
Recombination for Learning Strategy
Parameters in the MO-CMA-ES

Thomas Voß1 and Nikolaus Hansen2 and Christian Igel1

1 {thomas.voss,christian.igel}@neuroinformatik.rub.de
Institut für Neuroinformatik
Ruhr-Universität Bochum
44780 Bochum, Germany

2 hansen@lri.fr
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Abstract. The multi-objective covariance matrix adaptation evolution
strategy (MO-CMA-ES) is a variable-metric algorithm for real-valued
vector optimization. It maintains a parent population of candidate solu-
tions, which are varied by additive, zero-mean Gaussian mutations. Each
individual learns its own covariance matrix for the mutation distribution
considering only its parent and offspring. However, the optimal mutation
distribution of individuals that are close in decision space are likely to
be similar if we presume some notion of continuity of the optimization
problem. Therefore, we propose a lateral (inter-individual) transfer of in-
formation in the MO-CMA-ES considering also successful mutations of
neighboring individuals for the covariance matrix adaptation. We evalu-
ate this idea on common bi-criteria objective functions. The preliminary
results show that the new adaptation rule significantly improves the per-
formance of the MO-CMA-ES.

1 Introduction

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-
ES) recently presented in [1,2,3] extends the single-objective CMA-ES [4,5,6]
to real-valued vector optimization. The algorithm in [2] considers a population
of individuals subject to multi-objective, indicator-based selection. Each of the
individuals adapts its own variable-metric for generating offspring. Up until now,
the update of the strategy parameters, that is, the covariance matrix and a global
step-size parameter, considers only information within the genealogical tree of
each individual. This work presents a new covariance matrix update procedure
that incorporates information from multiple genealogies. The performance of
the modified MO-CMA-ES with the enhanced adaptation scheme is empirically
evaluated and compared to the performance of the original MO-CMA-ES.

The remainder of this work is organized as follows. Section two briefly de-
scribes the original MO-CMA-ES. In Section three, the new covariance matrix



adaptation procdure is presented. The empirical evaluation is summarized in sec-
tion four. We close with the final conclusions and suggestions for future research
directions.

2 The MO-CMA-ES

In the following, we briefly outline the MO-CMA-ES according to [1,2]. For a
detailed description and a performance evaluation on bi-objective benchmark
functions we refer to [1] (see also [2,3]).

The MO-CMA-ES relies on the non-dominated sorting selection scheme [7].
As in the SMS-EMOA [8], the hypervolume-indicator serves as second-level sort-
ing criterion to rank individuals at the same level of non-dominance. In the fol-
lowing, we first describe the general ranking procedure and then summarize the
other parts of the MO-CMA-ES.

Let A be a population, and let a, a′ be two individuals in A. Let the non-
dominated solutions in A be denoted by ndom(A) = {a ∈ A

∣∣@a′ ∈ A : a′ ≺ a},
where ≺ denotes the Pareto-dominance relation. The elements in ndom(A) are
assigned a level of non-dominance of 1. The other ranks of non-dominance are
defined recursively by considering the set A without the solutions with lower
ranks [7]. Formally, let dom0(A) = A,doml(A) = doml−1(A) \ ndoml(A), and
ndoml(A) = ndom(doml−1(A)) for l ≥ 1. For a ∈ A we define the level of
non-dominance rank(a,A) to be i iff a ∈ ndomi(A).

The hypervolume measure or S-metric was introduced in [9] in the domain
of evolutionary MOO. It can be defined as the Lebesgue measure Λ (i.e., the
volume) of the union of hypercuboids in the objective space [10]:

Saref(A
′) = Λ

( ⋃
a∈ndom(A′)

{(f1(a′), . . . , fM (a′)) | a ≺ a′ ≺ aref}

)
, (1)

where aref is an appropriately chosen reference point. The contributing hyper-
volume of a point a ∈ A′ = ndom(A) is given by

∆S(a,A′) = Saref(A
′)− Saref(A

′ \ {a}) . (2)

Now we define the contribution rank cont(a,A′) of a. This is again done recur-
sively. The element, say a, with the largest contributing hypervolume is assigned
contribution rank 1. The next rank is assigned by considering A′ \{a} etc. More
precisely, let c1(A′) = argmaxa∈A′ ∆S(a,A′) and

ci(A′) = c1

A′ \ i−1⋃
j=1

{cj(A′)}

 (3)

for i > 1. For a ∈ A′ we define the contribution rank cont(a,A′) to be i iff
a = ci(A′). In the ranking procedure ties are broken at random.



Finally, the following relation between individuals a, a′ ∈ A is defined:

a ≺A a′ ⇔ rank(a,A) < rank(a′, A)∨[
rank(a,A) = rank(a′, A) ∧ cont(a,ndom(A)) < cont(a′,ndom(A))

]
(4)

In the µMO×(1+1)-MO-CMA-ES, a candidate solution a
(g)
i , i ∈ {1, . . . , µMO},

in generation g is a tuple
[
x(g)
i , p̄

(g)
succ,i, σ

(g)
i ,p(g)

i,c ,C
(g)
i

]
, where

x(g)
i is the current search point,
p̄

(g)
succ,i is the smoothed success probability,

σ
(g)
i is the global step-size,

p(g)
i,c is the cumulative evolution path,

C(g)
i is the covariance matrix of the search distribution.

The standard version of the µMO× (1+1)-MO-CMA-ES is given in Algo-
rithm 1. The indicator function I(·) evaluates to one if its argument is true and
to zero otherwise.

Algorithm 1: µMO×(1+1)-MO-CMA-ES

g ← 0, initialize a
(g)
k for k ∈ {1, . . . , µMO}1

repeat2

for k = 1, . . . , µMO do3

a′
(g+1)
k ← a

(g)
k4

x′
(g+1)
k ∼ x

(g)
k + σ

(g)
k N

“
0,C

(g)
k

”
5

Q(g) ←
n
a′

(g+1)
k , a

(g)
k

o
6

for k = 1, . . . , µMO do7

σ-update
“
a′

(g+1)
k , I

“
x′

(g+1)
k ≺Q(g) x

(g)
k

””
8

rank-one-update

„
a′

(g+1)
k ,

x′(g+1)
k

−x
(g)
k

σ
(g)
k

«
9

σ-update
“
a

(g)
k , I

“
x′

(g+1)
k ≺Q(g) x

(g)
k

””
10

for i ∈ {1, . . . , µMO} do11

a
(g+1)
i ← Q

(g)
≺:i12

until stopping criterion is met13

For each of the µMO individuals, one offspring is sampled (lines 3–5). The
decision whether a new candidate solution is better than its parent is made in
the context of the population Q(g) of parent and offspring individuals due to the
indicator-based selection strategy implemented in the algorithm. The covariance
matrix of each offspring is adapted (line 9, see the procedure rank-one-update).



Subsequently, the step-sizes σ(g)
k and σ′(g+1)

k of parent and offspring individuals
a

(g)
k and a(g+1)

k are updated (line 8 and 10, see the procedure σ-update). Finally,
the new parent population is selected from the set of parent and offspring in-
dividuals according to the indicator-based selection scheme (lines 11–12). Here,
Q

(g)
≺:i denotes the ith best individual in Q(g) ranked by non-dominated sorting

and the contributing hypervolume according to (4) (see also [1]).

Procedure σ-update( a = [x, p̄succ, σ,pc,C], psucc)

p̄succ ← (1− cp)p̄succ + cpp̄succ1

σ ← σ exp
“

1
d

p̄succ−ptargetsucc
1−ptargetsucc

”
2

The (external) strategy parameters are the population size, initial global
step size, target success probability ptarget

succ , step-size damping d, success rate
averaging parameter cp, cumulation time horizon parameter cc, and covariance
matrix learning rate ccov. Default values as given in [1] and used in this paper
are: d = 1+n/2, ptarget

succ = (5+
√

1/2)−1, cp = ptarget
succ /(2+ptarget

succ ), cc = 2/(n+2),
ccov = 2/(n2 + 6) and pthresh = 0.44. The initial global step sizes σ(0)

i are set
dependent on the problem (e.g., in the case of box constraints, see below, with
xui − xli = xuj − xlj for 1 ≤ i, j ≤ n to 0.6 · (xu1 − xl1)).

Procedure rank-one-update(a = [x, p̄succ, σ,pc,C], z ∈ Rn)
if p̄succ < pthresh then1

pc ← (1− cc) pc +
p
cc(2− cc)z2

C← (1− ccov) C + ccovpcpc
T

3

else4

pc ← (1− cc) pc5

C← (1− ccov) C + ccov

`
pcpc

T + cc (2− cc) C
´

6

When in this study the MO-CMA-ES is applied to a benchmark problem f
with box constraints, we consider a penalized fitness function

fpenalty(x) = f(feasible(x)) + α‖x− feasible(x))‖22 (5)

in the search process, where

feasible(x) = (min(max(x1, x
l
1), xu1 ), . . . ,min(max(xn, xln), xun))T (6)

and xli and xui are the lower and upper bound of the ith component of the search
space. We set ad-hoc α = 10−6.



3 A New Covariance Matrix Update

The recombination of information provided by candidate solutions is a powerful
variation operator that is present in most current single- and multi-objective
evolutionary algorithms. Currently, the MO-CMA-ES as proposed in [1] lacks
this feature. This section introduces a method for recombining neighbouring
individuals to further speed up the strategy parameter adaptation in the MO-
CMA-ES.

3.1 Incorporation of Information from Successful Offspring

The basic idea is that appropriate covariance matrices (i.e., appropriate coor-
dinate systems) are similar for individuals that are in the same region of the
decision space if we presume some notion of continuity of the objective func-
tion (more precisely, we presume that the principle of strong causality [11] is
not too often violated). Thus, combining information about the topology of the
search space gathered by neighbouring individuals is expected to speed up the
learning of the covariance matrix. In the following, we realize this idea in the
MO-CMA-ES.

Consider the set of parent individuals P (g) and the set of newly generated
candidate solutions Q(g) in generation g. Let Q′(g) ⊆ Q(g) be the set of successful
offspring (i.e., Q′(g) ⊆ P (g+1)). The covariance matrix of each individual in Q′(g)

is updated. The standard µMO × (1 + 1)-MO-CMA-ES relies on the “isolated”
rank-one-update with cumulative evolution path that solely exploits the step
from the parent to its offspring.

Let a(g)
i and a′

(g+1)
i be an individual and its offspring, respectively. Let us

assume that a′(g+1)
i is successful and therefore a′(g+1)

i ∈ Q′
(g). The rank-one-

update of the covariance matrix of a′(g+1)
i is given by

C′(g+1)
i = (1− ccov)C(g)

i + ccovp′(g+1)
i

(
p′(g+1)
i

)T

, (7)

where p′(g+1)
i is the updated cumulative evolution path of a′(g+1)

i . Our modifi-
cation of the adaptation method reads:

C′(g+1)
i = (1− ccov)

[(
1−

µMO∑
j=1

w
(g+1)
ij

)
C(g)
i

+
µMO∑
j=1

w
(g+1)
ij

x′(g+1)
j − x(g)

j

σ
(g)
j

(
x′(g+1)
j − x(g)

j

σ
(g)
j

)T

︸ ︷︷ ︸
= Z(g+1)

]
+ ccovp′(g+1)

i p′(g+1)
i

T︸ ︷︷ ︸
rank-one-update

,

(8)

Here w(g+1)
ij is a weighting coefficient assigned to the j-th offspring individual

a′
(g+1)
j . The weight is calculated anew in each generation. It is different for each



individual in the offspring population. If the individual is not selected for the
next parent generation, it is assigned a weight w(g+1)

ij = 0.
The matrix Z(g+1) aggregates information from the selected new candidate

solutions and is of rank min{µMO,succ, n} with probability one, where µMO,succ

denotes the number of successful offspring. Thus, the new adaptation method is
referred to as rank-µMO,succ-update.

In contrast to the combination of the rank-µ- and rank-one-update in the
non-elitist CMA-ES (see [4]), no constant µcov is used to balance the impact of
the two different update rules. The blending of old information C(g) and new
information Z(g+1) is controlled by considering the sum of weighting coefficients.

3.2 Weighting of Neighbouring Individuals

The following assumptions underlie the calculation of the weighting coefficients:

– Non-successful offspring individuals do not represent promising sampling
directions and are assigned a weight of zero.

– Information contributed by individuals that are closer to the individual to
be updated is more important, as the chance for a similar topology of the
search space is higher for individuals nearby.

– Distances between individuals should be measured in terms of the metric
learnt by the individual to be updated.

Now we take the point of view of an offspring individual a′(g+1)
i , i ∈ {1, . . . , µMO},

whose covariance matrix C′(g+1)
i needs to be updated. A weighting coefficient

w
(g+1)
ij for each offspring a′

(g+1)
j , j ∈ {1, . . . , µMO} is determined. The weight

reflects the relevance of a′(g+1)
j for the covariance matrix update of a′(g+1)

i . The

importance of a′(g+1)
j depends on its distance to a′

(g+1)
i . The closer a′(g+1)

j is

situated to a′
(g+1)
i , the higher the weight it is assigned. An individual a′(g+1)

j

is considered near in the search space if a′(g+1)
i can reach a′

(g+1)
j by a small

number of mutative steps. That is, the individual a′(g+1)
j is close to a′

(g+1)
i if

the probability to sample a point close to a′(g+1)
j is high according to the search

distribution

N
(

x′(g+1)
i , σ′

(g+1)
i

2
C′(g+1)

i

)
, (9)

of the individual a′(g+1)
i .

Accordingly, the distance calculation is carried out w.r.t. the shape of the
search distribution and the step-size of a′(g+1)

i using the Mahalanobis distance
based on the covariance matrix of the individual to be updated (9):

dM

“
a′

(g+1)
i , a′

(g+1)
j

”
=

r“
x′

(g+1)
i − x′

(g+1)
j

”T
C′

(g+1)
i

−1
“
x′

(g+1)
i − x′

(g+1)
j

”
σ′

(g+1)
i

(10)



Note that dM

(
a′

(g+1)
i , a′

(g+1)
j

)
is not symmetric as the difference vector x′(g+1)

i −

x′(g+1)
j is transformed into the coordinate system of a′(g+1)

i by multiplying with

the inverse of σ′(g+1)
i

2
C′(g+1)

i .
The (MO-)CMA-ES explores the search space by means of mutative steps.

Therefore, we normalize the distance w.r.t. this “unit of measurement”. The
scaling of the Euclidean norm of an N (0, I)-distributed random vector with the
dimension of the search space needs to be addressed to render the distance cal-
culation independent of the search space dimension n. To this end, the expected
length of an N (0, I)-distributed is approximated by

E (||N (0, I)||2) =
√
n+O(1/n) ≈

√
n . (11)

Thus, the comparison of the distance dM

(
a′

(g+1)
i , a′

(g+1)
j

)
with the expected

length E (||N (0, I)||2) corresponds approximately to a division by
√
n. This can

be viewed as a normalization by the unit of measurement “reachable in one
mutative step”. Now this normalization is extended to dsteps mutative steps. Ba-

sically, the distance dM

(
a′

(g+1)
i , a′

(g+1)
j

)
is compared to the expected length of a

random vector x =
∑dsteps
k=1 xk, where x1, . . . ,xdsteps are independently N (0, I)-

distributed. The variance of x is equal to the sum of variances of the independent
steps xk, k ∈ {1, . . . , dsteps},

x =
dsteps∑
k=1

xk ∼ N (0, dsteps I) ∼
√
dstepsN (0, I) (12)

and therefore the expected length of x distributed according to N (0, dsteps I) is

E
(
||N (0, dsteps I)||2

)
=
√
dsteps E (||N (0, I)||2) ≈

√
dsteps n . (13)

We determine the weights based on this distance measure. A weight w(g+1)
ij is

computed by

w
(g+1)
ij = w′ij

(g+1) min
{

1,
2µMO,eff − 1

(n+ 2)2 + µMO,eff

}
(14)

using the intermediate weights

w′′ij
(g+1) =

{
h
(
dM

(
a′

(g+1)
i , a′

(g+1)
j

)
/
√
dstepsn

)
if a′(g+1)

j ≺Q(g) a
(g+1)
j

0 otherwise
(15)

w′ij
(g+1) =

w′′ij
(g+1)

µMO − µMO,succ +
∑µMO
k=1 w

′′
ik

(g+1)
. (16)

Only successful offspring individuals shall be considered in the update, and there-
fore an intermediate weight of zero is assigned to non-successful offspring. For



the others, the intermediate weight w′′ij
(g+1) is calculated by applying a mono-

tonically decreasing distance weighting function h : R≥0 → R to the distance
dM

(
a′

(g+1)
i , a′

(g+1)
j

)
/
√
dstepsn. Here, h(·) has been chosen as

h : R≥0 → R, x 7→ e−x . (17)

Thus, the neighbourhood of a′(g+1)
i that is considered important for the covari-

ance matrix update depends “smoothly” on the distance measured by dM. Our
goal is to fuse the information encoded in the covariance matrix C′(g+1)

i and in
the matrix Z(g+1), which contains information about successful steps:

Z(g+1) =
µMO∑
j=1

w′ij
(g+1) x′(g+1)

j − x(g)
j

σ
(g)
j

(
x′(g+1)
j − x(g)

j

σ
(g)
j

)T

(18)

The sum of all final weights determines how much emphasis we put on Z(g+1)

in the covariance matrix update (8). The “more information” is contained in
Z(g+1) the larger the sum of the final weights can be. To account for that, we
first normalize the intermediate weights w′′ij

(g+1) by the number of successful
offspring individuals µMO,succ according to Eq. (16).

Consider the case of all offspring individuals being selected for the next gen-
eration. Then the sum

∑µMO
j=1 w′ij

(g+1) evaluates to one. If these weights were

used in Eq. (8), the covariance matrix C′(g+1)
i would be replaced by the newly

estimated covariance matrix Z(g+1). This shows that we have to be careful not
to put too much emphasis on Z(g+1). The matrix Z(g+1) has a rank of at most
µMO,succ, which is likely to be less than n, and therefore just considering Z(g+1)

would lead to a degenerate covariance matrix.
The amount of “information” contained in Z(g+1) clearly depends on the

number of successful offspring µMO,succ. But due to the weighting, one can ob-
serve a “loss of variance” in Z(g+1) we want to account for. To this end, we rely
on the variance effective selection mass

µMO,eff =

(∑µMO
j=1 w′ij

(g+1)
)2

∑µMO
j=1

(
w′ij

(g+1)
)2 (19)

as a measure for the “amount of information” contained in Z(g+1) [6]. The de-
pendence of µMO,eff on i is not indicated to keep the notation uncluttered.

To get an idea of this measure, let us assume that successful steps are dis-
tributed independently according to N (0, I). Then the weighted sum of success-
ful steps is distributed according to

µMO∑
j=1

w′ij
(g+1)N (0, I) , (20)

with variance
∑µMO
j=1

(
w′ij

(g+1)
)2

. As
∑µMO
j=1

(
w′ij

(g+1)
)2

≤
(∑µMO

j=1 w′ij
(g+1)

)2

we in general loose variance due to the weighting, and this is captured by µMO,eff.



The value of µMO,eff is always greater than one and less than or equal to µMO,succ.
It is equal to µMO for w′i1 = · · · = w′iµMO

= 1/µMO and goes to one if all but one
weights go to zero.

Finally, the relation between the information contributed by all selected steps
and the information required to prevent from a degenerated covariance matrix is
evaluated. A covariance matrix is a symmetric matrix with n(n+1)/2 degrees of
freedom. With µMO,eff providing a measure of information within the offspring
population, the term

µMO,eff

n(n+ 1)/2
=

2µMO,eff

n(n+ 1)
, (21)

gives an estimate of the relation between “contributed” and “required” knowl-
edge. For constant n and µMO,eff large enough, the term evaluates to a value
greater than one, thus indicating that a re-estimate of the covariance matrix
based on the offspring population is possible without degenerating. If the value
is less than one, the newly generated offspring do not exhibit enough informa-
tion. In [4] a slightly different expression based on the same idea has been found
and validated empirically. It reads

2µMO,eff − 1
(n+ 2)2 + µMO,eff

. (22)

The calculation of the weights is now completed by incorporating this “estimate
of information”. It is given by:

w
(g+1)
ij = w′ij

(g+1) min
{

1,
2µMO,eff − 1

(n+ 2)2 + µMO,eff

}
. (23)

The weight w′ij
(g+1) is rescaled if the information contained within the successful

offspring is not sufficient to prevent the covariance matrix from degenerating.3

If none of the offspring individuals is successful, all weights are equal to
zero and no rank-µMO,succ-update of the covariance matrix is carried out. If all
individuals of the offspring population are successful and enough information
is provided by the selected steps, the old covariance matrix is discarded and
re-estimated from scratch. The standard rank-one-update is always applied, see
Eq. (8).

Now we have all ingredients for the modified MO-CMA-ES with “recom-
bination” (in the sense that information from several offspring are combined)
for learning strategy parameters. It is referred to as (µMO+µMO)-MO-CMA-ES.
Only a small modification of the original µMO×(1+1)-MO-CMA-ES (see Algo-
rithm 1) is necessary. Before the rank-one-update is carried out (Algorithm 1,
line 9), the covariance matrices of the individuals are updated according to the
Procedure rank-µMO,succ-update.

3 The expression min
n

1,
2µMO,eff−1

(n+2)2+µMO,eff

o
evaluates to one only if µMO,eff, which is

bounded from above by µMO, is larger than n2 + 4n+ 5.



Procedure rank-µMO,succ-update(a = [x, psucc, σ,pc,C], Q(g))

µMO,succ ← 01

for k ← 1, . . . , µMO do2

dk ←

˛̨̨̨˛̨̨̨h
x′

(g+1)
k − x

iT
C−1

h
x′

(g+1)
k − x

i˛̨̨̨˛̨̨̨
2

σ3

wi ← I
“
a′

(g+1)
k ≺Q(g) a

(g)
k

”
h

 
dkp
ndsteps

!
4

µMO,succ ← µMO,succ + I
“
a′

(g+1)
k ≺Q(g) a

(g)
k

”
5

µMO,eff ←
`PµMO

i=1 wi
´2PµMO

i wi26

for k ← 1, . . . , µMO do7

wk ←
wk

µMO − µMO,succ +
PµMO
i=1 wi

min


1,

2µMO,eff − 1

(n+ 2)2 + µMO,eff

ff
8

C←

 
1−

µMOX
i=1

wi

!
C +

µMOX
k=1

wk
x′

(g+1)
k − x

(g)
k

σ

 
x′

(g+1)
k − x

(g)
k

σ

!T

9

Choosing the right neighbourhood size by setting the parameter dsteps is cru-
cial for the performance of the (µMO+µMO)-MO-CMA-ES. A value that works
reliably across different fitness functions is desired, but there is no obvious heuris-
tic for the selection of dsteps. For this reason, an empirical investigation of the
performance of the (µMO+µMO)-MO-CMA-ES with different values for dsteps has
been conducted in the context of this study. The bi-criteria benchmark function
ELLI1, CIGTAB1, ELLI2, CIGTAB2 [1] and different search space dimensions
n have been considered. Based on the results we derived the preliminary rule
dsteps = n+ 3.

4 Empirical Evaluation

This section presents a performance evaluation of the new (µMO+µMO)-MO-
CMA-ES on a set of common multi-objective benchmark functions. Our goal
is to answer the question whether the “recombination” of strategy parameters
improves the performance of the MO-CMA-ES on a broad range of bi-objective
fitness functions. Therefore we compare the (µMO+µMO)-MO-CMA-ES to the
results of the original µMO×(1+1)-MO-CMA-ES. For comparisons of this base-
line algorithm with alternative multi-objective optimization methods we refer to
previous studies [1,2,3]. The experiments have been conducted using the Shark
machine learning library [12].



4.1 Experimental Setup

We compare the (µMO+µMO)- and the original µMO×(1+1)-MO-CMA-ES pre-
sented in [1] on three classes of two-objective benchmark functions. Both algo-
rithms rely on the hypervolume-indicator as second-level sorting criterion. The
constrained benchmark functions ZDT1, ZDT2, ZDT3 and ZDT6 (see [13]) and
their rotated variants IHR1, IHR2, IHR3 and IHR6 (see [1]) have been chosen
for the performance evaluation. Moreover, the set of test problems has been aug-
mented by the unconstrained and rotated functions ELLI1, ELLI2, CIGTAB1
and CIGTAB2 (see [1]), with the distance of the optima of the single objectives
set to the default value two. The default search space dimension for constrained
and non-rotated benchmark functions has been chosen to be 30. In case of ro-
tated benchmark functions, the search space dimensions has been chosen to be
10.

The value of the parameter dsteps of the (µMO+µMO)-MO-CMA-ES has been
set to the empirically validated choice of n + 3. The number of parent and
offspring individuals has been set µMO = 100. We conducted 50 independent
trials and evaluated the algorithms after 250 and 500 generations.

The evaluation procedure adheres to the suggestions given in [14]. We briefly
outline the process and refer to [9,15] for a detailed description of the meth-
ods. We consider the unary hypervolume-indicator and the unary additive ε+-
indicator as performance measures. Before indicator values are computed, the
data are normalized. We want to compare k = 2 algorithms on a particular
optimization problem f after g fitness evaluations and we assume that we have
conducted t trials. We consider the non-dominated individuals of the union of all
k · t populations after g evaluations. These individuals make up the reference set
R. Their objective vectors are normalized by an affine linear transformation such
that for every objective the smallest and largest objective function values are
mapped to 1 and 2, respectively. The value for the unary hypervolume-indicator
is compared to the hypervolume of the reference set R, which is also used to
compute the ε+-indicator value. Therefore lower indicator values indicate better
performance.

We used different reference sets for the evaluation after 250 and 500 genera-
tions. Therefore, the absolute values of the results of these two lines of experi-
ments can not be compared.

4.2 Results

The results of the performance evaluation after 25,000 and 50,000 evaluations
are presented in Tables 1 and 2. Although only small differences between the two
algorithms can be observed, the (µMO+µMO)-MO-CMA-ES performed statisti-
cally significantly better than the µMO×(1+1)-MO-CMA-ES in all our experi-
ments. This shows that the strategy parameter adaptation of the MO-CMA-ES
is clearly improved by considering the information contributed by selected off-
spring individuals. The results suggest that the choice of the parameter dsteps

linearly dependent on the search space dimension n indeed results in a robust



behaviour of the (µMO+µMO)-MO-CMA-ES across different classes and types of
benchmark problems.

Table 1: Results of the performance comparison of the (µMO+µMO)-MO-CMA-ES and
the original µMO×(1+1)-MO-CMA-ES, respectively. The table shows the median of
50 trials after 250 and 500 generations, respectively, of the hypervolume-indicator (the
lower the better). The better value in each row is printed in bold. The superscripts
indicate whether the (µMO+µMO)-MO-CMA-ESn+3 performs significantly better than
the µMO×(1+1)-MO-CMA-ES, respectively (two-sided Wilcoxon rank sum test, **
indicates a significance level of 0.001 and * a significance level of 0.01). It is important
to note that different reference sets were used for computing the values after 250 and
500 generations, respectively, and that therefore the absolute values after 250 and 500
generations can not be compared directly.

(µMO+µMO)-MO-CMA-ESn+3 µMO×(1+1)-MO-CMA-ES

250 Generations

ZDT1 0.000564∗∗ 0.000592
ZDT2 0.000304∗∗ 0.000462
ZDT3 0.000279∗∗ 0.000621
ZDT6 0.000006∗ 0.000017
IHR1 0.000242∗ 0.000443
IHR2 0.000783∗∗ 0.000922
IHR3 0.000047∗∗ 0.000066
IHR6 0.000009∗∗ 0.000045
ELLI1 0.017792∗ 0.018896
ELLI2 0.007773∗ 0.008844
CIGTAB1 0.006947∗∗ 0.007956
CIGTAB2 0.000549∗∗ 0.000599

500 Generations

ZDT1 0.000134∗∗ 0.000201
ZDT2 0.000314∗ 0.000429
ZDT3 0.000025∗∗ 0.000172
ZDT6 0.000379∗ 0.000421
IHR1 0.000006∗∗ 0.000023
IHR2 0.005776∗ 0.005111
IHR3 0.000067∗∗ 0.000193
IHR6 0.000572∗∗ 0.000977
ELLI1 0.000791∗ 0.000844
ELLI2 0.004592∗∗ 0.006392
CIGTAB1 0.000253∗∗ 0.000542
CIGTAB2 0.003194∗ 0.003978



Table 2: Results of the performance comparison of the (µMO+µMO)-MO-CMA-ES and
the original µMO×(1+1)-MO-CMA-ES. The table shows the median of 50 trials after
250 and 500 generations of the ε+-indicator (the lower the better). The superscripts
indicate whether the (µMO+µMO)-MO-CMA-ESn+3 performs significantly better than
the µMO×(1+1)-MO-CMA-ES, respectively (two-sided Wilcoxon rank sum test, ** in-
dicates a significance level of 0.001 and * a significance level of 0.01). Different reference
sets were used for computing the values after 250 and 500 generations, respectively,
and therefore the absolute values after 250 and 500 generations can not be compared
directly.

(µMO+µMO)-MO-CMA-ESn+3 µMO×(1+1)-MO-CMA-ES

250 Generations

ZDT1 0.013756∗∗ 0.015349
ZDT2 0.222876∗ 0.400001
ZDT3 0.076653∗ 0.199655
ZDT6 0.000112∗∗ 0.000231
IHR1 0.004432∗∗ 0.005654
IHR2 0.002005∗∗ 0.010001
IHR3 0.000003∗ 0.000339
IHR6 0.002134∗∗ 0.002667
ELLI1 0.027492∗ 0.039816
ELLI2 0.000573∗∗ 0.000742
CIGTAB1 0.001947∗∗ 0.004753
CIGTAB2 0.002239∗∗ 0.003333

500 Generations

ZDT1 0.013756∗∗ 0.015349
ZDT2 0.222876∗ 0.400001
ZDT3 0.076653∗ 0.199655
ZDT6 0.000112∗∗ 0.000231
IHR1 0.004432∗∗ 0.005654
IHR2 0.002005∗∗ 0.010001
IHR3 0.000003∗ 0.000339
IHR6 0.002134∗∗ 0.002667
ELLI1 0.027492∗ 0.039816
ELLI2 0.000573∗∗ 0.000742
CIGTAB1 0.001947∗ 0.004753
CIGTAB2 0.002239∗ 0.003333



5 Conclusions and Future Work

We presented a new, more elaborate covariance matrix update scheme for the
multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES).
The difference from the original update method is that each individual addi-
tionally considers successful mutations of neighboring individuals. Such a lateral
information transfer was not considered in the MO-CMA-ES so far, and it allows
for faster adaptation of the covariance matrix. Our preliminary empirical eval-
uation on common bi-criteria benchmark functions shows that the new update
scheme significantly improves the performance in all cases.

There is the need for further investigation and room for improvements of the
proposed algorithm. For example, the choice of the parameter dsteps should be
studied in more detail and different choices for the distance weighting function
h(·), see Eq. (17), could be considered. The empirical evaluation should include
additional benchmark functions, for instance, with a larger number of objec-
tives. In particular, we are searching for functions where the covariance matrix
update scheme presented here is outperformed by the original rank-one-update
procedure.

The evaluation of the algorithms after a fixed number of evaluations – al-
though standard in the empirical analysis of evolutionary multi-objective algo-
rithms – may be misleading. In future work we will study the evolution of the
absolute hypervolume over the whole optimization process.
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