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1 Introduction

Many applied problems lead to studing solutions of travelling waves type for infinite-dimensional

dynamic systems. In particular, the theory of a plastic deformation considers the infinite-

dimensional dynamic system

mÿi = yi+1 − 2yi + yi−1 + φ(yi), i ∈ Z, t ∈ R (1)

where the potential φ(·) is smooth periodic function. The equation (1) is a system with the

Fraenkel - Kontorova potential [1]. This system describes a behaviour of a countable number

of balls with masses equal to m, located in integer points of the real axis, where any two

neighboring balls are connected by a flexible spring. The studying such systems with different

potentials is one of the intensively developing directions in the dynamic systems theory. For

them, the central problem is the studing of solutions of traveling wave type. Those solutions

represent one of observed classes of waves.

Definition 1. The system solution (1) is any sequence {yi(·)}
+∞
−∞ of continuous functions for

which the derivatives sequence {ẏi(·)}
+∞
−∞ consists of absolutely continuous functions and such

sequence satisfies to system of the equations (1). �

Definition 2. Let’s say, that the solution {yi(·)}
+∞
−∞ of the system (1), defined for all t ∈ R, is

of a traveling wave type, if there exists τ > 0, not depending on t and i, such that the equality

yi(t+ τ) = yi+1(t) (2)

is true for all i ∈ Z and t ∈ R. Such constant τ is named of a traveling wave characteristic. �

One of methods of investigating such systems is a constructing solutions by using an explicit

form of right-hand side of the system, and also its possible periodicity, infinite differentiability,

analyticity. The travelling wave type solutions were constucted and for near potentials by the

perturbations theory. The review of works on infinite-dimensional systems with potentials of

Fraenkel - Kontorova and Fermi - Past - Ulam is presented in two [2]. At the same time, such

approach does not allow to describe a space of all solutions of traveling wave type, and also their

possible asymptotics. As a rule, the solutions existence is proved in wider space of infinitely

differentiated functions, and the solutions uniqueness is proved in narrower space of analytical

functions.

In the following, we suggest an approach, by which the solutions of traveling wave type for

the system (1) may be realized as those of the one-parameter family of functional-differential

equations of pointwise type. In this connection, the system (1) with a potential without singularities

can be investigated by more common suppositions for the potential φ(·), such as a Lipschitz’s

condition with the constant L. In the framework of the formalism suggested, it is possible to

describe the solutions of travelling wave type, and also their asymptotics, connected with of

the traveling wave characteristic.
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The suggested approach allows to consider the system (1) with unequal of balls masses, too.

It is shown, that there exist no solutions of travelling wave type for the systems with unequal

masses of balls, different from either stationary stations or rectilinear uniform motions. In this

connection, the quasisolutions of travelling wave type are defined. Such quasisolutions are the

correct expension of travelling wave type solutions space and ones coincide with the travelling

wave type solutions space at the equal masses of balls. Results of this kind have been presented

at the same conference in 2015.

At the same time, in many cases (at equal masses) presence of solutions of travelling waves

type with special properties such as the periodic and limited solutions of travelling waves type

is important. Within of the offered approach also it is possible to receive the conditions of

existence both periodic, and the limited solutions of travelling waves type.
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2 Spaces of solutisions.

The infinite-dimensional dynamic system with not local restrictions is considered

mÿi = yi+1 − 2yi + yi−1 + φ(yi), i ∈ Z, t ∈ R, (1∗)

yi(t + τ) = yi+1(t). (2∗)

We noticed that the previous authors at study of solutions of travelling wave type used

a concrete kind of potential, and also such local properties as infinite differentiability, or

analyticity. In our approach we will study solutions with the set global properties in a kind

of asymptotics both on time, and on space.

For this purpose, we will define a one-parameter family of the embedded Banach’s spaces

of functions with weights

Ln
µC

(k)(R) =

{

x(.) : x(.) ∈ C(k) (R,Rn) , max
0≤r≤k

sup
t∈R

‖x(r)(t)µ|t|‖Rn < +∞

}

, µ ∈]0, 1[

and such vector space

Kn =
∏

i∈Z
Rn

i , Rn
i = R

n, i ∈ Z

( κ ∈ Kn, κ = {xi}
+∞
−∞ ).

is definded with the standard topology of the full direct product ( the space metrized). Elements

of the space K2 are infinite sequences

κ = {(ui, vi)
′

}+∞
−∞, ui, vi ∈ R

(a prime denotes the transposition).

In space Kn we will define the Banach subspaces family Kn
∞µ, µ ∈ (0, 1]

Kn
∞µ = {κ : sup

i∈Z
‖xi‖Rnµ|i| < +∞}

with norm

‖κ‖∞µ = sup
i∈Z

‖xi‖Rnµ|i|,

and the Hilbert subspaces family Kn
2µ, µ ∈ (0, 1)

Kn
2µ =

{

κ : κ ∈ Kn;
+∞
∑

i=−∞
‖xi‖

2
Rnµ

2|i| < +∞

}

with norm

‖κ‖2µ = [

+∞
∑

i=−∞
‖xi‖

2
Rnµ

2|i|]
1

2 .

Here µ it is free parameter by which the space of solutions will be choosed.
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Рис. 1: Graphs of functions µ1(τ), µ2(τ).

Let’s consider the equation relatively of two variables τ ∈ (0,+∞) and µ ∈ (0, 1)

Cτ
[

2µ−1 + 1
]

= lnµ−1, (3)

where

C = max{1; [L+ 2] m−1}.

The set of solutions of the equation (3) is described by functions µ1(τ), µ2(τ), set in figure 1.

Equality µ̂ = 2Cτ̂ takes place. As 0 < µ̂ < 1, then there is some absolute estimation for

magnitude τ̂

τ̂ < (2C)−1.
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3 Solutions of travelling wave type. A case of equal masses.

For a case of equal masses we will formulate the theorem of existence and uniqueness of the

solutions of travelling wave type.

Theorem 1. There exists a unique solution {yi(·)}
+∞
−∞ of travelling wave type with the characteristic

τ at any initial data ī ∈ Z, a, b ∈ R, t̄ ∈ R and the characteristic τ , satisfying the

condition

0 < τ < τ̂ ,

for the initial system of the differential equations (1), such, that the solution satisfies the initial

conditions yī(t̄) = a, ẏī(t̄) = b. Moreover, at any parameter µ ∈]µ1(τ), µ2(τ)[ each coordinate

yi(·), i ∈ Z belongs to the space L1
τ
√
µC

(1)(R) and the sequence {(yi(t), ẏi(t))
′

}+∞
−∞ belongs to

the space K2
2µ at any t ∈ R. Such solution continuously depends on the initial data a, b ∈ R.

�

Here, we take the proximity as the norm of the phase space K2
2µ.

The theorem 1 not only guarantees the existence of a solution, but also sets its asymptotics

both on time t and on coordinates i ∈ Z (on space).

If the potential φ(.) is identically equal to zero, then solutions of travelling wave type,

guaranteed by the theorem 1, set either the rectilinear uniform motions {yi(t)}
+∞
−∞ = {bt +

biτ + α}+∞
−∞, (b 6= 0) or stationary state (b = 0). If the potential φ(.) isn’t identically equal to

zero, then there exists a solution of travelling wave type, guaranteed by the theorem 1, with

the characteristic τ, 0 < τ < τ̂ given beforehand and describing neither rectilinear uniform

motion {yi(t)}
+∞
−∞ = {bt + biτ + α}+∞

−∞ (b 6= 0) nor stationary state (b = 0) (the existence of

nontrivial solutions).
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4 Some elements of the used approach

The study of traveling wave type solutions with the set characteristic τ > 0 for system ( 1∗)

means the studying of solutions of system

mÿi = yi+1 − 2yi + yi−1 + φ(yi), i ∈ Z, t ∈ R, (4)

yi(t + τ) = yi+1(t). (5)

It is obvious that restriction on an interval [0, τ ] any solution of system (4)-(5) with not local

restrictions (5) is the solution of the boundary value problem

mÿi = yi+1 − 2yi + yi−1 + φ(yi), i ∈ Z, t ∈ [0, τ ] (6)

yi(τ) = yi+1(0), ẏi(τ) = ẏi+1(0) (7)

with unlocal boundary conditions (7).

The inverse statement also is true: any solution of the boundary value problem (6)-(7),

continued by to the differential equation (4), is the solution of system (4)-(5).

On the other hand, the studying of the solutions of the boundary value problem (6)-(7) is

equivalent to that of the solutions space of the functional - differential equation

ẍ(t) = m−1[x(t + τ)− 2x(t) + x(t− τ) + φ(x(t))], t ∈ R. (8)

The solutions of the boundary value problem (6)-(7) and the functional-differential equation

(8) are connected by the following way: for any t ∈ R

x(t) = y[tτ−1](t− [tτ−1]),

where [.] is the integer part of the number.

7



Operator representation of travelling wave.

Let’s consider the space K2 with the elements κ = {(ui, vi)
′

}+∞
−∞ (a prime means transposition).

Let’s define a linear operator A, the shift operator T and a nonlinear operator F, acting

continuously from space K2 in itself by the following rule : for any i ∈ Z, κ ∈ K2,

(Aκ)i = (vi, m−1[ui+1 − 2ui + ui−1])
′

, (Tκ)i = (κ)i+1, (Fκ)i = (0, m−1φ(ui))
′

.

Let’s remark, that the shift operator T is commutative with operators A and F.

The system of equations (4)-(5) may be rewritten in the following equivalent form

κ̇ = Aκ + F(κ), t ∈ R. (9)

κ(t+ τ) = Tκ(t). (10)

It is obvious that restriction on an interval [0, τ ] everyone the system solution (9)-(10) with not

local restrictions (10) will be the solution of the boundary value problem

κ̇ = Aκ + F(κ), t ∈ [0, τ ]. (11)

κ(τ) = Tκ(0) (12)

with not local boundary conditions (12).

In case of equal masses the operators A and F are commutated. It follows from the condition

of commutativity of operators A and F, that any solution of the boundary problem (11)-(12),

continued on all R by to the differential equation (9), is the system solution (9)-(10). In it also

there is a difference from a case of unequal masses.
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The periodic solutions of travelling wave type.

Definition 3. The solution {yi(·)}
+∞
−∞ of the systems (1) is periodic with the period ω ∈ R+, if

for any i ∈ Z the condition yi(t+ ω) = yi(t), t ∈ R is true. �

If ω = kτ, k ∈ Z+, then ω-periodic solutions of travelling wave type with the characteristic

τ can be presented in the operational form as the solutions of the following system

κ̇ = Aκ + F(κ), t ∈ R, (13)

κ(t+ τ) = Tκ(t), (14)

T
ω
κ(t) = κ(t). (15)

Thus, if the solution of travelling wave type is ω-periodic solution on time, then it is ω-periodic

on phase variables κ.

It is obvious that restriction on an interval [0, τ ] everyone solution of the system (13)-(15)

with not local restrictions (14) will be the solution of the boundary value problem

κ̇ = Aκ + F(κ), t ∈ [0, τ ]. (16)

κ(τ) = Tκ(0) (17)

T
ω
κ(t) = κ(t) (18)

with not local boundary conditions (17).

On the other hand, studying of solution of the boundary value problem (16)-(18) is equivalent

studying of the space of ω-periodic solution on time of the functional-differential equation

ẍ(t) = m−1[ x(t+ τ)− 2x(t) + x(t− τ) + φ(x(t)) ], t ∈ R (19)

and corresponding solution are connected as follows: for any t ∈ R

x(t) = u[tτ−1](t− [tτ−1]),

where κ(t) = {(ui(t), vi(t))
′

}+∞
−∞, and [.] is the whole part of number.

Let’s formulate the theorem of existence of the periodic solution of travelling wave type. If

the potential has zero value, i.e. for some b ∈ R equality φ(b) = 0 is true, then the solution

{yi(·)}
+∞
−∞ , yi(t) ≡ b, t ∈ R, i ∈ Z is stationary state of system (1), and it is also the

solution of travelling wave type with any characteristic τ . It is obvious that such solutions is

as the periodic solutions with any period. Therefore it is necessary to consider potentials with

a constant sign.

Theorem 2. Let are set

0 < τ < τ̂, ω = kτ, k ∈ Z+.

There will be such positive constants φ̄ and L̄ that under the conditions

|φ(0)| ≤ φ̄, L ≤ L̄ (20)

for initial system of the differential equations (1) there is a solution {yi(·)}
+∞
−∞ of travelling wave

type with the characteristic τ , being ω-periodic solution. �
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