0.0065 0.0034±0.0005

DTLZ7 (D=10) HVθ ↑ 2.0292±0.0092 1.9741±0.0220 2.2222±0.0082

AD ↓ 0.1407±0.0041 0.1467±0.0009 0.0601±0.0109

Convex-DTLZ2 (D=10)HVθ ↑ 1.0709±0.0690 1.1831±0.0104 1.2523±0.0026

AD ↓ 0.0841±0.0156 0.0421±0.0060 0.0232±0.0107

Convex-DTLZ4 (D=10)HVθ ↑ 1.1197±0.0128 0.8463±0.0794 1.2404±0.0031

AD ↓ 0.0693±0.0054 0.2137±0.0434 0.0189±0.0012

Table 2. The rate of using archive solution on ten problems.

Problem The rate of using archive solution

ZDT1 0.3758±0.0966

ZDT2 0.3697±0.0309

ZDT3 0.5636±0.0647

DTLZ1 0.7091±0.1653

DTLZ2 0.2364±0.0786

DTLZ4 0.6182±0.1178

DTLZ5 0.7576±0.0600

DTLZ7 0.5818±0.0535

Convex-DTLZ2 0.4182±0.0514

Convex-DTLZ4 0.7939±0.0562
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Table 3. The impact of two components in UAIM. UAT and UARM represent the use
of the archive to train the inverse model and replace suggested solutions, respectively.

Problem UAT UARMHVθ ↑ AD ↓
DTLZ1 ✗ ✗ 0.0813±0.0266 0.2658±0.0991

✓ ✗ 0.0961±0.0248 0.2583±0.0250

✓ ✓ 0.1324±0.0018 0.0287±0.0036

DTLZ2 ✗ ✗ 0.6554±0.0079 0.0408±0.0024

✓ ✗ 0.7123±0.0015 0.0256±0.0183

✓ ✓ 0.7122±0.0021 0.0266±0.0182

DTLZ4 ✗ ✗ 0.6061±0.0204 0.2318±0.0349

✓ ✗ 0.6989±0.0097 0.0370±0.0119

✓ ✓ 0.7075±0.0037 0.0226±0.0023

DTLZ5 ✗ ✗ 0.2942±0.0092 0.0439±0.0085

✓ ✗ 0.3054±0.0015 0.0052±0.0009

✓ ✓ 0.2918±0.0002 0.0116±0.0020

DTLZ7 ✗ ✗ 1.9741±0.0220 0.3559±0.0336

✓ ✗ 2.2044±0.0141 0.0739±0.0217

✓ ✓ 2.2222±0.0082 0.0741±0.0217

Convex-DTLZ2 ✗ ✗ 1.1831±0.0104 0.1054±0.0478

✓ ✗ 1.2512±0.0031 0.0356±0.0321

✓ ✓ 1.2523±0.0026 0.0389±0.0330

Convex-DTLZ4 ✗ ✗ 0.8463±0.0794 0.6106±0.0712

✓ ✗ 1.0967±0.0200 0.0467±0.0016

✓ ✓ 1.2404±0.0031 0.0189±0.0012

ZDT1-3. The strengths of UAIM are that the model is more confident than IM
because it has enough training data. In addition, UAIM can replace bad solutions
predicted by the model using solutions in the archive, which sometimes ensures
that the final suggested solutions are not too bad. In the DTLZ1 problem, IM’s
HVθ and AD are 0.0813 and 0.1253, which are much worse than NSGA-II. There-
fore, the solution quality obtained by the inverse model on DTLZ1 is poor. In
DTLZ5, UAIM performs slightly worse than IM because the solution set is closer
to the Pareto front (Fig. 6(a)). This is because UAIM chooses solutions closer
to the preference vector but farther from the Pareto front in the replacement
mechanism. IM also performed poorly on the disconnected DTLZ7 problem,
while UAIM performed significantly better than IM and NSGA-II.

In Table 2, we present the rate of the number of archive solutions used by
UAIM in each problem. We can find them between 20% and 80%. Therefore,
the proposed method combines the solutions given by the inverse model and the
archive.
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Fig. 6. Visual results obtained by different kinds of the preference of decision makers.
The color coding represents different preference ranges for the first objective: orange
(0 to 0.2), purple (0.2 to 0.4), green (0.4 to 0.6), blue (0.6 to 0.8), and red (0.8 to 1).
(Color figure online)

5.2 Ablation Study

In this subsection, we examine the effectiveness of unbounded archive training
(UAT) and the replacement mechanism (UARM). As shown in Table 3, UARM
and UAT have greatly improved the performance of IM on DTLZ1, DTLZ4,
DTLZ7, and Convex-DTLZ4. In DTLZ5, using UARM will make the value of
HVθ slightly worse. This is because most preference vectors have no intersec-
tion with the Pareto front in the degenerated problem. Then, UARM usually
chooses solutions closer to the preference vector but farther from the Pareto
front. Finally, some solutions close to the Pareto front may be sacrificed in



An UAIM in Evolutionary Multi-objective Optimization 199

exchange for being closer to the preference vector. When the improvement of
UARM is obvious, it means that the solutions returned by IM on many pref-
erence vectors are not ideal, and the solution in the training data is better in
this case. When the improvement of UAT is obvious, it means that the solutions
returned by IM on many preference vectors are ideal. Still, there will be greater
improvement after expanding the training data.

5.3 Decision-Makers with Different Preferences

The advantage of the inverse model is that it can provide specific solutions
for any group of decision-makers. To visualize the solutions obtained by differ-
ent decision-makers, we tested the solutions obtained by IM and UAIM on the
DTLZ2, DTLZ5, and DTLZ7 problems under about 1800 uniform preferences.
As shown in Fig. 6, the shape of the solution set provided by IM is smooth in
DTLZ2, but for some preferences on the edge of the Pareto front, e.g. (0.05, 0.05,
0.9), IM cannot provide corresponding solutions. The archived inverse model
(trained using the archive) can improve the estimation accuracy for each deci-
sion maker’s preferences. Therefore, the archived inverse model can perform
better than IM in DTLZ2. The solution set provided by UAIM can also cover
the entire Pareto front for different decision-makers. In the second DTLZ5 prob-
lem, IM covers most of the region on the Pareto front by one type of preference
(red dots), which shows that IM does not have excellent discrimination ability in
different preferences. The archived inverse model can better distinguish different
preferences and return appropriate solutions. UAIM combines solutions in the
archive to further improve the quality of the suggested solution set. In the last
DTLZ7 problem, some preference vectors do not intersect with the Pareto front.
IM tends to provide dominated solutions, which is terrible for those decision-
makers. For any preference vector, UAIM gives non-dominated solutions near
the Pareto front.

6 Conclusion and Future Work

In this paper, we proposed an unbounded archive-based inverse model to improve
the performance of the original inverse model for decision-making. UAIM has
made two improvements. On the one hand, UAIM uses an archive to train the
inverse model instead of the final population. Secondly, UAIM contains a replace-
ment mechanism. Specifically, when the solution suggested by the model is worse
than the solution in the archive, we use a better solution in the archive instead.
Through these two aspects, UAIM improves the quality of solutions for decision-
makers. Besides, two new indicators are designed to evaluate the algorithm’s per-
formance. We demonstrate in extensive experiments that the proposed method
significantly outperforms the original inverse model.

This paper mainly focuses on the amount of training data for the inverse
model and a replacement mechanism. Future research on using the inverse model
can be considered as follows:
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1. The impact of training data quality on the inverse model. In some problems,
the training data collected may contain noise, or the data distribution is
unbalanced (i.e., the data shifts toward a preference for a specific objective).

2. We can further consider using the inverse model to improve the performance
of multi-objective evolutionary algorithms. For example, in many-objective
optimization problems, it is challenging to find the entire Pareto front. We
can use the inverse model to explore those sparse areas. As a result, we can
improve the quality of the solution set obtained by multi-objective evolution-
ary algorithms.
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Abstract. In multi-objective optimization, set-based quality indicators
are a cornerstone of benchmarking and performance assessment. They
capture the quality of a set of trade-off solutions by reducing it to a
scalar number. One of the most commonly used set-based metrics is the
R2 indicator, which describes the expected utility of a solution set to a
decision-maker under a distribution of utility functions. Typically, this
indicator is applied by discretizing this distribution of utility functions,
yielding a weakly Pareto-compliant indicator. In consequence, adding a
nondominated or dominating solution to a solution set may – but does
not have to – improve the indicator’s value.

In this paper, we reinvestigate the R2 indicator under the premise that
we have a continuous, uniform distribution of (Tchebycheff) utility func-
tions. We analyze its properties in detail, demonstrating that this contin-
uous variant is indeed Pareto-compliant – that is, any beneficial solution
will improve the metric’s value. Additionally, we provide an efficient com-
putational procedure to compute this metric for bi-objective problems
in O(N logN). As a result, this work contributes to the state-of-the-art
Pareto-compliant unary performance metrics, such as the hypervolume
indicator, offering an efficient and promising alternative.

Keywords: Performance assessment · Multi-objective optimization ·
R2 indicator · Benchmarking · Utility functions · Pareto compliance

1 Introduction

When optimizing any system, there is often not just one objective, but multi-
ple criteria required to assess the quality of a solution. Rather than aggregating
these different optimization objectives into one, e.g., by means of a linear com-
bination of the individual objectives, the domain of multi-objective (MO) opti-
mization aims to find a set of (Pareto-)optimal trade-off solutions to present to a
decision-maker [13]. However, to benchmark MO optimizers and facilitate algo-
rithm design, parameter tuning, and automated algorithm selection, quantifying
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the quality of trade-off solutions in a unary set-based performance indicator is
often necessary.

To be reasonably interpretable, it is recommended that a MO performance
indicator fulfills a property that is known as Pareto compliance [8]. More pre-
cisely, a set-based performance indicator is called Pareto-compliant, if and only
if its indicator value for set A is better than for set B when set A dominates set
B. In addition, an indicator is called weakly Pareto-compliant if its value for set
A is not worse than for set B.

Up to now, the hypervolume (HV) indicator, and variants thereof, are the
only set-based performance indicators that are recognized as truly Pareto-comp-
liant [2,9,17]. The HV indicator computes the m-dimensional hypervolume dom-
inated by the solution set w.r.t. to a user-specified anti-optimal reference point.

In contrast, there are multiple families of weakly Pareto-compliant indica-
tors. Exemplary and widely used representatives are the IGD+ indicator [11],
requiring an (approximated or known) reference Pareto front, or the R2 indi-
cator [5,10], requiring an ideal/utopian reference point as well as a sample of
aggregation (or: utility) functions.

The R2 indicator, in particular, may be an attractive choice as it requires an
ideal rather than an anti-optimal reference point. In many problems, the ideal
point is easier to find, e.g., in multi-objective machine learning problems where
optimal, but not always anti-optimal, values for loss functions are available. Also,
solutions that do not dominate a chosen reference point may not contribute to
the dominated hypervolume, and a reference point far away from the Pareto
front (PF) tends to put a high weight on solutions at the PF’s boundary, which
is also often undesirable. Another benefit arises when constructing test problems
from objectives with known single-objective optima, which lack a natural upper
bound for the reference point or a clear “region of interest”.

While the unary R2 indicator was initially defined as an integral over a con-
tinuum of utility functions by [10], it is usually only discussed and applied in an
approximate manner for which the distribution of utility functions is discretized
[5,14]. The latter comes with the benefit of being flexible regarding the involved
utility functions. It also provides a convenient way to compute the indicator as
an average of multiple utility functions, however, sacrificing Pareto compliance
in the process. In this paper, we consider the most common R2 indicator def-
inition with a uniform distribution of Tchebycheff utility functions [5,10]. Our
main contribution is the methodology to compute this indicator exactly for a set
of solutions in the bi-objective case, thereby preserving its Pareto compliance.
We achieve this by shifting perspective away from averaging over predefined
utility functions towards computing the R2 indicator contributions of each indi-
vidual nondominated point, thereby eliminating weaknesses in the R2 indicator’s
properties. Additionally, we demonstrate the exact R2 indicator values for indi-
vidual points and linear Pareto fronts, as well as the approximate nature of the
discretization-based approach commonly used so far.

This paper is structured as follows: We introduce multi-objective optimiza-
tion and set-based performance assessment in Sect. 2. Then, in Sect. 3, we derive
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the methodology for computing exact R2 indicator values, first for a single solu-
tion and then for a set of solutions. Section 4 presents some exemplary results
regarding characteristics of the exact R2 indicator, and Sect. 5 concludes the
paper with an outlook on future research avenues.

2 Background

We begin by introducing some fundamental aspects of multi-objective optimiza-
tion and dominance relationships of multi-objective solutions. Then, we will
cover core aspects of set-based performance assessment in multi-objective opti-
mization and its best known representative, the hypervolume indicator. Finally,
we introduce the R2 indicator with its most important properties for the dis-
cretized and the exact variant.

2.1 Multi-objective Optimization

In multi-objective (MO) optimization, we aim to (w.l.o.g.) minimize multiple
conflicting objectives. Commonly, a MO optimization problem (MOP) with m
objectives is given by an objective function F : X �→ R

m where X represents
the decision space. The individual objectives are denoted as fi : X �→ R, i =
1, . . . ,m in this work. Further, we are primarily considering the bi-objective
setting (m = 2). Depending on the particular problem and decision space, there
may be further constraints on admissible solutions.

A particular challenge posed by MOPs pertains to solution comparison. While
in single-objective optimization, solutions can be compared directly (either they
have identical objective values or one is better than another), such immediate
comparisons are not possible for all solutions of a MOP. To solve this, we need
the concept of dominance. A solution x dominates another solution y (x ≺ y), iff
fi(x) ≤ fi(y) for all i and fi(x) < fi(y) for at least one i. A solution x strongly
dominates another solution y if the stronger condition fi(x) < fi(y) holds for
all i. A solution that dominates, but does not strongly dominate, another solution
is also called weakly dominant. Finally, two solutions can be incomparable, that
is, mutually nondominated, if either fulfills some objective better than the other.

Definitions of dominance can also be extended to sets of solutions. A set of
solutions A (weakly) dominates another set B, if each member of B is (weakly)
dominated by a solution in A, written as A � B and A ≺ B, respectively [8,18].

The set of all nondominated solutions P = {x ∈ X | �y ∈ X : y ≺ x} is known
as the Pareto set, and its image under F is known as the Pareto front. The Pareto
set contains the optimal trade-off solutions regarding the objectives, and aiming
to obtain a close approximation to it is the prevalent approach of solving MOPs
when no further constraints or preferences on the objectives are known, i.e.,
under black-box assumptions. Evolutionary algorithms are the most widespread
approach for finding good Pareto set approximations in these conditions.

Finally, we call the vector of the optimal, individual function values ideal
point, and refer to the best vector dominated by all Pareto optimal points as
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nadir point. Often, before computing indicator values and if the ideal and nadir
points are available, the region between them is normalized to the [0, 1]m box in
objective space as a normalization technique.

2.2 Set-Based Performance Assessment

As the Pareto set generally contains more than one solution, set-based perfor-
mance measures are the norm in assessing the overall quality of an archive of
evaluated points. This need to quantify Pareto set approximations has led to
numerous performance measures being introduced. For a recent survey on MO
performance indicators, we refer to [1].

The most prominent set-based performance measure is the dominated hyper-
volume (HV) indicator (or: S-metric) that measures the space dominated by the
set of solutions w.r.t. an anti-optimal reference point [2,9,17]. An illustration of
the HV indicator for two objectives is given in Fig. 1.

Fig. 1. Left: Illustration of the HV indicator. Right: If no point dominating the HV is
found, the minimal distance to the region of interest (dotted) can be used as an addi-
tional indicator. The combined indicator is, however, not Pareto-compliant anymore.

An important property of a set-based performance measure I : R
m → R is

Pareto compliance: If A � B and B � A, then I(A) < I(B) [18]. That is, a per-
formance measure should improve if new non-dominated or (weakly) dominating
solutions are added to a set of solutions. If only I(A) ≤ I(B) can be guaran-
teed under the same circumstances, I is called weakly Pareto-compliant. Only
the HV indicator and other indicators based on it are established to be Pareto-
compliant [9]. The selection of weakly Pareto-compliant indicators is somewhat
larger, including, for example, the (discretized) R2 [5] and the IGD+ [11] mea-
sures.
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The necessity of the anti-optimal reference point can, however, be a hindrance
to achieving Pareto compliance in practice. Setting the reference point so far
back that it is dominated by every feasible solution introduces a bias towards
the edges of the PF, while a reference point close to the nadir point fails to
consider all solutions outside of such a defined region of interest, cf. Figure 1.

2.3 The R2 Indicator

In contrast to the HV indicator, the unary R2 indicator is ordinarily defined as
the expected utility of the point set w.r.t. a distribution of utility functions U
[10]. In the most general case, for a set of solutions Y of a MOP, we can define
it as follows:

R2(Y ) :=
∫

u∈U

min
y∈Y

u(y)du.

The most common choice of a utility function is a Tchebycheff aggregation, which
allows to reach all Pareto-optimal points depending on the chosen parametriza-
tion. For a weight vector w ∈ [0, 1]m with

∑m
i=1 wi = 1 and a utopian vector y∗,

it is given by

uw(y) = max
i=1,...,m

wi(yi − y∗
i )

= max
i=1,...,m

wiy
′
i

using y′
i = yi−y∗

i to shift the utopian point w.l.o.g. to the origin. The distribution
of utility functions is then usually chosen as uniform on the weight simplex.

In the bi-objective case, where w2 = w1 − 1 holds, this yields the following
formula for R2:

R2(Y ) =
∫ 1

0

min
y∈Y

uw(Y )dw

=
∫ 1

0

min
y∈Y

{max(wy′
1, (1 − w)y′

2)}dw.

As there is no apparent way to calculate this property directly, it is generally
approximated in a discrete manner by discretizing U using n = |W | weight
vectors w ∈ W :

R2(Y ) ≈ 1
|W |

∑
w∈W

min
y∈Y

uw(y).

As an example, the uniform weight distribution with size n for the bi-objective
case is given by [5]

W =
{
(0, 1),

(
1

n − 1
,
n − 2
n − 1

)
, . . . ,

(
n − 2
n − 1

,
1

n − 1

)
, (1, 0)

}
.

The discretization is simultaneously a blessing and a curse: On the one hand,
it provides an effective method of approximating the underlying exact R2 value
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with high precision. On the other hand, this weakens the indicators’ properties.
To optimize the discretized R2 indicator, one can consider at most |W | points
on the Pareto front, which optimize uw for each w ∈ W , respectively. Additional
nondominated solutions cannot contribute to the indicator value. Further, an
individual utility function uw may be optimized by a point that is only weakly
Pareto optimal, but has the same utility (for this set of weights) as another,
Pareto optimal point. See, for example, the top left image of Fig. 2, where each
point along the vertical lines would have identical utility values. This places the
discretized R2 indicator among the weakly Pareto-compliant indicators.

A final property of the R2 indicator is that each solution y from a nondom-
inated set of solutions Y is optimal in terms of utility compared to all other
solutions from Y for a particular weight (w∗, 1 − w∗) such that [5]

w∗y′
1 = (1 − w∗)y′

2

⇒ w∗ =
y′
2

y′
1 + y′

2

.

Discussions around the R2 indicator and its application focus (almost) exclu-
sively on its discrete variant [5,16] rather than on the original continuous defini-
tion of R2 [10]. The remainder of this paper is dedicated to a better understand-
ing of this original definition, analyzing its properties, and detailing methods for
computing it.

3 The R2 Indicator for Continuous Utility Distributions

In this section, we derive how the R2 indicator can be computed under the
assumption of a continuous distribution of Tchebycheff utility functions for bi-
objective problems. We will start by analyzing the scenario for a single solution
point before extending the analysis to sets of solutions. At last, we derive the
computational complexity of the presented approach.

3.1 R2 for a Single Solution

Without loss of generality, let y∗ = (0, 0) be the utopian point and Y = {y}
be the set containing only one solution y = (y1, y2) > (0, 0). Further, let
w = (w∗, 1 − w∗) be the weight vector such that w∗y1 = (1 − w∗)y2. Then,
for w1 < w∗, w1y1 < (1 − w1)y2 and for w1 > w∗, w1y1 > (1 − w1)y2. Based
on this observation, we can compute the exact R2 indicator of Y for a uniform
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Fig. 2. Illustration of level sets of the Tchebycheff utility for five different weight
vectors w. The utility value uw(y) is determined by the surface that the level set
touches first: At vertical surfaces (see left and center image in the top row), the uw(y)
is determined by the f1 value while at horizontal surfaces (see bottom row) uw(y)
depends on the f2 value of y. At y (the top right figure) both w1y1 and w2y2 are iden-
tical. Note: Weight vectors are illustrated to point towards their equilibrium between
both objectives, i.e., w1f1 = w2f2.

distribution of Tchebycheff utility functions by splitting the integral along w∗:

R2(Y ) =
∫ 1

0

max(y1w, y2(1 − w))dw

=
∫ w∗

0

y2(1 − w)dw +
∫ 1

w∗
y1wdw

=
[
−1
2
y2(1 − w)2

]w∗

0

+
[
1
2
y1w

2

]1

w∗

=
1
2
y2

(
1 − (1 − w∗)2

)
+

1
2
y1

(
1 − (w∗)2

)
.

This simple case demonstrates that computing the exact R2 indicator for a set
of solutions consists of the following steps: First, we need to identify areas in
which the utility value does not vary w.r.t. y and is only sensitive to w. Then,
we compute the contribution of each of these areas to the final R2 value using
the corresponding integral and finally sum everything up.

We can build on these observations to derive a general procedure to compute
R2(Y ) for arbitrary solution sets.
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Fig. 3. Schematic illustration of the integration ranges of a solution y(n). y(n−1), y(n),
and y(n+1) are consecutive points in the solution set. y(n−) and y(n+) correspond to the
corners in the PF that are adjacent to y(n). Their corresponding weight vectors w(n−)

and w(n+) indicate the boundaries in which y(n) locally determines the PF. At w(n),
the objective switches between the f1- (vertical PF segment) and f2-values (horizontal
PF segment) of solution y(n).

3.2 R2 for a Set of Solutions

Let us now consider what happens when our solution set contains N > 1 solu-
tions. Let Y = {y(1), . . . , y(N)} be the set of nondominated solutions ordered by
ascending y1 value. Analogous to w∗ above, let w(n) = (w(n)

1 , 1 − w
(n)
1 ) be the

weight vector such that w
(n)
1 y

(n)
1 = (1 − w

(n)
1 )y(n)2 for all n = 1, . . . , N .

The weights w(n) indicate when the utility of solution y(n) is optimal and
identical w.r.t. both individual objectives. Slightly increasing (decreasing) w

(n)
1

lets the term of the first (second) objective dominate, i.e., the w(n) values indicate
a switch in the relevant objective.

In addition, we need to identify the weight ranges for which the utility value
is determined by a given solution y(n) rather than by one of its adjacent non-
dominated solutions, y(n−1) or y(n+1). As a visual aid for the following expla-
nations, Fig. 3 provides a sketch of the involved solutions, weight vectors, and
their relationships. For this purpose, let w(n+) be the weight vector such that
w

(n+)
1 y

(n+1)
1 = (1 − w

(n+)
1 )y(n)2 . w(n+) represents the weight vector pointing to

the intersection between y(n) and y(n+1), marked as y(n+) in Fig. 3, where the
relevant solution switches between the two solution vectors. On the other side,
w(n−) analogously defines the boundary between y(n−1) and y(n), which is indi-
cated by y(n−) in Fig. 3. Given these definitions, a solution y(n) = (y(n)1 , y

(n)
2 )

determines the Tchebycheff utility in the interval [w(n−)
1 , w

(n+)
1 ] for w1, with

the subinterval [w(n−)
1 , w

(n)
1 ] being dependent on the y2-value and [w(n)

1 , w
(n+)
1 ]

depending on its y1-value.
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Note also that, similarly to the HV indicator, the solution y(n) has an exclu-
sive contribution corresponding to the box spanned by it with y(n−) and y(n+):
The utilities uw(n−) to uw(n+) would worsen if y(n) was removed. This will still
be true if we consider the case that y(n) would only weakly dominate one of its
neighbors in the set, re-establishing Pareto compliance for the R2 indicator as
it was described in its original publication [10].

Now we can compute the partial R2 contribution of y(n) in a similar way to
the single solution set by splitting along w

(n)
1 . It only differs by replacing the

overall integration boundaries by y(n)’s relevant weight range, w(n−)
1 and w

(n+)
1 ,

which gives:

R2(y(n)) =
∫ w

(n+)
1

w
(n−)
1

max(y(n)1 w, y
(n)
2 (1 − w))dw

=
∫ w

(n)
1

w
(n−)
1

y
(n)
2 (1 − w)dw +

∫ w
(n+)
1

w
(n)
1

y
(n)
1 wdw

=
[
−1
2
y
(n)
2 (1 − w)2

]w
(n)
1

w
(n−)
1

+
[
1
2
y
(n)
1 w2

]w
(n+)
1

w
(n)
1

=
1
2
y
(n)
2

(
(1 − w

(n−)
1 )2 − (1 − w

(n)
1 )2

)
+

1
2
y
(n)
1

(
(w(n+)

1 )2 − (w(n)
1 )2

)
.

For the special cases that n = 1 or n = N , where there is no neighbor in one
direction, we can define w

(1−)
1 = 0 and w

(N+)
1 = 1, respectively.

Given the individual contributions R2(y(n)) for all n = 1, . . . N , we can con-
struct the exact R2 value of the whole solution set Y simply as their sum:

R2(Y ) =
N∑

n=1

R2(y(n)).

In consequence, computing the exact R2 indicator for two objectives can essen-
tially be achieved with a single pass along the N solutions from Y , as will be
described next.

3.3 Computational Complexity

The computational complexity of this approach is determined mostly by the con-
dition that we require Y to contain only nondominated solutions and be sorted
by y1. For this, we can first sort an archive of solutions (including dominated
points) by y1 and pass over this list once, removing any dominated points and
duplicates. This takes O(N logN) time with standard sorting algorithms.

The computation of the indicator itself is then just a matter of another
pass over the sorted list of nondominated points, which requires linear time: All
required w and y values can be obtained on the fly based on any given point y(n)
and its immediate neighbors. To summarize, the computation of the exact R2
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Fig. 4. Comparison of the approximated R2 indicator values using |W | weight vectors
and the exact R2 indicator value computed by our methodology. Left: The exact value
is shown by the dashed line. Right: The corresponding approximation error of the
discretized approach. The test set of solutions is given by 105 randomly evaluated
points on a bi-sphere problem from the bi-objective BBOB [4] with parameters {FID:
1, IID: 1, DIM: 2}.

indicator on an archive of N points in bi-objective space requires a complexity
of O(N logN). This improves upon the O(N |W |) complexity of the discretized
R2 for precise indicator values and large sets of solutions, i.e., large |W | and N
values.

4 Properties of the Exact R2 Indicator

In this section, we present some empirical and theoretical results on our proposed
exact R2 indicator. We start by demonstrating the approximation behaviour of
the discrete R2 in relation to the exact computation described in the previous
sections. Then, we will calculate the optimal R2 indicator values for simple
front shapes and demonstrate the convergence behaviour of the indicator w.r.t.
increasingly large nondominated sets.

We implemented the exact R2 indicator in the statistical software R. For
computations of the discrete R2 indicator, we utilize the unary_r2_indicator
function from the emoa package [12]. The scripts to reproduce these experimental
results are published at https://github.com/schaepermeier/r2-revisited.

4.1 Comparison of Discrete and Exact R2 Values

We start by comparing the exact R2 indicator as computed using our method (see
Sect. 3) with the discretized version found throughout the literature. As a basis
for the comparison, we rely on the nondominated points found by evaluating 105

https://github.com/schaepermeier/r2-revisited
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solutions on a bi-sphere problem from the bi-objective BBOB [4]. We evaluated
the discretized R2 with uniformly distributed weights, and the number of weights
(|W |) ranging from one to one million. The value of the discretized indicator as
well as the approximation error are visualized in Fig. 4.

We can see that, in this example, the R2 indicator seems sufficiently well
approximated at around 1,000 weights. Still, more weights yield a more accu-
rate approximation: Empirically, there seems to be an exponential relationship
between the number of weights chosen and the approximation error. This reflects
analyses by [5] on the behavior of the discrete R2 with an increasing number of
weights, albeit missing the exact R2 values for comparison.

4.2 Exact R2 Indicator Values

For the exact R2 indicator, we can provide the optimal indicator values for sim-
ple solution sets and corresponding test functions. This contributes to a better
understanding of the R2 indicator values, as a geometric interpretation like with
the hypervolume indicator is not possible.

Nadir and Ideal Points. Assuming we have normalized the objective space
((0, 0) being the ideal point and (1, 1) being the nadir point), we can compute
the R2 indicator for the worst possible solution within the region of interest
[0, 1] × [0, 1] by inserting the nadir point (1, 1) into the equation. According to
the previous results, and with w∗ = 0.5 to fulfill w∗y1 = (1 − w∗)y2, we can
compute this value as follows:

R2({(1, 1)}) = 1
2
y2(1 − (1 − w∗)2) +

1
2
y1(1 − (w∗)2)

= 0.5 · 1(1 − (1 − 0.5)2) + 0.5 · 1(1 − 0.52)
= 0.5 · 0.75 + 0.5 · 0.75 = 0.75.

This result is independent of the particular problem or PF, as it is only dependent
on the normalized nadir and ideal points. Analogously, we can derive the R2
value for the ideal point as R2({(0, 0)}) = 0, as all utilities equal zero at the
ideal point. For comparison, the HV w.r.t. the nadir point as the reference point
is HV ({(1, 1)}) = 0, while the HV of the ideal point is HV ({(0, 0)}) = 1 in this
situation.

Linear Front. Let us now consider a linear PF where y2 = 1−y1 and y1 ∈ [0, 1]
with ideal point (0, 0). When computing R2, for each weight vector w, we can
find the optimal solution y on the PF, which we can derive as follows:

w1y1 = w2y2 ⇒ w1y1 = (1 − w1)(1 − y1) ⇔ y1 = 1 − w1.

Note that when we use this, it does not matter which of the objectives we
consider in the R2 computation, as they will always yield the same utility value.
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Fig. 5. Schematic illustration of a concave ( 3
4
< R2 < 1

6
), linear (R2 = 1

6
), and convex

(0 < R2 < 1
6
) PF, respectively. The ideal point at the origin is denoted by +, and the

gray area indicates the dominated area.

Integrating over the weights for this set Ylin, we get:

R2(Ylin) =
∫ 1

0

min
y∈Ylin

{max(wy1, (1 − w)y2)}dw

=
∫ 1

0

wy1dw =
∫ 1

0

w(1 − w)dw =
∫ 1

0

(w − w2)dw

=
[
1
2
w2 − 1

3
w3

]1

0

=
1
2

− 1
3
=

1
6

≈ 0.1667.

Based on this result, we can derive that the optimal R2 indicator value for
the DTLZ1 problem [7], which possesses a linear PF with ideal point (0, 0) and
nadir point (0.5, 0.5), is 1

12 ≈ 0.0833.

Convex and Concave Fronts. Additionally, we can derive value ranges for
general concave and convex PFs: A concave front Yconc will always achieve worse
utility values than a linear function, and a convex front Yconv will always have
better utility. Again considering the normalized objective space, a general con-
cave front has an ideal R2 value between the value of the linear front and the
nadir point’s value, i.e., 1

6 < R2(Yconc) < 3
4 . Analogously, a convex front Yconv

will always fall between the R2 values of the ideal point and the linear front, i.e.,
0 < R2(Yconv) < 1

6 . All cases are illustrated in Fig. 5. If none of the discussed
conditions apply, the ideal R2 indicator value of the normalized objective space
may lie anywhere between 0 and 0.75.

As shown above, exact R2 indicator values can be derived for certain analyt-
ical PF shapes. Following the same pattern, that is, resolving w1y1 = (1−w1)y2
and integrating the utility function, we can compute the exact indicator values
also for more complex PF shapes, albeit in a less straightforward manner. We
limit ourselves to reporting the results for simple quadratic PF functions, which
correspond to the PFs in Fig. 5:
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– Convex PF with y2 = (1 − √
y1)2: 3π−8

16 ≈ 0.0890
– Concave PF with y2 =

√
1 − y21 :

1
8

(
3
√
2 sinh−1 (1) − 2

) ≈ 0.2174

The result for the convex PF applies, e.g., for the classical bi-sphere problem,
while the concave PF corresponds to DTLZ2 [7].

To summarize, we can compute exact R2 indicator values for different simple
front shapes and individual points. While these values do not seem to have
an intuitive (geometric) interpretation, they are rather given meaning by the
expected utility to a decision-maker.

5 Conclusion

In this paper, we introduce a procedure to compute the exact R2 indicator
value for a given solution set. In contrast to its widely-known and commonly
used discrete counterpart, the exact R2 indicator is not just weakly Pareto-
compliant, but a proper Pareto-compliant indicator. This is achieved by foregoing
the discretization of the distribution of utility functions usually performed in
the calculation of the indicator and taking a continuous, uniform distribution of
Tchebycheff utility functions as the basis. Pareto compliance of the R2 indicator
with this utility distribution was already described when it was introduced by
[10], but missing instructions for its exact calculation. Further, we show how
this indicator is implemented efficiently with a running time of O(N logN) for
bi-objective solution sets of size N . This positions the exact R2 indicator as a
promising Pareto-compliant alternative to the hypervolume indicator, especially
when a utopian rather than an anti-optimal reference point is naturally available.

We demonstrate the approximation behaviour of the commonly used, dis-
cretized R2 indicator in comparison with the exact computation, and provide
optimal R2 indicator values for the ideal and nadir points, as well as a linear
front in normalized objective space. From this, we derive R2 indicator value
ranges for general convex and concave PFs as well.

We expect that the exact R2 indicator offers multiple directions for further
theoretical and empirical research. So far, we have only demonstrated how the
R2 indicator is computed for bi-objective problems. A natural further research
direction pertains to the computation of the indicator for more than two objec-
tives. We do not expect that the R2 indicator will provide a runtime advantage
over the hypervolume indicator, however, schemes to approximate it are until
now the state-of-the-art in its computation and therefore very accessible com-
pared to HV approximations. We also believe that an incremental variant of the
indicator can be designed, which would make it ideal for benchmarking applica-
tions, where an indicator should be computed iteratively for the whole archive
of solutions.

From a theoretical point of view, we see potential in analyzing the approxi-
mation quality of the discretized R2 depending on the number of weights used.
This could be particularly interesting for giving quality guarantees for R2 in
higher-dimensional objective spaces, where exact indicator computations may
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become computationally intractable. A deeper theoretically supported analysis
of its properties, along the lines of [5], would also be interesting. Further, the
effects of different utility functions as well as the integration of (decision-maker)
preferences can be examined, as both directions have been studied in detail for
the discretized R2 indicator [15]. Finally, connections between the R2 indicator
and the integrated preference functional [3,6], a parallel development of an indi-
cator very similar to R2 in the operations research community, should be further
investigated, and could yield improvements in understanding the R2 indicator’s
properties and computation.

Differences and similarities in the preferred distributions between the exact
R2 indicator and the hypervolume indicator when applying them in a bench-
marking context could present a promising research direction. Likewise, inte-
grating the exact R2 in optimization heuristics, similar to R2-EMOA [14], may
be the subject of future studies.
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Abstract. The Influence Maximization (IM) problem is a well-known
NP-hard combinatorial problem over graphs whose goal is to find the
seed set of nodes in a network that spreads influence at most. Among
the various methods for solving the IM problem, evolutionary algorithms
(EAs) have been shown to be particularly effective. While the literature
on the topic is particularly ample, only a few attempts have been made
at solving the IM problem over higher-order networks, namely extensions
of standard graphs that can capture interactions that involve more than
two nodes. Hypergraphs are a valuable tool for modeling complex inter-
action networks in various domains; however, they require rethinking of
several graph-based problems, including IM. In this work, we propose
a multi-objective EA for the IM problem over hypergraphs, aiming at
minimizing the seed set size while maximizing influence. Smart initial-
ization and hypergraph-aware mutation operators are utilized to facili-
tate algorithm convergence. While the existing methods rely on greedy
or heuristic methods, to our best knowledge this is the first attempt at
applying EAs to this problem. Our results over nine real-world datasets
and three propagation models, compared with five baseline algorithms,
reveal that our method achieves in most cases state-of-the-art results in
terms of hypervolume and solution diversity.

Keywords: Influence Maximization · Hypergraphs · Evolutionary
Algorithm · Multi-Objective Optimization · Higher-order Networks

1 Introduction

Networks provide a valuable framework to model and analyze systems of inter-
acting unities. Networks are typically represented as a graph, namely, a collection
of nodes (the units of the system) connected via edges (the interactions between
those units). Given their flexibility, networks have found applications in sev-
eral domains, from the study of human behavior and cellular interactions to the
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assessment of the resilience and efficiency of technological systems [12]. However,
conventional graph models may fail at capturing the full complexity and hetero-
geneity characterizing real-world networks. In fact, while empirical interactions
can be described by many complex features (e.g., direction, weight, temporal-
ity, etc.), standard graphs usually associate only one feature with each edge.
Moreover, graphs can only encode pairwise interactions, oversimplifying systems
characterized by higher-order interactions, i.e., group interactions among three
or more units [7,8]. Examples of such systems are scientific collaborations [52],
people’s face-to-face encounters [18], and the brain [54]. In order to model such
higher-order interactions, hypergraphs [11], rather than standard graphs, are
needed. Hypergraphs are a generalization of graphs in which interactions are
encoded into sets of arbitrary size, i.e., the hyperedges.

At the interplay between network structure and dynamics, a popular problem
over graphs is the so-called Influence Maximization (IM). In this problem, the
aim is to select a set of nodes from which the influence can be spread at most
over the network [36]. Solving this problem exactly has been proven to be NP-
hard. IM has been mainly studied in single-objective formulation, i.e., given a
predefined number of nodes to be picked as starting seeds, the only objective is to
maximize the spread (i.e., the number of influenced nodes). On the other hand,
recent works [14,25] deviated from this formulation, showing that setting the seed
set size cardinality a priori inherently restricts the solution space explored by
the optimization process, therefore proposing multi-objective settings in which
the seed size has to be minimized while maximizing influence propagation.

IM has been extensively studied in the context of standard graphs, yet, its
application to higher-order networks is still limited. In hypergraphs, influence
can spread through groups, impacting multiple units simultaneously and lead-
ing to non-linear behaviors. Hence, dynamical processes on hypergraphs are a
more accurate model for many complex real-world dynamics, such as social influ-
ence in groups of friends, that are oversimplified by graph representations [5,8].
However, the expressive power of hypergraphs comes at the cost of having to
generalize traditional graph problems and algorithms to the higher-order case.
In this direction, solving the IM problem in hypergraphs would allow the analysis
of data that inherently represent a hypergraph (e.g., scientific collaborations),
for which propagation models are directly defined as higher-order, and that can-
not be run on top of standard graphs. Moreover, IM on hypergraphs would also
allow for better modeling systems previously studied with graph approximation
of higher-order dynamics, aiming for better identification of influential nodes.

In this work, we propose a Higher-Order Network Multi-Objective Evolu-
tionary Algorithm (in short, hn-moea), the first algorithm that employs Evo-
lutionary Computation to solve the IM problem over higher-order networks.
We also increase the problem complexity by designing a bi-objective formula-
tion where the influence spread (to maximize) and the number of nodes in the
starting seed set (to minimize) are jointly optimized. We design our method
by adapting, for higher-order networks, a state-of-the-art Evolutionary Algo-
rithm (EA) for IM [15,24], also including IM-specific techniques such as smart
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initialization [37] and graph-aware mutations [24] to further boost the evolution-
ary process. We compare hn-moea w.r.t. the most recent baselines for IM on
higher-order networks over three different propagation models, showing how our
proposed method always shows comparable or better performance both in terms
of hypervolume and solution diversity. In summary:

• We propose hn-moea, a multi-objective EA designed to solve the IM problem
over higher-order networks;

• We adapt smart initialization and hypergraph-aware mutations usually
designed for standard graphs to be hypergraph-dependent;

• We test our approach w.r.t. to two standard (i.e., non-hypergraph-specific)
baseline methods as well as three recent IM algorithms specifically designed
for higher-order networks, over three propagation models;

• We show how our approach not only provides, in general, higher hypervol-
umes, but also finds sets of non-dominated solutions that are inherently more
diverse than those found by the compared methods.

2 Background

Recently, there has been a growing interest in characterizing hypergraphs, from
micro-scale patterns [39,46,47], to core-periphery organization [60], community
structure [21,48,56], backboning [49], and centrality measures [9]. This is mainly
motivated by the fact that hypergraphs can encode, without losing information,
systems that display higher-order interactions, thus providing new insights into
those systems’ behavior. Formally, a hypergraph is an ordered pair H(V,E),
where V = {v1, . . . , vn} is the set of nodes and E = {e1, . . . , em} is the set of
hyperedges. Each hyperedge e ∈ E is a set of nodes with a cardinality of at least
2, i.e., e ⊆ V and |e| ≥ 2. For any given node v ∈ V , the set E(v) ∈ E refers to
the collection of hyperedges containing v. Additionally, a node u belongs to the
set of neighbors N (v) of a node v if there exists at least one e ∈ E such that e
contains both v and u (E(v) ∩ E(u) �= ∅). The degree d of a node v corresponds
to the cardinality of its set of neighbors, expressed as d(v) = |N (v)|. Whereas,
the hyperdegree dH of a node v is the number of hyperedges to which v belongs.

2.1 Propagation Models

Higher-order interactions in complex systems can significantly alter propagation
dynamics [7,8]. Therefore, understanding how higher-order interactions affect
different dynamical processes (e.g., contagion [20,34] or synchronization [29])
previously studied in the traditional graph setting is attracting interest. In this
work, our focus is on influence propagation.

In standard graphs, influence propagation is typically modeled as an iterative
process in which, given a graph (V,E), at each iteration (timestep t), each node
in V can be either active (i.e., it has been influenced) or inactive. The influence
spread starts at t0 from a set of seed nodes S ⊆ V , which are all active, while
all the other nodes in the graph are not. Then, at each timestep, each of the
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active nodes can influence one or more of its neighbors, according to different
logics (e.g., based on a certain probability) that depend on the given propagation
model. It is typically assumed that, once a node becomes active, it cannot become
inactive anymore. Hence, the set of active nodes in V increases monotonously
over the timesteps, until the spreading process ends.

This general propagation process applies also to the case of hypergraphs of
the form H(V,E): what changes, is only the propagation model under which such
process occurs. However, while propagation models devised for standard graphs
are well-established, the literature on propagation models in higher-order net-
works is still limited. Developing propagation models tailored for hypergraphs
that account for the complexity of hyperedges is nevertheless crucial for under-
standing and predicting influence propagation in diverse real-world scenarios
that would be oversimplified with a traditional network representation and lower-
order dynamics [7,8].

In our experiments, we consider three different propagation models, namely
the Weighted Cascade (WC) [36], a model commonly adopted in the case of
standard graphs and generalized to the higher-order domain in [69], as well as
two recently-introduced hypergraph-specific models, referred to as Susceptible-
Infected Contact Process (SICP) [63] and Linear Threshold (LT) [67].

1 Weighted Cascade (WC). At each timestep t ≥ 1, each node n active
at time t − 1 may activate some of its inactive neighbors m with non-uniform
probability inversely proportional to the number of neighbors of m, i.e., the
probability of a → b is given by 1

d(b) .

2 Susceptible-Infected Contact Process (SICP). At each timestep t, for
each active node n, we consider all the hyperedges Ei = {ei1, ei2, . . . eiq} in which
node n participates. At this point, a hyperedge e is sampled from Ei uniformly
at random. Then, each of the inactive nodes in e is influenced by node n with
probability p, i.e., the probability of a → b is given by p.

3 Linear Threshold (LT). Let us consider a hyperedge e with A be the set
of nodes in active state. In this scenario, a hyperedge e becomes activated if the
fraction of activated nodes |A|

|e| is greater than or equal to the configured threshold
value θ ∈ (0, 1). Upon activation of e, all nodes v belonging to e also transition to
an active state in the subsequent step of the propagation process. For instance,
let ei = {vi1, vi2, vi3, vi4} denote a hyperedge comprising four nodes. Suppose
that, at time t, the set At includes vi1, vi3. Then, at time t + 1, if the fraction
of active nodes in ei exceeds θ, ei will be activated. Consequently, all currently
inactive vertices of ei, namely vi2 and vi4, will also become active.

We illustrate the considered propagation models in Fig. 1. In all these models,
the propagation of influence terminates either upon reaching convergence, indi-
cated by no further nodes being activated in the last timestep, or upon reaching
a specified maximum number of timesteps τ (maximum number of hops). Due to
the stochasticity that characterizes the WC and SICP propagation models, the
influence propagation is computed through multiple Monte Carlo simulations.
On the other hand, the LT model has been designed to provide a deterministic
execution [67], without requiring multiple simulations.
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Fig. 1. Graphical representation of the WC, SICP, and LT models. Each colored poly-
gon indicates a hyperedge. The first row represents the hypergraph at time t0, where
only the nodes of the seed set (Red) are activated. The second row shows the nodes
that are activated at timestep t1 (Orange), while the bottom row depicts the nodes that
are activated at timestep t2 (Purple). The second column displays the hyperedges that
SICP randomly selects to spread the influence (Green). The third column highlights
the activation of hyperedges based on the LT propagation model, assuming a threshold
value of 0.5 (Yellow). (Color figure online)

2.2 Influence Maximization Problem

Given a seed set S, its influence, denoted as σ(S), is the (expected, in the case
of stochastic propagation models) size of the set of active nodes at the end of
the influence propagation process. Introduced in [27] and further formalized as
a combinatorial optimization problem in [36], the IM problem aims to identify
the seed set of nodes S in the network that maximizes the number of influenced
nodes, i.e., S = argmaxS{σ(S)}. In the traditional formulation, the number
of nodes |S| in the seed set is predefined. As detailed in Sect. 4, in this work
we highlight the importance of including |S| as an additional objective of the
optimization problem, to direct the search towards valuable trade-offs between
effort (number of seed nodes) and effect (final influence over the whole network).
Of note, such bi-objective formulation also leads to higher solution diversity
among different seed set sizes, as we will demonstrate in the Results section.

3 Related Work

The existing literature on IM is mainly focused on standard graphs [32,43,50,55].
Over the years, researchers have explored various algorithms to address this
problem [6,41,42,53]. Among the proposed solutions, EAs and other forms of
metaheuristics [23,28,38,44,59,66] have demonstrated remarkable effectiveness
in tackling this kind of combinatorial optimization problem [1]. For instance, [31]
proposed the local influence estimation (LIE) function, which considers the influ-
ence within the 2-hop neighborhood of seed nodes, and optimized it using the
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Discrete Particle Swarm Optimization (DPSO) algorithm. In [35], the authors
introduced the expected diffusion value (EDV) evaluation function and uti-
lized Simulated Annealing (SA) to identify the most influential nodes. Other
works have showcased the efficacy of single-objective [13] and multi-objective
EAs [14,15] in outperforming alternative approaches both in terms of quality
and execution times [25]. Lastly, [24] proposed a many-objective formulation
aimed at maximizing the influence spread while minimizing the size of the seed
set, along with other objectives such as the propagation time, the influence fair-
ness, or the cost of propagation.

While the IM problem has been extensively studied in the context of lower-
order interactions, IM in the higher-order case remains relatively unexplored. In
principle, the IM problem in higher-order networks can be solved by applying
existing IM algorithms designed for standard graphs on the hypergraph’s clique-
expanded graph, i.e., a graph representation in which edges connect vertices that
are part of the same hyperedge in the original hypergraph. Although executing an
IM algorithm on clique-expanded graphs is a viable strategy for identifying influ-
ential sources, it is important to recognize that this process inevitably sacrifices
several crucial topological features of the original hypergraph data structure [62].
In more depth, in a higher-order network, multiple interactions could potentially
be shared by two neighboring nodes. On the other hand, in its low-order graph
counterpart, each pair of nodes can only have one pairwise interaction. This dis-
tinction significantly impacts the spread of the influence across the network [8].
Moreover, the insofar proposed propagation models for hypergraphs are specifi-
cally tailored for higher-order networks, and may not perform well when applied
to networks with only dyadic interactions.

Given that IM is NP-hard also on higher-order networks [69], existing works
rely on greedy [5,61,68] or heuristic strategies [64,67] to explore the search space
within reasonable computational time. Overall, these methods evaluate the suit-
ability of each node as a source of influence spread by assigning it a score, and
incrementally add nodes with the highest marginal benefit to the seed set. These
techniques have effectively addressed the IM problem across various real-world
higher-order network datasets. However, as we will show in our experiments,
they are characterized by limited exploration capabilities and resulting solution
diversity. In contrast to standard graphs, no prior work has yet explored the res-
olution of the IM problem in hypergraphs using EAs, which instead can provide
better exploration and diversity.

4 Methodology

In agreement with the methodology originally suggested in [14], our formulation
of the IM problem does not enforce any a priori constraint on the cardinality
of the seed set. Instead, the multi-objective formulation in this study aims to
maximize the influence spread while minimizing the size of the seed set |S|.
Following this methodology, given an input hypergraph H(V,E), the genotype
of an individual x generated throughout the evolutionary process encodes a set of
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nodes S ⊆ V of variable size in {1, 2, . . . , k}, representing the seeds of influence in
the network. Each node is indicated by its id, i.e., an integer in {0, 1, . . . , |V |−1}.
The fitness of a candidate solution x is a tuple containing: (i) the influence σ(x)
of the seed set, calculated as described in Sect. 2.2, to be maximized ↑; (ii) the
size k of the seed set S, to be minimized ↓. Both values are normalized w.r.t.
the network size, to allow comparisons between networks of different sizes.

The multi-objective EA of choice in this work is NSGA-II [26], which has been
proven to be successful on the IM problem in standard graphs, outperforming
in most cases the alternative heuristics [25]. Moreover, this method can be eas-
ily extended to incorporate additional objective functions into the optimization
process, as shown in [24]. We also use the smart initialization strategies proposed
in [19,24,37], aiming at accelerating algorithm execution and guiding population
convergence towards prominent regions of the solution space. In line with the
strategy adopted in [14,15,25], parent solutions are selected with fixed-size tour-
nament and elitism. The offspring solutions are generated by standard one-point
crossover, while for mutation we took inspiration from the graph-based muta-
tion presented in [24,37]. For individual replacement, we rely on the standard
NSGA-II replacement mechanism consisting of non-dominated sorting followed
by crowding distance preference.

Smart Initialization. Generating an initial population situated within promi-
nent regions of the solution space is a practice commonly adopted in Evolution-
ary Computation [16,17,33] in order to facilitate convergence towards profitable
fitness landscape regions. This approach has been proven to be effective also on
the IM problem over standard graphs [24,37]. Hence, we decided to adopt the
same approach also on the hypergraphs handled in this paper. The rationale
behind this approach is rooted in the observation that nodes characterized by
high centrality are likely to be effective sources of influence spread.

Our smart initialization over higher-order networks works as follows: initially,
given a hypergraph H(V,E), we sort the nodes in the set V based on their degree.
Subsequently, we select the top λ percentage of nodes with the highest degree,
hence obtaining a filtered set of nodes V̄ (with λ being a hyperparameter). Half
of the initial population consists of a set of nodes sampled from the filtered set
V̄ , with probabilities proportional to their degrees. In order to favor diversity in
the population, the other half comprises seed sets of nodes chosen uniformly at
random from the entire node set V . To further promote diversity, each individ-
ual’s genotype in the initial population is initialized with a randomly selected
number of nodes, ranging from kmin to kmax (both are hyperparameters).

Hypergraph-Aware Mutation. While the use of random mutation and one-
point crossover leads to remarkable performance on the IM problem [15,25], intro-
ducing hypergraph-aware mutation operators can guide the evolutionary process
towards even better results [24,37]. Hence, we rely on a combination of stochastic
and hypergraph-aware mutation operators with complementary effects, in order
to strike a balance between exploration and exploitation (as found in preliminary
experiments not reported for brevity). Each individual is mutated according to
one of the two mutation operators, selected uniformly at random.
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1 Stochastic mutation. Given an individual x (i.e., a seed set), with a geno-
type consisting of l genes, this mutation performs either: (1) node replacement,
which generates a new individual x′ by randomly replacing one of the genes of
x with a node n /∈ x; (2) node insertion, which generates a new individual x′

with l + 1 genes by adding to x a new node n /∈ x; or (3) node removal, which
generates a new individual x′ with l − 1 genes, by randomly removing from x a
node n ∈ x. The three strategies are chosen at random with uniform probability.

2 Hypergraph-aware mutation. This mutation leverages the intrinsic char-
acteristics of nodes. In this case, we only consider node replacement. Given again
an individual x of size l, first, we select the gene to be replaced with a probability
inversely proportional to its corresponding node degree. Then, we choose (with
equal probability) the new node n /∈ x either from the entire collection of nodes
V , or from the neighbors of the gene selected for replacement. In both cases, the
new node is chosen with probability proportional to its degree.

5 Experimental Setup

In this section, we provide an overview of the experimental design employed to
evaluate the efficacy of hn-moea, as well as the tested baselines.

Computational Setup. We performed our experiments on two Ubuntu 20.04
workstations, respectively with a 28-core Intel i9-7940X CPU @ 3.10GHz and
64GB RAM, and a 36-core Intel i9-10980XE CPU @ 3.00GHz and 128GB RAM.
The total execution time of our experiments was in the order of (approximately)
400 CPU core hours. The code implementing our methods is completely written
in Python and is made publicly available1. Furthermore, it has been integrated
into the Hypergraphx library [45].

Datasets. In order to evaluate the effectiveness of our proposed method, and
to allow for a direct comparison with other methods for IM on hypergraphs, we
performed an experimental analysis on nine publicly available real-world higher-
order networks2 used in related works. The selected datasets represent empirical
hypergraphs from three heterogeneous domain categories spanning social net-
works, online reviews, and email communication. These datasets cover a wide
range of different topological properties, i.e., number of nodes, number of hyper-
edges, and density. Each dataset has been properly pre-processed to remove
duplicated hyperedges, duplicated nodes within the same higher-order interac-
tion, and relations populated by less than two entities. Summary statistics of
the datasets, after pre-processing, are available in Table 1.

Baselines. We compare our proposed hn-moea with five other algorithms for
IM in higher-order networks. It is important to remark that: (1) no other multi-
objective approaches exist for this problem, and (2) the only existing base-
lines are inherently single-objective and, by construction, cannot be turned into
1 https://github.com/DIOL-UniTN/hn-moea-im.git.
2 https://www.cs.cornell.edu/~arb/data/.

https://github.com/DIOL-UniTN/hn-moea-im.git
https://www.cs.cornell.edu/~arb/data/
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Table 1. Datasets tested in our experimental setup, divided by category: social (Alge-
bra, Geometry, MAG-10), online reviews (Restaurant, Music, Bars), and email com-
munication (Email-eu, Email-enron, Email-w3c).

Dataset Nodes Hyperedges Hyperdegree Degree Source
Avg. Std. Max. Avg. Std. Max.

Algebra 423 980 17.52 29.93 328 78.89 68.38 303 [4]
Geometry 580 888 19.90 32.69 227 164.79 121.62 474 [4]
MAG-10 80198 51889 2.25 4.56 187 5.91 9.19 335 [3,58]
Restaurant 565 594 8.11 7.17 59 79.75 59.82 310 [4]
Music 1106 686 9.47 10.72 127 167.87 107.92 865 [51]
Bars 1234 1188 9.60 7.36 146 174.30 145.02 818 [4]
Email-eu 1000 78919 259.12 340.84 2386 280.44 217.53 755 [10,40,65]
Email-enron 4423 5734 6.80 32.05 1139 25.34 43.96 934 [10]
Email-w3c 14317 19821 3.07 23.90 958 4.06 23.98 959 [2,22]

multi-objective. Among our baselines, two are non-hypergraph-specific (random
and high-degree), while the other three (hdd, hci-1, and hci-2) are specific
for hypergraphs. Furthermore, four of the compared methods are determinis-
tic (high-degree, hdd, hci-1, and hci-2) while random is stochastic. In the
following, we consider a hypergraph H(V,E) and a maximum seed set size kmax.

The random algorithm simply generates kmax seed sets, with sizes ranging
from kmin to kmax, by iteratively adding a node randomly sampled from V .

In the high-degree approach [63], nodes in V are sorted according to
their degree. The output Pareto Front (i.e., the set of non-dominated solu-
tions) comprises candidate seed sets S1, . . . , Skmax of increasing sizes from kmin
to kmax. For each set size i, the top ki nodes with the highest degree are selected
(Si = argmaxS′⊆V,|S′|=ki

∑
v∈S′ d(v)).

Along with these two non-hypergraph-specific baselines, we include in our
experiments three of the most recent IM algorithms for hypergraphs proposed in
the literature. Specifically, we consider hdd, proposed in [63], as well as the hci-
1 and hci-2 algorithms introduced in [67]. As said, all these methods are meant
for single-objective optimization. Hence, to compare them with hn-moea we
executed them for every value of seed set size k within the interval [kmin, kmax].

Hyperparameter Setting. To strike a balance between computational effi-
ciency and accurately capturing the influence spread dynamics, we set the maxi-
mum number of hops within which influence is propagated to τ = 5 as in [24,30],
which reflects a fair compromise between the commonly adopted 2-hop approx-
imation and an unbounded spread process (i.e., τ = ∞).

To limit the hyperparameter dependency for the SICP model, rather than
relying on a constant value for the probability p, we sample p at each timestep
uniformly at random within [0.005, 0.02] (values commonly used in [63]). Regard-



226 S. Genetti et al.

ing the LT propagation model, the spread of influence is extremely sensitive to
the threshold θ and it is not feasible to identify a value for this parameter that is
suitable for every dataset. Therefore, we opted for a different threshold for each
network. Specifically, we adopted the values utilized in [67]: θ = 0.8 for Algebra
and Geometry, θ = 0.5 for MAG-10, θ = 0.6 for Music and Bars. For the remain-
ing datasets, we employed the approach outlined in [67], wherein the parameter
θ is tailored to the specific characteristics of each dataset. Following this strat-
egy, through empirical investigation, we determined θ = 0.7 for Restaurant and
Email-enron, θ = 0.6 for Email-w3c, and θ = 0.8 for Email-eu.

Concerning the EA parameters, as proposed in [15,24] we set the minimum
and the maximum seed set size of an individual to kmin = 1 and kmax = 100
respectively. The parameter λ used in our smart initialization strategy has been
set to λ = 30%. For all the experiments, the evolutionary hyperparameters
have been kept fixed, setting the population size to 100, number of offspring
to 100, number of elites to 2, tournament size to 5, and generations to 100 (as
in [24]). When evaluating the fitness of the hn-moea solutions w.r.t. WC and
SICP, we conduct 100 Monte Carlo simulations of the propagation model, while
the LT model [67] being deterministic does not require multiple evaluations. To
deal with the inherent stochasticity of hn-moea and the random baseline, the
results presented below for these two algorithms have been aggregated from 5
independent runs, providing a more robust and reliable assessment of outcomes.
Conversely, due to their deterministic nature, the results for the other baselines
(high-degree, hdd, hci-1, hci-2) are based on a single execution.

The hyperparameters of the hci-1 and hci-2 algorithms [67] have been care-
fully fine-tuned. Indeed, due to the specific characteristics of hci-1 and hci-2,
the selection of certain parameters significantly impacts their ability to identify
seed sets for different values of k within the range of interest, namely [1, 100].
In more depth, we adjusted the hyperedge threshold parameter in their source
code to 0.85, which ensures fair results across all datasets analyzed in our study.

6 Results

We analyze the performance of hn-moea w.r.t. the compared algorithms for IM
both in terms of hypervolume and solution diversity.

Performance in Terms of Hypervolume. We compare our proposed app-
roach and the baselines both qualitatively and quantitatively. Figure 2 displays
a qualitative representation of the performance attained by the evaluated IM
algorithms on two selected datasets, considering all three influence propagation
models examined in this study. Remarkably, in most cases the Pareto Fronts gen-
erated by hn-moea demonstrate superior performance compared to the solutions
obtained by other algorithms, achieving more favorable trade-offs between seed
set size and percentage of influenced nodes. However, in consonance with the
observations from [14], for some datasets, NSGA-II struggles in populating the
Pareto Front for solutions with node counts approaching the upper bound of the



Evolutionary Influence Maximization in Hypergraphs 227

Fig. 2. Results obtained by the compared IM algorithms on the Email-w3c and Bars
datasets, using WC, SICP, and LT as influence propagation models.

seed set size. This might be due to the fact that, while for larger k there exist
less possible combinations, finding them becomes harder.

Table 2 provides a quantitative comparison of the algorithmic solutions by
computing the hypervolume [57] (i.e., the area under the curve of the Pareto
Front found by the various methods on each dataset and propagation model).
Here, it can be seen that hn-moea excels particularly within propagation models
tailored for the higher-order domain (SICP and LT), often outperforming com-
petitors by a significant margin. On the other hand, in the case of a propagation
model initially intended for standard graphs (WC), our algorithm’s performance
does not exhibit a notable enhancement compared to the evaluated baselines.
Nevertheless, in these instances, the quality of the solutions proposed by our
method aligns closely with that of other algorithms. These observations hold
considerable importance in practical applications, as real-world scenarios often
encompass diverse influence propagation patterns. Consequently, it is essential
to develop algorithmic solutions capable of producing valuable outcomes across a
wide range of propagation models. Furthermore, hn-moea demonstrates remark-
able versatility not only with respect to the propagation model but also across
the diverse datasets analyzed in this work, being able to effectively converge
towards profitable solutions regardless of the peculiarities inherent to the differ-
ent network domains. However, it is worth noting that its performance on the
MAG-10 dataset is slightly less satisfactory. This can be attributed to the large
number of nodes and hyperedges present in this dataset, resulting in a signif-
icantly expanded solution space. Using more generations or larger population
sizes could potentially yield better outcomes.

Performance in Terms of Solution Diversity. As introduced before, the bi-
formulation of IM problem leads to avoiding having an incremental Pareto Front
(as usual in single-objective formulation), providing more diversity in the solu-
tion seed sets of the final Pareto Front. Hence, we further enhance our analysis
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Table 2. Hypervolumes achieved by the compared algorithms. Results for random
and hn-moea are cross 5 independent runs (mean ± std. dev.). The boldface indicates
the highest hypervolume per dataset and propagation model. We highlight the cases
where our method achieves the highest hypervolume.

Dataset Algorithm
Higher-Order Propagation Standard Propagation

SICP LT WC

Algebra

high-degree 1.79e−01 4.67e−01 4.96e−01

hdd 1.84e−01 1.65e−01 4.41e−01

hci-1 1.67e−01 4.73e−01 4.69e−01

hci-2 1.72e−01 3.35e−01 4.37e−01

random 2.15e−01± 5.85e−03 1.29e−01± 1.58e−02 3.53e−01± 1.10e−02

hn-moea 2.96e−01± 7.86e−04 5.28e−01± 9.10e−03 5.01e−01± 1.12e−03

Geometry

high-degree 2.39e−01 2.04e−01 4.34e−01

hdd 2.28e−01 1.10e−01 3.73e−01

hci-1 2.22e−01 3.06e−01 4.24e−01

hci-2 2.25e−01 2.50e−01 4.08e−01

random 3.29e−01± 7.09e−03 8.74e−02± 7.31e−04 3.06e−01± 6.04e−03

hn-moea 4.59e−01± 1.86e−03 3.06e−01± 1.04e−02 4.32e−01± 8.67e−04

MAG-10

high-degree 7.44e−04 2.63e−01 3.73e−02

hdd 7.45e−04 2.65e−01 3.81e−02

hci-1 7.33e−04 2.76e−01 3.72e−02

hci-2 7.33e−04 2.76e−01 3.71e−02

random 7.42e−04± 9.25e−06 2.18e−02± 1.43e−02 2.31e−03± 1.33e−04

hn-moea 1.30e−03± 1.65e−05 2.62e−01± 2.73e−03 2.76e−02± 8.97e−04

Restaurant

high-degree 1.62e−01 1.38e−01 4.27e−01

hdd 1.69e−01 8.95e−02 3.97e−01

hci-1 1.51e−01 1.98e−01 4.33e−01

hci-2 1.51e−01 1.89e−01 4.32e−01

random 1.72e−01± 2.93e−03 8.98e−02± 2.78e−04 3.06e−01± 8.39e−03

hn-moea 2.18e−01± 1.30e−03 2.54e−01± 1.35e−02 4.31e−01± 1.00e−03

Music

high-degree 1.65e−01 1.80e−01 3.10e−01

hdd 1.98e−01 6.98e−02 2.89e−01

hci-1 1.38e−01 3.38e−01 2.98e−01

hci-2 1.38e−01 3.37e−01 2.99e−01

random 2.10e−01± 6.88e−03 5.92e−02± 1.74e−02 1.95e−01± 6.97e−03

hn-moea 2.94e−01± 9.13e−04 3.21e−01± 2.16e−02 3.10e−01± 5.28e−04

Bars

high-degree 1.77e−01 5.40e−02 2.81e−01

hdd 1.67e−01 5.25e−02 2.70e−01

hci-1 1.62e−01 8.79e−02 2.94e−01

hci-2 1.62e−01 8.79e−02 2.93e−01

random 1.72e−01± 9.54e−03 4.52e−02± 3.78e−03 1.73e−01± 6.29e−03

hn-moea 2.28e−01± 4.04e−04 1.54e−01± 1.44e−02 2.82e−01± 1.16e−03

Email-eu

high-degree 6.03e−02 7.90e−01 3.48e−01

hdd 6.47e−02 7.91e−01 2.93e−01

hci-1 5.87e−02 8.05e−01 2.91e−01

hci-2 5.79e−02 8.22e−01 2.50e−01

random 6.25e−02± 5.57e−04 5.28e−02± 4.10e−03 2.19e−01± 8.82e−03

hn-moea 7.25e−02± 5.21e−04 8.36e−01± 1.29e−02 3.40e−01± 1.21e−03

Email-enron

high-degree 1.58e−02 2.41e−01 3.63e−01

hdd 1.69e−02 2.45e−01 3.95e−01

hci-1 1.59e−02 2.60e−01 3.85e−01

hci-2 1.69e−02 2.41e−01 3.56e−01

random 1.94e−02± 5.38e−04 1.14e−02± 0.00e+00 5.26e−02± 5.49e−03

hn-moea 2.85e−02± 2.15e−04 2.29e−01± 4.12e−03 3.91e−01± 4.03e−03

Email-w3c

high-degree 3.72e−03 7.13e−02 6.32e−01

hdd 3.80e−03 7.21e−02 6.35e−01

hci-1 3.67e−03 7.32e−02 6.31e−01

hci-2 3.67e−03 7.32e−02 6.31e−01

random 3.76e−03± 7.57e−05 3.53e−03± 4.34e−19 1.14e−02± 8.84e−04

hn-moea 7.03e−03± 4.29e−05 8.79e−02± 1.94e−03 6.04e−01± 8.58e−03
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Fig. 3. Violin plot w.r.t the Pareto Front of hn-moea and baselines. The dotted red
lines correspond to the avg. degree of the hypergraph. Red lines inside the violin plots
correspond to the avg. degree of the solutions in the Pareto Front. (Color figure online)

by comparing the characteristics of the nodes comprising the seed sets proposed
by the IM algorithms under investigation. In this regard, Fig. 3 highlights the
topological diversity in terms of the degree distribution of the nodes included
in solutions found by each algorithm on three selected datasets (one per cat-
egory). In the case of hn-moea, we report the results for each of the three
propagation models, while for the baselines the results do not depend on the
propagation model as the seed set is built only based on the properties of the
hypergraph. Upon examining the figure, we notice that hn-moea incorporates
nodes spanning a wide spectrum of degree values, which suggests that the EA
benefits from the ability to explore the solution space without rigid adherence
to specific greedy properties, as done in some of the compared heuristics. This
usually leads to better results, although the effectiveness of node properties can
vary depending on the peculiarities of the network at hand. In this regard, a
node metric that works well as an indicator of a promising influence source in
one dataset or region of a hypergraph may perform poorly in other contexts. For
instance, high centrality does not invariably denote optimal influence propaga-
tion sources. As an example, bridge nodes linking distinct communities might
have few neighbors, yet they are crucial for propagating influence.

In addition, Table 3 reports the population diversity and node diversity within
the solutions in the Pareto Front found by each algorithm. Note again that the
solutions obtained by the baselines do not depend on the propagation model and
as such they are all characterized by the same diversity. Hence, a single value is
sufficient to represent all the baselines.

Population diversity refers to the extent to which individuals in the Pareto
Front exhibit distinct genotypes. In our context, achieving a high level of popula-
tion diversity relates to having minimal overlap between the seed sets of different
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individuals. Given a Pareto Front P, where each individual xi ∈ P is a seed set
xi = {v1, v2, . . . , v|x|}, the population diversity D : P → R is computed as:

D(P) = 1 − 1
|P|(|P| − 1)

∑

xi∈P

∑

xj∈P,i �=j

|xi ∩ xj |
|xi| . (1)

Node diversity, instead, measures the percentage of unique nodes within the
seed sets in the Pareto Front. A high node diversity indicates that the Pareto
Front does not comprise nodes confined to a few regions of the network; rather,
the proposed solutions represent a wide array of possible spread sources from
various hypergraph locations. The node diversity ND : P → R is calculated as:

ND(P) =

∣
∣⋃

xi∈P xi

∣
∣

∑
xi∈P |xi| (2)

As shown in the table, the inherent superior ability of hn-moea to effec-
tively explore the complex search space leads to a Pareto Front that not only
encompasses nodes with heterogeneous topological features but also demon-
strates higher population and node diversity compared to the solutions obtained
by algorithms that construct seed sets by iteratively adding nodes.

Table 3. Population and node diversity achieved by the compared algorithms. Algo-
rithms that incrementally construct seed sets by adding nodes to maximize a specific
objective function inherently generate Pareto Fronts that exhibit the same values of
node and population diversity. The boldface indicates the highest population and node
diversity per dataset and propagation model.

Dataset Diversity hn-moea- LT hn-moea- WC hn-moea- SICP Baselines

Algebra Population5.10e−01± 4.00e−02 3.43e−01± 9.59e−03 3.89e−01± 5.06e−03 2.50e−01

Node 9.30e−02± 2.66e−03 4.39e−02± 1.39e−03 4.79e−02± 1.08e−03 2.00e−02

Geometry Population5.54e−01± 3.50e−02 3.74e−01± 9.62e−03 3.68e−01± 1.10e−02 2.50e−01

Node 9.78e−02± 1.60e−02 4.71e−02± 3.13e−03 5.59e−02± 4.78e−03 2.00e−02

MAG-10 Population 3.50e−01± 2.45e−02 3.36e−01± 1.64e−02 3.99e−01± 5.23e−03 2.50e−01

Node 9.41e−02± 7.18e−03 7.99e−02± 4.81e−03 5.80e−02± 6.23e−03 2.00e−02

Restaurant Population5.16e−01± 3.71e−02 3.48e−01± 2.53e−03 4.43e−01± 1.85e−02 2.50e−01

Node 9.11e−02± 7.34e−03 5.40e−02± 3.86e−03 4.77e−02± 3.33e−03 2.00e−02

Music Population5.79e−01± 3.93e−02 3.61e−01± 5.58e−03 4.52e−01± 3.87e−02 2.50e−01

Node 1.47e−01± 1.90e−02 5.61e−02± 4.44e−03 5.04e−02± 4.56e−03 2.00e−02

Bars Population5.66e−01± 2.80e−02 3.85e−01± 1.42e−02 5.20e−01± 1.70e−02 2.50e−01

Node 1.61e−01± 4.58e−02 6.90e−02± 2.84e−03 6.02e−02± 4.83e−03 2.00e−02

Email-eu Population6.32e−01± 6.14e−02 4.41e−01± 1.36e−02 4.75e−01± 1.63e−02 2.50e−01

Node 2.58e−01± 3.60e−02 5.21e−02± 3.13e−03 5.89e−02± 4.36e−03 2.00e−02

Email-enron Population4.72e−01± 1.90e−02 3.11e−01± 7.30e−03 4.57e−01± 2.11e−02 2.50e−01

Node 1.37e−01± 1.78e−02 7.83e−02± 9.24e−03 5.59e−02± 2.61e−03 2.00e−02

Email-w3c Population4.30e−01± 1.87e−02 2.87e−01± 1.06e−02 3.94e−01± 2.10e−02 2.50e−01

Node 1.25e−01± 2.97e−02 7.95e−02± 4.50e−03 5.02e−02± 1.71e−03 2.00e−02
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7 Conclusions

In this paper, we presented hn-moea, a multi-objective EA for IM in higher-
order networks. To the best of our knowledge, this work marks the first attempt
at employing EAs in this domain. Our method aims to minimize the seed set size
|S| while maximizing the expected influence, and includes smart initialization
and hypergraph-aware mutations to improve convergence and performance.

The method has been evaluated on nine different real-world datasets char-
acterized by heterogeneous properties, with three different propagation models.
Our experimental analysis demonstrates that hn-moea overall outperforms cur-
rent state-of-the-art algorithms for IM in higher-order networks. In line with
previous findings [14,15,25], these results confirm that EAs are particularly well-
suited for solving discrete optimization problems of this nature.

One notable advantage of hn-moea lies in its flexibility to maximize influ-
ence across various propagation models. Moreover, in contrast to other heuristic
methods, hn-moea explores the solution space without any bias towards specific
node metrics and greedy properties. As a result, the evolutionary process bet-
ter explores the search space that characterizes the IM problem. Because of the
bi-objective formulation, the resulting population also exhibits higher individual
diversity, with candidate solutions comprising nodes of varied properties.

Future research could focus on many-objective IM, as recently done in [24]
in the context of standard graphs. Moreover, in this study, we employed
hypergraph-aware mutations chosen at random. However, the selection of the
optimal mutation operator may vary depending on the characteristics of the
dataset and the evolutionary stage. Hence, future research could investigate the
use of adaptive mutation operators to select the most suitable mutation operator
based on feedback from the search process.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Abstract. Subset selection with cost constraints aims to select a subset from
a ground set to maximize a monotone objective function without exceeding a
given budget, which has various applications such as influence maximization
and maximum coverage. In real-world scenarios, the budget, representing avail-
able resources, may change over time, which requires that algorithms must adapt
quickly to new budgets. However, in this dynamic environment, previous algo-
rithms either lack theoretical guarantees or require a long running time. The state-
of-the-art algorithm, POMC, is a Pareto optimization approach designed for static
problems, lacking consideration for dynamic problems. In this paper, we propose
BPODC, enhancing POMC with biased selection and warm-up strategies tailored
for dynamic environments. We focus on the ability of BPODC to leverage existing
computational results while adapting to budget changes. We prove that BPODC
can maintain the best known (αf/2)(1 − e−αf )-approximation guarantee when
the budget changes. Experiments on influence maximization and maximum cov-
erage show that BPODC adapts more effectively and rapidly to budget changes,
with a running time that is less than that of the static greedy algorithm.

Keywords: Subset selection · Dynamic cost constraints · Pareto optimization ·
Multi-objective evolutionary algorithms

1 Introduction

The subset selection problem is a general NP-hard problem, which has a wide range of
applications, such as influence maximization [12], maximum coverage [8] and sensor
placement [13], to name a few. The goal is to select a subset X from a ground set V
to optimize a given function f , subject to a cost constraint. Specifically, the cost of the
subset X must not exceed a given budget B. This can be formally expressed as follows:

argmax
X⊆V

f(X) s.t. c(X) ≤ B, (1)

where the objective function f : 2V → R and the cost function c : 2V → R are both
monotone, meaning they do not decrease with the addition of elements to the set X .
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However, these functions are not necessarily submodular; a set function f is submod-
ular if ∀X ⊆ Y, v /∈ Y : f(X ∪ {v})−f(X) ≥ f(Y ∪ {v})−f(Y ), implying the
diminishing returns property [15]. We will introduce two applications of this problem in
the next section. For the general constraint presented in Eq. (1), the Generalized Greedy
Algorithm (GGA) iteratively selects an item with the largest ratio of marginal gain on
f and cost c, achieving the best known (αf/2)(1− e−αf )-approximation ratio [21,31],
where αf measures the degree to which f is nearly submodular.

In real-world scenarios, the resource budget B in Eq. (1) for subset selection prob-
lems may vary over time. For example, in influence maximization, the market invest-
ment budget changes based on company outcomes and strategies, leading to a dynamic
cost constraint. After each change of the budget B, it is feasible to treat the problem
as a static problem with the new budget, and run static algorithms (e.g., GGA) from
scratch, which, however, may lead to a long running time. When problem constraints
change frequently, static algorithms might not be able to provide new solutions in time.
For subset selection with dynamic cost constraints, Roostapour et al. [28] proposed an
Adaptive Generalized Greedy Algorithm named AGGA, adjusting the current solution
to fit the new budget. If the budget is reduced, it removes items with smallest ratio of
the marginal gain on f and cost c. Conversely, if the budget increases, it adds items like
the static GGA. However, AGGA cannot maintain an (αf/2)(1−e−αf )-approximation
for the new budget and may even perform arbitrarily poorly [28].

Unlike memoryless deterministic greedy algorithms, Evolutionary Algorithms
(EAs) are capable of leveraging existing computational results while adapting to
changes in the budget B. EAs can continually search for new solutions by using the
genetic information from the parent individuals in the population. Qian et al. [21]
proposed a Pareto Optimization approach for maximizing a Monotone function with
a monotone Cost constraint, called POMC [9,26]. It reformulates the original sub-
set selection problem as a bi-objective optimization problem, which maximizes the
objective f and minimizes the cost c simultaneously, and then employs a multi-
objective EA to solve it. For the static setting of a fixed budget B, POMC achieves
the best known (αf/2)(1 − e−αf )-approximation ratio using at most O(nBPmax/δĉ)
expected running time1, where n is the size of the ground set V , Pmax is the largest
size of population during the run of POMC, ĉ is an approximation of the cost func-
tion c in case the exact computation of c is impractical in real-world scenarios, and
δĉ = min{ĉ(X ∪ v) − ĉ(X)|X ⊆ V, v /∈ X}. When the budget B decreases, POMC
has already achieved the (αf/2)(1 − e−αf )-approximation ratio; when the budget B
increases to B′, POMC can regain the (αf/2)(1 − e−αf )-approximation ratio using at
mostO(nΔBPmax/δĉ) expected running time [28], whereΔB = B′−B. However, the
running time of POMC may not be polynomial because the population size Pmax can
grow exponentially [28]. Bian et al. [2] proposed a single-objective EA for maximizing
a Monotone function with a monotone Cost constraint, called EAMC, which maximizes
a surrogate objective g(X) = f(X)/(1−e−αf ĉ(X)/B), and maintains at most two solu-
tions for each possible size in the population. For the static setting, EAMC ensures the
best known approximation ratio using at most O(n3) expected running time, which is

1 The expected running time refers to the expected number of evaluations of the objective func-
tion, as evaluations are usually the most expensive part of the process.
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Table 1. Summary of algorithms with approximation guarantees and running time for the subset
selection problem with static and dynamic cost constraints. The results obtained in this paper are
highlighted in boldface. A “-” denotes the algorithm is not suitable for the corresponding case,
while a “✗” means the algorithm is applicable but its performance is unknown.

Algorithm Static Dynamic

Guarantee Running time Guarantee Running time

GGA [31] (αf/2)(1 − e−αf ) O(n2) - -

AGGA [28] - - ✗ O(n2)

POMC [21,28] (αf/2)(1 − e−αf ) O(nBPmax/δĉ) (αf/2)(1 − e−αf ) O(nΔBPmax/δĉ)

EAMC [2] (αf/2)(1 − e−αf ) O(n3) ✗ ✗

FPOMC [3] (αf/2)(1 − e−αf ) O(n2KB) (αf/2)(1 − e−αf ) O(nKB′(KB′ − KB))

BPODC (αf /2)(1− e−α f )O(nB/(pm in δĉ)) (αf /2)(1− e−α f )O(nΔB /(pm in δĉ))

polynomial. However, the surrogate objective g of EAMC changes with the budget B,
rendering previous solutions potentially ineffective for the new B. Bian et al. [3] then
proposed the Fast Pareto Optimization algorithm for maximizing a Monotone function
with a monotone Cost constraint, called FPOMC, which is modified from POMC by
introducing a greedy selection strategy and estimating the goodness of a solution to be
selected. For the static setting, FPOMC obtains the best known (αf/2)(1 − e−αf )-
approximation ratio using at most O(n2KB) expected running time, which is also
polynomial, where KB denotes the largest size of a subset satisfying the constraint
c(X) ≤ B. If the budget decreases, FPOMC maintains the best known approxima-
tion ratio; if the budget increases to B′, FPOMC can regain the same ratio within an
expected running time of O(nKB′(KB′ − KB)), where KB′ is the maximum subset
size satisfying the new budget constraint c(X) ≤ B′. We summarize the related works
in Table 1.

Among the algorithms suitable for dynamic environments (AGGA, POMC, EAMC
and FPOMC), POMC empirically performs the best [28]. However, it was originally
designed for static problems and lacks considerations for dynamic environments. A nat-
ural question is whether it is possible to design a more advanced algorithm for dynamic
environments that can quickly adapt its solutions when the budget B changes. If so,
how fast can this algorithm adapt, and can it surpass the speed of the static GGA?

In this paper, we introduce BPODC based on Biased Pareto Optimization for maxi-
mizing a monotone function under Dynamic Cost constraints. BPODC is a modification
of the POMC algorithm, enhanced with a biased selection mechanism and a warm-
up strategy. POMC selects a solution uniformly at random from the population, often
resulting in the choice of an “unnecessary” solution and leading to inefficiency. In con-
trast, BPODC employs a biased selection strategy that favors solutions with cost values
closer to the current budget B, which are selected with a higher probability. During the
initial phase of one run, BPODC employs uniform selection temporarily as a warm-
up to obtain a diverse population, which will lead the biased selection strategy to be
more efficient. As in [5,7], we focus on the ability of BPODC to leverage existing com-
putational results while adapting to budget changes. We prove that BPODC maintains
the best-known (αf/2)(1 − e−αf )-approximation ratio when the budget B decreases.
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When the budget increases to B′, BPODC can regain the same ratio within an expected
running time of O(nΔB/(pminδĉ)), where ΔB = B′ − B, and pmin is the minimum
probability of selecting a solution during the run of BPODC. Through empirical evalu-
ation on the applications of influence maximization and maximum coverage, we show
that BPODC can find better solutions than previous algorithms while requiring less
running time than the static greedy algorithm GGA, offering an alternative for solving
subset selection problems with dynamic cost constraints.

2 Subset Selection with Cost Constraints

Let R and R
+ denote the set of reals and non-negative reals, respectively. The set V =

{v1, v2, . . . , vn} denotes a ground set. A set function f : 2V → R is monotone if
∀X ⊆ Y : f(X) ≤ f(Y ). A set function f is submodular if ∀X ⊆ Y, v /∈ Y :
f(X∪{v})−f(X) ≥ f(Y ∪{v})−f(Y ), which intuitively represents the diminishing
returns property [15], i.e., adding an item to a setX gives a larger benefit than adding the
same item to a superset Y of X . The submodularity ratio in Definition 1 characterizes
how close a set function is to submodularity. When f satisfies the monotone property,
we have 0 ≤ αf ≤ 1, and f is submodular iff αf = 1.

Definition 1 (Submodularity Ratio [24,31]). The submodularity ratio of a non-nega-
tive set function f is defined as αf = minX⊆Y,v/∈Y

f(X∪{v})−f(X)
f(Y ∪{v})−f(Y ) .

As presented in Definition 2, the subset selection problem with static cost con-
straints is to maximize a monotone objective function f such that a monotone cost
function c is no larger than a budget B. We assume w.l.o.g. that monotone functions
are normalized, i.e., f(∅) = 0 and c(∅) = 0. Since the exact computation of c(X) may
be unsolvable in polynomial time in some real-world applications [21,31], we assume
that only an ψ(n)-approximation ĉ can be obtained, where ∀X ⊆ V : c(X) ≤ ĉ(X) ≤
ψ(n) · c(X). If ψ(n) = 1, ĉ(X) = c(X).

Definition 2 (Subset Selection with Static Cost Constraints). Given a monotone
objective function f : 2V → R

+, a monotone cost function c : 2V → R
+ and a

budget B, to find

argmaxX⊆V f(X) s.t. c(X) ≤ B. (2)

The static problem in Definition 2 assumes that the budget B is fixed. However, in
real-world scenarios, the resources often change over time, and thus the budget B may
change dynamically. For example, in influence maximization, the market investment
budget changes based on company outcomes and strategies, leading to dynamic cost
constraints, that is, the budgetB in Eq. (2) may change over time. In this paper, we focus
on the subset selection problem with dynamic cost constraints, given in Definition 3.
Whenever the budget B changes, the problem can be treated as a new static problem
using the updated budget, and static algorithms can be applied from the beginning.
However, this may lead to a long running time.
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Definition 3 (Subset Selection with Dynamic Cost Constraints). Given a monotone
objective function f : 2V →R

+, a monotone cost function c : 2V →R
+, and a sequence

of changes on the budget B, to find a subset optimizing Eq. (2) for each new B.

Influence Maximization. Influence maximization in Definition 4 is to identify a set
of influential users in social networks [12]. A social network can be represented by a
directed graphG = (V,E), where each node represents a user and each edge (u, v) ∈ E
has a probability pu,v representing the influence strength from user u to v. Given a
budget B, influence maximization is to find a subset X of V such that the expected
number of nodes activated by propagating from X is maximized, while not violating
the cost constraint c(X) ≤ B. Here we use the fundamental propagation model called
Independence Cascade (IC). Starting from a seed set X , it uses a set At to record the
nodes activated at time t, and at time t+1, each inactive neighbor v of u ∈ At becomes
active with probability pu,v; this process is repeated until no nodes get activated at some
time. The set of nodes activated by propagating from X is denoted as IC(X), which
is a random variable. The objective E[IC(X)] denotes the expected number of nodes
activated by propagating from X , which is monotone and submodular.

Definition 4 (Influence Maximization). Given a directed graph G = (V,E), edge
probabilities pu,v where (u, v) ∈ E, a monotone cost function c : 2V → R

+ and a
budget B, to find

argmaxX⊆V E[|IC(X)|] s.t. c(X) ≤ B.

Maximum Coverage. Given a family of sets that cover a universe of elements, maxi-
mum coverage as presented in Definition 5 is to select some sets whose union is maxi-
mal under a cost budget. It is easy to verify that f is monotone and submodular.

Definition 5 (Maximum Coverage). Given a set U of elements, a collection V =
{S1, S2, . . . , Sn} of subsets of U , a monotone cost function c : 2V → R

+ and a budget
B, to find

argmaxX⊆V f(X) = |
⋃

Si∈X
Si| s.t. c(X) ≤ B.

2.1 Previous Algorithms

We now introduce five algorithms capable of solving the subset selection problem with
dynamic cost constraints in Definition 3.

GGA. The Generalized Greedy Algorithm (GGA) proposed in [31] selects one item
maximizing the ratio of the marginal gain on f and ĉ in each iteration. After exam-
ining all items, the found subset is compared with the best single item (i.e., v∗ ∈
argmaxv∈V :ĉ({v})≤B f({v})), and the better one is returned. Let

f( ˜X) = max
{

f(X) | c(X) ≤ B · αĉ(1 + α2
c(KB − 1)(1 − κc))
ψ(n)KB

}

, (3)

where αc and αĉ are the submodularity ratios of the cost function c and its approxima-
tion ĉ, respectively, κc = 1 − minv∈V :c({v})>0

c(V )−c(V \{v})
c({v}) is the total curvature of
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c, and KB = max{|X| | c(X) ≤ B}, i.e., the largest size of a subset satisfying the
constraint. As 1 − κc ≤ 1/αc, 0 ≤ αĉ, αc ≤ 1 and ψ(n) ≥ 1, it holds that

αĉ(1 + α2
c(KB − 1)(1 − κc))
ψ(n)KB

≤ 1.

Thus, ˜X is actually an optimal solution of Eq. (2) with a slightly smaller budget con-
straint. GGA can solve only the static problem in Definition 2. Qian et al. [21] proved
that GGA can obtain a subset X satisfying f(X) ≥ (αf/2) · (1 − e−αf ) · f( ˜X). The
dynamic problem in Definition 3 can be viewed as a series of static problems, each
with a different budget B. After the budget changes, GGA can be applied to solve the
subsequent static problem with the updated budget from scratch.

AGGA. To face the dynamic changes of B, Roostapour et al. [28] introduced a natural
Adaptive version of the static GGA, named AGGA. When B increases, AGGA contin-
ues to iteratively add an item with the largest ratio of the marginal gain on f and cost c
to the current solution, just like GGA; when B decreases, it iteratively deletes one item
with the smallest ratio of the marginal gain on f and cost c, until the solution no longer
violates the new budget. However, AGGA cannot maintain an approximation for the
new budget and may even perform arbitrarily badly [28].

POMC. Qian et al. [21] proposed POMC, a Pareto Optimization method for maximiz-
ing a Monotone function with a monotone Cost constraint, which reformulates the orig-
inal problem Eq. (2) as a bi-objective maximization problem that maximizes the objec-
tive function f and minimizes the approximate cost function ĉ simultaneously [9,26].
To solve the bi-objective problem, POMC employs a simple multi-objective EA, i.e.,
GSEMO [14,25], which uses uniform selection and bit-wise mutation to generate an
offspring solution and keeps the non-dominated solutions generated-so-far in the pop-
ulation. After terminated, it returns the best feasible solution with the largest f value in
the population. For the static setting of a fixed budget B, POMC can achieve the best
known (αf/2)(1−e−αf )-approximation ratio, and also regain this approximation ratio
at most O(nΔBPmax/δĉ) expected running time when the budget changes [21,28].

EAMC. Bian et al. [2] proposed a single-objective EA for maximizing a Monotone
function with a monotone Cost constraint, called EAMC. It tries to maximize a sur-
rogate objective g which considers both the original objective f and the cost ĉ. For
|X| ≥ 1, g(X) = f(X)/(1 − e−αf ĉ(X)/B), while for |X| = 0, g(X) = f(X). The
submodularity ratio αf , used to calculate the surrogate objective g, may require expo-
nential time to compute accurately, so a lower bound on αf is often used instead. EAMC
also applies uniform selection and bit-wise mutation to generate an offspring solution
as POMC. For each subset size i, EAMC contains the solutions with the largest g or
f values, bounding the maximum population size. After terminated, EAMC returns
the feasible solution with the largest f value in the population. EAMC can achieve the
best-known (αf/2)(1−e−αf )-approximation in a static setting. However, in a dynamic
setting, the g function, based on the old budget, cannot characterize the new problem
well, potentially leading to poor performance with the new budget.

FPOMC. Bian et al. [3] then proposed the Fast Pareto Optimization algorithm for max-
imizing a Monotone function with a monotone Cost constraint, called FPOMC, which
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is modified from POMC. The main difference between FPOMC and POMC is that
FPOMC applies a greedy selection strategy, while POMC applies uniform selection.
The greedy selection strategy uses a function hZ(X) to estimate the goodness of a
solution X w.r.t. a reference point Z, which is defined as

hZ(X) =
{

(f(X) − f(Z))/(ĉ(X) − ĉ(Z)) ĉ(X) > ĉ(Z),
(f(X) − f(Z)) · C + ĉ(Z) − ĉ(X) ĉ(X) ≤ ĉ(Z),

where C is a large enough number. Intuitively, hZ(X) measures the goodness of X
by the marginal gain on f and c w.r.t. a reference point Z, and the solution with
the largest h value is selected with a high probability. For more detailed design of
FPOMC, please refer to [3]. For the static setting, FPOMC can obtain the best known
(αf/2)(1 − e−αf )-approximation ratio, and also regain the same approximation ratio
at most O(nKB′(KB′ − KB)) expected running time for the new budget.

AGGA and the static GGA are greedy algorithms. POMC, EAMC and FPOMC are
anytime algorithms that can find better solutions using more time. Among them, POMC
performs the best empirically in dynamic environments [28]; however, it was initially
designed for static settings and lacks considerations for dynamic environments. This
work focuses on designing an advanced algorithm tailored for dynamic environments,
aiming to quickly adapt its solutions to budget changes and potentially exceed the speed
of the static GGA.

3 The BPODC Algorithm

In this section, we propose an algorithm based on Biased Pareto Optimization [4,7,9,
16–20,22,23,25–28,32] for maximizing a monotone function with Dynamic Cost con-
straints, called BPODC, which can quickly adapt its solutions when budget changes.
It represents a subset X ⊆ V by a Boolean vector x ∈ {0, 1}n, where the i-th bit
xi = 1 iff vi ∈ X . We will not distinguish x ∈ {0, 1}n and its corresponding sub-
set {vi ∈ V |xi = 1} for notational convenience. BPODC reformulates the original
problem Eq. (2) as a bi-objective maximization problem

argmaxx∈{0,1}n

(

f1(x), f2(x)
)

, (4)

where f1(x) =

{

−∞, ĉ(x) > B + 1
f(x), otherwise

, f2(x) = −ĉ(x).

That is, BPODC maximizes the objective function f and the negative of the approx-
imate cost function ĉ simultaneously. Solutions with cost values over B + 1 (i.e.,
ĉ(x) > B + 1) are excluded by setting their f1 values to −∞. We use the value B + 1
to give the algorithm a slight look ahead for larger constraint bounds without making
the population size too large. The introduction of the second objective f2 can naturally
bring a diverse population, which may lead to better optimization performance.

Note that the objective vector (f1(x), f2(x)) is calculated only when the solution
x is generated. This means that any subsequent changes to B do not trigger an update
of the objective vector. Thus, solutions exceeding cost B′ + 1 for a new budget B′
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Algorithm 1. BPODC Algorithm
Input: a monotone objective function f , a monotone approximate cost function ĉ, a ground set
with n items, and a sequence of changes on the budget B
Output: a solution x ∈ {0, 1}n with ĉ(x) ≤ B
Process:
1: Let x = 0n, P = {x};
2: repeat
3: if warm-up stage then
4: Select x from P uniformly at random
5: else
6: x = Biased Selection(P, B)
7: end if
8: Generate x′ by flipping each bit of x with probability 1/n;
9: if �z ∈ P such that z � x′ then
10: P = (P \ {z ∈ P | x′ � z}) ∪ {x′}
11: end if
12: until some criterion is met
13: return argmaxx∈P,ĉ(x)≤B f(x)

are still retained in the population. However, for any new solutions exceeding B′ + 1,
the f1 value is set to −∞. As the two objectives may be conflicting, the domination
relationship in Definition 6 is often used for comparing two solutions. A solution is
Pareto optimal if no other solution dominates it. The collection of objective vectors of
all Pareto optimal solutions is called the Pareto front.

Definition 6 (Domination). For two solutions x and x′,

– x weakly dominates x′, denoted as x � x′, if f1(x) ≥ f1(x′) ∧ f2(x) ≥ f2(x′);
– x dominates x′, denoted as x  x′, if x � x′ and either f1(x) > f1(x′) or

f2(x) > f2(x′);
– they are incomparable if neither x � x′ nor x′ � x.

After constructing the bi-objective problem in Eq. (4), BPODC solves it by a process
of multi-objective EAs, as described in Algorithm 1. EAs, inspired by Darwin’s theory
of evolution are general-purpose randomized heuristic optimization algorithms [1,33],
mimicking variational reproduction and natural selection, which have become the most
popular tool for multi-objective optimization [6,11,30]. It starts from the empty set
0n (line 1), and repeatedly improves the quality of solutions in population P (lines 2–
12). At the start of the process, BPODC applies uniform selection to select a parent
solution x for a period of time, which is referred to the warm-up stage (lines 3–4).
Our aim is to uniformly explore the (0, B + 1] area initially to obtain a population
with good diversity. After the warm-up stage, BPODC selects a parent solution x in
P according to the BIASED SELECTION subroutine in Algorithm 2 (line 6). Then, a
solution x′ is generated by applying bit-wise mutation on x (line 8), which is used
to update the population P (line 9–10). If x′ is not dominated by any solution in P
(line 9), it will be added into P , and meanwhile, those solutions weakly dominated by
x′ will be deleted (line 10). This updating procedure makes the population P always
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Algorithm 2. Biased Selection(P , B): Subroutine of BPODC
Input: the population P and the budget B
Output: a solution in P for mutation
Process:
1: ε ← 1 × 10−10;
2: for i = 1 to |P | do
3: x ← the i-th solution in population P ;
4: probs[i] ← 1/(|c(x) − B| + ε)
5: end for
6: probs ← Normalization(probs);
7: Select x from P according to the probabilities probs
8: return x

contain incomparable solutions. After running a number of iterations, the best feasible
solution with the largest f value in the population P is output (line 13). Note that the
aim of BPODC is to find a good solution of the original problem in Definition 3, rather
than the Pareto front of the reformulated bi-objective problem in Eq. (4). That is, the
bi-objective reformulation is an intermediate process.

The BIASED SELECTION subroutine in Algorithm 2 first computes a selection prob-
ability of each solution x ∈ P iteratively, which is inversely proportional to the differ-
ence between the cost value c(x) and the given budget B (lines 2–5). The ε is added
to avoid division by zero (line 4). The subroutine then normalizes the probabilities, and
selects a solution x from P based on these normalized probabilities (lines 6–7). Algo-
rithm 2 exhibits a bias whereby solutions with cost values close to the budget B have
a higher probability of selection. This enables BPODC to quickly regain high-quality
solutions upon budget changes, thereby meeting the demands of dynamic environments.

Note that BPODC uses the warm-up strategy only for the initial budget, starting
from the zero solution; if the budget changes, it continues from the current population
using biased selection.

4 Theoretical Analysis

In this section, we prove the general approximation bound of BPODC in Theorem 1,
implying that BPODC can achieve the best known (αf/2)(1 − e−αf )-approximation
guarantee for the static problem in Definition 2. When facing a dynamic budget change,
BPODC still can regain the (αf/2)(1 − e−αf )-approximation ratio (Theorem 2).

Let pmin denote the minimum probability of selecting a solution from the popula-
tion during the run of BPODC and δĉ = min{ĉ(X ∪ v) − ĉ(X)|X ⊆ V, v /∈ X}. We
assume that δĉ > 0. The proof of Theorem 1 is based on the approach used in Theo-
rem 2 of [21], mainly analyzing the expected number of iterations of BPODC required
to obtain an (αf/2)(1 − e−αf )-approximation solution.

Theorem 1. For the static problem in Definition 2, BPODC using at most O(nB/
(pmin · δĉ)) expected number of iterations finds a subset X ⊆ V with

f(X) ≥ (αf/2) · (1 − e−αf ) · f( ˜X),
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where f( ˜X) is defined in Eq. (3).

Proof. We follow the proof of POMC in Theorem 2 of [21], which analyzes the increase
of a quantity Jmax during the process of POMC, where Jmax = max{j ∈ [0, B)|∃x ∈
P, ĉ(x) ≤ j ∧f(x) ≥ (1− (1−αf

j
Bk )

k) ·f( ˜X) for some k}. Let x ∈ P be a solution
corresponding to the current value of Jmax. It is pointed out that Jmax can increase at
least δĉ by adding a specific item to x. Furthermore, they proved that POMC can find a
solution with the f value at least

max{f(p), f(q)} ≥ (αf/2) · (1 − e−αf ) · f( ˜X),

where p is the solution that results from increasing Jmax at least B/δĉ times starting
from Jmax = 0, and q is defined as q = argmaxv∈V :ĉ(q)≤B f(v).

Our proof finishes by analyzing the expected number of iterations until BPODC
contains two solutions p and q. We first analyze the expected number of iterations of
BPODC to generate the solution p. The initial value of Jmax is 0 as BPODC starts
from {0}n. Assume the current value of Jmax is i, and x ∈ P is a corresponding
solution. According to the population update mechanism described in lines 9-10 of
Algorithm 1, Jmax cannot decrease because x can be deleted from P (line 10) only
when the newly included solution x′ weakly dominates x, i.e., f(x′) ≥ f(x) and
ĉ(x′) ≤ ĉ(x), which makes Jmax ≥ i. As mentioned above, to increase Jmax from
i to at least i + δĉ, we can add a specific item to x to generate a new solution x′.
Upon generating x′, it will be included into P ; otherwise, x′ must be dominated by
one solution in P (line 9 of Algorithm 1), and this implies that Jmax has already been
larger than i, which contradicts with the assumption Jmax = i. In each iteration, the
probability of successfully increasing Jmax is at least pmin · 1

n · (1 − 1
n )

n−1 ≥ pmin

en ,
where pmin is a lower bound on the probability of selecting x in line 4 or line 6 of
Algorithm 1 and 1

n · (1 − 1
n )

n−1 is the probability of flipping a specific bit of x while
keeping other bits unchanged in line 8. Then, it needs at most en/pmin expected number
of iterations to increase Jmax by at least δĉ. After at most enB/(pmin · δĉ) expected
number of iterations, p will be generated and included into P ; otherwise, P has already
contained a solution z � p, i.e., ĉ(z) ≤ ĉ(p) ≤ B and f(z) ≥ f(p).

We now analyze the expected number of iterations to generate and contain the solu-
tion q. Since {0}n has the largest f2 value (i.e., the smallest ĉ value), no other solution
can dominate it, ensuring that {0}n will always be included in P . Thus, q can be gen-
erated in one iteration by selecting {0}n in line 4 or 6 of Algorithm 1 and flipping only
the corresponding 0-bit in line 8, whose probability is at least pmin/en. That is, q will
be generated using at most en/pmin expected number of iterations.

Taking the expected number of iterations for generating p and q together, BPODC
using at most O(nB/(pmin · δĉ)) expected number of iterations finds a solution with
the f value at leastmax{f(p), f(q)} ≥ (αf/2) · (1 − e−αf ) · f( ˜X). ��
Theorem 2. For the dynamic problem in Definition 3, assume that BPODC has
achieved an (αf/2)(1− e−αf )-approximation ratio for the current budget B after run-
ning at most O(nBPmax/δĉ) expected number of iterations:

(1) when B decreases to B′, BPODC has already achieved the (αf/2)(1 − e−αf )-
approximation ratio for the new budget;
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(2) when B increases to B′, BPODC using at most O(n(B′−B)/(pmin ·δĉ)) expected
number of iterations, can regain the (αf/2)(1 − e−αf )-approximation ratio.

Proof. By analyzing the increasing process of Jmax from 0 to B as shown in the proof
of Theorem 1, BPODC using O(nB/(pmin · δĉ)) expected number of iterations has
achieved an (αf/2) · (1 − e−αf )-approximation ratio for the problem with any budget
B′ ≤ B. When the budget B increases to B′, in order to achieve the desired approx-
imation guarantee, it is sufficient to continuously increase Jmax from B to B′. The
expected number of iterations required for the increase is O(n(B′ −B)/(pmin · δĉ)). ��

5 Empirical Study

In this section, we empirically examine the performance of BPODC on dynamic vari-
ants of subset selection problems, specifically focusing on influence maximization and
maximum coverage tasks where the cost constraint varies over time. We compare
BPODC with several competitive algorithms: the static greedy algorithm GGA, the
dynamic greedy algorithm AGGA, and the EA-based methods, POMC, EAMC, and
FPOMC.

POMC and FPOMC use the same bi-objective as BPODC, as shown in Eq. (4),
which is calculated only when the solution x is generated, and any subsequent changes
to the budget B do not trigger an update, that is, algorithms do not delete solutions from
the population that become infeasible under a new budget. For EAMC, a budget change
influences the value of surrogate function g(X) = f(X)/(1 − e−αf ĉ(X)/B). Thus, the
value of function g for solutions in the population is updated after each dynamic change.
Note that the parameter αf equals 1 because the objective functions of influence max-
imization and maximum coverage are submodular. The static greedy algorithm GGA
requires n(n + 1)/2 objective evaluations, denoted as TG. For each budget change, the
number of objective evaluations for EAs (BPODC, POMC, EAMC, and FPOMC) is set
to t = {0.25TG, 0.5TG}, which is less than that required by GGA. Note that for the t
evaluations of the initial budget, BPODC uses the warm-up strategy to create a diverse
population; for subsequent t evaluations of a changed budget, it employs biased selec-
tion on the current population without a warm-up. For randomized algorithms (BPODC,
POMC, EAMC and FPOMC), we independently run 30 times and report the average
results. The source code is available at https://github.com/lamda-bbo/BPODC.

The experiments are mainly to answer two questions: Can BPODC perform the best
among all algorithms under dynamic environments? Can BPODC adapt its solution
within a shorter running time than the static GGA?

Influence Maximization. We use the same two datasets as social networks in influ-
ence maximization as in [2], called graph100 (100 vertices, 3,465 edges) and graph200
(200 vertices, 9,950 edges), respectively. The probability of each edge is set to 0.05.
Besides, we use a larger real-world dataset, frb35-17-1 (595 vertices, 27,856 edges),
with each edge’s probability 0.01. We consider the linear cost constraint, where
c(X) =

∑

v∈X cv . The cost of each item is calculated based on its out-degree d(v), i.e.,
cv = 1+(1+|ξ|)·d(v), where ξ is a random number drawn from the normal distribution
N (0, 0.52). The original budget is set to 300, and stays within the interval [100, 500].

https://github.com/lamda-bbo/BPODC
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Fig. 1. The cumulative budget changes relative to the initial budget.

Fig. 2. The average value ± std for influence maximization under each budget change.

We consider a sequence of 100 budget changes obtained by randomly changing the cur-
rent budget B by a value of [−10, 10]. The cumulative changes relative to the initial
budget are depicted in Fig. 1(a). The current budget at each time is calculated by adding
the y-value at that point to the initial budget. To calculate E[|IC(X)|] in our experi-
ments, we simulate the random propagation process starting from the solution X for
500 times independently, and use the average as an estimation. Due to time constraints,
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Fig. 3. The average value ± std for maximum coverage under each budget change.

we limit the number of objective evaluations of EAs (BPODC, POMC, EAMC, and
FPOMC) on the frb35-17-1 dataset, i.e., t0 = 0.5TG evaluations for the initial budget
and t = {0.05TG, 0.1TG} evaluations for upcoming budgets. This setting is to ensure
that the study could be completed within the available timeframe while still providing
meaningful insights into the algorithm’s performance trends. Since the behavior of the
greedy algorithm GGA or AGGA is randomized under noise, we also repeat its run 30
times independently and report the average results. The curves of average results over
each time of change are plotted in Fig. 2, where the shaded areas indicate the standard
deviation around the mean.

Figure 2(a)-(d) clearly shows that BPODC, POMC and EAMC consistently outper-
form GGA and AGGA and are more stable, exhibiting a smaller std. FPOMC initially
obtains a lower value during the first few changes, and then exceeds GGA and AGGA.
These observations highlight the superior ability of EAs to leverage existing computa-
tional results while adapting to changes in budget constraints. Among all the algorithms,
BPODC performs the best, regardless of the settings at t = 0.25TG or t = 0.5TG. In
Fig. 2(e)-(f), we set the running time allowed for EAs after each dynamic change to
be much shorter, specifically 0.05TG and 0.1TG, respectively. BPODC is the first to
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Fig. 4. Additional results for influence maximization under dynamic environment.

surpass GGA and AGGA and continues to consistently perform the best. Note that the
curve of FPOMC is plotted on the secondary y-axis due to its poor performance.

Maximum Coverage. We use three real-world graph datasets for maximum cover-
age: frb30-15-1 (450 vertices, 17,827 edges) and frb35-17-1 (595 vertices, 27,856
edges), both used in [2,28], and aves (202 vertices, 4,658 edges) [29]. For each ver-
tex, we generate a set which contains the vertex itself and its adjacent vertices. We
still use the linear cost constraint c(X) =

∑

v∈X cv . The cost of each vertex is
cv = 1+max{d(v)− q, 0} as in [10], where d(v) is the out-degree of vertex v and q is
a constant (which is set to 6 in our experiment). For datasets frb30-15-1 and frb35-17-1,
the original budget is set to 500 and ranges from 300 to 700; for dataset aves, it is set to
50 and ranges from 100 to 300. The sequence of 100 budget changes, randomly varying
the current budget B by [−40, 40], is shown in Fig. 1(b) relative to the initial budget.
The curves of average results over each time of change are plotted in Fig. 3.

Figure 3 shows that BPODC consistently performs the best across three datasets,
although POMC sometimes matches its performance. However, the performance of
other algorithms is less stable, for example, FPOMC performs moderately on frb30-
15-1 (Fig. 3(a)-(b)) but poorly on aves (Fig. 3(e)-(f)). EAMC underperforms GGA at
both t = 0.25TG and t = 0.5TG.

Ablation Study.Asmentioned in Sect. 3, the warm-up stage of BPODC initially applies
uniform selection for a period, enhancing the effectiveness of subsequent biased selec-
tion. We test this by running BPODC-cold on the graph100 dataset with t = 0.25TG,
using only biased selection without a warm-up. Figure 4(a) shows that BPODC-cold has
a performance gap compared to BPODC during the first 20 changes, yet achieves similar
performance afterward. Despite solely using biased selection, BPODC-cold still outper-
forms POMC. This implies the effectiveness of both biased selection and warm-up.

Next, we conduct experiments on the dataset frb35-17-1 for influence maximiza-
tion in an extreme scenario. The number of objective evaluations for BPODC, POMC,
EAMC, and FPOMC is set to 1000, including for the warm-up stage of BPODC. The
results are plotted in Fig. 4(b). As expected, the EAs do not surpass GGA, given that
the available time resources are extremely limited-merely 0.006 times that of the greedy
algorithm GGA. However, BPODC demonstrates a significantly faster adaptation speed
compared to other EAs and maintains a performance level similar to GGA in the later
stages (at 80th-100th changes).
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6 Conclusion

This paper proposes BPODC, an enhancement of POMC that uses biased selection
and warm-up strategies for subset selection with dynamic cost constraints. We prove
that BPODC can maintain the best known (αf/2)(1− e−αf )-approximation guarantee
when the budget changes. Experiments on influence maximization and maximum cov-
erage show that BPODC adapts faster and more effectively to budget changes, utilizing
a running time that is less than that of the greedy algorithm GGA. BPODC always
achieves the best performance empirically. In the future, it is interesting to examine the
performance of BPODC in more applications.
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Abstract. Generating Pareto Front Approximations with good conver-
gence, uniformity, and spread regardless of the geometry of the Pareto
Front remains as an open problem. Many Multi-Objective Evolutionary
Algorithms (MOEAs) have been proposed for this aim achieving remark-
able results. However, the utilization of Swarm Intelligence algorithms
such as Multi-Objective Ant Colony Optimization Algorithms (MOA-
COs) has been scarcely studied. In this paper, we propose a Geometric-
Invariant MOACOR (GI-MOACOR) designed to tackle multi-objective
optimization problems with a continuous decision space. According to
our experimental results, GI-MOACOR outperforms the existing MOA-
COs for continuous search spaces and it is competitive with respect to
state-of-the-art MOEAs on several test suites with regular and irreg-
ular Pareto Front geometries. To the best of the author’s knowledge,
GI-MOACOR is the first Pareto-Front-Shape invariant MOACO.

Keywords: Multi-Objective Ant Colony Optimization · Pareto Front
Shape Invariance · Continuous Decision Space · Pair-Potential Energy

1 Introduction

A Pareto Front (PF) is the image of the solution to a Multi-Objective Optimiza-
tion Problem (MOP). A PF is a manifold of dimension at most m−1 that repre-
sents the trade-offs among the m ≥ 2 conflicting objectives fi : Ω ⊆ R

n → R [22].
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In benchmark problems and real-world applications, the geometric characteris-
tics of a PF may drastically change. In other words, a PF could be convex, linear,
concave, disconnected, degenerate, or mixed. Hence, Multi-Objective Evolution-
ary Algorithms (MOEAs), which are metaheuristic methods to approximate the
solution to a MOP, should be capable of generating an accurate and finite repre-
sentation of a PF, regardless of its geometry [2]. However, Ishibuchi et al. pointed
out that the performance of some MOEAs depends on the PF geometry [16].

In recent years, two main design strategies have been proposed to alleviate the
performance dependence of MOEAs. On the one hand, MOEAs with adaptive
reference point sets transform a set of objective vectors throughout the evolution-
ary process, aiming to generate a Pareto Front Approximation (PFA) that prop-
erly represents the PF [19–21,24]. On the other hand, Multi-Indicator MOEAs
leverage the strengths of multiple Quality Indicators1 (QIs) to construct selection
mechanisms that increase the selection pressure towards the PF, exhibiting a spe-
cific distribution of points [10,11,14,17]. All these MOEAs have shown promis-
ing results when tackling MOPs with different PF shapes [15,16,26]. However,
Swarm Intelligence metaheuristics, such as Multi-Objective Ant Colony Opti-
mization algorithms (MOACOs) [12], have been scarcely studied with the aim
of a PF shape invariance behavior.

MOACOR [13] and the Indicator-based MOACOR (iMOACOR) [7] were pro-
posed to tackle MOPs with a continuous decision space. They have obtained
competitive results against MOEAs at tackling MOPs with degenerate and dis-
connected PF shapes [7,13]. Hence, there may be specific MOPs where MOACOs
can potentially discover and exploit complex relations among the variables that
are difficult to MOEAs [7,13]. It is worth noting that both algorithms use the
mechanisms of ACOR to explore the decision space and to create new solutions
[23]. Furthermore, MOACOR and iMOACOR use an archive with k decision vec-
tors as a pheromone matrix to model the decision space using n Gaussian-kernel
Probability Density Functions (GKPDFs). Both MOACOs differ in the selec-
tion mechanisms adopted to update the pheromone matrix. On the one hand,
MOACOR uses the selection mechanisms of NSGA-II, thus, it loses selection
pressure in high-dimensional objective spaces [3]. On the other hand, iMOACOR

replaces the selection operators of NSGA-II by a survival selection mechanism
based on the R2 indicator [1,14]. Unlike MOACOR, iMOACOR can solve MOPs
with more than three objectives and it generates uniform PFAs if the geometry
of the PF is correlated with an m-dimensional simplex. Thus, the performance
of iMOACOR depends on the PF shape.

In addition to the issues mentioned above of MOACOR and iMOACOR, the
use of ACOR raises other problems. ACOR shows a strong dependence on a
parameter ξ > 0 that controls the evaporation of the pheromones and, thus,
the convergence behavior. As a result, ACOR has shown an extremely poor
performance on multi-modal single-objective optimization problems. However, if
ξ could take large values without reducing its convergence capability, solutions

1 A unary Quality Indicator is a set function that assigns a real value to a PFA
depending on its degree of proximity to the PF, spread, or uniformity [18].
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with high diversity would be reached. Addressing these issues would enhance the
performance of ACOR and, possibly, that of MOACOR and iMOACOR.

In this paper, we enhance ACOR to improve its exploration capabilities.
Then, we propose the Geometric-Invariant MOACOR that uses the enhanced
ACOR and a diversity-preserving mechanism based on pair-potential energy [6]
to deal with MOPs regardless of their PF geometry. We tested GI-MOACOR

on several test suites with regular and irregular PF shapes on multiple QIs.
Our experimental results indicate that GI-MOACOR outperforms MOACOR and
iMOACOR, and it is competitive with state-of-the-art MOEAs designed to tackle
MOPs with regular and irregular PF geometries. Thus, to the authors’ best
knowledge, GI-MOACOR is the first PF-shape-invariant MOACO, highlighting
that this work shows that Swarm Intelligence-based algorithms can have this
property.

The structure of this paper is organized as follows. Section 2 presents the
background to make the paper self-contained. Section 3 outlines our proposed
GI-MOACOR. Section 4 describes our experimental settings and Sect. 5 discusses
the results. Finally, Sect. 6 provides our main conclusions as well as some possible
paths for future research.

2 Background

In this section, we first describe ACOR which is the search engine of
GI-MOACOR. Then, we defined a MOP and some terms important in Multi-
Objective Optimization. Finally, we briefly introduce Pair-Potential Energy.

2.1 ACOR

ACOR is an ACO for continuous search spaces proposed in 2008 [23]. A dis-
tinctive characteristic of ACOR is the utilization of a pheromone matrix T that
stores the best k solutions sorted in ascending order by the objective function.
Hence, each solution �xl ∈ T has a rank l according to its position in the order-
ing. For each dimension i = 1, . . . , n of Ω, where Ω ⊆ R

n is the decision space2,
ACOR models the promising search region with a Gaussian-kernel Probability
Density Function (Gi(z)), using the solutions in T . Thus, the promising region
is defined as Gi(z) =

∑k
l=1 wlg

i
l(z, μi

l, σ
i
l), where wl ≥ 0 is a weight factor and

gi
l(z, μi

l, σ
i
l) is a Gaussian function with mean μi

l = xli (the ith decision variable
of �xl) and the standard deviation σi

l is defined as follows:

σi
l = ξ

k∑

r=1

|xri − xli|
k − 1

, (1)

where ξ ≥ 0, known as evaporation rate, is a user-defined parameter that controls
convergence. Small values of ξ increase the convergence behavior of ACOR. To
2 Ω = [l1, u1] × [l2, u2] × · · · × [ln, un], where li and ui define the lower and upper

bounds, respectively, of the ith decision variable.
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generate a new candidate solution (�xnew), each antj ∈ C = {ant1, . . . , antM} first
selects a guiding pheromone �xl ∈ T with probability pl. Then, antj samples all
Gi

l(z), i = 1, . . . , n to construct a new candidate solution. The probability pl of
selecting �xl is directly proportional to its weight wl that is defined as follows:

wl =
1

qk
√

2π
· e

− (l−1)2

2q2k2 , (2)

where q ≥ 0 is a user-defined parameter that controls the diversification process
of the search, where large values of q promote a higher degree of elitism.

2.2 Multi-objective Optimization

In this paper, we solve unconstrained MOPs3 assuming, without loss of gener-
ality, the minimization of all the objectives:

min
�x∈Ω

{
f(�x) := [f1(�x), f2(�x), ..., fm(�x)]T

}
, (3)

where �x = [x1, x2, ..., xn]T is an n-dimensional decision vector and Λ = f(Ω) ⊆
R

m is the objective space. f : Ω → Λ is a vector-valued function based on m(≥ 2)
objectives fi : Ω → R, i = 1, 2, . . . , m. In MOPs, the definition of optimality is
commonly based on the Pareto dominance relation. Given �x, �y ∈ Ω, we say that
�x dominates �y (denoted as �x ≺ �y) if ∀i = 1, 2, . . . ,m, fi(�x) ≤ fi(�y) and there
exists at least an index j ∈ {1, 2 . . . ,m} such that fj(�x < fj(�y). Then, �x∗ ∈ Ω
is Pareto optimal if there is no other �x ∈ Ω such that �x ≺ �x∗. The solution to
a MOP is the Pareto Set PS = {�x∗ ∈ Ω | �x∗ is Pareto optimal} and its image
f(PS) is the Pareto Front. A PFA is a set of solutions that approximate a PF
where the solutions are mutually non-dominated, i.e., given �x, �y ∈ A, �x 
≺ �y and
�y 
≺ �x.

2.3 Potential Energy

A Pair-Potential Energy function (PPF), denoted as K, measures the interaction
between particles at positions �u,�v ∈ R

m. In physics, there is a wide range of
PPFs but just a few of them have been utilized in EMOO [8]. Two representative
PPFs are the Coulomb’s law KCOU(�u,�v) = q1q2

4πε0
· ‖�u − �v‖−2, where 1

4πε0
is the

Coulomb’s constant, being ε0 ≈ 8.8542 × 10−12[F/m] the vacuum permittivity,
and the Riesz s-kernel, KRSE(�u,�v) = ‖�u − �v‖−s, where s > 0. In the context
of EMOO, Falcón-Cardona et al. [8] proposed to set q1 = ‖�u‖ and q2 = ‖�v‖.
Given K : R

m × R
m → R, the total potential energy (U) of an N -point set

A = {�a1,�a2, . . . ,�aN}, with N ≥ 2, where the lower the U of A the higher the
diversity of the set [8], is given by:

3 In the Evolutionary Multi-Objective Optimization (EMOO) community, the term
Many-Objective Optimization Problem (MaOP) is used to denote problems having
more than three objectives.
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UK(A) =
N∑

i=1

N∑

j=i
j �=i

K(�ai,�aj). (4)

In recent years, U has been used in MOEAs to increase the diversity of
PFAs, regardless of the PF geometry. MOEAs use selection mechanisms based
on heuristic algorithms to approximate A∗ = arg min A⊂S

|A|=N
U(A), where N <<

|S|. These selection mechanisms have been used as pruning policies in external
archives [9], density estimators [14], and for the generation of reference point
sets [6]. Mainly, these selection mechanisms are based on a fast greedy removal
algorithm that iteratively deletes from S the point �aworst = arg max�a∈S Δ(S,�a),
where Δ(S,�a) = U(S) − U(S \ {�a}) is the so-called contribution to U [6].

3 Our Proposal: GI-MOACOR

This section describes our proposed GI-MOACOR, which aims to tackle regular
and irregular MOPs. GI-MOACOR utilizes an enhanced version of ACOR that
solves the dependency to ξ and the lack of diversification when selecting solutions
from the pheromone matrix. GI-MOACOR also employs a PPF-based selection
mechanism to promote diversity regardless of the PF geometry by performing a
subset selection on T . In the following sections, we describe three mechanisms
(namely, Classification, Construction, and Diversification) to improve the
performance of ACOR. Finally, we introduce our proposed GI-MOACOR.

Algorithm 1. Classification
Input: T : Pheromone matrix; σ: Deviation threshold
Output: CHOICES, STAGNATED.
1: CHOICES, STAGNATED ← ∅, ∅
2: for i = 1 to n do
3: σ′

xi
← Standard-deviation(T , i)

4: σ′
xi

← (σ′
xi

− li)/(ui − li)

5: if σ′
xi

> σ then

6: CHOICES ← CHOICES ∪ {i}
7: else
8: STAGNATED ← STAGNATED ∪ {i}
9: end if
10: end for
11: return CHOICES, STAGNATED

3.1 Detection of Stagnated Variables

In ACOR, each antj ∈ C selects a guiding pheromone �xl ∈ T to generate a new
candidate solution (�xnew) by sampling gi

l(z), i = 1 . . . , n. The sampling is done
without dispersion information of each dimension in the pheromone matrix. For
some problems, especially multi-modal ones, pheromones in T may converge to
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a single solution. Consequently, σi
l ≈ 0 for all l = 1, . . . , k and i = 1, . . . , n

which causes a lack of exploration. To improve the exploration ability of ACOR,
we propose a mechanism (see Algorithm 1) to classify the decision variables
in T into stagnated or not. This mechanism requires a threshold σ ∈ (0, 1)
that indicates the minimum permissible deviation value. Line 1 initializes the
sets CHOICES and STAGNATED. For each dimension i, we calculate the standard
deviation (σxi

) of the ith decision variable in T and we normalize it using the
lower and upper bounds, li and ui, respectively, of this decision variable. In case
that σ′

xi
≥ σ, the dimension i is assigned to CHOICES, otherwise i is assigned

to STAGNATED. Hence, STAGNATED will contain the stagnated decision variables
and CHOICES the rest. The smaller the value of σ, the stricter is the constraint
to consider a variable as stagnated. According to our experimental observations,
well-spread values have 0.2 ≤ σ′

xi
≤ 0.4. Hence, we recommend setting σ ≤ 0.15,

as larger values might prematurely assign non-stagnated decision variables to
set STAGNATED, compromising convergence.

3.2 Constructing New Candidate Solutions

To improve the exploration and exploitation ability of our approach, we propose
here a new method to construct a candidate solution �xnew ∈ Ω. To this aim, antj

needs to provide as input a guiding pheromone �xl. In contrast to the original
ACOR where an ant samples each gi

l(z, μi
l, σ

i
l ), in our proposal only n decision

variables from CHOICES are selected to construct �xnew. Algorithm 2 sets the
value of n by iteratively calculating n = min(n,∼ UN[1, |CHOICES|]), where ∼
UN[1, |CHOICES|] generates a random natural number in the range [1, |CHOICES|.
Then, in line 5, n random and distinct variables from CHOICES are assigned
to I. To construct �xnew ∈ Ω, the Gaussian kernels associated with each i ∈
I are sampled. The remaining variables4 are copied directly from the guiding
pheromone �xl. It is worth emphasizing that modifying fewer decision variables
allows the use of larger values of ξ. As a result, it maintains convergence while
increasing diversity. In consequence, this reduces the dependency of ACOR to ξ.

Algorithm 2. Construction
Input: �xl: Guiding pheromone; ξ: Evaporation rate; q: Diversification rate; CHOICES: Set of non-

stagnated variables
Output: �xnew.
1: n ← n
2: for objective j = 1 to m do
3: n ← min(n, ∼ UN[1, |CHOICES|])
4: end for
5: I ← Randomly select n distinct variables from CHOICES
6: Calculate σi

l using ξ and q

7: xnew,i ← Sample gi
l (z, μi

l , σi
l ), ∀i ∈ I

8: xnew,i ← xli, ∀i ∈ {1, 2, . . . , n} \ I
9: return �xnew

4 Note that each antj ∈ C might modify a different number n of decision variables.
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Algorithm 3. Diversification
Input: K: PPF; M: External archive; T : Pheromone matrix; α: Percentage of pheromone replace-

ment; STAGNATED: Set of stagnated decision variables
Output: T : Updated pheromone matrix
1: k ← |T |
2: if |M| > k then

3: T ← UK-Based Selection Mechanism(M, K, k)
4: else
5: N ← Randomly select k − |M| guiding pheromones �x ∈ M
6: T ← M ∪ N
7: end if
8: i ← Select a random decision variable from STAGNATED
9: Randomly permute the pheromones of T
10: for j = 1 to �k × α do
11: Tji ←∼ UR[li, ui]
12: end for
13: return T

3.3 Avoiding Stagnation of Decision Variables

The original ACOR suffers from stagnation because the best solutions are stored
in the pheromone matrix. When the solutions in T are similar, σi

l ≈ 0 (see
Eq. (1)) for all l = 1, . . . , k and i = 1, . . . , n. In consequence, an ant cannot
explore more regions of Ω. Algorithm 3 avoids stagnation by increasing the diver-
sity of solutions in T , using an external archive M. First, if M has more than
k = |T | solutions, the content of T is replaced by a subset of k solutions from
M using a PPF-based subset selection as in [6]. Otherwise, k − |M| solutions
are randomly selected from M to be inserted in T . Lines 8 and 9 randomly
permute the pheromones of T and randomly select a decision variable i from
STAGNATED. Finally, �k × α� solutions ∈ T are perturbed by assigning a random
real number ∼ UR[li, ui] to the ith component of the solutions. Thus, this injec-
tion of randomness aims to increase the exploration ability and diversification
of ACOR. As a result, the ith component of T will be added to the set CHOICES
by Algorithm 1.

3.4 GI-MOACOR

Algorithm 4 outlines the main loop of GI-MOACOR, which uses a bounded
external archive M of maximum size 3μ to store non-dominated solutions found
during the search process. The size of the set M is limited because larger sizes
require more computational and time resources to update, with a complexity of
O(|M|2) [3]. Additionally, previous experimentation has shown that performance
is not compromised once the size reaches 3μ. In case that M has more than 3μ
solutions, we apply a UK-based subset selection using the algorithm provided
in [6]. Lines 7 to 24 sketch the main loop of GI-MOACOR. First, Algorithm 1
classifies the decision variables into CHOICES and STAGNATED. Then, each antj ∈
C, j = 1, . . . , k generates a new candidate solution using Algorithm 2, adding
it to T . In line 14, M and T are joined and, then, T is sorted with the Non-
Dominated Sorting Algorithm [3] and pruned if necessary. In line 17, we ensure
that M has at most 3μ solutions. Since applying Algorithm 3 at each iteration
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Algorithm 4. GI-MOACOR

Input: ξ0: Initial evaporation rate; q: Diversification rate; μ: Approximation size; σ: Deviation
threshold; α: Percentage of pheromone replacement; Tw: Replacement time window; K: PPF

Output: M: Pareto front approximation
1: k ← �μ/4
2: Randomly initialize pheromone matrix T of size k
3: Initialize external archive M with non-dominated solutions from T
4: Mmax ← 3μ
5: T ← UK-Based Selection Mechanism (T , K, k)
6: g, ξ ← 0, ξ0
7: while termination condition is not fulfilled do
8: CHOICES, STAGNATED ← Classification (T , σ)
9: for j = 1 to k do
10: antj selects a guiding pheromone �xl ∈ T
11: �xnew ← Construction (�xl, ξ, q, CHOICES)
12: T ← T ∪ {�xl}
13: end for
14: M ← M ∪ T
15: T ← Non-Dominated Sorting(T )

16: T ← UK-Based Selection Mechanism (T , K, k)
17: Prune M if |M| > Mmax

18: if g mod Tw == 0 and |STAGNATED| > 0 then
19: T ← Diversification (K, M, T , α, STAGNATED)
20: end if
21: if 80% of process is completed then
22: ξ ← ξ0/2
23: end if
24: g ← g + 1
25: end while
26: M ← UK-Based Selection Mechanism (M, K, μ)
27: return M

may produce a lack of convergence, we execute it every Tw iterations only if
|STAGNATED| > 0. Finally, ξ is updated if 80% of the search process has been
completed to encourage an exploitation behavior. GI-MOACOR returns a subset
of μ solutions from M using the UK-based subset selection.

4 Experimental Settings

This section is devoted to test the performance of GI-MOACOR
5. We compared

our proposal against MOACOR [13] and iMOACOR
6 [7], and five state-of-the-art

MOEAs7 (designed to tackle both regular and irregular PF shapes): AdaW [19],
AR-MOEA [24], SPEA2+SDE [17], RVEA-iGNG [20], and Two Arch2 [28]. We
performed 30 independent executions of each algorithm per test instance.

4.1 Benchmark Problems

We adopted the test suites Deb-Thiele-Laumanns-Zitzler (DTLZ) [4], Walking-
Fish-Group (WFG) [15], their inverted versions DTLZ−1 and WFG−1 [16],
5 The source code of GI-MOACOR is available at https://github.com/Humberto-

Tamayo/GI-MOACOR.git.
6 MOACOR and iMOACOR were coded in Python 3.10.12. Their source code is avail-

able at https://github.com/Humberto-Tamayo/MOACOR-iMOACOR.git.
7 We used the implementations from the PlatEMO platform [25].

https://github.com/Humberto-Tamayo/GI-MOACOR.git
https://github.com/Humberto-Tamayo/GI-MOACOR.git
https://github.com/Humberto-Tamayo/MOACOR-iMOACOR.git
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Table 1. Characteristics of the PF geometries of the selected MOPs and the reference
point for the HV calculation.

MOP PF geometry Simplex-like Reference point (HV)

DTLZ1 Triangular (linear) Yes (1, . . . , 1)

DTLZ2 - DTLZ4 Concave Yes (2, . . . , 2)

DTLZ5 & DTLZ6 Concave (m = 2)
Degenerate (m = 3)
Unknown (m > 3)

Yes No No (2, . . . , 2)

DTLZ7 Disconnected No (1, . . . , 1, 21)

DTLZ1−1 Inverted triangular No (1, . . . , 1)

DTLZ2−1 - DTLZ6−1 Convex No (1, . . . , 1)

DTLZ7−1 Disconnected No (0.1, . . . , 0.1, −10)

WFG1 Mixed Yes (3, 5, 7, . . . , 2m + 1)

WFG2 Disconnected Yes (3, 5, 7, . . . , 2m + 1)

WFG3 Linear (m = 2)
Degenerate (m ≥ 3)

Yes No (3, 5, 7, . . . , 2m + 1)

WFG4 - WFG9 Concave Yes (3, 5, 7, . . . , 2m + 1)

WFG1−1 Mixed No (1, . . . , 1)

WFG2−1, WFG4−1 - WFG9−1 Convex No (1, . . . , 1)

WFG3−1 Inverted triangular No (1, . . . , 1)

VIE1 Convex No (4, 5, 4)

VIE2 Mixed No (5, −15, −11)

VIE3 Mixed No (10, 18, 1)

IMOP1 Convex Yes (1.2, 1.2)

IMOP2 Concave Yes (1.2, 1.2)

IMOP3 Disconnected No (1.5, 1.2)

IMOP4 Degenerate No (1.2, 1.2, 1.2)

IMOP5 Disconnected No (1, 1, 2)

IMOP6 Degenerate No (1.2, 1.2, 1.2)

IMOP7 Concave No (1.2, 1.2, 1.2)

IMOP8 Degenerate No (1.2, 1.2, 3.2)

respectively, with 2, 3, 5, and 7 objectives. Additionally, we employed the Irreg-
ular MOPs (IMOP) [26] and the Viennet problems (VIE) [27]. We selected
these test suites because they cover a wide range of PF geometries and search
difficulties.

Table 1 presents the main characteristics of the PF geometries of the selected
MOPs, indicating if the geometry correlates with the simplex shape. For DTLZ
and DTLZ−1 problems, the number of variables was set to n = m+K −1, where
m denotes the number of objectives, K = 5 for DTLZ1, K = 10 for DTLZ2-
DTLZ6, and K = 20 for DTLZ7. The inverted versions share the same values of
K. Regarding WFG problems, we set the tuples (n,m, kposition), where kposition

is the number of position-related parameters, to (24, 2, 4), (26, 3, 4), (30, 5, 8),
and (34, 7, 12). For the IMOP test suite, the parameters K,L, a1, a2, and a3 are
set to 5, 5, 0.05, 0.05, and 10 as indicated by its authors [26].

4.2 Parameter Settings

For a fair comparison, all the algorithms use the same population size (μ) and
they consume the same number of function evaluations (FEmax). Hence, we
set (μ,m,FEmax) to (120, 2, 40 × 103), (120, 3, 50 × 103), (126, 5, 70 × 103), and
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(210, 7, 90 × 103). These values are selected as they are standard values utilized
in the EMOO literature [5]. Regarding GI-MOACOR, the parameters ξ0, q, σ, α,
and Tw, are set to 1.8, 0.5, 0.1, 0.5, and 4, respectively. The selection of values
is based on previous experimentation. Additionally, K is set to KCOU for all the
processes to ensure convergence and diversity as suggested by Falcón-Cardona
et al. [6], except on Algorithm 3, where is set to KRSE to take advantage of its
theoretical properties. In MOACOR and iMOACOR the parameters q and ξ are
set to 0.1 and 0.5, respectively, as suggested by their authors [7,13]. In MOACOR,
the number of ants is set to 2. For all the selected MOEAs, the parameter values
are set to their default values as in the PlatEMO platform [25]. The crossover and
mutation probabilities are set to 1.0 and 1/n, respectively, while both crossover
and mutation distribution indexes are set to 20.

4.3 Quality Indicators

We adopted the Hypervolume indicator (HV) and the Inverted Generational
Distance plus (IGD+) to assess convergence towards the PF [18]. To measure the
diversity of the PFAs, we used the Riesz s-energy Es = UKRSE

(see Eq. 4), where
s > 0 is a user-supplied parameter. Table 1 lists the reference points used to
calculate HV for each test problem. The calculation of IGD+ requires a reference
point set, constructed by merging all the PFAs generated by all algorithms for
a given test instance and filtering out the non-dominated solutions. Then, we
performed an Es-based subset selection to obtain 100 × m solutions with s =
m+1 [6]. For Es assessment, we set s = m+1 to evaluate the normalized PFAs.

5 Discussion of Results

The main goal of this Section is to present the numerical comparison of
GI-MOACOR based on HV, IGD+, and Es. However, we first show how Algo-
rithms 2 and 3 help to enhance the performance of the original ACOR. Then, we
discuss here the comparison of GI-MOACOR with MOACOR and iMOACOR.
Then, we focus on comparing GI-MOACOR with the selected MOEAs. Due
to space constraints, the complete numerical results for HV are provided in
Tables SM-1 to SM-6 of the Supplementary Material (SM) available at https://
github.com/Humberto-Tamayo/GI-MOACOR.git. Tables SM-7 to SM-12 show
the results for IGD+, and Tables SM-13 to SM-18 show the results for Es. Table 2
presents a summary of HV-based results in Tables SM-1 to SM-6 from the SM.
Additionally, Fig. 2 shows PFAs according to the first, second, third, and last
rank in the comparison from Tables SM-1 to SM-6.

5.1 Discussion of the Enhanced ACOR

To show the effect of Algorithms 1 and 3 in ACOR, we measured the perfor-
mance of ACOR when turning on and off these algorithms. Moreover, we used

https://github.com/Humberto-Tamayo/GI-MOACOR.git
https://github.com/Humberto-Tamayo/GI-MOACOR.git
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Fig. 1. Effect of Construction and Diversification algorithms in ACOR on the Ras-
trigin Function. (a) Original ACOR, (b) Construction on and Diversification off, (c)
Construction off and Diversification on, (d) Construction On and Diversification off.

ξ = 0.55, 1.85, 2.35 to identify its effect. We tested the algorithm with the multi-
modal Rastrigin Function with 20 decision variables with 35 thousand function
evaluations. Figure 1(a) shows the performance of the original ACOR when Algo-
rithms 2 and 3 are turned off8. This illustrates that ACOR fails to converge with
high values of ξ and gets stuck with ξ = 0.55. The effect of Algorithm 2 is shown
in Fig. 1(b) for ξ = 0.55, 1.85, 2.25. In this case, all the algorithms have a similar
behavior, showing a clear reduction in the dependency on ξ. On the other hand,
the effect of Algorithm 3 is illustrated in Fig. 1(c) for ξ = 0.55, obtaining better
results than in Fig. 1(a). Finally, Fig. 1(d) shows the effectiveness of combining
Algorithms 2 and 3, outperforming the original ACOR. The enhancements of
ACOR increase convergence and reduce the dependency to ξ, thus improving
diversity which is beneficial for MaOPs.

5.2 Comparison Against MOACOs

Table 2 shows that GI-MOACOR outperforms MOACOR and iMOACOR at tack-
ling multi-frontal MOPs such as DTLZ1 and WFG4. Additionally, the results
associated with DTLZ4 and WFG8 show that GI-MOACOR performs com-
petitively against iMOACOR in regular MOPs and MaOPs. In this regard,
Tables SM-3, SM-5, SM-9, and SM-11 indicate that GI-MOACOR outperforms
iMOACOR in most regular MaOPs from the DTLZ and WFG test suites. Accord-
ing to HV and IGD+, GI-MOACOR obtained better approximations in 17 out
of 26 regular MaOPs with 5 and 7 objectives.

8 Note that for Algorithms 2 and 3 to work, Algorithm 1 must be turned on.
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Table 2. Mean and standard deviation (in parentheses) of HV values. The two best
values are highlighted in gray scale, where the darker tone corresponds to the best one.
The rank in the comparison for each value is shown in parentheses. The symbol #
is placed where the best-ranked algorithm performs statistically better according to a
one-tailed Wilcoxon rank-sum test using a significance level of 0.05.

MOP m GI-MOACOR MOACOR iMOACOR AdaW AR-MOEA SPEA2+SDE Two Arch2 RVEA-iGNG

VIE1 3
2.316e+01(4#)

(1.995e-02)
2.306e+01(5#)

(3.042e-02)
2.254e+01(8#)

(6.831e-02)
2.320e+01(3)
(1.655e-02)

2.289e+01(6)
(7.504e-02)

2.289e+01(7#)
(1.425e-01)

2.323e+01(1)
(1.355e-02)

2.322e+01(2)
(1.989e-02)

VIE3 3
3.161e+01(1)
(1.509e-03)

3.152e+01(7#)
(1.809e-02)

3.149e+01(8#)
(3.691e-02)

3.160e+01(5)
(1.624e-03)

3.161e+01(2)
(1.366e-03)

3.160e+01(3)
(7.785e-03)

3.160e+01(4)
(5.184e-03)

3.159e+01(6)
(4.069e-03)

IMOP6 3
9.959e-01(6#)

(9.440e-03)
9.786e-01(8#)

(1.035e-02)
9.842e-01(7#)

(3.743e-03)
1.053e+00(1)
(1.460e-03)

1.014e+00(4)
(1.049e-01)

1.011e+00(5#)
(1.067e-01)

1.051e+00(2#)
(7.691e-04)

1.021e+00(3#)
(1.277e-01)

IMOP7 3
9.662e-01(2#)

(3.304e-02)
9.607e-01(4#)

(9.753e-02)
9.623e-01(3#)

(1.887e-02)
1.017e+00(1)
(1.456e-01)

4.016e-01(7)
(2.769e-01)

4.819e-01(6#)
(3.449e-01)

3.798e-01(8#)
(2.370e-01)

8.907e-01(5#)
(2.059e-01)

DTLZ1

2
8.629e-01(6#)

(8.770e-03)
0.000e+00(7#)

(0.000e+00)
0.000e+00(8#)

(0.000e+00)
8.736e-01(3)
(3.530e-04)

8.736e-01(2)
(4.751e-04)

8.733e-01(5#)
(5.185e-04)

8.734e-01(4)
(9.117e-04)

8.736e-01(1)
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Fig. 2. PFAs generated by GI-MOACOR and the selected MOACOs and MOEAs.

Figure 3 shows a set of heat maps comparing GI-MOACOR with the selected
MOACOs and MOEAs. The heat maps show the number of times an algo-
rithm is ranked first or second in the comparison based on HV, IGD+, and
Es, based on Tables SM-1 to SM-18. On the one hand, Fig. 3(a) shows that
the PFAs generated by GI-MOACOR are the best compared to MOACOR and
iMOACOR according to HV, IGD+, and Es in most of the adopted MOPs
and MaOPs. GI-MOACOR obtains the first rank in 80.89% of the MOPs and
89.58% of the MaOPs9. Additionally, Fig. 2 shows several irregular MOPs such as
WFG3−1 DTLZ2−1, DTLZ7−1, and VIE2, where GI-MOACOR outperformed
MOACOR and iMOACOR, according to HV. For DTLZ2−1, DTLZ7−1, and
VIE2, iMOACOR shows difficulties to converge. These results indicate that
GI-MOACOR outperforms MOACOR and iMOACOR.

5.3 Comparison Against State-of-the-Art MOEAs

The goals of comparing GI-MOACOR with state-of-the-art MOEAs are three-
fold: 1) determining if GI-MOACOR is competitive against MOEAs designed to
tackle regular and irregular PF geometries, 2) identifying if GI-MOACOR out-
performs these MOEAs in MOPs with specific properties, and 3) pointing out
improvement areas for GI-MOACOR.

Table 2 and Fig. 2 show that GI-MOACOR is competitive with the selected
MOEAs in multiple irregular MOPs such as DTLZ2−1, DTLZ7−1, VIE3,
WFG7−1 for 4 objectives, DTLZ6 for 7 objectives, and DTLZ7 regardless of
9 Note that MOACOR does not take part of the comparison of MaOPs since it does

not properly scale.
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Fig. 3. (a) Heat map that shows the number of times a MOACO was ranked first
according to HV, IGD+, and Es. (b) Heat map that shows the number of times
GI-MOACOR or a MOEA was ranked first or second according to the three selected
QIs.

the number of objectives, according to HV. Additionally, Tables SM-5 and
SM-11 indicate that GI-MOACOR obtains competitive results according to
HV and IGD+ in WFG2, WFG6, WFG7, and WFG9 for 5 and 7 objectives.
These MaOPs are non-separable and simplex-like. These results show that
GI-MOACOR does not have a preference for specific PF geometries. However,
it has a good performance on disconnected, non-separable, and deceptive prob-
lems. We believe that this behavior is due to the probabilistic mechanisms of
ACOR. In contrast to MOEAs where crossover might not easily generate off-
spring that jump across disconnected regions, or in deceptive landscapes, ACOR

is less constrained by the need for solutions to be adjacent or directly related in
the search space.

Figure 3(b) compares GI-MOACOR with selected MOEAs. GI-MOACOR

shows superior PFA diversity (in terms of Es) due to its use of PPFs. Two Arch2
provides the best approximations for most MOPs, and SPEA+SDE excels in
most MaOPs according to HV and IGD+. Despite some challenges in cover-
ing the entire PF in the IMOP test suite, GI-MOACOR achieves top ranks in
many MOPs and MaOPs, demonstrating its competitiveness. The issue likely
stems from the sensitivity of ACOR to the pheromone matrix composition, sug-
gesting room for improving its probabilistic sampling and pheromone updating
mechanisms.

6 Conclusions and Future Work

In this paper, we proposed GI-MOACOR which is a Pareto-Front-Shape Invariant
MOACO for solving continuous MOPs. GI-MOACOR uses an enhanced ACOR

to improve its search capabilities and it has a diversity-preserving mechanism
based on PPFs. According to our experimental results using several benchmark
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problems with regular and irregular Pareto Front geometries, it outperforms
both MOACOR and iMOACOR and it is competitive concerning state-of-the-art
MOEAs. It also showed significant performance in disconnected, non-separable,
and deceptive MOPs. For future work, we want to develop a hybrid model and
test PDFs to model more difficult and large-scale search spaces.
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13. Garćıa Nájera, A., Bullinaria, J.: Extending ACOR to solve multi-objective prob-
lems. In: Proceedings of the 2007 UK Workshop on Computation Intelligence
(UKCI) (2007)
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Abstract. Quantum computation uses quantum mechanical principles
to reach beyond-classical computational power. This has endless applica-
tions, especially in optimisation-problems’ solving. Most of today’s quan-
tum optimisers, more specifically, Quantum Approximate Optimisation
Algorithm (QAOA), were originally designed to solve single-objective
problems, although real-life scenarios include generally dealing with mul-
tiple objectives. Very preliminary literature with design/implementation
limitations has been done in this sense. This makes dealing with such lim-
itations and expanding the QAOA applicability to multi-objective opti-
misation an important step towards advancing quantum computation. To
do so, this work presents a decomposition-based Multi-Objective QAOA
(MO-QAOA) able to solve multi-objective problems. The proposal’s
design explores QAOA’s features considering the error-prone and limited
nature of today’s quantum computers as well as the costly quantum sim-
ulation. This work’s contributions stand in designing both, (I) sequential
and parallel MO-QAOA, based on (II) weighted-sum and Tchebycheff
scalarisation, by (III) exploring the QAOA’s parameters’ transference.
The validation has been done using 2, 3 and 4-objectives problems of sev-
eral sizes/complexities/types, using up to 2000 slaves/jobs running quan-
tum computer simulators, as well as three real IBM 127-qubits’ quan-
tum computers. The results show up to 89% execution-time decrease,
which supports the applicability/reliability of the proposal in today’s
time-constrained and error-prone quantum computers.

Keywords: Quantum Computing · Multi-objective Optimisation

1 Introduction

Quantum Computation (QC), based on the principles of quantum physics (e.g.
superposition, entanglement, etc.), is able to provide a computational speed-
up over classical computing [11]. This has numerous applications, especially
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in optimisation-problem solving [2]. Regarding the former, two QC paradigms
exist: quantum annealing and gate-based quantum computing. This work inves-
tigates optimisers designed for discrete gate-based quantum computers, con-
sidering their wider applicability, investigation and support by manufacturers.
Although quantum technology is gaining more interest, it is still in a Noisy
Intermediate Scale Quantum era (NISQ), with limited qubits’ number and noise
robustness. So, this work investigates a relatively-recent quantum solver; the
Quantum Approximate Optimisation Algorithm (QAOA) [9] knowing that it
can still provide promising performances regardless of the NISQ nature of the
quantum technology, and can, theoretically, guarantee solving-optimality under
certain conditions.

QAOA was devised originally to solve single-objective problems, where its
performances have been actively investigated. This being said, most real-life
problems usually imply considering several conflicting objectives [1]. To this
end, rethinking QAOA to be also applicable on such type of problems is crucial
towards exploring the advantages of such algorithms, or even quantum compu-
tation, in real-world applications. To the best of the authors’ knowledge, only
three works have investigated Variational Quantum Algorithms (VQAs) in a
multi-objective context [3,7,8], including only one researching specifically the
QAOA [3]. All the aforementioned works present some design or implementation
shortfalls which might be a handicap towards their applicability and efficiency.
Considering specifically the work in [3] addressing the QAOA, from a design
point of view: (I) the decomposition’s design might be an issue, (II) it does
not explore some interesting features of the QAOA such as parameters’ distri-
bution concentration and transference that might lead to a more efficient design
[13]. Now, from an implementation aspect, the proposal does not consider two
very important facts: (I) quantum computers are in their NISQ era with quite
delaying queuing systems, and (II) quantum simulation requirements increase
exponentially with respect to the problems’ size.

This work proposes both sequential and parallel approaches to research the
limitations in [3], where the sequential proposal investigates the design short-
falls by exploring a weighted-sum scalarisation and, for the first time in the
literature, Tchebycheff decomposition as well as the QAOA’s parameters’ con-
centration/transference. The parallel approach deals with the implementation
issues by leveraging the parallel use of quantum computers/simulators. The val-
idation has been done on large and diverse benchmarks (2-4min-max objectives,
4-127 variables), using the largest IBM real gate-based quantum computers (127
qubits) and quantum simulators (up to 2000). It is worth stating that our claims
are with regard to the VQAs’ literature in Multi-Objective Optimisation (MOO).
One should note that this work’s purpose is not proving quantum advantage nei-
ther outperforming the state-of-the-art classical solvers, as this would be hardly
achievable considering today’s small-scale/NISQ nature of quantum machines.
Instead, we aim to (I) prepare the foundations to do so when scalable/stable
quantum hardware will be available, and (II) explore the strength/weaknesses
of nowadays’ quantum optimisers/computers regarding classical ones.
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The rest of the paper presents some background on quantum computing,
QAOA, and MOO in Sect. 2. Afterwards, Sect. 3 thoroughly analyses the liter-
ature. In Sect. 4, the proposed approach is introduced, while Sect. 5 assesses its
efficiency. Finally, Sect. 6 concludes the paper.

2 Preliminary Concepts

This section presents fundamentals of QC, QAOA and MOO.

2.1 Quantum Computing and Approximate Optimisation

Quantum computing in a discrete gate-based model describes computation as
quantum circuits. The former consists in a set of quantum gates acting on quan-
tum bits (or qubits) [11]. Unlike classical bits, which can take either value 0 or
1, the qubits can be in a superposition of both states. Formally, the quantum
state |ψ〉 = α |0〉 + β |1〉 of a qubit is the superposition of both basis state |0〉
and |1〉, having α and β as probability amplitudes. Based on the Born rule,
the probability of measuring 0 and 1 is Pz(〈0|ψ〉) = |α|2 and Pz(〈1|ψ〉) = |β|2,
respectively, where Pz(〈1|ψ〉) + Pz(〈0|ψ〉) = 1. Considering the quantum gates,
they are unitary operators U , with the property UU† = U†U = I, where U† is
the adjoint of U (conjugate transpose) and I is the identity matrix. The state
of |ψ〉 evolves in a complex Hilbert space H and the quantum state of n qubits
|ψ∗〉 lives in the tensor product of n complex Hilbert spaces H⊗n.

Fig. 1. Execution workflow of the QAOA

QAOA is a hybrid quantum algorithm represented by a layered application of
unitary transformations called ansatz. Concretely, the QAOA’s building blocks
are the problem unitary and the mixer unitary. The first one is a unitary transfor-
mation that depends on the problem Hamiltonian HP , while the second depends
on a mixer Hamiltonian HM. QAOA stands in two components: a quantum and a
classical one. The quantum component is an ansatz that produces a state

∣
∣ψ(γ,β)

〉
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after applying p pairs of the problem unitary and the mixer unitary applied to n
qubits prepared in a superposition state using the Walsh-Hadamard transform
H⊗n (see Eq. (1)). The ith pair of layers (HP ,HM) is parameterised with two
parameters γi and βi, where p layers use 2p parameters. The classical compo-
nent optimises the sets of parameters γ = {γ1, . . . , γp} and β = {β1, . . . , βp} to
minimise the expectation value F(γ,β) defined in Eq. (2).

U(γ,β) =
p

⊗

j=1

(

e−iβjHMe−iγjHp
) H⊗n =

p
⊗

j=1

(

e
−iβj

n∑

i=1
Xi

e−iγjHp

)

H⊗n, (1)

F(γ,β) =
〈

ψ(γ,β)

∣
∣ HP

∣
∣ψ(γ,β)

〉

. (2)

2.2 Multi-objective and Pseudo-Boolean Optimisation

Solving a multi-objective problem F∗ stands in solving simultaneously a set of K
min/max optimisation problems {F1, . . . , FK}, where Fi : x → R, i = 1, . . . ,K,
and F∗ : x → R

K. A solution x1 is said to weakly dominate another one x2,
denoted x1 � x2, when Fi(x1) ≤ Fi(x2), for i = 1, . . . ,K. Also, x1 is said
to dominate x2, denoted as x1 ≺ x2, when x1 � x2 and ∃i ∈ {1, . . . ,K} where
Fi(x1) < Fi(x2). Finally, x1 is said to strictly dominate x2, and denoted x1 Î x2,
when ∀i ∈ {1, . . . ,K}, Fi(x1) < Fi(x2) [1]. It is worth noting that normal and
strict dominance are more likely to be considered in this work.

Optimisation problems to be solved in MOO can be of different types,
although in this present work, a special interest is given to pseudo-Boolean prob-
lems. In general, an n-dimensional pseudo-Boolean problem can be defined as

F(x) =
∑

S⊆[n]

CS
∏

j∈S
xj , (3)

where we define [n] = {1, 2, . . . , n}, S is a subset of variables from [n], CS is the
coefficient of the term involving the product of variables in S and x ∈ {0, 1}n is
a binary string x = (x1, . . . , xn). In this work, we focus on quadratic and higher-
order problems where 2 ≤ |S|. Quadratic Unconstrained Binary Optimisation
(QUBO) can be defined using Eq. (4), where x is an n-dimensional column
vector, xT its transpose, and Q is an n×n interaction matrix [10].

F(x) = xT Qx (4)

3 Review of Quantum Multi-objective Optimisation

To the best of our knowledge, three works have studied VQAs in the context of
MOO [3,7,8], including only one that focused on QAOA. Each of the approaches
had shortfalls in some aspects. First, in [7] a Variational Quantum Eigen Solver
(VQE) is used to tackle constrained problems as bi-objective problems, where
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the problem is the first objective and its constraints are the second one. During
optimisation, a non-dominated front is generated, although only solution(s) that
satisfy all the constraints and minimise the best energy function are picked. This
approach does not guarantee the multi-objective nature (i.e. conflicting) between
both objectives. Besides, the multi-objectivity is handled in the algorithm’s clas-
sical part where NSGA-II [6] optimises the VQE ansatz parameters. Actually,
it is not clear which Hamiltonian is being optimised, although as described, the
VQE does not handle the MOO problem using its quantum routine.

The authors in [8] devise a VQA that solves a combination of the multi/many-
objectives (up to 5) unconstrained minimisation problems. The VQA’s param-
eters optimisation is done with regard to the hypervolume indicator [1] using
non-gradient-based methods, COBYLA and FGBSC. Doing so poses some short-
comings regarding other metrics such as the Inverted Generational Distance and
its variant (IGD and IGD+) (i.e. the high computational cost, nadir point selec-
tion, etc.) [1]. The unitary transformation describing the algorithm is composed
of L layers. Each layer is composed of K blocks. Each block combines the mixer
and phase unitaries representing one of the K problems to be solved. The N most
sampled solutions are considered as a non-dominated set. Such design leads to
high-depth ansatz, which might make the computation unfeasible knowing the
NISQ nature of today’s quantum machines. Also, having K problems will involve
optimising 2LK parameters which hardens the optimisation process compared to
a vanilla VQA of K factor less parameters. In addition, the proposed approach is
based on qudits which is more computationally expensive to simulate, unstable
and not widely available. Actually, the authors mention the use of qudits, but do
not indicate which quantum system/simulator has been used. If any simulation
was done, simulating the quantum state of N qudits will require dN memory.

The work in [3] proposes a QAOA-based approach to tackle the multi-
objective formulation of some small instances of the network routing problem.
The proposal solves the weighted aggregation of up-to 4 conflicting QUBOs. This
being said, weighted-sum scalarisation might have some shortfalls compared to
other scalarisation techniques such as Tchebycheff that finds solutions in non-
convex parts of the Pareto front [4]. The authors consider the weighted sum
of quadratic polynomials expressed by both the problems and their constraints
(as penalty functions). Using the weighted sum to solve problems of this type
would require giving a different weight to each QUBO representing both the
problem and penalties together. However, the authors dissociated the problems
and penalties by assigning them different weights, which impacts differently the
penalisation of feasible/unfeasible solutions. Similarly to [8], the authors solve
the Hamiltonian representing the weighted sum of objectives and penalties, then
extracts a set of non-dominated fronts during sampling. Alternatively, they solve
the weighted sum using different weight aggregations, where a non-dominated
front is extracted when solving each Hamiltonian. The final front is extracted
from the union of all the non-dominated fronts using a non-dominated sorting
routine that is quadratic in terms of the number of sampled solutions N and
objectives M (O(MN 2) [6]). Such complexity increases to O(ZMN 2) when
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having Z aggregation-weights’ combinations. The first approach was mainly
researched, while the second has been explored with just 3 weight combinations.

4 The Proposed Approach

The proposed sequential approach investigates the design issues in [3,7,8], while
its parallelisation researches the implementation limitations. In the following, we
will start describing first the sequential approach, then move to the parallel one.

Algorithm 1. The Proposed Sequential/Parallel MO-QAOA
Require: Z aggregation-weight configurations
1: for i = 1 . . . Z do � Parallel Execution in Parallel MO-QAOA
2: Solve F∗ using ith weight configuration
3: Extract the ith non-dominated front S′

i

4: Set γ and β values as seed for solving the (i + 1)th instance of F∗
5: S′

∗ = S′
∗ ∪ S′

i
6: end for
7: Extract the non-dominated front S′

∗

4.1 Sequential Multi-objective QAOA

This approach goes along with the a priori proposal discussed in [3]. In this sense,
the QAOA’s has some interesting features such as (I) its parameters’ transfer-
ence and (II) theoretical guarantee of optimality when p tends to ∞. So, the
core of our proposal relies on keeping the vanilla QAOA unitary transformation
U(γ,β) (see Eq. (1)) to explore the usefulness of some of the above-mentioned
QAOA’s features when designing our proposal.

Weighted-Sum Scalarisation. We tackle a given multi-objective problem as
the aggregation of its multiple objective functions {F1, . . . , FK}, where Fi :
x → R, and i = 1, . . . ,K. This work focuses mainly on QUBOs, although, it
is applicable on higher order pseudo-Boolean problems as indicated in Sect. 4.3.
Unlike the work done in [3], where the penalty functions are dissociated from
the aggregation of the problem (see Eq. (5)), here the penalty functions are
considered as part of the QUBO to be solved and, therefore, they will receive
the same aggregation coefficient as the original QUBO. This is done because the
penalty coefficient is tailored to have the sought impact on how to avoid feasible
solutions to be penalised and unfeasible solutions to be kept. The proposed
aggregation is done using Eq. (6), where x is the vector of the problem’s variables,
Q and P are the upper triangular matrices of the QUBO’s and penalty function
coefficients, respectively, which translates to a new QUBO to be solved.

F∗ =
L∑

i=1

wi

(

xT Qix
)

+ wp

⎛

⎝

k∑

j=1

xT Pjx

⎞

⎠ , wp = 1, (5)
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F∗ =
L∑

i=1

wi

(

xT Qix + xT Pix
)

,

L∑

i=1

wi = 1. (6)

The problem defined by Eq. (6) is solved using the vanilla QAOA (see
Sect. 2.1), and a set S of solutions are sampled. A subset S ′ ⊂ S of non-
dominated solutions are extracted in O(L|S|2). Having Z aggregation-weight
configurations will induce repeating this process Z times. The final non-
dominated front S ′

∗ is extracted from the union of all Z non-dominated fronts
resulting by solving F∗ using a given weight configuration (see Eq. (7)).

S ′
∗ =

{

D ⊂
Z⋃

i=1

S ′
i

∣
∣
∣
∣
∣
∀ s ∈ D, � s′ ≺ s, s′ ∈

Z⋃

i=1

S ′
i

}

. (7)

Tchebycheff Scalarisation. We extend our proposal to Tchebycheff decom-
position [15] since it is said to be robust when approaching peculiar fronts such
as non-convex ones (see Eq. (8)). We propose both an algorithmic and mathe-
matical implementation, which as far as our knowledge, is the first Tchebycheff
implementation applicable to QAOA on quantum machines.

min
x

F∗(x|W,R∗) = max
1≤i≤L

{

wi

∣
∣
(

xT Qix + xT Pix
) − r∗

i

∣
∣
}

,

L∑

i=1

wi = 1. (8)

The algorithmic approach computes the min-max in O(L2), where R∗ is the
chosen reference point (see Algorithm 2). Although this approach can reproduce
the min-max relation, if the stochastic optimisation process of γ and β is removed,
it is likely to reproduce the same solution to

(

xT Qix + xT Pix
) − r∗

i , regardless
of the aggregation weights (like in randomised algorithms using the same seed).

Algorithm 2. Tchebycheff Algorithmic Approach
Require: R∗: reference point, Z: aggregation-weight configurations
1: S′

∗ = {} � Non-dominated front
2: for i = 1 . . . Z do
3: T∗ = {} � Sub-problems’ solutions
4: for j = 1 . . . L do

5: ti = optimise
(

(
xT Qjx + xT Pjx

)
− r∗

j

)

6: T∗ = T∗ ∪ {ti}
7: end for
8: mg = ∞ and tg = {}
9: for k = 1 . . . L do
10: md = 0 and td = {}
11: for l = 1 . . . |T | do
12: f = evaluate wi,k|

(
xT Qkx + xT Pkx

)
− r∗

k| using tl
13: if f > md then md = f and td = tl
14: end for
15: if f < mg then mg = md and tg = td
16: end for
17: S′

∗ = S′
∗ ∪ {tg}

18: end for
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To cope with the drawback of the algorithmic approach, we provide a math-
ematical approach to the Tchebycheff scalarisation defined by Eqs. (9) and (10).
For a detailed justification, one can see theorem and proof in the Appendix [5].
Knowing that fi(x) is a QUBO, one can rewrite fi(x) =

∑

S⊆[n]

CS
∏

j∈S,b∈E
xb

j =
∑

S⊆[n]

CS
∏

j∈S
xj , xj ∈ {0, 1} and E is the powers’ subset. It can be guaranteed that

the Tchebycheff scalarisation will result in a polynomial of degree higher than 2,
which can be solved by constructing the corresponding ansatz using Eq. (10) [2],
where CNOT and RZ are the controlled-not and Z rotation gates, respectively.
Although, one should note that in this work we will experimentally explore the
algorithmic Tchebycheff approach considering that the present work focuses on
QUBO, besides that higher-order polynomials might induce extra transpilation
time and simulation resources that might jeopardize comparisons/feasibility (see
Sect. 5.2). So, we leave the experimental assessment of the mathematical demon-
stration for future works especially considering our findings in Sect. 5.2.

minx F∗(x|W,R∗) =
( L∑

i=1

wp
i

p∑

j=0

( p
j

)(

xT Qix + xT Pix
)j(−r∗

i )
p−j

) 1
p

, p = 2k, k ∈ Z, k → ∞ (9)

e
−γ

⊗

S⊆[n],j∈S
Zj

=
|S|−1∏

i=1

CNOT(di,di+1)RZ|S|(2γ)
1∏

i=|S|−1

CNOT(di,di+1),S = {d1, . . . , dN } (10)

QAOA Parameters’ Transference. The work in [12] proved that for dif-
ferent instances of the MAX-Cut problem, optimal QAOA’s parameters (γ and
β) can be sampled from the same distribution, and another work [13] showed
that they can be transferable from one instance to another. Here, the QAOA’s
parameters transference is explored in its simplest form, by passing the optimised
QAOA’s parameters values when solving F∗ using the ith weight configuration
i = 1, . . . ,Z, as a seed to the optimiser when solving F∗ using the (i + 1)th

weight configuration. Algorithm 1 depicts the sequential MO-QAOA workflow.

4.2 Parallel Multi-objective QAOA

Nowadays quantum computers are in their NISQ era, so most of today’s manu-
facturers provide access to quantum computers for a limited time (usually upon
fee), and also long queuing when executing sequential computation. Using the
devised approach in [3] or the sequential version devised in this work might pose
a bottleneck towards the applicability of the proposed approaches. On the other
hand, the same manufacturers that provide limited time of computation, provide
access to several machines. So, neglecting to some degree QAOA’s transference
(Sect. 4.1), one can take advantage of this fact by solving in parallel, the Z
instances of F∗ on Z quantum computers, and then extracting the global non-
dominated front S ′

∗ on the classical machine. When using Tchebycheff scalari-
sation, the parallelism is applied for computing wi

∣
∣
(

xT Qix + xT Pix
) − r∗

i

∣
∣ (see

Pseudo-code of Algorithm 1). This approach turns out to be beneficial also when
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using quantum computer simulators considering the availability of several classi-
cal machines. It stands in solving F∗ by using a quantum computer simulator on
Z classical machines, where each machine will run a given weight configuration.
This can overcome the bottleneck of time-limited QC and take advantage of clas-
sical computation to facilitate quantum simulation (see Fig. 2). The communi-
cation between the server and quantum simulators/machines is used to dispatch
the Z instances of the weighted problem. So, communication complexity grows
linearly O(Z) considering the number of weights’ aggregations.

Fig. 2. The proposed parallel MO-QAOA

4.3 Consequences of the Proposed MO-QAOA Design

Regarding our proposal’s design, two consequences must be highlighted: (I) it
can be used to solve higher-order polynomial problems. Considering the findings
in [14], we expect our approach to be more efficient on higher-order polynomials.
(II) the current design of our approach allows applying other decomposition
methods which enables dealing with more complex Pareto fronts.

5 Experimental Results and Analysis

The implementation has been done using Python 3.10.12 and bash scripting. The
execution has been done on a server using Ubuntu 22.04.3 LTS 64 bits (7 CPUs
and 16 GB of RAM) and a cluster with the configuration given in Table 1 using
Linux Enterprise Server 15 SP4 15.4 OS. IBM Qiskit version 1.0.2 has been used
for quantum execution/simulation. The QAOA has been run using COBYLA opti-
miser and sampled 128 times with a depth p = log(N ) following findings in [12],
where N is the problem’s size. Comparisons have been made against the Non-
Dominated Sorting Genetic Algorithm (NSGA-II) [6] and the Multi-Objective
Evolutionary Algorithm based on Decomposition (MOEA/D) [15]. The former
have been run using 100 solutions over 500 iterations (50, 000M fitness evalu-
ations) which is (on average) much larger than the solutions’ sampled by the
MO-QAOA. The experiments were repeated over 32 execution and comparison
metrics such as Median and the Median Absolute Deviation (MAD) have been
considered. Also, null-hypothesis tests with 5% significance have been applied.

The benchmarks have been generated to assess the proposal’s scalability when
dealing with different complexities in terms of type and number of objectives.



Scalable QAOA for Pseudo-Boolean Multi-objective Optimisation 277

Table 1. Hardware components of the cluster used.

Nodes CPU / GPU RAM InfiniBandLocalscratch

126 × SD530 56 × Intel Xeon Gold 6230R @ 2.10GHz 200GB HDR100 950 GB
24 × Bull R282-Z90 128 × AMD EPYC 7H12 @ 2.6GHz 2TB HDR200 3.5TB
168 × IBM dx360 M4 16 × Intel E5-2670 @ 2.6GHz 32GB FDR40 400GB

4 × DGX-A100 8 × A100 Tensor Core 1TB 14 TB

Problems of 2-4 objectives, where Qij , Pij ∈ [−1000, 1000] , of 4-127 variables
have been generated and tackled. Table 2 summarises the benchmarks features
including the problems’ number, size, type and sparsity percentage (i.e. variables
with no interactions). Finally, the benchmarks have been solved using 2-2000
equally-spaced aggregation-weights’ configurations. A large literature exists on
weight-aggregations selection, however, this is not the focus of the present paper
and left to be explored in future works. It is to be indicated also that the size
of the benchmarks solved on quantum simulators has been fixed to 29 variables
representing more than 536 millions combinations. Implementing the approach
for 29 variables would require using/simulating 29 qubits. Knowing that the
simulation requirements grows exponentially as the quantum calculation grows,
increases the simulation or real execution requirements beyond the ones that
are currently available. This being said, this is an effect universal to all quantum
calculation and admissible knowing that the goal of our work is a proof of concept
rather than an attempt to outperform state-of-the-art classical solvers.

Table 2. Benchmark problems used in the experimental evaluation.

# Objectives Size Type Q # Aggreg. Config.

2 9, 4, 16, 32, 64 127 {min, min} {10,20} % {2,5,11, 44, 100, 500, 1000, 2000}
3 19 {min, max} {10,20,30} % {2,5,11, 44, 100, 500, 1000, 2000}
4 29 {max, max} {10,20,30,40} % {2,5,11}

5.1 Obtained Results and Discussion

The first set of experiments has been done to assess the sequential approach,
especially when using (or not) parameters’ transference, while the second set
evaluates the parallel approach. The best results are bold/yellow-shaded. Fig-
ures 3 and 4 display the Median and MAD of F∗ during 32 executions, when solving
2 and 3-objectives problems using 2000 aggregation-weights’ configurations. It
can be observed that the parameters’ transference has small impact on the solv-
ing efficiency. This turns out to be similar in problems with 2-2000 aggregations.
This observation is confirmed in Figs. 5 and 6, where using (or not) parameter
transference yields similar approximated Pareto front for bi and three-objective
problems. This encourages the use of the parallel approach of the MO-QAOA,
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where no parameter transference is possible. One should note that Figs. 3,4, 5
and 6 are obtained without using parameters’ transference, but have been used
since they are quite representative to both scenarios; whether using or not trans-
ference.
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Fig. 3. MO-QAOA with/out trans.
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Fig. 4. MO-QAOA with/out trans.

Fig. 5. MO-QAOA with/out trans. Fig. 6. MO-QAOA with/out trans.

Figures 7 and 8 display the Hypervolume (H) and IGD+ values for 3-objectives
problems with regard to the number of weight-aggregations considered,
where as the number of weight-aggregation configurations increases the
Hypervolume/IGD+ value becomes better. This was expected and demonstrates
the relevance of our proposal, since it can scale easily when the number of aggre-
gations increases. The chosen figures are of an execution that is representative of
the same conclusion for both MO-QAOA with and without parameters’ trans-
ference.
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Fig. 7. Seq. MO-QAOA without trans.
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Fig. 8. Seq. MO-QAOA without trans.

Table 3. Median Hypervolume/IGD+: Seq. MO-QAOA with vs. without transf.

# W
# Obj. 2 3 4

Alg. Par. Transf.
H IGD+ H IGD+ H IGD+

Median MAD Median MAD Median MAD Median MAD Median MAD Median MAD

2
WS

Yes 97.8E+6 1.4E+6 198.4E+0 98.3E+0 10.7E+12 445.4E+9 4.9E+3 308.5E+0 1.2E+18 47.2E+15 12.5E+3 549.6E+0
No 97.1E+6 1.7E+6 218.5E+0 105.6E+0 10.7E+12 621.5E+9 4.9E+3 447.0E+0 1.2E+18 52.4E+15 12.6E+3 493.6E+0

Tcheby. No 49.3E+6 7.9E+6 3.2E+3 866.2E+0 3.5E+12 789.6E+9 12.4E+3 1.8E+3 374.8E+15 83.5E+15 21.6E+3 2.1E+3

5
WS

Yes 99.6E+6 919.1E+3 79.9E+0 43.1E+0 12.0E+12 351.0E+9 4.2E+3 266.0E+0 1.4E+18 70.8E+15 10.9E+3 538.8E+0
No 99.8E+6 922.5E+3 72.1E+0 37.9E+0 12.1E+12 361.7E+9 4.0E+3 282.5E+0 1.4E+18 58.9E+15 11.2E+3 482.4E+0

Tcheby. No 58.6E+6 6.4E+6 2.5E+3 467.7E+0 5.0E+12 752.0E+9 10.5E+3 1.3E+3 465.8E+15 144.5E+15 20.3E+3 2.8E+3

11
WS.

Yes 100.9E+6 182.8E+3 11.6E+0 11.6E+0 13.1E+12 340.7E+9 3.3E+3 251.3E+0 1.3E+18 10.6E+15 10.1E+3 190.0E+0
No 100.9E+6 219.5E+3 25.1E+0 23.6E+0 13.0E+12 335.3E+9 3.4E+3 230.1E+0 1.2E+18 8.6E+15 11.3E+3 106.1E+0

Tcheby. No 73.7E+6 7.6E+6 1.6E+3 459.1E+0 6.0E+12 713.0E+9 9.0E+3 941.2E+0 646.0E+15 110.3E+15 17.6E+3 1.6E+3

SOTA
NSGA-II 101.1E+6 0.0E+0 0.0E+0 0.0E+0 18.9E+12 56.1E+9 404.4E+0 28.2E+0 3.0E+18 67.8E+15 3.5E+3 308.8E+0
MOEAD 100.2E+6 0.0E+0 32.9E+0 0.0E+0 10.9E+12 0.0E+0 3.8E+3 0.0E+0 1.5E+18 1.2E+15 8.7E+3 80.2E+0

Table 4. Median Hypervolume/IGD+: Seq. MO-QAOA vs. SOTA

# W
# Obj. 2 3

Alg. Par. Transf.
H IGD+ H IGD+

Median MAD Median MAD Median MAD Median MAD

44 WS.
Yes 101.1E+6 0.0E+0 0.0E+0 0.0E+0 14.7E+12 277.5E+9 2.4E+3 223.1E+0
No 101.1E+6 0.0E+0 0.0E+0 0.0E+0 14.9E+12 348.6E+9 2.3E+3 117.6E+0

100 WS.
Yes 101.1E+6 0.0E+0 0.0E+0 0.0E+0 15.7E+12 286.2E+9 1.8E+3 120.1E+0
No 101.1E+6 0.0E+0 0.0E+0 0.0E+0 15.8E+12 342.6E+9 1.9E+3 178.5E+0

500 WS.
Yes 101.1E+6 0.0E+0 0.0E+0 0.0E+0 16.9E+12 326.8E+9 1.1E+3 99.1E+0
No 101.1E+6 0.0E+0 0.0E+0 0.0E+0 17.1E+12 224.8E+9 1.1E+3 127.5E+0

1000WS.
Yes 101.1E+6 0.0E+0 0.0E+0 0.0E+0 17.5E+12 256.4E+9 867.7E+0 97.5E+0
No 101.1E+6 0.0E+0 0.0E+0 0.0E+0 17.4E+12 184.0E+9 894.3E+0 89.3E+0

2000WS.
Yes 101.1E+6 0.0E+0 0.0E+0 0.0E+0 17.7E+12 253.7E+9 745.2E+0 91.4E+0
No 101.1E+6 0.0E+0 0.0E+0 0.0E+0 17.7E+12 211.7E+9 736.8E+0 97.1E+0

SOTA
NSGA-II 101.1E+6 0.0E+0 0.0E+0 0.0E+0 18.9E+12 56.1E+9404.4E+0 28.2E+0
MOEAD 100.2E+6 0.0E+0 32.9E+0 0.0E+0 10.9E+12 0.0E+0 3.8E+3 0.0E+0

Tables 3 and 4 show the results of comparing the MO-QAOA’s sequential
implementation using the Weighted Sum (WS) as well Tchebycheff (Tcheby.)
against the NSGA-II and MOEA/D. It can be noted that (I) as the number
of aggregations increases the MO-QAOA efficiency becomes better, which is
quite expected. (II) the Tchebycheff-based MO-QAOA as well as the MOEA/D
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approachs are worst than the remaining solvers. This can be explained by the
need of appropriate reference-point choice, which has been done ad hoc in this
work for proof-of-concept purposes. (III) the NSGA-II is performing slightly
better than the MO-QAOA. This is not alarming considering that the number
of aggregations used in the MO-QAOA can grow, although it already yields very
similar results to the NSGA-II. Also, many parameters such as the depth of the
ansatz, the classical optimiser have a big impact on the efficiency of the proposal.
On overall, we expect that increasing slightly the aggregations’ number or ansatz
depth will be sufficient to completely outperform the NSGA-II (see Table 4).

Table 5. Execution time in seconds: sequential vs. parallel MO-QAOA

# Obj.# W Sequential Parallel Tcheby. Time Gain (") Parallel WS Time Gain (")
Median MAD Median MAD % Median MAD %

2
2 5.4E+0 212.8E-3 4.8E+0 80.6E-3 11.91 3.2E+0 266.2E-3 41.32
5 13.0E+0 415.7E-3 4.8E+0 54.2E-3 63.35 3.9E+0 651.1E-3 70.18
11 29.6E+0 745.8E-3 5.2E+0 80.3E-3 82.47 5.3E+0 682.2E-3 82.17

3
2 50.4E+0 1.8E+0 81.9E+0 5.3E+0 -62.33 34.7E+0 927.1E-3 31.20
5 126.8E+0 2.7E+0 83.8E+0 5.7E+0 33.93 33.5E+0 1.1E+0 73.61
11 282.3E+0 5.4E+0 84.3E+0 1.4E+0 70.13 28.5E+0 1.4E+0 89.92

4
2 111.9E+3 3.4E+3 226.5E+3 10.4E+3 -102.41 92.5E+3 2.9E+3 17.34
5 287.9E+3 6.1E+3 224.4E+3 3.6E+3 22.04 92.1E+3 2.1E+3 68.01
11 507.1E+3 8.4E+3 224.9E+3 2.5E+3 55.7E+0 64.4E+3 4.9E+3 87.30

For assessing the parallel approach, we use the same experiment configura-
tions (benchmarks, seeding, etc.), so we are not interested in the results know-
ing they will be similar to the sequential. Instead, we seek time reduction. So, in
Table 5, it can be seen that for 2, 3, and 4-objectives problems, the execution time
(in seconds) has been divided by 8 in some cases. Also, it can be noted that for
each size of the problem, the time complexity remains constant, while the sequen-
tial one (similar to the literature) increases linearly in terms of the number of
weight aggregations. This also applies to non-dominated front extraction, where
each slave machine in the parallel approach performs a O(MN 2) complexity
routine, while the sequential one O(LMN 2). However, one can observe that the
Tchebycheff parallel implementation does not yield enhancements regarding the
sequential variant. This can be explained by the O(M2) additional comparisons
and fitness evaluations to compute the min-max in Tchebycheff scalarisation.

5.2 Results on Real 127-Qubits IBM Quantum Computers

As a proof of concept, we execute our proposal on the largest real gate-based
quantum computers available nowadays. We used three 127-qubits IBM quan-
tum computers: ibm_brisbane, ibm_osaka and ibm_kyoto (see Fig. 9). We have
combined three IBM quantum-experience accounts to sum-up 30min of Quan-
tum Processing Unit (QPU) computation (IBM limits 10min QPU per account).
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Parallel execution has been done using all accounts simultaneously where the
least-busy machine is taken first. Still, reproducing the experiments we did on
quantum simulators goes way beyond 30min of real QPU. Although, our count-
based approach provides never-explored-before ideas to pass-by IBM QPU time
limitations. In addition to that, since job execution of IBM quantum computers
is subject to a queuing, it is not trivial to provide fair/accurate comparisons with
the results obtained on quantum simulators. Indeed, following performing some
experiments on April 9th, we found high sparsity in the queuing time: 1880.77′′

± 2610.53′′. So, the goal of this Section is to provide a proof of applicability
of the proposal and eventually identify its strength/weaknesses on the current
quantum computers. So, experimentation has been done only on bi-objective
problems with two weight-aggregation sets on problems requiring 4, 16, 32, 64
and 127 qubits. Also, the COBYLA optimiser has been limited to only 1 iteration.
The reported results are of experiments performed on 11th-16th of April 2024
at three periods of the day to draw a rough landscape of the possible queuing
times: 20:00-22:00, 3:00-7:00 and 9:00-14:00.

Fig. 9. IBM QPU Fig. 10. 64 variables Fig. 11. 127 variables

Based on the theoretical findings in [12], p has been set to log(N ). It can be
inferred from Table 6 and [12] that the original ansatz depth follows a O(N logN ).
However, transpilation takes increasingly larger time to produce ansatz that are
increasingly more complex. This is a bottleneck considering that it will induce a
larger execution time on quantum machines. As a matter of facts, the quantum
computers are not able to run a log(N ) layered ansatz for problems requiring
64 and 127 qubits, so p has been set to 1 for those benchmarks. Also, as more
complex ansatz requires larger execution time, as in most classical HPC, the
probability of hardware error increases with time. Indeed, in our experiments,
websocket cancels after machines goes off for daily calibration/maintenance. This
happened for instance at 3-5AM the 9th of April 2024. Also, the failure error
increases proportionally to the ansatz’s depth. When tackling problems requiring
4-32 qubits, the execution success rate is 1. It decreases to 2

9 , when using 64
qubits and falls to 3

22 when using 127 qubits. Also, on 12th April, jobs got
stuck/frozen in an endless queuing loop. In addition, to that, it can be noted the
sparsity of the queuing time that spans from minutes to several hours.
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Table 6. Results on real 127-qubits IBM quantum computers

Size/Metric Orig. Depth Transp. Depth Transp. Time (s)Queuing Time (s)Total Ex. Time (s)

4 variables 15 ± 0 603.5 ± 30.5 0.1213 ± 0.0083 106 ± 5.5 762.55
16 variables 87 ± 0 14349.5 ± 1254.5 6.4142 ± 0.0756 144 ± 26.5 655.36
32 variables 201 ± 0 48787 ± 6977.0 38.4706 ± 0.3846 3682.5 ± 4672.3 14,910.04
64 variables 129 ± 0 28384.5 ± 3205.5 32.1697 ± 0.6087 2978 ± 890.5 17,365.12
127 variables 255 ± 0 103871.5 ± 580.5 187.2764 ± 1.7365 5071.5 ± 693.0 22,678.94

Table 6 presents the Median and MAD of the original and transpiled ansatz’s
depth, the transpilation time, queuing time, and the overall execution time,
while Figs. 10 and 11 show the obtained non-dominated front for bi-objective
problems requiring 64 and 127 qubits. It is worth noting that the queuing time
considers both the sampling and expectation value estimation phases. The results
in Table 6 and Figs. 10 and 11 prove that our aggregation-based parallel MO-
QAOA is feasible on real-quantum computers and optimises their use by leverag-
ing simultaneously all the QPUs. Although, to enhance its practicality, the IBM
QPU-time limitation needs to be relaxed. Also, today’s IBM transpilation would
need to be enhanced to be faster and produce lighter ansatz. In addition, IBM
hardware would need to be enhanced to execute more complex ansatz and cali-
bration of machines would need to be less pervasive and avoid cancelling users’
jobs. So, to enhance our proposal’s practicality on today’s quantum computers,
we plan as next step to: (I) design an ansatz that combines and optimises all
the sub-problems simultaneously. (II) Design proposals that can perform well
with a reduced layering to produce lighter transpiled ansatz.

6 Conclusions and Research Perspectives

This work proposes a sequential and a parallel multi-objective QAOA using
weighted-sum and Tchebycheff decomposition. The experiments have been done
using diverse 2-4 objectives benchmarks of different types and sparsity. Experi-
ments have been made using 2-2000 weight-aggregation configurations running
on 2000 slave machines/jobs where an IBM quantum computer simulator as
well as three 127-qubits’ real quantum computers have been used. The results
have shown a decrease up to 89% of the execution time, which is more suitable
for today’s NISQ quantum machines, as well as taking advantage of the existing
classical machines’ facilities to optimise quantum simulation. Our proposal turns
out to be feasible on real quantum computers, but would be more practical if
manufacturers remove QPU time limitations. This being said, as a next step, we
plan to (I) implement our mathematical Tchebycheff approach, (II) test our
approach on higher-order polynomials, and (III) design an approach that will
combine all the problems’ objectives into one shallow quantum ansatz.
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Abstract. In evolutionary multi-objective optimization (EMO), perfor-
mance indicators are often used to measure the quality of non-dominated
solution sets obtained by EMO algorithms. However, the reliability of the
performance indicators has not been well studied. In this paper, we com-
pare the quality of non-dominated solution sets using four performance
indicators: hypervolume (HV), inverted generational distance (IGD),
inverted generational distance+ (IGD+), and additive epsilon (ε+). Our
experimental results show that different performance indicators produce
similar results when they are applied to commonly-used benchmark test
problems such as DTLZ1 and DTLZ2. However, for real-world problems,
we obtained significantly different comparison results from these indica-
tors. Even when we use the same HV indicator, we obtain significantly
different results depending on the reference point specifications. These
observations suggest the importance of the choice of an indicator for per-
formance comparison of EMO algorithms on real-world problems. When
the HV indicator is used, the choice of a reference point is also impor-
tant. Moreover, our observations suggest the necessity of using multiple
indicators (including the HV indicator with multiple reference points) to
obtain reliable performance comparison results.

Keywords: Evolutionary multi-objective optimization · performance
comparisons · performance indicators · reliability

1 Introduction

In many real-world applications, it is often necessary to solve problems with
multiple conflicting objectives [16]. These problems, known as multi-objective
optimization problems, do not have a single solution that optimizes all objec-
tives simultaneously. Typically, a set of Pareto optimal solutions is obtained to
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represent the trade-offs among the objectives. A Pareto front is formed when all
Pareto optimal solutions are projected onto the objective space [2,4].

In the evolutionary multi-objective optimization (EMO) field, a major focus
is on developing effective and efficient EMO algorithms that search for a set
of non-dominated solutions to approximate the entire Pareto front. EMO algo-
rithms, known for their population-based search mechanism, naturally offer the
advantage of obtaining multiple solutions in a single run, thus eliminating the
necessity to repeatedly apply an algorithm to obtain such a solution set [2].
Therefore, the goal of EMO algorithms is to obtain a set of non-dominated solu-
tions with good convergence (i.e., close to the Pareto front) and large diversity
(i.e., a wide range of solutions covering the entire Pareto front). Over the years,
numerous EMO algorithms have been proposed with the aim of achieving this
goal.

When a new EMO algorithm is proposed, it is typically evaluated by compar-
ing its performance with other state-of-the-art EMO algorithms. Comparisons
are usually conducted on benchmark test problems and/or real-world problems.
Then, the performance of each algorithm is evaluated using performance indica-
tors. The results of these evaluations are often presented in comprehensive tables
to demonstrate the superior performance of the newly proposed algorithm over
the compared EMO algorithms based on some selected performance indicators
[10]. Although it is common practice to draw conclusions about the superiority
of the proposed EMO algorithm on the basis of numerical indicator values in
comparison with other EMO algorithms, the reliability of these values in accu-
rately representing the true performance of each EMO algorithm has not been
carefully investigated.

For evaluating the quality of non-dominated solution sets obtained by EMO
algorithms, more than 60 performance indicators have been proposed in the lit-
erature [1,12]. Among them, the most frequently-used indicators are the hyper-
volume (HV) [15,25] and inverted generational distance (IGD) [3] indicators.
The HV indicator is commonly used because of its Pareto compliant property.
However, as the number of objectives increases (e.g., more than 10), the com-
putational time of HV increases exponentially. While IGD is not Pareto com-
pliant, it has been extensively used in many studies. This is primarily due to
its computational efficiency, especially in many-objective optimization. A modi-
fied version of IGD, i.e., IGD+ [9], has received increasing attention as a weakly
Pareto compliant indicator and has been used in some recent studies for perfor-
mance comparison of EMO algorithms. The additive epsilon (ε+) indicator [22]
is also a weakly Pareto compliant indicator, and it is useful for measuring the
convergence of a solution set.

For the purpose of understanding the reliability of performance indicators in
the EMO field, in this study, we focus on the four aforementioned indicators:
HV, IGD, IGD+, and ε+. It is critical to know how reliable these indicators are,
since they are extensively used in EMO studies for performance comparisons.
Using these four indicators, we compare different non-dominated solution sets
generated by EMO algorithms. In addition, we use different specifications of
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the reference point for the HV indicator in order to understand the effect of its
specifications on performance comparison results.

This paper is organized as follows. First, Sect. 2 provides background infor-
mation on the four performance indicators. Then, Sect. 3 presents experimental
results and analysis. Finally, Sect. 4 concludes the paper.

2 Background

In general, a multi-objective optimization problem can be formulated as follows:

Minimize (f1(x), f2(x), ..., fm(x)), subject to x ⊆ X, (1)

where m is the number of objectives, x = (x1, x2, ..., xD) is a D-dimensional
decision vector, X is the feasible region (search space) of x, and fi(x) is the i-th
objective to be minimized (i = 1, 2, ...,m).

Let us consider two solutions a = (a1, a2, ..., am) and b = (b1, b2, ..., bm) in the
objective space. a is said to Pareto dominate b iff ai ≤ bi for all i ∈ {1, 2, ...,m}
and aj < bj for at least one j ∈ {1, 2, ...,m}. Let Z be a set of solutions with
|Z| objective vectors, i.e., Z = {z1, z2, ..., z|Z|}. The set Z is referred to as a
non-dominated set when no objective vector in Z is dominated by any other
objective vector in Z. A performance indicator allows quantitative comparisons
by mapping non-dominated sets into real numbers. The following subsections
provide a brief explanation of each performance indicator: HV, IGD, IGD+ and
ε+.

2.1 Hypervolume (HV)

Given a non-dominated solution set Z ⊂ Rm and a user-specified reference point
r = (r1, r2, ..., rm) ∈ Rm, the HV indicator calculates the volume of the region
enclosed by the solution set Z and the reference point r. Formally, the HV of Z
is defined as follows:

HV(Z, r) = L
( ⋃

z∈Z

[f1(z), r1] × ... × [fm(z), rm]

)
, (2)

where L(·) is the Lebesgue measure. The larger the HV value, the better the
quality of the non-dominated solution set Z in (2).

2.2 Inverted Generational Distance (IGD)

For a given non-dominated solution set Z ⊂ Rm and a reference point set
Q = {q1,q2, ...,q|Q|} ⊂ Rm, the IGD indicator calculates the average distance
from each reference point to its nearest solution in Z as follows:

IGD(Z) =
1

|Q|
|Q|∑
j=1

min
zi∈Z

dist(zi,qj), (3)
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where dist(zi,qj) is the Euclidean distance between zi and qj in the objective
space. The smaller the IGD value, the better the quality of the solution set Z in
(3).

2.3 Inverted Generational Distance+ (IGD+)

The IGD+ indicator is a modified version of the IGD indicator. The distance
calculation of IGD+ takes into account the Pareto dominance relation between
a reference point and an objective vector. Thus, the IGD+ indicator is weakly
Pareto-compliant. As in the IGD indicator, the calculation of the IGD+ value
also requires a set of reference points. Given a non-dominated solution set Z and
a reference point set Q, the IGD+ indicator value is calculated as follows:

IGD+(Z) =
1

|Q|
|Q|∑
j=1

min
zi∈Z

dist+(zi,qj), (4)

where dist+(zi,qj) =
√∑m

k=1 (max{zik − qjk, 0})2. A solution set with a lower
IGD+ value is considered to be of higher quality.

2.4 Additive Epsilon (ε+)

Considering a non-dominated solution set Z ⊂ Rm and a reference point set
Q ⊂ Rm, the ε+ indicator calculates the minimum shift of Q such that each
point in Q is weakly dominated by at least one solution in Z. It can be calculated
as follows:

ε+(Z) = max
qj∈Q

min
zi∈Z

max
k∈{1,...,m}

(zik − qjk) (5)

The smaller the value of ε+, the better the convergence of a solution set.

3 Experiments

To examine the reliability of each performance indicator, we begin by comparing
the quality of various non-dominated solution sets using HV, IGD, IGD+ and
ε+. For HV, five different reference point specifications are used, i.e., r = (r, ..., r)
where r = 1.1, 1.2, 1.5, 100, and 1000 in the normalized objective space with the
ideal point (0, 0, ..., 0) and the nadir point (1, 1, ..., 1). Therefore, a total of eight
indicators are used in our experiments. Usually, the reference point r = (r, ..., r)
is specified as 1 ≤ r ≤ 1.5 in many studies. The other two specifications (i.e.,
r = 100 and 1000) is to examine the effect of inappropriate specifications.

In our experimental setup, we use 50 solution sets, which are the current
populations from the 1st to the 50th generations of a single run of an EMO
algorithm on a test problem. That is, we generate 50 solution sets from a single
run of an EMO algorithm with the termination condition of 50 generations. The
following three-objective problems are used in our experiments:
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– Artificial test problems: DTLZ1, DTLZ2, DTLZ3, and DTLZ4 [7].
– Real world problems: RWA2, RWA3, RWA4, RWA5, RWA6, and RWA7 [20].

We use three-objective optimization problems in our experiments so that we
can visually examine the quality of a solution set and its performance indicator
values.

Three EMO algorithms are used in this experiment: MOEA/D-PBI (with
θ = 5) [21], PREA [18], and NSGA-III [5]. Each algorithm generates 50 solution
sets from its single run for each problem. All experiments are conducted on the
PlatEMO platform [17]. In order to compute the IGD, IGD+ and ε+ indicator
values, a reference point set is required. For the artificial test problems (i.e.,
DTLZ problems), we use the reference point sets provided in PlatEMO, which
contains about 10,000 solutions sampled from the true Pareto front of each prob-
lem. This setting is commonly used in many studies. For the real-world problems
(i.e., RWA2-7), we use the reference point sets provided by the authors in [20].
The population size is specified as 91 for all three-objective problems. We run
31 independent runs for each EMO algorithm on each problem.

For examining the reliability of each indicator, we rank the 50 solution sets
obtained from a single run of each EMO algorithm on each test problem using
each indicator. That is, we obtain eight different rankings for the 50 solution sets
(i.e., for each run of each algorithm on each test problem). Among the 50 solution
sets, a solution set with the best indicator value receives a rank of 1. Conversely,
a solution set receives a rank of 50 if it has the worst indicator value among the
50 solution sets. If two solution sets have the same best indicator value, they are
each assigned an average rank of 1.5. As a result of this approach, a ranking of the
50 solution sets is obtained for each indicator, which allows a visual comparison
of the eight indicators for different solution sets. In this study, the reliability of
indicators refers to consistency among the indicators in rankings of 50 solution
sets.

Since the average performance of multiple runs is usually used in performance
comparison of EMO algorithms in the literature, we also calculate the ranking
for the average performance over 31 runs in the following manner. Using 31 runs
of each EMO algorithm on each test problem, we first calculate the average
indicator value of the 31 solution sets at the 1st generation for each indicator.
Next, we calculate the average indicator value at the 2nd generation. In this
manner, we have 50 average indicator values of each indicator for each EMO
algorithm on each test problem. Then, we create the ranking of those 50 average
indicator values. This ranking can be viewed as the average ranking of the 50
generations by each indicator for each EMO algorithm on each test problem.

Figure 1 shows the average ranking of the 50 generations by each of the eight
performance indicators on the DTLZ1, DTLZ2, and DTLZ3 problems. In each
sub-figure of Fig. 1, the X-axis corresponds to the generation ID, which can be
also viewed as solution set ID. For example, in the first sub-figure of Fig. 1,
the results at ID 30 indicates that they are obtained at the 30th generation by
MOEA/D for the DTLZ1 problem. The Y-axis in each sub-figure represents the
rank based on the corresponding indicator. For example, the average performance
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Fig. 1. Average ranking of the 50 generations by each performance indicator over 31
independent runs for DTLZ1, DTLZ2 and DTLZ3 problems.

at the 30th generation with ID 30 for MOEA/D on DTLZ1 has a consistent rank
of 21 across all performance indicators. It is therefore reasonable to assume that
the performance indicator values at the 30th generation are reliable. In fact, it
can be observed that (similar) consistent rankings are obtained for the artificial
test problems by the eight performance indicators in Fig. 1. When NSGA-III is
used on DTLZ3 in the third sub-figure of Fig. 1, all generations have the same
rank by the HV indicator with r = 1.1, 1.2, 1.5. This is because no solutions
dominate the reference point in the first 50 generations. That is, the HV values
of all solution sets are zero. When the reference point is unusually large (i.e., r =
100 and 1000), we can see that the performance is improved at every generation.
This observation show that the frequently-used reference point specifications are
not always appropriate especially when we evaluate the performance of early
generations.

Fig. 2. Average ranking of the 50 generations (obtained by MOEA/D, PREA, and
NSGA-III) over 31 independent runs by each performance indicator on RWA4 problem.

In contrast, Fig. 2 on RWA4 highlights the inconsistency in the average rank-
ings between the IGD indicator and the other seven performance indicators.
Interestingly, in the first sub-figure in Fig. 2 on the average performance of
MOEA/D, the best rank is obtained at the 1st generation (i.e., ID 1) when
we use the IGD indicator. The average IGD performance is quickly deteriorated
by MOEA/D from the 1st generation to the 12th generation. After that, the
average IGD performance is gradually improved by MOEA/D. The IGD perfor-
mance at the 50th generation is worse than that in the first seven generations.
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Whereas these observations are obtained from the blue results by IGD in the
first sub-figure in Fig. 2, it is not likely that the IGD results show the true search
behavior of MOEA/D on RWA4 since usually the initial population is gradually
improved in the first 50 generations as shown by all the other indicators in the
first sub-figure in Fig. 2. Somewhat similar observations are obtained from the
other sub-figures in Fig. 2. In the middle sub-figure on the average performance
of PREA on RWA4, the average IGD performance starts to deteriorate at the
5th generation, and start to improve at the 14th generation. In the last sub-figure
on the average performance of NSGA-III on RWA4, the best average IGD per-
formance is obtained at the 6th generation. The average IGD performance in
the last sub-figure shows frequent ups and downs over the 50 generations. In
this figure, the average IGD+ and ε+ performance shows some ups and downs in
the last 20 generations, and the average HV performance also show some minor
ups and downs. One clear observation in Fig. 2 is that the average IGD perfor-
mance is totally different from the average performance evaluated by the other
indicators.

Fig. 3. Ranking of 50 solution sets of a single run (obtained by MOEA/D, PREA, and
NSGA-III) by each performance indicator on RWA4 problem.

To understand why the average IGD performance shows such a suspicious
behavior on the RWA4 problem, we select for each algorithm a single run with
the median IGD value at the 50th generation among 31 runs. Figure 3 shows
the rank of the 50 solution sets of the median run of each algorithm. In each
sub-figure, we can obtain the following observations from the IGD-based ranking
results (blue lines):

– MOEA/D: The solution set at the 3rd generation with ID 3 has the best rank.
The solution set at the 12th generation with ID 12 has the worst rank.

– PREA: The solution set at the 3rd generation with ID 3 has the best rank.
The solution set at the 13th with ID 13 has the worst rank.

– NSGA-III: The solution set with ID at the 5th generation with ID 5 has the
best rank. The solution set at the 14th generation with ID 14 has the worst
rank.

For analyzing these observations, Figs. 4, 5 and 6 show the solution sets corre-
sponding to the best rank, worst rank, and the final population (Generation 50)
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in the objective space for each algorithm. Compared to later generations (e.g.,
Generation 50), solutions in early generations (e.g., Generation 3 in MOEA/D
and PREA, and Generation 5 in NSGA-III) have not yet converged to the Pareto
front. Despite this, the IGD indicator tends to assign high evaluations to solu-
tion sets in the early generations because their distribution closely resembles the
reference point set (i.e., the blue points in each figure). This observation indi-
cates that the IGD indicator may not be reliable. In order to avoid misleading
comparison results, multiple indicators should be used in addition to the IGD
indicator in performance evaluation.

Fig. 4. Solution sets corresponding to the best rank, worst rank, and the final pop-
ulation (Generation 50) in the objective space for MOEA/D. The red points are the
solution set, and the blue points are the reference point set (i.e., approximated Pareto
front). (Color figure online)

Fig. 5. Solution sets corresponding to the best rank, worst rank, and the final popula-
tion (Generation 50) in the objective space for PREA. The red points are the solution
set, and the blue points are the reference point set (i.e., approximated Pareto front).
(Color figure online)
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Fig. 6. Solution sets corresponding to the best rank, worst rank, and the final pop-
ulation (Generation 50) in the objective space for NSGA-III. The red points are the
solution set, and the blue points are the reference point set (i.e., approximated Pareto
front). (Color figure online)

Figure 3 shows that the solution sets in early generations have bad evaluations
results by all the other indicators. The IGD best solution sets in Figs. 4, 5 and
6 are ranked within the worst five ranks by all the other indicators in Fig. 3.
This is because the solution sets in early generations are not close to the Pareto
front. As a result, they do not have large HV values. Whereas IGD+ has a very
similar formulation to IGD, IGD+ shows much similar behavior to HV than
IGD. This is because IGD+ calculates the average distance from the reference
point sets to the dominated region by the solution set, which is closely related
to the volume of the dominated region by the solution set. In Fig. 3, we can
observe similar behaviors of IGD+ and HV independent of the reference point
specification. In general, the reference point specification has a large effect on
HV-based performance comparison results. This is because boundary solutions
have large HV contributions for a large reference point (i.e., far away from the
Pareto front) but almost zero contributions for a small reference point (i.e., close
to the nadir point). However, since the Pareto front of RWA4 is a combination of
lines (i.e., degenerate Pareto front) as shown in Figs. 4, 5 and 6, such a boundary
solution effect disappears (since there is no inside solutions on the Pareto front).
As a result, almost the same HV-based comparison results are obtained in Fig. 3
independent of the reference point specifications from r = 1.1 to r = 1000.

In the previous experiments, we examined the reliability of performance indi-
cators for different solution sets obtained by a single EMO algorithm at different
generations. In the following experiments, we create the average ranking of ten
EMO algorithms based on their final populations using each indicator on each
test problem. This experiment is to examine the dependency of the algorithm
comparison results on the choice of an indicator. We use ten algorithms in our
experiments: SPEA2 [24], NSGA-II [6], IBEA [23], MOEA/D [21], MOEA/D-DE
[11], NSGA-III [5], θ-DEA [19], onebyoneEA [13], DEA-GNG [14], and PREA
[18]. This set of ten algorithms includes five algorithms proposed in 2001–2010,
and five algorithms proposed in 2011–2020. Two termination conditions are con-
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sidered in our experiments: 50 generations and 500 generations. All algorithm
configurations follow PlatEMO’s default specifications. We perform 31 indepen-
dent runs for each EMO algorithm on each test problem.

Fig. 7. Average ranking of the ten EMO algorithms by each indicator on the DTLZ2
problem under the termination condition of 50 generations.

Figure 7 presents the comparison results for DTLZ2 under the termination
condition of 50 generations. The X-axis of Fig. 7 denotes each algorithm ID, e.g.,
1 represents SPEA2, 2 represents NSGA-II, and so on. On each sub-figure, the
Y-axis represents an algorithm’s average rank using the corresponding perfor-
mance indicator. For example, in the first sub-figure at the upper left, SPEA2
(Algorithm 1) receives an average rank of 5 based on the IGD indicator. The
average ranking of the 10 algorithms is based on the average indicator value over
31 runs. It should be noted that all the eight sub-figures in Fig. 7 evaluate exactly
the same 31 runs of each EMO algorithm (i.e., exactly the same 31 solution sets
obtained by each EMO algorithm).

From Fig. 7, we can observe some similarity from the eight sub-figures
whereas they are different. From more careful examination of Fig. 7, we can
see that the five sub-figures by IGD+, ε+, and HV with r = 1.1, 1.2 and 1.5 are
similar. The sub-figure by IGD is different from those figures (e.g., IBEA with
ID 3 is rank 9 whereas IBEA is rank 2 by IGD+ and rank 1 by ε+ and HV
with r = 1.1, 1.2, 1.5). We can also see that a small difference of the reference
point specification between r = 1.1 and r = 1.2 leads to a small difference in
the performance comparison results, and a large difference between r = 1.1 and
r = 1000 leads to a large difference in the performance comparison results.

For DTLZ2 (and other DTLZ test problems), the difference of performance
comparison results by the eight indicators becomes small (i.e., similar comparison
results are obtained from different indicators) when the termination condition is
large. For example, Fig. 8 shows the performance comparison results for DTLZ2



Reliability of Indicator-Based Comparison Results 295

Fig. 8. Average ranking of the ten EMO algorithms by each indicator on the DTLZ2
problem under the termination condition of 500 generations.

Fig. 9. Average ranking of the ten EMO algorithms by each indicator on the RWA3
problem under the termination condition of 500 generations.

under the termination condition of 500 generations. On DTLZ2, all indicators
agree that MOEA/D, NSGA-III, and θ-DEA are the top three performing algo-
rithms. However, for real-world problems, different performance indicators gen-
erate totally different results. Figure 9 shows the comparison results for RWA3
under the termination condition of 500 generations. It can be seen that IBEA
is the best when evaluated by IGD+ and HV with r = 1.1 (the performance
comparison results by IGD+ and HV with r = 1.1 are very similar). However,
IBEA ranks fourth and fifth when it is evaluated by ε+ and IGD, respectively.
Furthermore, with different reference point specifications for HV calculation, the
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HV indicator gives totally different results. For example, while IBEA is the best
when HV is used with r = 1.1, it is the third worst when HV is used with r = 100
and r = 1000. Overall observations from Fig. 9 are similar to those from Fig. 7:
Similar performance comparison results are obtained from IGD+ and HV with
r = 1.1, 1.2, 1.5. Those similar comparison results are clearly different from IGD-
based and ε+-based performance comparison results and HV-based comparison
results with r = 100 and 1000.

Experimental results on the other test problems are available in a sup-
plementary file (https://github.com/HisaoLabSUSTC/PPSN2024_Performance
Indicators). We can obtain similar observations from the results in the supple-
mentary file. Our observations clearly suggest the need of using multiple per-
formance indicators when we evaluate the performance of EMO algorithms. If
we use only the IGD indicator for some reasons (e.g., exact HV calculation is
unrealistic due to very long computation time), some misleading conclusions can
be obtained about the performance of compared EMO algorithms. The use of
the IGD indicator alone should be avoided in any case. Since IGD+ show similar
performance comparison results with HV-based results with a reasonable speci-
fication of the reference point (i.e., r = 1.1, 1.2, 1.5), it is advisable to use both
IGD and IGD+ when the use of the HV indicator is unrealistic. This suggestion
is aligned with the results reported in [8], where HV and IGD+ have similar
near-optimal solution distributions. Whereas IGD and IGD+ use exactly the
same reference point set for distance calculation, totally different performance
comparison results can be obtained as shown in Fig. 9.

4 Conclusions

In this paper, we examined the reliability of indicator-based comparison results
of EMO algorithms. Experimental results showed that when we used frequently-
used test problems such as DTLZ, we obtained very similar performance com-
parison results from all the examined indicators (e.g., Fig. 8). This means that
the choice of an indicator and the implementation of the selected indicator are
not very important for such test problems. However, when real-world problems
were used, we obtained clearly different comparison results from some indicators
(e.g., Fig. 9). Even from the same HV indicator, we obtained clearly different
comparison results depending on the specification of the reference point (Fig. 9).
This observation suggests the importance of the choice of an indicator and the
implementation of the selected indicator. In many cases, IGD-based performance
comparison results are clearly different from the other indicator-based compar-
ison results. In almost all cases, similar comparison results are obtained from
IGD+ and HV with an appropriate reference point specification. For ε+-based
comparison results, there are cases where it performs similarly to IGD, while
other cases are more aligned with HV and IGD+. These observations strongly
suggest the necessity of using multiple indicators to ensure reliable performance
evaluation. When IGD is used, it should be complemented with other (weakly)
Pareto compliant indicators such as IGD+ (when the use of HV is very time
consuming) and ε+.

https://github.com/HisaoLabSUSTC/PPSN2024_PerformanceIndicators
https://github.com/HisaoLabSUSTC/PPSN2024_PerformanceIndicators
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More indicators will be used in future work to further examine performance
comparison reliability. It should also be noted that for IGD, IGD+, and ε+,
the specification of the reference point sets might influence their results. In the
future, we will also examine the performance comparison reliability of these
indicators with different reference point set specifications. Through these inves-
tigations, comprehensive guidelines about the use of performance indicators for
evaluating the performance of EMO algorithms will be established. This will
ensure high reliability of performance comparison results and preventing creat-
ing misleading comparison results.
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Abstract. Fitness landscape is a valuable framework to understand
optimisation problems. In single-objective optimisation, by displaying
fitness landscape in a 3D space with the “height” representing the fit-
ness (objective function value) of solutions, one can easily comprehend
a variety of problem characteristics (optimality, multi-modality, level
of ruggedness, etc.) and spatial features of the search space (basin,
ridge, funnel, etc.). However, such straightforward visualisation cannot
be directly extended to the multi-objective optimisation case in which
a solution corresponds to a vector of values on multiple objective func-
tions. In this paper, we make an attempt to address this issue. Instead of
objective function values, we use the Pareto dominance relation to strat-
ify solutions, introducing a method we term Pareto landscape for visual-
ising multi-objective problem landscape. We compare Pareto landscape
with well-established fitness landscape visualisation methods, including
cost landscape, gradient field heatmap and PLOT, and show that Pareto
landscape can capture problem characteristics that the other methods
cannot do. Lastly, we present the Pareto landscapes of commonly used
benchmark problems (ZDT, DTLZ, WFG and BBOB) in the domain,
and discuss their features and characteristics.

1 Introduction

Fitness landscape plots serve as a valuable framework for understanding optimi-
sation problems. They facilitate an intuitive grasp of complex search spaces (also
known as decision spaces) and challenges confronted by search heuristics, inspir-
ing potential improvements and development of new optimisation algorithms.

In the context of multi-objective optimisation, there is a growing interest
in developing visualisation tools for presenting fitness landscapes [3,28]. This
ranges from simply integrating landscape information (e.g., local Pareto optimal
sets) into the objective space [28] to designing networks that graphically rep-
resent optimal solutions [21,22] and sets [7], as well as the behaviour of search
algorithms [24]. While these visualisation tools effectively capture the structure
of (local) optimal solutions/sets and their connectedness, the compression and
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abstract representation involved make it difficult for people to envision the spa-
tial location of solutions/sets and their associated adjacent structures.

Another approach, which can overcome the above issue, is to directly dis-
play the decision space of an optimisation problem with an additional element
(e.g., colour) representing solution quality [28]. This encompasses early attempts
like cost landscape (aka dominance ratio) [11] and recent efforts such as multi-
contour plot [18], gradient field heatmaps [17], line cuts [2,30], local dominance
landscape [8], and PLOT [26]. These methods are similar to the fitness land-
scape plots in single-objective optimisation, where the native decision space is
considered, allowing them to present important problem characteristics such as
location, shape and size of attraction basins. However, they may not be very
accurate in some cases due to the effect of the behaviour of the search algorithm
used to locate local optima (e.g., in gradient field heatmaps [17] and PLOT [26]),
or the criterion considered to measure the “fitness” of solutions (e.g., in cost land-
scape [11]), which we will show later on.

In this paper, we attempt to develop a fitness landscape visualisation method
for multi-objective optimisation, termed Pareto landscape, that can accurately
represent problem characteristics and spatial features. The idea of Pareto land-
scape is simple. It considers the level of the Pareto non-domination to which a
solution belongs when determining its fitness. To evaluate Pareto landscape, we
first compare it with its counterpart in single-objective optimisation to identify
their similarities and differences. Then, by utilising a class of test functions flexi-
ble for embedding rich features [9,15,19], we demonstrate that Pareto landscape
can capture various problem characteristics (e.g., multi-modality and neutrality),
as well as spatial features of the decision space (e.g., valleys, plateaus, ridges and
funnels). Moreover, we compare Pareto landscape with three relevant landscape
visualisation methods and discuss their differences. Lastly, we use Pareto land-
scape to visualise commonly-used multi-objective benchmark functions in the
domain, including ZDT [32], DTLZ [6], WFG [13] and BBOB (bbob-biobj) [2],
to delineate their features and characteristics, particularly the challenges they
may pose for search heuristics.

2 Preliminaries

2.1 Terminology in Multi-objective Optimisation

For multi-objective optimisation problems (MOPs), without loss of generality, we
seek to simultaneously minimise m objective functions f(x) = (f1(x), ..., fm(x)),
where f(x) (x ∈ X) is a mapping of an n-dimensional variable vector to an m-
dimensional objective vector; namely, f : X → Z where X ⊆ R

n and Z ⊆ R
m.

Unlike single-objective optimisation, where there are only three relations
between solutions with respect to their quality, better, worse and equal, in multi-
objective optimisation there is a situation that two solutions are not comparable;
namely, one solution is better on some objective(s) and the other is better on
some other objective(s). This situation is termed as Pareto non-domination. For-
mally, a decision vector x is said to (Pareto) dominate another x′, denoted by
x ≺ x′, iff
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fi(x) ≤ fi(x′) ∀i ∈ {1, ...,m} ∧ f(x) 	= f(x′) (1)

For a solution set S, a solution x (x ∈ S) is called a (Pareto) nondominated
solution if there does not exist any x′ ∈ S such that x′ ≺ x. The set of such
nondominated solutions is called the nondominated set of S, and its mapping in
the objective space is called the nondominated front. For an MOP, in the case
that S represents all possible feasible solutions (i.e., S = X), the nondominated
set is called the Pareto optimal set (or global efficient set). The mapping of the
Pareto optimal set in the objective space is called the Pareto optimal front.

Besides the global efficient set, there usually exist some local optima in the
search space, namely the local efficient sets, each consisting of a set of local
efficient points. In continuous multi-objective optimisation, a solution x is said
to be local efficient if there does not exist y ∈ Bε that y ≺ x [4], where Bε ⊂ X
represents an ε ball for a sufficiently small ε > 0, meaning that all neighbours of
x within a sufficiently small distance do not dominate x.

An important property in continuous multi-objective optimisation is the
multi-objective gradient (MOG) [10]. MOG is a vector that is oriented towards
a descent direction by the sum of its normalised single-objective components.
It has a desired characteristic that MOG = 0 if a solution is a local or global
efficient solution. Formally, MOG is defined as

�f(x) =
m∑

i=1

α∗
i �fi(x) (2)

where α∗ is a weight vector determined based on

α∗ = argmin
α

{∥∥∥∥∥

m∑

i=1

αi�fi(x)

∥∥∥∥∥

∣∣∣∣∣ αi ≥ 0,
m∑

i=1

αi = 1

}
(3)

2.2 Related Work

Amongst various fitness landscape visualisation methods in multi-objective opti-
misation [3,28], we consider the ones that work on the native decision space
(rather than a compressed, abstract space). Specifically, we consider three visual-
isation methods, cost landscape [11], gradient field heatmap [17] and PLOT [26],
which are relevant to the proposed method. We now briefly introduce them (in
Sect. 4 we will compare our method against them).

Cost Landscape [11]. Proposed in Carlos M. Fonseca’s PhD thesis, cost land-
scape is a useful visualisation tool for observing the global structure of a multi-
objective problem. In some visualisation platforms (e.g., BBOB visualisation
website [1]), it is also called dominance ratio. In cost landscape, the fitness
(which can be reflected by colour or height in the plot) of a point is the number
of points that dominate it in the point set considered (i.e., Pareto rank [11]).

Gradient Field Heatmap (GFH) [17]. GFH, proposed by Kerschke and
Grimme, is the first attempt to employ gradient to visualise the landscape of
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multi-objective problems. In GFH, the fitness (represented by colour) of a point
is obtained by the cumulative lengths of MOGs (Eq. (2), the sum of normalised
single objective gradients) on the path to a locally efficient point. More specifi-
cally, starting from a point and a variable to store the cumulative MOGs, GFH
performs a search that moves to one of its 8 neighbouring points according to
its MOG, and at the same time, accumulates the MOG of each step. The move
is iterated until it hits a local efficient point. Then the fitness of the starting
point is the cumulative length of the MOGs. GFH is considered a good tool to
capture the local structures of the problem [28].

Plot of Landscapes with Optimal Trade-offs (PLOT) [26]. More recently,
Schäpermeier et al. developed PLOT, which can be seen as an improved version
of GFH in combination with cost landscape. Similar to GFH, PLOT employs the
cumulative length of MOGs as its fitness, but with a grey-scale colour scheme.
The global and local efficient points are highlighted by the colour on the basis
of the Pareto rank considered in cost landscape. As such, it is very clear to see
global/local optimality structure of the problem.

3 The Proposed Pareto Landscape

Classical fitness landscape, introduced by the geneticist Sewall Wright in
1930s [31], is a 3D “mountainous” landscape in which the genotypes (decision
variables) of solutions are organised in the x-y plane and the phenotype (fit-
ness) is plotted as the height (i.e., on the z axis). Fitness landscape plots have
been widely used in optimisation and evolutionary computation [16,25]. They
enable an intuitive understanding of diverse problem characteristics and spa-
tial features, encompassing peaks, valleys, plateaus, ridges, and funnels, as well
as optimality-related aspects like multi-modality, level of ruggedness, and the
shape/location of (local) optimal solutions along with their attraction basins.

Yet, such straightforward visualisation cannot be directly extended to the
multi-objective case in which a solution corresponds to a vector consisting of
values of multiple objective functions. A possible solution to this issue is to utilise
the Pareto dominance relation to sort and rank the solutions and then plot their
ranks as the height, instead of objective function values, in the landscape.

The non-dominated sorting procedure [12] is a well-established way to sort
solutions in multi-objective optimisation, e.g., used in NSGA-II [5]. It stratifies
a set of solutions into many levels based on their Pareto dominance relation,
with level 1 meaning nondominated solutions of the set, level 2 meaning new
nondominated solutions after removing the level-1 solutions, and so on. In the
proposed Pareto landscape, the “fitness” of a solution is its level after the non-
dominated sorting procedure, termed the non-domination level. Figure 1 gives
the Pareto landscape1 of a 4-objective optimisation problem called multi-point
distance minimisation problems (MP-DMPs). MP-DMPs, introduced by [19] and

1 In this paper, the points to plot Pareto landscape are those evenly distributed on a
500 × 500 grid unless specifically stated otherwise.
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Fig. 1. Pareto landscape of a four-objective multi-point distance minimisation problem
(MP-DMP) [9,15] whose four objectives of a point are the Euclidean distances of a point
in the 2D space to the four vertices of a square, respectively. The decision space of the
MP-DMP is x1, x2 ∈ [0, 1], and the Pareto optimal set of the problem is the square
(shaded region in Fig. 1(a)).

extended and generalised by [9,15], are class of increasingly popular test func-
tions which are capable of being embedded with a variety of features (see [9] for
a survey). One prominent feature of MP-DMPs is that they inherently have a 2D
decision space (despite easily accommodating an arbitrary number of objectives),
thus allowing the Pareto optimal solutions to be visually identified.

MP-DMPs, in its basic form, minimise the Euclidean distance of a solution
to the vertices of a given regular polygon, where the distance to one of these
vertices is treated as an individual objective. It can be easily derived that the
Pareto optimal region of an MP-DMP is the regular polygon.

Figure 1(b) plots the Pareto landscape of the MP-DMP in Fig. 1(a), where
the Pareto optimal solutions are highlighted in green for facilitating observation.
As can be seen in the figure, Pareto landscape can well reflect the problem’s
landscape – points being farther away from the optimal region, gradually and
symmetrically, take lower altitude (i.e., higher non-domination levels), with the
four corners of the decision space having the lowest altitude touching the x1-x2

plane. Next, we will use a toy example to explain the characteristics of Pareto
landscape, in comparison with fitness landscape in single-objective optimisation.

3.1 Properties and Characteristics of Pareto Landscape

Let us consider a set of 10 solutions (a − j) with one decision variable (x) and
two minimisation objectives (f1, f2). In the format of (x|f1, f2), these solutions
are a = (0.1|1, 4), b = (0.2|1, 3), c = (0.3|3, 3), d = (0.4|3, 4), e = (0.5|2, 3),
f = (0.6|6, 3), g = (0.7|2, 2), h = (0.8|3, 1), i = (0.9|3, 3), and j = (1.0|4, 1).
Figure 2 gives their Pareto landscape as well as the scatter plot in the objective
space. As can be seen in the figure, the 10 solutions can be divided into four
non-domination levels. Solutions b,g,h form the first level, solutions a, e, j the
second level, solutions c, i the third level, and solutions d, f the last level. Looking
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Fig. 2. A toy example of a set of 10 solutions (a− j) with one decision variable (x) and
two minimisation objectives (f1, f2), shown by Pareto landscape. They, in the format of
(x|f1, f2), are a = (0.1|1, 4), b = (0.2|1, 3), c = (0.3|3, 3), d = (0.4|3, 4), e = (0.5|2, 3),
f = (0.6|6, 3), g = (0.7|2, 2), h = (0.8|3, 1), i = (0.9|3, 3), j = (1.0|4, 1).

closer at the figure, one may find the following properties of Pareto landscape,
in comparison with fitness landscape in single-objective optimisation.

– Like fitness landscape, optimal solutions (i.e., Pareto optimal solutions in
the context of multi-objective optimisation) are always located in the highest
peak(s), such as solutions b,g,h in Fig. 2.

– Like fitness landscape, it is straightforward to see the characteristics of the
problem through Pareto landscape, e.g., local optimality and connectedness
of Pareto optimal solutions. For example, in Fig. 2 solution e is a local opti-
mal solution; optimal solution b is disconnected from the other two optimal
solutions g and h.

– Like fitness landscape, in Pareto landscape, for any two solutions, if one is
superior to the other (i.e., Pareto dominating), then the better one is always
in a higher location, such as solutions b versus a, and solutions g versus e in
Fig. 2.

– Like fitness landscape, in Pareto landscape if two solutions have identical
objective vectors, they have the same altitude, such as solutions c and i in
the figure.

– Like fitness landscape, in Pareto landscape the slope indicates the degree of
change of a solution to its neighbours (with respect to non-domination levels).
For example, in Fig. 2 the slope from solution b to solution c is steeper than
that from solution c to solution d since the level difference between b and c
is greater than that between c and d (i.e., 2 > 1).

The above are properties of Pareto landscape that are analogous to fitness land-
scape in single-objective optimisation. Nevertheless, Pareto landscape does have
its own characteristics.

– Unlike fitness landscape, higher altitude in Pareto landscape always means
being superior, irrespective of a minimisation or maximisation problem.
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Fig. 3. Pareto landscape of the four-objective MP-DMP problem with different sizes
of the considered solution set in the space, where the solutions are uniformly chosen
from 500 × 500, 200 × 200, 100 × 100 and 50 × 50 grids, respectively.

– Since Pareto landscape is based on the Pareto dominance relation rather
than objective values, solutions with significantly different objective dispari-
ties may exist within the same non-domination level provided that they are
nondominated to each other. For example, in Fig. 2 for the same-level solu-
tions d and f, on the first objective, d is significantly better than f, whereas
on the second objective, f is only slightly better than d.

– Solutions that are nondominated to each other may or may not be in the
same level; it depends on other solutions in the set. For example, in Fig. 2
solutions e and j are in the same level, whereas solutions i and j are not in
the same level as solution e (who is in the same level as j) dominates i, thus
“pushing” i down to the next level.

The reason the proposed Pareto landscape exhibits the last two character-
istics is its reliance on the Pareto dominance relation between solutions rather
than their native objective values. Pareto landscape is a “relative” landscape,
and unlike fitness landscape, the levels of solutions can change depending on
the considered solution set. That being said, the change in levels is unlikely to
affect the spatial location (i.e., height) of solutions in the landscape, provided
that a set of well-distributed solutions is sampled in the space. Figure 3 gives the
Pareto landscape of the four-objective MP-DMP problem with different sizes of
the considered set. As can be seen in the figure, despite having different scale of
non-domination levels, the four landscapes look identical.

In the following section, we will look at more examples of the MP-DMP
problem to understand how Pareto landscape reflects other characteristics of
multi-objective problems, such as multi-modality, neutrality, and scalability.

3.2 On Different MP-DMP Problem Instances

The MP-DMP problem has been frequently used to examine the behaviours
of evolutionary algorithms in the area [14,20,23,29], due to its flexibility of
equipping with diverse features [9], such as (global) multi-modality [15] and
neutrality [8]. Multi-modality means multiple Pareto optimal solutions in the
decision space mapping to the same point in the objective space, and neutrality
means solutions in a particular region having the same objective values. The
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Fig. 4. An example of the four-objective multi-modal MP-DMP with four Pareto opti-
mal regions (shaded).

Fig. 5. An example of the four-objective MP-DMP with a Pareto optimal region
(shaded) and a neutral region (dashed) of x ∈ [0.7, 0.9]2, in which f1(x) = f2(x) =
f3(x) = f4(x) = 2.

multi-modal MP-DMP is constructed by multiple polygons having the same
shape and size, where an objective is the minimisation of distances of a solution
to a set of counterpart vertices in the multiple polygons. Figure 4 gives a four-
objective multi-modal MP-DMP instance, where the four congruent squares are
Pareto optimal regions, each mapping to the whole Pareto front. As shown in
the figure, Pareto landscape can well reflect this multi-modality feature, with
the four Pareto optimal regions sitting on the four squares.

The neutrality feature of the MP-DMP problem can be easily generated
by assigning a constant value to all solutions in a region [8]. Figure 5 presents
an MP-DMP instance with a neural region of x ∈ [0.7, 0.9]2, in which f1(x) =
f2(x) = f3(x) = f4(x) = 2. Clearly, Pareto landscape can reflect this feature. All
solutions in the neutral region have the same worst level as they are dominated
by any solution in the rest of the decision space.

Another important feature of MP-DMP is its scalability in terms of the num-
ber of objectives, which is determined by the number of the vertices of the poly-
gon. Figure 6 gives the Pareto landscape of three MP-DMP instances with three,
four and six objectives. As can be seen in the figure,
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Fig. 6. Pareto landscape of the MP-DMP instances with different numbers of objec-
tives.

although different MP-DMP problems have different scales of non-domination
levels, their landscapes look very similar, indicating that the level of difficulty
they pose for search algorithms may be very similar.

4 Comparison with Existing Methods

In this section, we compare Pareto landscape with three landscape visualisation
methods, gradient field heatmap (GFH) [17], PLOT [26] and cost landscape [11].
The first two are recently proposed state-of-the-arts using a search algorithm to
locate global/local efficient sets. Their plots were obtained directly from the
moPLOT platform [27] developed by their authors. The third one is similar to
ours – the only difference is that cost landscape considers Pareto rank (i.e., the
number of solutions that dominate a solution), whereas our method considers the
non-domination level a solution is located in. Here, due to their similarity, we use
the same colour to represent their “fitness”. Note that since existing methods are
usually presented in a 2D space, for facilitating comparison, we present Pareto
landscape in a 2D space as well (i.e., the height being removed).

A landscape visualisation method is deemed helpful if it can accurately reflect
some important features in multi-objective optimisation. For example, we may
hope that it can accurately identify Pareto optimal solutions of the problem.
We may also hope that it is aligned with the Pareto dominance relation. That
is, if two solutions (especially when they sit closely) are comparable in terms
of dominance relation, it is desirable they are visibly distinguishable (i.e., hav-
ing distinct colours/height). Equally, if two solutions are nondominated to each
other, it is desirable that they have the same or similar colour/height.

4.1 Comparison with Search-Based Visualisation Methods

As search-based methods, GFH [17] and PLOT [26] first sample a large number
of points uniformly in a grid (e.g., a grid of 500 × 500 cells), and then for each
cell, it considers its adjacent cells according to the steepest multiobjective gra-
dient (MOG) direction (see Sect. 2.1) until the MOG of the cell’s point is zero.
However, in practice, in many cases locating a point whose MOG is precisely zero
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Fig. 7. GFH, PLOT, cost landscape and Pareto landscape of function 11 in bbob-
biobj [2].

Fig. 8. GFH, PLOT, cost landscape and Pareto landscape of ZDT1 [32].

may not be possible. As such, one needs to set a small number as a threshold
δ. In GFH [17] and PLOT [26], this parameter was set to δ = 1.0e − 4. On the
other side, there may be non-optimal points with a very small MOG that is less
than the threshold. Therefore, GFH and PLOT may not be able to accurately
identify the Pareto optimal set.

Figure 7 shows the result of GFH and PLOT, along with the two non-search-
based visualisation methods cost landscape and Pareto landscape, on the 2D
bbob-biobj test function 11 [2], denoted by BBOB11. The Pareto optimal set of
BBOB11 is a rectangle in the middle of the decision space. As can be seen in the
figure, GFH and PLOT fail to identify the Pareto optimal set of the problem; the
blue colour, which is supposed to represent Pareto optimal solutions, misses the
target. In contrast, cost landscape and Pareto landscape can accurately reflect
the Pareto optimal set (represented by the green points).

In addition, the way that search-based methods perform the search also plays
a role in their accuracy. In GFH and PLOT, the search is conducted on the pixel
of the grid. For each step, the move can only be taken in 8 possible directions:
up, down, left, right, and the 4 diagonals, which may not be aligned with the
actual steepest direction of MOG. Moreover, the fitness of a point is calculated
based on the length of the path to a local efficient set. Points which have the
same quality may have different path lengths. For example, Fig. 8 shows the
result of GFH, PLOT, cost landscape and Pareto landscape on the well-known
problem ZDT1 [32]. Looking closely at Fig. 8(a) and (b), one may see that there
is a diagonal line with inferior fitness than points on either side. This does not
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mean the points in the diagonal line are worse than others in quality, but means
they have longer length than others. As such, the search-based methods, which
well reflect the gradient direction, may not be very accurate to reflect the quality
of solutions.

In Fig. 8, one may also find differences between cost landscape and the pro-
posed Pareto landscape, which is not like the example in Fig. 7 where the plots
obtained by the two methods are virtually the same. For example, in cost land-
scape (Fig. 8(c)), the worst area is the top-left, whereas in Pareto landscape
(Fig. 8(d)), the worst is the top. In the next section, we will discuss differences
between cost landscape and Pareto landscape.

4.2 Comparison with Cost Landscape

Cost landscape [11] measures the fitness of a point based on the number of points
in the whole set that dominate the point. Like Pareto landscape, it provides
“relative” fitness of the set considered. However, cost landscape is often much
more sensitive than Pareto landscape to points in the set considered. Adding
every new point that dominates the concerned point will change its fitness in cost
landscape. This, however, is not the case for Pareto landscape since it considers
the level of a Pareto optimal front. For example, in the example of Fig. 2, adding
any nondominated points between g=(2,2) and h=(3,1) will not affect the level
of any point in the set. However, for cost landscape, adding such a point will
affect the fitness of points d, c, i and f. This characteristic of Pareto landscape
can make a point’s fitness more steady and robust to other points.

Figure 9 gives such an example, where the 3D plots of cost landscape and
Pareto landscape on ZDT1 are displayed. For ZDT1, when it has only two vari-
ables, X1 and X2, one can easily derive two properties. That is, 1) for a solution,
with X1 being fixed, increasing its value on X2 will always generate a new solu-
tion that is dominated by it; and 2) with X2 being fixed, changing its value on
X1 will always generate a new solution that is nondominated to it (the proofs
can be found in https://github.com/zxc990/Pareto-landscape). However, cost

Fig. 9. 3D cost landscape and Pareto landscape of ZDT1, where the coordinates (X1,
X2) of points A–D are A(0, 0.2), B(0, 0.4), C(0.2, 0) and D(0.4, 0).

https://github.com/zxc990/Pareto-landscape
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Fig. 10. 3D cost landscape and Pareto landscape of DTLZ2, where the coordinates
(X1, X2) of points A–D are A(0, 0.6), B(0, 0.8), C(0.2, 1) and D(0.4, 1).

Fig. 11. Pareto landscape of ZDT3, ZDT4, DTLZ1 and DTLZ7.

landscape cannot reflect that. As can be seen from Fig. 9(a), solutions A and B
have the same value on X1 (hence A dominating solution B); however, they are
virtually on the same height. On the other hand, solutions C and D have the
same value on X2 (hence being non-dominated to each other); however, solution
C is significantly higher than D by cost landscape. The same misleading result
happens for the problem DTLZ2 [6], shown in Fig. 10(a). From the figure, it is
clear that, by cost landscape, solution A dominates B but they have the same
height; solutions C and D are nondominated to each other but their heights
are highly different. In contrast, Pareto landscape is in line with the problem’s
properties (Fig. 9(b) and Fig. 10(b)) – solution A is always higher than B, and
solutions C and D are always on the same level.

5 Pareto Landscape on Commonly Used Problems

In this section, we use Pareto landscape to plot several widely used problem
suites in the domain. They are ZDT [32], DTLZ [6], WFG [13] and BBOB (i.e.,
bbob-biobj) [2]. For each BBOB problem, there are multiple instances; here
the first instance was considered. Due to space limitations, we do not show all
test problems for a suite but several representatives. For visualisation, all the
problems were set to be in a 2D decision space and with two objectives.
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5.1 ZDT and DTLZ

Figure 11(a) and (b) give the Pareto landscape of two ZDT problems, ZDT3 and
ZDT4. A characteristic of the ZDT suite is that the Pareto optimal solutions are
located in a region (or regions) where all decision variables except x1 are zero [32],
as can be seen from the Pareto landscape in Fig. 11(a) and (b). As shown, ZDT3
has five disconnected Pareto optimal regions; note that the problem is not multi-
modal, these disconnected regions corresponding to different parts of the Pareto
front in the objective space. This feature poses somewhat of a challenge for
search algorithms to locate all the optimal regions, but the challenge is mild
since the overall landscape is smooth and there are no local optimal regions that
can trap search algorithms. ZDT4 is a challenging problem in the suite. From
Fig. 11(b), we can see that it has many local optima, which can certainly trap
the algorithms if their search step is not appropriate (e.g., too small).

The DTLZ suite [6] generally has similar problem features and behaviours
to the ZDT suite. Figure 11(c) and (d) give the Pareto landscape of two DTLZ
problems, DTLZ1 and DTLZ7. As can be seen from Fig. 11(c), DTLZ1, similar
to ZDT4, has a number of equally-spaced local optimal regions (despite with
deeper valleys). DTLZ7 is similar to ZDT3 and has disconnected Pareto optimal
regions when x2 = 0 (see Fig. 11(d)), but the gap between the optimal regions is
bigger, hence more challenging for search algorithms to jump to the other when
they find one of the local optimal regions.

Fig. 12. Pareto landscape of several WFG problems.

5.2 WFG

Figure 12 gives the Pareto landscape of four WFG problems, WFG1, WFG4,
WFG7 and WFG8. As can be seen from the figure, a difference of WFG1 from
the previous problems is that it has a neural area (around x2 = 0.2), hence
posing challenges for search algorithms, particularly for local search ones, to
make progress. For WFG4, there are many local optimal peaks along both x1

and x2 directions, which contrasts those only along x2 direction on ZDT4 and
DTLZ1. As shown in Figs. 12(c) and (d), WFG7 and WFG8 have two piecewise
Pareto optimal lines since both contain a transition function where one of the
decision variables is mapped onto two regions [13]. It is worth mentioning that the
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variables of WFG7 on the two Pareto optimal lines can be optimised separately,
whereas the variables of WFG8 on one Pareto optimal line are non-separable.

5.3 BBOB

A common feature amongst the previously considered problem suites ZDT,
DTLZ and WFG is that they all inherently have some “man-made patterns”
(so that the Pareto optimal region is known and controllable). This includes
Pareto optimal solutions clustered at regions where certain variables are con-
stants, and local optimal regions that are equally spaced. This may make them
easily exploitable by search algorithms; for example, by separately searching for
optimum on different variables or employing specific search step-sizes during the
search process. This is not the case in the BBOB suite (i.e., bbob-biobj), where
the two objectives are made up of well-known single-objective functions (so that
the Pareto optimal region is not known nor controllable).

Figure 13 shows the Pareto landscape of eight bbob-biobj problems. As can
be seen from the figure, their landscapes have a great variety. There are problems
of uni-modality (BBOB1 and BBOB29), high ruggedness (BBOB10, BBOB47
and BBOB55), global structure (BBOBF47), big mountain-like local optima
(BBOB10 and BBOB55), and small spike-like local optima (BBOB18, BBOB39
and BBOB53). Moreover, the Pareto optimal regions of the problems are rather
irregular. They include the optimal region as a simple straight line (BBOB1), a
broken line (BBOB29), several separate lines (BBOB10 and BBOB55), discon-
nected points (BBOB47), and a mix of lines and points (BBOB18, BBOB39 and
BBOB53).

Note that the disconnectedness of Pareto optimal regions in many BBOB
problems represents an important feature that challenges search algorithms.
To find the whole Pareto optimal region, search algorithms need to maintain

Fig. 13. Pareto landscape of several BBOB (namely bbob-biojb) problems.
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diversity during the search – they cannot first search along one direction and,
upon reaching an optimal solution, then move around within the neighbourhood.
Unfortunately, in contrast to BBOB, most ZDT, DTLZ and WFG problems do
not have this feature, making search algorithms easier to find the whole Pareto
optimal region.

6 Conclusions

In this work, we attempted to develop a tool to display the “fitness” of solutions
in multi-objective optimisation, termed Pareto landscape. We presented the sim-
ilarity and dissimilarity of the Pareto landscape compared with fitness landscape
in single-objective optimisation. Pareto landscape is different from conventional
fitness landscape in the sense that it provides “relative” fitness of solutions in
the set considered, but like fitness landscape, it can effectively capture a range
of problem characteristics (e.g., optimality, multi-modality, neutrality, level of
ruggedness, and location of attraction basins), and spatial features of the deci-
sion space (e.g., peaks, valleys, plateaus, ridges and funnels). We also compared
Pareto landscape with other popular landscape visualisation methods and pre-
sented that it can reflect important features that other methods fail to. Note
that like other methods which directly display the decision space, the proposed
method can only work on problems with less than three variables.

Lastly, we employed Pareto landscape to visualise commonly used multi-
objective benchmark problem suites in the domain and discussed their features
and characteristics. We found that the ZDT, DTLZ and WFG problems exhibit
some man-made features which can be easily exploited by specific search configu-
rations, whereas the BBOB problems may better represent challenging real-world
optimisation scenarios with diverse, natural features.
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Abstract. Monte-Carlo Tree Search (MCTS) is largely responsible for
the improvement not only of many computer games, including Go and
General Game Playing (GPP), but also of real-world continuous Markov
decision process problems. MCTS initially uses the Upper Confidence
bounds applied to Trees (UCT), but the Rapid Action Value Estimation
(RAVE) heuristic has rapidly taken over in the discrete and continu-
ous domains. Recently, generalized RAVE (GRAVE) outperformed such
heuristics in the discrete domain. This paper is concerned with extending
the GRAVE heuristic to continuous action and state spaces (cGRAVE).
To enhance its performance, we suggest an action decomposition strat-
egy to break down multidimensional actions into multiple unidimensional
actions, and we propose a selective policy based on constraints that bias
the playouts and select promising actions in the search tree. The app-
roach is experimentally validated on a real-world biological problem: the
goal is to identify the continuous parameters of gene regulatory networks
(GRNs).

Keywords: MCTS · continuous GRAVE · constraints-based selective
policy · action decomposition · chronotherapy · hybrid GRN

1 Introduction

MCTS is a general decision-time planning algorithm that was initially designed
for the improvement of computer Go [13]. The MCTS core idea is to incremen-
tally build a search tree whose nodes represent the states of the environment
and edges represent the actions taken from one state to a successor state. MCTS
has proved to be effective in a wide variety of settings, including General Game
Playing (GGP) [15,23] but is not limited to games [5,26]: it can be effective
for single-agent sequential decision problems if there is an environment model
simple enough for fast multistep simulation. The most popular MCTS algorithm
is Upper Confidence bounds applied to Trees (UCT) [19], which addresses the
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exploration versus exploitation trade-off in each state of the tree search using
the Upper Confidence Bound [1]. The Rapid Action Value Estimate [16,17] is a
simple yet powerful improvement. The RAVE algorithm combines UCT and the
all-moves-as-first (AMAF) heuristic [4,6] to provide knowledge sharing between
related nodes, resulting in a rapid but biased estimate of the action values. A
generalization of the RAVE heuristic [8] has been proposed to gather more accu-
rate estimates near the leaves: the resulting algorithm outperformed RAVE on
multiple games such as Go, Atarigo, Knightthrough, and Domineering, without
any specific knowledge.

Since the striking success of decision-time planning by MCTS in discrete
action spaces, existing methods try to mitigate the requirement of enumerating
all actions to deal with large-scale and continuous domains. Progressive Widen-
ing (PW) [11,14], also known as progressive unpruning [10], increases the num-
ber of child actions of a tree node based on its visitation count. cRAVE [12]
adopts the RAVE heuristic using Gaussian convolution-based smoothing, rein-
forcing information sharing between similar states and actions in each node’s
sub-tree. Other variants of MCTS in the continuous domain abound. Kernel
Regression-UCT [25] generalizes the value estimation between similar actions
in a node through kernel regression. Thus, new action generation is guided by
kernel density estimation. An alternative to UCT is to replace UCB action selec-
tion rule [1] by Hierarchical optimistic optimization (HOO) [7,22] to deal with
continuous actions. HOO partitions the action space and builds a binary tree
to gradually split it into subspaces. Examples of successful continuous MCTS
applications have been: control tasks in OpenAI Gym environment [20], robotic
planning [18], and action selection in an Olympic Curling simulator [25].

GRAVE outperformed RAVE in the discrete domain. As far as we know, this
paper is the first adaptation of GRAVE to the continuous domain. In addition,
we add two generic contributions that improve the MCTS performances in the
continuous setting. First, the action decomposition strategy introduced proposes
to split a multidimensional action into multiple unidimensional actions. This
results in a tree policy reinforcing promising action components instead of the
wrong ones and leading to better action selection, specifically when the tree
search is shallow. Second, the core idea of a constraints-based selective policy
suggests the development of a module that automatically extracts constraints
and rules from the domain knowledge to reduce the action space before and
during the execution of the procedure.

The paper is organized into three remaining sections: Sect. 2 presents related
works for discrete and continuous MCTS from which we add some contributions
detailed in Sect. 3, and Sect. 4 provides an experimental study on a real-world
biological problem.

2 Monte Carlo Tree Search

2.1 Discrete MCTS

MCTS is a simulation-based tree search in which states of an environment are
nodes and actions are edges. The basic version of MCTS uses Monte Carlo
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simulations for evaluating the nodes of a search tree in order to direct future
simulations towards better-rewarded trajectories. Given an initial computation
resource (time, memory or number of iterations) and starting at the root node,
MCTS executes four steps iteratively:

– selection: a tree policy decides which successor node to visit based on a selec-
tion function and each successor node statistics,

– expansion: when the selection step ends on a leaf node, the tree is expanded
by adding a new node,

– simulation: from the expanded node, a simulation follows a rollout policy until
a terminal node is reached,

– backpropagation: the reward value of the simulation is assigned to the
expanded node and all of its ancestors.

The standard selection function for MCTS is UCB. It follows the principle
of optimism in the face of uncertainty, which favors the actions with the highest
potential value between exploitation (actions with a high mean reward value)
and exploration (actions less selected). During the selection step, the action a
is chosen (among the set of legal actions A(s) of state s) by applying the UCB
formula:

argmaxa∈A(s)(meana + c ×
√

log(n(s))
n(s, a)

)

where meana is the mean reward of a, n(s) is the number of times the state s
is selected, n(s, a) is the number of times a is chosen after s is selected, and c
is the exploration parameter that must be tuned for each problem: a low value
favors exploitation while a high value encourages exploration.

The AMAF heuristic consists of updating the statistics of all actions both
selected during the selection and simulation steps. Each of these actions is treated
as if it was played on a previous selection step. The reward estimate for an action
a from a state s is updated when a is chosen in any playout (even if a is not
chosen from s).

RAVE is a popular UCT enhancement that blends the standard UCT score
for each node with the AMAF score. Therefore, each node must hold a separate
count of rewards and visits for each type. The UCB formula is replaced by:

argmaxa∈A(s)((1.0 − βa) × meana + βa × AMAFa) (1)

where AMAFa is the AMAF score of the action a, and βa is the dynamic weight
calculated using pa the number of rollouts starting with a:

βa =
pAMAFa

pAMAFa + pa + bias × pAMAFa × pa
(2)

in which pAMAFa is the number of rollouts containing a.
The GRAVE algorithm uses AMAF statistics of an ancestor state if it has

more associated rollouts than a given constant called ref, which must be tuned
for each problem. The idea behind GRAVE is that a state upper in the tree has
better accuracy since it has more associated playouts. GRAVE is a generalization
of RAVE since GRAVE with ref equals zero is RAVE.
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2.2 Continuous MCTS

In continuous Markov Decision Processes, standard UCT or RAVE cannot be
used since the standard selection step requires the trial of every action at least
once, which is impossible in a continuous domain. The progressive widening
(PW) heuristic has been proposed to deal with this issue by maintaining a limited
number of actions to consider in each state s depending on the number of times
s has been visited. Specifically and heuristically, a new child state is sampled
from s every time the visitation count of s (n(s)) to the power of pw is greater
than or equal to its number of children (n(s)pw ≥ |s.children|). pw is a problem-
dependent parameter that controls the number of actions allowed in s. In a
nutshell, while UCT ensures that the tree grows deeper in the promising regions
of the search space by balancing exploration and exploitation, the PW strategy
guarantees that it grows wider in those regions.

cRAVE is an extension of RAVE to the case of continuous action and state
spaces. It considers a smooth estimate of action and state values using a Gaussian
convolution. Formally, it states that the AMAF score of choosing an action a
from a state s is weighted by the contribution related to the state-action pairs
(si, ai) encountered in every tree-walk xs starting from s:

AMAFs,a =
∑

xs,ai∈xs

e
−logNa,s{ d(s,si)

2

αstate
+

d(a,ai)
2

αaction
} × R(xs) (3)

where R(xs) is the cumulative reward obtained after following xs, Na,s denotes
the number of state-action pairs involved in every xs (the sub-tree of s), and
αaction (resp. αstate) is a problem-dependent parameter tuning the importance of
d(a, ai) (resp. d(s, si)) representing the distance between the action a (resp. state
s) and the considered action ai (resp. state si) from the sub-tree. The Euclidean
distance is commonly chosen, but the choice of such a measure also depends
on the problem. pAMAFs,a is the number of tree-walks containing the state s
followed by the action a and is also computed using Gaussian convolutions:

pAMAFs,a =
∑

xs,ai∈xs

e
−logNa,s{ d(s,si)

2

αstate
+

d(a,ai)
2

αaction
} (4)

3 Contributions

Algorithm 1 encompasses the different contributions presented in this section.

3.1 Continuous GRAVE

GRAVE uses AMAF values of a state higher up in the tree than the current state
to gather more accurate estimates near the leaves. Its reliability decreases as the
number of actions increases: in a continuous action space, the number of times
a given action is tried is zero in expectation. An estimation of action and state
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Algorithm 1. Continuous GRAVE and enhancements
Input: N tree-walks, initial state s0, PW parameter pw, reference state constant ref
Output: A search tree
1: Initialize constraints from the CSP module
2: for i = 1 to N do
3: s = s0, S = {s}
4: sref = s
5: while s is not a leaf state and is not simulatable do � Tree-walk step
6: if n(s)pw < |s.children| then � PW test, section 2.2
7: if n(sref) <= ref OR n(s) > ref then � GRAVE reference state test
8: sref = s
9: end if

10: for all a ∈ s.children do � Compute GRAV E(s, a)
11: β = sref.pAMAF

sref.pAMAF+s.p+bias×sref.pAMAF×s.p
� Eq. 2

12: grave = (1. − β) × s.mean + β × sref.AMAF � Eq. 1
13: end for
14: Select a = argmax{GRAV E(s, a) | a ∈ s.children}
15: else
16: Sample a new action a from ACSP (s)
17: Add P (s, a) as a child node of s � P(s,a) is the transition function
18: end if
19: s = P (s, a), S = S ∪ {s}
20: end while
21: while s is not a terminal state do � Simulation step
22: Sample a ∈ ACSP (s) based on default policy
23: s = P (s, a), S = S ∪ {s}
24: end while
25: score = evaluate(s)
26: for all s ∈ S do � Backpropagation step
27: Update s with score � Eq. 3 & 4
28: end for
29: end for

values must be considered, such as Gaussian convolution smoothing. We propose
to adapt the GRAVE algorithm to the continuous domain called continuous
GRAVE (cGRAVE). The only difference is that the AMAF statistics are updated
using Gaussian convolution smoothing (line 27 of Algorithm 1 follows Equation
(4)). For computing cGRAVE (lines 10 to 13), the closest ancestor state having
more rollouts than a given ref constant is kept as a reference state (called sref
and involved in lines 7–9), and its AMAF statistics are calculated (to calculate
lines 11–12).

3.2 Action Decomposition

Many real-world problems involve continuous action spaces, a ∈ R
d, d ∈ N

∗,
where the set of possible actions is not finite. In addition, the dimension d of the
action space can also be high, making continuous MCTS methods less effective.
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To leverage this issue, we propose an action decomposition (AD) strategy, which
consists of breaking down each action of d components (a = (x1, ..., xd)) into
d unidimensional actions (a1 = x1, ..., ad = xd). Therefore, the choice of each
action component is left to the tree policy. In the expansion step, starting from
a state node s, a first action component is sampled. Then, from this action node,
a new action component is expanded. By iterating d times, the final component
choice leads to a new state node from which the simulation step takes place.

While using this AD strategy, the search tree contains actions from which
no simulation can be done. Line 5 of Algorithm 1 (“not simulatable”) checks
whether or not s is a simulatable state. If s is not simulatable, a new action
component must be sampled. Finally, if the AD strategy is not chosen, s is
always simulatable since its parent action already comprises d components.

The advantage of such a strategy would be that each action node is considered
as a traditional tree node in the selection step, leading to a tree policy that
gradually reinforces the best action components at the expense of the wrong
ones. Figure 1 illustrates such strategy: instead of considering the actions ai =
(ai,1, ..., ai,d), i ∈ [[1, n]] and n ∈ N

∗, as a whole (and the actions resulted by
the combination of different components), they are decomposed such that the
resulting tree search is composed of the distinct action components.

The effectiveness of this strategy is dependent on the order in which the
action components are expanded. In a general framework, it is often impossible
to obtain an optimal order of actions, either because the components are depen-
dent or the order function of the components is unknown. If no information is
available, a random order of components can be chosen. Otherwise, a heuristic,
or even a dynamic calculation of the order of the components, through iterative
deepening search, for instance, may reduce the convergence speed and lead to a
case of more favorable complexity.

Fig. 1. Action decomposition strategy illustrated (in a deterministic case). The multi-
dimensional actions are decomposed component by component following a particular
ordering and forming a tree structure.
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3.3 Constraints-Based Selective Policy

The next suggestion we make is a constraints-based selective policy (CSP), which
takes its roots from selective policies [9], successfully introduced in MCTS vari-
ants. The underlying principle is to keep more selectivity in the rollouts. This
idea can be applied to any problem by modifying the legal moves set of a node
so that moves that are unlikely to be good are pruned during the rollouts. The
idea underlying CSP is to automatically extract constraints from the environ-
ment definition, some input data, or expert knowledge. The goal is to reduce
the action space so that action values that are unlikely to be good or infeasible
concerning an extracted constraint are pruned before and during the execution.
A module is built to extract constraints that can be used during the expansion
step to choose only legal actions and remove ones that will lead to an impossible
state (a state in which there is an empty set of legal actions). This module is
helpful in the tree to select promising actions, but it can also be during the
simulation step, where information sharing (such as kernel regression or AMAF
statistics) does not take place: it can be used in playouts to bias the policy.

In real-world applications, the action space A(s) of a state s is bounded,
such that each action ai is defined inside a specified domain Di. Each domain Di

consists of a set of possible values. The CSP allows extracting a set of constraints
Ci, which reduces its corresponding Di. Such action space is denoted ACSP (s)
(lines 16 and 22 in Algorithm 1). These constraints can be implicit or explicit
and depend on the application domain. Extracting these constraints helps to
reduce the dimension of Di not only to legal actions but also to actions having a
higher probability of being part of a solution. It can be done a priori and during
the execution of the search. It alleviates the non-locality problem in which some
actions may never be reached due to a previously performed action, even if that
action belongs to the legal set. The construction of such an extraction module can
be viewed as a generalized framework to apply to multiple distinct applications
at the price of designing the module. A use case is provided in the next section.

4 Application

We empirically validate our method on the real-world problem of identifying
continuous parameters of hybrid gene regulatory networks (hGRNs). First, we
describe the problem. Then, the experimental design and setup are detailed.
Finally, the results are highlighted and analyzed.

4.1 Parameters Identification of hGRNs

Gene regulatory networks (GRNs) modeling is a functional framework for study-
ing and understanding the effect of regulations inside a biological system. Usu-
ally, a GRN is represented as a directed graph in which vertices abstract one
or multiple biological genes (v1, v2 in Fig. 2a) and edges express either the acti-

vation ( +n−−→) or the inhibition (
+n

� ) of one vertex by another only if the con-
centration of the source vertex is above its nth threshold. An unlabeled arrow
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Fig. 2. Example of a hGRN depicted as a directed graph (a), and a possible hybrid
state graph (b). The hGRN dynamic parameters are depicted as black arrows.

means that n = 1. Since each of these regulations may or may not occur, each
gene abstraction has a maximum discrete level of concentration corresponding
to the maximum number of targets it can regulate. In the context of Fig. 2a,
the maximum discrete level of both genes is 1, leading to discrete levels of genes
(ηv1 and ηv2) in {0, 1}. This graph is a static representation and is of limited
interest because it does not help the modeler to predict any evolution of the
system. Although a discrete dynamical framework has been developed, we con-
sider here a hybrid modeling framework that adds chronometric aspects to the
discrete framework, because it is fundamental to observe and reason not only
about the discrete dynamics of a complex system but also about its chronometric
evolution. This is particularly important in biology to optimize medical treat-
ments by taking into account biological rhythms (chronotherapy). The hGRN
dynamics of Fig. 2a is then built in two steps: (i) First, each grey box, repre-
senting a discrete state η = (ηv1 , ηv2), defines the discrete concentration level of
each gene. (ii) the hGRN dynamics are then defined as piecewise linear contin-
uous trajectories (red lines). The trajectory starts from an initial hybrid state
hi, which is represented by both a discrete state η and a vector determining
the precise position π inside the discrete state η. The initial state is defined
by hi =

(
(ηv1 , ηv2)

t
, (πv1 , πv2)

t
)
=

(
(0, 0)t , (0.25, 0.25)t

)
. Then, the evolution

inside each discrete state is given by a so-called celerity vector (black arrows),
which defines the direction and celerity of each gene, e.g., the celerity of v1 in
η = (0, 0) is denoted Cv1,(0,0). More generally, the celerity of v in η is denoted
Cv,η. Such models could help biologists make new interpretations of the possi-
ble system dynamics. Nevertheless, the bottleneck of the modeling framework
is the identification of celerity vectors. We are interested in valid hGRN models
of the biological system under study, that is, into hGRN models consistent with
knowledge and observations.



Improving Continuous MCTS for hGRNs 327

Fig. 3. Interaction graph of the 5-genes hGRN (a) and its corresponding biological
knowledge (b).

Our approach takes into consideration already-formalized information ana-
lyzed by biologists derived from biological data and expertise instead of raw data,
which are known to be subject to noisiness and scarcity. The approach abstracts
the knowledge extracted from biological experiments under the form of con-
straints on the global trajectory: it must (i) start from an initial hybrid state
hi = (ηi, πi), (ii) verify a triplet of properties in each successive discrete state
(Δt, b, e) where Δt expresses the time spent; b delineates the observed continuous
behavior inside the discrete state (� means the absence of observed behaviors);
e specifies the next discrete state transition, and (iii) reach a final hybrid state
hf = (ηf , πf ). Figure 3b shows the biological knowledge (BK) associated with the
interaction graph Fig. 3a of the cell cycle GRN [2] from which we want to extract
solutions (valid models) in the next section. Note that the combination of arcs
leading from En and EP to B represent a logical conjunction of the two control

conditions. Starting from hi =
(

(ηSK , ηA, ηB , ηEn, ηEP )t = (0, 0, 0, 1, 0)t

(πSK , πA, πB , πEn, πEP )t = (0.5, 0., 0., 1., 1.)t

)
,

the trajectory must spend 3.33 hours in the discrete state η = (0, 0, 0, 1, 0).
Within this state, the celerity should move towards the next discrete state of
SK (SK+) to increase the concentration level of gene SK. In the meantime,
the trajectory must also reach the minimum admissible concentration of EP
(slide−(EP )). When SK hits its threshold value, the trajectory jumps into the
neighbor state η = (1, 0, 0, 1, 0). This process continues discrete state after dis-
crete state until the trajectory reaches hf (= hi, forming a cycle). Any valuation
of dynamic variables, i.e., celerities, leading to a trajectory satisfying this BK,
is considered a solution to the hGRN identification problem.

4.2 Decision-Making Problem Specifications

The dimension of the decision-making problem is not the number of genes but a
double exponential product: the number of celerities to identify in each discrete
state is equal to d (5, here), the number of possible states is

∏
v∈V (bv + 1) with

bv the maximum discrete level of concentration of gene v (48, here), the total
number of celerities is d × ∏

v∈V (bv + 1) (240, here).
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To treat this problem with an MCTS approach, we consider each discrete
state as an MCTS state and the choice of celerity vectors as an action. In each
timestep, an action (the celerity vector choice) is composed of d continuous
variables where d is the number of genes. When considering the use case of Fig. 3,
there are five continuous variables, and, because of biological reasons, the action
space domain can be bounded to [−7.; 7.]5. As the BK is based on observations
of 12 states, there are 12 continuous multidimensional actions to find a solution
leading to a shallow-depth MCTS tree. However, due to the equality constraints
on the time criterion in BK, the solution space forms a measure zero set, which
complicates the learning process because an action component must find an exact
floating-point value. Furthermore, some celerities in one discrete state may be
identical in one or more other discrete states, leading to a hard-constrained
problem. For this reason, a continuous constraint satisfaction problem solver
approach failed to extract even one particular solution when considering these
five genes GRN [3]. Finally, the reward for a rollout is the length of the trajectory
before it ends in a final state: the maximum is 12 if the trajectory successfully
passes between all discrete states (see Fig. 3b).

4.3 Design of Experiment and Experimental Setting

The goal of the experiments is to assess the efficiency of the different contribu-
tions added to the baseline cRAVE. The design of experiments is cumulative.
First, cRAVE is compared to itself combined with the constraints-based selec-
tive policy (cRAVECSP ). In the next step, we add to the previous algorithm
the action decomposition strategy (cRAVECSP−AD). Similarly, we replace the
cRAVE heuristic in cRAVECSP with its improvement GRAVE in the continuous
domain (cGRAVECSP ). Finally, we aggregate the different contributions leading
to a final version (cGRAVECSP−AD).

To avoid the disadvantages of the ad-hoc and manual parameter tuning
of the algorithms, we decided to use an iterated racing procedure for auto-
matic algorithm configuration. Using the irace package [21], we kept the best
elite configuration obtained after 1000 iterations to determine the values of the
problem-dependent parameters. For the cRAVE heuristics, the parameter space
is bias ∈ {1e − 15, 1e − 14, ..., 1e − 2, 0.1}, αstate ∈ [[1, 100]], αaction ∈ [[1, 100]],
and pw ∈ {0.1, 0.11, ..., 0.89, 0.9}. The resulted tuned values are bias = 0.1,
αstate = 47, αaction = 87, and pw = 0.61. For the cGRAVE heuristic, ref is
found among the values [[1, 100]] and equals 29. The Euclidean distance is chosen
for both action and state spaces. Each experiment is run 30 times to obtain sta-
tistically significant results. The different policy values obtained are compared
for the same computational budget, i.e., 200.000 tree-walks. This number comes
from previous experiments assessed in [24].

4.4 Experiments

Domain Knowledge. To develop the CSP module, we used some knowledge of
the hybrid framework. Indeed, some celerities, i.e., action components, are con-
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Fig. 4. Comparative performances (cumulative reward) of the different variants on the
5 genes hGRN, versus the computational budget (number of iterations). The upper the
better: a reward of 12 means that a solution is found.

strained to be the same in the different discrete states that will be encountered
by the trajectory. Therefore, before the execution, the module propagated some
information of BK between the states that share at least one common celerity
component. For example, the module automatically extracted that CSK in the
third discrete state is constrained by slide+(SK). But it also extracted that the
next discrete state shares the same celerity SK. Thus, the module helped to
determine that (i) the celerity of SK in the third state is positive due to the
slide+ knowledge (reducing the search space for this action to only positive val-
ues) and (ii) that when the value is known, it is kept to the next discrete state.
During the execution, the module also helped to evict some action values. In the
same example of slide+(SK) in the third discrete state, every positive value for
CSK is considered a legal move. However, CSK value is impacted by its entry
point, i.e., the hybrid state when entering the third discrete state. As a result,
depending on the coordinates of the entry point, CSK values are adjusted online.
There is no domain knowledge of the order function of the moves in the AD, so
we have defined an arbitrary order among the genes (first SK, second A, then
B, En, and finally EP ) and kept the same for every decomposition.

Analysis. Figure 4 comparatively displays the monotonic evolution of the results
obtained by the different tested algorithms. It can be observed that (i) the CSP is
largely but non-surprisingly beneficial for the convergence of the different MCTS
variants: it helps escape an early blockage, (ii) cRAVECSP−AD and cGRAVECSP

both help to improve the findings of better cumulative rewards and (iii) when
combining the three contributions, cGRAVECSP−AD ensures to always find a
solution of the problem, i.e., an admissible valuation of celerity vectors making it
possible to satisfy BK (it hits the maximum threshold near 180, 000 simulations).

Cumulative Distribution Function (CDF) curves are built in Fig. 5. Each
CDF curve describes the probability of finding a solution at, or below, a given
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Fig. 5. CDF curves showing the best results for the different variants.

Table 1. Statistics of cumulative rewards gathered by the different algorithms tested.
Bold values denote the best results column by column.

Alg mean ± std max min % of solutions

cRAVE 0.97 ± 0.18 1 0 0
cRAVECSP 8.7 ± 2.72 12 6 20
cRAVECSP−AD 11.2 ± 1.54 12 6 70
cGRAVECSP 11.6 ± 1.3 12 6 93.33
cGRAVECSP−AD 12.0 ± 0.0 12 12 100

cumulative reward score. For instance, with cRAVECSP , there is 100% proba-
bility that at the end of a run, a user would obtain a cumulative reward less
than or equal to 6, and 50 % probability that the cumulative reward would be
less or equal than 11. Table 1 summaries statistics of the best cumulative reward
obtained for each run. The mean average and standard deviation of the results
are reported, as well as the overall maximum and minimum cumulative reward
(the best results column by column are shown in bold). For the maximum, the
reader can refer to the x-axis of the rightmost point of each corresponding CDF
curve that has more than 0% probability (in the y-axis).

Figure 5 and Table 1 quantitatively illustrate the interest of the different con-
tributions. Without CSP, no solution can be found. And, on top of CSP, the AD
strategy and cGRAVE enhance the probability of (i) obtaining a better cumula-
tive reward and (ii) the percentage (%) of problem solutions found. The combi-
nation of our proposals (cGRAVECSP−AD) allows us to obtain a solution with
a probability of 100%. Overall, the merits of the contributions are empirically
demonstrated in this real-world biological problem.

4.5 Statistical Analysis

A statistical validation campaign was conducted to evaluate the observed differ-
ences in the reported performance values of all algorithm pairs in order to exhibit
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Table 2. Pairwise Wilcoxon statistical tests (top) with Bonferroni post-hoc analysis
(bottom) for H0.

Fail to reject H0 Reject H0 (p < 0.05)

cRAVE 1.17e-6 6.94e-7 1.45e-7 6.79e-8

cRAVECSP 9.84e-5 5.98e-5 8.89e-6

cRAVECSP−AD 0.176 6.46e-3

cGRAVECSP 0.179

cRAVE 1.17e-5 6.94e-6 1.45e-6 6.8e-7

cRAVECSP 9.84e-4 5.98e-4 8.9e-5

cRAVECSP−AD 1.0 6.46e-2

cGRAVECSP 1.0

cRAVECSP cRAVECSP−AD cGRAVECSP cGRAVECSP−AD

the best algorithm variant. We consider the null hypothesis H0 stating that the
observed performance scores are equal. First of all, the choice between para-
metric and non-parametric tests is made according to the independence of the
samples (seeds are different), whether or not the data samples are normally dis-
tributed (Kolmogorov-Smirnov test), and the homoscedasticity of the variances
(Levene’s test). As neither normality nor homoscedasticity conditions required
for the application of the parametric tests hold (at α = 5% confidence level),
the non-parametric Friedman rank-sum test is employed to assess whether at
least two algorithms exhibit significant differences in the observed performance
values. The obtained p-value equals 7e − 21 showing that the differences among
the algorithms are significant. However, we still don’t know which pairs of algo-
rithms are different. Therefore, the non-parametric Wilcoxon signed-rank test
was performed. In a complementary way, to reduce the issue of Type I errors
in multiple comparisons, the Bonferroni correction method was applied. Table 2
shows, on top, the p-values obtained with the pairwise Wilcoxon test and, on
the bottom, the ones computed with the Bonferroni correction.

If we analyze the conclusions supported by the tests, based on the accep-
tance or rejection of the above hypotheses, we arrive at the following insights:
cRAVE is largely outperformed by the other tested variants. In addition,
cRAVECSP underperforms compared to cRAVECSP−AD, cGRAVECSP , and
cGRAVECSP−AD. The results achieved by cGRAVECSP are not statisti-
cally different compared to cRAVECSP−AD and cGRAVECSP−AD (dark boxes
in Table 2). However, it can be emphasized that cRAVECSP lags behind
cGRAVECSP and similarly between cRAVECSP−AD and cGRAVECSP−AD.

4.6 Visualisation

Figure 6 shows the best solution obtained by cGRAVECSP−AD for each run. It
illustrates the evolution of gene product concentration versus the time spent.
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Fig. 6. Visualisation of the 30 solutions (one for each run) obtained by cGRAVECSP−AD

on the 5 genes hGRN identification problem. Black vertical lines illustrate the 12 different
discrete states.

The graph type is modeled differently than Fig. 2b because of the number of
dimensions, but both of them emphasize the same phenomenon: the evolution
of concentration (in the y-axis) as a function of the time spent (in x-axis) for
the different genes (different curves). This visual confirmation shows that the
contributions proposed helped to exhibit solutions, each consistent with BK.

5 Conclusion

The contributions proposed in this work concern first a continuous version of
the GRAVE heuristic. GRAVE uses the AMAF statistics of an ancestor node
when the number of playouts is too low to have meaningful AMAF statistics
on the considered node. The AMAF statistics considered are estimated thanks
to a smoothing technique (Gaussian convolutions in our study case) as in the
cRAVE approach. In addition, we have presented two additional generic improve-
ments: (i) the action decomposition strategy, which allows having a finer-grained
action selection step, and (ii) the constraints-based selective policy implying the
construction of a module that automatically extracts constraints to reduce the
action space by pruning actions before and during the search process. By ana-
lyzing the cumulative experiments on the problem of identifying celerity vectors
in a hybrid GRN, the results show that cGRAVE combined with the presented
contributions largely outperforms cRAVE. It also emerged that cGRAVE, the
action decomposition strategy, and the constraints-based selective policy can
independently be generic improvements of MCTS in the continuous domain.

The question of hGRN modeling addressed in this paper actually requires a
set of solutions to help the biologist develop new hypotheses and design experi-
ments. This multimodal issue has already been addressed in an alternative app-
roach [24]. We plan to develop a new version of cGRAVECSP−AD that can find
diverse plans to the same problem in a single run. We believe that such a mod-
ification could be useful in other problems, both in the discrete and continuous
settings.
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Abstract. The United States Naval Research Laboratory is currently
using permutation-based genetic algorithms for large-scale satellite
resource scheduling. This is a real-world, deployed application. The per-
mutations must be mapped to a Gantt chart representing the final sched-
ule. How this mapping is done can have a significant impact on the ability
of the search algorithm to discover high-quality solutions. We present new
work that uses compaction strategies in combination with genetic algo-
rithms to construct less fragmented schedules. A schedule with “fewer
holes” should also translate into better resource utilization. We show
that this is indeed the case. This work is impactful because this strategy
can be used to improve all genetic algorithm schedulers.

1 Introduction

Genetic algorithm schedulers have a successful track record of fielded applica-
tions [1,14,20,22,27]. A genetic algorithm scheduler is currently in use by the
United States Navy for scheduling multi-resource satellites. The scheduler uses a
permutation representation. The genetic algorithm generates a permutation, and
a schedule builder maps the permutation to a schedule in the form of a Gantt
chart. This separates the optimization problem from the representation prob-
lem, enabling a clearer understanding of the impact of optimization strategies
and solution representations on the scheduling outcomes.

The permutation representation acts as a priority queue for the schedule
builder. Tasks are drawn one at a time from the permutation in order and placed
in the schedule. This form of “Resource Scheduling” attempts to place as many
tasks as possible without conflict (or with minimal conflict) on some target set of
resources. Early in the schedule construction process, almost all tasks are sched-
uled without conflict. However, if the target resource is oversubscribed, conflicts
arise as more and more tasks are placed into the schedule. Our schedulers use
two different strategies when there is a conflict.

In the first strategy, when a conflict occurs, we immediately place the task in
the schedule in a position that minimizes the overlap between tasks. This creates
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an opportunity to “repair” a schedule by allocating less than the requested time
to the task. For example, if two tasks have a requested duration of 20 min each,
but there is a 4-minute overlap, it may make sense to allocate 18 min to each
task instead of bumping one of the tasks out of the schedule. This approach
may require human intervention to repair a schedule. Minimizing total overlap
time can produce a schedule that is easier to repair. For brevity, we will refer
to this as minimizing overlaps.

In the second strategy, if a conflict occurs, the task is not immediately placed
in the schedule; instead, the schedule builder proceeds to the next task in the
permutation. Here, the priority is to minimize the number of conflicts. All tasks
that were ignored due to conflict are later placed in the schedule to also minimize
overlaps. In general, this will produce a schedule with fewer total conflicts, but
with larger overlaps. One disadvantage is that “large tasks” that require more
time are more likely to be in conflict and more likely to result in a larger overlap.

This paper asks how we can build a schedule that is as compact as possible
by removing “gaps” in the schedule. This is similar to the problem of computer
memory allocation. We would also like to avoid fragmentation, i.e., we wish
to prevent the creation of small blocks of time that cannot be scheduled. A less
fragmented schedule should also result in fewer conflicts and less total overlapped
time when conflicts occur. We introduce different mapping policies designed to
avoid schedule fragmentation.

We also demonstrate that conflict minimization and overlap minimization are
strongly correlated when resources are not heavily oversubscribed. When there
is a small number of conflicts, solutions which minimize overlaps also minimize
conflicts. However, when resources are heavily oversubscribed, solutions that
minimize conflicts and solutions that minimize overlaps become anti-correlated.

2 Satellite Mission Scheduling

The US Naval Research Laboratory (NRL) offers satellite services through the
Virtual Mission Operations Center (VMOC), an integrated software suite for
satellite mission planning, scheduling, and monitoring. Satellite missions can
perform different tasks, like communication, earth observation, navigation, and
positioning. The VMOC system schedules these tasks using resources distributed
across a constellation of satellites. A “resource” is some computational, sensing,
or communication capability installed on one or more satellites. Scheduling is
non-preemptive. The nature of the task determines its duration and required
resource type. Other task attributes can also affect schedule decision-making.

As satellites orbit the Earth, “lines of sight” are created between the resources
and targets. Depending on satellite coverage, a target on Earth may be periodi-
cally visible to several resources. Thus, a single task may have multiple schedul-
ing opportunities on multiple different satellite resources at different times. A
visibility window is a contiguous time interval during which a target is visible
to a resource, i.e., when there is a line of sight between them.

While task duration is typically constant, the duration of the visibility win-
dow depends on satellite orbital mechanics. The visibility window may exactly
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fit the task duration, or it may be longer. Low earth orbit (LEO) satellites have
short orbital periods, varying from 86 to 128 min, which enables them to com-
plete 11 to 16 orbits daily. Medium earth orbit (MEO) satellites have longer
orbital periods, varying from 668 to 777 min, resulting in fewer orbits per day
than LEO satellites. Thus, a target may be visible to LEO resources during
multiple short windows a day while visible to MEO resources during fewer but
longer windows. There also exists high earth orbit satellites.

A target is not uniformly visible to the resource during the entire visibility
window. For example, the slant distance and the off-nadir angle between the
resource and the target vary as the satellite moves along its orbit. For imagery
tasks, these variables affect the spatial resolution and geometric characteristics
of the collected image. For communication tasks, they affect signal quality and
delay. Many other factors influence task success, such as resource configuration,
swath (the band of the Earth visible to an orbiting satellite), and weather. Since
we want to focus specifically on compact schedule construction strategies, these
constraints are outside the scope of our current analysis.

It is also necessary to schedule set-up time between consecutive tasks on the
same resource to reconfigure it for target acquisition. We assume that each task
includes its required set-up time.

2.1 Schedule Representation

One way to represent a schedule is a Gantt chart, a set of intervals indicating
when tasks start and finish on each resource timeline. However, it is sometimes
more efficient to optimize an indirect representation, like a permutation of tasks,
rather than directly optimizing a schedule [6,7,24,25]. Schedule representations
can be complex, with intricate search spaces, making it challenging to find opti-
mal solutions. When optimizing permutations for schedules, the focus is on the
ordering relation among tasks rather than their specific timing.

Since permutations do not encode timing information, a greedy schedule
builder maps a permutation to a schedule according to a specified policy. By
optimizing a permutation and then mapping it to a schedule, we decouple the
optimization problem from the representation problem. Note that a deterministic
mapping policy is a surjective-only function. While each permutation uniquely
maps to a single schedule, different permutations may map to the same schedule,
which forms plateaus in the search space [2].

2.2 Problem Formulation and Objective Functions

Given a set of task requests, the scheduling problem is to find, for each task, the
visibility window and start time that optimize an objective function. The start
time and duration determine the execution window where a task is ultimately
scheduled. These concepts are depicted in Fig. 1. The visibility window is the
interval [EST,LFT ], where EST is the earliest start time, and LFT is the
latest finish time. The execution window is the interval [t, t + d], where t is the
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start time, and d is the duration. The task must lie within its visibility window,
i.e., in the interval [EST,LFT ].

Visibility window
Execution window

Resource time

Fig. 1. Time flows from left to right. The visibility window is the interval [EST,LFT ].
The execution window is the interval [t, t + d].

Let T = {1, 2, ..., n} be the tasks, and R = {1, 2, ...,m} be a set of resources.
Each task i is associated with a duration di as well as a subset of alternative
scheduling options, where each alternative placement is denoted by a 5-tuple
(i, r, di, EST,LFT ) indicating that task i can be scheduled in a window on
resource r with duration di with some earliest start time (EST ) and the latest
finish time (LFT ). It is possible that a task could be placed on the same resource
at different points in time, for example on a low orbit satellite which has multiple
orbits per day.

Consider a schedule denoted by S. For each task in S there is a schedule
window for task i which can be denoted by a 4-tuple wi = (i, r, ai, di) which
indicates that task i has been placed on resource r with an assigned start time
ai and duration di.

A schedule is defined as complete if all tasks in set T are placed in the
schedule. A complete schedule may have conflicts where two or more tasks are
scheduled on a resource at the same time.

Construct a matrix O for each schedule S such that oi,j records the overlap
in the window assigned to task i and j on the same resource r. If there is no
conflict between task i and j in schedule S then oi,j = 0.

Since we will use a permutation representation, π = < π1, π2, ..., πn >| π :
T → T, we also can refer to a task by its position in the permutation. Thus,
πq = i, if task i is placed in the qth position in the permutation representation.
Given a deterministic schedule builder, each permutation uniquely maps to one
schedule.

Let cost ct denote the total overlap time in a complete schedule S:

ct =
∑

i

∑

j

oπi,πj
subject to i < j (1)

Obviously, we only need to check for overlaps when task πj is placed in the
schedule. In simple problems there can exist complete schedules that have zero
overlap. But in many real world problems this is not possible.
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We can also create incomplete schedules where we only place a task in the
schedule if it can be placed without conflict. A different objective is to maximize
the number of tasks that can be scheduled without conflict, which corresponds
to minimizing the number of conflicts.

Given the permutation of tasks π = < π1, π2, ..., πn >| π : T → T , and a
binary vector m = [m1,m2, ...,mn], where mi = 0 if the task πi was allocated
without conflict, and mi = 1 otherwise, we can define the number of conflicts cn

as the number of 1 s in vector m:

cn = ‖m‖1 (2)

2.3 Related Work

The problem discussed in this work falls under the broader class of satellite
range scheduling problems (SRS), known to be NP-complete [1]. Researchers
have proposed various solutions to SRS applications over the last three decades.
Solutions can be grouped into exact and non-exact methods. Exact methods are
primarily Linear Programming [5,13] and Dynamic Programming solutions [15,
17], while non-exact methods comprise heuristic [3,11], metaheuristic [26,27],
and machine-learning solutions [4,8].

In this work, we are particularly interested in the choice of schedule rep-
resentation. Radcliffe et al. [18] indicate that the choice of representation can
significantly impact the effectiveness of genetic algorithms in solving complex
problems. They strongly suggest a preference for domain-independent represen-
tations. Despite this, there is a gap in the literature concerning how the choice
of representation affects the performance of genetic algorithm schedulers.

Among metaheuristics, genetic algorithms (GA) have been extensively
applied to satellite scheduling [12]. Barbulescu et al. [1] successfully used genetic
algorithms with permutation-based representations to schedule the US Air Force
Satellite Control Network (AFSCN). The authors proposed two mapping poli-
cies, similar to policies in this paper, to convert task permutations into schedules.

More recently, Whitley et al. [23] proposed 1-Pass and 2-Pass strategies,
demonstrating that the mapping policy strongly influences the optimization
results. Other recent studies use direct or ad hoc indirect representations, but
concentrate most of the discussion on the optimization methods [14,16,26,27].

2.4 Scheduling Policies

The permutation functions as a priority queue. A schedule builder traverses the
permutation and decides the visibility window and the start time of each task.
However, building a schedule involves additional decisions. Suppose the scheduler
cannot schedule a task without creating a conflict. Should the task be bumped
out of the schedule, or should it be skipped and scheduled later? If the overlap
time is short, should the task be placed in the schedule regardless?

We start by exploring two common scheduling strategies [1,23]. Consider
the permutation < 4, 7, 3, 6, 2, 1, 5 >, where each number uniquely identifies
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a task, and each task has an associated set of visibility windows. A task is
conflict-free if it can be scheduled without conflict. Otherwise, there exists one
or more conflicting tasks. Note that whether a task is conflict-free depends on its
position in the permutation and how oversubscribed the problem is. For example,
any task in the first position is conflict-free because the schedule is still empty.
Conversely, the last task in the permutation is more likely to cause a conflict
because all previous tasks are already in the schedule.

Every task request includes an ordering of windows where the task might be
scheduled. We assume that the first requested window is the most desirable, and
our basic policies give priority to scheduling in these windows.

The 1-Pass and 2-Pass scheduling strategies were briefly introduced in the
introduction. Using a 1-Pass strategy, when a conflict occurs, we nevertheless
place the task in the schedule in a position that minimizes the overlap between
tasks. This creates an opportunity to “repair” a schedule by allocating less than
the total requested time for a task. This approach is known to be used by some
professional human schedulers working in satellite scheduling [2,19].

Using a 2-Pass strategy, if a conflict occurs, the task is initially dropped
out of the schedule. After a first complete pass, the subsets of conflict-free and
conflicting tasks are determined. But we would also like to place all the tasks
in the schedule, even if this causes overlaps. So, a second pass is made over the
set of conflicting tasks (in the same original permutation order), and they are
placed in the schedule while trying to minimize overlap time.

We next discuss six different scheduling policies, each based on one of these
strategies (1-Pass or 2-Pass), with distinct approaches to address task placement.

Policy First-L1 is a “first fit” policy using a 1-Pass scheduler that places
the task in the leftmost position in the scheduling window while using a single
pass over the permutation (First-L1: First-fit, Leftmost, 1-Pass). If the task
is conflict-free, the scheduler places it as early as possible (i.e., leftmost) in
the first requested window or the first available window. Since this is a 1-Pass
scheduler, if it is a conflicting task, the scheduler places it on a resource using
the window and start time that minimizes overlap time. Let us consider the
example permutation. Suppose the scheduler places tasks 4, 7, and 3 without
conflict. Assume the scheduler cannot place task 6 without creating conflict with
tasks 4, 7, or 3. The scheduler places task 6 using the window and starts time
that minimizes overlap time. This policy is repeated until all tasks are scheduled.

Because this policy uses a “leftmost” (as early as possible) placement of tasks,
this may or may not result in fragmentation. For example, in Fig. 2, the example
“Case 1” is such that the leftmost placement of Task 3 (between Tasks 4 and
7) results in two gaps that fragment the schedule. This does not happen if the
Task 3 window intersects with other tasks in the schedule. In Fig. 3 (leftmost),
we see a case where Task 3 is placed leftmost, and now Task 3 and Task 4 are
adjacent. We refer to this as “sticking to the left”.

Policy First-L2 schedules tasks doing two consecutive passes: one pass for
conflict-free tasks and another for conflicting tasks. Otherwise, it is like the First-
L1 policy that schedules in the first available window in the leftmost position
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Task 4 Task 3 (incoming task) Task 7

Fig. 2. Case 1 - No sticking. The incoming task window does not intersect with previous
tasks, so it is impossible to stick it to tasks 4 or 7. Whenever the start time, placing
task 3 will create two time gaps.

Fig. 3. Case 2 and 3 - Stick to the left (leftmost), and sticking to the right (rightmost).
The scheduler sticks the incoming task to the one that intersects with the window on
the left (task 4) or on the right (task 7).

(First-L2: a First-fit, Leftmost, 2-Pass scheduler). Let us consider the example
permutation again: < 4, 7, 3, 6, 2, 1, 5 > . Suppose the scheduler places tasks 4,
7, 3, and 2 without conflict in the first pass, skipping tasks 6, 1, and 5, the
tasks that create a conflict. The scheduler then does a second pass over the
unscheduled tasks < 6, 1, 5 > in the same order they appear in the permutation,
scheduling them in a location that minimizes total overlap time.

The fundamental difference between these policies is that Policy First-L1 (1-
Pass) strictly interprets the permutation as a single queue, while Policy First-L2
(2-Pass) decomposes the permutation in two queues. Otherwise, they behave
the same, either scheduling conflict-free tasks as early as possible in the first fit
schedule location, or minimizing the overlap time of conflicting tasks.

2.5 Schedule Compaction

We present two additional policies that aim to produce less fragmented schedules
through the use of some degree of compaction.

Policy First-LR1 is the same as Policy First-L1, except it makes an extra
effort to prevent gaps in the schedule (First-LR1: First-fit, Leftmost and Right-
most, 1-Pass). It is also a 1-Pass scheduler. First, the schedule finds the first
available window where the task can be placed. Then the scheduler tries to
place the task in the leftmost position. If the task sticks to the left, (Case 2,
Fig. 3), then the task is placed in the leftmost position. But assume the leftmost
placement of a task yields a gap, as shown in Fig. 2. The scheduler then looks at
the rightmost placement of the task. Sometimes, the rightmost placement will
yield a placement adjacent to a previously placed job (the task sticks to the
right). An example of this is in Fig. 3 (rightmost). If a task does not stick to the
right or left, it is placed in the leftmost position by default.

Policy First-LR2 is the same as Policy First-L2 except it makes an extra
effort to prevent gaps in the schedule. It is a 2-Pass scheduler. This policy checks
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Task 4 Task 7 Task 3 (incoming task)

Fig. 4. The intersection of Task 3 window (incoming task) with the free time in the
schedule results in the sub-windows s2 > s3 > d3 > s1, where d3 is the duration of
Task 3. Different policies will place Task 3 in different locations.

Table 1. Scheduling policies

Policy Pass Compaction Window fit

First-L1 1-Pass no first

First-L2 2-Pass no first

First-LR1 1-Pass yes first

First-LR2 2-Pass yes first

Best-LR1 1-Pass yes best

Best-LR2 2-Pass yes best

both left and right placement in order to determine if one of these placements
reduces fragmentation (i.e., if the task sticks to a previously placed task).

There may be more intricate cases. In Fig. 4, for instance, the intersection
of the task window with the free time results in one or more sub-windows; in
this case, the sub-windows s1, s2, and s3. Given task 3 duration d3, assume that
s2 > s3 > d3 > s1, i.e., task 3 fits in the sub-windows s2 and s3, but not in s1.
All “first fit” policies would start the task as early as possible in the sub-window
s2 (its first fit), assuming no distinction between windows and sub-windows.

2.6 Best Fit Policies

The First-LR1 and First-LR2 policies consider only the “first fit”, or first avail-
able window free from conflict. We introduce two more policies that search for
the best-fit scheduling window to further reduce fragmentation.

The Best-LR1 and Best-LR2 policy uses a “best fit” strategy that places a
conflict-free task in the smallest window available, while checking both leftmost
and rightmost placements. Consider the example in Fig. 4 again. Assume the task
could be placed in sub-window s2 or in sub-window s3. The task is placed in
sub-window s3 in the leftmost position if this yields a compact result. Otherwise,
Best-LR1 uses a 1-Pass strategy and Best-LR1 uses a 2-Pass strategy.

Table 1 summarizes the proposed mapping policies, showing how they relate
in terms of number of passes (1-Pass or 2-Pass), presence of compaction strate-
gies, and window fit.
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2.7 Problem Generator

We developed a problem generator to create representative scheduling problems
based on the VMOC scheduler. The problem generator takes three input param-
eters: the number and types of satellites (LEO, MEO), the number of tasks, and
the task density. Task density determines how many scheduling alternatives a
task has. The scheduling alternatives appear in order of preference in the dataset,
with the first location being the top preference.

Time is measured in minutes, and the schedule horizon covers 1440 min (24 h).
Task windows start and end on the same day. Visibility windows are uniformly
sampled within predefined ranges, depending on satellite type. LEO windows
range from 10 to 15 min, while MEO windows range from 60 to 120 min. The
task duration is uniformly sampled within the window duration.

We generated nine instances with increasing numbers of tasks (200 to 1000
tasks) for a fixed set of 5 LEO and 10 MEO satellites. The larger the instance,
the more oversubscribed the problem is.

When there are more than 400 tasks and only 15 satellite resources, the
resulting problems are heavily oversubscribed. For 600 tasks, almost all solutions
have more than 200 conflicts. Our schedules would be less conflicted if some of
the MEO satellite requests were scaled back to a range of 40 to 90 min. Another
solution to oversubscribed resources is to increase the number of resources.

3 Experimental Design

We used an implementation of the Standard Generational Genetic Algorithm
[9,10] but without a mutation operator and with tournament selection, with a
tournament size k = 3. Our prior experience is that mutation is not necessary
since permutation crossover operators do not “transmit alleles” and thus are
inherently noisy. For each experiment configuration, we ran 30 trials with a
limit of 50,000 evaluations each.

Solutions are recombined using Syswerda’s Order Crossover [21]. This is the
only permutation operator we are aware of specifically designed to be sensitive to
“order” and we have repeatly found it to be more effective than other crossover
operators for this class of scheduling problems [1,23,25].

Syswerda introduced two permutation crossover operators: an “order”
crossover and a “position” crossover operator. However, these operators inherit
by both order and position and are identical when correctly parameterized.
Assume we are given two permutations as follows:

Parent 1: A B C D E F G H I J
Parent 2: D I B G E A J F C H

We inherit 5 of the 10 elements by position from Parent 2. The offspring after
inheriting these positions will be:

Offspring: # # B # E A # # C H
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The remaining elements are inherited from Parent 1 in the order in which they
appear: D F G I J

Offspring: D F B G E A I J C H

Note that we could have first selected elements D I G J F from Parent 2 and
re-ordered them based on their order in Parent 1. But if the number of positions
selected by position crossover is the same as the number of positions utilized by
order crossover, the results are identical in expectation.

3.1 Scheduling Results

We ran a large number of experiments with the six different scheduling policies
and with population sizes of 256, 512, and 1024. When we used the “overlap”
evaluation function, the best results were always produced by a population size
of 1024. When we used the “conflicts” evaluation function, the smallest number
of conflicts was also produced by a population size of 1024.

Table 2 presents results for problems with n = 200, n = 300, n = 400, n = 500
and n = 600 tasks for population size 1024. We also ran experiments with up to
n = 1000 tasks, but these problems were extremely oversubscribed. All of the
results in Table 2 are single-objective results.

Because we care about both the number of conflicts and the sum of overlaps,
we ran experiments using two different evaluation functions with the genetic
algorithm. The first evaluation function minimizes conflicts, and the second
evaluation function minimizes the sum of overlap time. Previous satellite sched-
ulers, specifically the Air Force Satellite Control Network (AFSCN) scheduler,
used “overlap” as the evaluation function. Since satellites are valuable resources,
human schedulers were repairing the schedule, trying to fit in (almost) every
task by giving the conflicting tasks (a little) less than the requested time [2,19].

The data includes 15 satellite resources distributed over a mixture of low-orbit
and medium-orbit satellites. In general, 1-Pass schedulers yield lower overlap,
while 2-Pass schedulers yield lower conflict counts. This pattern holds regardless
of whether the evaluation function is “conflicts” or “overlaps”. Thus, the schedule
builder can also influence the type of solutions that are generated.

Inspection of Table 2 shows there is some trade-off between using only con-
flicts or only overlaps as the evaluation function. But particularly when schedul-
ing 200 tasks, it is generally the case that when a low overlap time was achieved,
the number of conflicts was also low. For 200 tasks, there was little variation
in the number of conflicts when the evaluation function optimized conflicts (the
results ranged from 6.3±1.2 to 7.3±1.4). It is possible to minimize both conflicts
and overlaps for 200 tasks.

When optimizing overlaps, for the 200-task instance, the conflicts range from
7 to 11. The Best-LR1 and Best-LR2 policies using “overlap” as the evaluation
function provide an excellent trade-off: the number of conflicts is 7 or 8, and
the overlap time varies from 150 to 156 min. When “conflicts” is used as the
evaluation function, the overlap time doubles (to more than 310 min on average
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Table 2. Scheduling results for different policies, and different numbers of tasks.
Results are also given when the fitness function is “conflicts” versus “overlap.” The
population is 1024. The sample size is 30.

Tasks Policy Fitness=Conflicts Fitness=Overlap

Conflicts Overlap Conflicts Overlap

200 First-L1 7.3 ± 1.4 338 ± 68 10.2 ± 1.1 153 ± 10

200 First-LR1 7.1 ± 1.7 340 ± 82 10.6 ± 1.8 155 ± 22

200 Best-LR1 6.3 ± 1.2 310 ± 57 8.6 ± 2.8 150 ± 33

200 First-L2 6.9 ± 1.3 367 ± 72 10.2 ± 2.3 172 ± 27

200 First-LR2 6.9 ± 0.8 369 ± 49 10.0 ± 1.9 164 ± 25

200 Best-LR2 7.3 ± 1.7 390 ± 87 7.5 ± 2.0 156 ± 34

300 First-L1 45 ± 5.3 2371 ± 147 62 ± 3.5 1697 ± 78

300 First-LR1 45 ± 5.6 2394 ± 146 59 ± 3.6 1677 ± 66

300 Best-LR1 41 ± 3.9 2304 ± 129 56 ± 3.4 1661 ± 117

300 First-L2 40 ± 3.2 2420 ± 132 50 ± 2.9 1967 ± 115

300 First-LR2 39 ± 2.5 2398 ± 111 50 ± 2.7 1892 ± 63

300 Best-LR2 37 ± 2.3 2366 ± 126 47 ± 2.2 1827 ± 133

400 First-L1 88 ± 6.4 5264 ± 86 118 ± 2.4 4385 ± 147

400 First-LR1 89 ± 7.4 5231 ± 92 116 ± 2.8 4322 ± 103

400 Best-LR1 85 ± 6.0 5239 ± 94 110 ± 3.5 4388 ± 152

400 First-L2 79 ± 3.5 5383 ± 113 99 ± 2.3 4741 ± 103

400 First-LR2 79 ± 4.2 5361 ± 101 97 ± 3.3 4681 ± 100

400 Best-LR2 77 ± 4.6 5368 ± 118 92.3 ± 1.7 4655 ± 145

500 First-L1 140 ± 7.0 8690 ± 72 192 ± 3.6 7875 ± 49

500 First-LR1 140 ± 8.4 8707 ± 65 188 ± 4.0 7895 ± 96

500 Best-LR1 138 ± 6.7 8761 ± 81 186 ± 3.5 7961 ± 116

500 First-L2 125 ± 2.7 8897 ± 73 153 ± 2.4 8273 ± 114

500 First-LR2 127 ± 5.3 8911 ± 81 151 ± 2.9 8293 ± 84

500 Best-LR2 126 ± 6.2 9007 ± 110 149 ± 2.9 8312 ± 155

600 First-L1 222 ± 5.8 14932 ± 60 296 ± 4.9 14300 ± 36

600 First-LR1 224 ± 8.7 14922 ± 58 297 ± 4.6 14317 ± 35

600 Best-LR1 223 ± 13.5 14906 ± 54 293 ± 3.6 14347 ± 86

600 First-L2 204 ± 4.0 15116 ± 64 239 ± 2.8 14582 ± 68

600 First-LR2 202 ± 5.4 15147 ± 61 236 ± 3.7 14571 ± 66

600 Best-LR2 202 ± 6.6 15194 ± 79 234 ± 3.4 14634 ± 117

for all algorithm configurations). Although the system is somewhat oversub-
scribed with 200 tasks, a similar number of conflicts was reported in real-world
AFSCN satellite scheduling data (with approximately 2 to 5 conflicts per 100
tasks scheduled) [1].

The results in Table 2 trend in the same direction when there are 300 tasks.
But there is now more of a trade-off. The Best-LR1 and Best-LR2 policies using
compaction strategies still produce the best overall results, but the 1-pass results
(Best-LR1) do a significantly better job of minimizing overlap time, and the 2-
pass results (Best-LR2) do a significantly better job of minimizing conflicts.
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Fig. 5. 200 tasks. a) Minimizing Conflicts. b) Minimizing Overlaps. Note the x-axis for
plot (a) is from 3 to 14, and the axis for plot (b) is from 5 to 20. In each case, there is
a single dominating solution produced by Best-LR2.

The Best-LR2 policy using overlap as the evaluation function provides a useful
trade-off: the average number of conflicts is 47, and the overlap time is 1827 min.
That means 15.7% of all tasks are in conflict. If 47 conflicting tasks have 1827 min
of overlap, then each conflicting task has an average overlap of 38 min. The Best-
LR2 policy using number of conflicts as the evaluation function produced the
lowest number of conflicts, with an average of 37. But the average overlap time
jumped to 2366 min. Assuming we have a schedule with 37 conflicting tasks
with an overlap of 2366 min, then each conflicting task has an average overlap
of 64 min. This is an extremely high level of overlap in the schedule.

3.2 A Pareto Perspective

Figure 5 shows results for instance size 200 when minimizing conflicts and when
minimizing overlap. We present these results in a bi-objective fashion, with
conflicts on the x-axis and overlap on the y-axis. However, we did not use
bi-objective methods for the results in Table 2, and it appears we do not need
multi-objective methods as long as the number of conflicts and the overlap time
are strongly correlated.

The labels (First-L1, First-L2, First-LR1, First-LR2, Best-LR1, Best-LR2)
can be found in Table 1. Clearly, there is a correlation between the number of
conflicts and the total overlap time for the 200-task problem in our study. Solu-
tions that have minimal overlap tend to also have minimal numbers of conflicts.
However, the impact of the different evaluation functions is also clear. When the
evaluation function is conflicts, the best solutions reduced the number of con-
flicts to 4 tasks; when the fitness function is overlap, the best solutions reduced
the number of conflicts to 5 tasks. In this case, there is not a large difference.
But the difference in terms of overlap is much greater. When the evaluation
function is overlap, there exist solutions where the number of conflicts is 5 and
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Fig. 6. 600 tasks. We merged the best results using both overlaps and conficts for
all fitness configurations to better show the spread of the full data set. We now see the
emergence of a Pareto front for this heavily oversubscribed problem. All of the results
with more than 280 conflicts occur when minimizing overlap. All of the results with
less than 230 conflicts occur when minimizing conflicts. But solutions with low conflicts
have high overlaps, and solutions with low overlap have high conflicts.

the overlap is less than 125 min. But when the fitness function is conflicts, there
are only two solutions below 200 min and none below 150 min.

From a bi-objective point of view, we believe that minimizing overlap yields
the best overall results and produces more repairable schedules by taking advan-
tage of small overlaps. But again, this is for less constrained problems, with 200
(and perhaps 300) tasks.

Figure 6 shows bi-objective results for instance size 600 when minimizing
conflicts and when minimizing overlap. In this case, the scheduling problem is
much more oversubscribed, and the results are now anti-correlated. The problem
of selecting a schedule is also much more difficult.

The different algorithms in Table 1 diverge depending on the evaluation func-
tion. The 2-Pass algorithms consistently yield fewer conflicts, often reducing the
number of conflict below 210. Note that this still represents 210/600 = 35% of
the tasks in conflict. Many of the tasks scheduled without conflict must also be
the smaller LEO requests.

When the objective is overlap (n = 600), we can see that it is possible to
reduce overlap to less than 14400 min. However, the number of conflicts dramat-
ically increase, in some cases up to 300 of the 600 tasks.

Many of the best results in terms of minimizing conflicts are also produced
by the BEST-LR2 placement strategy. The best results in terms of minimizing
overlap are also produced by the BEST-LR1 placement strategy, but the FIRST-
LR1 strategy is also often competitive. It is extremely interesting to observe that
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different schedule building strategies yield results that occupy different parts of
the Pareto front.

Given the configuration of our generator with 15 satellite resources, it is
reasonable to conclude that 600 task requests are simply too many tasks: a
conflict rate above 200/600 = 33.3% is unacceptably high. Indeed, the problems
with 600 tasks are much more constrained than the real-world problems we have
seen in the literature for any resource scheduling problem. Nevertheless looking
at such problems reveals that as satellite resources become more constrained
a Pareto front emerges and that multi-objective methods may be required to
explore the trade-off of optimizing conflicts while also minimimzing task overlap.

4 Conclusions

This paper evaluates genetic algorithm schedulers that utilize a permutation-
based representation. The GA scheduler uses a schedule builder to convert a
permutation into a schedule in the form of a Gantt chart.

We show that the use of compaction methods can result in schedules that are
less fragmented, which in turns results in fewer conflicts and less overlap time.
This effect is somewhat independent of the evaluation function. However the
results are sensitive to the degree to which resources are oversubscribed. These
kinds of trends are both fundamental and important for resource scheduling.
Our work exposes biases that have not been carefully documented, despite over
30 years of research in this area.

When scheduling problems are not too oversubscribed, it is possible to min-
imize both the number of conflicts and the overlaps of the conflicted tasks. Our
results for 200 and 300 tasks are closer to real-world scenarios than those with a
larger number of tasks. Our data shows that our two objectives, minimizing con-
flicts and overlap, are correlated for problems that are not too oversubscribed.
However, it seems better to use “overlap time” as the evaluation function since
minimizing overlap also creates pressure to reduce conflicts.

The use of a 1-Pass or a 2-Pass strategy produces a significant effect on
algorithm performance, no matter whether the objective is conflicts or overlap.
This means the design of the scheduler builder can have a significant impact on
solution quality, independent of the evaluation function.
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Abstract. Attacker-defender strategy optimization deals with optimiz-
ing and deciding on different tactics used by two independent entities
working in tandem. Unlike in standard optimization problems, a com-
plete solution of the entire two-agent problem consists of strategies of
both agents and evaluation of a solution requires precise information of
both strategies. For this reason, a co-evolutionary optimization frame-
work is proposed in this paper to keep two co-evolving populations
interacting with each other in tandem to reach their optimal strategies.
While co-evolutionary algorithms have been proposed in the past, multi-
objective co-evolutionary problems make the optimization task more
complex, resulting in a set of Pareto-optimal strategies for each entity. In
this paper, we apply a multi-objective competitive co-evolutionary opti-
mization algorithm to a real-world wargame strategy optimization prob-
lem. The proposed co-evolutionary algorithm is used to find trade-off
sets of competitive wargame strategies for both entities and a novel
post-optimization decision-making procedure is also proposed to choose
preferred strategies for each entity in tandem, leading to a stable or a
cycle of sequential strategies. To the best of our knowledge, this paper
marks one of the first-ever applications of multi-objective, competitive,
co-evolutionary optimization approaches to a real-world wargame sce-
nario, revealing their impact and importance in practice.

Keywords: Attacker-defender system · Competitive co-evolution ·
Decision-making · Multi-objective games · Multi-agent systems

1 Introduction

Attacker-defender strategy optimization is a critical aspect of many security
systems. In wargame scenarios, a win is determined by how each side utilizes
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its resources and develops effective strategies to counter the opponent’s move-
ments. While our discussion sheds some light on the study of these strategies, it
should be noted that we do not support or glorify the act of war here. We sim-
ply illustrate the wargame situation as a possible application scenario leading to
a challenging multi-agent co-evolutionary optimization problem. War simula-
tions or games [6,12,20] have a large following in the gaming community and it is
a very challenging problem to find optimal strategies for each of the participating
entities.

In an attacker-defender system, each entity has its own set of parameters
related to different resources, such as logistic information, number of assets, etc.,
which can be tuned to find a response strategy against the opponent. However,
the outcome of one entity’s parameter setting can only be evaluated properly
by knowing the opponent’s parameter settings. Thus, any effort to optimize one
entity’s strategy cannot be developed in isolation, as it is achieved in most single
entity-based optimization problems. Since both entities are trying to optimize
their own strategies and since they are responsive to one another, there is a need
for co-evolving both entities together. While one entity’s strategy gets better with
optimization iterations, the other entity is also learning to produce better and
better strategies of its own. This kind of two intertwined optimization problems
result in the co-evolutionary optimization problem. However, if both entities have
multiple conflicting objectives to optimize, the resulting problem becomes more
challenging as each entity will now have a Pareto set of alternate solutions to pick
a strategy from. In recent years, co-evolutionary algorithms have been gaining
interest in various applications of multi-agent systems [14,15,23]. There are two
types of co-evolutionary process: cooperative [3,9,10,13] and competitive [11,
16,17,24]. When two or more species evolve by cooperating with each other in
achieving their own goals, the process is called cooperative co-evolution. On the
other hand, when multiple species evolve by competing against each other to
fulfill their individual goals, it is called competitive co-evolution. In the case of
wargame strategy optimization, generally, two agents will contradict each other’s
goals, thereby making the task a competitive co-evolution.

Co-evolutionary algorithms are mainly proposed in the literature for a single
objective for each agent [5,21]. However, in a practical multi-agent system, such as
in a wargame strategy optimization problem, each agent may have more than one
conflicting objective to consider. The objectives of an agent can be completely
different from those of the other agent or they can have opposing purpose of min-
imizing or maximizing the objectives. For example, the defense may minimize the
loss of its assets, while the offense would, most likely, try to maximize the loss
of the defense’s assets. The above discussion amply indicates that solution of the
attacker-defender system for multiple conflicting objectives is challenging, requir-
ing efficient optimization algorithms and decision-making procedures.

The rest of the paper is organized as follows: Sect. 2 describes the wargame
strategy optimization problem in more detail by outlining the structure of the
problem, the objectives, and the complexity of optimization. The proposed multi-
objective competitive co-evolutionary framework, including the optimization
algorithm and post-optimization decision-making, is described in Sect. 3. The
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results obtained by applying the proposed framework to the wargame strategy
optimization problem are analyzed and discussed in Sect. 4. Finally, the paper
is concluded in Sect. 5. From here onwards, we have used the terms attacker for
offense, and defender for defense interchangeably to mean the same thing.

2 Wargame Strategy Optimization Problem

Wargame Strategy Optimization Problems (WSOPs) are highly idiosyncratic,
and there is not one computing model that can fully represent all types of
wargames. Here, we focus on a wargame where there is a clear attacker and a
defender. The attacker attempts to inflict as much damage on an Air Base (Air
to ground missile hits) while incurring the least cost (monetary expenses and
loss of attacker lives) to themselves, but also enforcing the greatest cost on the
defender (monetary expenses and loss of defender lives). The defender’s goals
are in direct competition with the attackers. Both agents’ strategies can be bro-
ken down into three subsets: research and engineering (RE), force composition
(FC), and mission plans (MP). RE and FC decisions have upfront monetary costs
and are considered fixed once the mission begins. RE decisions define the capa-
bility of assets (e.g., their stealth, speed, sensor ranges, and payload capacities).
FC decisions define the number of assets brought to the conflict across roles (e.g.,
Strike assets and Electronic Warfare assets). MP decisions define how assets coor-
dinate and behave during the conflict (e.g., flight formations, rules of engagement,
and routes). Overall, the attacker has 50 variables they can manipulate, and the
defender has 24 variables. The attacker variables mainly include striker, sweeper
and jammer information, while the defense variables include information about
integrated air defense (IAD) systems and interceptors. In this paper, we have
attempted to solve the WSOP using a multi-objective competitive co-evolutionary
optimization approach.

3 Proposed Multi-objective Co-Evolutionary (MoCoEv)
Optimization and Decision-Making Methods

In this section, we present the MoCoEv algorithm in detail. Since each entity
uses multiple conflicting objectives, MoCoEv is expected to find two distinct
sets of Pareto-optimal solutions, each involving all 74 decision variables. There-
after, a decision-making procedure is needed to choose a sequence of preferred
solutions from each Pareto front in a systematic manner.

3.1 MoCoEv Optimization Algorithm

In a MoCoEv algorithm, there are two interacting populations, each containing
its own decision variables. Like in other evolutionary algorithms, initial popula-
tions Pop

(0)
1 and Pop

(0)
2 of two problems can contain random solutions x and y of

sizes N1 and N2, respectively; however, for practical problems with previously
known good solutions, initial populations can be seeded with known solutions.
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Due to the computational expense in evaluating a strategy (x,y), we
use surrogate functions during the optimization process created from a large
number of pairs of strategies (x,y) evaluated using hi-fidelity wargame simula-
tion software offline. While the accuracy of the developed surrogate function is a
matter of their practical use, we do not address this issue here and focus on the
multi-objective co-evolutionary optimization and decision-making aspects of the
problem, which is already quite complex and challenging to discuss and com-
prehend. Here, we want to state our assumption that both entities do not know
the decisions made by the other entity but the surrogate models are representa-
tive of each entity’s assumption about how the other entity might behave. The
proposed method can be used to have a better insight into the outcome and
dynamics of the wargame based on chosen decision-making aspects, rather than
actually using the method in real time.

At iteration t, genetic operations can be performed on Pop
(t−1)
1 as usual,

using its own objectives and constraints and a new population Pop
(t)
1 of size N1

can be created. Here, we follow the NSGA-II’s operations for this purpose. A total
of τ1 iterations can continue as above before the next population is updated for
consecutive τ2 iterations. Then again Pop1 can be updated for another τ1 iter-
ations. This process can continue until a termination condition is satisfied. For
simplicity, we ignore constraints in presenting our proposed algorithm. A pseudo-
code of the MoCoEv procedure is presented in the supplementary document1.

Evaluation of a single population member x of Pop
(t)
1 requires a specific

variable vector y from the second population Pop2. This is where a number
of strategies can be adopted in an MoCoEv algorithm like summing, averag-
ing, considering minimum, or maximum. But, we consider an averaging strategy
here as it is the most used one. The k-th population member of Pop1, x(1),k, is
paired with every member y(2),l (l = 1, . . . , N2) of the Population Pop2 one at a
time and N2 objective vectors are evaluated. Then, a mean fitness value of i-th
objective function of the k-th Pop1 member is computed as follows:

Fi(x(1),k) =
1

N2

N2∑

l=1

fi(x(1),k,y(2),l). (1)

Similarly, the fitness of each member of the second population can also be com-
puted by averaging the respective objective values over all Pop1 members.

After the average function values for each objective is computed, they can
be used for domination check and other niche-preserving operators of the chosen
evolutionary multi-objective (EMO) algorithm. Every member is evaluated for
both F1 and F2 using all members of the second population. Then, the mean
fitness vector is computed for each member and is used for the domination check.
The crowding distance values for each member, needed for diversity preservation
of non-dominated solutions, are also computed using the aggregate fitness val-
ues. Thus, the final trade-off set of solutions of each population (Z(1) and Z(2))

1 Google Drive Supplementary Link.

https://drive.google.com/file/d/1rEBClmAVY7RGDKq0b59u7F5zdtN4BCCU/view?usp=drive_link
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will correspond to the non-domination principle of the chosen aggregate fitness
functions.

The variation operators in the MoCoEv algorithm are recombination and
mutation operators which are applied to the respective population, indepen-
dently. For example, for every generation of Pop1, recombination and mutation
operators are applied to x-vectors of Pop1 only, while keeping the current y-
vectors of Pop2 unchanged. Every newly created x-vector is then evaluated using
the fixed y-vectors of Pop2 and average fitness is used for the survival operator of
Pop1. After τ1 such generations are executed with Pop1, then τ2 generations are
performed by keeping x-vectors fixed.

The above successive cycles of two population updates are continued until a
termination condition is met. In this study, we run until a pre-defined number
of combined generations (T ) is elapsed. After the MoCoEv run, a separate non-
dominated (ND) set will be found for each agent.

3.2 MoCoEv Decision-Making Procedure

Selecting a single Pareto solution for agent from their respective ND set is a
challenging decision-making task. We propose the following procedure. Since
the wargame is to be played alternatively between the two players, an offline
computation of ND strategies becomes a pragmatic approach. In the case of
attacker-defender WSOP, the defender (or, attacker) may start by choosing
a strategy from its own ND set based on certain initial preference informa-
tion among its objectives. With the defender’s strategy revealed, the attacker
can then choose the most preferred strategy from its own ND set, so that maxi-
mum effect can be imposed on the defender’s chosen strategy. Next, it will be the
defender’s turn to choose the next appropriate strategy from its own ND set to
negotiate the attacker’s chosen strategy. These iterative moves can be continued
until either an equilibrium state (converged attacker and defender strategies) or
an equilibrium cycle (converged cycle of attacker and defender strategies) is
arrived.

One of the remaining tasks is to discuss the specific multi-criterion decision-
making (MCDM) method where each player can adopt to pick a single appro-
priate strategy from its own ND set. Let us say that there are N1 attacking
strategies and N2 defending strategies after the MoCoEv run.

The first step of the decision-making process is to select one of the agents
for initiation. Let us say we choose the defender at first. So, the defender needs
to choose one of the N2 final ND strategies. Each of these strategies will have a
distribution of objective values as one defending strategy is evaluated against N1

different attacking strategies from the attacker’s ND set, leading to N1 objec-
tive scores. So, we can calculate the normalized standard deviation of all objec-
tive values for each defending strategy. The initial defending strategy is the
one having the lowest average normalized standard deviation for the objectives.
Intuitively, having a lower normalized standard deviation reflects some type of
robustness of a strategy against all the opposing strategies.
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After the first strategy is selected from the defender, the attacker needs to
select its own strategy. Every attacking strategy is evaluated against the selected
defending strategy and the corresponding ND set is identified from them. Finally,
for selecting a single attacking strategy from the ND set, we use the highest trade-
off-based selection method described in [19]. For any ND set, the trade-off value
for an ND point xi with a neighboring ND point xj can be calculated as:

R(xi, xj) =
wloss × Lossf (xi → xj)
wgain × Gainf (xi → xj)

. (2)

Here, wloss and wgain represent the weights provided to loss and gain acquired
through moving from one solution to another, respectively. This trade-off value
gives an approximation of the amount of loss that should be accepted, compared
to the gain for moving from xi to xj . The final trade-off value for each point
gets computed by taking an average of its trade-off with its neighbors. A higher
trade-off value for a point indicates that moving away from the point results in
a high loss. Thus, the decision-makers usually prefer the highest trade-off point
from the ND set. In this way, we keep selecting the highest trade-off point from
the ND set of each side from hereon.

After selecting the attacking strategy, the defender selects a strategy using
the same procedure as the attacker. This process continues until we can find
an equilibrium point where the same defending strategy and attacking strategy
keep on getting selected in each iteration or an equilibrium cycle where the same
sequence of defending and attacking strategies get selected in a cycle.

4 Results and Discussion

After carefully formulating the proposed MoCoEv algorithm and decision-
making procedure, we apply the proposed framework to the WSOP. In this
section, we first show the final formulation of the problem, followed by some pre-
liminary analysis of the optimization of the problem without any co-evolution,
and finally, we evaluate the performance of the proposed co-evolutionary process.

4.1 Solution Evaluation and Surrogate Model

In our WSOP case study, we execute each scenario using the ‘Command Modern
Air and Naval Operations’ (CMANO) [2] system. Each scenario takes, on average,
about six minutes under a graphics-less accelerated execution. It is still too slow
to use this high-fidelity model within an optimization code. Therefore, a surrogate
model is learned for each of the five competing attacker/defender objectives.

4.2 WSOP Objectives

The objectives and the goals of the WSOP entities are presented in Table 1.
The analysis of the dataset used for training the surrogate models reveals that
some of the objectives are correlated with each other. In Fig. 1, we can see
that OffenseLifeCost is highly correlated with OffenseExpenditures (corr. coeff.:
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Table 1. The original objectives and
attacker-defender goals for the WSOP.

Objective Att. Def.

OffenseHits ↑ ↓
OffenseLifeCost ↓ ↑
DefenseLifeCost ↑ ↓
OffenseExpenditures ↓ ↑
DefenseExpenditures ↑ ↓

Fig. 1. Correlation analysis of WSOP
objectives.

0.87) and similarly DefenseLifeCost is highly correlated with DefenseExpendi-
tures (corr. coeff.: 0.77). These observations make sense because intuitively more
OffenseLifeCost means more resources of the attacker getting destroyed leading
to more OffenseExpenditures. The same logic applies to the defending entity, as
well. For this reason and to make the problem simpler to solve, we eliminate two
objectives – OffenseLifeCost and DefenseLifeCost – from further consideration.
This reduces the number of objectives of the problem to three. We further reduce
one more objective by constructing two conflicting objectives, as mentioned in
Table 2.

Table 2. Reduced objectives for WSOP.

i Objective (fi) Offense Goal Defense Goal

1 OffenseExpenditures - DefenseExpenditures ↓ ↑
2 OffenseHits ↑ ↓

4.3 Multi-objective Optimization Without Co-Evolution

To have an understanding of the optimal solutions for each entity separately and
without having control from the other entity, we optimize the WSOP objectives
for each entity without using co-evolution as a multi-objective optimization prob-
lem. For the offense entity, the second objective (Table 2) is to be maximized.
We convert this objective to formulate a two-objective minimization problem, as
follows:

min {(OffenseExpenditures - DefenseExpenditures),−OffenseHits} .

Intuitively, they are in conflict, as attempting to cause a large damage to the
defense (small value of negative offense hits) will incur a large expenditure for
the offense, thereby causing a large first objective value.
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We employ the standard NSGA-II procedure [7] without co-evolution and run
with 50 population members for 200 generations. The ND front is presented in
Fig. 2. From the Figure, we can observe that to increase the number of offense hits
from 10 to 300, the offense’s expenditure needs to be close to the defense’s
expenditure. In all cases, an independent optimization of the offense’s objectives
causes the defense to make larger expenditures than the offense and still not
protect the defense’s assets to a large number.

Fig. 2. Non-dominated fronts for independently optimizing each entity’s objectives
without co-evolution.

We repeat the NSGA-II application for the defense entity next. Since the
first objective is to be maximized (Table 2) for defense, we use the following for-
mulation: min {−(OffenseExpenditures - DefenseExpenditures),OffenseHits} .

Fig. 3. PCP for all ND solutions obtained
using independent optimizations of offense
and defense entities. The highest trade-off
solutions are shown in bold.

Figure 2b presents the trade-off
ND front. Interestingly, the number
of offense hits in the ND front is
between zero and 0.8 (average over
multiple scenarios), much smaller
than that obtained by the offense’s
independent optimization runs. This
is because the objective OffenseHits
is now being minimized, instead of
being maximized. A complete con-
trol by defense via an indepen-
dent optimization of its own objec-
tives cause offense to make more
expenditure and still not generate
too much damage to the defense
assets. This demonstrates the power
of an optimization run in providing
the best possible strategies for the
chosen objectives. To demonstrate
the difference between the obtained
solutions, we choose the highest
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trade-off objective vectors for each entity from the respective plots: Fig. 2a for
offense, and Fig. 2b for defense. In the respective ND front, the specific trade-off
solution causes a maximum loss in one objective for a unit gain in the other
objective [19], making it a preferred choice among other ND solutions. It is
clear that the two trade-off solutions are completely different from each other.
This reveals the competitive nature of optimal strategies for the two entities. To
understand the difference of ND strategies for two entities, we present the deci-
sion variables corresponding to trade-off as well as other ND points using the
parallel coordinate plots (PCPs) in Fig. 3. Clearly, the green and orange lines
are aligned differently. Focusing on the two highest trade-off solutions (shown in
bold), we observe that out of a total of 74 offense and defense variables, 53 vari-
ables (almost 70%) have completely different values. This experiment confirms
that when we optimize the contradicting objectives, the algorithm searches in
different portions of the search space resulting in solutions which are widely
different in objective as well as variable space.

4.4 Multi-Objective Competitive Co-Evol. (MoCoEv) Optimization

Figures 2a and 2b have clearly shown that when strategies from two entities are
intricately involved in defining objectives, individual optimization of one entity
alone does not produce satisfactory results for both entities. The solutions are
biased towards the entity for which the optimization is performed. This motivates
us to consider the WSOP as a co-evolutionary optimization (CoEv) problem.
Since each entity has two conflicting objectives on its own, the problem becomes
a multi-objective co-evolutionary optimization (MoCoEv) problem. Moreover,
since there is conflict in the individual optimal solutions between the two entities,
as found by widely different values of the ND front solutions in Fig. 2, the problem
becomes more challenging and is known as a multi-objective competitive co-
evolutionary optimization (MoCCoEv) problem. In this subsection, we apply the
MoCoEv algorithm presented in Sect. 3 to find an ND set of trade-off solutions,
each of which takes into account both entities during the optimization process.

Fig. 4. Offense and Defense ND sets by
MoCoEv.

Competitive Trade-Off Solutions:
We use a co-evolutionary version of
NSGA-II having a population of size
50 for each co-evolving population and
run the proposed MoCoEv algorithm
for 200 generations with τ1 = τ2 =
5. The final outcome of the MoCoEv
algorithm are two ND sets of solu-
tions (having 10 solutions each), one for
each entity. We compute average objec-
tive values for each solution for one
entity with every member of the other
entity and then identify the ND solu-
tions for both entities based on these average values.
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The respective ND fronts based on these average objective vectors of each
entity are plotted in Fig. 4. Clearly, for the offense population, objectives
(OffenseExpenditures - DefenseExpenditures) and −OffenseHits are minimized,
while for the defense population, the negative of the objectives are minimized.

It is interesting to note that both ND fronts are now closer to each other,
meaning that the MoCoEv algorithm is able to emphasize both entities’ interests
well in arriving at competitive solutions. The number of offense hits is now
limited to a maximum of 20, instead of around 300 obtained using the offense’s
independent optimization. In all defense ND solutions, offense expenditure is
more than that of defense. To achieve up to 10 offense hits, the offense needs
to make little more expenditure than the defense, while the offense has to out-
spend the defense to destroy more than 10 assets of defense. For example, to
achieve 20 offense hits, the offense has to spend about 8 million units more than
the defense, however with about similar expenditure, the offense can achieve 9
offense hits. On the other hand, if the offense is happy with damage of about
2.5 units of assets, the offense entity can spend 2 million units of expenditure
less than that of the defense. Moreover, ND solutions for the offense entity have
a wider range of objectives than that of the defense entity. This can be due to
the existence of more offense variables, thereby providing more ways to find a
wider combination of variables. All these observations are interesting providing
offense and defense users with a better insight into various alternate solutions
before they prepare to launch any action.

Extracting Common Patterns in Trade-Off Solutions: The process of
extracting common patterns in a set of ND solutions was termed as the task of
“innovization” [8]. Patterns can be extracted from the ND solutions manually
using certain problem information [8] or using an automated machine learning
process [4]. Here, we use a manual process in which all 74 variables of both
entities are plotted in the order of their similarity among the obtained ND solu-
tions. For this purpose, we compute the coefficient of variation (CV - σ/μ) of
each solution and the order of the offense and defense variables in Fig. 6.

Fig. 5. Heatmap of converged variables for
offense and defense entities.

A higher CV indicates higher dis-
persion around the mean. So, a lower
CV reflects a better-converged value
of variables towards the mean value.
It is reported in [1] that a threshold of
σ/μ = 0.3 is an acceptable limit for
assuming a good convergence. With
this threshold, we observe that six of
the 50 offense variables and six of the
24 defense variables can be consid-
ered well converged. The number of
values that each variable can take in the original formulation is mentioned in
parentheses in Fig. 6.
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Fig. 6. Coefficient of variation for offense and defense variables indicate convergence
of certain variables across ND solutions.

To analyze further, we normalize values for the converged variables over the
PFs between zero and one and are plotted in a heat map in Fig. 5. Each variable’s
values in 10 ND solutions are shown in columns for each entity. Almost identical
colors for each row (variable) indicate the convergence level visually. For the
offense variables, we note that three of the six variables are related to electronic
warfare MP, suggesting that there is a set of plans for the offense entity that
significantly inhibit the perception and communication of the defender. Other
converged offense variables dictate where a strike is safe and effective (KS IP), as
well as the simple fact that carrying more air-to-ground munitions is consistently
a good choice (striker lethality). From the defense’s perspective, we observe
that more surface-to-air missile launchers (num iads) that can fire more missiles
(num reloads) for a longer duration (iad lethality) is a cost-effective strategy.
This also pairs well with autonomous interceptors (interceptor manned).

Optimization With and Without Coevolution: Figure 7 marks the original
high-fidelity objective vectors (in yellow circles) used to construct the surrogate
models of the objectives. The data were centered around equal expenditures
for both entities causing on average around four offense hits. These solutions
are marked with the label “Surrogate Fitted Training Points”. If we do not
perform any optimization run and try to locate the best strategies for the offense
entity, we find the respective ND front marked using orange circles on the top-
left part of the yellow circles. Similarly, when we locate the best strategies for
defense, they are at the bottom-right corner of the yellow circles, marked using
purple squares.

We embed the individually optimized ND solutions in the plot for both offense
and defense and they are marked using brown circles and black squares, respec-
tively. Notice that both these sets clearly dominate the respective sets obtained
from initial high-fidelity data only and without resorting to any optimization.
Clearly, these individual optimal solutions are better due to the efforts put in by
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Fig. 7. Training data, independently-optimized and MoCoEv strategies. (Color figure
online)

the optimization algorithm. However, it was discussed before that these indi-
vidual solutions are not practical, as the optimizations ignore the ability of the
other entity to influence the solutions of its own entity.

Next, we plot the MoCoEv ND solutions found for both entities in red circles
and blue squares. All final strategies found via the MoCoEv optimization are
also shown in green-colored open circles. It is clear that the coevolution-based
solution sets are closer to each other, thereby respecting each other’s abilities to
arrive at challenging solutions for each other. Due to the consideration of two
conflicting objectives for each entity, both ND sets produce trade-off solutions
between two objectives. We argue that the MoCoEv trade-off solutions stay as
viable strategies from which each entity can choose a solution.

Multi-Criterion Decision Making on MoCoEv Solutions: Finding a set
of ND solutions for each entity in a co-evolutionary process is a challenging
computing task, but it only completes a part of the whole WSOP task. The next
important task is to choose preferred solutions for implementation. Despite a
plethora of multi-criterion decision-making (MCDM) studies in the literature [18,
22], MCDM studies for two co-evolved Pareto sets is missing. In this paper, we
make an effort to propose a viable MCDM procedure.

Since two entities – defense and offense – are independent, likely they will
also make decisions independently. However, the linking of the two entities in
defining the objectives suggests that a sequential decision-making task must be
made alternating between them. This will lead to a defender-attacker simulation
game which will start with declaring a defense’s solution. The offense then has the
opportunity to choose its solution to counteract the declared defense’s solution.
After the offense’s solution is announced, the defense has the next move to choose
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its most appropriate action. This iterative process can continue until it reaches
an equilibrium pair of strategies or an equilibrium cycle of strategies. With this
iterative scheme of the MCDM procedure in mind, the question remains as to
how to choose a preferred solution when the opponent has made its move.

Before we propose an MCDM scheme for this study, we make an important
assertion about our decision-making approach. We assume that each entity will
confine its decision-making to its own ND set corresponding to the final set of
strategies for the other entity. Since the MoCoEv is expected to find the best pos-
sible trade-off solution set considering the opponent’s best possible moves, each
set is expected to have the best counter-moves in them. Hence, it makes sense
to use the obtained ND set to choose a solution from.

Fig. 8. Initial strategy selection by offense and defense.

Fig. 9. Proposed method results in an
equlibrium cycle of strategies.

As outlined in Sect. 3.2, we first
identify the specific defense strategy
corresponding to the smallest stan-
dard deviation in its objective vec-
tors arising from the various combina-
tions of solutions in the offense popula-
tion. Figure 8a marks the size of each
defense solution in proportion to the
corresponding standard deviation aris-
ing from all offense strategies. Strat-
egy 9 (second from top-left point), when
combined with each offense ND solution
produces the least standard deviation
in both defense objective values. Hence, it may be considered the most robust
strategy against any strategy that the offense entity may choose next. Thus,
Defense 9 is selected as the initial defense strategy.

After selecting the initial defense strategy, we now plot the objective vector of
every offense strategy with this defense strategy (Defense 9 ) in Fig. 8b. Clearly,
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not all objective vectors are non-dominated to each other. We now identify the
non-dominated set from these vectors and choose the highest trade-off point. This
strategy Offense 36, marked in a yellow circle, is the best response by the offense
to the Defense 9 strategy of the defense.

Due to this lop-sided loss-to-gain ratio, there is no motivation to move to its
neighbor for a better outcome. Next, it is the turn of the defense to find the best
possible defense strategy from its own MoCoEv-obtained set of strategies. With a
similar trade-off analysis of non-dominated solutions obtained from all objective
vectors computed using Offense 36 and each defense’s ND solution, we observe
that Defense 43 is the best option. Next, we find Offense 0 strategy of offense
ND set is the best response. One more trade-off analysis of the defense ND set
reveals that Defense 9 is now the best defense strategy. Interestingly, Defense 9
was one of the chosen strategies considered before and which led to Offense 0
in a few iterations. Continuing the decision-making process further will lead to
a cycle of offense and defense strategies which we have already observed before.
Thus, the MCDM process ends up in an equilibrium cycle of strategies between
the two entities. This ends the WSOP task. Figure 9 shows the cycle by clearly
marking the sequence of defense and offense strategies.

5 Conclusions and Future Studies

In this paper, we have proposed a multi-objective, competitive, co-evolutionary
optimization algorithm and a decision-making strategy to deal with two agents,
whose evaluation functions require both agent’s variables. In every sense, the
problem has introduced challenges in arriving at practical solutions. The opti-
mization problem is challenging due to the involvement of multiple conflict-
ing objectives and inter-dependencies of both agent’s variables, leading to two
non-dominated fronts. The decision-making is challenging due to involvement of
two independent decision-makers, each deciding from a different non-dominated
set of strategies in tandem and in response to opponent’s moves. Not only does
each agent choose a preferred strategy from its own ND set by trading-off two
conflicting goals, the chosen strategy must also be appropriate in response to
opponent’s recently chosen strategy. Standard evolutionary multi-objective opti-
mization (EMO) and multi-criterion decision-making (MCDM) methods are not
as involved as MoCoEv and ensuing decision-making tasks.

We have applied the proposed approaches to a wargame strategy optimiza-
tion problem (WSOP) to illustrate its working and revealing the complex inter-
actions involved in solving an attacker-defender system. From the five objectives
of interest for defense and offense agents, a correlation analysis has allowed us
to reduce the problem to have only two objectives for each agent. For the first
time, we have proposed a sequential MCDM approach by involving one agent
at a time. A trade-off-based MCDM approach has been proposed to find the
best ND solution of one entity as a response to all ND solutions of the other
strategy. In the specific case study, the proposed MCDM scheme has resulted in
an equilibrium cycle of offense-defense strategies as an end result.
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This study has clearly shown the advantage of using evolutionary compu-
tation in addressing multi-objective competitive multi-agent systems and inves-
tigates a number of future studies. Iterated MCDM schemes may involve the
depletion of resources into consideration as the game progresses. It may also
restrict future moves only to moves allowed by the initial moves by each entity.
More than two objectives can be considered to have more flexible trade-off solu-
tions. The MoCoEv and ensuing MCDM approach can be applied to other similar
multi-agent systems in achieving a better understanding of the effect of sequen-
tial decision-making strategies in achieving safe and secure systems.
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Abstract. Offshore wind farms (OWFs) have emerged as a vital com-
ponent in the transition to renewable energy, especially for countries like
the United Kingdom with abundant shallow coastal waters suitable for
wind energy exploitation. As net-zero emissions targets propel invest-
ments in renewables, OWFs present unique engineering challenges, par-
ticularly in the design of cost-effective and efficient infrastructural net-
works such as layout and electrical system optimization. Diverging from
the previous approaches in electrical system optimization for OWFs, this
paper introduces network robustness as a pivotal metric in design evalua-
tions, differing from traditional reliability evaluation focused studies. By
designing approximate solutions to the capacitated minimum spanning
tree (CMST) using an approach grounded in a radial space partitioning
strategy, the application of the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II), and a bespoke domain-specific mutation operator,
we present a multi-objective exploration of the cost-robustness trade-off.
To demonstrate the effectiveness of our approach and its ability to offer
decision makers valuable insight on cable layout designs, we apply it to
a real-world case study that considers the Anholt OWF. The obtained
results indicate the ability of our approach to discover sets of high-quality
solutions, underscoring its potential to enhance the strategic develop-
ment of robust and economically viable OWF networks.

Keywords: topology optimization · network robustness · offshore
wind farm · inter-array cabling · optimal trade-offs · planarity
constraints

1 Introduction and Motivation

The integration of renewable energy sources, particularly wind and solar power,
has become a pivotal aspect of energy investment strategies, driven by net-zero
emissions policies enacted by several nations. Offshore wind farms (OWFs), in
particular, are crucial for meeting the energy demands of countries with extensive
shallow coastal waters, like the United Kingdom, where areas such as Dogger
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Bank offer prime conditions for wind energy harvesting. The rising popularity
of OWFs brings with it a set of technical challenges, which are the byproducts
of creating an efficient and cost-effective infrastructure. Typically, a wind farm
comprises a central substation connected to numerous turbines via a complex
cable network. The optimization of wind farm layout design is critical, as it
directly influences the facility’s power production efficiency and the rate of return
on investment.

OWF design can be categorized into two distinct segments: (i) wind farm lay-
out optimization, which determines the placement of wind turbines by addressing
the micro-siting problem, and (ii) electrical system optimization, which estab-
lishes the cable connection configuration and selects the appropriate cable types.
Notably, the costs associated with the electrical infrastructure represent approx-
imately 15% of the total initial outlay for an offshore wind farm, an amount that
is on par with the expenditure for the turbines themselves [15].

The wind farm cabling challenge can be systematically broken down into
several hierarchical layers. Berzan [1] categorizes this issue into three distinct
levels:

1. The circuit problem represents the most basic and smallest scale of
the issue, focusing on connecting a specified set of turbines to form a single
circuit.
2. The substation problem, which is of intermediate complexity, involves a
designated substation and a group of turbines that need to be connected to it.
The objective here is to link the turbines to the substation as cost-effectively
as possible, typically resulting in a solution that resembles a spanning tree.
3. The full farm problem encompasses a more complex scenario with
potentially multiple substations and all turbines. The solution involves cre-
ating a forest of spanning trees, with each tree rooted to a substation, to
efficiently connect the entire farm.

In the substation and full-farm problems, turbine locations are considered
as nodes, and the cables connecting them act as edges in a graph, leading to
a capacitated minimum spanning tree (CMST) problem [3] formalization with
specific constraints based on cable types. Various heuristic algorithms such as
the Esau-Williams algorithm [7], have been proposed to address the CMST prob-
lem. To overcome limitations inherent in these heuristics, such as cable capacity
constraints, clustering techniques can be employed alongside them for improved
effectiveness.

Moreover, metaheuristic algorithms have been developed to refine the solu-
tions offered by traditional CMST heuristics, specifically targeting issues like the
propensity to converge on local optima. These algorithms employ probabilistic
criteria to more thoroughly explore the design space. Prominent metaheuris-
tic methods include genetic algorithms (GA) and particle swarm optimization
(PSO) [14].

In addition to considering the length and cost of cables in the full farm prob-
lem, various objectives are taken into account in optimization studies. Objectives
include different forms of energy losses and reliability indexes, where the latter
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evaluates the amount of energy not supplied due to failures [4,12]. To the best
of our knowledge, the evaluation of network robustness has not been previously
considered as an objective in the optimization of cable layouts. In this study,
we address the cable layout problem by focusing on two main objectives: the
cost associated with various types of cables and the robustness of the network.
We apply the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [5] in
combination with a radial-based space partitioning approach to generate Pareto
fronts that illustrate the trade-off between these two key objectives.

The structure of this paper is organized as follows: Sect. 2 introduces the
problem, defining the cabling layout, the metrics for evaluation, and the exam-
ple OWF utilized in this study. Section 3 outlines the proposed methodology.
The numerical simulations we conducted are described in Sect. 4, and Sect. 5
presents our conclusions and outlook on future work.

2 Problem Definition

The full farm problem necessitates a variety of evaluation criteria to achieve
the desired optimal solution. Departing from conventional studies, we recognize
network robustness as a critical component in electrical system optimization,
enhancing the system’s ability to handle failures effectively. In this preliminary
study, we focus on two key evaluation criteria—cost and robustness—which must
be addressed in a multi-objective optimization context due to their conflicting
nature. Additionally, we detail the specifics of the Anholt OWF and its electrical
system as this wind farm serves as the case study for our proposed approach.

2.1 Cable Cost Evaluation

Evaluating the cost of developed OWF cable layouts across a broad spectrum of
cable capacities is one of the key objectives. This requires detailed information
on cable costs relative to their respective capacities. The cable costs considered
in this analysis encompass both procurement and installation expenses. It is
important to note that this cost model does not account for the additional cable
length required to connect from the seabed to the turbine’s transformer and
back.

The primary function of the cable cost model in Eq. 1 is to highlight the
relative cost differences between various cabling options, rather than to accu-
rately estimate the total cost of the entire cabling layout. A wind farm can be
represented as an undirected graph G with v vertices (representing turbines and
substations) and e edges (representing cable segments). Let G = {V,E}, where
V is the set of all vertices and E is the set of all edges. The cost of the network is
defined as:

C(G) =
∑

e∈E

cost(e) · len(e) (1)

where len(e) is the length of the cable calculated according to the Haversine
distance [10] between the geo-location of the two end points, and cost(e) is
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the cost of the cable type assigned by the procedure described in Fig. 2 cross-
referenced with the unit pricing grid in Table 1.

2.2 Network Robustness Evaluation

In power system modelling, a wide array of methodologies has been proposed to
simulate cascading failures [9]. Each model offers unique focuses and advantages,
yet comprehensive information about the overall phenomenon is still crucial for
accurate simulations. Among these methodologies, modified topological models
stand out by incorporating certain electrical properties, such as Kirchhoff’s law,
line impedance or reactance, line capacity, and flow-based analysis.

From the perspective of cascading failures, robustness refers to the system’s
ability to maintain normal service for a critical percentage of clients, even when
some components fail. This study evaluates the robustness of wind farms using
a network-based approach, drawing on the modified topological model for cas-
cading failures developed by Zhang and Chi [17] derived from the admittance
model by Grainer and Stevenson [8]. T , with |T | = l represents the set of wind
turbines in G and S represents the set of the substations1 in G, and T , S ⊂ V .
We define the robustness of the entire graph G as R(G) measured in Eq. (2):

R(G) =
1
v

∑

i∈V

P (i) (2)

where P (i) is defined as the percentage of vertices that still serve a substation
after the failure of a component i. If component i is considered as failed, the
component will be removed from the network and the robustness of the network
given this failure is computed as P (i) as shown in Eq. (3). This computation is
based on the fact that each failed component i creates a total of ki subgraphs and
for each such subgraph j, if there is no substation connected, power cannot be
supplied by any of the vertices in the subgraph, i.e. the power output associate
with the subgraph j is Q(i, j) = 0. Alternatively, if subgraph j is still connected
to a substation after the failure of component i, its associated power Q(i, j) is
equal to the proportion of vertices p(i, j) it contains as defined in Eq. (4).

P (i) =
ki∑

j=1

Q(i, j) (3)

Q(i, j) =

{
p(i, j), if a substation is connected to subgraph j

0, otherwise
(4)

1 S is a singleton set for many OWF layouts, including our present use case described in
Sect. 2.4.
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2.3 Multi-objective Formulation

For a fixed set of vertices V , the multi-objective problem defined in Eq. (5)
considers two objective functions as we seek to determine optimal trade-offs when
searching for a wind farm cabling topology E′ that simultaneously minimizes the
cabling cost C(G′) and maximizes robustness R(G′) for G′ = {V,E′}:

F (G′) =

{
min C(G′)
max R(G′)

(5)

subject to:

∀s ∈ {0, 1, . . . , n − 1} ∃v ∈ V such that section(v) = s (6)

∀s ∈ {0, 1, . . . , n − 1} |{v : section(v) = s}| ≤ vmax (7)

∀ (e1 �= e2) ∈ E′ ¬intersects(e1, e2) , (8)

where intersects(e1, e2) is the condition that edges e1 and e2 are line segments
that intersect in the plane, and section(v) is the OWF section number encoded for
the vertex v (see Sect. 3.1 for details). The first two constraints are section-related
and they ensure that there are no empty sections without turbines Eq. (6) and
there are at most vmax turbines per section to mitigate excessive curtailment due
to maximum cable capacity Eq. (7). Equation (8) concerns graph planarity and
aims to prevent overlaps between cables.

2.4 The Anholt Offshore Wind Farm

The Anholt OWF was constructed in 2015 in the Kattegat Strait, approxi-
mately 15 km off the east coast of Denmark. It comprises a total of |T |=111 S
(now Siemens Gamesa) SWT-3.6-120 type wind turbines, collectively boasting
an installed capacity of 399.6 megawatts (MW). These wind turbines are strate-
gically connected to a substation platform, positioned on the western side of the
windfarm, as well as to each other via inter-array cables.

The inter-array subsea cables utilized within the Anholt OWF are standard
medium voltage range 33 kilovolt (kV), each tailored to the specific require-
ments of the number of wind turbines it connects between the designated points
and the offshore transformer. They are cross-linked polyethylene (PEX/XLPE)
insulated and embedded not less than 1 m into sea bottom. Three variations
of inter-array cables are installed: 150cu, 240cu, and 500cu, with cross-section
levels adjusted accordingly. Although the precise cable specifications used in the
Anholt OWF are not disclosed, we estimate cable capacity in terms of number
of total upstream turbines that can be connected. These estimates are listed in
Table 1. Despite various sources providing cost estimates for the specified cable
cross-sections, it is important to note that these figures were calculated before
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the COVID19 pandemic, rendering them somewhat unreliable [6]. For the pur-
poses of simplification in simulation studies, the proportional estimations pre-
sented in Table 1 have been selected for use.

Moreover, the connection between onshore facilities and the offshore trans-
former (33kV to 220kV) platform is facilitated by a 220 kV cable, ensuring
efficient transmission of electricity generated by the wind turbines [16]. An illus-
trative layout of the entire Anholt OWF is provided in Fig. 5a, offering a com-
prehensive overview of the spatial arrangement and infrastructure of the wind
farm.

3 Proposed Approach

Our approach to solving the full farm cabling optimization problem begins with
the constructing a candidate solution (i.e. start tree) that connects every node of
interest (i.e. wind turbine) to a desired starting point, typically the substation.
Section 3.1 provides a detailed summary of the proposed topology assignment
strategy for constructing the OWF’s start tree. The availability of different types
of cables transforms the problem into a CMST scenario, where each candidate
connection must be assigned specific capacities. This aspect is elaborated upon
in Sect. 3.2. Lastly, Sects. 3.3 and 3.4 describe how the efficient optimization of
the layout involves the application of a non-linear multi-objective solver, specifi-
cally the well-known NSGA-II, with a specially designed, domain-specific, genetic
operator.

3.1 Cable Topology Assignment Based on Radial Space Partitioning

We define an encoding for our multi-objective optimization problem as shown
in Eq. (9), where n is a parameter that controls the domain size of a candidate
solution x by specifying the total number of OWF radial sections into which
we wish to cluster all turbines. Conceptually, based on the hierarchical problem
taxonomy proposed in [1], n can be used to define the number of substation
problems one wishes to decompose the full farm problem into.

x = [x0, x1, . . . , xl−1]
xi ∈ {0, 1, . . . , n − 1} (9)

Within this encoding, each turbine placeholder xi(0 ≤ i ≤ l − 1) can be
allocated to an arbitrary section, where l is the length of the encoding, equal to
the number of turbines.

To construct an initial candidate/start tree, turbines are first sorted radially
by their angle relative to the substation and then partitioned into n equally-sized
subsets according to angle. If n does not evenly divide the number of turbines,
some sections will contain

⌊
l
n + 1

⌋
turbines, as illustrated in Fig. 1a.

To generate the cable layout (decode) from the encoding we create n separate
minimum spanning trees, using Kruskal’s algorithm [11]. The distance metric
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Fig. 1. Steps in constructing a full farm spanning tree for cable layout, shown on a
simplified wind farm with fourteen turbines. Step (a) is only applied for the start tree
(i.e. initial solution candidate).

employed is the Haversine formula [10], resulting in a spanning forest consisting
of n disjoint trees, as shown in Fig. 1b.

In each section, the turbine closest to the substation is defined as the subroot.
An additional cable is added to the subsection to connect its associated subroot
to the substation. The substation is defined to be the root. This creates a single
spanning tree of the set of all turbines plus the substation, where the substation
is the root and there are n subroots. This layout is represented in Fig. 1c and
the resulting overall spanning tree in Fig. 1d.

3.2 Cable Type Assignment

The electrical system design of the Anholt OWF incorporates three different
types of cables, each distinguished by its cross-sectional size. These cross sections
are designed to support the maximum current load that the cable can carry. In
Table 1, we present each cable type along with the maximum number of upstream
turbines that can be connected using it and the estimated costs assumed for our
case study simulations. Here, the maximum turbine load Tmax represents the
capacity that constrains the spanning tree in the CMST problem.

Table 1. Selected Cable Specifications Used in Anholt Case Study

Cross Section (mm2) Maximum Turbine Load Tmax Cost (M£/km)

150 4 1

240 7 1.5

500 15 2.5
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The cable chosen for each edge is the lowest cost cable with a maximum
turbine load greater than or equal to the required load on the edge. This process
is illustrated in Fig. 2.

Fig. 2. Steps in cable type assignment, shown on one section of the Anholt layout.

3.3 Mutation

To ensure that the proposed representation is compatible with a wide range of
metaheuristic solvers, we introduce a mutation operator designed to explore a
local neighborhood through incremental adjustments. This operator is structured
to randomly select with equal probability between two pre-defined movements,
ensuring a uniform random distribution in their application:

1. Move One Vertex: As illustrated in Fig. 3, a random vertex i (i.e. position
xi in the encoded vector) is chosen and allocated to the previous or the next
radial section (this corresponds to the its value either increasing by 1 or
decreasing by 1, limited by the bounds 0 and n − 1).

2. Swap Two Vertices: Shown in Fig. 4, this mutation involves swapping the
section assignments of two random vertices i and j that reside in adjacent
sections (i.e. xi ↔ xj if |xi − xj | = 1).

The constraint violation checks align with the problem formulation from
Sect. 2.3 and are as follows:
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Fig. 3. Illustration of “move one vertex” mutation operation.

Fig. 4. Illustration of “swap two vertices” mutation operation.

1. Number of Sections: The total number of non-empty sections must be
exactly n as per Eq. 6. This constraint ensures consistency across different
optimization scenarios, allowing each configuration (i.e. setting of n) to be
evaluated and compared independently.

2. Section Capacity: The number of vertices in any section must not exceed
the maximum turbine load associated with the highest-rated cable type as per
Eq. 7. In the case of Anholt, the setting vmax = Tmax(500cu) = 15 prevents
the scenario where the cable connecting the root to the subroot of a subtree
is overloaded.

3. Graph Planarity: The resulting graph must be planar as per Eq. 8 to avoid
the added costs and technical challenges associated with overlaying cables.
This constraint is verified using a standard line-segment intersection test
based on the cross-product, given the manageable number of line segments
involved.

Section-related constraints (i.e. constraints no. 1 and 2) are handled within
the mutation operator, as movements that result in their violation are rejected
and alternative movements are explored until a suitable mutant is created. Con-
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straint no. 3 (planarity) is treated in a softer manner as its violation is only
signaled to the overarching control (meta-)heuristic. These mechanisms and con-
straints ensure that nearly all metaheuristic search processes can explore viable
alterations while strictly complying with operational and technical parameters,
thus maintaining the integrity and feasibility of the optimized layouts.

3.4 Multi-objective Optimization

To apply the proposed representation for optimizing the dual-objective problem
we presently consider, we integrate our bespoke mutation operator in the NGSA-
II [5] solver. We use an initial seed population of 1 that only contains the start
tree and scale up to an operational population cap of 100 individuals. Each
optimization run evaluates a fixed number of 10, 001 candidate solutions (i.e.
100 generations). Crossover operations are disabled as they are too disruptive;
our aim in this study is to elicit the performance of the proposed domain-specific
mutation operator.

We use the “Feasibility First” constraint handling option from the NSGA-II
implementation in pymoo [2], which prioritizes feasible solutions during non-
dominated sorting throughout the optimization.

3.5 Random Walk

To gain basic insights on the benefits of applying NSGA-II and mitigate the
possibility that the final multi-objective result quality is solely predicated on the
repeated application of the mutation operator, we also implemented a random
walk (RW) strategy for this problem. Similar to NSGA-II, the random walk
uses the bespoke mutation operator introduced in Sect. 3.3, thus ensuring the
satisfaction of section-related constraints. RW is configured not to update the
step if a newly generated solution violates the graph planarity constraint – i.e.,
Eq 8, keeping the search within the feasible space at all times.

Random walks start from the same initial candidate as the NSGA-II runs
and explore for a total of 10,001 evaluated solutions (10,000 steps), including
infeasible ones, matching the evaluation budget of the NSGA-II runs.

4 Results

The real-life Anholt OWF layout serves as the baseline design for our case study.
The cabling configuration is illustrated in Fig. 5a. For comparison, in Fig 5b, we
illustrate the result obtained when applying the traditional Esau-Williams (EW)
heuristic [7] to solve the Anholt CMST problem. Notably, the resulting EW
layout does not satisfy the planarity constraint, as several line segments (i.e.
cables) that intersect or overlay one another. This indicates that the Anholt
scenario is too complex for a basic/direct application of EW and would require
more extensive domain expert input/modelling.



Multi-objective Optimization of Wind Farm Cable Layouts 377

Fig. 5. (a) Model of real-life Anholt wind farm layout: cost = 250.8; robustness =
0.9518. (b) Esau-Williams Solution for max capacity 15 turbines: cost = 232.7;
robustness = 0.9372.

For both NSGA-II and RW, we conducted 17 numerical experiments by set-
ting the number of sections parameter n from a minimum of 8 to a maximum
of 24. The minimum value is dictated by the Tmax(500cu) = 15 scenario set-
ting, as dividing the |T | = 111 Anholt turbines into 7 non-empty clusters, would
result in at least one cluster with more than 15 turbines. The maximum value of
n was set at double the branching factor of the real-life Anholt layout. Given the
stochastic nature of our solvers, each of the 2 × 17 = 34 numerical experiments
was repeated 50 times.

The objective space projections (i.e. Pareto fronts) of the final Pareto non-
dominated solution sets (PNs) obtained by our multi-objective approach for each
of the 17 NSGA-II numerical experiments are shown in Fig. 6a. As expected, the
results show a positive correlation between the number of sections and the over-
all robustness of the OWF cable layout. Furthermore, for each setting of n, the
shape of the associated Pareto front (PF) indicates the ability of our approach
to identify cost vs. robustness trade-offs, even though robustness improvements
become marginal (albeit at a very high level) for n ≥ 15. Maximizing n would
also maximize robustness with the trivial extreme case being each turbine indi-
vidually attached to the substation for n = |T | = 111.

The importance of designing a solving strategy that allows for easy experi-
mentation with several substation branching factors (i.e. settings of n) is under-
lined by the plot in Fig. 6b that shows the combined multi-section PF of all 17
individual optimization runs for both NSGA-II and RW. It is noteworthy that
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only 12 settings of n contribute to the combined multi-section NSGA-II PF as
the optimization results obtained using n = 9, 11, 12, 13, and 14, are entirely
dominated. Given that n = 12 is the branching factor in both the real-life Anholt
layout and the EW solution, the plots in Fig. 6 showcase the ability of our app-
roach to quickly provide decision makers with valuable insights on the art of the
possible, even with a basic deployment (i.e. no parameter tuning for the solver).

Interestingly, in the combined multi-section PF there is a large discontinu-
ity whereby to obtain non-dominated solutions with a lower cost than those
achievable for n = 16, there is a need to drop down to n = 10 and n = 8. This
discontinuity is punctuated only by a few solutions from the parameter setting
n = 15. Figure 7 shows the two optimal layouts for n = 10 and n = 16 that
define this large discontinuity characterized by a relatively small increase in cost
but a relatively large jump in robustness. Visually, we see this abrupt regime
change correlates to the introduction of a design which eschews 500cu cables –
used in Fig. 7a – in favor of keeping each section limited to the capacity of the
240cu cable as shown in Fig. 7c. One of the few n = 15 in-between solutions is
highlighted in Fig. 7b and it features a single section linked using a 500cu cable.

The better overall performance of NSGA-II when compared to the random
walk is directly observable in the combined multi-section PFs from Fig. 6b which
are extracted from all the numerical experiments we have carried out. Addition-
ally, for each solver, we constructed 50 individual multi-section PFs by aggregat-
ing the 17 PFs (8 ≤ n ≤ 24) corresponding to a given independent run number.
When analyzing the individual multi-section PFs using the relative hypervolume
indicator2 [18], NSGA-II achieved an average value of 0.699 (with a 0.006 stan-
dard deviation) and RW achieved an average value of 0.586 (with a standard
deviation of 0.003). This superior average performance of NSGA-II was con-
firmed by a one-sided Mann-Whitney U test [13] with a 0.01 significance level
(p-value < 0.00001, Z-score = 8.61383).

As previously mentioned, solutions that violate the graph planarity constraint
are still presented to NSGA-II, which applies a feasibility-first approach that dis-
cards infeasible solutions once feasible solutions are found. Across NSGA-II runs,
out of the 10,001 evaluated solutions, an average of 32.7% solutions were feasible.
In contrast, RW treats graph planarity as a hard constraint during the search
and as a result, only an average of 18.7% of evaluated solutions were feasible.
The percentage of feasible solutions does not vary significantly across exper-
iments with different settings for the number of sections parameter (standard
deviation of 1.8% for NSGA-II and 0.5% for RW). It is noteworthy that while the
proportion of feasible solutions is rather low due to the relatively high chance
of mutations causing cable overlays, the comparative results indicate that the
search space can be explored quite effectively by a robust solver like NSGA-II
when applying strict feasibility-first constraint handling.

2 The ideal point was set at (200, 0.97) and the anti-optimal/nadir reference point
was set at (270, 0.93).
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Fig. 6. Comparative Pareto fronts of numerical experiments. In subfigure (b), the indi-
cators (a), (b), and (c) refer to the layouts in Fig. 7, whereas “Anholt” refers to the
real-life OWF layout and “EW” refers to the Easu-Williams solution; both detailed in
Fig. 5.
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Fig. 7. Layouts of the three letter-identified solutions from the combined NSGA-II
PF in Fig. 6b. (a) n = 10; cost=213.0; robustness=0.9458. (b) n = 15; cost=213.7;
robustness=0.9526. (c) n = 16; cost=215.0; robustness=0.9567.

5 Conclusion and Future Work

The inter-array cable layout optimization problem for OWFs has been addressed
through the development of a multi-objective formulation that incorporates both
robustness and cable cost considerations. Building on previous efforts in the
field, our methodology introduces network robustness as a critical metric in the
design of OWFs, moving beyond the conventional reliability-focused assessments.

As a preliminary investigation, this newly developed approach was compared
with the Esau-Williams heuristic and the original design of the Anholt OWF.
This comparison demonstrated the significant advantages of our methodology,
highlighting its potential to substantially enhance the strategic development of
OWFs that are simultaneously robust and economically viable. Furthermore, the
results of our case study highlighted the importance of choosing an appropriate
substation branching factor when aiming to optimize a radial OWF topology, a
relevant insight to both wind farm designers and equipment manufacturers.

Looking ahead, we plan to further refine our approach by integrated more
sophisticated subgraph connection strategies, enabling us to explore more com-
plex scenarios with multiple substations and/or loop-based topologies. Simulta-
neously, as we develop our understanding of the complexities involved in opti-
mizing offshore wind farm infrastructures (e.g., bathymetric data, ecological
impact), we aim to refine our problem definition by including more relevant
constraints as well as potentially new objectives. Lastly, for the current experi-
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mental setup, one potential enhancement would be to experiment with (combi-
nations of) different constraint handling options provided by pymoo: constraint
violation as penalty/objective, ε-constraint handling, repair.
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Abstract. Vector and raster graphics are the two main types of 2D
images used in computer graphics. Raster graphics are images con-
sisting of pixels (dots); vector images are created using mathematical
objects such as lines, curves, and shapes. The main advantage of vec-
tor graphics is that they can be scaled without loss of quality, which
is useful for advertising, design, frontend development, and other fields
of application. At the moment, the issue of vectorization (conversion
from raster to vector graphics) has not been fully resolved. There are
two main approaches: deterministic algorithms and machine learning-
based algorithms. Both of these types are not able to work with a color
gradient and have other disadvantages, such as artifacts for determin-
istic algorithms, and extremely long working time and predefined curve
number for machine learning-based algorithms. To solve the problems
of existing solutions, we propose an evolutionary algorithm for image
vectorization. Its main idea is to iteratively improve vector images using
mutations and crossover. The proposed algorithm does not require any
necessary parameters other than the original image and can process color
gradients. The results of comparison with existing solutions show that
our algorithm qualitatively and quickly vectorize images. Particularly,
our approach outperforms others in terms of pixel-by-pixel MSE by 15%.
The implementation is publicly available (https://github.com/EgorBa/
EvoVec-Evolutionary-Image-Vectorization).

Keywords: Image vectorization · evolutionary algorithm · machine
learning · vector graphics

1 Introduction

Raster and vector graphics are the primary forms of visual representation
employed in computer graphics. Both types of graphics have their strengths
and weaknesses and are used in various areas of design and visuals, depending
on the specifics of the task.

Raster graphics or bitmaps consist of pixels (dots), each having a specific
color and coordinates on the screen. The color is commonly set by three channels:
red, green and blue (RGB). The bitmaps quality depends on their resolution and
number of pixels, so this type of graphics is not scalable.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Vector graphics are images created using mathematical objects such as lines,
curves, and shapes. Each shape is called a path and is defined mathematically
using a coordinate vector. Vector images can be scaled without loss of quality [2],
as they do not depend on the number of pixels. Vector images are usually saved
in SVG [20] format.

The process of converting a vector image to a bitmap image is called rasteriza-
tion [13], and the one from bitmap to vector image is called vectorization [25]. A
rasterization process has already been studied in great detail, because there are
a huge number of methods for its implementation [17]. However, the task of
vectorization remains relevant, since existing solutions do not yet manage this
task well.

There are two main approaches for vectorization: deterministic algorithms
and machine learning-based algorithms. Deterministic algorithms include exist-
ing solutions from libraries or online services [9]. Their main disadvantage is that
the quality of vectorization is not high, because these algorithms do not work
with a gradient colors and sometimes create artifacts on a vectorized image.
In turn, machine learning-based algorithms (like LIVE [15] or DiffVG [14]) can
create structured vector images, so that is their main advantage. Their disad-
vantages include: long working time, inability to operate with a gradient, and
the requirement for knowledge of the curves number in a vectorized image.

In this paper, we propose an another approach to vectorization problem,
since existing solutions do not manage the task of vectorization sufficiently. We
have achieved quality improvement through the use of an evolutionary algorithm.
This allows to vectorize the image without additional parameters and using a
gradient.

The result of this paper is an evolutionary algorithm that can vectorize a
raster image using a variable curve number. Specifically, the main contributions
are as follows:

1. The proposed algorithm does not require input parameters for vectorization.
2. The algorithm operates with a color gradient, which improves the vectoriza-

tion quality.
3. Vectorized image does not require predefined curve number and has fewer

curves than the deterministic algorithm result.
4. It works faster than existing algorithms based on machine learning.

For more information about existing solutions, see the Related Works Sect. 2.
The Methods Sect. 3 will describe in detail the algorithm itself and the sub-
tleties of its implementation. In the Comparisons and Experiments 4, the results
of comparing the proposed algorithm operation with existing solutions and abla-
tion study are presented. The Conclusion Sect. 5 summarizes the paper.

2 Related Work

In this section, we summarize previous approaches and present works that are
closely related to our article. The existing surveys [8,23] proposes vectoriza-
tion methods classification. According to it, the two main groups of methods
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are deterministic algorithms and machine learning-based algorithms. Along with
these algorithms, we also discuss evolutionary approaches in this section.

2.1 Vectorization Algorithms Based on Machine Learning

There are lots of machine learning-based vectorization algorithms, however some
of them are universal (designed to vectorize any images) and the others are
customized for a predefined type of images. Non-universal algorithms can only be
used for highly specialized tasks and therefore they are not of particular interest
for the general problem of image vectorization. Among universal algorithms we
selected DiffVG [14] and LIVE [15] as the most widely used [11,24] existing
approaches.

DiffVG. Many machine learning-based vectorization algorithms use a process
of a vector image gradual optimization so that its rasterization is similar to
a bitmap image. This optimization is possible due to the method of differen-
tiable rasterization of a vector image proposed in the DiffVG [14] paper. In this
paper, the authors propose a functional operator that accepts a vector image as
input and outputs its raster analog. The main purpose of this operation is to
further transfer the resulting bitmap image to the loss function, to call the error
back propagation algorithm and to calculate gradients for the parameters of the
original vector image. Then, according to the standard practice, an optimization
step can be performed to result in vector parameters updating. Thus, the vector
image is changed according to the specified loss function, and if, for example, this
loss function is MSE, then the vector image is optimized towards more similarity
with the custom raster analog.

One of DiffVG advantages is that it does not have a rigid binding to any
predefined type of vector images and it is able to process any images. However,
DiffVG is not able to dynamically determine which shapes or segments should
be added or removed from a vector image. The DiffVG method operates on
vector images, preserving their original structure and changing only the values
of the shape parameters, for example, color, point coordinates, and stroke width.
This is one of the reasons why using DiffVG without additional improvements
does not result in the images most closely resembling the original ones.

At the moment, the following innovations are used among the algorithms
known: 1) according to a pre-selected scheme, step-by-step addition of the shapes
to a vector image is applied (for example, in LIVE method), 2) DiffVG is used in
neural networks for the purpose of differentiable transition from vector to raster
domain, 3) DiffVG is used for final optimization of a vector image pre-generated
by a separate neural network.

To the best of our knowledge, there are still no methods related to DiffVG
that could remove unnecessary shapes and segments from a vector image.

Im2Vec. One of the first approaches integrating DiffVG into neural networks
is the Im2Vec model [21], its main purpose is image vectorization. The model is
a VAE (Variational autoencoder) transforming an input bitmap into a hidden
space and then generating the parameters of the vector image corresponding to
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the input bitmap from the hidden space. The network is trained using DiffVG,
due to which the generated vector image is converted to a raster image and a
raster loss function is applied, evaluating the similarity of the generated raster
image with the original raster image. The main disadvantage of this model is that
the model is able to correctly vectorize only images similar to training set. At the
same time, according to our experiments, this model is not able to synthesize
complex vector images consisting of a large number of shapes and segments.

LIVE. The iterative vectorization approach is used in LIVE [15] method. Before
running this algorithm, the scheme for adding new shapes must be specified.
This scheme determines how many new shapes will be added at each stage of
optimization. Instead of applying shapes to the canvas in random places, the
algorithm searches for such monochrome areas in the image that are not covered
by the desired shape.

The method also introduces two new loss functions. The first penalizes the
algorithm for creating self-intersecting shapes, which in practice can lead to the
appearance of unnatural patterns. The second loss function seeks to estimate
the coincidence of the rasterization of vector shapes with the real area of the
original raster image more correctly than by MSE. MSE approach was shown to
be problematic due to the following considerations. Vector images are often a
composition of various shapes superimposed on each other. The LIVE algorithm
suggests adding shapes to a vector image step by step, starting with the outer
large shapes, rather than the inner smaller ones. However, using the mean square
error (MSE) as a loss function between the current external vector shape and
the real raster area containing this external shape and its internal subfigures is
incorrect. Instead, it is proposed to use the UDF (User-Defined Function) loss
function, which evaluates how precise a vector shape corresponds to the desired
boundaries and how correct its color is, rather than the average color of this
external shape and its internal ones. The proposed losses allow more effective
evaluating and improving the intermediate results of the LIVE algorithm when
vectorizing images.

However, the main problem with the LIVE method is its very low image
generation speed. In addition, the quality of vectorized images in terms of visual
similarity to the original bitmap is still not precise.

2.2 Deterministic Algorithms

At the moment, a huge number of deterministic algorithms for vectorization
exists [7,9,19,27]. The main shortcomings of such algorithms are vectorization
quality, as results are obtained with a partial loss of initial information, and a
large number of unnecessary paths used in resulting vector image. These algo-
rithms advantages include high vectorization speed and the absence of necessary
parameters tuning to improve vectorization.

In our approach, deterministic algorithms are used to get an initial popula-
tion. This helps to ensure that the initial vectorization quality of our algorithm
will not be worse than the quality of the deterministic ones.
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2.3 Evolutionary Vectorization

An evolutionary algorithm [1] is a numerical optimization method based on the
principles of natural selection and evolution. To obtain more adapted individu-
als, evolutionary algorithms use mutations [28] and crossovers [22]. A mutation is
a change in one particular individual using a special algorithm, that can improve
or worsen it. Crossover is an operator which involves combining features from two
parent individuals to create offspring. By exchanging features between parents,
crossover promotes exploration of the search space and facilitates the creation
of new potential solutions. One of the evolutionary algorithm main characteris-
tics is the selection of the initial population [12], because all new individuals will
be built on the basis of it. The important parameter of the evolutionary algo-
rithm is the elite percentage [4]—the percentage of individuals selected from the
current population for further development. The size of the population [10] has a
great influence on the evolutionary algorithm quality, because the chance of get-
ting a more adapted individual with a large population size is higher, therefore
it is necessary to select the optimal value for it based on available computational
power.

Vectorization of bitmaps using evolutionary algorithms was discussed in the
paper [3]. The described approach has a number of significant drawbacks that
do not allow it to be used for vectorization. The vectorization process has long
working time, and the result is very different from the original images, because
the algorithm works with discrete geometric shapes and use masks. This app-
roach makes it possible to add different styles to vectorized images by user, but
vectorized image does not have a high vectorization quality.

In our approach, we decided to use evolutionary algorithm, because image
vectorization is a task of optimizing the resulting image quality. Our algorithm
is more universal and makes it possible to get a vector image similar to the
original.

3 Method

The main part of the proposed solution is the evolutionary algorithm, which
is used to solve optimization problem. Image vectorization aims to optimize
vector image to exactly repeat raster image, thus, it is an optimization task. A
vectorized image is an individual to which appropriate mutation and crossover
operators are applied to obtain a higher quality. For vectorization, we also create
a population from various vectorization options and further improve and select
only the best ones.

3.1 The Initial Population

Several options were considered to create the initial population. After conducting
a number of experiments, it was concluded that the result of a deterministic
algorithm should be copied to form an initial population of n individuals.
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We also studied and tested various Python libraries for initial vectorization
(Pixels2Svg1, Potrace2, SvgTracer3). SvgTracer is the best library we have found
for our task, because it is the fastest and its results have the highest quality.

3.2 Mutations and Crossovers

To achieve the best quality of vectorization, we use four types of mutations:
needle mutation, probabilistic gradient connection of paths based on color dif-
ferences, probabilistic path deletion, and probabilistic path segment deletion. As
crossover, we use a random exchange of paths.

A needle mutation is a probabilistic change in the coordinates of path seg-
ments added for preventing path overgrowth and shape correction. This mutation
works in such a way that the needle mutation coefficient is added or subtracted
to a probabilistically selected coordinate of a path. At the same time, it is lim-
ited by the size of the image, and this mutation also has its own subtypes such as:
a constant value of the coordinate change and a gradual decrease in the value by
which the coordinate changes. For more complex vectorization tasks, the second
type of the mutation should be used, and for the rest—the first one. In Fig. 1,
example A shows the problem that this mutation is designed to solve.

Fig. 1. Example of different vectorization problem and their solution with different
mutation. A—example of incorrect initial coordinates of a path. This problem is solved
by needle mutation. B—artifact of vectorization. Mutation of dropping path removes
this artifact. C—extra segment in the path. Mutation of dropping segment smoothes
the curve.

While other mutation, the path is deleted with a certain degree of proba-
bility. The same approach is used for deleting the segments of the path. These

1 https://pypi.org/project/pixels2svg/.
2 https://pypi.org/project/pypotrace/.
3 https://pypi.org/project/svgtrace/.

https://pypi.org/project/pixels2svg/
https://pypi.org/project/pypotrace/
https://pypi.org/project/svgtrace/
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mutations help to eliminate artifacts created during the initial vectorization.
The mutation for deleting a path has an additional parameter responsible for
the size of the deleted area, because large elements of the image should not
be deleted. For example, in Fig. 1, Figures B and C illustrate this issue with
artifacts.

The main purpose of the fourth mutation is the gradient connection of two
paths based on the difference in their colors, set by a threshold, which can be
tuned [26]. This mutation is applied with a certain probability, and the connec-
tion occurs using a gradient [6] from the color of the first path to the color of
the second. Figure 2 shows how the algorithm works.

Fig. 2. Example of how mutation works for gradient path joining. From left to right:
the original image; the image vectorized by a deterministic algorithm; the process of
applying the gradient mutation; the vectorized image.

The edge of the shape area is taken as the gradient start points. If there are
more than two parts, then the area’s edge is taken only from the first part and
the last one. For other parts, the center of mass is taken. This mutation creates
the images with gradient coloring, which helps render the colors of the original
image more accurately.

Fig. 3. Example of random path exchange crossover.

We use only one crossover for probabilistic path exchange. To achieve better
quality, two individuals can exchange random paths with a certain probability.
The example is presented in Fig. 3.
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Assume that two individuals I and II appeared after the mutation, let each
individual has one good path and the other has bad path. Next, a crossover
exchange of random paths is applied. For example, it chooses path A from indi-
vidual I and path C1 from II, then swaps them. As a result, two new individuals
are created, and individual I is much better due to the crossover.

3.3 Selection Function

Three selection function [16] were investigated. The selection function 1 is the
pixel-by-pixel difference between the original bitmap image N and the current
generated one M , formulated as follows:

F1(N,M) =
w∑

i=0

h∑

j=0

|Ni,j − Mi,j | , (1)

where w—width of image, h—height of image.
The second selection function 2 is the same, but the difference between pixels

is calculated exponentially.

F2(N,M) =
w∑

i=0

h∑

j=0

e|Ni,j−Mi,j |∗λ+c, (2)

where λ = 50
255 , c = 1 to get a more sensitive difference color map.

In the third selection function 3, the difference between pixels in F1 is
squared.

F3(N,M) =
w∑

i=0

h∑

j=0

(|Ni,j − Mi,j | ∗ λ)2. (3)

where λ = 1
255 for normalization pixel colors.

This selection function is close in meaning to MSE [5]. As a part of the test-
ing on different images, it was decided to focus on the third variant of selection
function. This allows to account for stronger color differences better, while if the
color is close to the original one, then the value function will be small.

In order to calculate the value of the selection function, a rasterizing of a
vector image is required. We also studied and tested various Python libraries for
rasterization ( Aspore4, Wand5, CairoSvg6). CairoSvg is the best library for this
task due to its speed and quality of rasterization.

4 https://www.aspose.com/.
5 https://pypi.org/project/Wand/.
6 https://pypi.org/project/svgtrace/.

https://www.aspose.com/
https://pypi.org/project/Wand/
https://pypi.org/project/svgtrace/
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3.4 Color Correction

To improve the algorithm operation, the color correction function is added.
Often, the original colors of the deterministic algorithm may differ from the
original ones. To solve this problem, a special color correction algorithm was
created. It selects pixel colors for which the difference between them and the
original ones is greater than a certain hyperparameter responsible for the sen-
sitivity of the correction. Next, it selects all paths containing such colors and
chooses the color for this path, which prevails in this section of the image. The
implementation of the method can be seen in the algorithm’s details.

4 Comparisons and Experiments

As a part of the work, various experiments were carried out to identify the best
parameters of the algorithm, as well as comparison with other existing solutions.
Additional functions have been developed to simplify and improve the operation
of the algorithm and the experimental setup has been described in detail.

4.1 Experimental Setup

The main hyperparameters and thresholds are shown below. The number of
individuals in one population is 30. The percentage of the elite is 10%. The
number of iterations of the algorithm is 300. These parameters were derived
empirically based on a large number of experiments.

All of the experiments were launched on CPU with 16 GB RAM and 10 cores.
No GPUs have been used.

4.2 Comparison with Machine Learning Algorithms

Firstly, we compare algorithms based on machine learning—LIVE and DiffVG—
with our algorithm in terms of execution time, quality, and number of paths.
Note that for LIVE N = 16, for DiffVG N = 512, where N is the predefined
number of paths. This constant was chosen in such a way that the working time
of the machine learning algorithms was comparable to the working time of our
algorithm. Hyperparameters of these algorithms are set to default values. For
DiffVG and LIVE N is necessary parameter, but our algorithm does not need
it.

Table 1 shows that algorithms based on machine learning have a longer work-
ing time than our algorithm. For DiffVG and LIVE, the number of equal pixels
in raster and vectorized images is significantly less, which indicates a low quality
of vectorization. The number of paths for images vectorized by machine learning
algorithms is equal to the initial constant, they have not to be compared by this
parameter.
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Table 1. Comparison of our algorithm with existing vectorization algorithms. The
table shows metrics (vectorized image, working time, fitness value and number of paths)
of algorithms: LIVE [15], DiffVG [14], Pixel2Svg, SvgTracer, and our algorithm.
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4.3 Comparison with Deterministic Algorithms

Below we present a comparison of our algorithm with a deterministic algorithm
based on various metrics. Pixel2Svg and SvgTracer were chosen as a deterministic
algorithms, as they are powerful python libraries for image vectorization.

Table 1 clearly shows the advantage of our approach. The number of equal
pixels between the original raster image and the vectorized one is higher due
to gradient mutation. The proposed algorithm result contains fewer paths than
others, due to the path deletion mutation, which means less weight of the vec-
torized image and interpretability. Our algorithm loses out in terms of execution
time to deterministic algorithms, since at each iteration it is required to calculate
the value of the selection function, which is a complex computational operation.

Table 2. Relative performance comparison of our algorithm with deterministic algo-
rithms.

Size Pixels2Svg SvgTracer Comparison criterion is relative
to our algorithm

128× 128 -1569.8 ± 67.7 % -500.7 ± 38.9% Number of paths

-69.6 ± 4.2 % -16.9 ± 4.1 % Fitness

256× 256 -164.8 ± 13.5% -103.6 ± 10.1% Number of paths

-27.9 ± 2.5% -13.8 ± 1.3% Fitness

512× 512 -80.4 ± 9.4% -67.1 ± 8.9% Number of paths

-18.8 ± 1.7% -12.1 ± 1% Fitness

1024× 1024 -29.3 ± 5.7% -24.2 ± 4.7% Number of paths

-9.6 ± 0.9% -6.8 ± 0.2% Fitness

Our evaluation of the algorithm was conducted on image groups compris-
ing 100 images each, with varying resolutions: 128× 128, 256× 256, 512× 512,
and 1024× 1024 pixels. As demonstrated in Table 2, our algorithm exhibits a
decrease in the computational paths required and an enhancement in the effi-
cacy of the selection function when compared to the performance metrics of
existing algorithms.

4.4 Ablation Study

In this section, we discuss the importance of the proposed mutations and how
they affect the final result [18]. Each mutation is probabilistic, that is why the
test results for the same hyperparameters may differ.

The main effect of the needle mutation is changing the path shape by chang-
ing their coordinates. This is useful if the vectorized shape does not look very
similar to the expected one. Needle mutation was considered of two types. With
a constant coefficient of change and uniformly decreasing. The first type proved
to be better in the tests, and was later used in the research.
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Table 3. An impact example of the individual mutations on the ultimate outcome.
From left to right: the initial image for vectorization; the image is vectorized by our algo-
rithm; the image is vectorized by our algorithm without needle mutation; the image is
vectorized by our algorithm without mutation for deleting paths and segments; the
image is vectorized by our algorithm without mutation of gradient fusion.

Initial image
All mutations W/o needle W/o deletion W/o gradient

Fitness
628 736 796 698

Number of paths 793 793 2187 793

The removal of segments and paths is necessary to get rid of artifacts that
occur during basic vectorization. It helps simplify the unnecessary complexity
and the weight of the image, which is extremely convenient. However, there is an
important addition: the deleted area should be less than or equal to the threshold
responsible for the maximum square of the deleted area. This was done to avoid
the problems associated with the complete removal of image important parts.

The last mutation, which gradiently connects the two or more paths, is also
needed to simplify the structure of the images and for a clearer match to the
originals due to the smooth transitions characteristic of bitmap images. The
threshold between the color difference of paths can be tuned.

Thus, each of the mutations is responsible for a certain part of the improve-
ment of the vectorized image. For example, Table 3 illustrates problems created
by the absence of the proposed mutations. Their combination allows to achieve
better vectorization results.
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Fig. 4. Fitness dependencies on various factors.

An important part of the work was to choose the right population size, the
number of algorithm iterations, and the elite percentage. Table 4 shows experi-
ment results with various population size and the iterations number. Based on
this table, it can be concluded that a larger number of individuals in the popu-
lation and many algorithm iterations can create a vectorized image with higher
quality. It is worth noting that with an increase in these parameters, the quality
ceases to improve (see Fig. 4a,4b), so we chose the number of individuals in one
population as 30 and the number of the algorithm iterations as 300.

Table 4. The dependence of the algorithm final result on the population size and the
iterations number.



396 E. Bazhenov et al.

Figure 4c shows the influence of the elite percentage on the final vectorized
image. The algorithm working time does not depend on the percentage of the
elite, but the vectorized image quality and the paths number depends on it.
Thus, the elite percentage equal to 10% is the best.

5 Conclusion

We have presented an evolutionary approach designed for the raster images vec-
torization using a variable number of curves. Unlike existing algorithms our solu-
tion is able to work with gradient colors. Additionally, it achieves superior quality
results within an acceptable timeframe compared to other existing vectorization
algorithms such as LIVE, DiffVG, Pixels2Svg, and SvgTracer. To evaluate the
quality of vectorization, we employ a pixel-by-pixel Mean Squared Error (MSE)
loss calculation. This allows us to quantitatively measure the similarity between
the vectorized image and the original bitmap image.

In order to further enhance the algorithm’s performance, we plan to incor-
porate new types of mutations and crossovers. These additions will address the
current limitations, such as long operation time, and contribute to improving the
algorithm accuracy. Another improvement involves increasing the algorithm’s
speed by integrating alternative selection functions. By exploring different selec-
tion strategies, we aim to optimize the algorithm’s efficiency and reduce process-
ing time.

Furthermore, we plan to directly operate with the contours of vectorized
images. This approach will enable us to calculate the quality of vectorized images
without the need for excessive rasterization. This advancement will simplify the
evaluation process and increase the overall efficiency of the algorithm.

Acknowledgments. The research was supported by the ITMO University, project
623097 “Development of libraries containing perspective machine learning methods”.
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Abstract. Accurate prediction of dissolved oxygen (DO) concentrations
in lakes requires a comprehensive study of phenological patterns across
ecosystems, highlighting the need for precise selection of interactions
amongst external factors and internal physical-chemical-biological vari-
ables. This paper presents the Multi-population Cognitive Evolution-
ary Search (MCES), a novel evolutionary algorithm for complex feature
interaction selection problems. MCES allows models within every pop-
ulation to evolve adaptively, selecting relevant feature interactions for
different lake types and tasks. Evaluated on diverse lakes in the Mid-
western USA, MCES not only consistently produces accurate predictions
with few observed labels but also, through gene maps of models, reveals
sophisticated phenological patterns of different lake types, embodying
the innovative concept of “AI from nature, for nature”.

Keywords: Ecosystem modeling · Adaptive learning · Feature
selection

1 Introduction

The concentration of dissolved oxygen (DO) in lakes is a key indicator of water
quality and the health of freshwater ecosystems. Effective DO monitoring is crit-
ical for sustaining aquatic biodiversity and ensuring water security for human
consumption [37]. DO concentrations are influenced not only by the exchange
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of oxygen between air and water, but also by the metabolic processes of pri-
mary production and respiration [31]. As articulated by Edward A. Birge one
century ago [1]: The fluctuations in a lake’s oxygen illustrate its “life cycle”
more clearly than many other ecological indicators. This is particularly evident
in nutrient-rich eutrophic lakes, where algal blooms can significantly deplete
oxygen, creating detrimental “dead zones” for aquatic life.

Accurate prediction of DO concentrations requires a comprehensive study of
different phenological patterns across various ecosystems. In particular, DO con-
centration is closely intertwined with ecosystem phenology, influenced by mor-
phometric and geographic information, mass fluxes, weather conditions, trophic
state, and watershed land use. In deeper lakes, for instance, light scarcity and
decreased mixing with the oxygen-rich surface can lower oxygen [27,30]. Tem-
perature fluctuations impact oxygen solubility and biochemical activities [33].
Land use changes reshape DO patterns and metabolism phenology [11,38].

Given the importance of predicting DO concentration, scientists across lim-
nology, hydrology, meteorology, and environmental engineering have devised
process-based models to simulate the dynamics of freshwater ecosystems.
These models, aimed at evaluating the effects of external and internal factors,
often combine hydrodynamic and water quality models [10]. Examples include
DYRESM [7], GLM [8], MyLake [28]. These models utilize first-order principles
(e.g., mass and energy conservation), but also involve many parameterizations
or approximations due to incomplete physical knowledge or excessive complexity
in modeling certain complex processes, resulting in inherent model bias.

Advanced data-driven methods like deep learning [17], offer an alternative to
process-based models for complex scientific problems (e.g., prediction of DO con-
centration). Their success is contingent upon effective feature selection [2,4,18],
however, most extant methods face several major challenges in this problem.
Firstly, predicting DO involves sophisticated phenological patterns across vari-
ous metabolic processes. Directly considering a large number of feature interac-
tions can easily introduce noise, while manual selection risks overlooking critical
details. Secondly, most feature selection approaches rely on global models built
under expert guidance and lack the flexibility to adapt to various tasks and
datasets. As a result, they often fail to select relevant feature interactions for
different lake types and prediction tasks. Finally, the sparse nature of DO data
further complicates model training, as frequent and comprehensive data collec-
tion is hindered by substantial human labor and material costs.

To address these challenges, cognitive evolutionary search (CELS) has been
developed [43], utilizing an evolutionary algorithm to adaptively evolve mod-
els for selecting feature interactions under task-specific guidance. Unlike con-
ventional methods constrained by model fitness evaluation [35,41,45,46], CELS
introduces a novel model fitness diagnosis technique. Despite its advancements,
CELS still contends with issues of “reproductive isolation”, which may result
in the convergence of similar models within a population, thereby limiting the
development of specialized models for distinct tasks [19,34].
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Leveraging insights from CELS, this paper proposes an advanced evolution-
ary algorithm, namely Multi-population Cognitive Evolutionary Search (MCES),
where cognitive ability refers to the malleability of organisms to orientate to the
environment [43]. MCES utilizes multi-population models to effectively serve
diverse lake types and predictive tasks, mirroring the adaptive strategies of
species in diverse habitats. In MCES, feature interactions are envisaged as
genomes and models as organisms within ecosystems, conceptualizing tasks as
the natural environments these organisms inhabit. Internally, MCES assesses
the capacities of genes, with mutations occurring probabilistically when existing
traits are detrimental to survival. The models within MCES undergo crossover
and mutation within their respective populations and, though less commonly,
engage in inter-population crossover. This genetic diversity and flexibility allow
models to dynamically adapt and select appropriate phenological feature inter-
actions, catering to specific environmental conditions of different lake types and
tasks.

2 Related Work

Existing research suggests that evolution-based feature selection is often lim-
ited to filters and wrappers due to model fitness evaluation constraints [35,41].
Specifically, wrapper methods use the performance of the learning algorithm as
its evaluation criterion, while filter methods use the intrinsic characteristics of
the data. On the other hand, embedded approaches simultaneously select fea-
tures and learn a classifier, therefore conventional algorithms cannot evaluate the
fitness of the model [35,41]. Only genetic programming (GP) and learning classi-
fier systems (LCSs) are able to perform embedded feature selection, but they are
not practical [6,20,26,35,41]. For additional research on evolution-based feature
selection, please refer to [43].

Research on the population structure of EAs has demonstrated the benefits
of segmenting the initial population into multiple sub-populations. These sub-
populations exchange information, and regrouping operators are triggered at
regular intervals to maintain the population’s diversity and balance exploita-
tion with exploration capabilities [39,47]. Various models like the shuffle or
update parallel differential evolution (SOUPDE) [36] and the multi-population-
based cooperative coevolutionary algorithm (MPCCA) [29] utilize unique muta-
tion strategies and population dynamics to optimize performance across diverse
problem-solving scenarios.

3 Problem Definition and Preliminaries

Problem Definition. Our goal is to predict the DO concentration at a daily
scale. We simplify our analysis by dividing the water column into two distinct
layers with separate oxygen and metabolic kinetics: the epilimnion (upper surface
layer) and the hypolimnion (lower bottom layer). We treat the DO prediction
for the epilimnion and hypolimnion as two tasks.
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For each lake, we have access to its phenological features xxxt on each date t.
These features, spanning m diverse fields xxxt = {x1

t , · · · , xm
t }, encompass morpho-

metric and geographic details such as lake area, depth, and shape; flux-related
data like ecosystem and sedimentation fluxes; weather factors comprising wind
speed and temperature; a range of trophic states from dystrophic to eutrophic;
and diverse land use proportions extending from forests to wetlands. Besides
input features, we also have observed DO concentrations yt (for both the epil-
imnion yepi

t and hypolimnion yhyp
t ) on certain days.

We use an embedding layer to convert input phenological features into a series
of multi-field feature embeddings fff t = [fff1

t , · · · , fffm
t ], where fff i

t = embed(xi
t).

Initially, numerical features are bucketed into categories, and each category is
then represented as a one-hot vector that is transformed into an embedding
vector through a perceptron layer [44]. Our model uses these embeddings to
predict DO concentrations ŷt for both the epilimnion ŷepi

t and hypolimnion ŷhyp
t .

Feature Interaction Selection. The process of feature interaction selection
aims to identify the most informative feature interactions that can facilitate the
prediction of target DO concentrations H : M(fff,ggg(fff)) → ŷ, where ggg denotes
the set of operations to interact on feature pairs, and ggg(fff) denotes the set of
interactions. In DO prediction case, the algorithm H aims to minimize the MSE
loss for the outputs of the prediction model M, given as:

L(M) =
1

|B|
∑

t∈B

(
yt − ŷt

)2

, (1)

where B denotes the set of instance indices in a mini-batch, ŷt denotes the
predictive result given through the learned model.

As the fundamental components in feature interaction, operations are func-
tions where two individual features are converted into an interaction. For the sake
of simplicity, we adopt four representative operations as candidate operations to
present instantiations of MCES, i.e., ggg = {⊕,⊗,�,�}. Detailed explanations of
these operations and their use in evolution-based feature selection are provided
in Appendix A.

Metabolic Process-Based Model. In this work, we use a metabolic process-
based model to simulate DO labels [16]. The process-based model divides the
water column into the upper epilimnion and lower hypolimnion during stratified
periods. It is focused on analyzing metabolic dynamics in warmer months. Flux
features (denoted as F ) affecting DO concentrations are calibrated with observed
data [16]. More details of the process-based model are provided in Appendix B.

4 Overall Framework

The overall framework is depicted in Fig. 1 and involves two stages of learning:
(1) MCES for feature interaction selection using simulated labels, and (2) model
refinement using real observed labels.

https://zenodo.org/doi/10.5281/zenodo.10993058
https://zenodo.org/doi/10.5281/zenodo.10993058
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Fig. 1. Overall framework.

Specifically, we first utilize metabolic process-based models to generate simu-
lated DO labels given the phenological features xxxt. Using these simulated labels,
we implement our proposed feature interaction selection algorithm MCES. The
models in MCES adaptively evolve to select relevant feature interactions within
populations for different lake types and tasks. In the subsequent stage, we refine
these evolved models using real-world observed DO concentration data. This
mirrors natural genetic decoding, where selected feature interactions are further
optimized to reflect actual ecological dynamics.

Identifying Different Lake Types. As a preprocessing step, lakes are classi-
fied based on characteristics critical to oxygen dynamics-primarily surface area
and volume. Larger surface areas improve atmospheric oxygen exchange, while
greater volumes are associated with higher oxygen consumption in deeper waters.
We use a balanced K-means clustering algorithm to uniformly distribute the
lakes in dataset LLL into four categories based on volume and area: small lakes LLLS,
medium lakes LLLM, large lakes LLLL, and extra-large lakes LLLxL.

5 Multi-Population Cognitive Evolutionary Search

In this section, we detail the feature selection stage, employing simulated labels
ỹt to implement MCES. We begin by introducing the establishment of multiple
populations, and explain how each individual within these populations is mod-
eled. We then delve into the fundamental mutation and crossover mechanisms.
Lastly, we provide an instantiation of the search process.
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5.1 Multiple Populations

In MCES, each population comprises a set of models designed specifically for
a particular combination of lake type and prediction task (e.g., predicting DO
in the epilimnion of large lakes). Consequently, we establish eight unique pop-
ulations: PPP epi

S , PPP hyp
S , PPP epi

M , PPP hyp
M , PPP epi

L , PPP hyp
L , PPP epi

xL , PPP hyp
xL . Here the subscript

{S,M,L, xL} represents different lake types, and the superscript {epi,hyp} rep-
resents two different prediction tasks (i.e., epilimnion or hypolimnion).

With a population size of n (where n > 1), we initialize each population
with n models for feature interaction selection: PPP = {M1, · · · ,Mn}. We con-
ceptualize each model as a natural organism that evolves to enhance its traits
for improved fitness within its environment. These traits, inherited through
the organism’s genomes, stem from the interplay between features and oper-
ations, much like nucleotides and their connections. Following various linkages
of nucleotides, we extend the operation set with four types of operations as the
search space, i.e., ggg = {⊕,⊗,�,�}. If gk is a chosen operation from ggg, an inter-
action gk(fff i

t, fff
j
t ) is defined by applying the operation gk to a pair of features

(fff i
t, fff

j
t ).

Motivated by the goal of enhancing model fitness through the preservation
of beneficial genetic information, we aim to discern and prioritize important fea-
tures and their interactions via a parameterized method, called internal genetic
evaluation. The idea is to introduce a set of relevance parameters to strengthen
relevant feature interactions while diminishing or mutating those that contribute
less. In this context, we define relevance parameters for features fff t and interac-
tions g̃(fff t) as ααα = {αi|1 � i � m} and βββ = {βi,j |1 � i < j � m}, respectively.
Here, g̃(fff t) denotes the interaction of applying any operations from ggg to a pair
of features. The predictive response of our model at time step t is formulated as:

ŷt = M(
ααα · fff t,βββ · g̃(fff t)

)
, (2)

where M can be any individual model in the population. In this work, we use
a sequence encoder with Long-Short Term Memory (LSTM) networks [9] to
efficiently encode temporal information and the dynamics of feature interactions.
The model M is thus depicted as:

hhhι
t = LSTM

(
[ααα · fff t,βββ · g̃(fff t)];hhhι

t−1

)
,

ŷt = WWW ι · hhhι
t + bbbι,

(3)

where hhhι
t represents a series of hidden states, and WWW ι and bbbι denote the weight

and bias parameters, respectively. The loss function for model M, calculated
using simulated labels ỹt, is defined as:

L(M) =
1

|B|
∑

t∈B

(
ỹt − ŷt

)2

, (4)

where B denotes the set of instance indices within a mini-batch.
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We use a regularized dual averaging (RDA) optimizer to learn the rele-
vance parameters ααα and βββ, with the aim to distinguish between relevant and
irrelevant feature interactions through this process [3,40]. When the absolute
value of the cumulative gradient average value in a certain position in ααα or βββ
is less than a threshold, the weight of that position in relevance parameters
will be set to 0, resulting in the sparsity of the relevance [22,40]. Meanwhile,
the parameters of the embedding layer (for fff t) are optimized using the Adam
optimizer [14]. Unlike AutoML [23,24], which categorizes ααα and βββ as high-level
decisions and treats feature embeddings as lower-level variables for bi-level opti-
mization, our approach simplifies this process. To circumvent the complex and
costly bi-level optimization, we update feature embeddings and relevance param-
eters jointly using single-level optimization with gradients on the training set, as
∇fffL(fff iter−1,αααiter−1,βββiter−1) and ∇α,βα,βα,βL(fff iter−1,αααiter−1,βββiter−1), respectively.

5.2 Mutation Mechanism and Crossover Mechanism

With our definitions of population and feature interaction selection models, we
further detail the mutation and crossover mechanisms in MCES. The crossover
mechanism is bifurcated into intra-population and inter-population crossover.

Mutation Mechanism. The mutation serves as a fundamental mechanism
of our search process. It primarily aims at mutating the operations associated
with irrelevant interactions into alternative operations, and thus generating a
new model (the offspring). Specifically, for an interaction gk(f i

t , f
j
t ), mutation

is triggered with a probability σ after every τ steps if the relevance parameter
βi,j drops below a threshold λ. In other words, to regenerate a new interaction,
the operation gk of the interaction gk(f i

t , f
j
t ) mutates into another operation gl,

given as:

gk =

{
gl with probability σ, if βi,j < λ,

gk, otherwise,
(5)

where gl is randomly selected from the operation set as gl = {g | g ∈ ggg, g �= gk}.
The new interaction gl(fi, fj) replaces the irrelevant interaction gk(fi, fj), and its
corresponding relevance βi,j is reset. Consequently, the parent model M evolves
into its offspring M′, which incorporates these fresh interactions with revised
relevance βββ′, and maintains features with relevance ααα′ inherited from ααα.

Intra-Population Crossover Mechanism. Given a population PPP =
{M1, · · · , Mν , · · · ,Mn}, we use βββMν to denote the relevance parameters of
interactions for each model Mν . The obtained βββMν can vary across different
models in PPP . Therefore, within this population, the models may have a vari-
ety of operations for interacting with each feature pair (fi, fj), represented as
gPPP

i,j = {gM1
i,j , · · · , gMν

i,j , · · · , gMn
i,j }. The intra-population crossover mechanism

aims to select the most suitable operation (of which interaction has the largest
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relevance) within the population to apply on the feature pair for the offspring
model M′, given as:

gM′
i,j = arg max

gMν
i,j ∈ gPPP

i,j

βMν
i,j . (6)

Meanwhile, the relevance parameters of interactions in this offspring model are
inherited from their respective parent models (i.e., the selected Mν).

Inter-Population Crossover Mechanism. For two distinct populations
PPPA = {MA

1 , · · · ,MA
ν , · · · ,MA

n } and PPPB = {MB
1 , · · · ,MB

ν , · · · ,MB
n }, we use

βββMA
ν and βββMB

ν to denote the relevance of interactions for two populations PPPA

and PPPB , respectively. The inter-population crossover mechanism works as fol-
lows: For each feature pair (fi, fj), we select the most suitable operation from
PPPB to interact on the feature pair in the offspring model of PPPA. Conversely, the
most suitable operation of the feature pair from PPPA is selected for the offspring
model of PPPB , given as:

g
M′

A
i,j = arg max

g
MB

ν
i,j ∈ g

PPP B
i,j

β
MB

ν
i,j , g

M′
B

i,j = arg max
g

MA
ν

i,j ∈ g
PPP A
i,j

β
MA

ν
i,j . (7)

Meanwhile, the relevance parameters of interactions in the offspring models are
inherited from their respective parent models.

5.3 Instantiation of the Search Process

Utilizing mutation, intra- and inter-population crossover mechanisms, we imple-
ment MCES as detailed in Algorithm 1. MCES begins by randomly initializing
eight distinct model populations (line 1). It then follows a series of iterative steps
(lines 6–28), continuing until convergence. Each iteration involves optimizing off-
spring models and their relevance parameters within each population.

For every τ iterations, the algorithm (lines 9–16) selects and replaces the
worst model M in each population PPP based on the designated loss function
(Eq. (4)). The selection process can be expressed as:

M = arg max
Mν∈PPP

L(Mν). (8)

When the algorithm replaces the worst model M with the offspring model M′,
a new offspring M′ is generated through intra-population crossover and subse-
quent mutation, enhancing genotypic diversity, thus enabling the search process
to effectively avoid local optima and explore global regions.

For every ep×τ iterations (lines 18–27), we randomly select a pair of popula-
tions, PPPA and PPPB , either based on a shared task (i.e., epilimnion or hypolimnion)
across different lake types or on the same lake type but with different tasks, with
selection probability balanced by a coin flip. This leads to the generation of new
offspring models M′

A, M′
B through inter-population crossover between PPPA, PPPB,

promoting the exchange of advantageous genotypic patterns across different lake
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Algorithm 1 . Multi-population Cognitive Evolutionary Search
Input: Training dataset of four types of lakes LLLS, LLLM, LLLL, LLLxL, each lake has features
fff t, simulated DO labels ỹepi

t , ỹhyp
t over T days; operation set ggg.

1: Initialize eight populations PPP epi
S , PPP hyp

S , PPP epi
M , PPP hyp

M , PPP epi
L , PPP hyp

L , PPP epi
xL , PPP hyp

xL , of which
any M has initialized ααα and βββ.

2: for each PPP do
3: Generate M′ via intra-population crossover in PPP . � Eq. (6)
4: Mutate M′. � Eq. (5)
5: end for
6: while not converged do
7: for each PPP do
8: Optimize M′ with ααα′ βββ′.
9: if mod(t, τ) = 0 then

10: Select the worst M. � Eq. (8)
11: Replace M in PPP with M′.
12: if mod(t, ep × τ) �= 0 then
13: Generate M′ via intra-population crossover.
14: Mutate M′. � Eq. (5)
15: end if
16: end if
17: end for
18: if mod(t, ep × τ) = 0 then
19: Choose (PPP A,PPP B) either by task or lake type.
20: Generate (M′

A, M′
B) via inter-population crossover of PPP A, PPP B . � Eq. (7)

21: for each PPP not in (PPP A,PPP B) do
22: Generate M′ via intra-population crossover.
23: end for
24: for each PPP do
25: Mutate M′. � Eq. (5)
26: end for
27: end if
28: end while
29: return the set of best models M = arg minMν∈PPP L(Mν) from each population PPP .

types and tasks. Meanwhile, each remaining population generates its offspring,
M′, through intra-population crossover, followed by mutation of all offspring.

Finally, the algorithm concludes by delivering a set of the best models, one
from each population (line 29), thereby ensuring a comprehensive exploration
and exploitation of the search space across diverse environmental contexts.

6 Model Refinement

Inspired by nature’s replication and transcription processes, which translate
genetic information into protein sequences to equip organisms with diverse func-
tions, we proceed to a model refinement stage. Here our objective is to refine the
model to better leverage the features and interactions obtained from MCES. At
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this stage, we select the corresponding model by the lake type and task, and then
use observed labels for the model refinement. Relevant features and interactions
are selected according to their relevance parameters ααα, βββ. If αi = 0 or βi,j = 0,
the corresponding features or interactions are fixed to be discarded permanently.
Given the scarcity of observed data, we inherit parameters from the preceding
LSTM to ensure the model’s effective learning, given as:

hhho
t = LSTM

(
[ααα · fff t,βββ · g̃(fff t)];hhho

t−1

)

ŷt = WWW o · hhho
t + bbbo

(9)

where hhho
t represents a series of hidden states, with WWW o and bbbo as the weight and

bias parameters. The relevance ααα, βββ are fixed and serve as attention units.
To address the disparity between abundant simulated and scarce observed

labels, we’ve developed a new loss function for LSTM that integrates both types
of data through weighted imputation [12,42]. This assigns a greater weight to
the loss on observed data and a smaller weight to simulated data, effectively
addressing the scarcity of observed labels. The loss function is expressed as:

L(M) =
1

|B|
∑

t∈B

I
(
yt

)(
yt − ŷt

)2

+ ρ
(
1 − I

(
yt

))(
ỹt − ŷt

)2

, (10)

where ŷt denotes the predicted DO concentration, yt is the observed DO con-
centration, ỹt is the simulated DO concentration, I(x) is an indicator function
that equals 1 if x is observed (true) and 0 otherwise (false), and ρ is the tradeoff
parameter balancing observed and simulated labels.

7 Experimental Evaluation

7.1 Dataset

We evaluate the proposed MCES for predicting DO concentration using a dataset
that documents over 41 years of ecological observations from 375 lakes in the
Midwestern USA, starting in 1979. This dataset includes around 5.58 million
daily records, each with 39 fields of phenological features such as morphometric,
flux data, weather conditions, trophic states, and land use details. Observed
DO data were sourced from the Water Quality Portal (WQP). Lake residence
time was taken from the HydroLAKES. Trophic state probabilities (eutrophic,
oligotrophic, dystrophic) were from the dataset [25]. Land use proportions of each
lake’s watershed were taken from the National Land Cover Database (NLCD).
An account of these features is available in Appendix C. For training MCES,
we use data from all 375 lakes. We then selectively conduct testing on lakes
that have the most comprehensive DO observations for each type. For large and
extra-large lakes, we use data up to 2017 for training, 2018 for validation, and
2019 for testing. For small and medium lakes, where DO observations in 2019
are relatively sparse, we use data up to 2016 for training, 2017 for validation,
and 2018 for testing.

https://zenodo.org/doi/10.5281/zenodo.10993058
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7.2 Baselines

We compare to a set of baselines in our experiment: Sim DO Conc.: This base-
line is the metabolic process-based model used in our first stage, leveraging few
observed labels to calibrate simulations that can significantly augment the data
for other baselines. LSTM : As adopted in our model refinement stage, LSTM
incorporates simulated labels for weighted imputation and backward gradient
adjustments, a necessity for convergence given the scarcity of observed labels.
EA-LSTM & KGSSL [5,15]: These time series prediction models, which assim-
ilate hydrological behavior and physical processes, respectively, are regarded as
cutting-edge within hydrological and ecological domains. LSTM, EA-LSTM, and
KGSSL use individual features for input without feature interaction modeling.
AutoInt, AutoGroup, & AutoFeature [13,21,32]: These methods are at the fore-
front of feature interaction modeling. They have demonstrated their utility and
versatility through extensive commercial deployment, showcasing their capacity
to model complex feature combinations.

Table 1. Comparative performance of DO concentration (g/m3) prediction in terms
of root mean square error (RMSE) across different lake types and tasks. The mean and
standard deviation (displayed in grey) of RMSE are calculated from five runs.

Algo. Name
Small lakes Medium lakes Large lakes Extra-large lakes

Epi. Hyp. Epi. Hyp. Epi. Hyp. Epi. Hyp.

Sim DO conc.
1.943 2.212 1.940 2.217 2.620 2.937 1.536 2.772

± 0.000 ± 0.000 ± 0.000 ± 0.000 ± 0.000 ± 0.000 ± 0.000 ± 0.000

LSTM
1.802 1.973 1.744 2.001 2.298 2.630 1.479 2.594

± 0.079 ± 0.064 ± 0.092 ± 0.081 ± 0.088 ± 0.043 ± 0.068 ± 0.056

EA-LSTM
1.716 1.783 1.676 1.546 2.111 2.629 1.478 2.278

± 0.047 ± 0.098 ± 0.084 ± 0.054 ± 0.045 ± 0.043 ± 0.039 ± 0.062

KGSSL
1.793 1.467 1.557 1.632 2.064 2.730 1.294 2.425

± 0.044 ± 0.057 ± 0.062 ± 0.094 ± 0.103 ± 0.060 ± 0.047 ± 0.075

AutoInt
1.510 1.406 1.516 1.626 1.716 1.924 1.112 1.847

± 0.080 ± 0.097 ± 0.088 ± 0.094 ± 0.072 ± 0.078 ± 0.081 ± 0.085

AutoGroup
1.473 1.509 1.364 1.875 1.384 1.600 0.937 1.953

± 0.078 ± 0.080 ± 0.059 ± 0.072 ± 0.075 ± 0.068 ± 0.085 ± 0.076

AutoFeature
1.382 1.768 1.422 1.467 1.405 1.465 1.178 1.976

± 0.063 ± 0.089 ± 0.070 ± 0.081 ± 0.084 ± 0.082 ± 0.078 ± 0.093

MCES (-refine)
1.851 2.044 1.812 2.024 2.374 2.775 1.530 2.648

± 0.204 ± 0.210 ± 0.227 ± 0.223 ± 0.215 ± 0.218 ± 0.208 ± 0.243

MCES (-multi)
1.315 1.624 1.390 1.473 1.390 1.572 1.151 1.848

± 0.182 ± 0.207 ± 0.203 ± 0.204 ± 0.208 ± 0.194 ± 0.197 ± 0.235

MCES (-inter)
1.107 1.375 1.161 1.354 1.004 1.307 1.040 1.536

± 0.179 ± 0.193 ± 0.192 ± 0.190 ± 0.198 ± 0.189 ± 0.194 ± 0.223

MCES
1.076 1.316 1.060 1.288 0.988 1.243 0.918 1.415

± 0.146 ± 0.161 ± 0.137 ± 0.159 ± 0.169 ± 0.156 ± 0.171 ± 0.215



Evolution-Based Feature Selection for Predicting Lake DO Concentrations 409

7.3 Implementation Details

To implement MCES, we perform a grid search setting feature embedding size
|fff i

t| = 15. We use RDA optimizer [3,40] to discriminate the relevant and irrel-
evant feature interactions, with the learning rate γ = 10−3, adjustable hyper-
parameters c = 0.5, μ = 0.8. We set the population size as n = 4. We set the
mutation mechanism as the mutation threshold λ = 0.2, the mutation proba-
bility σ = 0.5, and the mutation step size τ = 10. We set the inter-population
crossover step size ep = 10, and the tradeoff parameter ρ = 0.1. To assess the
effectiveness of utilizing multiple populations and refining models, we conduct
ablation studies with the following variants: MCES (-refine): This variant drops
the model refinement stage, using only the simulated labels from the first stage
for training. MCES (-multi): Instead of using multiple populations, this variant
trains a single population on all data, and tests it separately across different lake
types. This setup also excludes the inter-population crossover mechanism. MCES
(-inter): This variant does not include the inter-population crossover mechanism.

Fig. 2. Time-series analysis of DO concentrations: a comparison of predicted (MCES),
simulated, and observed values.

7.4 Experimental Results

Performance Comparison. Table 1 presents a comparative analysis of MCES
against various baselines, utilizing root mean square error (RMSE) across diverse
lake types and tasks, with both mean and standard deviation calculated over five
runs. From the results, we have the following key observations: First, machine
learning models universally outperform simulations alone, underscoring the value
of integrating observed labels with simulated labels for enhanced prediction accu-
racy. Second, EA-LSTM and KGSSL surpass LSTM in performance, evidencing
the advantage of incorporating hydrological behaviors and physical processes
into models, particularly when faced with a scarcity of labels. Third, AutoInt,
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AutoGroup, and AutoFeature demonstrate the predictive power of feature inter-
actions, offering significant improvements over models that rely solely on indi-
vidual feature inputs. Fourth, MCES outperforms all baseline models, attribut-
ing its success to the adaptive modeling of interactions through evolutionary
operation selection. Unlike other methods that indiscriminately handle all fea-
ture interactions, MCES discerns relevant feature interactions for specific lake
types and tasks, optimizing their impact while minimizing less pertinent ones.
Lastly, ablation study results reveal that MCES performs better than MCES
(-refine), highlighting the value of combining real with simulated labels for accu-
racy. MCES also exceeds MCES (-multi), emphasizing the necessity of distinct
populations for different ecological settings. Moreover, MCES outshines MCES
(-inter), demonstrating the benefits of inter-population interactions. These inter-
actions promote the sharing of effective feature interactions among populations,
thereby improving the algorithm’s accuracy and stability.

Figure 2 offers a time-series comparison of predicted (i.e., MCES), simulated,
and observed DO concentrations, with a specific emphasis on the summer season
of the testing period. The analysis reveals that MCES predictions not only align
closely with observed values but also demonstrate sensitivity to subtle features
and interactions, enhancing their accuracy. While simulated DO concentrations
also generally exhibit a clear trend, there are instances of slight deviation from
observed data. Encouragingly, both predicted and simulated values largely mir-
ror observed trends, highlighting the efficacy and significance of our proposed
MCES in advancing research in this domain.

Fig. 3. Visualization of gene maps for medium lakes.

Visualization of Gene Maps. The model populations accommodate differ-
ent lake types and tasks, leading to a rich diversity in model traits. These
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traits influence their survival and fitness rates, mirroring the selection pro-
cess for operations and feature interactions. To demonstrate the model’s evo-
lutionary process and how feature interactions adapt across different lake types
and tasks, we visualize the model’s gene maps. Adopting an encoding where
⊕ = 0,⊗ = 1,� = 2,� = 3, we can diagnose the model’s fitness as a symmetric
matrix. Distinct colors are allocated to each operation, creating a vibrant gene
map where each gene symbolizes an interaction; like red “0”, green “1”, yellow
“2”, and blue “3”. For example, a green “1” within the “depth × area” block
signifies that the element-wise product ⊗ is identified as the optimal operation
for “depth” to interact with “area”. The intensity of the colors on the gene
map is directly correlated with the relevance of the interactions, with darker
hues denoting higher relevance and lighter ones suggesting lesser importance.
Individual features are also visually encoded as single-hued bars. Interactions
deemed irrelevant, with their relevance parameters reduced to 0, are excluded,
leaving their corresponding genes depicted in white “−1”.

In Appendix D, we present gene maps for all lake types and tasks, using
end-of-training data to highlight relevant feature interactions for DO concen-
tration prediction. For instance, in Fig. 3, we showcase gene maps for medium
lakes.

These maps reveal that, in larger lakes, the DO dynamics are predominantly
influenced by sediment oxygen demand and atmospheric exchange, reflecting
their extensive water volumes. Conversely, smaller lakes exhibit DO concentra-
tions that are notably impacted by local land use and meteorological factors
due to their shallower depths and greater vulnerability to changes in their exter-
nal watershed environments. Across the board, temperature-related interactions
are significant, affecting DO solubility and the lake’s biological processes. Addi-
tionally, wind speed and atmospheric exchange flux stand out as key drivers
of surface gas exchange influencing epilimnion, while the trophic state markers
provide indicators of possible oxygen production in the epilimnion and eventual
hypolimnetic depletion due to the formation of algal blooms. These findings sug-
gest that diverse ecological factors interplay differently across lake environments,
necessitating adaptable prediction models that can cater to these variances.

Additionally, we have included animations in the supplementary materi-
als to illustrate the evolution path of MCES. These animations display yearly
changes in relevant feature interactions for DO concentrations from 1979. The
enduring patterns of feature interactions hint at consistent ecological processes,
while deviations in their relevance suggest adaptation to environmental shifts and
human activities. Changes in the importance of certain interactions may stem
from better land management or climate variations affecting lake stratification.
Meanwhile, the emergence of new significant interactions could be a reaction to
changes in lake usage or watershed practices. These temporal dynamics under-
score the adaptability of MCES, which recalibrates the significance of feature
interactions to align with the changing lake environments over time.

In Appendix E, we also demonstrate the impact of feature interactions iden-
tified by MCES. By adjusting the RDA optimizer’s parameters, we consistently

https://zenodo.org/doi/10.5281/zenodo.10993058
https://zenodo.org/doi/10.5281/zenodo.10995166
https://zenodo.org/doi/10.5281/zenodo.10993058
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choose a sparser set of feature interactions, accepting a trade-off in accuracy.
Simultaneously, a random strategy is applied for comparative purposes, where
operations for feature interactions are allocated at random, and some interactions
are arbitrarily removed as sparsity intensifies. The gene map showcased at a fea-
ture interaction sparsity level around 0.5 offers insight into the model’s structure
under reduced complexity. This experiment highlights MCES’s superior perfor-
mance even as many feature interactions are discarded, emphasizing its precision
in identifying relevant interactions under task guidance. Conversely, the random
approach shows a quicker performance drop due to the loss of important interac-
tions. When feature interactions become exceedingly sparse, both methodologies
suffer in performance, indicating that a limited set of feature interactions fails
to significantly contribute to the model’s predictive capabilities. In such cases,
individual features primarily drive performance.

8 Conclusion

This paper presents a novel evolutionary algorithm, namely Multi-population
Cognitive Evolutionary Search (MCES), blending adaptive learning with natu-
ral processes for predicting DO concentrations. MCES employs multi-population
models customized for varied lake types and tasks, reflecting the diverse survival
strategies of species across various habitats. Evaluated on a variety of lakes in
the Midwestern USA, MCES not only demonstrates accurate DO concentration
predictions with limited observed data but also reveals sophisticated phenolog-
ical patterns, highlighting its utility for environmental science and freshwater
management. MCES introduces an innovative concept of “AI from nature, for
nature”. We encourage further exploration and development of new algorithms
inspired by MCES, aimed at benefiting the environment.
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Abstract. New methods to construct adequate Boolean functions for use
in cryptography have had to evolve in accordance with the requirements
of continually proposed cryptosystems. Among the desired properties in
Boolean functions are balancedness, high non-linearity, algebraic immu-
nity, and resilience, all of which contribute to making the cryptosystem
more resistant to various attacks. In 2016, the FLIP steam-cipher was pro-
posed, which requiresweight-wise perfectly balanced Boolean functions. As
the field of cryptography evolves, so does the need for new methods of
constructing Boolean functions. Our research contributes to this ongoing
exploration. Evolutionary algorithms are among the explored approaches.
However, much of the work has focused on 8-variable functions. In this
investigation, previous work done on 8-variable functions is revisited and
applied to the search for 16-variable WPB Boolean functions. The investi-
gation yielded promising results, finding 16-variable WPB Boolean func-
tions with high general non-linearity and weight-wise non-linearities that
surpassed previous results. This marks a significant advancement in the
exploration of EAs’ potential in cryptography.

Keywords: Boolean Functions · evolutionary algorithms ·
cryptography

1 Introduction

Among their many applications, Boolean functions play today an important
role in cryptography. Within symmetric key cryptography, the two main types
of ciphers are block cipher and stream cipher [10,23]. There exist a number
of different cryptographic attacks, including linear, differential, and algebraic
attacks [18]. In 2016 the stream cipher known as FLIP was presented, which
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requires a particular type of functions known as Weight-wise Perfectly Balanced
(WPB) [4,15,16]. The balance of these WPB functions is global and specific for
each weight of the domain elements.

For Boolean functions f : Fn
2 → F2, the search space is of size 22

n

, where n
is the number of variables in the function. There exist three main search meth-
ods for finding optimum Boolean functions: random search, algebraic methods,
and heuristic methods. Additionally, a hybrid search of algebraic and heuristic
methods [19] may be used. In this work, heuristic methods are used, specifically
evolutionary algorithms (EAs).

The search for ideal Boolean functions for cryptography, in general, has
been carried out with single-objective algorithms [2,9,12,14,15] and with multi-
objective algorithms [1,18]. Additionally, in previous investigations [18], three
representations and evolutionary algorithms are used: genetic algorithms (GAs)
with binary encoding, genetic programming (GP) with tree representation, and
finally, Cartesian genetic programming (CGP) with graph representation.

Regarding the search and study of the WPB functions, their investigation
has thus far only been carried out with single-objective algorithms [7,11,14,15].
However, as far as the authors are aware, so far the use of heuristics has been
limited to the construction of 8-variable functions. Thus, this work focuses on
the application of EAs for the construction of 16-variable WPB Boolean func-
tions with high non-linearity. Moreover, though the focus is to construct WPB
Boolean functions with high non-linearity, throughout the investigation other
cryptographic parameters were also evaluated in order to gauge the robustness
of the functions generated using this approach.

2 Background

Let F2 be the finite field with two elements. These elements can be represented
by {0, 1} with addition modulo two, represented by ⊕. Similarly, F

n
2 denotes

the n-dimensional vector space over F2, n ∈ N. The following definitions and
theorems come from [3,13,15,18].

Definition 1. Every function with domain F
n
2 and co-domain F2 is called a

Boolean function. The set of all Boolean functions is denoted as Bn.

Thus Bn := {f |f : Fn
2 → F2} and has dimension 2n as a vector space struc-

ture; therefore, has cardinality 22
n

. The set of images of a function f ∈ Bn can
be represented by a truth table as a vector of length 2n denoted

ev(f) :=
(
f(v)v∈F

n
2

)

or through a table as in Table 1. The inputs must always be arranged in the
same order, most typically ordered lexicographically.

An example of a Boolean function is the function f(x) ∈ B2 defined by

f(x1, x2) = x1 ⊕ x2 ⊕ 1.



418 S. Mandujano et al.

The set of images of f in lexicographic order determines the vector

[1, 0, 0, 1].

Table 1. Truth table for the Boolean function f(x1, x2) = x1 ⊕ x2 ⊕ 1.

x1 x2 ev(f)

0 0 1
0 1 0
1 0 0
1 1 1

Definition 2. The support of a vector x ∈ F
n
2 , denoted supp(x), is the set con-

taining the non-zero positions in the vector. The Hamming weight of a vector
x ∈ F

n
2 , denoted wH(x), is the number of non-zero positions in the vector.

Definition 3. The support of a Boolean function f ∈ Bn, denoted supp(f), is
the set containing the non-zero positions in its truth table. The Hamming weight
of a Boolean function f ∈ Bn, denoted wH(f), is the number of non-zero positions
in its truth table.

Definition 4. The Hamming distance between two vectors x, y, denoted
dH(x, y), indicates the number of positions in which their values are different.
The Hamming distance between two functions f, g, denoted dH(f, g), indicates
the number of positions in their truth tables where their values differ.

It can be seen that

supp(x) = {i | xi �= 0, i = 1, . . . , n},

supp(f) = {x ∈ F
n
2 | f(x) �= 0}.

Also,

wH(x) = |supp(x)|,
dH(x, y) = wH(x ⊕ y),

wH(f) = |supp(f)|,
and

dH(f, g) = wH(f ⊕ g).

Definition 5. A Boolean function f ∈ Bn is globally balanced if its truth table
has an equal number of zeros and ones.
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Hence, a Boolean function f ∈ Bn is globally balanced if wH(f) = 2n−1.
Table 1 is a clear example of this.

Definition 6. A Boolean function f ∈ Bn is weight-wise perfectly balanced
(WPB) when the truth tables corresponding to vectors of constant Hamming
weight 1 ≤ k ≤ n − 1 are balanced.

When working with WPB Boolean functions, the truth table corresponding
to each vector of constant Hamming weight is referred to as a slice. For an n-
variable Boolean function, the slice with constant Hamming weight k is denoted
En,k. There exist different ways to represent Boolean functions, one of which is
the Algebraic Normal Form (A.N.F.).

Definition 7. A Boolean function f ∈ Bn has a A.N.F. if it can be expressed
as

f(x1, . . . , xn) :=
⊕

u∈F
n
2

au

(
n∏

i=1

xui
i

)

; u = (u1, . . . , un), au ∈ F2.

Definition 8. The basic Boolean functions, over F
n
2 , are the affine functions

defined by the set

A := {f ∈ Bn|f(x1, . . . , xn) = a1x1 ⊕ · · · ⊕ anxn ⊕ a0 = a · x ⊕ a0},

a = (a1, . . . , an) ∈ F
n
2 and a0 ∈ F2. If a0 = 0, then f is called a linear function.

Definition 9. The non-linearity, denoted NL(f), of the Boolean function f is
the Hamming distance between f and the set of all affine functions.

Non-linearity can be expressed in Hamming distance notation:

NL(f) := min
g∈A

dH(f, g).

Similarly, the weight-wise non-linearity refers to the non-linearity of a par-
ticular slice and is denoted NLk(f). That is, the minimum Hamming distance
between the restriction of f to En,k and the restriction of affine functions in F

n
2

to En,k. These non-linearities are given by:

NLk(f) = min
g,deg(g)≤1

|suppk(f + g)| (1)

Definition 10. Let f ∈ Bn, a ∈ F
n
2 . The Walsh-Hadamard transform of f,

denoted Wf , is defined as:

Wf : Fn
2 → F2, Wf (a) :=

∑

x∈F
n
2

(−1)f(x)+a·x,

where a · x is the usual dot product on F
n
2 .
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It is also possible to express non-linearity in terms of the Fourier transform:

Theorem 11. The non-linearity of the Boolean function f ∈ Bn is

NL(f) = 2n−1 − 1
2
max
a∈F

n
2

|Wf (a)|.

Theorem 12. (Parseval’s equality) Let f ∈ Bn. Then
∑

a∈F
n
2

[Wf (a)]2 = 22n.

Using Parseval’s equality we know that max
a

|Wf (a)| ≥ 2
n
2 . Thus, the non-

linearity of a Boolean function has an upper bound, NL(f) ≤ 2n−1 − 2
n
2 −1.

In particular, if f is a globally balanced function with n-variables, then it’s
maximum non-linearity may be obtained using aforementioned bound when n is
an even number [20].

Definition 13. A Boolean function is a bent function if it achieves maximum
non-linearity.

If f is a balanced function, then Wf (0) = 0. Hence, f can never achieve max-
imum non-linearity and, conversely, bent functions cannot be balanced. Thus,
when looking for balanced Boolean functions, these will inevitably have a non-
linearity below the maximum.

Definition 14. The algebraic degree, deg, of a Boolean function f is the number
of variables in the longest term of the function in ANF.

Definition 15. The annihilator of a Boolean function f is a Boolean function
g over F

n
2 such that f · g = 0.

Definition 16. The algebraic immunity of a Boolean function f over F
n
2 ,

AI(f), is the lowest value d such that f or f ⊕1 admits an annihilating function
of degree deg.

3 Methodology

This Section presents the details of the evolutionary algorithm (EA) used in
this investigation, with the objective of finding WPB Boolean functions with
high non-linearity. First, the search space and corresponding encoding of the
individuals is presented. Second, the variation operators used in the EA are
analysed. Third, the fitness function used to evaluate the individuals is presented.
Finally, this Section concludes by detailing the experimental settings employed
for the application of the EA used in this investigation.
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3.1 Search Space

WPB Boolean functions exist within the set of all n-variable Boolean functions,
Bn = {f : Fn

2 → F2}. The naive way to search for the desired WPB Boolean
functions would be to explore the entirety of Bn. However, the size of Bn is
super-exponential in n, having a cardinality of 22

n

. Moreover, WPB Boolean
functions are only defined for n = 2m,m ∈ N [17].

For n-variable Boolean functions with n �= 2m,m ∈ N, Weight-wise Almost
Perfectly Balanced (WAPB) functions have been defined [6], however this inves-
tigation focuses solely on WPB functions. Since the size of the search-space for
WPB Boolean functions grows rapidly, an exhaustive search is only viable for
n ∈ {2, 4}, neither of which is large enough for use in real-life situations. This
investigation seeks to expand on previous research by applying an EA success-
fully used for the construction of 8-variable WPB Boolean functions [14], now
for the construction of 16-variable WPB Boolean functions. Consequently, the
cardinality of the search space for this problem is 22

16 ≈ 2.0035 × 1019728.
Based on previous results [14,22] it was decided to use the entirety of Bn as

the search space. This very choice of search space is precisely the reason that
makes heuristics a suitable method to tackle this problem.

3.2 Encoding and Variation Operators

Based on the results of previous work [14], the encoding used throughout this
investigation was the WPB representation, as described below.

It is known that a Boolean function may be uniquely represented by its
truth table. While this is usually done by showing the images of the function in
lexicographic order after the inputs, in the WPB representation this is done by
dividing the image of the function into n + 1 vectors, each corresponding to a
slice. Within each slice, the lexicographic order is set as usual. Considering

I = [[0], [1, 0, 1, 0], [0, 0, 0, 1, 1, 1], [1, 1, 0, 0], [1]] (2)

an example of an individual represented in this manner for a 4-variable Boolean
function is shown. This representation allows us to exploit the unique qualities
of a WPB Boolean function more efficiently, by ensuring that the desired weight
distribution is better preserved during the application of variation operators.

The two variation operators contemplated in the EA are the crossover and the
mutation operators. In this work the crossover operator used was the counter-
based crossover (cbc) operator. Within each slice of an individual every gene is
randomly selected from one of the two parents, however two counters keep track
of how many genes take a value of one and how many take a value of zero, once
either of the counters reaches a value of l/2, where l is the length of the slice, the
remaining genes in the slice will take the opposite value, thus ensuring balance
within each slice. This particular operator was chosen given that it demonstrated
the best results in the search for 8-variable WPB Boolean functions with high
non-linearity [14,15]. On the other hand, the mutation operator used was the
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classic swap mutation, but applied to each slice of the WPB representation, as in
previous research [14]. That is, with a probability pm, the values of two randomly
selected genes will be swapped. If the two genes chosen to be swapped have the
same allele, then the function will not be altered.

3.3 Fitness Functions

The fitness function for the optimisation of non-linearity in the EA is Function 3,
the same as was used for the construction of 8-variable WPB Boolean functions
previously [14].

fitNL(f) = δpen ·
(

min
2≤k≤2/n

{NL(f)}
)

− pen(f). (3)

Three main components can be identified in the fitness function, which when
combined evaluate if a function is WPB and, if this is the case, what the non-
linearity of said function is.

The non-linearity evaluated in this case is the general non-linearity as
described in Section (2). However, in order to make the computations more
efficient the calculation is carried out using the function from the Boolean Func-
tion module of SAGEMath System [24]. As can be seen, the term describing
the non-linearity is also dependent on the δpen component, which is a Boolean
component, taking a value of one when the penalisation vanishes pen(f) = 0,
and a value of zero otherwise; which brings us to the penalty component, pen(f),
calculated as follows:

pen(f) =
n−1∑

k=1

unbk(f), (4)

where unbk(f) will be defined later in (5).
The WPB representation is essential for this evaluation, as it must be carried

out by slices, given that a function may be globally balanced without being WPB.
Slices for k = 0 and k = n are not taken into account, this is because they have
a cardinality of one, which can never be balanced. In fact, when evaluating the
former are taken as having a value of 0 and the latter as having a value of 1.

The unbalancedness of a slice, unbk(f), is given by

unbk(f) =
∣
∣
∣
∣
#En,k

2
− wH(f(k))

∣
∣
∣
∣ , (5)

where #En,k is the cardinality of slice k, which in turn is given by
(

n

k

)
,

and wH(f(k)) is the Hamming weight of the restriction f(k), given by

wH(f(k)) =
#En,k − Wf(k)(0)

2
. (6)
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When calculating the penalty, the restricted Walsh-Hadamard Transform
is calculated, this is done in the same way as stated in Sect. 2, with the sole
difference that now a ∈ En,k, rather than a ∈ F

n
2 , as in the usual case.

3.4 Experimental Settings

The evolutionary algorithm used for this investigation was programmed by the
authors in Python. To improve efficiency certain calculations were carried out
using the Boolean Function module of SAGEMath System [24], particularly the
evaluations of general non-linearity, algebraic immunity, resiliance and algebraic
degree. Additionally, the calculations of the weight-wise non-linearities were cal-
culated with the aid of the code by Gini and Méaux [5]. The programs were
executed using a virtual server with a Manjaro OS with a RAM of 16GB and 8
cores.

Table 2. Outline of the configuration set up used for the EA considered.

Iterations Pop. Size Generations Tournament size pc pm

30 100 20,000 3 1 0.7

Table 2 shows a summary the parameters used for all the iterations of the
experiment carried out as part of this investigation. All experiments were run
for 16-variable Boolean functions, using their unique WPB representation, as
described in Sect. 3.2. A population of 100 individuals was used in all the iter-
ations. This was a change from the parameters used in previous work [14] on
account of the resources required to evaluate 16-variable Boolean functions.

Parent selection was done through 3-tournament elimination, as in previous
work [14,15]; three individuals are selected at random from the population, the
two with the highest fitness are chosen as parents, and the third is replaced
with the offspring after the variation operators are applied. The variation oper-
ators were applied based on the results obtained previously [14], as described
in Sect. 3.2. That is, applying the counter-based crossover with a probability of
pc = 1, and the swap mutation with a probability of pm = 0.7.

Using the described parameters, 30 iterations of the experiment were run,
considering 20,000 generations in each case.

Though the EA aims to optimise the general non-linearity of a WPB Boolean
function, there are other characteristics that are important for the implemen-
tation of WPB functions. Thus, the best individual in each iteration was also
evaluated for the following characteristics: (a) degree, (b) algebraic immunity,
(c) resiliance and (d) weight-wise non-linearity.

4 Results

In this Section the results of the experiment previously described are presented.
In addition to the global non-linearities reached by the EA, the complementary
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cryptographic parameters of the best individual in each iteration are presented
to give a more global understanding of the results obtained. Based on these cryp-
tographic parameters, a comparison is made with other known results [8] where
the highest global non-linearity of NL(f) = 32, 598 has been attained for a WPB
Boolean function using algebraic methods. Unfortunately, for the function with
NL(f) = 32, 598, values are not known for any of its other cryptographic param-
eters, thus function h16 [6] is also used as a reference, having the highest known
weight-wise non-linearities for a 16-variable WPB Boolean function. Function
h16 was also constructed using algebraic methods. Table 3 shows the values for
each cryptographic parameter of h16.

Table 3. Cryptographic parameters of function h16 [6]. In addition to the non-
linearities, h16 has res(f) = 0, IA(f) = 8 y deg = 14. NLg refers to the global
non-linearity of the function, while NLi, 2 ≤ i ≤ 14 specifies the restricted non-linearity
of each slice. Slices 0, 1, 15 and 16 are not considered as they have a value of zero in all
cases.

NLg NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

h16 30704 28 172 688 1884 3629 5103 5567 5103 3629 1884 688 172 28

To begin with, in all instances the EA managed to find WPB Boolean func-
tions, despite the search space including infeasible, non-balanced individuals.
These results are congruent with those obtained previously [14], even though
B16 is a significantly larger search space than B8, thus showing the effectiveness
of heuristic methods in approaching this problem.

Then, the fitness values reached from our experiments on each iteration are
considered. To do this, the fitness value of the best individual is taken as a
reference to asses the performance of the EA results. First, recall that a 16-
variable bent function has non-linearity of NL(f) = 32, 640, and that a 16-
variable WPB Boolean function theoretically has a maximum non-linearity of
NL(f) = 32, 638, though in practise the highest non-linearity that has been
attained is NL(f) = 32, 598 [8].

Table 4 shows the results of the experiments. Global non-linearity consistently
exceeds 32,200, closely approaching the highest non-linearity reached thus far [8]
and far exceeding that of h16. Additionally, a distribution of non-linearities has
been proposed for 16-variable functions [7], which suggests that using a random
search the expectation would be to find functions with non-linearities between
31,886 and 32,300, thus showing the improved results when using an EA as
opposed to a random search.

Although the EA only aimed to optimise the non-linearity of WPB Boolean
functions, these functions must also exhibit other characteristics. Some of these
characteristics are algebraic immunity, resilience and, in this particular case,
weight-wise non-linearities, as outlined in Sect. 2. Thus, the best individuals are
evaluated for each of these characteristics in order to determine their robustness.
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Table 4. Non-linearities of WPB Boolean functions generated using 20,000 genera-
tions of the EA. As complementary cryptographic parameters all Boolean functions
generated had res(f) = 0, IA(f) = 8 and deg = 15.

NLg NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

μ 32311.5 37.0 229.8 818.8 2041.9 3810.4 5487.1 6194.7 5490.3 3807.8 2042.2 818.3 230.0 37.5
σ 18.1 2.2 3.4 5.6 7.7 11.2 15.5 16.3 16.6 19.8 8.5 5.9 3.5 2.1
min 32286 30 218 803 2024 3792 5453 6153 5456 3745 2018 805 222 32
max 32356 41 235 828 2055 3834 5508 6222 5516 3835 2056 829 236 41

In all instances h16 is used as a reference, as this is the function with best values
as far as the authors are aware.

The weight-wise non-linearities for each slice have a value greater than zero,
which in itself is a positive result. Previously, when high global non-linearities
were achieved it was often the case that functions would have poor results when
weight-wise non-linearities were evaluated [8]. Furthermore, when compared with
h16 the non-linearity for each slice surpasses those of h16 in every instance. This,
in combination with the high general non-linearities obtained, is an excellent
result, for it shows the high quality of these functions regarding non-linearity
both globally and by slice.

When considering resilience, algebraic degree and algebraic immunity, the
values show consistency across all iterations. Having ensured that the functions
are balanced and have high non-linearity, the third component required to ensure
good resistance against correlation attacks is resilience. Unfortunately, in this
case all functions have a resilience res(f) = 0, which is likely linked to the
Siegenthaler bound [21], given that they also have maximum algebraic degree,
deg = 15. This result is consistent with previous results, which is one of the
factors that has lead to the exploration of weight-wise almost perfectly balanced
Boolean functions as an alternative to WPB functions. Algebraic immunity, on
the other hand, is required to ensure functions will withstand algebraic attacks.
In all cases the Boolean functions obtained have maximum algebraic immunity,
AI = 8, which is clearly the desired result. This result is on par with that of h16.

5 Conclusion and Further Work

We endeavoured to expand upon previous work on constructing WPB Boolean
functions using evolutionary algorithms. These functions are particularly inter-
esting due to their role in the FLIP [16] stream cipher. However, as the number
of variables in the function increases, the complexity of constructing them also
increases. Thus, this investigation aimed to extend the application of an EA
previously used to construct 8-variable functions [14] to the construction of 16-
variable WPB Boolean functions. Additionally, this investigation expanded the
scope of the analysis by evaluating other cryptographic parameters in addition to
non-linearity, which allowed a better understanding of the quality of the Boolean



426 S. Mandujano et al.

functions generated. Giving continuity to the results obtained previously [14],
individuals in the EA were represented using the WPB representation [15], and
taking the entirety of B16 as the search space. Moreover, the same fitness func-
tion was used, with the only difference being that the Boolean Functions module
[24] was used to conduct evaluations during implementation.

Our results show that this approach is feasible for larger-scale cases, par-
ticularly for 16-variable functions. Despite the increased search space size, the
EA continued to successfully reach feasible solutions with the desired high non-
linearity while searching throughout the entirety of B16. In addition, to the
sought-after high non-linearity, our results also yielded good values for other
cryptographic parameters, namely algebraic immunity and weight-wise non-
linearities, which evidences the robustness of this approach. Notably, the results
show that the results obtained using heuristic methods can match and even
surpass the results obtained from random search and algebraic methods.

Going forward, we plan to adapt this approach to the search of Weight-wise
Almost Perfectly Balanced (WAPB) Boolean functions, immensely increasing
the scope of possibility. Particularly, the consideration of WAPB functions allows
us to increase the number of variables at a more moderate pace, thus allowing
the code to be gradually adjusted to larger cases. In addition, having observed
the good performance of evolutionary algorithms for this problem, it would be
interesting to explore the use of multi-objective evolutionary algorithms (MOEA)
to optimise more than one criterion simultaneously. Having now considered the
weight-wise non-linearities in this analysis, the MOEA could aim to optimise
each of these non-linearities individually.
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Abstract. Bent Boolean functions are interesting mathematical objects
with diverse real-world applications. Besides looking at the whole class
of bent functions, one could also consider subclasses like rotation sym-
metric bent functions or (anti)-self-dual bent functions. Such classes are
naturally smaller, making it (potentially) easier to enumerate functions
inside the class with a computer investigation.

This work considers a novel problem of evolving rotation symmetric
(anti)-self-dual bent functions. We consider two solution encodings and
a number of evolutionary algorithms. We successfully find rotation sym-
metric (anti)-self-dual functions for several Boolean function sizes, which
are the first known examples of such functions. We hope this work will
open a new research direction that will result in finding more such func-
tions for larger dimensions, as well as algebraic constructions that will
be valid for infinite Boolean function sizes.

Keywords: Boolean functions · rotation symmetric functions ·
self-dual bent functions

1 Introduction

Boolean functions are mathematical objects used in diverse applications, such as
coding theory [15,17], combinatorics [28], and cryptography [2]. Boolean func-
tions have also been an active research topic for more than 50 years, resulting
in the discovery of many subclasses with specific properties. One such class is
bent (maximally nonlinear) Boolean functions. Although bent functions may
have limitations for certain applications like cryptography, they are still used in
other domains like coding theory [15] and sequences [23]. While bent functions
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are much rarer than general Boolean functions, many still exist (see Table 2).
As such, it makes sense to concentrate on specific subclasses of bent functions.
Since subclasses are smaller, the functions belonging there could be easier to
enumerate.

The first subclass we consider is rotation symmetric functions. Rotation sym-
metric functions are functions that are invariant under cyclic shifts of the input
coordinates. They are interesting because such functions can have a simple struc-
ture and representation. Second, we focus on (anti-)self-dual bent Boolean func-
tions. A bent function is called self-dual if equal to its dual, and anti-self-dual if
equal to the complement of its dual [28]. Both subclasses are well-known and have
been explored for many years. Still, despite all the work done, it is unknown how
many such functions exist already for n = 8 inputs. We note that metaheuris-
tics were also often used to search for such functions. For instance, for n = 9,
metaheuristics searching in the space of rotation symmetric Boolean functions
managed to find functions with nonlinearity 241, something that was an open
question for several decades whether they even exist [14]. Moreover, we note that
both rotation symmetric bent functions and (anti)-self-dual bent functions are
successfully constructed with metaheuristics for various Boolean function sizes
(see Sect. 3 for details).

In this work, we consider a novel application where we aim to evolve rotation
symmetric (anti)-self-dual bent functions. To the best of our knowledge, such a
combination was never explored, and before this work, it was not known whether
such functions even existed. We conduct our search using evolutionary algorithms
and consider two solution representations: bitstring and floating-point. We find
rotation symmetric (anti)-self-dual functions for n = 6, 8. While we do not find
any such function for larger sizes, we observe that bitstring representation works
better for smaller n and floating-point representation works better for larger n.
Since we do not find rotation symmetric (anti)-self-dual bent functions for every
tested size, we cannot answer the question of whether they exist in general or if
there is something specific for small n only. Still, we consider our work to open
a new direction in research of bent Boolean functions, and future work could
consider both metaheuristic and algebraic construction perspectives.

2 Preliminaries on Boolean Functions

2.1 Notation

We denote positive integers with n and m. We denote the Galois (finite) field
with two elements by F2 and the Galois field with 2n elements by F2n . An (n,m)-
function represents a mapping F from F

n
2 to F

m
2 . When m = 1, the function is

called a Boolean function in n inputs/variables and is denoted by f . We endow
the vector space F

n
2 with the structure of the field, since for every n, there exists

a field F2n of order 2n that is an n-dimensional vector space. The usual inner
product of a and b equals a · b =

⊕n
i=1 aibi in F

n
2 .
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2.2 Boolean Function Representations

The Walsh-Hadamard transform Wf is a unique representation of a Boolean
function f that measures the correlation between f(x) and the linear functions
a · x, see, e.g., [2] with the sum calculated in Z.

Wf (a) =
∑

x∈F
n
2

(−1)f(x)+a·x. (1)

The Walsh-Hadamard transform is very useful as many Boolean function
properties can be evaluated through it. Since the complexity of calculating the
Walsh-Hadamard transform with a naive approach equals 22n, it is common to
employ a more efficient method called the fast Walsh-Hadamard transform [2],
where the complexity is reduced to n2n.

Another unique representation of a Boolean function f on F
n
2 is by its truth

table (TT). The truth table of a Boolean function f is the list of pairs of function
inputs (in F

n
2 ) and function values, with the size of the value vector being 2n.

The value vector is the binary vector composed of all f(x), x ∈ F
n
2 , with a

certain order selected on Fn
2 . Usually, as seen in, e.g., [2], one uses a vector

(f(0), . . . , f(1)) that contains the function values of f , ordered lexicographically.

Nonlinearity. The minimum Hamming distance between a Boolean function f
and all affine functions, i.e., the functions with the algebraic degree1 at most
1 (in the same number of variables as f), is called the nonlinearity of f . The
nonlinearity nlf of a Boolean function f can be easily calculated from the Walsh-
Hadamard coefficients, see, e.g., [2]:

nlf = 2n−1 − 1
2
max
a∈F

n
2

|Wf (a)|. (2)

The Parseval relation
∑

a∈F
n
2

Wf (a)2 = 22n implies that the nonlinearity of any

n-variable Boolean function is bounded above by the so-called covering radius
bound:

nlf ≤ 2n−1 − 2
n
2 −1. (3)

Eq. (3) can be reached with equality if and only if n is even, and functions
reaching the bound are called bent functions.

Balancedness. A Boolean function f is called balanced if it takes the value one
the same number of times (2n−1) as the value zero when the input ranges over
F
n
2 .

1 The algebraic degree degf of a Boolean function f is defined as the number of vari-
ables in the largest product term of the function’s algebraic normal form having a
non-zero coefficient, see, e.g., [17]. The algebraic normal form is a unique represen-
tation where an n variable Boolean function can be considered to be a multivariate
polynomial over F2.
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Bent Boolean Functions. The functions whose nonlinearity equals the maximal
value 2n−1 − 2n/2−1 are called bent. Bent Boolean functions exist for n even
only [2]. Bent Boolean functions are a very active research topic with appli-
cations in, e.g., coding theory [15] and telecommunications [23]. Bent Boolean
functions are rare, and we know the exact numbers of bent Boolean functions
for n ≤ 8 only (see Table 2). Naturally, besides considering the whole class of
bent Boolean functions, it is also possible to consider certain subsets that may
be easier to analyze or provide additional properties. For more information, we
refer interested readers to a survey on bent Boolean functions [5].

2.3 Rotation Symmetric Functions

A Boolean function over F
n
2 is called rotation symmetric (RS) if it is

invariant under any cyclic shift of input coordinates: (x0, x1, . . . , xn−1) →
(xn−1, x0, x1, . . . , xn−2). The number of rotation symmetric Boolean functions
is smaller than the number of Boolean functions, as the output value remains
the same for certain input values. Stănică and Maitra used the Burnside lemma
to deduce that the number of rotation symmetric Boolean functions equals 2gn ,
where gn equals [29]:

gn =
1
n

∑

t|n
φ(t)2

n
t , (4)

and φ is the Euler phi function (counting the number of positive integers less
than n that are coprime to n). Thus, gn represents the number of orbits where
an orbit is a rotation symmetric partition composed of vectors equivalent under
rotational shifts. We provide the number of orbits for the rotation symmetric
Boolean functions in Table 1. Already for n = 10, exhaustive search is not an
option. Bent rotation symmetric functions are maximally nonlinear and invariant
under any cyclic shift of input coordinates. Rotation symmetric bent functions
are much rarer than general bent functions, and all RS bent functions found
belong to classic classes of bent functions (i.e., were already known as bent
functions when they have been found) [21].

Table 1. The number of orbits for the rotation symmetric Boolean functions. The
number of Boolean functions for each dimension then equals 2gn .

variables 4 6 8 10 12 14 16

gn 6 14 36 108 352 1182 4116

2.4 Self-dual Bent Functions

For a bent function f on F2n , we define its dual as the Boolean function f̃ :
F2n → F2 satisfying:

2
n
2 (−1) ˜f(x) = Wf (x) for all x ∈ F2n . (5)
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The dual f̃ of a bent function is also bent. A bent function f is said to be
self-dual if f̃(x) ⊕ f(x) = 0 for all x ∈ F

n
2 , and anti-self-dual if f̃(x) ⊕ f(x) = 1.

Stated differently, a bent function is called self-dual if it is equal to its dual and
anti-self-dual if it is equal to the complement of its dual. Self-dual bent functions
are much rarer than general bent functions.

2.5 On the Number of Bent Functions

The numbers of Boolean functions (or upper bound values) are given in Table 2.
First, we note that bent Boolean functions are rare, and we know the exact num-
ber of bent Boolean functions for n ≤ 8 only. For rotation symmetric functions,
the total number of such functions is easy to calculate from Eq. (4). However,
the number of rotation symmetric bent functions is not generally known, and
experimental results are available for smaller sizes only [29]. Furthermore, for
the self-dual bent functions of 8 variables, we have results for quadratic func-
tions (those with the algebraic degree at most two) only. The total number of
self-dual bent functions is thus larger. Note there are as many anti-self-dual bent
functions as there are self-dual bent functions. We can see that both rotation
symmetric bent functions and self-dual bent functions are rare.

Table 2. The number of (bent) Boolean functions. Note that no known bound exists
on the number of bent rotation symmetric (RS) functions. We denote self-dual bent
functions by SD and note that there are as many self-dual bent functions as anti-self-
dual functions.

n

criterion 4 6 8 10 12 14 16

# general 216 264 2256 21024 24096 216384 265536

# bent 896 5425430528 2106.3 2638 22510 29908 239203

# RS 26 214 236 2108 2352 21182 24116

# RS bent 8 48 15104 − − − −
# SD 20 42896 104960− − − −

More information about Boolean functions can be found in, e.g., [2,17].

3 Related Work

Manyworks consider the design ofBoolean functionswithmetaheuristics. The first
such works can be traced to more than 25 years ago [22]. Since balanced Boolean
functions have direct applications in cryptography, they were considered before
bent Boolean functions. Indeed, we can trace the first application of evolutionary
algorithms to evolve bent Boolean functions to 2003 [8]. Yang et al. used evolu-
tionary algorithms and the trace representation ofBoolean functions to evolve bent
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Boolean functions [32]. Hrbacek and Dvorak used Cartesian Genetic Programming
to evolve bent Boolean functions up to 16 variables [10]. The authors investigated
various configurations of algorithms to speed up the evolution process. Since the
size of the search space and the cost of evaluating individuals are common difficul-
ties when evolving Boolean functions, this approach allowed better results than
related works. Picek and Jakobovic used genetic programming to evolve algebraic
constructions that are then used to construct bent Boolean functions [25]. The
authors provided results of up to 24 variables. Since the constructions in the evo-
lution process are evaluated for small sizes only, this approach avoids the computa-
tional bottleneck connected with large Boolean functions. Following a similar app-
roach, Mariot et al. used evolutionary strategies to evolve a secondary construction
based on cellular automata for quadratic bent functions [20]. Husa and Dobai used
linear genetic programming to evolve bent Boolean functions and provided results
up to 24 inputs [11].

Stănică et al. used simulated annealing to evolve rotation symmetric Boolean
functions [30]. To our knowledge, this is the first work that considers meta-
heuristics and rotation symmetric Boolean functions. Kavut and Yucel used a
steepest-descent-like iterative algorithm to construct imbalanced Boolean func-
tions in 9 variables where the authors considered the generalized rotation sym-
metric Boolean functions [14]. Liu and Youssef used simulated annealing to con-
struct balanced rotation symmetric Boolean functions [16]. Wang et al. employed
genetic algorithms to construct rotation symmetric Boolean functions [31]. Car-
let et al. investigated several evolutionary algorithms to evolve balanced and
bent rotation symmetric Boolean functions [3]. They concluded that using the
bitstring or floating-point representation works better than the symbolic one,
which opposes common results when evolving general bent functions.

To our knowledge, there is one work that considers metaheuristics and self-
dual functions. Carlet et al. used several evolutionary algorithms and showed it
is possible to evolve (anti)-self-dual bent functions for Boolean functions up to
16 variables [4]. They concluded that symbolic encoding works better than the
bitstring one and that the problem does not seem more difficult than evolving
general bent functions (despite self-dual functions being much rarer).

Besides these subsets of bent functions, related works show that the com-
munity investigated several more options. For instance, Picek et al. considered
evolving quaternary bent Boolean functions, which are a generalization of bent
(binary) Boolean functions [27]. Mariot et al. used evolutionary algorithms to
evolve hyper-bent Boolean functions [18]. Hyper-bent Boolean functions are a
subclass of bent Boolean functions that achieve maximum distance from all
bijective monomial functions. Mariot and Leporati used a genetic algorithm to
evolve semi-bent Boolean functions by spectral inversion where the solutions
are encoded with the Walsh-Hadamard spectrum [19]. For a recent overview of
metaheuristic approaches for the design of Boolean functions, we refer readers
to [7].
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4 Methodology

4.1 Solution Encodings

Bitstring Encoding. The most common option for encoding a Boolean function
is the bitstring (BS) encoding [7], which commonly represents the truth table
of a Boolean function. For a Boolean function with n inputs, the truth table
is coded as a bit string with a length of 2n. However, for rotation symmetric
Boolean functions, the number of truth table entries to be coded is lower and is
specified in Table 1. For each evaluation, the bitstring genotype is first decoded
into the full Boolean truth table (which is trivial since we know the orbits), after
which we transform it into the Walsh-Hadamard spectrum and, finally, calculate
the nonlinearity property.
Floating-point Encoding. The second approach to representing a Boolean
function is the floating-point genotype, defined as a vector with continuous vari-
ables. This requires defining the translation of a vector of floating-point numbers
into the corresponding genotype, which is then translated into a complete truth
table (binary values). The idea behind this translation is that each continuous
variable (a real number) of the floating-point genotype represents a subsequence
of bits in the genotype. All real values in the floating-point vector are restricted
to the interval [0, 1]. If the genotype size is gn, the number of bits represented
by a single continuous variable of the floating-point vector can vary:

decode =
gn

dimension
, (6)

where the parameter dimension denotes the floating-point vector size (number
of real values). This parameter can be modified if the genotype size is divisible by
its value. The first step of the translation is to convert each floating-point num-
ber to an integer value. As each real value must represent decode bits, the size
of the interval decoding to the same integer value is given as interval = 1

decode .
To obtain a distinct integer value for a given real number, every element di of
the floating-point vector is divided by the calculated interval size, generating a
sequence of integer values as nt_valuei =

⌊
di

interval

⌋
. The final translation step

involves decoding the integer values into a binary string that can be used for
evaluation. From there, we calculate the Walsh-Hadamard spectrum and non-
linearity. For further details on using floating-point representation for evolving
rotation symmetric Boolean functions, see [3].

4.2 Fitness Functions

To evolve bent Boolean functions, one only needs to check that the maximal
absolute value in the Walsh-Hadamard transform equals 2

n
2 (see Eq. (2)). For

self-dual functions, each Walsh-Hadamard coefficient must not only be equal
to this absolute value: considering Eq. (5), its sign must agree with the corre-
sponding output value in the function’s truth table. For instance, if f(a) = 0 for
a ∈ F

n
2 , the corresponding coefficient Wf (a) in the Walsh-Hadamard transform
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must assume the value of +2
n
2 , and −2

n
2 otherwise; for anti-self-dual functions,

the previous values are inverted.
Therefore, our first fitness function (denoted by fit1) counts the number

of entries in the Walsh-Hadamard transform whose absolute value is equal to
2

n
2 and whose sign matches the corresponding output value in the truth table.

Formally, given f : Fn
2 → F2, its fitness score under fit1 is defined as:

fit1(f) = |{a ∈ F
n
2 : Wf (a) = 2

n
2 · (−1)f(a)}| . (7)

Since the number of entries in the Walsh-Hadamard transform is equal to the
truth table size (2n), the range of this fitness function is [0, . . . , 2n], where 2n

denotes the optimal value that corresponds to a self-dual bent function.
The second fitness function we employ takes a closer look into the deviation

of each Walsh-Hadamard entry from the desired value. Apart from the number
of correct values, as evaluated by fit1, we sum the absolute differences (from
either 2

n
2 or −2

n
2 ) of every incorrect coefficient, and divide the sum with the

product of the maximal possible difference (2
n
2 ) by the total number of entries

(2n). Consequently, the deviation part is normalized in [0, 1], and its difference
from 1 is simply added to the number of correct entries computed through fit1.
Hence, the fitness score of f : Fn

2 → F2 under fit2 is formally defined as:

fit2(f) = fit1(f) +

[

1 −
∑

a∈F
n
2

∣
∣2

n
2 · (−1)f(a) − Wf (a)

∣
∣

2n · 2n
2

]

. (8)

The integer part of fit2 always equals the value obtained with fit1. In par-
ticular, when the normalized sum of the deviations is 0 (that is, we reached an
optimal solution), the difference from 1 is not added to fit1. Thus, the optimal
fitness value for fit2 is the same as fit1, i.e., 2n.

In the experiments, both of these fitness functions are used for both self-dual
and anti-self-dual bent functions. Note that since our search is constrained to the
rotation symmetric functions space only, the fitness functions do not need to add
any constraints regarding it. Finally, we note that one can efficiently calculate
the Walsh-Hadamard spectrum by using the fast Walsh-Hadamard transform
(butterfly algorithm of complexity n2n).

4.3 Algorithms and Parameters

Bitstring Encoding. For bitstring encoding (denoted by TT), we employ a
steady-state selection with a 3-tournament elimination operator (denoted by
SST). In each iteration of the algorithm, three individuals are chosen at random
from the population for the tournament, and the worst one in terms of fitness
value is eliminated. The two remaining individuals in the tournament are used
with the crossover operator to generate a new child individual, which then under-
goes mutation with individual mutation probability pmut = 0.5. The mutated
child replaces the eliminated individual in the population.

We use the simple bit mutation and the shuffle mutation. The simple bit
mutation inverts a randomly selected bit, and the shuffle mutation shuffles
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the bits within a randomly selected substring. We used one-point and uniform
crossover operators. The one-point crossover combines a new solution from the
first part of one parent and the second part of the other parent with a ran-
domly selected breakpoint. The uniform crossover randomly selects one bit from
both parents at each position in the child bitstring that is copied. Each time
the evolutionary algorithm invokes a crossover or mutation operation, one of the
previously described operators is randomly selected.
Floating-point Encoding. When FP encoding is used, one can vary the num-
ber of bits a single FP value will represent (decode, Eq., (6)). Based on related
work [3], all FP-based algorithms use the same setting with decode = 3. The
floating-point representation can be used with any continuous optimization algo-
rithm, which increases its versatility. In our experiments, we investigated the fol-
lowing algorithms: Artificial Bee Colony (ABC) [13], Clonal Selection Algorithm
(CLONALG) [1], CMA-ES [9], Differential Evolution (DE) [24], Optimization
Immune Algorithm (OPTIA) [6], and a GA-based algorithm with steady-state
selection (GA-SST), which is also used with TT and whose behavior is described
above. With this encoding, the GA uses arithmetic, average, BLX-α, heuristic,
local, flat, one-point, and SBX crossover [26], as well as simple mutation (gen-
erates a random number from the given interval). Additionally, we employed an
experimental algorithm based on the GA-SST selection scheme with the Hooke-
Jeeves pattern search as a local search operator, denoted by Genetic Hooke-
Jeeves (GHJ). Due to lack of space, we do not provide parameter values for
all the algorithms but note we used the ECF software framework2 with default
parameter values [12]. All algorithms use the same stopping criterion of 106

evaluations.

5 Experimental Results

First, we run exhaustive search for n = 4, which was trivial as there are only
20 self-dual bent functions (and 20 anti-self-dual functions). We then checked
each of those functions if they are also rotation symmetric. We found 2 self-dual
and 2 anti-self-dual functions when n = 4. Table 3 summarizes all the results
obtained through the experimental analysis. The table represents the maximum
nonlinearity values obtained for each experiment in 30 executed runs. The results
are separated into two main categories, depending on whether self-dual (SD) or
anti-self-dual (ASD) functions evolved and whether the fitness function fit1 or
fit2 was used. Each group provides the results for the TT representation with
SST and the FP representation with different optimization algorithms.

The results demonstrate that the optimal result was obtained in every exper-
iment for the smallest (n = 6) problem size. However, for Boolean functions in
8 inputs, we see that in many cases, the optimal values are not obtained, espe-
cially for the anti-self-dual case, where the optimal value was not obtained even
once. For larger problem sizes, no optimal solution was obtained. Until size 12,
we see that using the TT representation resulted in better results than the FP
2 http://solve.fer.hr/ECF/.

http://solve.fer.hr/ECF/
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Table 3. The summary of the best-obtained experimental results. We denote self-dual
functions with SD and anti-self-dual functions with ASD. The best results are in bold
style.

Rep. Alg. 6 8 10 12 14 16

Self-dual (SD) fit1 TT SST 64256 385 718 910 1504
FP ABC 64 224 288 569 875 1536
FP CLONALG 64256 355 690 896 1584
FP DE 64 224 290 498 812 1536
FP GHJ 64256 308 544 896 1532
FP OptIA 64 224 330 630 847 1536
FP SST 64256 376 643 973 1768

fit2 TT SST 64256420 708 938 1696
FP ABC 64 216 330 606 966 1920
FP CLONALG 64256 340 660 868 1568
FP DE 64 208 307 480 770 1432
FP GHJ 64256 360 680 973 2016
FP OptIA 64 224 278 652 910 1576
FP SST 64256 338 678 983 1808

Anti-self-dual (ASD) fit1 TT SST 64 224 360 708 938 1616
FP ABC 64 176 335 528 952 1632
FP CLONALG 64 224 325 648 847 1608
FP DE 64 160 270 486 910 1456
FP GHJ 64 224 275 558 882 1560
FP OptIA 64 182 305 630 854 1648
FP SST 64 224 384 660 917 1744

fit2 TT SST 64 224 362 694 868 1744
FP ABC 64 192 310 600 924 2032
FP CLONALG 64 224 332 630 931 1568
FP DE 64 160 286 459 812 1480
FP GHJ 64 224 305 660 952 2064
FP OptIA 64 184 324 606 847 1544
FP SST 64 224 309 606 1085 1664

representation. However, for sizes 14 and 16, we see a reverse trend since the
FP representation resulted in better results. Regarding the FP representation,
no algorithm consistently achieved the best results; however, in many cases, the
GHJ and SST algorithms performed better than others. Finally, regarding the
fitness function, there is, again, not a consistent trend among all the experiments,
but it is safe to say that fit2 generally leads to better results.
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To better outline the differences between the methods, Figs. 1 and 2 represent
the results obtained by the 30 algorithm executions in the form of box plots. For
the FP representation, only the SST and GHJ algorithms were selected, as they
generally performed better than the others. For problem size 6, the algorithms
obtained the optimal value in almost all executions. However, for size 8, the
algorithms have obtained this optimal value only in a few runs. The figures for
the remaining sizes just confirm what was said previously about the results, that
the TT representation performs better for problem sizes lower than 14 and that
fitness function fit2 generally leads to better results than fit1.

To further investigate whether the differences between the results are sta-
tistically significant, we have used the Kruskal-Wallis test with the Bonferroni
correction method and Dunn’s post hoc test. The critical value was set to 0.05.
For brevity, for the FP, only the results obtained by GHJ were used (since this
method achieved among the best results). For n = 6, the tests demonstrate
that there is neither a difference between the representations (TT against FP)
nor a difference between the two fitness functions, both for self-dual and anti-
self-dual functions. For problem sizes 8, 10, and 12, the statistical tests reveal
that the results obtained by the FP representation are significantly worse than
those obtained by the TT representation. On the other hand, sizes 14 and 16
demonstrate a reverse trend. In that case, the results obtained using the FP
representation are significantly better than those obtained by the TT repre-
sentation. Furthermore, for size 16 and the FP representation, the fit2 fitness
function resulted in significantly better results.

Table 4 represents the execution times of the tested representations and fit-
ness functions. For brevity, for the FP representation, only the execution times
obtained by GHJ are presented in the table. All methods were coded in the
C++ programming language using the ECF framework3. The experiments were
performed on a Windows 10 PC with an AMD Ryzen Threadripper 3990X 64-
core processor and 128 GB RAM. The table shows that for smaller problem
sizes, all variants have the same execution time. However, as the problem size
increases, we observe that the execution time of the FP representation increases
more than the execution time of the TT representation. Regarding the difference
between the two fitness functions, the results are not consistent. In some cases,
the algorithm terminates faster when using the deviation function, and in some
cases not. We postulate this happens as the deviation factor should allow more
fine-grained evolution, but when solutions get stuck in local optima, the value
may be too small to influence the evolution process (since nonlinearity can be
even value only). Potentially, a local search that allows slightly worse solutions
could be a mechanism to overcome this problem.

5.1 Limitations

The main limitation of our work is that we found rotation symmetric (anti)-self-
dual bent functions in three dimensions only (4, 6, and 8 inputs). As such, while

3 http://ecf.zemris.fer.hr/.

http://ecf.zemris.fer.hr/
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Fig. 1. Box plot results for problem sizes 6, 8, and 10
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Fig. 2. Box plot results for problem sizes 12, 14, and 16
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Table 4. Execution times (in seconds) of selected experiments.

Rep. 6 8 10 12 14 16

SD fit1 TT 2 4 13 53 90 135
FP 2 4 18 53 240 937

fit2 TT 2 4 13 52 65 227
FP 1 3 10 46 294 972

ASD fit1 TT 2 5 13 51 32 274
FP 2 5 18 53 234 956

fit2 TT 2 5 13 56 36 153
FP 1 4 12 48 250 1004

it is a good indication that such functions may exist for every n, more results are
needed to confirm this. Moreover, from Table 2, we can see that for those sizes,
it is possible to conduct an exhaustive search of rotation symmetric functions,
and then, each such function can be checked if it is also bent and (anti)-self-
dual. We note that it would not make sense first to try to find all (anti)-self-dual
functions and then check which ones are rotation symmetric since then, we need
to start from the search space of 2256. Another limitation (or, better said, trade-
off) lies in the differences in the evolutionary algorithm performance considering
different encodings. For rotation symmetric functions, bitstring and floating-
point encodings work significantly better than the symbolic one [3], while the
situation for the (anti)-self-dual function is the opposite [4]. As such, it would
not necessarily make sense to consider the simultaneous evolution of rotation
symmetric bent functions and (anti)-self-dual bent functions.

5.2 Future Work

Since this is the first work to consider the evolution of rotation symmetric (anti)-
self-dual functions, and before it, it was not even known that such functions
existed, there are multiple potential future research directions. First, our work
considered the evolution of (anti)-self-dual functions within the space of rotation
symmetric functions only. While the approach worked well for smaller sizes, it is
unclear how difficult it is for the evolutionary process to converge from rotation
symmetric functions to (anti)-self-dual bent ones. Thus, one option could be to
first evolve (anti)-self-dual bent functions and then run an exhaustive search
on those functions and check which ones are rotation symmetric. We believe
this approach is more difficult than the one we followed, but it could result in
different functions being obtained. Next, our evolutionary search considered sev-
eral encodings and algorithms, but more thorough parameter tuning is possible,
which could also result in successful results for larger n.

From the mathematical perspective, our results do not answer whether rota-
tion symmetric (anti)-self-dual functions exist for every even n. If so, can we find
an algebraic construction for it? The results we obtained could be used as the
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first step in the process of finding an algebraic construction. More precisely, one
could take the truth tables of all obtained functions, translate them into their
algebraic forms, and try to find some pattern that would allow a construction
to be built.

6 Conclusions

In this work, we provide a novel problem and ask whether it is possible to
construct rotation symmetric (anti)-self-dual bent functions. Our answer is affir-
mative, as we find such functions for several (consecutive) sizes. We also observe
that bitstring representation works well for smaller sizes, while floating-point
representation is better for larger sizes. Considering this is a new problem, there
are various possible future work directions, and we hope our research will inspire
the community to try to find more such functions and better understand their
properties.
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