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A reminder of Cauchy integrals

Let Γ ⊂ C be a smooth oriented Jordan curve. Put D+ and
D− for the interior and exterior domains cut out by Γ in C.
For a complex valued f in L1(Γ), form the Cauchy integral:

Cf (z) = 1
2iπ

∫
Γ

f (ξ)
ξ − z dξ, z /∈ Γ.

Cf defines a holomorphic function on D+ and D−.
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Plemelj-Sokhotski formulas

Cf has nontangential limits almost everywhere from each side
of Γ, denoted by C±f .
The Plemelj-Sokhotski formulas tell us that

C±f (ξ) = ± f (ξ)
2 + lim

ε→0

1
2iπ

∫
Γ\B(ξ,ε)

f (ζ)
ζ − ξ

dζ, a.e.ξ ∈ Γ,

where B(ξ, ε) is the ball centered at ξ of radius ε.
In particular, we have that

f (ξ) = C+ − C−.
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Hardy-Smirnov spaces

The Hardy-Smirnov space Hp(D+), 1 ≤ p <∞, consists of
holomorphic functions in D+ whose Lp-means over level
curves of the Green potential remain bounded.
In other words, if ϕ : D→ D+ is a conformal map from the
unit disk and if we set Γr = ϕ(|z | = r), then f ∈ Hp(D+) iff

‖f ‖Hp(D+) := sup
0≤r<1

(∫
Γr
|f (ξ)|p |dξ|

)1/p
<∞. (1)

A similar definition holds for Hp(D−), with extra-requirement
that f (∞) = 0.
It can be shown that condition (1) is equivalent to saying that
the nontangential maximal function of |f |p lies in Lp(Γ)
[Kenig,1980].
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Hardy-Smirnov spaces cont’d

Functions in Hp(D±) have nontangential limits a.e. in Lp(Γ)
whose norm yields an equivalent norm on Hp(D±).
Moreover, if f ∈ Hp(D±), it can be recovered from its
boundary values by the Cauchy formula:

Cf (z) = ± 1
2iπ

∫
Γ

f (ξ)
ξ − z dξ, z ∈ D±.

Also, the Cauchy theorem holds:

0 = 1
2iπ

∫
Γ

f (ξ)
ξ − z dξ, f ∈ Hp(D±), z ∈ D∓.
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Hardy decomposition

In the other direction, if f ∈ Lp(Γ) with 1 < p <∞, then Cf (z)
defines a member of Hp(D±) for z ∈ D±.

Hence the relation f (ξ) = C+ − C− yields:

Theorem
For Γ a smooth Jordan curve and 1 < p <∞ there holds a
topological sum:

Lp(Γ) = Hp(D+)⊕ Hp(D−).
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Remarks

The exact degree of smoothness required on Γ is that its unit
normal lies in VMO [Maz’ya-Mitrea-Shaposhnikova, 2008].
On Lipschitz curves, the result still holds when the range of p
is restricted to p > 2− ε where ε depends on the Lipschitz
constant of Γ [Verchota, 1984].
When Γ is smooth, substitutes to L1(Γ) and L∞(Γ) can be
taken to be H1(Γ) and BMO(Γ).
By the Cauchy-Riemann equations, a holomorphic function is
of the form ∂xU − i∂yU where U is real harmonic. Therefore
it may be viewed as (the conjugate of) a harmonic gradient:

Corollary
A R2-valued vector field of Lp-class on Γ is uniquely the sum of the
trace of the gradient of a harmonic function in D+ and the trace
of the gradient of a harmonic function in D−, where both
gradients have nontangential maximal function in Lp.
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Characterization of silent distributions in divergence form

Consider a 2-D potential in divergence form supported on Γ:

Pdiv V (X ) = − 1
2π

∫
Γ
(divV )(X ′) log 1

|X − X ′| d |X
′|, X /∈ supp V,

with V = m ⊗ δΓ and m = (m1,m2)t a vector field in Lp(Γ).
Integrating by parts identifying vectors with complex numbers:

Pdiv V (X ) = − 1
2π

∫
Γ

(m1 + im2)(X ′)/v(X ′)
X ′ − X dX ′,

where v is the unit tangent to Γ. By what precedes:

Corollary
divm has null potential in D− if, and only if
(m1 + im2)/v ∈ Hp(D+).
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Higher dimensional generalization

The purpose of the talk is to carry over what precedes to
higher dimension.
By higher dimension we mean higher real dimension, where
analytic functions are replaced by gradient of harmonic
functions (Stein-Weiss formalism).
For simplicity we deal only with the case n = 3.
The generalization of the previous Hardy decomposition stems
from Hodge theory for currents supported on a surface in the
ambient space, but it is conveniently framed in terms of
Clifford analysis that we use here as a tool.
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Some motivation

For n ≥ 3, we consider harmonic potentials in divergence form:

PdivV (x) =
∫ x − y
|x − y |n−2 divV (y)

for some vector distribution V = (v1, v2, · · · , vn)t on Rn.
They solve ∆u = divV on Rn with “minimal growth” at
infinity.
They occur frequently when modeling electro-magnetic
phenomena in the quasi-static approximation to Maxwell’s
equations.
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Examples

EEG:
Brain assumed non magnetic medium,
with constant electric conductivity σ.
Then the electric potential is

u = Pdiv Jp/σ

with Jp the so-called primary current.
Magnetization

If M is a magnetization, (density of magnetic moment), in the
absence of sources,
then the scalar magneic potential is

u = Pdiv M.
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Inverse problems

The inverse potential problem in divergence form is to recover
V from the knowledge of Pdiv V away from the support of V .
For instance the basic inverse problem in
Electro-EncephaloGraphy is to recover the primary current Jp

(which shows the electrical activity in the brain) from
measurements of the electric field E = −∇u on the scalp.
Likewise, the inverse magnetization problem is to recover the
magnetization M on a given object, from measurements of
the field H = −∇φ near the object.
Today, inverse magnetization problems are a hot topic in
Earth and Planetary Sciences.
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Uniqueness issues

A basic question is:
what are the densities V producing the zero field in a given
component of Rn \ SuppV ?
Equivalently: when is it that Φdiv(V )(X ) = cst in a
component (zero if the component is unbounded)?
In this case V is called silent from that component.
Let us look at the elementary case where V is supported on
the horizontal plane with Lp density there, 1 < p <∞.
This geometry is in fact realistic in scanning microscopy of
rocks which are typically sanded down to thin slabs.
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The thin plate case

Thin-plate : V = M(x1, x2)⊗ δ0(x3) is supported on {x3 = 0},

M(x1, x2) = (m1(x1, x2),m2(x1, x2),m3(x1, x2))t .

At any X =
( x1

x2
x3

)
, x3 6= 0, the potential Pdiv V is obtained by

letting M act on X ′ 7→ (X − X ′)/|X − X ′|3, X ′ =
( x ′1

x ′2
0

)
:

Pdiv V = 1
4π

∫
Rn

(m1(X ′)(x1 − x ′1) + m2(X ′)(x2 − x ′2)
|X − X ′|3

+m3(X ′)x3
|X − X ′|3 dx

′
1dx ′2

)
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The thin-plate case cont’d

Thus PdivM(X ) = A1(X ) + A2(X ) + A3(X ) where:

A3(X ) = 1
4π

∫
Rn

m3(X ′)x3
|X − X ′|3 dx

′
1dx ′2.

is sgn x3 times half the harmonic (Poisson) extension of m3:
A3(X ) = sgn x3PX (m3)/2,
and Aj(X ) = PX (Rjmj)/2 for j = 1, 2, where

Rj(f )(Y ) := lim
ε→0

1
2π

∫∫
R2\B(Y ,ε)

f (X ′)
(yj − x ′j )
|Y − X ′|3 dX ′, j = 1, 2,

are the Riesz transforms.
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Silent planar distributions in divergence form

Assume x3 > 0. We just saw that

PdivM(X ) = A1(X )+A2(X )+A3(X ) = 1
2PX (R1m1+R2m2+m3).

Since the Poisson extension of a function is zero iff the
function is zero, M is silent from above iff

R1m1 + R2m2 + m3 = 0.

Likewise M is silent from below iff

R1m1 + R2m2 −m3 = 0.

M is silent (from both sides) iff R1m1 + R2m2 = 0 and
m3 = 0.
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Question

What do these quantities mean?

To approach it, we introduce some classical function spaces.
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Hardy space of harmonic gradients

Let Hp
+ consist of ∇u, u harmonic in {x3 > 0}, such that

sup
x3>0

∫
R2
|∇u(X ′, x3)|pdX ′ <∞.

∇u has a nontangential limit on R2 of the form (R1f ,R2f , f )t ,
f ∈ Lp(R2), and is the Poisson extension thereof.
In other words the Rj are the maps sending the normal
derivative to the tangential derivatives on the boundary of the
solution to Neumann’s problem in the half space.
Hp
− is defined similarly on {x3 < 0}, with traces

(−R1f ,−R2f , f )t . Functions in Hp
± have Lp nontangential

maximal function (Stein-Weiss).
We put Dp for divergence-free vector fields in Lp(R2,R2).
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The Hardy-Hodge decomposition on R2

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)
For 1 < p <∞ one has the direct sum:

(Lp(R2))3 = Hp
+ ⊕ Hp

− ⊕ (Dp × {0}).

The decomposition is orthogonal if p = 2.

Thus, every 3-D vector field of Lp-class on R2 is uniquely the
sum of (the trace of) a harmonic gradient above, a harmonic
gradient below, and a tangent divergence-free vector field.
Analog to the decomposition of a complex function on R as
the sum of two Hardy functions. Divergence-free term is
necessary for not every field is a gradient on R2.
Projecting on R2 we get the standard Hodge decomposition(

Lp(R2)
)2

= Gp ⊕Dp,

where Gp is the space of distributional gradients in Lp(R2,R2).
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Proof

Set M = (m1,m2,m3), d := R2m1 − R1m2, and

f + := −R1(m1)− R2(m2) + m3
2 , f − := R1(m1)R2(m2) + m3

2 .

Then

M = (R1f +,R2f +, f +)+(−R1f −−R2f −, f −)+(−R2d ,R1d , 0).

Easily checked using R2
1 + R2

2 = −Id.
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Silent planar distributions revisited

By what precedes M is silent from above iff it is the sum of a
harmonic gradient from above and a tangent divergence-free
vector field.
Likewise M is silent from below iff it is the sum of a harmonic
gradient from below and a tangent divergence-free vector field.
M is silent iff it is tangent and divergence-free.
Transparent if we observe the orthogonality:

Hp
+ ⊥ Hq

− and Dp × {0} ⊥ Hq
±, 1/p + 1/q = 1.
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Easy extensions

The result carries over to Rn for n ≥ 3, with obvious
adjustement of the definitions.
It extends to any class of functions or of distributions invariant
under Riesz transforms, e.g. h1, BMO, W−∞,p (i.e. finite
sums of derivatives of any order of Lp-functions, 1 < p <∞).
The latter contains all distributions with compact support.
If M ∈ (L2(Rn))3 then PH2

−
M yields the magnetization of

least (L2(Rn))3-norm which is equivalent to M from above.
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A natural question

Is there a Hardy-Hodge decomposition on more general manifolds?

We consider a compact connected simply connected
hypersurfaceM embedded in Rn, locally a Lipschitz graph.
Define Sobolev spaces W 1,p(M) as usual,M inherits from
Rn a uniform Riemaniann structure 〈., .〉M, therefore one can
define tangential gradient vector fields Gp, where Lp is
understood with respect to the volume form σ.
One can then define Dp = (Gq)⊥ for the pairing

(G ,D) :=
∫
M
〈G ,D〉Mdσ, 1/p + 1/q = 1.

IfM is smooth, this coincides with the usual notion of
divergence free tangent vector field.
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More Hardy spaces of harmonic gradients

We let Ω± for the inner and outer components of Rn \M.
For 1 < p <∞, we set Hp

± to be the space of harmonic
gradients in Ω± whose nontangential maximal function lies in
Lp(M).
For p > p0(M) = 2− ε(M), elements of Hp

± have
nontangential limits onM from the corresponding
component, whose Lp norm is equivalent to the Lp norm of
the maximal function [Dahlberg,1977].
WhenM is smooth we may pick p0 = 1.
Note the above nontangential limits are not tangent toM.
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Hardy-Hodge decomposition

Theorem
LetM be a compact simply connected Lipschitz hypersurface in
Rn and p0(M) < p <∞. Then, there is a direct sum

(Lp(M))n = Hp
+ ⊕H

p
− ⊕Dp(M).

WhenM is smooth, the result holds for 1 < p <∞.

The result extends with obvious modifications to the case
whereM is not connected, and also to Lipschitz graphs.
WhenM is smooth the decomposition holds in more general
spaces of functions or distributional currents.
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Sketch of proof

Let V ∈ Lp(M)n. Write V = Vn + Vt according to the
normal and tangential components.
By Hodge decomposition, Vt = G + D where D ∈ Dp and
G ∈ Gp. IfM is smooth, the Hodge decomposition is a
byproduct of Lp Hodge theory on complete manifolds [X-D
Li,2009]. In the Lipschitz case, it can be proved by solving an
extremal problem.
We save D which is the last summand in the decomposition.
G is the tangential gradient of some function ψ ∈W 1,p(M).
Let u be harmonic in Ω+ and solve the Dirichlet problem
u|M = ψ. Then ∇u ∈ Hp

+ [Verchota,1984] and the tangential
component of its nontangential limit onM is G .
Thus, we are left to decompose V − D −∇u which is a
normal vector field onM. For this we need preliminaries in
Clifford analysis. We restrict to n = 3 for simplicity.
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Some Clifford analysis

C is the skew unital algebra generated over R by {e1, e2, e3}
with:

e2
j = −1, eiej = −ejei .

A typical element of C is of the form

z = x0+x1e1+x2e2+x3e3+x1,2e1e2+x2,3e2e3+x1,3e1e3+x123e1e2e3

where the xi , the xk,` and x123 are real numbers.
x0 is the scalar part of z , denoted by Sc z ;
x1e1 + x2e2 + x3e3, is the vector part of z denoted as vec z ;
Clifford vectors get identified with Euclidean vectors in R3.

The conjugate of z is

z̄ = x0−x1e1−x2e2−x3e3+x1,2e1e2+x2,3e2e3+x3,1e3e1−x123e1e2e3.

The norm of z is |z | = (
∑

0≤k≤3 x2
k +

∑
i<j x2

i ,j + x2
123)1/2.
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Monogenic functions

We define the Dirac operator by

D = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
.

A C-valued fonction f is left (resp.right) monogenic on its
open domain of definition if Df = 0 (resp. fD = 0). It is
monogenic iff it is left and right monogenic.

Lemma
A vector-valued function is left monogenic if and only if it is
monogenic, if and only if it is the gradient of a harmonic function.
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Cauchy-Clifford formula

If f is left monogenic in Ω+ and its nontangential maximal
function lies in Lp(M), then f has a nontangential limit
f + ∈ Lp(M) a.e. onM (Verchota), and by the Green
formula (see e.g. “Clifford Algebras and Dirac Operators in
Analysis” by Gilbert and Murray):

f (z) = Cf +(z) := 1
4π

∫
M

y − z
|y − z |3 n(y)f +(y)dσ(y), z ∈ Ω+.

Here n(y) is the exterior unit normal toM.
If z ∈ Ω−, then the above right hand side is zero.
A similar result holds if f is left monogenic in Ω−; the
nontangential limit onM from Ω− is denoted by
f − ∈ Lp(M).
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Plemelj-Clifford formulas

For a C-valued h ∈ Lp(M), Ch is left monogenic on R3 \M
and its nontangential maximal function lies in Lp(M)
[Coifman-McIntosh-Meyer, 1982].
Moreover Ch has non-tangential limits C±h a.e. onM from
Ω±with

C±h(y) = ±h(y)
2 + SCh(y), y ∈M,

where SCh is the singular Cauchy integral operator:

SCh(y) = 1
4π lim

ε→0

∫
M\B(y ,ε)

ξ − y
|ξ − y |3 n(ξ)h(ξ)dσ(ξ), y ∈M.

This gives us an analog of the Plemelj formula:

C+h(y)− C−h(y) = h(y).
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and its nontangential maximal function lies in Lp(M)
[Coifman-McIntosh-Meyer, 1982].
Moreover Ch has non-tangential limits C±h a.e. onM from
Ω±with

C±h(y) = ±h(y)
2 + SCh(y), y ∈M,

where SCh is the singular Cauchy integral operator:

SCh(y) = 1
4π lim
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M\B(y ,ε)

ξ − y
|ξ − y |3 n(ξ)h(ξ)dσ(ξ), y ∈M.
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Proof cont’d

Let h be a Lp normal vectorfield onM, regarded as C-valued
Write h = C+h − C−h by Plemelj formula. Since h is normal,
C±h ∈ Hp

±. Indeed, if h(y) is normal toM at y , the
C-product n(y)h(y) is scalar-valued, so the integrand in the
definition of Ch is vector valued. Hence Ch is vector-valued
and otherwise monogenic, therefore it is a harmonic gradient.
This proves existence of the decomposition.
Uniqueness follows from uniqueness of the Hodge
decomposition and the Liouville theorem for harmonic
functions.
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Silent Lp-distributions on a surface

Assume V = m ⊗ δM where m = (m1,m2,m3)t is a vector
field in Lp(M).
Write m = ψn + mt where n is the normal and mt the
tangential component. Let R be the rotation by −π/2 in the
tangent plane and R(mt) = D + G the Hodge decomposition.

Theorem
The distribution is silent from outside if and only if

2πψ(y) = − lim
ε→0

∫
M\B(y ,ε)

ξ − y
|ξ − y |3 .(ψn+R(D))(ξ)dσ(ξ) y ∈M.

This is a more complicated singular integral equation involving the
curvature.
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Special cases

On a sphere, rotation by π/2 of a gradient vector field is
divergence free. Then one can show:

Corollary
LetM be a sphere in R3 and m ∈ (Lp(M)3 with 1 < p <∞.
Then m is silent from outside (resp. inside) if and only if

m ∈ Hp
− ⊕Dp(M) (resp. Hp

+ ⊕Dp(M)).

If suppm is a strict subset ofM, things get simple:

Corollary
If suppm 6=M, then m is silent from outside iff it is silent from
inside, which is iff

m ∈ Dp(M).
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An application to moment estimation

Theorem
Let m ∈ (L2(M)3 with suppm ⊂ Γ0 6=M, and assume we know
the field B = ∇Pdiv m on a surface patch Σ disjoint fromM.
Then, to each ε > 0 and ψ ∈ L2(M), there is φ ∈ (L2(Σ))3

depending on suppm but not on m such that

|〈B, φ〉Σ − 〈m,∇ψ〉M| ≤ ε‖m‖L2 .

The proof uses that ∇ψ ∈ (KerA)⊥, where A maps
m ∈ (L2(Γ0))3 to B|Σ ⊂ (L2(Σ))3.
φ can be chosen in (W 1,2

0 (Σ))3, and computed via
−ρ∇φ+ AA∗φ = A∇ψ, ρ > 0.

Can be used to estimate moments or spherical harmonics
expansions.
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Application to “rational” approximation

In C, rational approximation amounts to approximation by
(conjugates of) gradients of discrete logarithmic potentials
with finitely many masses.
In Rn, let rational approximation mean approximation by
gradients of discrete harmonic potentials with finitely many
masses. The Hardy-Hodge decomposition implies:

Theorem
Let S be a Lipschitz regular surface patch on a compact connected
smooth hypersurfaceM⊂ Rn. Let v be Rn-valued in Lp(S),
1 < p <∞. Then, v can be approximated arbitrarily close by
rationals in Lp(S) iff the tangential component of v is a gradient.
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More “rational” approximation

By [V.P. Havin-S. Smirnov, 1999], a measure with compact
support containing no simple rectifiable arc of positive length
cannot have a distributional divergence which is again a
measure. The same holds on a smooth manifold.
A fortiori then, a compact set containing no such arc is a
grad-set for Lp (any field is approximable y a gradient).
The Hardy-Hodge decomposition now implies:

Theorem
Let K be a closed set in a compact connected smooth hypersurface
M⊂ Rn, and assume that K contains no simple rectifiable arc of
positive length. Then, each Rn-valued v in Lp(K ) can be
approximated arbitrary close by rationals in Lp(K ), 1 < p <∞.
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