Inverse potential problems in divergence form: some uniqueness, separation and recovery issues

L. Baratchart (INRIA)

Quasilinear equations, inverse problems and their applications, Dolgoprundy september 11-15, 2016 based in part on joint work with: S. Chevillard, J. Leblond (INRIA), D. Pei, Q. Tao (Macau).

Let Γ ⊂ C be a smooth oriented Jordan curve. Put D⁺ and D⁻ for the interior and exterior domains cut out by Γ in C.

- Let Γ ⊂ C be a smooth oriented Jordan curve. Put D⁺ and D⁻ for the interior and exterior domains cut out by Γ in C.
 For a complementation of the L1(Γ) form the Coupler integral.
- For a complex valued f in $L^1(\Gamma)$, form the Cauchy integral:

$$\mathcal{C}f(z) = \frac{1}{2i\pi} \int_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi, \qquad z \notin \Gamma.$$

Let Γ ⊂ C be a smooth oriented Jordan curve. Put D⁺ and D⁻ for the interior and exterior domains cut out by Γ in C.
For a complex valued f in L¹(Γ), form the Cauchy integral:

$$\mathcal{C}f(z) = \frac{1}{2i\pi} \int_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi, \qquad z \notin \Gamma.$$

• Cf defines a holomorphic function on D^+ and D^- .

 Cf has nontangential limits almost everywhere from each side of Γ, denoted by C[±]f.

- Cf has nontangential limits almost everywhere from each side of Γ, denoted by C[±]f.
- The Plemelj-Sokhotski formulas tell us that

$$\mathcal{C}^{\pm}f(\xi) = \pm \frac{f(\xi)}{2} + \lim_{\varepsilon \to 0} \frac{1}{2i\pi} \int_{\Gamma \setminus B(\xi,\varepsilon)} \frac{f(\zeta)}{\zeta - \xi} d\zeta, \qquad a.e.\xi \in \Gamma,$$

where $B(\xi,\varepsilon)$ is the ball centered at ξ of radius ε .

- Cf has nontangential limits almost everywhere from each side of Γ, denoted by C[±]f.
- The Plemelj-Sokhotski formulas tell us that

$$\mathcal{C}^{\pm}f(\xi) = \pm \frac{f(\xi)}{2} + \lim_{\varepsilon \to 0} \frac{1}{2i\pi} \int_{\Gamma \setminus B(\xi,\varepsilon)} \frac{f(\zeta)}{\zeta - \xi} d\zeta, \qquad a.e.\xi \in \Gamma,$$

where $B(\xi,\varepsilon)$ is the ball centered at ξ of radius ε .

In particular, we have that

$$f(\xi) = \mathcal{C}^+ - \mathcal{C}^-.$$

 The Hardy-Smirnov space H^p(D⁺), 1 ≤ p < ∞, consists of holomorphic functions in D⁺ whose L^p-means over level curves of the Green potential remain bounded.

- The Hardy-Smirnov space H^p(D⁺), 1 ≤ p < ∞, consists of holomorphic functions in D⁺ whose L^p-means over level curves of the Green potential remain bounded.
- In other words, if $\varphi : \mathbb{D} \to D^+$ is a conformal map from the unit disk and if we set $\Gamma_r = \varphi(|z| = r)$, then $f \in H^p(D^+)$ iff

$$\|f\|_{H^{p}(D^{+})} := \sup_{0 \le r < 1} \left(\int_{\Gamma_{r}} |f(\xi)|^{p} |d\xi| \right)^{1/p} < \infty.$$
 (1)

- The Hardy-Smirnov space H^p(D⁺), 1 ≤ p < ∞, consists of holomorphic functions in D⁺ whose L^p-means over level curves of the Green potential remain bounded.
- In other words, if $\varphi : \mathbb{D} \to D^+$ is a conformal map from the unit disk and if we set $\Gamma_r = \varphi(|z| = r)$, then $f \in H^p(D^+)$ iff

$$\|f\|_{H^{p}(D^{+})} := \sup_{0 \le r < 1} \left(\int_{\Gamma_{r}} |f(\xi)|^{p} |d\xi| \right)^{1/p} < \infty.$$
 (1)

A similar definition holds for H^p(D[−]), with extra-requirement that f(∞) = 0.

- The Hardy-Smirnov space H^p(D⁺), 1 ≤ p < ∞, consists of holomorphic functions in D⁺ whose L^p-means over level curves of the Green potential remain bounded.
- In other words, if $\varphi : \mathbb{D} \to D^+$ is a conformal map from the unit disk and if we set $\Gamma_r = \varphi(|z| = r)$, then $f \in H^p(D^+)$ iff

$$\|f\|_{H^{p}(D^{+})} := \sup_{0 \le r < 1} \left(\int_{\Gamma_{r}} |f(\xi)|^{p} |d\xi| \right)^{1/p} < \infty.$$
 (1)

- A similar definition holds for $H^p(D^-)$, with extra-requirement that $f(\infty) = 0$.
- It can be shown that condition (1) is equivalent to saying that the nontangential maximal function of |f|^p lies in L^p(Γ) [Kenig,1980].

- The Hardy-Smirnov space H^p(D⁺), 1 ≤ p < ∞, consists of holomorphic functions in D⁺ whose L^p-means over level curves of the Green potential remain bounded.
- In other words, if $\varphi : \mathbb{D} \to D^+$ is a conformal map from the unit disk and if we set $\Gamma_r = \varphi(|z| = r)$, then $f \in H^p(D^+)$ iff

$$\|f\|_{H^{p}(D^{+})} := \sup_{0 \le r < 1} \left(\int_{\Gamma_{r}} |f(\xi)|^{p} |d\xi| \right)^{1/p} < \infty.$$
 (1)

- A similar definition holds for $H^p(D^-)$, with extra-requirement that $f(\infty) = 0$.
- It can be shown that condition (1) is equivalent to saying that the nontangential maximal function of |f|^p lies in L^p(Γ) [Kenig,1980].

• Functions in $H^p(D^{\pm})$ have nontangential limits a.e. in $L^p(\Gamma)$ whose norm yields an equivalent norm on $H^p(D^{\pm})$.

- Functions in $H^p(D^{\pm})$ have nontangential limits a.e. in $L^p(\Gamma)$ whose norm yields an equivalent norm on $H^p(D^{\pm})$.
- Moreover, if *f* ∈ *H^p*(*D*[±]), it can be recovered from its boundary values by the Cauchy formula:

$$\mathcal{C}f(z) = \pm rac{1}{2i\pi} \int_{\Gamma} rac{f(\xi)}{\xi-z} d\xi, \qquad z \in D^{\pm}.$$

- Functions in $H^p(D^{\pm})$ have nontangential limits a.e. in $L^p(\Gamma)$ whose norm yields an equivalent norm on $H^p(D^{\pm})$.
- Moreover, if *f* ∈ *H^p*(*D*[±]), it can be recovered from its boundary values by the Cauchy formula:

$$\mathcal{C}f(z) = \pm rac{1}{2i\pi} \int_{\Gamma} rac{f(\xi)}{\xi-z} d\xi, \qquad z \in D^{\pm}.$$

• Also, the Cauchy theorem holds:

$$0=\frac{1}{2i\pi}\int_{\Gamma}\frac{f(\xi)}{\xi-z}d\xi, \qquad f\in H^p(D^{\pm}), \qquad z\in D^{\mp}.$$

In the other direction, if $f \in L^p(\Gamma)$ with 1 , then <math>Cf(z) defines a member of $H^p(D^{\pm})$ for $z \in D^{\pm}$.

In the other direction, if $f \in L^p(\Gamma)$ with 1 , then <math>Cf(z) defines a member of $H^p(D^{\pm})$ for $z \in D^{\pm}$.

Hence the relation $f(\xi) = C^+ - C^-$ yields:

In the other direction, if $f \in L^p(\Gamma)$ with 1 , then <math>Cf(z) defines a member of $H^p(D^{\pm})$ for $z \in D^{\pm}$.

Hence the relation $f(\xi) = C^+ - C^-$ yields:

Theorem

For Γ a smooth Jordan curve and 1 there holds a topological sum:

$$L^{p}(\Gamma) = H^{p}(D^{+}) \oplus H^{p}(D^{-}).$$

 The exact degree of smoothness required on Γ is that its unit normal lies in VMO [Maz'ya-Mitrea-Shaposhnikova, 2008].

- The exact degree of smoothness required on Γ is that its unit normal lies in VMO [Maz'ya-Mitrea-Shaposhnikova, 2008].
- On Lipschitz curves, the result still holds when the range of p is restricted to p > 2 − ε where ε depends on the Lipschitz constant of Γ [Verchota, 1984].

- The exact degree of smoothness required on Γ is that its unit normal lies in VMO [Maz'ya-Mitrea-Shaposhnikova, 2008].
- On Lipschitz curves, the result still holds when the range of p is restricted to p > 2 − ε where ε depends on the Lipschitz constant of Γ [Verchota, 1984].
- When Γ is smooth, substitutes to L¹(Γ) and L[∞](Γ) can be taken to be H¹(Γ) and BMO(Γ).

- The exact degree of smoothness required on Γ is that its unit normal lies in VMO [Maz'ya-Mitrea-Shaposhnikova, 2008].
- On Lipschitz curves, the result still holds when the range of p is restricted to p > 2 − ε where ε depends on the Lipschitz constant of Γ [Verchota, 1984].
- When Γ is smooth, substitutes to L¹(Γ) and L[∞](Γ) can be taken to be H¹(Γ) and BMO(Γ).
- By the Cauchy-Riemann equations, a holomorphic function is of the form $\partial_x U i \partial_y U$ where U is real harmonic.

- The exact degree of smoothness required on Γ is that its unit normal lies in VMO [Maz'ya-Mitrea-Shaposhnikova, 2008].
- On Lipschitz curves, the result still holds when the range of p is restricted to p > 2 − ε where ε depends on the Lipschitz constant of Γ [Verchota, 1984].
- When Γ is smooth, substitutes to L¹(Γ) and L[∞](Γ) can be taken to be H¹(Γ) and BMO(Γ).
- By the Cauchy-Riemann equations, a holomorphic function is of the form $\partial_x U i\partial_y U$ where U is real harmonic. Therefore it may be viewed as (the conjugate of) a harmonic gradient:

- The exact degree of smoothness required on Γ is that its unit normal lies in VMO [Maz'ya-Mitrea-Shaposhnikova, 2008].
- On Lipschitz curves, the result still holds when the range of p is restricted to p > 2 − ε where ε depends on the Lipschitz constant of Γ [Verchota, 1984].
- When Γ is smooth, substitutes to L¹(Γ) and L[∞](Γ) can be taken to be H¹(Γ) and BMO(Γ).
- By the Cauchy-Riemann equations, a holomorphic function is of the form $\partial_x U i\partial_y U$ where U is real harmonic. Therefore it may be viewed as (the conjugate of) a harmonic gradient:

Corollary

A \mathbb{R}^2 -valued vector field of L^p -class on Γ is uniquely the sum of the trace of the gradient of a harmonic function in D^+ and the trace of the gradient of a harmonic function in D^- , where both gradients have nontangential maximal function in L^p .

• Consider a 2-D potential in divergence form supported on Γ :

$$P_{\operatorname{div} V}(X) = -\frac{1}{2\pi} \int_{\Gamma} (\operatorname{div} V)(X') \log \frac{1}{|X - X'|} \, d|X'|, \quad X \notin \operatorname{supp} V,$$

• Consider a 2-D potential in divergence form supported on Γ :

$$P_{\operatorname{div} V}(X) = -rac{1}{2\pi} \int_{\Gamma} (\operatorname{div} V)(X') \log rac{1}{|X - X'|} \, d|X'|, \quad X \notin \operatorname{supp} V,$$

with $V = m \otimes \delta_{\Gamma}$ and $m = (m_1, m_2)^t$ a vector field in $L^p(\Gamma)$.

• Consider a 2-D potential in divergence form supported on Γ :

$$P_{\operatorname{div} V}(X) = -rac{1}{2\pi} \int_{\Gamma} (\operatorname{div} V)(X') \log rac{1}{|X - X'|} \, d|X'|, \quad X \notin \operatorname{supp} V,$$

with $V = m \otimes \delta_{\Gamma}$ and $m = (m_1, m_2)^t$ a vector field in $L^p(\Gamma)$.

• Integrating by parts identifying vectors with complex numbers:

• Consider a 2-D potential in divergence form supported on **F**:

$$P_{\operatorname{div} V}(X) = -rac{1}{2\pi} \int_{\Gamma} (\operatorname{div} V)(X') \log rac{1}{|X - X'|} \, d|X'|, \quad X \notin \operatorname{supp} V,$$

with $V = m \otimes \delta_{\Gamma}$ and $m = (m_1, m_2)^t$ a vector field in $L^p(\Gamma)$.

Integrating by parts identifying vectors with complex numbers:

$$P_{{
m div}\,V}(X) = -rac{1}{2\pi}\int_{\Gamma}rac{(m_1+im_2)(X')/v(X')}{X'-X}\,dX',$$

where \mathbf{v} is the unit tangent to Γ .

• Consider a 2-D potential in divergence form supported on **F**:

$$P_{\operatorname{div} V}(X) = -rac{1}{2\pi} \int_{\Gamma} (\operatorname{div} V)(X') \log rac{1}{|X - X'|} \, d|X'|, \quad X \notin \operatorname{supp} V,$$

with $V = m \otimes \delta_{\Gamma}$ and $m = (m_1, m_2)^t$ a vector field in $L^p(\Gamma)$.

Integrating by parts identifying vectors with complex numbers:

$$P_{{
m div}\,V}(X) = -rac{1}{2\pi}\int_{\Gamma}rac{(m_1+im_2)(X')/v(X')}{X'-X}\,dX',$$

where v is the unit tangent to Γ . By what precedes:

Corollary

div *m* has null potential in D^- if, and only if $(m_1 + im_2)/v \in H^p(D^+)$.
• The purpose of the talk is to carry over what precedes to higher dimension.

- The purpose of the talk is to carry over what precedes to higher dimension.
- By higher dimension we mean higher real dimension, where analytic functions are replaced by gradient of harmonic functions (Stein-Weiss formalism).
- For simplicity we deal only with the case n = 3.

- The purpose of the talk is to carry over what precedes to higher dimension.
- By higher dimension we mean higher real dimension, where analytic functions are replaced by gradient of harmonic functions (Stein-Weiss formalism).
- For simplicity we deal only with the case n = 3.
- The generalization of the previous Hardy decomposition stems from Hodge theory for currents supported on a surface in the ambient space,

- The purpose of the talk is to carry over what precedes to higher dimension.
- By higher dimension we mean higher real dimension, where analytic functions are replaced by gradient of harmonic functions (Stein-Weiss formalism).
- For simplicity we deal only with the case n = 3.
- The generalization of the previous Hardy decomposition stems from Hodge theory for currents supported on a surface in the ambient space, but it is conveniently framed in terms of Clifford analysis that we use here as a tool.

• For $n \ge 3$, we consider harmonic potentials in divergence form:

$$P_{\operatorname{div} V}(x) = \int \frac{x - y}{|x - y|^{n-2}} \operatorname{div} V(y)$$

for some vector distribution $V = (v_1, v_2, \cdots, v_n)^t$ on \mathbb{R}^n .

• For $n \ge 3$, we consider harmonic potentials in divergence form:

$$P_{\operatorname{div} V}(x) = \int \frac{x-y}{|x-y|^{n-2}} \operatorname{div} V(y)$$

for some vector distribution $V = (v_1, v_2, \cdots, v_n)^t$ on \mathbb{R}^n .

• They solve $\Delta u = \operatorname{div} V$ on \mathbb{R}^n with "minimal growth" at infinity.

• For $n \ge 3$, we consider harmonic potentials in divergence form:

$$P_{\operatorname{div} V}(x) = \int \frac{x-y}{|x-y|^{n-2}} \operatorname{div} V(y)$$

for some vector distribution $V = (v_1, v_2, \cdots, v_n)^t$ on \mathbb{R}^n .

- They solve $\Delta u = \operatorname{div} V$ on \mathbb{R}^n with "minimal growth" at infinity.
- They occur frequently when modeling electro-magnetic phenomena in the quasi-static approximation to Maxwell's equations.

• EEG:

• Brain assumed non magnetic medium,

• EEG:

- Brain assumed non magnetic medium,
- with constant electric conductivity σ .

• EEG:

- Brain assumed non magnetic medium,
- with constant electric conductivity σ .
- Then the electric potential is

$$u = P_{\operatorname{div} J^p/\sigma}$$

with J_p the so-called primary current.

• EEG:

- Brain assumed non magnetic medium,
- with constant electric conductivity σ .
- Then the electric potential is

$$u = P_{\operatorname{div} J^p/\sigma}$$

with J_p the so-called primary current.

Magnetization

• EEG:

- Brain assumed non magnetic medium,
- with constant electric conductivity σ .
- Then the electric potential is

$$u = P_{\operatorname{div} J^p/\sigma}$$

with J_p the so-called primary current.

Magnetization

• If **M** is a magnetization, (density of magnetic moment),

• EEG:

- Brain assumed non magnetic medium,
- with constant electric conductivity σ .
- Then the electric potential is

$$u=P_{\operatorname{div} J^p/\sigma}$$

with J_p the so-called primary current.

- Magnetization
 - $\bullet~$ If ${\bf M}$ is a magnetization, (density of magnetic moment), in the absence of sources,

• EEG:

- Brain assumed non magnetic medium,
- with constant electric conductivity σ .
- Then the electric potential is

$$u=P_{\operatorname{div} J^p/\sigma}$$

with J_p the so-called primary current.

- Magnetization
 - If **M** is a magnetization, (density of magnetic moment), in the absence of sources,
 - then the scalar magneic potential is

$$u = P_{\operatorname{div} \mathbf{M}}$$
.

• The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.

- The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.
- For instance the basic inverse problem in Electro-EncephaloGraphy is to recover the primary current J^p (which shows the electrical activity in the brain)

- The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.
- For instance the basic inverse problem in Electro-EncephaloGraphy is to recover the primary current J^p (which shows the electrical activity in the brain) from measurements of the electric field $E = -\nabla u$ on the scalp.

- The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.
- For instance the basic inverse problem in Electro-EncephaloGraphy is to recover the primary current J^p (which shows the electrical activity in the brain) from measurements of the electric field $E = -\nabla u$ on the scalp.
- Likewise, the inverse magnetization problem is to recover the magnetization **M** on a given object,

- The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.
- For instance the basic inverse problem in Electro-EncephaloGraphy is to recover the primary current J^p (which shows the electrical activity in the brain) from measurements of the electric field $E = -\nabla u$ on the scalp.
- Likewise, the inverse magnetization problem is to recover the magnetization **M** on a given object, from measurements of the field $H = -\nabla \phi$ near the object.

- The inverse potential problem in divergence form is to recover V from the knowledge of $P_{\text{div }V}$ away from the support of V.
- For instance the basic inverse problem in Electro-EncephaloGraphy is to recover the primary current J^p (which shows the electrical activity in the brain) from measurements of the electric field $E = -\nabla u$ on the scalp.
- Likewise, the inverse magnetization problem is to recover the magnetization **M** on a given object, from measurements of the field $H = -\nabla \phi$ near the object.
- Today, inverse magnetization problems are a hot topic in Earth and Planetary Sciences.

 A basic question is: what are the densities V producing the zero field in a given component of ℝⁿ \ Supp V?

- A basic question is: what are the densities V producing the zero field in a given component of Rⁿ \ Supp V?
- Equivalently: when is it that Φ_{div(V)}(X) = cst in a component (zero if the component is unbounded)?

• A basic question is:

what are the densities *V* producing the zero field in a given component of $\mathbb{R}^n \setminus \text{Supp } V$?

- Equivalently: when is it that Φ_{div(V)}(X) = cst in a component (zero if the component is unbounded)?
- In this case V is called silent from that component.

• A basic question is:

what are the densities *V* producing the zero field in a given component of $\mathbb{R}^n \setminus \text{Supp } V$?

- Equivalently: when is it that Φ_{div(V)}(X) = cst in a component (zero if the component is unbounded)?
- In this case V is called silent from that component.
- Let us look at the elementary case where V is supported on the horizontal plane with L^p density there, 1

• A basic question is:

what are the densities *V* producing the zero field in a given component of $\mathbb{R}^n \setminus \text{Supp } V$?

- Equivalently: when is it that Φ_{div(V)}(X) = cst in a component (zero if the component is unbounded)?
- In this case V is called silent from that component.
- Let us look at the elementary case where V is supported on the horizontal plane with L^p density there, 1
- This geometry is in fact realistic in scanning microscopy of rocks which are typically sanded down to thin slabs.

• Thin-plate : $V = M(x_1, x_2) \otimes \delta_0(x_3)$ is supported on $\{x_3 = 0\}$,

• Thin-plate : $V = M(x_1, x_2) \otimes \delta_0(x_3)$ is supported on $\{x_3 = 0\}$,

 $M(x_1, x_2) = (m_1(x_1, x_2), m_2(x_1, x_2), m_3(x_1, x_2))^t.$

• Thin-plate : $V = M(x_1, x_2) \otimes \delta_0(x_3)$ is supported on $\{x_3 = 0\}$,

 $M(x_1, x_2) = (m_1(x_1, x_2), m_2(x_1, x_2), m_3(x_1, x_2))^t.$

• At any $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $x_3 \neq 0$, the potential $P_{\operatorname{div} V}$ is obtained by letting M act on $X' \mapsto (X - X')/|X - X'|^3$, $X' = \begin{pmatrix} x'_1 \\ x'_2 \\ 0 \end{pmatrix}$:

• Thin-plate : $V = M(x_1, x_2) \otimes \delta_0(x_3)$ is supported on $\{x_3 = 0\}$,

 $M(x_1, x_2) = (m_1(x_1, x_2), m_2(x_1, x_2), m_3(x_1, x_2))^t.$

• At any $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $x_3 \neq 0$, the potential $P_{\operatorname{div} V}$ is obtained by

letting
$$M$$
 act on $X' \mapsto (X - X')/|X - X'|^3$, $X' = \begin{pmatrix} x_1 \\ x_2' \\ 0 \end{pmatrix}$:

$$P_{\text{div }V} = \frac{1}{4\pi} \int_{\mathbb{R}^n} \left(\frac{m_1(X')(x_1 - x_1') + m_2(X')(x_2 - x_2')}{|X - X'|^3} \right)$$

$$+\frac{m_3(X')x_3}{|X-X'|^3}\mathsf{d} x_1'\mathsf{d} x_2'\bigg)$$
The thin plate case

• Thin-plate : $V = M(x_1, x_2) \otimes \delta_0(x_3)$ is supported on $\{x_3 = 0\}$,

 $M(x_1, x_2) = (m_1(x_1, x_2), m_2(x_1, x_2), m_3(x_1, x_2))^t.$

• At any $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $x_3 \neq 0$, the potential $P_{\operatorname{div} V}$ is obtained by

letting
$$M$$
 act on $X' \mapsto (X - X')/|X - X'|^3$, $X' = \begin{pmatrix} x_1 \\ x_2' \\ 0 \end{pmatrix}$:

$$P_{\text{div }V} = \frac{1}{4\pi} \int_{\mathbb{R}^n} \left(\frac{m_1(X')(x_1 - x_1') + m_2(X')(x_2 - x_2')}{|X - X'|^3} \right)$$

$$+\frac{m_3(X')x_3}{|X-X'|^3}\mathsf{d} x_1'\mathsf{d} x_2'\bigg)$$

• Thus $P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X)$ where:

• Thus $P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X)$ where:

۲

$$A_3(X) = rac{1}{4\pi} \int_{\mathbb{R}^n} rac{m_3(X') x_3}{|X - X'|^3} \mathrm{d} x_1' \mathrm{d} x_2'.$$

is sgn x₃ times half the harmonic (Poisson) extension of m_3 : $A_3(X) = \operatorname{sgn} x_3 \mathcal{P}_X(m_3)/2$,

• Thus $P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X)$ where:

$$A_3(X) = rac{1}{4\pi} \int_{\mathbb{R}^n} rac{m_3(X') x_3}{|X - X'|^3} \mathrm{d} x_1' \mathrm{d} x_2'.$$

is sgn x_3 times half the harmonic (Poisson) extension of m_3 : $A_3(X) = \operatorname{sgn} x_3 \mathcal{P}_X(m_3)/2$,

• and $A_j(X) = \mathcal{P}_X(R_j m_j)/2$ for j = 1, 2, where

۲

• Thus $P_{\text{div}M}(X) = A_1(X) + A_2(X) + A_3(X)$ where:

$$A_3(X) = rac{1}{4\pi} \int_{\mathbb{R}^n} rac{m_3(X') x_3}{|X-X'|^3} \mathrm{d} x_1' \mathrm{d} x_2'.$$

is sgn x₃ times half the harmonic (Poisson) extension of m_3 : $A_3(X) = \operatorname{sgn} x_3 \mathcal{P}_X(m_3)/2$,

• and $A_j(X) = \mathcal{P}_X(R_j m_j)/2$ for j = 1, 2, where

$$R_j(f)(Y) := \lim_{\epsilon \to 0} \frac{1}{2\pi} \iint_{\mathbb{R}^2 \setminus B(Y,\epsilon)} f(X') \frac{(y_j - x'_j)}{|Y - X'|^3} dX', \qquad j = 1, 2,$$

are the Riesz transforms.

۲

• Assume $x_3 > 0$.

• Assume $x_3 > 0$. We just saw that

 $P_{\operatorname{div} M}(X) = A_1(X) + A_2(X) + A_3(X) = \frac{1}{2} \mathcal{P}_X(R_1 m_1 + R_2 m_2 + m_3).$

• Assume $x_3 > 0$. We just saw that

 $P_{\mathrm{div}M}(X) = A_1(X) + A_2(X) + A_3(X) = \frac{1}{2} \mathcal{P}_X(R_1m_1 + R_2m_2 + m_3).$

• Since the Poisson extension of a function is zero iff the function is zero, *M* is silent from above iff

 $R_1m_1 + R_2m_2 + m_3 = 0.$

• Assume $x_3 > 0$. We just saw that

 $P_{\mathrm{div}M}(X) = A_1(X) + A_2(X) + A_3(X) = \frac{1}{2} \mathcal{P}_X(R_1m_1 + R_2m_2 + m_3).$

• Since the Poisson extension of a function is zero iff the function is zero, *M* is silent from above iff

 $R_1m_1 + R_2m_2 + m_3 = 0.$

• Likewise *M* is silent from below iff

 $R_1m_1 + R_2m_2 - m_3 = 0.$

• Assume $x_3 > 0$. We just saw that

 $P_{\mathrm{div}M}(X) = A_1(X) + A_2(X) + A_3(X) = \frac{1}{2} \mathcal{P}_X(R_1m_1 + R_2m_2 + m_3).$

• Since the Poisson extension of a function is zero iff the function is zero, *M* is silent from above iff

 $R_1m_1 + R_2m_2 + m_3 = 0.$

• Likewise *M* is silent from below iff

 $R_1m_1 + R_2m_2 - m_3 = 0.$

• *M* is silent (from both sides) iff $R_1m_1 + R_2m_2 = 0$ and $m_3 = 0$.

What do these quantities mean?

What do these quantities mean?

To approach it, we introduce some classical function spaces.

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^p dX'<\infty.$$

• Let \mathfrak{H}_{+}^{p} consist of ∇u , u harmonic in $\{x_3 > 0\}$, such that

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^p dX'<\infty.$$

• ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1 f, R_2 f, f)^t$, $f \in L^p(\mathbb{R}^2)$,

• Let \mathfrak{H}_{+}^{p} consist of ∇u , u harmonic in $\{x_3 > 0\}$, such that

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^p dX'<\infty.$$

• ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1 f, R_2 f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^p dX'<\infty.$$

- ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1 f, R_2 f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.
- In other words the R_j are the maps sending the normal derivative to the tangential derivatives on the boundary of the solution to Neumann's problem in the half space.

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^p dX'<\infty.$$

- ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1 f, R_2 f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.
- In other words the R_j are the maps sending the normal derivative to the tangential derivatives on the boundary of the solution to Neumann's problem in the half space.
- \mathfrak{H}_{-}^{p} is defined similarly on $\{x_3 < 0\}$,

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^p dX'<\infty.$$

- ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1 f, R_2 f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.
- In other words the R_j are the maps sending the normal derivative to the tangential derivatives on the boundary of the solution to Neumann's problem in the half space.
- \mathfrak{H}_{-}^{p} is defined similarly on $\{x_3 < 0\}$, with traces $(-R_1f, -R_2f, f)^t$.

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^p dX'<\infty.$$

- ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1 f, R_2 f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.
- In other words the R_j are the maps sending the normal derivative to the tangential derivatives on the boundary of the solution to Neumann's problem in the half space.
- 𝔅^p_⊥ is defined similarly on {x₃ < 0}, with traces (-R₁f, -R₂f, f)^t. Functions in 𝔅^p_± have L^p nontangential maximal function (Stein-Weiss).

$$\sup_{x_3>0}\int_{\mathbb{R}^2}|\nabla u(X',x_3)|^p dX'<\infty.$$

- ∇u has a nontangential limit on \mathbb{R}^2 of the form $(R_1 f, R_2 f, f)^t$, $f \in L^p(\mathbb{R}^2)$, and is the Poisson extension thereof.
- In other words the R_j are the maps sending the normal derivative to the tangential derivatives on the boundary of the solution to Neumann's problem in the half space.
- 𝔅^p_⊥ is defined similarly on {x₃ < 0}, with traces (-R₁f, -R₂f, f)^t. Functions in 𝔅^p_± have L^p nontangential maximal function (Stein-Weiss).
- We put \mathcal{D}^{p} for divergence-free vector fields in $L^{p}(\mathbb{R}^{2}, \mathbb{R}^{2})$.

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

For 1 one has the direct sum:

 $(L^p(\mathbb{R}^2))^3 = \mathfrak{H}^p_+ \oplus \mathfrak{H}^p_- \oplus (\mathcal{D}^p \times \{0\}).$

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

For 1 one has the direct sum:

 $(L^{p}(\mathbb{R}^{2}))^{3} = \mathfrak{H}^{p}_{+} \oplus \mathfrak{H}^{p}_{-} \oplus (\mathcal{D}^{p} \times \{0\}).$

The decomposition is orthogonal if p = 2.

 Thus, every 3-D vector field of L^p-class on ℝ² is uniquely the sum of (the trace of) a harmonic gradient above, a harmonic gradient below, and a tangent divergence-free vector field.

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

For 1 one has the direct sum:

 $(L^{p}(\mathbb{R}^{2}))^{3} = \mathfrak{H}^{p}_{+} \oplus \mathfrak{H}^{p}_{-} \oplus (\mathcal{D}^{p} \times \{0\}).$

- Thus, every 3-D vector field of L^p-class on ℝ² is uniquely the sum of (the trace of) a harmonic gradient above, a harmonic gradient below, and a tangent divergence-free vector field.
- Analog to the decomposition of a complex function on $\mathbb R$ as the sum of two Hardy functions.

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

For 1 one has the direct sum:

 $(L^{p}(\mathbb{R}^{2}))^{3} = \mathfrak{H}^{p}_{+} \oplus \mathfrak{H}^{p}_{-} \oplus (\mathcal{D}^{p} \times \{0\}).$

- Thus, every 3-D vector field of L^p-class on ℝ² is uniquely the sum of (the trace of) a harmonic gradient above, a harmonic gradient below, and a tangent divergence-free vector field.
- Analog to the decomposition of a complex function on ℝ as the sum of two Hardy functions. Divergence-free term is necessary for not every field is a gradient on ℝ².

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

For 1 one has the direct sum:

 $(L^{p}(\mathbb{R}^{2}))^{3} = \mathfrak{H}^{p}_{+} \oplus \mathfrak{H}^{p}_{-} \oplus (\mathcal{D}^{p} \times \{0\}).$

- Thus, every 3-D vector field of L^p-class on ℝ² is uniquely the sum of (the trace of) a harmonic gradient above, a harmonic gradient below, and a tangent divergence-free vector field.
- Analog to the decomposition of a complex function on ℝ as the sum of two Hardy functions. Divergence-free term is necessary for not every field is a gradient on ℝ².
- $\bullet\,$ Projecting on \mathbb{R}^2 we get the standard Hodge decomposition

$$\left(L^p(\mathbb{R}^2)\right)^2 = \mathcal{G}^p \oplus \mathcal{D}^p,$$

Theorem (L.B., D. Hardin, E. Lima, E.B. Saff, B. Weiss)

For 1 one has the direct sum:

 $(L^{p}(\mathbb{R}^{2}))^{3} = \mathfrak{H}^{p}_{+} \oplus \mathfrak{H}^{p}_{-} \oplus (\mathcal{D}^{p} \times \{0\}).$

The decomposition is orthogonal if p = 2.

- Thus, every 3-D vector field of L^p-class on ℝ² is uniquely the sum of (the trace of) a harmonic gradient above, a harmonic gradient below, and a tangent divergence-free vector field.
- Analog to the decomposition of a complex function on ℝ as the sum of two Hardy functions. Divergence-free term is necessary for not every field is a gradient on ℝ².
- $\bullet\,$ Projecting on \mathbb{R}^2 we get the standard Hodge decomposition

$$\left(L^{p}(\mathbb{R}^{2})\right)^{2}=\mathcal{G}^{p}\oplus\mathcal{D}^{p},$$

where \mathcal{G}^{p} is the space of distributional gradients in $L^{p}(\mathbb{R}^{2}, \mathbb{R}^{2})$.

• Set $M = (m_1, m_2, m_3)$, $d := R_2 m_1 - R_1 m_2$, and

• Set $M = (m_1, m_2, m_3)$, $d := R_2 m_1 - R_1 m_2$, and

$$f^+:=rac{-R_1(m_1)-R_2(m_2)+m_3}{2}, \quad f^-:=rac{R_1(m_1)R_2(m_2)+m_3}{2}.$$

• Set $M = (m_1, m_2, m_3)$, $d := R_2 m_1 - R_1 m_2$, and

$$f^+ := rac{-R_1(m_1) - R_2(m_2) + m_3}{2}, \quad f^- := rac{R_1(m_1)R_2(m_2) + m_3}{2}.$$

Then

 $M = (R_1f^+, R_2f^+, f^+) + (-R_1f^- - R_2f^-, f^-) + (-R_2d, R_1d, 0).$

• Set $M = (m_1, m_2, m_3)$, $d := R_2 m_1 - R_1 m_2$, and

$$f^+ := rac{-R_1(m_1) - R_2(m_2) + m_3}{2}, \quad f^- := rac{R_1(m_1)R_2(m_2) + m_3}{2}.$$

Then

 $M = (R_1f^+, R_2f^+, f^+) + (-R_1f^- - R_2f^-, f^-) + (-R_2d, R_1d, 0).$

• Easily checked using $R_1^2 + R_2^2 = -\text{Id.}$

Silent planar distributions revisited

Silent planar distributions revisited

• By what precedes *M* is silent from above iff it is the sum of a harmonic gradient from above and a tangent divergence-free vector field.
Silent planar distributions revisited

- By what precedes *M* is silent from above iff it is the sum of a harmonic gradient from above and a tangent divergence-free vector field.
- Likewise *M* is silent from below iff it is the sum of a harmonic gradient from below and a tangent divergence-free vector field.

Silent planar distributions revisited

- By what precedes *M* is silent from above iff it is the sum of a harmonic gradient from above and a tangent divergence-free vector field.
- Likewise *M* is silent from below iff it is the sum of a harmonic gradient from below and a tangent divergence-free vector field.
- *M* is silent iff it is tangent and divergence-free.

Silent planar distributions revisited

- By what precedes *M* is silent from above iff it is the sum of a harmonic gradient from above and a tangent divergence-free vector field.
- Likewise *M* is silent from below iff it is the sum of a harmonic gradient from below and a tangent divergence-free vector field.
- *M* is silent iff it is tangent and divergence-free.
- Transparent if we observe the orthogonality:

 $\mathfrak{H}^p_+ \perp \mathfrak{H}^q_-$ and $\mathcal{D}^p \times \{0\} \perp \mathfrak{H}^q_\pm, \quad 1/p + 1/q = 1.$

• The result carries over to \mathbb{R}^n for $n \ge 3$, with obvious adjustement of the definitions.

- The result carries over to \mathbb{R}^n for $n \ge 3$, with obvious adjustement of the definitions.
- It extends to any class of functions or of distributions invariant under Riesz transforms, e.g. h¹, BMO, W^{-∞,p} (i.e. finite sums of derivatives of any order of L^p-functions, 1

- The result carries over to \mathbb{R}^n for $n \ge 3$, with obvious adjustement of the definitions.
- It extends to any class of functions or of distributions invariant under Riesz transforms, *e.g.* \mathfrak{h}^1 , *BMO*, $W^{-\infty,p}$ (*i.e.* finite sums of derivatives of any order of L^p -functions, 1). The latter contains all distributions with compact support.

- The result carries over to \mathbb{R}^n for $n \ge 3$, with obvious adjustement of the definitions.
- It extends to any class of functions or of distributions invariant under Riesz transforms, *e.g.* \mathfrak{h}^1 , *BMO*, $W^{-\infty,p}$ (*i.e.* finite sums of derivatives of any order of L^p -functions, 1). The latter contains all distributions with compact support.
- If M ∈ (L²(ℝⁿ))³ then P_{55²} M yields the magnetization of least (L²(ℝⁿ))³-norm which is equivalent to M from above.

Is there a Hardy-Hodge decomposition on more general manifolds?

Is there a Hardy-Hodge decomposition on more general manifolds?

 We consider a compact connected simply connected hypersurface *M* embedded in ℝⁿ, locally a Lipschitz graph.

Is there a Hardy-Hodge decomposition on more general manifolds?

- We consider a compact connected simply connected hypersurface *M* embedded in ℝⁿ, locally a Lipschitz graph.
- Define Sobolev spaces W^{1,p}(M) as usual, M inherits from Rⁿ a uniform Riemaniann structure ⟨.,.⟩_M, therefore one can define tangential gradient vector fields G^p, where L^p is understood with respect to the volume form σ.

Is there a Hardy-Hodge decomposition on more general manifolds?

- We consider a compact connected simply connected hypersurface *M* embedded in ℝⁿ, locally a Lipschitz graph.
- Define Sobolev spaces W^{1,p}(M) as usual, M inherits from Rⁿ a uniform Riemaniann structure ⟨.,.⟩_M, therefore one can define tangential gradient vector fields G^p, where L^p is understood with respect to the volume form σ.
- One can then define $\mathcal{D}^p = (\mathcal{G}^q)^{\perp}$ for the pairing

$$(G,D):=\int_{\mathcal{M}}\langle G,D
angle_{\mathcal{M}}d\sigma,\quad 1/p+1/q=1.$$

Is there a Hardy-Hodge decomposition on more general manifolds?

- We consider a compact connected simply connected hypersurface *M* embedded in ℝⁿ, locally a Lipschitz graph.
- Define Sobolev spaces W^{1,p}(M) as usual, M inherits from Rⁿ a uniform Riemaniann structure ⟨.,.⟩_M, therefore one can define tangential gradient vector fields G^p, where L^p is understood with respect to the volume form σ.
- One can then define $\mathcal{D}^p = (\mathcal{G}^q)^{\perp}$ for the pairing

$$(G,D) := \int_{\mathcal{M}} \langle G,D \rangle_{\mathcal{M}} d\sigma, \quad 1/p + 1/q = 1.$$

If \mathcal{M} is smooth, this coincides with the usual notion of divergence free tangent vector field.

• We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.

- We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.
- For 1 p</sup>_± to be the space of harmonic gradients in Ω[±] whose nontangential maximal function lies in L^p(M).

- We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.
- For 1 p</sup>_± to be the space of harmonic gradients in Ω[±] whose nontangential maximal function lies in L^p(M).
- For p > p₀(M) = 2 ε(M), elements of H^p_± have nontangential limits on M from the corresponding component, whose L^p norm is equivalent to the L^p norm of the maximal function [Dahlberg,1977].

- We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.
- For 1 p</sup>_± to be the space of harmonic gradients in Ω[±] whose nontangential maximal function lies in L^p(M).
- For p > p₀(M) = 2 ε(M), elements of H^p_± have nontangential limits on M from the corresponding component, whose L^p norm is equivalent to the L^p norm of the maximal function [Dahlberg,1977].
- When \mathcal{M} is smooth we may pick $p_0 = 1$.

- We let Ω^{\pm} for the inner and outer components of $\mathbb{R}^n \setminus \mathcal{M}$.
- For 1 p</sup>_± to be the space of harmonic gradients in Ω[±] whose nontangential maximal function lies in L^p(M).
- For p > p₀(M) = 2 ε(M), elements of H^p_± have nontangential limits on M from the corresponding component, whose L^p norm is equivalent to the L^p norm of the maximal function [Dahlberg,1977].
- When \mathcal{M} is smooth we may pick $p_0 = 1$.
- Note the above nontangential limits are not tangent to \mathcal{M} .

Theorem

Let \mathcal{M} be a compact simply connected Lipschitz hypersurface in \mathbb{R}^n and $p_0(\mathcal{M}) . Then, there is a direct sum$

 $(L^p(\mathcal{M}))^n = \mathcal{H}^p_+ \oplus \mathcal{H}^p_- \oplus \mathcal{D}^p(\mathcal{M}).$

When \mathcal{M} is smooth, the result holds for 1 .

Theorem

Let \mathcal{M} be a compact simply connected Lipschitz hypersurface in \mathbb{R}^n and $p_0(\mathcal{M}) . Then, there is a direct sum$

 $(L^p(\mathcal{M}))^n = \mathcal{H}^p_+ \oplus \mathcal{H}^p_- \oplus \mathcal{D}^p(\mathcal{M}).$

When \mathcal{M} is smooth, the result holds for 1 .

 The result extends with obvious modifications to the case where *M* is not connected, and also to Lipschitz graphs.

Theorem

Let \mathcal{M} be a compact simply connected Lipschitz hypersurface in \mathbb{R}^n and $p_0(\mathcal{M}) . Then, there is a direct sum$

 $(L^p(\mathcal{M}))^n = \mathcal{H}^p_+ \oplus \mathcal{H}^p_- \oplus \mathcal{D}^p(\mathcal{M}).$

When \mathcal{M} is smooth, the result holds for 1 .

- The result extends with obvious modifications to the case where *M* is not connected, and also to Lipschitz graphs.
- When \mathcal{M} is smooth the decomposition holds in more general spaces of functions or distributional currents.

• Let $V \in L^{p}(\mathcal{M})^{n}$. Write $V = V_{n} + V_{t}$ according to the normal and tangential components.

- Let $V \in L^{p}(\mathcal{M})^{n}$. Write $V = V_{n} + V_{t}$ according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in \mathcal{D}^p$ and $G \in \mathcal{G}^p$.

- Let V ∈ L^p(M)ⁿ. Write V = V_n + V_t according to the normal and tangential components.
- By Hodge decomposition, $V_t = G + D$ where $D \in D^p$ and $G \in \mathcal{G}^p$. If \mathcal{M} is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009].

- Let $V \in L^{p}(\mathcal{M})^{n}$. Write $V = V_{n} + V_{t}$ according to the normal and tangential components.
- By Hodge decomposition, V_t = G + D where D ∈ D^p and G ∈ G^p. If M is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.

- Let $V \in L^{p}(\mathcal{M})^{n}$. Write $V = V_{n} + V_{t}$ according to the normal and tangential components.
- By Hodge decomposition, V_t = G + D where D ∈ D^p and G ∈ G^p. If M is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.

- Let $V \in L^{p}(\mathcal{M})^{n}$. Write $V = V_{n} + V_{t}$ according to the normal and tangential components.
- By Hodge decomposition, V_t = G + D where D ∈ D^p and G ∈ G^p. If M is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.
- G is the tangential gradient of some function $\psi \in W^{1,p}(\mathcal{M})$.

- Let $V \in L^{p}(\mathcal{M})^{n}$. Write $V = V_{n} + V_{t}$ according to the normal and tangential components.
- By Hodge decomposition, V_t = G + D where D ∈ D^p and G ∈ G^p. If M is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.
- G is the tangential gradient of some function $\psi \in W^{1,p}(\mathcal{M})$.
- Let u be harmonic in Ω^+ and solve the Dirichlet problem $u_{|\mathcal{M}} = \psi$.

- Let $V \in L^{p}(\mathcal{M})^{n}$. Write $V = V_{n} + V_{t}$ according to the normal and tangential components.
- By Hodge decomposition, V_t = G + D where D ∈ D^p and G ∈ G^p. If M is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.
- G is the tangential gradient of some function $\psi \in W^{1,p}(\mathcal{M})$.
- Let u be harmonic in Ω⁺ and solve the Dirichlet problem
 u_{|M} = ψ. Then ∇u ∈ H^p₊ [Verchota,1984] and the tangential component of its nontangential limit on M is G.

- Let $V \in L^{p}(\mathcal{M})^{n}$. Write $V = V_{n} + V_{t}$ according to the normal and tangential components.
- By Hodge decomposition, V_t = G + D where D ∈ D^p and G ∈ G^p. If M is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.
- G is the tangential gradient of some function $\psi \in W^{1,p}(\mathcal{M})$.
- Let u be harmonic in Ω⁺ and solve the Dirichlet problem
 u_{|M} = ψ. Then ∇u ∈ H^p₊ [Verchota,1984] and the tangential component of its nontangential limit on M is G.
- Thus, we are left to decompose $V D \nabla u$ which is a normal vector field on \mathcal{M} .

- Let $V \in L^{p}(\mathcal{M})^{n}$. Write $V = V_{n} + V_{t}$ according to the normal and tangential components.
- By Hodge decomposition, V_t = G + D where D ∈ D^p and G ∈ G^p. If M is smooth, the Hodge decomposition is a byproduct of L^p Hodge theory on complete manifolds [X-D Li,2009]. In the Lipschitz case, it can be proved by solving an extremal problem.
- We save *D* which is the last summand in the decomposition.
- G is the tangential gradient of some function $\psi \in W^{1,p}(\mathcal{M})$.
- Let u be harmonic in Ω⁺ and solve the Dirichlet problem
 u_{|M} = ψ. Then ∇u ∈ H^p₊ [Verchota,1984] and the tangential component of its nontangential limit on M is G.
- Thus, we are left to decompose V − D − ∇u which is a normal vector field on M. For this we need preliminaries in Clifford analysis. We restrict to n = 3 for simplicity.
● C is the skew unital algebra generated over ℝ by {e₁, e₂, e₃} with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

€ is the skew unital algebra generated over ℝ by {e₁, e₂, e₃} with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

• A typical element of \mathfrak{C} is of the form

 $z = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{1,3} e_1 e_3 + x_{123} e_1 e_2 e_3$

where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.

€ is the skew unital algebra generated over ℝ by {e₁, e₂, e₃} with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

 \bullet A typical element of ${\mathfrak C}$ is of the form

 $z = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{1,3} e_1 e_3 + x_{123} e_1 e_2 e_3$

where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.

• x_0 is the scalar part of z, denoted by Sc z;

€ is the skew unital algebra generated over ℝ by {e₁, e₂, e₃} with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

 \bullet A typical element of ${\mathfrak C}$ is of the form

 $z = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{1,3} e_1 e_3 + x_{123} e_1 e_2 e_3$

where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.

- x_0 is the scalar part of z, denoted by Sc z;
- $x_1e_1 + x_2e_2 + x_3e_3$, is the vector part of z denoted as vec z;

€ is the skew unital algebra generated over ℝ by {e₁, e₂, e₃} with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

 \bullet A typical element of ${\mathfrak C}$ is of the form

 $z = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{1,3} e_1 e_3 + x_{123} e_1 e_2 e_3$

where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.

- x_0 is the scalar part of z, denoted by Sc z;
- $x_1e_1 + x_2e_2 + x_3e_3$, is the vector part of z denoted as vec z; Clifford vectors get identified with Euclidean vectors in \mathbb{R}^3 .

€ is the skew unital algebra generated over ℝ by {e₁, e₂, e₃} with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

 \bullet A typical element of ${\mathfrak C}$ is of the form

 $z = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{1,3} e_1 e_3 + x_{123} e_1 e_2 e_3$

where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.

- x_0 is the scalar part of z, denoted by Sc z;
- $x_1e_1 + x_2e_2 + x_3e_3$, is the vector part of z denoted as vec z; Clifford vectors get identified with Euclidean vectors in \mathbb{R}^3 .
- The conjugate of z is

 $\bar{z} = x_0 - x_1 e_1 - x_2 e_2 - x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{3,1} e_3 e_1 - x_{123} e_1 e_2 e_3.$

€ is the skew unital algebra generated over ℝ by {e₁, e₂, e₃} with:

$$e_j^2 = -1, \quad e_i e_j = -e_j e_i.$$

 \bullet A typical element of ${\mathfrak C}$ is of the form

 $z = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{1,3} e_1 e_3 + x_{123} e_1 e_2 e_3$

where the x_i , the $x_{k,\ell}$ and x_{123} are real numbers.

- x_0 is the scalar part of z, denoted by Sc z;
- x₁e₁ + x₂e₂ + x₃e₃, is the vector part of z denoted as vec z; Clifford vectors get identified with Euclidean vectors in ℝ³.
- The conjugate of z is

 $\bar{z} = x_0 - x_1 e_1 - x_2 e_2 - x_3 e_3 + x_{1,2} e_1 e_2 + x_{2,3} e_2 e_3 + x_{3,1} e_3 e_1 - x_{123} e_1 e_2 e_3.$

• The norm of z is $|z| = (\sum_{0 \le k \le 3} x_k^2 + \sum_{i < j} x_{i,j}^2 + x_{123}^2)^{1/2}$.

• We define the Dirac operator by

$$D = e_1 \frac{\partial}{\partial x_1} + e_2 \frac{\partial}{\partial x_2} + e_3 \frac{\partial}{\partial x_3}.$$

• We define the Dirac operator by

$$D = e_1 \frac{\partial}{\partial x_1} + e_2 \frac{\partial}{\partial x_2} + e_3 \frac{\partial}{\partial x_3}.$$

A C-valued fonction f is left (resp.right) monogenic on its open domain of definition if Df = 0 (resp. fD = 0).

• We define the Dirac operator by

$$D = e_1 \frac{\partial}{\partial x_1} + e_2 \frac{\partial}{\partial x_2} + e_3 \frac{\partial}{\partial x_3}.$$

A C-valued fonction f is left (resp.right) monogenic on its open domain of definition if Df = 0 (resp. fD = 0). It is monogenic iff it is left and right monogenic.

• We define the Dirac operator by

$$D = e_1 \frac{\partial}{\partial x_1} + e_2 \frac{\partial}{\partial x_2} + e_3 \frac{\partial}{\partial x_3}.$$

A C-valued fonction f is left (resp.right) monogenic on its open domain of definition if Df = 0 (resp. fD = 0). It is monogenic iff it is left and right monogenic.

Lemma

A vector-valued function is left monogenic if and only if it is monogenic, if and only if it is the gradient of a harmonic function.

• If f is left monogenic in Ω^+ and its nontangential maximal function lies in $L^p(\mathcal{M})$, then f has a nontangential limit $f^+ \in L^p(\mathcal{M})$ a.e. on \mathcal{M} (Verchota), and by the Green formula (see *e.g.* "Clifford Algebras and Dirac Operators in Analysis" by Gilbert and Murray):

$$f(z) = \mathcal{C}f^+(z) := rac{1}{4\pi}\int_{\mathcal{M}}rac{\overline{y-z}}{|y-z|^3}n(y)f^+(y)d\sigma(y), \qquad z\in \Omega^+.$$

• If f is left monogenic in Ω^+ and its nontangential maximal function lies in $L^p(\mathcal{M})$, then f has a nontangential limit $f^+ \in L^p(\mathcal{M})$ a.e. on \mathcal{M} (Verchota), and by the Green formula (see *e.g.* "Clifford Algebras and Dirac Operators in Analysis" by Gilbert and Murray):

$$f(z) = \mathcal{C}f^+(z) := rac{1}{4\pi}\int_{\mathcal{M}}rac{\overline{y-z}}{|y-z|^3}n(y)f^+(y)d\sigma(y), \qquad z\in \Omega^+.$$

Here n(y) is the exterior unit normal to \mathcal{M} .

• If f is left monogenic in Ω^+ and its nontangential maximal function lies in $L^p(\mathcal{M})$, then f has a nontangential limit $f^+ \in L^p(\mathcal{M})$ a.e. on \mathcal{M} (Verchota), and by the Green formula (see *e.g.* "Clifford Algebras and Dirac Operators in Analysis" by Gilbert and Murray):

$$f(z)=\mathcal{C}f^+(z):=rac{1}{4\pi}\int_{\mathcal{M}}rac{\overline{y-z}}{|y-z|^3}n(y)f^+(y)d\sigma(y),\qquad z\in\Omega^+.$$

Here n(y) is the exterior unit normal to \mathcal{M} . • If $z \in \Omega^-$, then the above right hand side is zero.

• If f is left monogenic in Ω^+ and its nontangential maximal function lies in $L^p(\mathcal{M})$, then f has a nontangential limit $f^+ \in L^p(\mathcal{M})$ a.e. on \mathcal{M} (Verchota), and by the Green formula (see *e.g.* "Clifford Algebras and Dirac Operators in Analysis" by Gilbert and Murray):

$$f(z)=\mathcal{C}f^+(z):=rac{1}{4\pi}\int_{\mathcal{M}}rac{\overline{y-z}}{|y-z|^3}n(y)f^+(y)d\sigma(y),\qquad z\in\Omega^+.$$

Here n(y) is the exterior unit normal to \mathcal{M} .

- If $z \in \Omega^-$, then the above right hand side is zero.
- A similar result holds if f is left monogenic in Ω^- ;

• If f is left monogenic in Ω^+ and its nontangential maximal function lies in $L^p(\mathcal{M})$, then f has a nontangential limit $f^+ \in L^p(\mathcal{M})$ a.e. on \mathcal{M} (Verchota), and by the Green formula (see *e.g.* "Clifford Algebras and Dirac Operators in Analysis" by Gilbert and Murray):

$$f(z)=\mathcal{C}f^+(z):=rac{1}{4\pi}\int_{\mathcal{M}}rac{\overline{y-z}}{|y-z|^3}n(y)f^+(y)d\sigma(y),\qquad z\in\Omega^+.$$

Here n(y) is the exterior unit normal to \mathcal{M} .

- If $z \in \Omega^-$, then the above right hand side is zero.
- A similar result holds if *f* is left monogenic in Ω⁻; the nontangential limit on *M* from Ω⁻ is denoted by *f⁻* ∈ *L^p*(*M*).

For a C-valued h ∈ L^p(M), Ch is left monogenic on ℝ³ \ M and its nontangential maximal function lies in L^p(M) [Coifman-McIntosh-Meyer, 1982].

- For a C-valued h ∈ L^p(M), Ch is left monogenic on ℝ³ \ M and its nontangential maximal function lies in L^p(M) [Coifman-McIntosh-Meyer, 1982].
- Moreover $\mathcal{C}h$ has non-tangential limits $\mathcal{C}^{\pm}h$ a.e. on \mathcal{M} from Ω^{\pm}

- For a C-valued h ∈ L^p(M), Ch is left monogenic on ℝ³ \ M and its nontangential maximal function lies in L^p(M) [Coifman-McIntosh-Meyer, 1982].
- Moreover $\mathcal{C}h$ has non-tangential limits $\mathcal{C}^{\pm}h$ a.e. on \mathcal{M} from Ω^{\pm} with

$$\mathcal{C}^{\pm}h(y) = \pm \frac{h(y)}{2} + \mathcal{SC}h(y), \qquad y \in \mathcal{M},$$

where *SCh* is the *singular Cauchy integral operator:*

$$\mathcal{SCh}(y) = rac{1}{4\pi} \lim_{arepsilon o 0} \int_{\mathcal{M} \setminus \mathcal{B}(y,arepsilon)} rac{\overline{\xi-y}}{|\xi-y|^3} \mathit{n}(\xi) \mathit{h}(\xi) \mathit{d}\sigma(\xi), \qquad y \in \mathcal{M}.$$

- For a C-valued h ∈ L^p(M), Ch is left monogenic on ℝ³ \ M and its nontangential maximal function lies in L^p(M) [Coifman-McIntosh-Meyer, 1982].
- Moreover $\mathcal{C}h$ has non-tangential limits $\mathcal{C}^{\pm}h$ a.e. on \mathcal{M} from Ω^{\pm} with

$$\mathcal{C}^{\pm}h(y) = \pm \frac{h(y)}{2} + \mathcal{SC}h(y), \qquad y \in \mathcal{M},$$

where *SCh* is the *singular Cauchy integral operator:*

$$\mathcal{SCh}(y) = rac{1}{4\pi} \lim_{arepsilon o 0} \int_{\mathcal{M} \setminus \mathcal{B}(y,arepsilon)} rac{\overline{\xi-y}}{|\xi-y|^3} \mathit{n}(\xi) \mathit{h}(\xi) \mathit{d}\sigma(\xi), \qquad y \in \mathcal{M}.$$

• This gives us an analog of the Plemelj formula:

$$\mathcal{C}^+h(y)-\mathcal{C}^-h(y)=h(y).$$

• Let *h* be a L^p normal vectorfield on \mathcal{M} , regarded as \mathfrak{C} -valued

- Let *h* be a L^p normal vectorfield on \mathcal{M} , regarded as \mathfrak{C} -valued
- Write h = C⁺h − C⁻h by Plemelj formula. Since h is normal, C[±]h ∈ H^p_±. Indeed, if h(y) is normal to M at y, the C-product n(y)h(y) is scalar-valued, so the integrand in the definition of Ch is vector valued.

- Let *h* be a L^p normal vectorfield on \mathcal{M} , regarded as \mathfrak{C} -valued
- Write h = C⁺h C⁻h by Plemelj formula. Since h is normal, C[±]h ∈ H^p_±. Indeed, if h(y) is normal to M at y, the C-product n(y)h(y) is scalar-valued, so the integrand in the definition of Ch is vector valued. Hence Ch is vector-valued and otherwise monogenic, therefore it is a harmonic gradient. This proves existence of the decomposition.

- Let *h* be a L^p normal vectorfield on \mathcal{M} , regarded as \mathfrak{C} -valued
- Write h = C⁺h C⁻h by Plemelj formula. Since h is normal, C[±]h ∈ H^p_±. Indeed, if h(y) is normal to M at y, the C-product n(y)h(y) is scalar-valued, so the integrand in the definition of Ch is vector valued. Hence Ch is vector-valued and otherwise monogenic, therefore it is a harmonic gradient. This proves existence of the decomposition.
- Uniqueness follows from uniqueness of the Hodge decomposition and the Liouville theorem for harmonic functions.

• Assume $V = m \otimes \delta_{\mathcal{M}}$ where $m = (m_1, m_2, m_3)^t$ is a vector field in $L^p(\mathcal{M})$.

- Assume $V = m \otimes \delta_{\mathcal{M}}$ where $m = (m_1, m_2, m_3)^t$ is a vector field in $L^p(\mathcal{M})$.
- Write $m = \psi n + m_t$ where *n* is the normal and m_t the tangential component.

- Assume $V = m \otimes \delta_{\mathcal{M}}$ where $m = (m_1, m_2, m_3)^t$ is a vector field in $L^p(\mathcal{M})$.
- Write $m = \psi n + m_t$ where *n* is the normal and m_t the tangential component. Let *R* be the rotation by $-\pi/2$ in the tangent plane and $R(m_t) = D + G$ the Hodge decomposition.

Theorem

The distribution is silent from outside if and only if

$$2\pi\psi(y) = -\lim_{\varepsilon \to 0} \int_{\mathcal{M} \setminus B(y,\varepsilon)} \frac{\xi - y}{|\xi - y|^3} . (\psi n + R(D))(\xi) d\sigma(\xi) \quad y \in \mathcal{M}.$$

- Assume $V = m \otimes \delta_{\mathcal{M}}$ where $m = (m_1, m_2, m_3)^t$ is a vector field in $L^p(\mathcal{M})$.
- Write $m = \psi n + m_t$ where *n* is the normal and m_t the tangential component. Let *R* be the rotation by $-\pi/2$ in the tangent plane and $R(m_t) = D + G$ the Hodge decomposition.

Theorem

The distribution is silent from outside if and only if

$$2\pi\psi(y)=-\lim_{\varepsilon\to 0}\int_{\mathcal{M}\setminus B(y,\varepsilon)}\frac{\xi-y}{|\xi-y|^3}.(\psi n+R(D))(\xi)d\sigma(\xi)\quad y\in\mathcal{M}.$$

This is a more complicated singular integral equation involving the curvature.

Special cases
Special cases

• On a sphere, rotation by $\pi/2$ of a gradient vector field is divergence free.

Special cases

• On a sphere, rotation by $\pi/2$ of a gradient vector field is divergence free. Then one can show:

Corollary

Let \mathcal{M} be a sphere in \mathbb{R}^3 and $m \in (L^p(\mathcal{M})^3$ with 1 .Then <math>m is silent from outside (resp. inside) if and only if

 $m \in \mathcal{H}^p_- \oplus \mathcal{D}^p(\mathcal{M}) \quad (\text{resp. } \mathcal{H}^p_+ \oplus \mathcal{D}^p(\mathcal{M})).$

Special cases

• On a sphere, rotation by $\pi/2$ of a gradient vector field is divergence free. Then one can show:

Corollary

Let \mathcal{M} be a sphere in \mathbb{R}^3 and $m \in (L^p(\mathcal{M})^3$ with 1 .Then <math>m is silent from outside (resp. inside) if and only if

 $m \in \mathcal{H}^p_- \oplus \mathcal{D}^p(\mathcal{M}) \quad (\text{resp. } \mathcal{H}^p_+ \oplus \mathcal{D}^p(\mathcal{M})).$

• If $\operatorname{supp} m$ is a strict subset of \mathcal{M} , things get simple:

Corollary

If supp $m \neq M$, then m is silent from outside iff it is silent from inside, which is iff

 $m \in \mathcal{D}^p(\mathcal{M}).$

Theorem

Let $m \in (L^2(\mathcal{M})^3$ with supp $m \subset \Gamma_0 \neq \mathcal{M}$, and assume we know the field $B = \nabla P_{\operatorname{div} m}$ on a surface patch Σ disjoint from \mathcal{M} .

Theorem

Let $m \in (L^2(\mathcal{M})^3$ with supp $m \subset \Gamma_0 \neq \mathcal{M}$, and assume we know the field $B = \nabla P_{\operatorname{div} m}$ on a surface patch Σ disjoint from \mathcal{M} . Then, to each $\varepsilon > 0$ and $\psi \in L^2(\mathcal{M})$, there is $\phi \in (L^2(\Sigma))^3$ depending on supp m but not on m such that

 $|\langle B, \phi \rangle_{\Sigma} - \langle m, \nabla \psi \rangle_{\mathcal{M}}| \leq \varepsilon ||m||_{L^2}.$

Theorem

Let $m \in (L^2(\mathcal{M})^3$ with supp $m \subset \Gamma_0 \neq \mathcal{M}$, and assume we know the field $B = \nabla P_{\operatorname{div} m}$ on a surface patch Σ disjoint from \mathcal{M} . Then, to each $\varepsilon > 0$ and $\psi \in L^2(\mathcal{M})$, there is $\phi \in (L^2(\Sigma))^3$ depending on supp m but not on m such that

 $|\langle B, \phi \rangle_{\Sigma} - \langle m, \nabla \psi \rangle_{\mathcal{M}}| \leq \varepsilon ||m||_{L^2}.$

The proof uses that ∇ψ ∈ (KerA)[⊥], where A maps m ∈ (L²(Γ₀))³ to B_{|Σ} ⊂ (L²(Σ))³.

Theorem

Let $m \in (L^2(\mathcal{M})^3$ with supp $m \subset \Gamma_0 \neq \mathcal{M}$, and assume we know the field $B = \nabla P_{\operatorname{div} m}$ on a surface patch Σ disjoint from \mathcal{M} . Then, to each $\varepsilon > 0$ and $\psi \in L^2(\mathcal{M})$, there is $\phi \in (L^2(\Sigma))^3$ depending on supp m but not on m such that

 $|\langle B, \phi \rangle_{\Sigma} - \langle m, \nabla \psi \rangle_{\mathcal{M}}| \leq \varepsilon ||m||_{L^2}.$

- The proof uses that ∇ψ ∈ (KerA)[⊥], where A maps m ∈ (L²(Γ₀))³ to B_{|Σ} ⊂ (L²(Σ))³.
- ϕ can be chosen in $(W_0^{1,2}(\Sigma))^3$, and computed via

 $-\rho\nabla\phi + AA^*\phi = A\nabla\psi, \qquad \rho > 0.$

Theorem

Let $m \in (L^2(\mathcal{M})^3$ with supp $m \subset \Gamma_0 \neq \mathcal{M}$, and assume we know the field $B = \nabla P_{\operatorname{div} m}$ on a surface patch Σ disjoint from \mathcal{M} . Then, to each $\varepsilon > 0$ and $\psi \in L^2(\mathcal{M})$, there is $\phi \in (L^2(\Sigma))^3$ depending on supp m but not on m such that

 $|\langle B, \phi \rangle_{\Sigma} - \langle m, \nabla \psi \rangle_{\mathcal{M}}| \leq \varepsilon ||m||_{L^2}.$

- The proof uses that ∇ψ ∈ (KerA)[⊥], where A maps m ∈ (L²(Γ₀))³ to B_{|Σ} ⊂ (L²(Σ))³.
- ϕ can be chosen in $(W_0^{1,2}(\Sigma))^3$, and computed via

 $-\rho\nabla\phi + AA^*\phi = A\nabla\psi, \qquad \rho > 0.$

• Can be used to estimate moments or spherical harmonics expansions.

 In C, rational approximation amounts to approximation by (conjugates of) gradients of discrete logarithmic potentials with finitely many masses.

- In C, rational approximation amounts to approximation by (conjugates of) gradients of discrete logarithmic potentials with finitely many masses.
- In \mathbb{R}^n , let rational approximation mean approximation by gradients of discrete harmonic potentials with finitely many masses.

- In C, rational approximation amounts to approximation by (conjugates of) gradients of discrete logarithmic potentials with finitely many masses.
- In Rⁿ, let rational approximation mean approximation by gradients of discrete harmonic potentials with finitely many masses. The Hardy-Hodge decomposition implies:

Theorem

Let *S* be a Lipschitz regular surface patch on a compact connected smooth hypersurface $\mathcal{M} \subset \mathbb{R}^n$. Let v be \mathbb{R}^n -valued in $L^p(S)$, $1 . Then, v can be approximated arbitrarily close by rationals in <math>L^p(S)$ iff the tangential component of v is a gradient.

• By [V.P. Havin-S. Smirnov, 1999], a measure with compact support containing no simple rectifiable arc of positive length cannot have a distributional divergence which is again a measure.

• By [V.P. Havin-S. Smirnov, 1999], a measure with compact support containing no simple rectifiable arc of positive length cannot have a distributional divergence which is again a measure. The same holds on a smooth manifold.

- By [V.P. Havin-S. Smirnov, 1999], a measure with compact support containing no simple rectifiable arc of positive length cannot have a distributional divergence which is again a measure. The same holds on a smooth manifold.
- A fortiori then, a compact set containing no such arc is a grad-set for *L^p* (any field is approximable y a gradient).

- By [V.P. Havin-S. Smirnov, 1999], a measure with compact support containing no simple rectifiable arc of positive length cannot have a distributional divergence which is again a measure. The same holds on a smooth manifold.
- A fortiori then, a compact set containing no such arc is a grad-set for L^p (any field is approximable y a gradient). The Hardy-Hodge decomposition now implies:

Theorem

Let K be a closed set in a compact connected smooth hypersurface $\mathcal{M} \subset \mathbb{R}^n$, and assume that K contains no simple rectifiable arc of positive length. Then, each \mathbb{R}^n -valued v in $L^p(K)$ can be approximated arbitrary close by rationals in $L^p(K)$, 1 .