Wave model of the Schroedinger operator on semiaxis (the limit point case)

M.I.Belishev, S.A.Simonov (PDMI)

Plan

1. Operator L_0

• The class of operators. Schroedinger operator $L_0^{\rm Sch}$ on $(0,\infty)$ with defect indexes (1,1).

• A Green System. The Green system of L_0^{Sch} .

2. Dynamical System with Boundary Control

- An abstract DSBC associated with L_0 . Reachable sets, controllability.
- Isotony I_{L_0} . The system $\alpha_{L_0^{\text{Sch}}}$ and isotony $I_{L_0^{\text{Sch}}}$.

3. Wave model

- Lattices, lattice-valued functions, atoms. A space Ω_{L_0} (wave spectrum of L_0). The space $\Omega_{L_0}^{\text{Sch}}$.
- A wave model \tilde{L}_0^* . The model $\tilde{L}_0^{\mathrm{Sch}}$ *.
- Applications to inverse problems. The spectral IP for L_0^{Sch} .

1 Operator L_0

Let \mathcal{H} be a separable Gilbert space, L_0 acts in \mathcal{H} and

- 1. $L_0 = \overline{L}_0$, $\overline{\text{Dom } L_0} = \mathcal{H}$
- 2. $\exists \varkappa = \text{const} > 0 \text{ s.t. } (L_0 y, y) \ge \varkappa ||y||^2, y \in \text{Dom } L_0$

3. $1 \leq n_{\pm}(L_0) = \dim \operatorname{Ker} L_0^* \leq \infty$.

Let L be the Friedichs extension of L_0 :

$$L_0 \subset L \subset L_0^*; \quad L^* = L; \quad (Ly, y) \geqslant \varkappa \|y\|^2, \ y \in \text{Dom}\, L.$$

Notation: $\mathbb{R}_+ := (0, \infty), \ \bar{\mathbb{R}}_+ := [0, \infty).$ Let $\mathcal{H} = L_2(\mathbb{R}_+)$ and $L_0 = L_0^{\mathrm{Sch}}$,

$$L_0^{\mathrm{Sch}} y := -y'' + qy ,$$

Dom $L_0^{\mathrm{Sch}} = \left\{ y \in \mathcal{H} \cap H_{\mathrm{loc}}^2(\bar{\mathbb{R}}_+) \mid y(0) = y'(0) = 0; \ -y'' + qy \in \mathcal{H} \right\} ,$

where q = q(x) is a real-valued function (*potential*) provided

(1)
$$q \in C_{\text{loc}}(\bar{\mathbb{R}}_+)$$

(2) $n_{\pm}(L_0^{\text{Sch}}) = 1$ (the limit point case)
(3) $(L_0^{\text{Sch}}y, y) \ge \varkappa ||y||^2, y \in \text{Dom } L_0^{\text{Sch}}.$

In such a case, the problem

$$-\phi'' + q\phi = 0, \ x > 0; \qquad \phi(0) = 1, \qquad \phi \in L_2(\mathbb{R}_+)$$

has a unique solution $\phi(x)$;

$$(L_0^{\mathrm{Sch}})^* y := -y'' + qy,$$

$$\mathrm{Dom} \ (L_0^{\mathrm{Sch}})^* = \left\{ y \in \mathcal{H} \cap H^2_{\mathrm{loc}}(\bar{\mathbb{R}}_+) \mid -y'' + qy \in \mathcal{H} \right\},$$

$$\mathrm{Ker} \ (L_0^{\mathrm{Sch}})^* = \{ c\phi \mid c \in \mathbb{C} \};$$

the Friedrichs extension of $L_0^{\rm Sch}$ is

$$L^{\text{Sch}}y := -y'' + qy,$$

Dom $L^{\text{Sch}} = \left\{ y \in \mathcal{H} \cap H^2_{\text{loc}}(\bar{\mathbb{R}}_+) \mid y(0) = 0; \ -y'' + qy \in \mathcal{H} \right\}.$

Green system

Let \mathcal{H} \mathcal{B} be the Hilbert spaces, $A : \mathcal{H} \to \mathcal{H}$ and $\Gamma_i : \mathcal{H} \to \mathcal{B}$ (i = 1, 2) the operators provided:

$$\overline{\text{Dom }A} = \mathcal{H}, \quad \text{Dom }\Gamma_i \supset \text{Dom }A, \quad \overline{\text{Ran }\Gamma_1 \vee \text{Ran }\Gamma_2} = \mathcal{B}.$$

The collection $\mathfrak{G} = \{\mathcal{H}, \mathcal{B}; A, \Gamma_1, \Gamma_2\}$ is a *Green system* if

 $(Au, v)_{\mathcal{H}} - (u, Av)_{\mathcal{H}} = (\Gamma_1 u, \Gamma_2 v)_{\mathcal{B}} - (\Gamma_2 u, \Gamma_1 v)_{\mathcal{B}}$

for $u, v \in \text{Dom } A$. \mathcal{H} is an inner space, \mathcal{B} is a boundary values space, A is a basic operator, $\Gamma_{1,2}$ are the boundary operators.

System \mathfrak{G}_{L_0}

Operator L_0 determines a Green system in a canonical way. Put

$$\mathcal{K} := \operatorname{Ker} L_0^*, \quad \Gamma_1 := L^{-1} L_0^* - \mathbb{I}, \quad \Gamma_2 := P_{\mathcal{K}} L_0^*,$$

where $P_{\mathcal{K}}$ projects in \mathcal{H} onto \mathcal{K}

Proposition 1. The collection $\mathfrak{G}_{L_0} := \{\mathcal{H}, \mathcal{K}; L_0^*, \Gamma_1, \Gamma_2\}$ is a Green system.

Let $L_0 = L_0^{\text{Sch}}, \ \mathcal{H} = L_2(\mathbb{R}_+), \ \mathcal{K} = \{c\phi \mid c \in \mathbb{C}\};$ $\Gamma_1 y = -y(0)\phi, \qquad \Gamma_2 y = \left[\frac{y'(0) - y(0)\phi'(0)}{\eta'(0)}\right]\phi,$

where $\eta := (L^{\text{Sch}})^{-1}\phi$. Then $\mathfrak{G}_{L_0^{\text{Sch}}} := \{\mathcal{H}, \mathcal{K}; (L_0^{\text{Sch}})^*, \Gamma_1, \Gamma_2\}$ is the canonical Green system associated with L_0^{Sch} .

2 Dynamical System with Boundary Control

System α_{L_0}

The Green system \mathfrak{G}_{L_0} determines a DSBC α_{L_0} of the form

$$\begin{split} u_{tt} + L_0^* u &= 0, & t > 0, \\ u_{t=0} &= u_t|_{t=0} &= 0 & \text{in } \mathcal{H} \\ \Gamma_1 u &= h, & t \ge 0, \end{split}$$

where h = h(t) is a boundary control (a \mathcal{K} -valued function of the time), $u = u^{h}(t)$ is a solution (*wave*, an \mathcal{H} -valued function of the time). For a smooth enough class $\mathcal{M} \ni h$, u^{h} is classical.

Proposition 2. For an $h \in \mathcal{M}$, one has

$$u^{h}(t) = -h(t) + \int_{0}^{t} L^{-\frac{1}{2}} \sin\left[(t-s)L^{\frac{1}{2}}\right] h_{tt}(s) \, ds \,, \qquad t \ge 0 \,, \qquad (2.1)$$

where L is the Friedrichs extension of L_0 .

$$\begin{split} & \text{For } L_0 = L_0^{\text{Sch}}, \, \text{system } \alpha_{L_0^{\text{Sch}}} \text{ is } \\ & u_{tt} - u_{xx} + qu = 0, & x > 0, \ t > 0, \\ & u|_{t=0} = u_t|_{t=0} = 0, & x \ge 0, \\ & u|_{x=0} = f \ , & t \ge 0 \ . \end{split}$$

For $\mathcal{M} := \{ f \in C^{\infty}[0,\infty) \mid \operatorname{supp} f \subset (0,\infty) \}$, the solution u^f is classical.

Controllability

For the DSBC α_{L_0} , the set

$$\mathcal{U}_{L_0}^T := \{ u^h(T) \mid h \in \mathcal{M} \}$$

is called *reachable* (at the moment t = T);

$$\mathcal{U}_{L_0} := igcup_{T>0} \mathcal{U}_{L_0}^T$$

is a *total* reachable set.

System α_{L_0} is *controllable*, if

$$\overline{\mathcal{U}}_{L_0} = \mathcal{H}$$
 .

Proposition 3. System α_{L_0} is controllable iff L_0 is a completely nonselfadjoint operator (i.e., L_0 induces a self-adjoint part in **no** subspace of \mathcal{H}).

For $L_0 = L_0^{\text{Sch}}$, one has

$$\mathcal{U}_{L_0^{\mathrm{Sch}}}^T = \{ y \in C^{\infty}(\bar{\mathbb{R}}_+) \mid \operatorname{supp} y \subset [0,T] \}, \quad \overline{\mathcal{U}}_{L_0^{\mathrm{Sch}}} = L_2(\mathbb{R}_+) = \mathcal{H},$$

so that $\alpha_{L_0^{\text{Sch}}}$ is controllable.

Isotony

Introduce a dynamical system β_{L_0} :

$$\begin{split} v_{tt} + L v &= g \,, & t > 0 \\ v|_{t=0} &= v_t|_{t=0} = 0 \,, \end{split}$$

where g = g(t) is an \mathcal{H} -valued function. For a smooth enough g, the solution $v = v^g(t)$ is

$$v^{g}(t) = \int_{0}^{t} L^{-\frac{1}{2}} \sin\left[(t-s)L^{\frac{1}{2}}\right] g(s) \, ds \,, \qquad t \ge 0$$

holds.

Fix a subspace $\mathcal{G} \subset \mathcal{H}$; let g be a \mathcal{G} -valued function. A set

 $\mathcal{V}_{\mathcal{G}}^{t} := \left\{ v^{g}(t) \mid g \in L_{2}^{\mathrm{loc}}\left([0,\infty);\mathcal{G}\right) \right\}$

is a reachable set of system β_{L_0} .

Proposition 4. If $\mathcal{G} \subset \mathcal{G}'$ and $t \leq t'$ then $\mathcal{V}_{\mathcal{G}}^t \subset \mathcal{V}_{\mathcal{G}'}^{t'}$.

Let $\mathfrak{L}(\mathcal{H})$ be the lattice of subspaces of \mathcal{H} with the standard operations

$$\mathcal{A} \lor \mathcal{B} = \overline{\{a+b \mid a \in \mathcal{A}, b \in \mathcal{B}\}}, \mathcal{A} \land \mathcal{B} = \mathcal{A} \cap \mathcal{B}, \, \mathcal{A}^{\perp} = \mathcal{H} \ominus \mathcal{A},$$

the partial order \subseteq , the least and greatest elements $\{0\}$ and \mathcal{H} , and the relevant topology.

A family of maps $I = \{I^t\}_{t \leq 0}, \ I^t : \mathfrak{L}(\mathcal{H}) \to \mathfrak{L}(\mathcal{H})$ is said to be an *isotony* if

$$I^0 := \mathrm{id}$$
 and $\mathcal{G} \subset \mathcal{G}', t \leqslant t'$ implies $I^t \mathcal{G} \subset I^{t'} \mathcal{G}',$

i.e., I respects the natural order on $\mathfrak{L}(\mathcal{H}) \times [0,T)$.

By Proposition 4, the family

$$I_{L_0}^0 := \operatorname{id}; \qquad I_{L_0}^t \mathcal{G} := \overline{\mathcal{V}_{\mathcal{G}}^t}, \quad t > 0$$

is the isotony determined by L_0 .

For $E \subset \overline{\mathbb{R}}_+$, let

$$E^{t} := \{ x \in \overline{\mathbb{R}}_{+} \mid \text{dist} (x, E) := \inf_{e \in E} |x - e| < t \}, \qquad t > 0$$

(a metric neighborhood). Denote $\Delta_{a,b} := [a, b] \subset \overline{\mathbb{R}}_+$ and

$$L_2(\Delta_{a,b}) := \{ y \in L_2(\mathbb{R}_+) \mid \operatorname{supp} y \subset [a,b] \}.$$

Proposition 5. For any $0 \leq a < b \leq \infty$, the relation

$$I_{L_{a}^{\mathrm{Sch}}}^{t}L_{2}(\Delta_{a,b}) = L_{2}(\Delta_{a,b}^{t}), \qquad t > 0$$

holds.

3 Wave model

Lattices

Let $\mathfrak{L}_{L_0} \subset \mathfrak{L}(\mathcal{H})$ be a minimal (sub)lattice s.t.

 $\overline{\mathcal{U}}_{L_0}^T \subset \mathfrak{L}_{L_0}, \ T \ge 0 \qquad \text{and} \qquad I_{L_0}^t \mathfrak{L}_{L_0} \subset \mathfrak{L}_{L_0}, \ t \ge 0$

(i.e., \mathfrak{L}_{L_0} is *invariant* w.r.t. the isotony I_{L_0}). The space of the growing \mathfrak{L}_{L_0} -valued functions

$$\mathcal{F}_{I_{L_0}}\left([0,\infty);\mathfrak{L}_{L_0}\right) := \left\{ F(\cdot) \mid F(t) = I_{L_0}^t \mathcal{A}, \ t \ge 0, \ \mathcal{A} \in \mathfrak{L}_{L_0} \right\}$$

is a lattice w.r.t. the point-wise operations, order, and topology.

Wave spectrum

Reminder. \mathcal{P} is a partially ordered set, 0 is the least element. An $a \in \mathcal{P}$ is an *atom (minimal element)* if

$$0 \neq p \preceq a$$
 implies $p = a$.

Let $\operatorname{At} \mathcal{P}$ be the set of atoms in \mathcal{P} .

Basic definition. The set

$$\Omega_{L_0} := \operatorname{At} \mathcal{F}_{I_{L_0}} \left([0, \infty); \mathfrak{L}_{L_0} \right)$$

endowed with a relevant topology is a *wave spectrum* of operator L_0 .

Each $\omega = \omega(\cdot) \in \Omega_{L_0}$ is a growing \mathfrak{L}_{L_0} -valued function of t. So, the path is

$$L_0 \Rightarrow \mathfrak{G}_{L_0} \Rightarrow \alpha_{L_0}, \mathcal{U}_{L_0}^T \Rightarrow I_{L_0} \Rightarrow \mathfrak{L}_{L_0} \Rightarrow \mathcal{F}_{I_{L_0}}\left([0,\infty);\mathfrak{L}_{L_0}\right) \Rightarrow \Omega_{L_0}.$$

Theorem 1. For $L_0 = L_0^{\text{Sch}}$, there is a bijection

$$\Omega_{L_0^{\mathrm{Sch}}} \ni \omega \leftrightarrow x \in \bar{\mathbb{R}}_+$$

and each atom is of the form

$$\omega = \omega_x(t) = L_2\left(\{x\}^t\right), \quad t \ge 0.$$

Endowing the wave spectrum with the proper metrizable topology, one gets

$$\Omega_{L_{0}^{\mathrm{Sch}}} \stackrel{\mathrm{isom}}{=} \bar{\mathbb{R}}_{+}$$

The model

Goal: the image map $\mathcal{H} \ni y \stackrel{Y}{\mapsto} \tilde{y}$, where $\tilde{y} = \tilde{y}(\cdot)$ is a "function" on Ω_{L_0} .

Fix $\omega \in \Omega_{L_0}$; let P_{ω}^t be the projection in \mathcal{H} onto $\omega(t)$. For $u, v \in \mathcal{H}$, a relation

$$u \stackrel{\omega}{=} v \quad \Leftrightarrow \quad \left\{ \exists t_0 = t_0(\omega, u, v) \text{ s.t. } P^t_\omega u = P^t_\omega v \text{ for all } t < t_0 \right\}$$

is an equivalence.

- The equivalence class $[y]_{\omega}$ is a germ of $y \in \mathcal{H}$ at the atom $\omega \in \Omega_{L_0}$.
- The linear space

$$\mathcal{G}_{\omega} := \{ [y]_{\omega} \mid y \in \mathcal{H} \}$$

is a germ space.

• The space

$$ilde{\mathcal{H}} := \bigsqcup_{\omega \in \Omega_{L_0}} \mathcal{G}_{\omega}$$

is an *image space*.

• The *image map* is

$$Y: \mathcal{H} \to \mathcal{H}, \qquad \tilde{y}(\omega) := [y]_{\omega}, \quad \omega \in \Omega_{L_0}.$$

• The wave model of L_0^* is

$$\widetilde{L_0^*}: \widetilde{\mathcal{H}} \to \widetilde{\mathcal{H}}, \quad \widetilde{L_0^*}:= Y L_0^* Y^{-1}.$$

Let $y \in \mathcal{H} = L_2(\mathbb{R}_+)$. Take an $e = c\phi \in \text{Ker}(L_0^{\text{Sch}})^*$ and fix an $\omega \in \Omega_{L_0}$. Identify $\Omega_{L_0^{\text{Sch}}} \equiv \overline{\mathbb{R}}_+$ (by Theorem 1) and

$$\tilde{y}(\omega) \equiv \lim_{t \to 0} \frac{(P^t_{\omega} y, e)}{(P^t_{\omega} e, e)}, \qquad \omega \in \bar{\mathbb{R}}_+$$

Then $\tilde{\mathcal{H}} \equiv L_{2,\mu}(\mathbb{R}_+)$ with $d\mu = \frac{d\omega}{e^2(\omega)}$.

Theorem 2. The representation

$$\left((L_0^{\text{Sch}})^* \tilde{y} \right)(\omega) = - \tilde{y}''(\omega) + p(\omega) \, \tilde{y}'(\omega) + Q(\omega) \tilde{y}(\omega) \,, \qquad \omega > 0$$

is valid with

$$p := -2 \frac{e'(\omega)}{e(\omega)}, \quad Q := q(\omega) - \frac{e''(\omega)}{e(\omega)}$$

Application to IP Inverse Data: the spectral function, Weyl function, dynamical response operator, etc. Then

$$\mathrm{ID} \ \Rightarrow \ \mathrm{copy} \ UL_0^{\mathrm{Sch}} U^* \ \Rightarrow \ \mathrm{wave} \ \mathrm{model} \ \widetilde{(L_0^{\mathrm{Sch}})^*} \ \Rightarrow \ p, Q \ \Rightarrow \ q \, .$$

References

- M.I.Belishev. A unitary invariant of a semi-bounded operator in reconstruction of manifolds. *Journal of Operator Theory*, Volume 69 (2013), Issue 2, 299-326.
- [2] M.I.Belishev and M.N.Demchenko. Dynamical system with boundary control associated with a symmetric semibounded operator. *Journal of Mathematical Sciences*, October 2013, Volume 194, Issue 1, pp 8-20. DOI: 10.1007/s10958-013-1501-8.
- [3] A.N.Kochubei. Extensions of symmetric operators and symmetric binary relations. *Math. Notes*, 17(1): 25–28, 1975.
- [4] V.Ryzhov. A General Boundary Value Problem and its Weyl Function. Opuscula Math., 27 (2007), no. 2, 305–331.