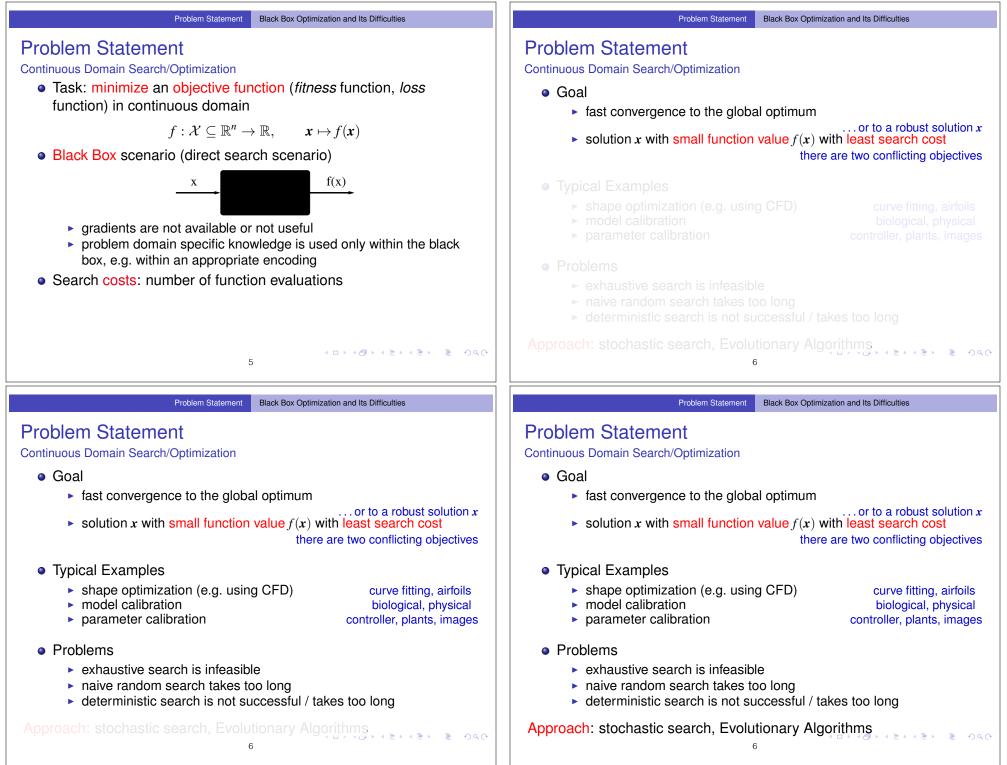


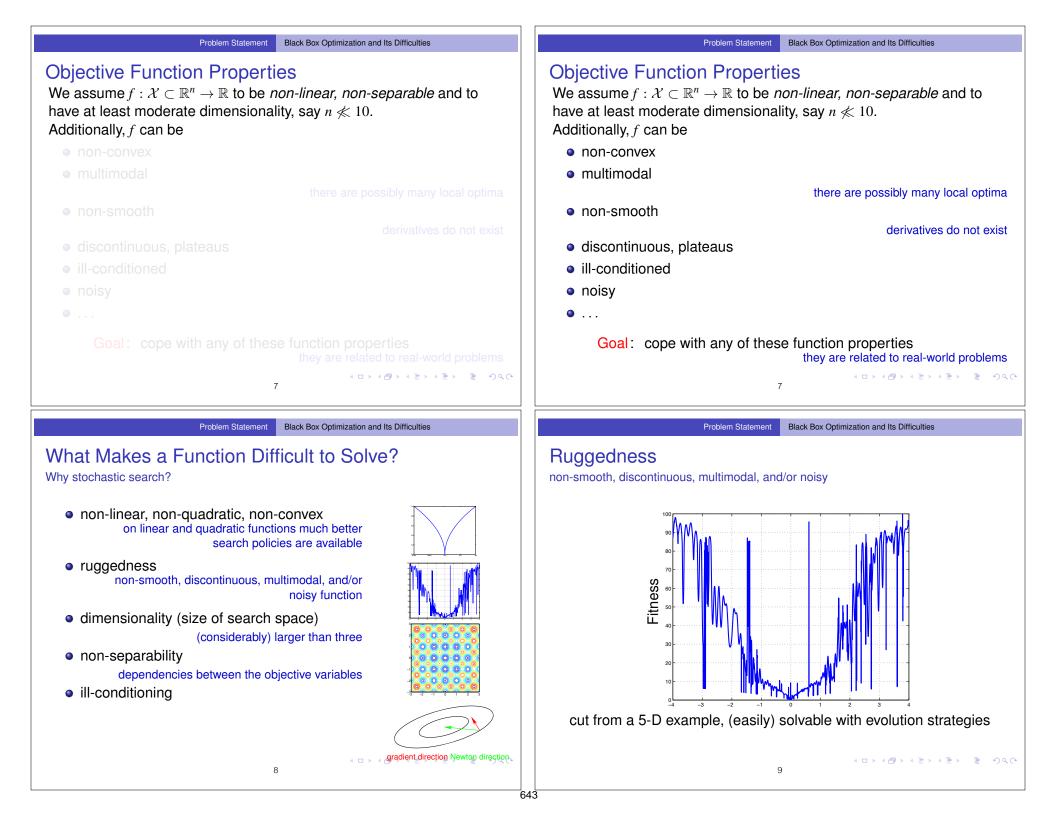
- Restart, Increasing Population Size
- Restricted Covariance Matrix

1. What makes the problem difficult to solve?

4

2





Curse of Dimensionality

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0, 1]. Now consider the 10-dimensional space $[0, 1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search.

10

Problem Statement Black Box Optimization and Its Difficulties

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

644

Curse of Dimensionality

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0, 1]. Now consider the 10-dimensional space $[0, 1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search. Curse of Dimensionality

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0, 1]. Now consider the 10-dimensional space $[0, 1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search.

10

Problem Statement Black Box Optimization and Its Difficulties

Curse of Dimensionality

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0, 1]. Now consider the 10-dimensional space $[0, 1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

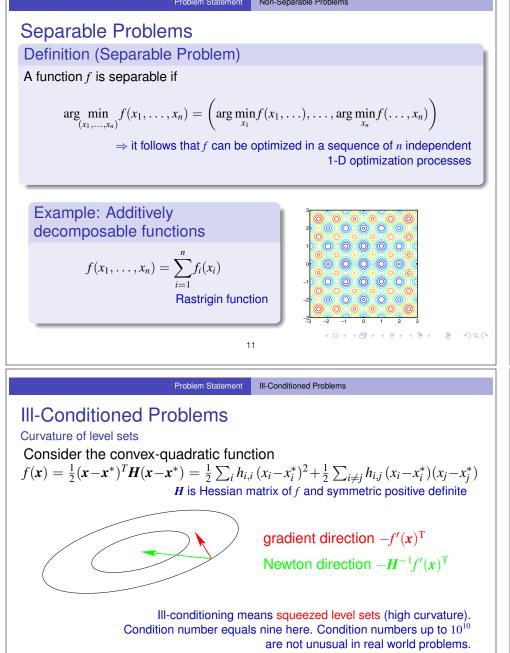
Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search.

10

10

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の ()



If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of H^{-1}) is necessary. ▲□▶▲□▶▲□▶▲□▶ □ のへ⊙

13

Problem Statement Non-Separable Problems

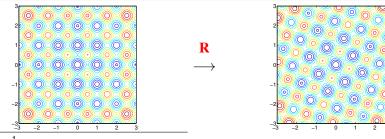
Non-Separable Problems

Building a non-separable problem from a separable one $^{(1,2)}$

Rotating the coordinate system

- $f : \mathbf{x} \mapsto f(\mathbf{x})$ separable
- $f: x \mapsto f(\mathbf{R}x)$ non-separable

R rotation matrix



Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

> Problem Statement Ill-Conditioned Problems

What Makes a Function Difficult to Solve?

... and what can be done

The Problem	Possible Approaches			
Dimensionality	exploiting the problem structure separability, locality/neighborhood, encoding			
	metaphors			
	<ロ><20><20><20><20><20><20><20><20><20><20			

	Problem Statement III-Conditioned Problems		Problem Statement III-Conditioned Problems		
What Makes	a Function Difficult to Solve?	What Makes a Function Difficult to Solve?			
The Problem	Possible Approaches	The Problem	Possible Approaches		
Dimensionality	exploiting the problem structure separability, locality/neighborhood, encoding	Dimensionality	exploiting the problem structure separability, locality/neighborhood, encoding		
l-conditioning	second order approach changes the neighborhood metric	III-conditioning	second order approach changes the neighborhood metric		
		Ruggedness	non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed		
			population-based method, stochastic, non-elitistic		
			recombination operator serves as repair mechanism		
			restarts		
	metaphors イロトイクトイラトイミト ミークへぐ 14		metaphors 《마》《문》《토》《토》 토		
	Problem Statement III-Conditioned Problems				
		Topics			
		1. What make			
		2. How does t	the CMA-ES work?		
	Questions?	Step-Size	stribution, Rank-Based Recombination Adaptation (CSA) e Matrix Adaptation (Hybrid-CMA)		
			creasing Population Size Covariance Matrix		
		• Restricted			

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters $\boldsymbol{\theta},$ set population size $\lambda \in \mathbb{N}$ While not terminate

- **()** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_{λ} on f
- **3** Update parameters $\theta \leftarrow F_{\theta}(\theta, \mathbf{x}_1, \dots, \mathbf{x}_{\lambda}, f(\mathbf{x}_1), \dots, f(\mathbf{x}_{\lambda}))$

Everything depends on the definition of *P* and F_{θ}

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

Natural template for (incremental) Estimation of Distribution Adorithms ~

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **1** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_{λ} on f
- **③** Update parameters $\theta \leftarrow F_{\theta}(\theta, \mathbf{x}_1, \dots, \mathbf{x}_{\lambda}, f(\mathbf{x}_1), \dots, f(\mathbf{x}_{\lambda}))$

Everything depends on the definition of P and F_{θ}

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

Natural template for (incremental) Estimation of Distribution Adaorithms.~

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **(**) Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_λ on f
- **③** Update parameters $\theta \leftarrow F_{\theta}(\theta, \mathbf{x}_1, \dots, \mathbf{x}_{\lambda}, f(\mathbf{x}_1), \dots, f(\mathbf{x}_{\lambda}))$

Everything depends on the definition of P and F_{θ}

deterministic algorithms are covered as well

n many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation

Natural template for (incremental) Estimation of Distribution Algorithms ~

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **(**) Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_λ on f
- **③** Update parameters $\theta \leftarrow F_{\theta}(\theta, \mathbf{x}_1, \dots, \mathbf{x}_{\lambda}, f(\mathbf{x}_1), \dots, f(\mathbf{x}_{\lambda}))$

Everything depends on the definition of P and F_{θ}

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

Natural template for (incremental) Estimation of Distribution Algorithms.~

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters $\boldsymbol{\theta},$ set population size $\lambda \in \mathbb{N}$ While not terminate

- **()** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_λ on f
- **3** Update parameters $\theta \leftarrow F_{\theta}(\theta, \mathbf{x}_1, \dots, \mathbf{x}_{\lambda}, f(\mathbf{x}_1), \dots, f(\mathbf{x}_{\lambda}))$

Everything depends on the definition of P and F_{θ}

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

Natural template for (incremental) Estimation of Distribution Adoorithms.~

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters $\boldsymbol{\theta},$ set population size $\lambda \in \mathbb{N}$ While not terminate

- **(**) Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_λ on f
- **③** Update parameters $\theta \leftarrow F_{\theta}(\theta, \mathbf{x}_1, \dots, \mathbf{x}_{\lambda}, f(\mathbf{x}_1), \dots, f(\mathbf{x}_{\lambda}))$

Everything depends on the definition of *P* and F_{θ}

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation

Natural template for (incremental) Estimation of Distribution Adaorithms ~

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **(**) Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- **2** Evaluate x_1, \ldots, x_λ on f
- **③** Update parameters $\boldsymbol{\theta} \leftarrow F_{\boldsymbol{\theta}}(\boldsymbol{\theta}, \boldsymbol{x}_1, \dots, \boldsymbol{x}_{\lambda}, f(\boldsymbol{x}_1), \dots, f(\boldsymbol{x}_{\lambda}))$

Everything depends on the definition of P and F_{θ}

deterministic algorithms are covered as well

n many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

Natural template for (incremental) Estimation of Distribution Algorithms ~

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **O** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- **2** Evaluate x_1, \ldots, x_λ on f
- **③** Update parameters $\theta \leftarrow F_{\theta}(\theta, \mathbf{x}_1, \dots, \mathbf{x}_{\lambda}, f(\mathbf{x}_1), \dots, f(\mathbf{x}_{\lambda}))$

Everything depends on the definition of *P* and F_{θ}

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

Natural template for (incremental) Estimation of Distribution Alaorithms

Evolution Strategies (ES) A Search Template

Set: $c_{\mathbf{c}} \approx 4/n, c_{\sigma} \approx 4/n, c_1 \approx 2/n^2, c_{\mu} \approx \mu_w/n^2, c_1 + c_{\mu} \leq 1, d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{n}},$

Evolution Strategies (ES) A Search Template

Evolution Strategies

New search points are sampled normally distributed

 $\mathbf{x}_i \sim \mathbf{m} + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$ for $i = 1, \dots, \lambda$

as perturbations of *m*, where $x_i, m \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \mathbb{C} \in \mathbb{R}^{n \times n}$

where

sampling

update C

update of σ

update mean

cumulation for C

cumulation for σ

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | のへで

ั649ั

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the *step length*
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

26

here, all new points are sampled with the same parameters

The question remains how to update m, C, and σ .

Evolution Strategies (ES) The Normal Distribution

Why Normal Distributions?

• widely observed in nature, for example as phenotypic traits

only stable distribution with finite variance stable means that the sum of normal variates is again normal:

$\mathcal{N}(\mathbf{x}, \mathbf{A}) + \mathcal{N}(\mathbf{y}, \mathbf{B}) \sim \mathcal{N}(\mathbf{x} + \mathbf{y}, \mathbf{A} + \mathbf{B})$

helpful in design and analysis of algorithms related to the *central limit theorem*

most convenient way to generate isotropic search points

the isotropic distribution does not favor any direction, rotational invariant

maximum entropy distribution with finite variance the least possible assumptions on *f* in the distribution shape

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

25

Evolution Strategies (ES) A Search Template

Evolution Strategies

The CMA-ES

While not terminate

Input: $m \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda$

Initialize: $\mathbf{C} = \mathbf{I}$, and $p_c = \mathbf{0}$, $p_{\sigma} = \mathbf{0}$,

and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

 $\sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\|p_{\sigma}\|}{\mathbb{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|}-1\right)\right)$

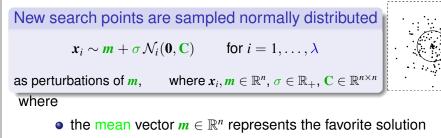
 $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda$

 $\mathbf{p}_{\sigma} \leftarrow (1 - c_{\sigma}) \mathbf{p}_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^2} \sqrt{\mu_w} \mathbf{C}^{-\frac{1}{2}} \mathbf{y}_w$

 $\boldsymbol{m} \leftarrow \sum_{i=1}^{\mu} w_i \boldsymbol{x}_{i:\lambda} = \boldsymbol{m} + \sigma \boldsymbol{y}_w$ where $\boldsymbol{y}_w = \sum_{i=1}^{\mu} w_i \boldsymbol{y}_{i:\lambda}$

 $p_{c} \leftarrow (1 - c_{c}) p_{c} + \mathbf{1}_{\{\|p_{\tau}\| \le 1.5\sqrt{n}\}} \sqrt{1 - (1 - c_{c})^{2}} \sqrt{\mu_{w}} y_{w}$

 $\mathbf{C} \leftarrow (1 - c_1 - c_\mu) \mathbf{C} + c_1 \mathbf{p}_c \mathbf{p}_c^{\mathrm{T}} + c_\mu \sum_{i=1}^{\mu} w_i \mathbf{y}_{i;\lambda} \mathbf{y}_{i;\lambda}^{\mathrm{T}}$

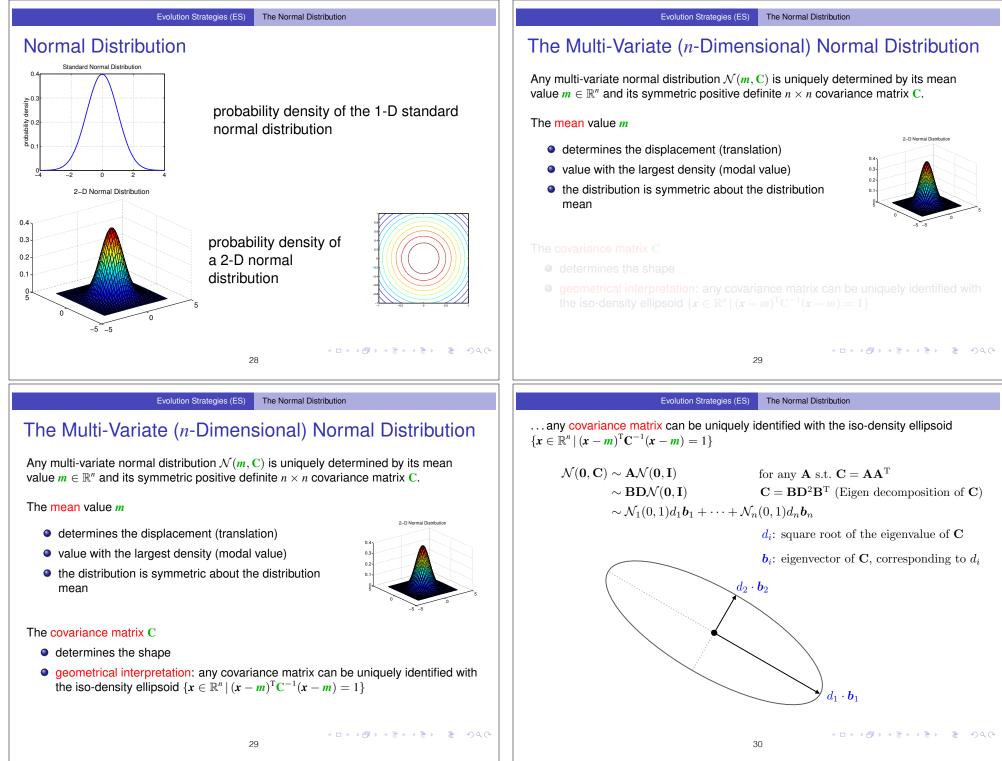


- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the *step length*
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

here, all new points are sampled with the same parameters

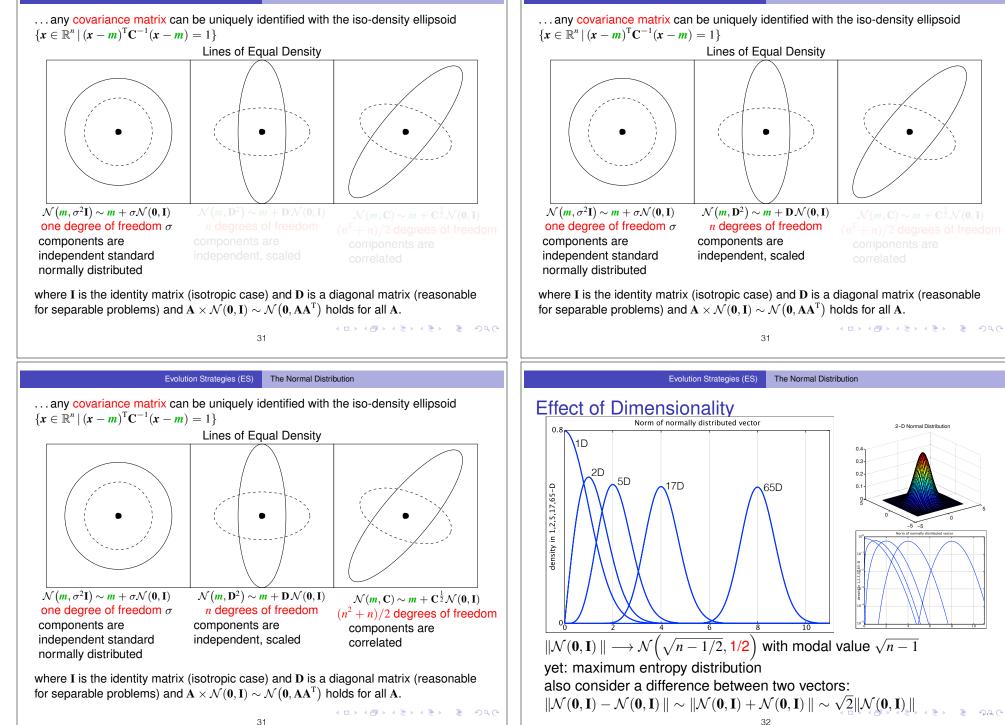
The question remains how to update m, C, and σ .

26

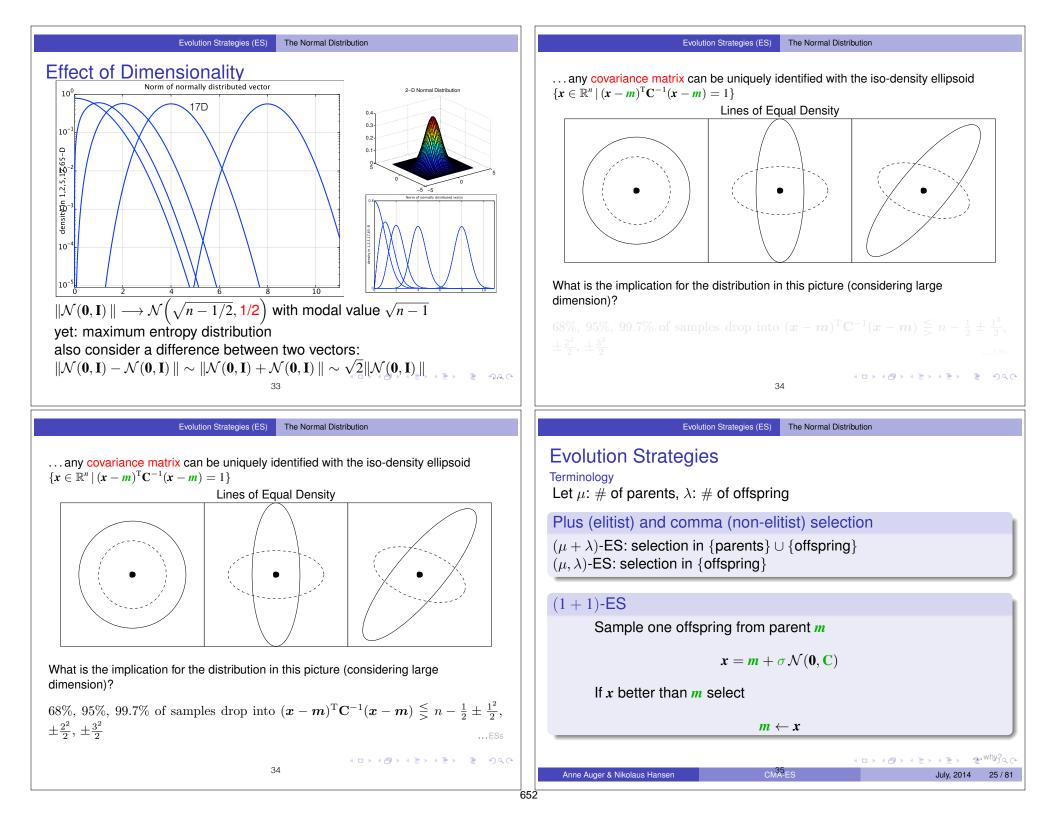


65Ŏ

Evolution Strategies (ES) The Normal Distribution



Evolution Strategies (ES) The Normal Distribution



Evolution Strategies (ES) The Normal Distribution

Evolution Strategies (ES) The Normal Distribution

The ($\mu/\mu, \lambda$)-ES

Non-elitist selection and intermediate (weighted) recombination Given the *i*-th solution point $\mathbf{x}_i = \mathbf{m} + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C}) = \mathbf{m} + \sigma \mathbf{y}_i$

Let $x_{i:\lambda}$ the *i*-th ranked solution point, such that $f(x_{1:\lambda}) \leq \cdots \leq f(x_{\lambda:\lambda})$. The new mean reads

$$\boldsymbol{m} \leftarrow \sum_{i=1}^{P} w_i \boldsymbol{x}_{i:\lambda} = \boldsymbol{m} + \sigma \sum_{i=1}^{P} w_i \boldsymbol{y}$$

where

$$w_1 \ge \dots \ge w_\mu > 0$$
, $\sum_{i=1}^{\mu} w_i = 1$, $\frac{1}{\sum_{i=1}^{\mu} w_i^2} =: \mu_w \approx 1$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

Evolution Strategies (ES) The Normal Distribution

The $(\mu/\mu, \lambda)$ -ES

Non-elitist selection and intermediate (weighted) recombination Given the *i*-th solution point $x_i = m + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C}) = m + \sigma y_i$

Let $x_{i:\lambda}$ the *i*-th ranked solution point, such that $f(x_{1:\lambda}) \leq \cdots \leq f(x_{\lambda:\lambda})$. The new mean reads

$$\boldsymbol{m} \leftarrow \sum_{i=1}^{\mu} w_i \boldsymbol{x}_{i:\lambda} = \boldsymbol{m} + \sigma \underbrace{\sum_{i=1}^{\mu} w_i \boldsymbol{y}_{i:\lambda}}_{=: \mathbf{v}_w}$$

where

$$w_1 \ge \dots \ge w_{\mu} > 0, \quad \sum_{i=1}^{\mu} w_i = 1, \quad \frac{1}{\sum_{i=1}^{\mu} w_i^2} =: \mu_w \approx \frac{\lambda}{4}$$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

The $(\mu/\mu, \lambda)$ -ES

Non-elitist selection and intermediate (weighted) recombination Given the *i*-th solution point $x_i = m + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C}) = m + \sigma y_i$

Let $x_{i:\lambda}$ the *i*-th ranked solution point, such that $f(x_{1:\lambda}) \leq \cdots \leq f(x_{\lambda:\lambda})$. The new mean reads

$$\boldsymbol{m} \leftarrow \sum_{i=1}^{\mu} w_i \boldsymbol{x}_{i:\lambda} = \boldsymbol{m} + \sigma \sum_{i=1}^{\mu} w_i \boldsymbol{y}_{i:\lambda}$$

where

$$w_1 \ge \dots \ge w_{\mu} > 0$$
, $\sum_{i=1}^{\mu} w_i = 1$, $\frac{1}{\sum_{i=1}^{\mu} w_i^2} =: \mu_w \approx \frac{\lambda}{4}$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

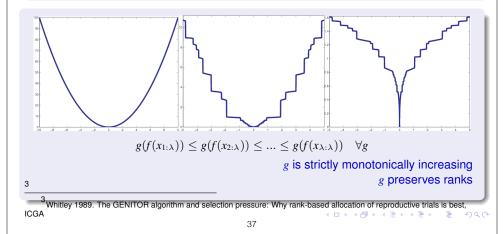
Evolution Strategies (ES) Invariance

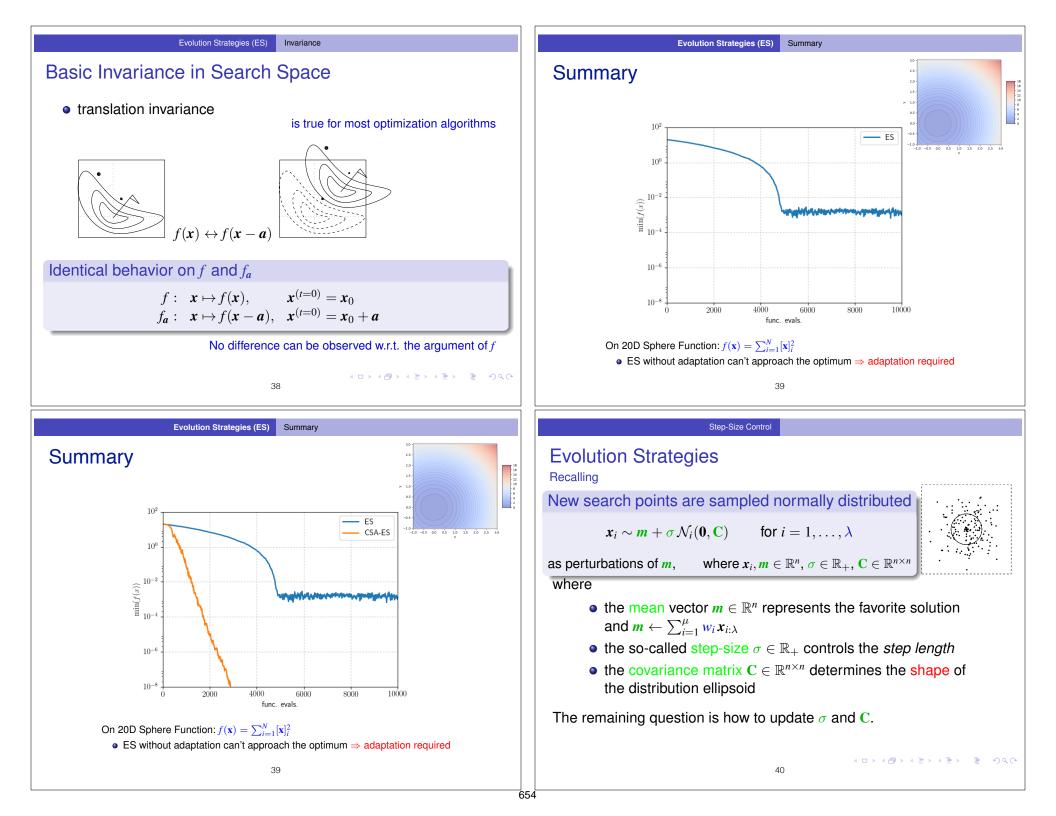
Invariance Under Monotonically Increasing Functions

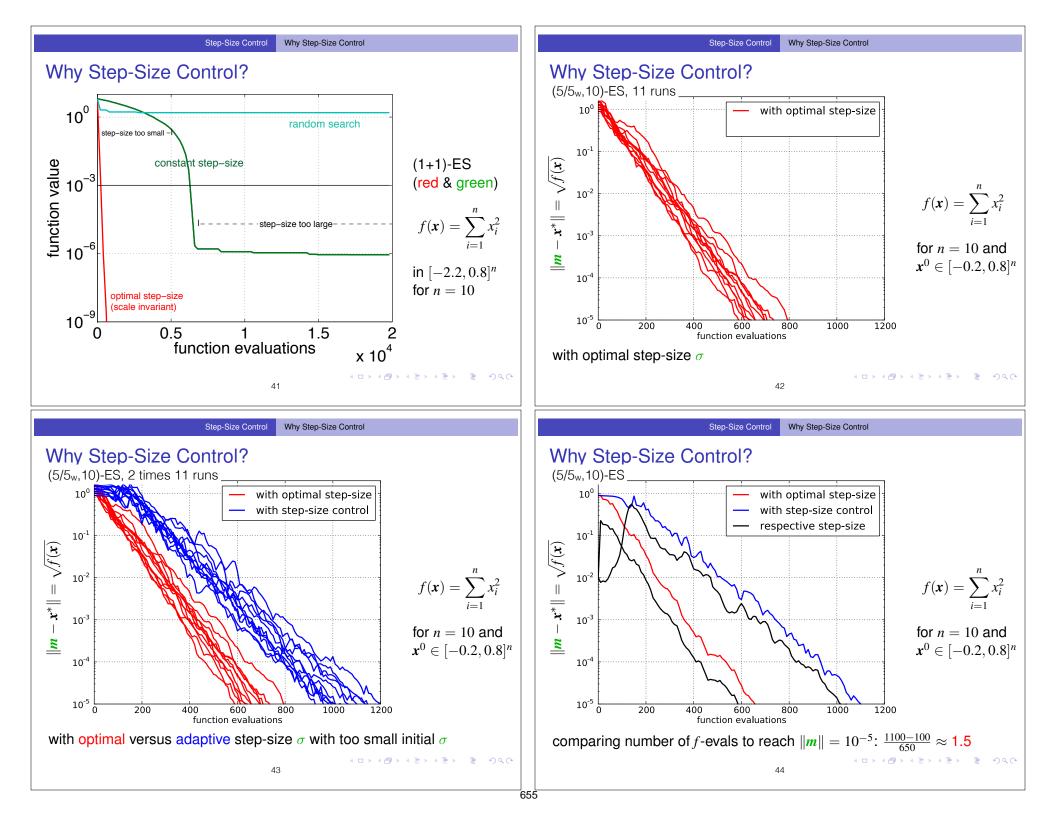
Rank-based algorithms

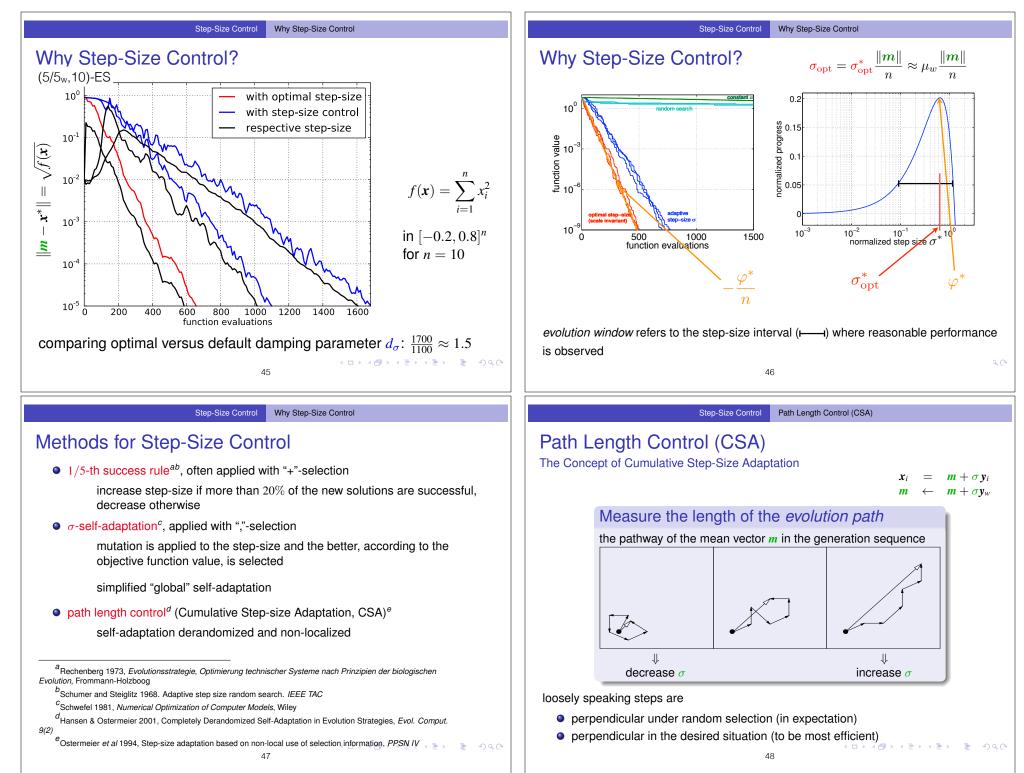
Update of all parameters uses only the ranks

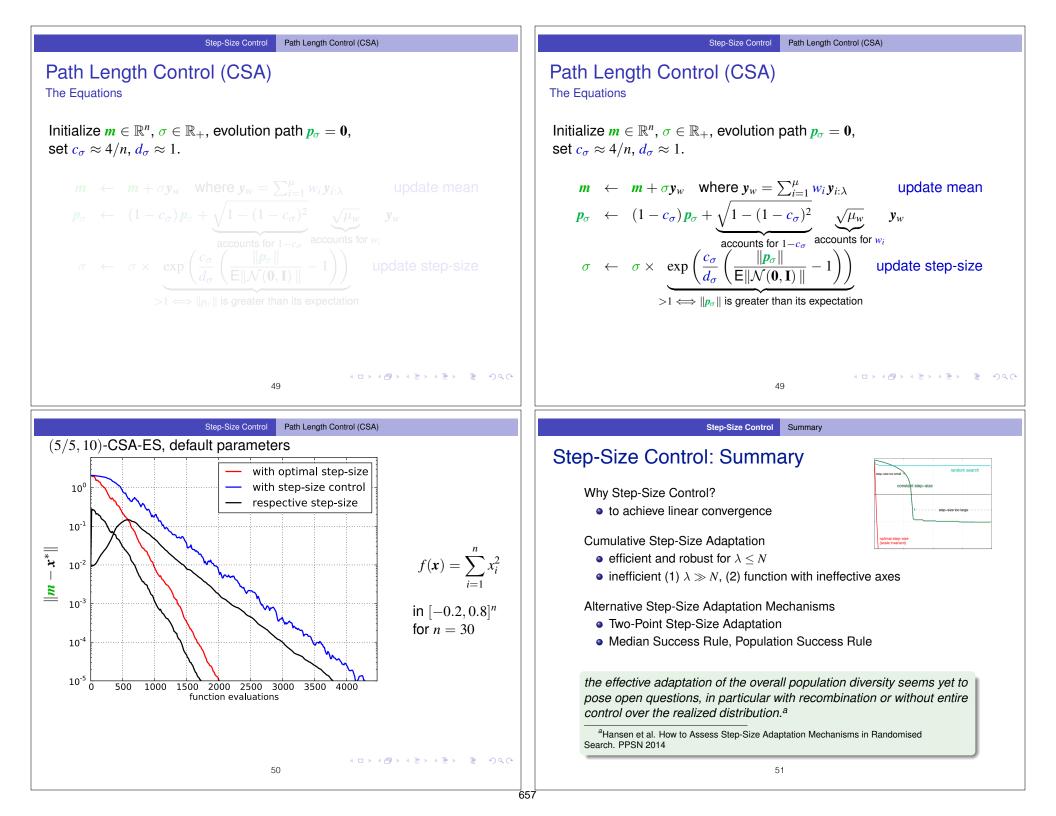
$$f(x_{1:\lambda}) \le f(x_{2:\lambda}) \le \dots \le f(x_{\lambda:\lambda})$$

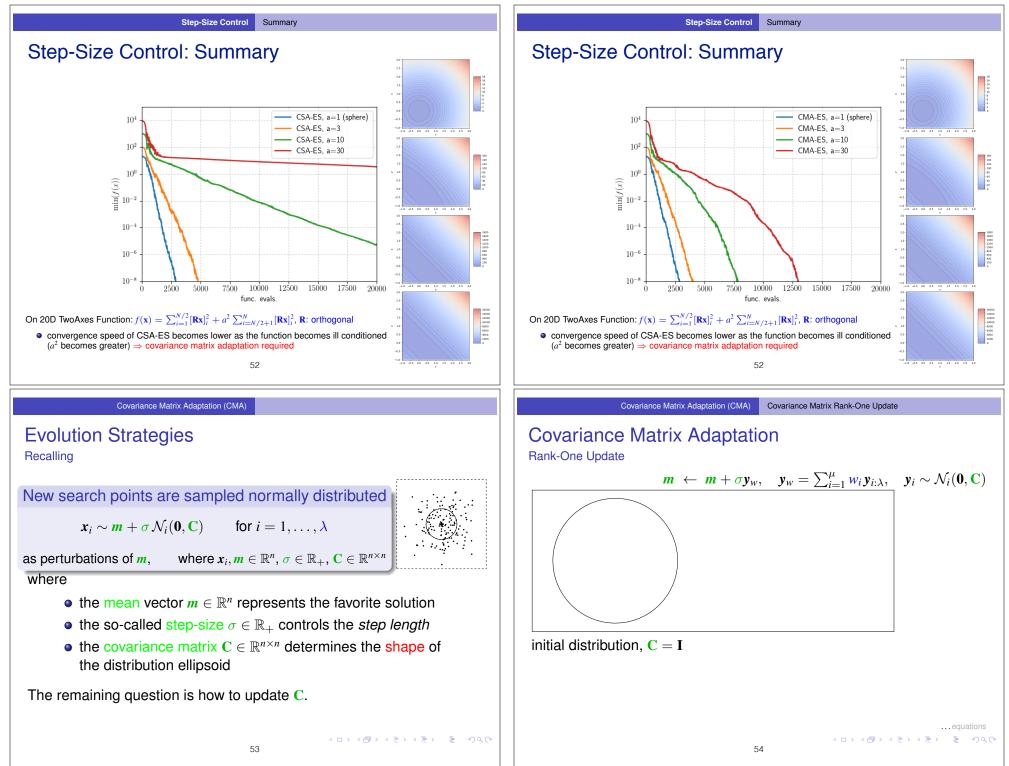


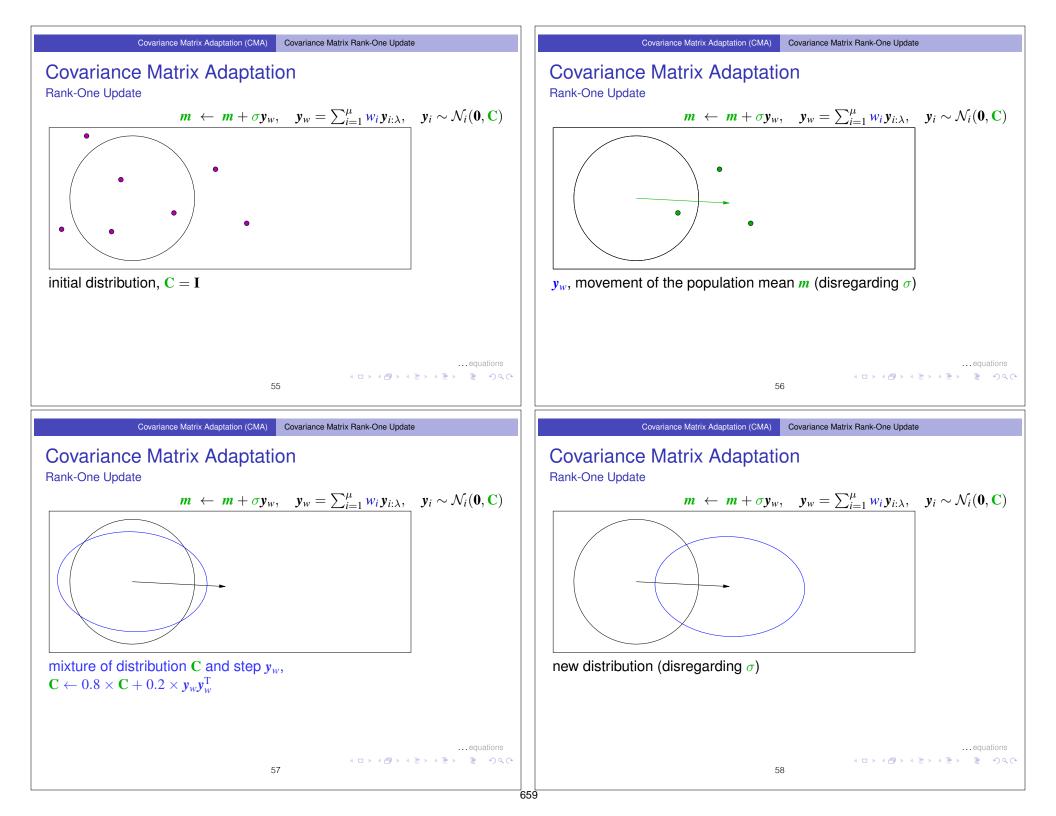


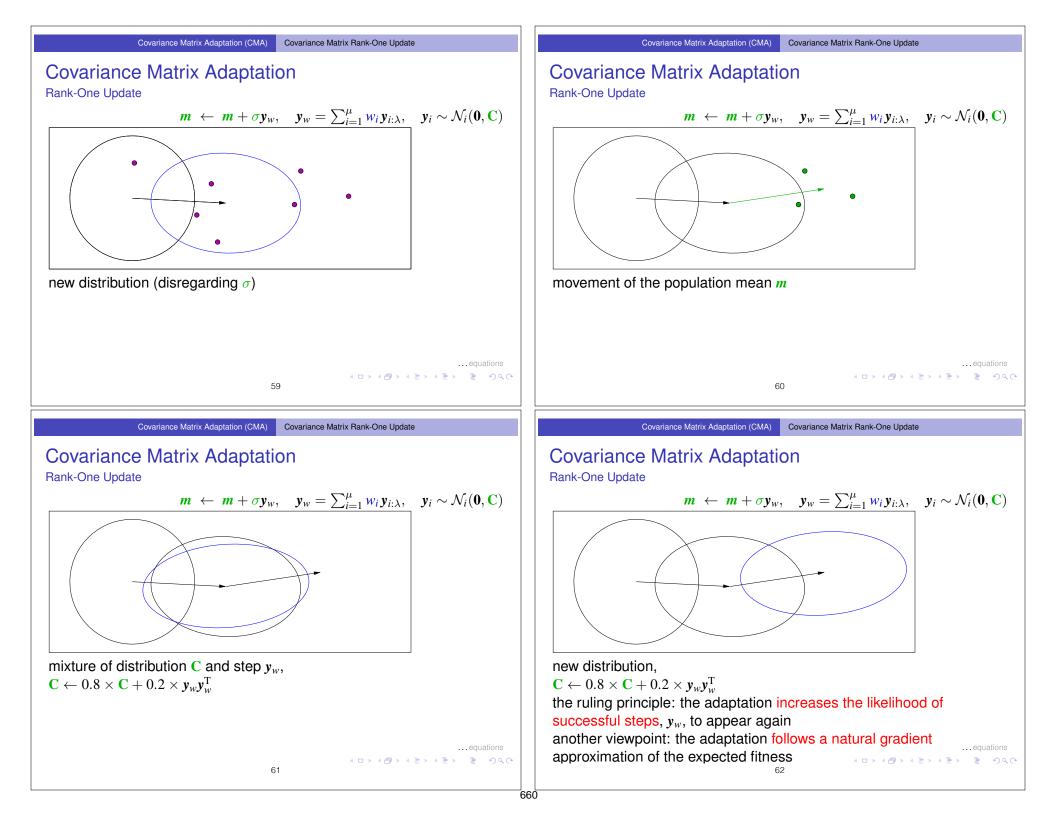


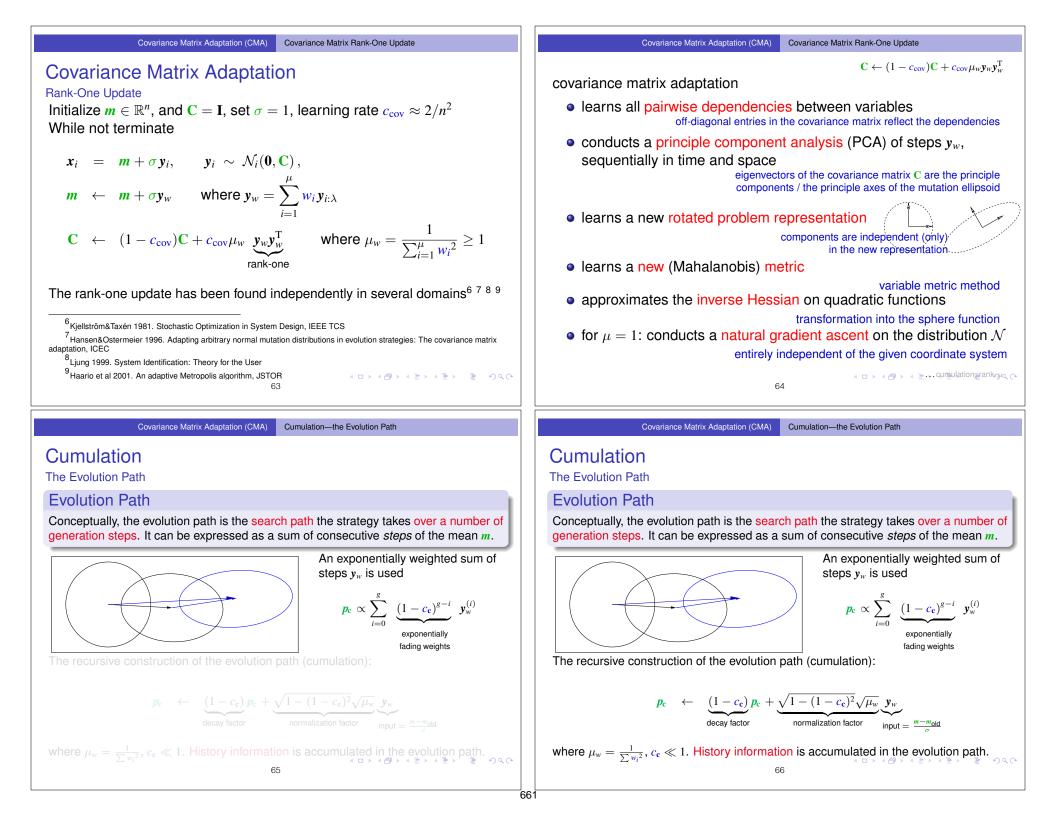


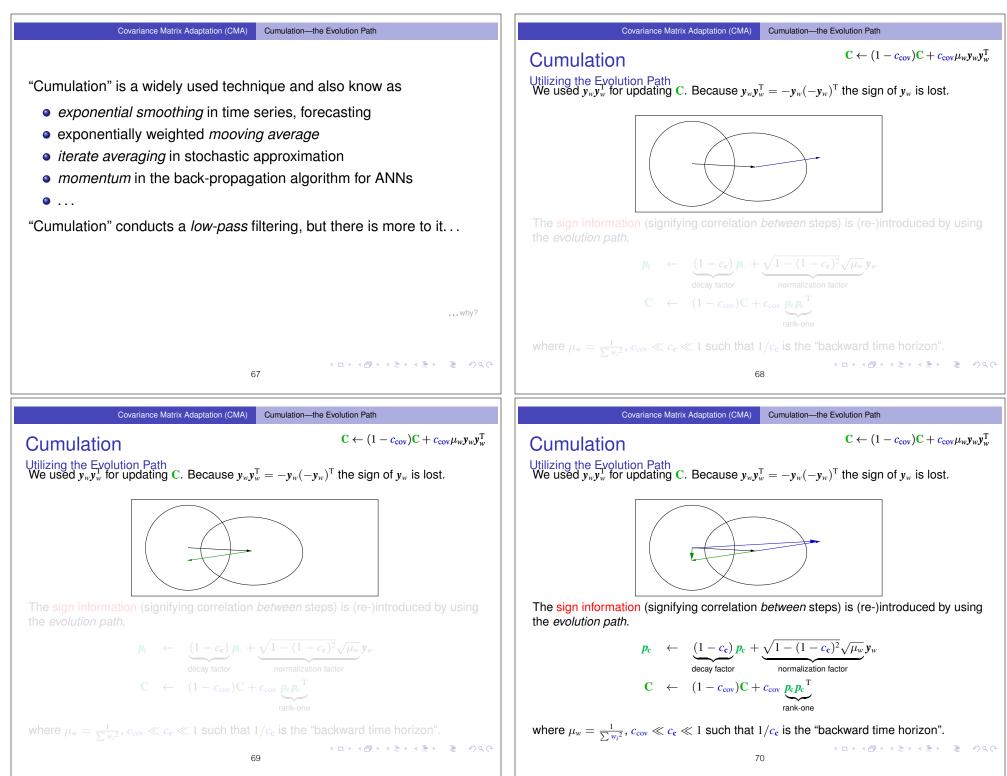










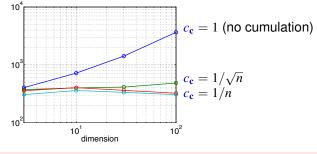


Covariance Matrix Adaptation (CMA) Cumulation-the Evolution Path

Using an evolution path for the rank-one update of the covariance matrix reduces the number of function evaluations to adapt to a straight ridge from about $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$.^(a)

^aHansen & Auger 2013. Principled design of continuous stochastic search: From theory to practice.

Number of *f*-evaluations divided by dimension on the cigar function
$$f(\mathbf{x}) = x_1^2 + 10^6 \sum_{i=2}^n x_i^2$$



The overall model complexity is n^2 but important parts of the model can be learned in time of order n

71

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-µ Update

Rank-µ Update

$$\begin{array}{rcl} \mathbf{x}_i &=& \mathbf{m} + \sigma \, \mathbf{y}_i, \qquad \mathbf{y}_i &\sim & \mathcal{N}_i(\mathbf{0}, \mathbf{C}) \,, \\ \mathbf{m} &\leftarrow & \mathbf{m} + \sigma \, \mathbf{y}_w \qquad \mathbf{y}_w &= & \sum_{i=1}^{\mu} w_i \, \mathbf{y}_{i:\lambda} \end{array}$$

The rank- μ update extends the update rule for large population sizes λ using $\mu > 1$ vectors to update C at each generation step. The weighted empirical covariance matrix

$$\mathbf{C}_{\mu} = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}}$$

computes a weighted mean of the outer products of the best μ steps and has rank $\min(\mu, n)$ with probability one.

with $\mu = \lambda$ weights can be negative ¹⁰

$$\mathbf{C} \leftarrow (1 - c_{\mathrm{cov}}) \, \mathbf{C} + c_{\mathrm{cov}} \, \mathbf{C}_{\mu}$$

10 Jastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC.

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-µ Update

Rank-µ Update

$$\begin{array}{rcl} \boldsymbol{x}_i &=& \boldsymbol{m} + \sigma \, \boldsymbol{y}_i, \qquad \boldsymbol{y}_i &\sim& \mathcal{N}_i(\boldsymbol{0}, \mathbf{C})\,, \\ \boldsymbol{m} &\leftarrow& \boldsymbol{m} + \sigma \, \boldsymbol{y}_w \qquad \boldsymbol{y}_w &=& \sum_{i=1}^{\mu} w_i \, \boldsymbol{y}_{i:\,\mathcal{I}} \end{array}$$

The rank- μ update extends the update rule for large population sizes λ using $\mu > 1$ vectors to update **C** at each generation step.

$$\mathbf{C}_{\mu} = \sum_{i=1}^{r} w_i \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}}$$

$$\mathbf{C} \leftarrow (1 - c_{\mathsf{cov}}) \, \mathbf{C} + c_{\mathsf{cov}} \, \mathbf{C}_{\mu}$$

¹⁰Jastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC. 72

> Covariance Matrix Adaptation (CMA) Covariance Matrix Rank- μ Update

Rank-µ Update

 $\begin{array}{rcl} \mathbf{y}_i & \sim & \mathcal{N}_i(\mathbf{0},\mathbf{C})\,, \\ \mathbf{y}_w & = & \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \end{array}$ $= m + \sigma y_i,$ $\leftarrow m + \sigma y_w$

The rank- μ update extends the update rule for large population sizes λ using $\mu > 1$ vectors to update C at each generation step. The weighted empirical covariance matrix

$$\mathbf{C}_{\mu} = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}}$$

computes a weighted mean of the outer products of the best μ steps and has rank $\min(\mu, n)$ with probability one.

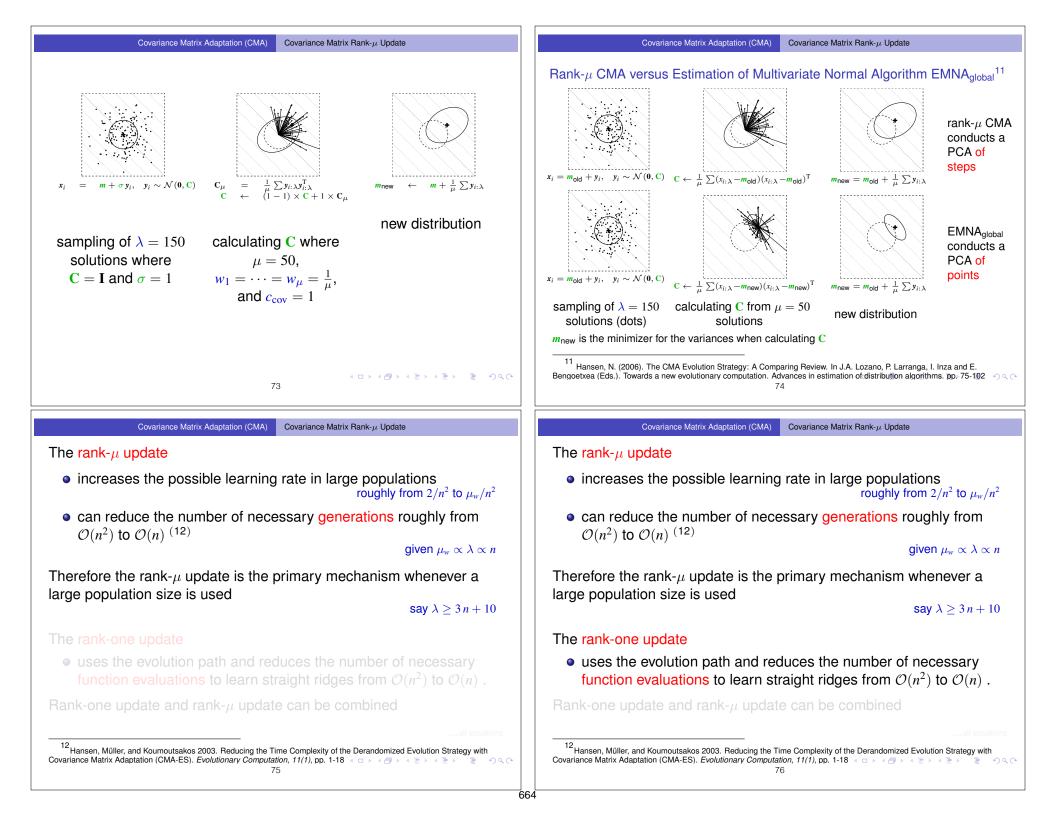
with $\mu = \lambda$ weights can be negative ¹⁰

The rank- μ update then reads

$$\mathbf{C} \leftarrow (1 - c_{\mathrm{cov}}) \, \mathbf{C} + c_{\mathrm{cov}} \, \mathbf{C}_{\mu}$$

where $c_{cov} \approx \mu_w/n^2$ and $c_{cov} \leq 1$.

¹⁰Jastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC.



Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-µ Update

Covariance Matrix Adaptation (CMA)

Covariance Matrix Rank-µ Update

The rank- μ update

- increases the possible learning rate in large populations roughly from $2/n^2$ to μ_w/n^2
- can reduce the number of necessary generations roughly from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$ ⁽¹²⁾

given $\mu_w \propto \lambda \propto n$

Therefore the rank- μ update is the primary mechanism whenever a large population size is used

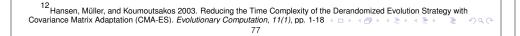
say $\lambda > 3n + 10$

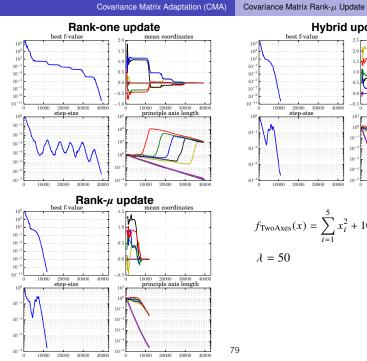
... all equations

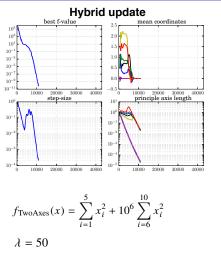
The rank-one update

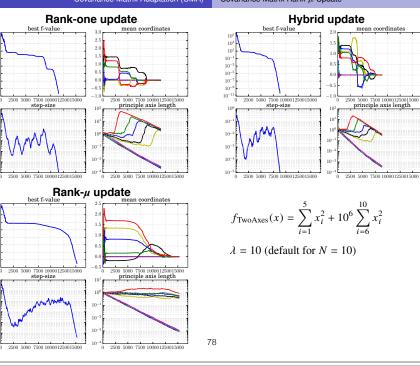
• uses the evolution path and reduces the number of necessary function evaluations to learn straight ridges from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$.

Rank-one update and rank- μ update can be combined









CMA-ES Summary

Summary of Equations

The Covariance Matrix Adaptation Evolution Strategy Input: $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ (problem dependent) Initialize: $\mathbf{C} = \mathbf{I}$, and $p_c = \mathbf{0}$, $p_{\sigma} = \mathbf{0}$, Set: $c_{\mathbf{c}} \approx 4/n$, $c_{\sigma} \approx 4/n$, $c_1 \approx 2/n^2$, $c_{\mu} \approx \mu_w/n^2$, $c_1 + c_{\mu} \le 1$, $d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{n}}$, and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$ While not terminate

$$\begin{split} \mathbf{x}_{i} &= \mathbf{m} + \sigma \, \mathbf{y}_{i}, \quad \mathbf{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda \qquad \text{sampling} \\ \mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_{i} \mathbf{x}_{i:\lambda} &= \mathbf{m} + \sigma \mathbf{y}_{w} \quad \text{where } \mathbf{y}_{w} = \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda} \qquad \text{update mean} \\ \mathbf{p}_{c} \leftarrow (1 - c_{c}) \mathbf{p}_{c} + \mathbf{1}_{\{ \| p_{\sigma} \| < 1.5\sqrt{n} \}} \sqrt{1 - (1 - c_{c})^{2}} \sqrt{\mu_{w}} \mathbf{y}_{w} \qquad \text{cumulation for } \mathbf{C} \\ \mathbf{p}_{\sigma} \leftarrow (1 - c_{\sigma}) \mathbf{p}_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \sqrt{\mu_{w}} \mathbf{C}^{-\frac{1}{2}} \mathbf{y}_{w} \qquad \text{cumulation for } \sigma \\ \mathbf{C} \leftarrow (1 - c_{1} - c_{\mu}) \mathbf{C} + c_{1} \mathbf{p}_{c} \mathbf{p}_{c}^{\mathrm{T}} + c_{\mu} \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}} \qquad \text{update } \mathbf{C} \\ \sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\| p_{\sigma} \|}{\mathbf{E} \| \mathcal{N}(\mathbf{0}, \mathbf{I}) \|} - 1\right)\right) \qquad \text{update of } \sigma \\ \end{split}$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding 80

CMA-ES Summary

Summary of Equations

The Covariance Matrix Adaptation Evolution Strategy Input: $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ (problem dependent) Initialize: $\mathbf{C} = \mathbf{I}$, and $p_{c} = \mathbf{0}$, $p_{\sigma} = \mathbf{0}$, Set: $c_{\mathbf{c}} \approx 4/n, c_{\sigma} \approx 4/n, c_1 \approx 2/n^2, c_{\mu} \approx \mu_w/n^2, c_1 + c_{\mu} \leq 1, d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{n}},$ and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum^{\mu} w^2} \approx 0.3 \lambda$ While not terminate $\mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda$ sampling

	Gamping
$m \leftarrow \sum_{i=1}^{\mu} w_i x_{i:\lambda} = m + \sigma y_w$ where $y_w = \sum_{i=1}^{\mu} w_i y_{i:\lambda}$	update mean
$\boldsymbol{p}_{\mathbf{c}} \leftarrow (1 - c_{\mathbf{c}}) \boldsymbol{p}_{\mathbf{c}} + 1_{\{\ \boldsymbol{p}_{\sigma}\ < 1.5\sqrt{n}\}} \sqrt{1 - (1 - c_{\mathbf{c}})^2} \sqrt{\mu_{w}} \boldsymbol{y}_{w}$	cumulation for $\ensuremath{\mathbf{C}}$
$p_{\sigma} \leftarrow (1 - c_{\sigma}) p_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^2} \sqrt{\mu_w} \operatorname{C}^{-\frac{1}{2}} y_w$	cumulation for σ
$\mathbf{C} \leftarrow (1 - c_1 - c_\mu) \mathbf{C} + c_1 \mathbf{p}_{\mathbf{c}} \mathbf{p}_{\mathbf{c}}^{\mathrm{T}} + c_\mu \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}}$	update C
$\sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\ p_{\sigma}\ }{E\ \mathcal{N}(0,\mathbf{I})\ } - 1\right)\right)$	update of σ

Not covered on this slide: termination, restarts, useful output, boundaries and encoding 80

What can/should the users do? Strategy Parameters and Initialization

Default Parameter Values

CMA-ES + (B)IPOP Restart Strategy = Quasi-Parameter Free Optimizer

The following parameters were identified in carefully chosen experimental set ups.

- related to selection and recombination
 - λ : offspring number, new solutions sampled, population size
 - *µ*: parent number, solutions involved in updates of
 - w_i : recombination weights
- related to C-update
 - c_c : decay rate for the evolution path, cumulation factor
 - c_1 : learning rate for rank-one update of C
 - c_{μ} : learning rate for rank- μ update of C
- related to σ -update
 - c_{σ} : decay rate of the evolution path
 - d_{σ} : damping for σ -change

Topics

3. What can/should the users do for the CMA-ES to work effectively on your problem?

- Restart, Increasing Population Size
- Restricted Covariance Matrix

81

What can/should the users do? Strategy Parameters and Initialization

Default Parameter Values

CMA-ES + (B)IPOP Restart Strategy = Quasi-Parameter Free Optimizer

The following parameters were identified in carefully chosen experimental set ups.

- related to selection and recombination
 - λ : offspring number, new solutions sampled, population size
 - *µ*: parent number, solutions involved in updates of
 - w_i : recombination weights
- related to C-update
 - c_c : decay rate for the evolution path, cumulation factor
 - c_1 : learning rate for rank-one update of C
 - c_{μ} : learning rate for rank- μ update of C
- related to σ -update

666

- c_{σ} : decay rate of the evolution path
- d_{σ} : damping for σ -change

The default values depends only on dimension N. They do in the first place not depend on the objective function.

Parameters to be set depending on the problem

Initialization and termination conditions

The following should be set or implemented depending on the problem.

- related to the initial search distribution
 - $m^{(0)}$: initial mean vector
 - $\sigma^{(0)}$ (or $\sqrt{C_{i,i}^{(0)}}$): initial (coordinate-wise) standard deviation
- related to stopping conditions
 - max. func. evals.
 - max. iterations
 - function value tolerance
 - min. axis length
 - stagnation

83

What can/should the users do? Strategy Parameters and Initialization

Python CMA-ES Implementation

https://github.com/CMA-ES/pycma

pycma

A Python implementation of CMA-ES and a few related numerical optimization tools.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic numerical optimization algorithm for difficult (non-convex, ill-conditioned, multi-modal, rugged, noisy) optimization problems in continuous search spaces

The API Documentation is available here.

Installation

Download and unzip the code (see green button above) or git clone https://github.com/CMA-ES/pycma.git.

- Either, copy (or move) the cma source code folder into a folder visible to Python, namely a folder which is in the Python path (e.g. the current folder). Then, import cma works without any further installation.
- Or, install the cma package by typing within the folder, where the cma source code folder is visible,

python -m pip install -e cma

Typing pip instead of python -m pip may be sufficient, prefixing with sudo may be necessary. Moving the cma folder away from this location would invalidate the installation.

Parameters to be set depending on the problem

Initialization and termination conditions

The following should be set or implemented depending on the problem.

- related to the initial search distribution
 - $m^{(0)}$: initial mean vector
 - $\sigma^{(0)}$ (or $\sqrt{C_{ii}^{(0)}}$): initial (coordinate-wise) standard deviation
- related to stopping conditions
 - max, func, evals.
 - max. iterations
 - function value tolerance
 - min. axis length
 - stagnation

Given an initial search interval $[a_i, b_i]$ for i = 1, ..., n, a reasonable choice will be

•
$$m_i^{(0)} = (a_i + b_i)/2$$
 or $m_i^{(0)} \sim \mathcal{U}[a_i + \epsilon, b_i - \epsilon]$
• $\sqrt{C_{i,i}^{(0)}} = \frac{b_i - a_i}{2 \ln 4}$ for $i = 1, ..., n$ and $C_{i,i}^{(0)} = 0$ for $i \neq j$

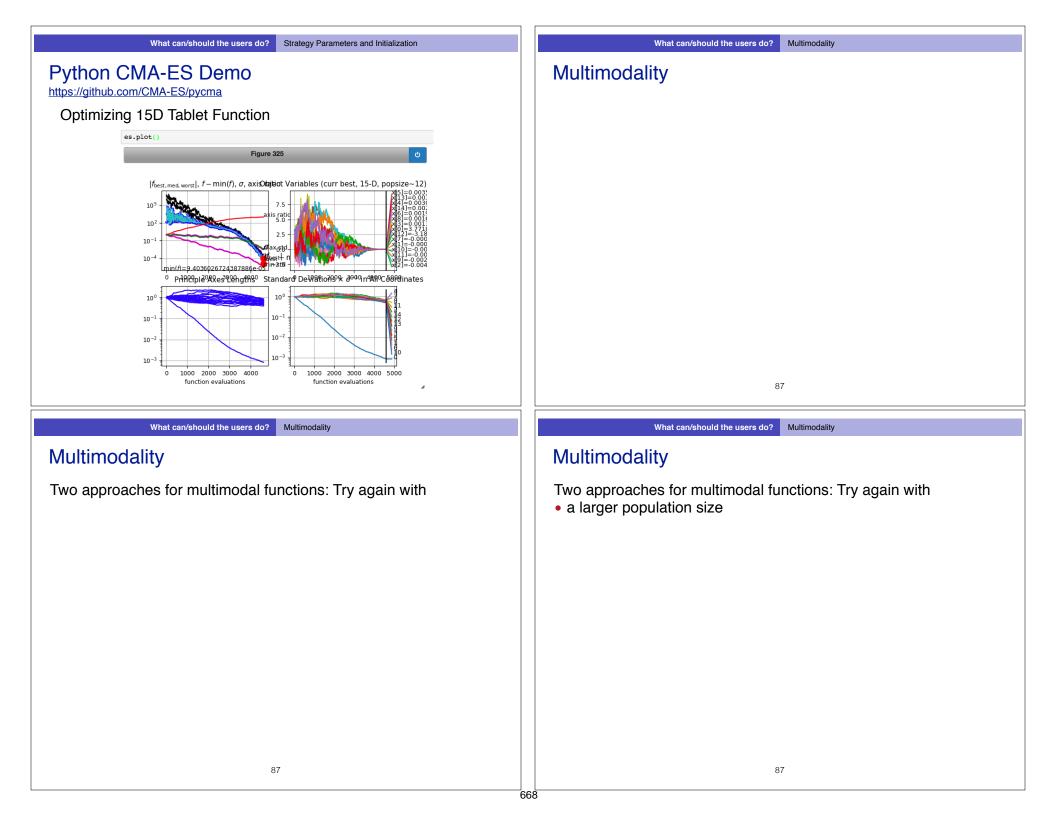
83

What can/should the users do? Strategy Parameters and Initialization

Python CMA-ES Demo https://github.com/CMA-ES/pycma

Optimizing 15D Tablet Function

opts[': opts[': # opts	cma.C tolfun ftarge maxfev ['pops	'] = 1 t'] = als'] <i>ize']</i>	le-4 1e-4 = 1e6 = '10	* N'	<pre># f-t # max # pop y(x0=1! sigma inop</pre>	ulation 5 * [1], a0=1, ts=opts	lue size # Initi # Initi	ial step- ons	size		
Iterat 1 2 3 100	#Feva: 12 24 36 1200	ls f 1.537 1.408 3.712 1.506	functio 7676704 3854302 2560411 5902133	on va 7408 20501 9988 1174	lue a: 62e+02 77e+02 29e+03 76e+02	kis ratio 1.0e+00 1.1e+00 1.2e+00 1.7e+01	o sigma 1.03e+00 1.03e+00 1.02e+00 5.06e-01	min&max 1e+00 1e+00 1e+00 6e-02	std 1e+00 1e+00 1e+00 7e-01	t[m:s] 0:00.0 0:00.0 0:00.0 0:00.1	24 14:58:52 2017)
200 300 384	3600	3.434	1648669	0547	41e-01	7.1e+02	2.99e-01 1.30e-01 4.69e-03	3e-04	1e-01	0:00.3 0:00.4 0:00.5	From a practical perspective: given an unknown optimisation problem, the first thing I tend to do is is to improve a given (initial) solution usi a small initial sigma. Then I (can) increase sigma successively (by a fact of 10 or more, depending on what I have seen in the initial evolution of sigma previously) and see whether I fin the same or better (or worse) solutions
							85				



What can/should the users do? Multimodality

What can/should the users do? Multimodality

Multimodality

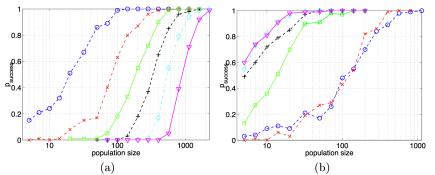
Two approaches for multimodal functions: Try again with

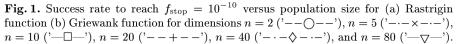
- a larger population size
- a smaller initial step-size (and random initial mean vector)

What can/should the users do? Multimodality

Multimodality

Hansen and Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Functions, PPSN 2004.





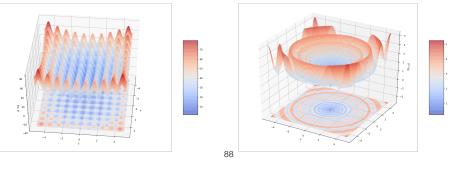
Multimodality

Two approaches for multimodal functions: Try again with

- a larger population size
- a smaller initial step-size (and random initial mean vector)

A restart with a large population size helps if the objective function has a well global structure

- functions such as Schaffer, Rastrigin, BBOB function 15~19
- loosely, unimodal global structure + deterministic noise



What can/should the users do? Multimodality

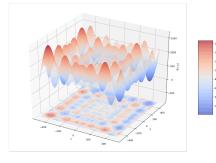
Multimodality

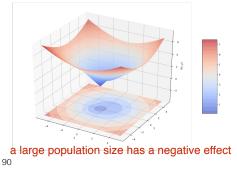
Two approaches for multimodal functions: Try again with

- a larger population size
- a smaller initial step-size (and random initial mean vector)

A restart with a small initial step-size helps if the objective function has a weak global structure

• functions such as Schwefel, Bi-Sphere, BBOB function 20~24





What can/should the users do? Restart Strategy

Restart Strategy

It makes the CMA-ES parameter free

IPOP: Restart with increasing the population size

- $\cdot \,$ start with the default population size
- double the population size after each trial (parameter sweep)
- \cdot may be considered as gold standard for automated restarts

BIPOP: IPOP regime + Local search regime

- IPOP regime: restart with increasing population size
- Local search regime: restart with a smaller step-size and a smaller population size than the IPOP regime

Topics

1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

- Normal Distribution, Rank-Based Recombination
- Step-Size Adaptation (CSA)
- Covariance Matrix Adaptation (Hybrid-CMA)

3. What can/should the users do for the CMA-ES to work efficiently on your problem?

- Restart, Increasing Population Size
- Restricted Covariance Matrix

91

What can/should the users do? Restricted Covariance Matrix

Motivation of the Restricted Covariance Matrix

Bottlenecks of the CMA-ES on high dimensional problems

- $\mathcal{O}(N^2)$ Time and Space Complexities
 - ▶ to store and update $C \in \mathbb{R}^{N \times N}$
 - ► to compute the eigen decomposition of C
- **2** $O(1/N^2)$ Learning Rates for *C*-Update
 - $\blacktriangleright c_{\mu} \approx \mu_w/N^2$
 - $c_1 \approx 2/N^2$

Exploit prior knowledge on the problem structure such as separability

- \Rightarrow decrease the degrees of freedom of the covariance matrix for
 - less time and space complexities
 - a higher learning rates that potentially accelerate the adaptation

What can/should the users do? Restricted Covariance Matrix

92

Motivation of the Restricted Covariance Matrix

Bottlenecks of the CMA-ES on high dimensional problems

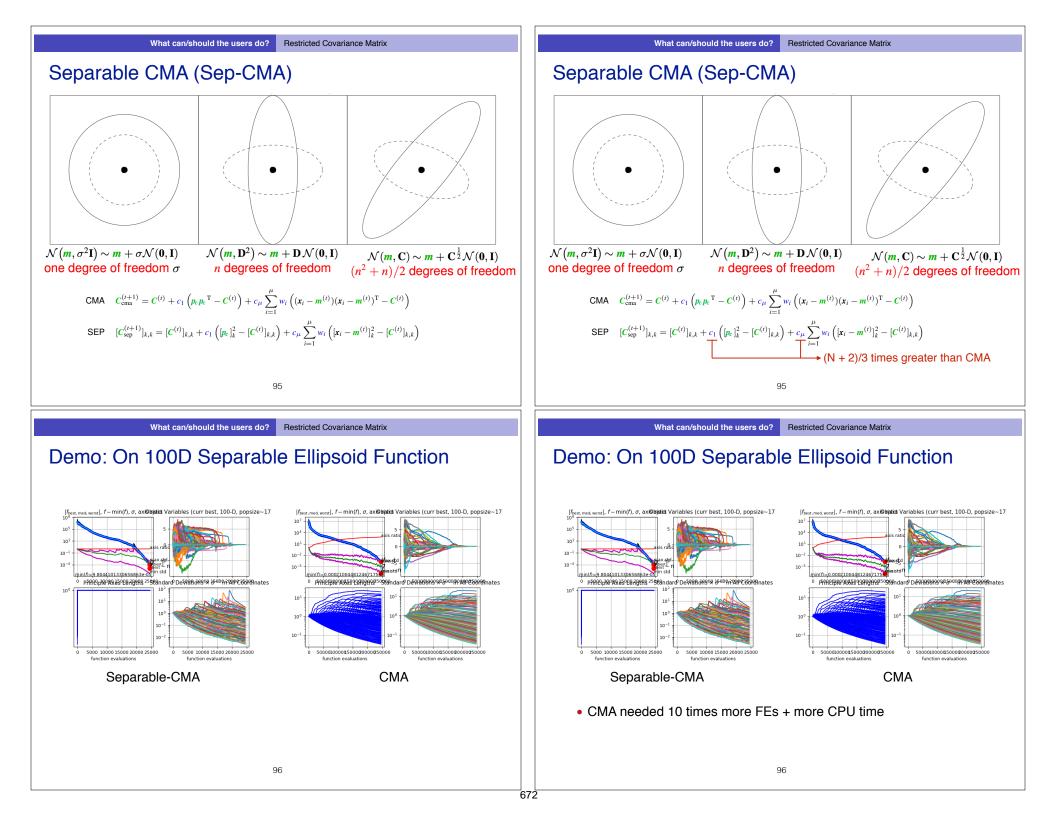
- $\mathcal{O}(N^2)$ Time and Space Complexities
 - to store and update $C \in \mathbb{R}^{N \times N}$
 - \blacktriangleright to compute the eigen decomposition of \pmb{C}
- **2** $O(1/N^2)$ Learning Rates for *C*-Update
 - $c_{\mu} \approx \mu_w/N^2$
 - $c_1 \approx 2/N^2$

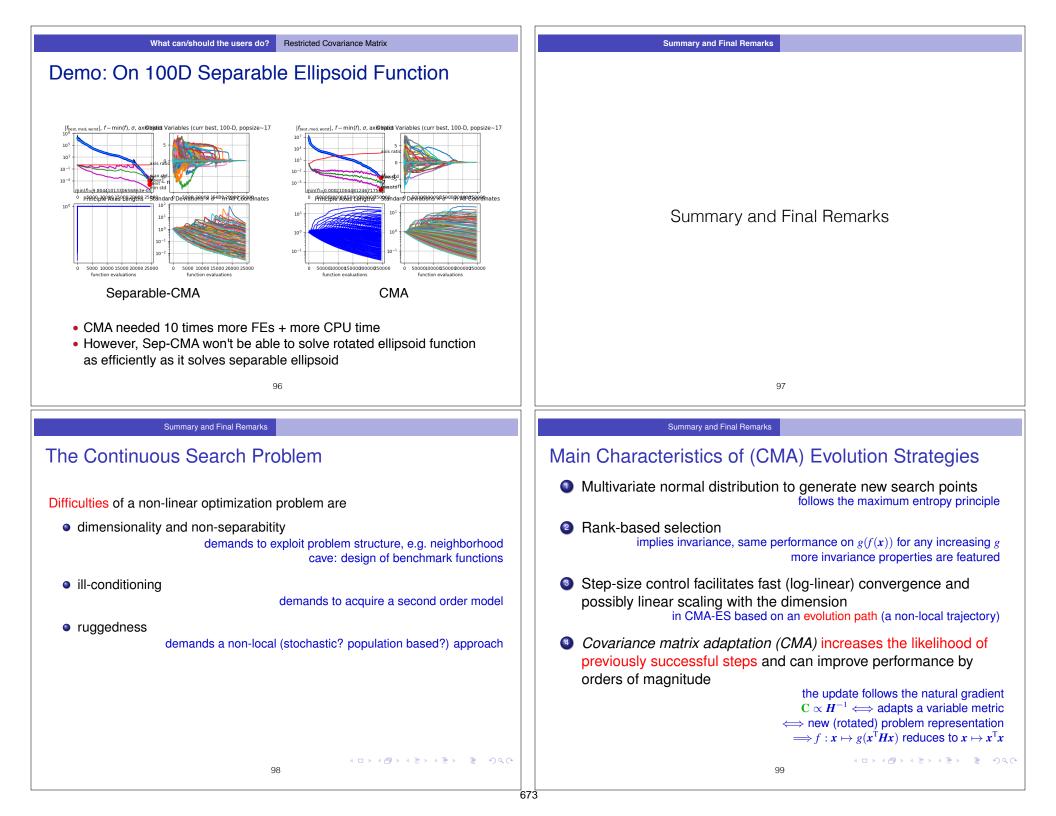
67Ŏ

Exploit prior knowledge on the problem structure such as separability

- \Rightarrow decrease the degrees of freedom of the covariance matrix for
 - less time and space complexities
 - a higher learning rates that potentially accelerate the adaptation







```
Summary and Final Remarks
```

Limitations

of CMA Evolution Strategies

- internal CPU-time: 10⁻⁸n² seconds per function evaluation on a 2GHz PC, tweaks are available 1000 000 *f*-evaluations in 100-D take 100 seconds *internal* CPU-time variants with restricted covariance matrix such as Sep-CMA
 better methods are presumably available in case of
 - partly separable problems
 - specific problems, for example with cheap gradients specific methods
 - small dimension ($n \ll 10$)

for example Nelder-Mead

small running times (number of *f*-evaluations < 100*n*) model-based methods

100

Thank you

Source code for CMA-ES in C, C++, Java, Matlab, Octave, Python, R, Scilab is available (or linked to) at <u>http://cma.gforge.inria.fr/cmaes_sourcecode_page.html</u>