Holmgren theorems for the Radon transform

Jan Boman, Stockholm University

MIPT, September 14, 2016
Holmgren’s uniqueness theorem (1901):
Unique continuation across a non-characteristic hypersurface for (distribution) solutions of general linear PDE:s with analytic coefficients.
Hörmander’s proof of Holmgren’s theorem

Part 1. Microlocal regularity theorem for solutions of PDE:s with analytic coefficients:

\[WF_A(f) \subset WF_A(Pf) \cup \text{char}(P), \]

where \(\text{char}(P) = \{(x, \xi); p_{pr}(x, \xi) = 0\} \).
Hörmander’s proof of Holmgren’s theorem

Part 1. Microlocal regularity theorem for solutions of PDE:s with analytic coefficients:

\[WF_A(f) \subset WF_A(Pf) \cup \text{char}(P), \]

where \(\text{char}(P) = \{(x, \xi); p_{pr}(x, \xi) = 0\} \).

In particular, if \(P(x, D)f = 0 \), then

\[WF_A(f) \subset \text{char}(P). \]
Part 2. Unique continuation theorem for distributions satisfying an analytic wave front condition (microlocally real analytic distributions):
Part 2. Unique continuation theorem for distributions satisfying an analytic wave front condition (microlocally real analytic distributions):

Let \(S \) be a \(C^2 \) hypersurface in \(\mathbb{R}^n \). Assume that \(f = 0 \) on one side of \(S \) near \(x^0 \in S \), and that

\[
(x^0, \xi^0) \notin WF_A(f),
\]

where \(\xi^0 \) is conormal to \(S \) at \(x^0 \).

Then \(f = 0 \) in some neighborhood of \(x^0 \).
The wave front set

\[(x^0, \xi^0) \notin WF(f) \quad \text{if and only if} \]

\[\exists \psi \in C^\infty_c \text{ with } \psi(x^0) \neq 0 \text{ and open cone } \Gamma \ni \xi^0 \text{ such that} \]

\[|\widehat{\psi f}(\xi)| \leq C_m (1 + |\xi|)^{-m}, \quad m = 1, 2, \ldots, \quad \xi \in \Gamma.\]
The analytic wave front set

\[
(x^0, \xi^0) \notin WF_A(f) \iff \\
\exists \psi_m \in C^\infty_c(U), \psi_m = 1 \text{ in } U_0 \ni x^0 \text{ and open cone } \Gamma \ni \xi^0 \text{ such that} \\
|\widehat{\psi_m f}(\xi)| \leq \frac{(Cm)^k}{(1 + |\xi|)^k}, \quad k \leq m, \ m = 1, 2, \ldots, \ \xi \in \Gamma.
\]

Equivalent concept was defined for hyperfunctions with completely different methods (Sato, Kawai, Kashiwara, etc.)
The analytic wave front set

\[(x^0, \xi^0) \not\in WF_A(f) \iff \exists \psi_m \in C_c^\infty(U), \psi_m = 1 \text{ in } U_0 \ni x^0 \text{ and open cone } \Gamma \ni \xi^0 \text{ such that} \]
\[|\hat{\psi}_m f(\xi)| \leq \frac{(Cm)^k}{(1 + |\xi|)^k}, \quad k \leq m, \quad m = 1, 2, \ldots, \quad \xi \in \Gamma.\]

Equivalent concept was defined for hyperfunctions with completely different methods (Sato, Kawai, Kashiwara, etc.)
Properties of the wave front set

If \(\varphi \in C^\infty \), then \(WF(\varphi f) \subset WF(f) \).
Properties of the wave front set

If $\varphi \in C^\infty$, then $WF(\varphi f) \subset WF(f)$.

Similarly

If φ is real analytic, then $WF_A(\varphi f) \subset WF_A(f)$.
Properties of the wave front set

If \(\varphi \in C^\infty \), then \(\WF(\varphi f) \subset \WF(f) \).

Similarly

If \(\varphi \) is real analytic, then \(\WF_A(\varphi f) \subset \WF_A(f) \).

If \(x' \mapsto f(x', x_n) \) is compactly supported and

\[(x, \pm e_n) \notin \WF(f) \text{ for all } x \text{ then } x_n \mapsto \int_{\mathbb{R}^{n-1}} f(x', x_n) \, dx' \text{ is } C^\infty.\]
Another unique continuation theorem for microlocally real analytic distributions

Theorem 1 (B. 1992). Let S be a real analytic submanifold of \mathbb{R}^n and let f be a continuous function such that

$$ (x, \xi) \notin WF_A(f) \quad \text{for every } x \in S \text{ and } \xi \text{ conormal to } S \text{ at } x. $$

Assume moreover that f is flat along S in the sense that $f(x) = O(dist(x,S)^m)$ for every m as $dist(x,S) \to 0$.

Then $f = 0$ in some neighborhood of S.

Notation: $N^*(S) = \{ (x, \xi); x \in S \text{ and } \xi \text{ conormal to } S \text{ at } x \}$.
Another unique continuation theorem for microlocally real analytic distributions

Theorem 1 (B. 1992). Let S be a real analytic submanifold of \mathbb{R}^n and let f be a continuous function such that

$$(x, \xi) \notin WF_A(f) \quad \text{for every } x \in S \text{ and } \xi \text{ conormal to } S \text{ at } x.$$

Assume moreover that f is flat along S in the sense that

$$f(x) = O\left(\text{dist}(x, S)^m\right) \quad \text{for every } m \text{ as } \text{dist}(x, S) \to 0.$$

Then $f = 0$ in some neighborhood of S.
Another unique continuation theorem for microlocally real analytic distributions

Theorem 1 (B. 1992). Let S be a real analytic submanifold of \mathbb{R}^n and let f be a continuous function such that

$$(x, \xi) \notin WF_A(f) \quad \text{for every } x \in S \text{ and } \xi \text{ conormal to } S \text{ at } x.$$

Assume moreover that f is flat along S in the sense that

$$f(x) = O\left(\text{dist}(x, S)^m \right) \quad \text{for every } m \text{ as } \text{dist}(x, S) \to 0.$$

Then $f = 0$ in some neighborhood of S.

Notation: $N^*(S) = \{(x, \xi); x \in S \text{ and } \xi \text{ conormal to } S \text{ at } x\}$.
Theorem (B. 1992). Let \(S \) be a real analytic submanifold of \(\mathbb{R}^n \) and let \(f \) be a continuous function such that

\[
(x, \xi) \notin WF_A(f) \quad \text{for every } (x, \xi) \in N^*(S).
\]

Here \(N^*(S) = \{(x, \xi); x \in S \text{ and } \xi \text{ conormal to } S \text{ at } x\} \). Assume moreover that \(f \) is flat along \(S \) in the sense that

\[
f(x) = O\left(\text{dist}(x, L_0)^m \right) \quad \text{for every } m \text{ as } \text{dist}(x, L_0) \to 0.
\]

Then \(f = 0 \) in some neighborhood of \(S \).

Remark 1. If \(S \) is a hypersurface, then the flatness assumption is weaker than in Hörmander’s theorem, but the wave front assumption is stronger.
Theorem (B. 1992). Let S be a real analytic submanifold of \mathbb{R}^n and let f be a continuous function such that

$$(x, \xi) \notin WF_A(f) \quad \text{for every } (x, \xi) \in N^*(S).$$

Here $N^*(S) = \{(x, \xi); x \in S \text{ and } \xi \text{ conormal to } S \text{ at } x\}$. Assume moreover that f is flat along S in the sense that

$$f(x) = O\left(\text{dist}(x, L_0)^m \right) \quad \text{for every } m \text{ as } \text{dist}(x, L_0) \to 0.$$

Then $f = 0$ in some neighborhood of S.

Remark 1. If S is a hypersurface, then the flatness assumption is weaker than in Hörmander’s theorem, but the wave front assumption is stronger.

Remark 2. The submanifold S can have arbitrary dimension.
We don’t need to assume that f is continuous, because we can formulate the flatness condition for an arbitrary distribution satisfying the wave front condition.
We don’t need to assume that f is continuous, because we can formulate the flatness condition for an arbitrary distribution satisfying the wave front condition.

Theorem (B. 1992). Let S be a real analytic submanifold of \mathbb{R}^n and let f be a distribution, defined in some neighborhood of S, such that

$$(x, \xi) \notin WF_A(f) \quad \text{for every } (x, \xi) \in N^*(S).$$

Assume moreover that f is flat along S in the sense that

the restriction $\partial^\alpha f \big|_S$ vanishes on S for every derivative of f.

Then $f = 0$ in some neighborhood of S.

We don’t need to assume that f is continuous, because we can formulate the flatness condition for an arbitrary distribution satisfying the wave front condition.

Theorem (B. 1992). Let S be a real analytic submanifold of \mathbb{R}^n and let f be a distribution, defined in some neighborhood of S, such that

$$(x, \xi) \notin WF_A(f) \text{ for every } (x, \xi) \in N^*(S).$$

Assume moreover that f is flat along S in the sense that

the restriction $\partial^\alpha f \big|_S$ vanishes on S for every derivative of f.

Then $f = 0$ in some neighborhood of S.

Note that the restrictions are well defined because of the wave front condition.
We don’t need to assume that \(f \) is continuous, because we can formulate the flatness condition for an arbitrary distribution satisfying the wave front condition.

Theorem (B. 1992). Let \(S \) be a real analytic submanifold of \(\mathbb{R}^n \) and let \(f \) be a distribution, defined in some neighborhood of \(S \), such that

\[
(x, \xi) \notin WF_A(f) \quad \text{for every } (x, \xi) \in N^*(S).
\]

Assume moreover that \(f \) is flat along \(S \) in the sense that

the restriction \(\partial^\alpha f \big|_S \) vanishes on \(S \) for every derivative of \(f \).

Then \(f = 0 \) in some neighborhood of \(S \).

Note that the restrictions are well defined because of the wave front condition.

Remark 3. The theorem is not true for hyperfunctions (M. Sato).
A non-standard initial value problem for the wave equation.

Assume a wave motion is known with infinite precision at one point for all times. Is the wave motion uniquely determined?

The answer is YES. To prove this, let S be the line in space-time $S = \{(x_0, t); t \in \mathbb{R}\}$. The assumption is that \(\partial^\alpha x u(x_0, t) = 0 \) for all α and t, so the flatness condition is fulfilled. What about the wave front condition?
A non-standard initial value problem for the wave equation.

Assume a wave motion is known with infinite precision at one point for all times. Is the wave motion uniquely determined?

More precisely, assume a solution $u(x, t)$ of the wave equation is known together with all its x-derivatives at one point x^0 for all values of t.

Is $u(x, t)$ uniquely determined? To prove this, let S be the line in space-time $S = \{(x^0, t); t \in \mathbb{R}\}$.

The assumption is that $\partial^\alpha x u(x_0, t) = 0$ for all α and t, so the flatness condition is fulfilled. What about the wave front condition?
A non-standard initial value problem for the wave equation.

Assume a wave motion is known with infinite precision at one point for all times. Is the wave motion uniquely determined?

More precisely, assume a solution $u(x, t)$ of the wave equation is known together with all its x-derivatives at one point x^0 for all values of t. Is $u(x, t)$ uniquely determined?

The answer is YES. To prove this, let S be the line in space-time $S = \{(x^0, t); t \in \mathbb{R}\}$. The assumption is that $\partial^\alpha_x u(x^0, t) = 0$ for all α and t, so the flatness condition is fulfilled. What about the wave front condition?
A non-standard initial value problem for the wave equation.

Assume a wave motion is known with infinite precision at one point for all times. Is the wave motion uniquely determined?

More precisely, assume a solution $u(x, t)$ of the wave equation is known together with all its x-derivatives at one point x^0 for all values of t. Is $u(x, t)$ uniquely determined?

The answer is YES. To prove this, let S be the line in space-time

$$S = \{(x^0, t); \ t \in \mathbb{R}\}.$$

The assumption is that

$$\partial_x^\alpha u(x^0, t) = 0 \quad \text{for all } \alpha \text{ and } t,$$

so the flatness condition is fulfilled.
A non-standard initial value problem for the wave equation.

Assume a wave motion is known with infinite precision at one point for all times. Is the wave motion uniquely determined?

More precisely, assume a solution $u(x, t)$ of the wave equation is known together with all its x-derivatives at one point x^0 for all values of t. Is $u(x, t)$ uniquely determined?

The answer is YES. To prove this, let S be the line in space-time

$$S = \{(x^0, t); \ t \in \mathbb{R}\}.$$

The assumption is that

$$\partial_x^\alpha u(x^0, t) = 0 \quad \text{for all } \alpha \text{ and } t,$$

so the flatness condition is fulfilled.

What about the wave front condition?
The conormals \((x^0, \xi)\) of \(S\) have the form \(\xi = (\xi_1, \xi_2, \xi_3, 0)\), if \(n = 3\).
The conormals \((x^0, \xi)\) of \(S\) have the form \(\xi = (\xi_1, \xi_2, \xi_3, 0)\), if \(n = 3\). But none of those is characteristic for the wave equation.
The conormals \((x^0, \xi)\) of \(S\) have the form \(\xi = (\xi_1, \xi_2, \xi_3, 0)\), if \(n = 3\). But none of those is characteristic for the wave equation. Because the characteristic directions for the wave equation with wave speed 1 are \((\xi_1, \xi_2, \xi_3, \pm|\xi|)\). By the microlocal regularity theorem

\[
WF_A(u) \subset \text{char}(P), \quad \text{where } P \text{ is the wave operator.}
\]
The conormals \((x^0, \xi)\) of \(S\) have the form \(\xi = (\xi_1, \xi_2, \xi_3, 0)\), if \(n = 3\). But none of those is characteristic for the wave equation. Because the characteristic directions for the wave equation with wave speed 1 are \((\xi_1, \xi_2, \xi_3, \pm|\xi|)\). By the microlocal regularity theorem

\[WF_A(u) \subset \text{char}(P), \quad \text{where } P \text{ is the wave operator}. \]

Hence \((x, \xi) \notin WF_A(f)\) for every \((x, \xi) \in N^*(S)\).
The conormals \((x^0, \xi)\) of \(S\) have the form \(\xi = (\xi_1, \xi_2, \xi_3, 0)\), if \(n = 3\). But none of those is characteristic for the wave equation. Because the characteristic directions for the wave equation with wave speed 1 are \((\xi_1, \xi_2, \xi_3, \pm|\xi|)\). By the microlocal regularity theorem

\[
WF_A(u) \subset \text{char}(P), \quad \text{where } P \text{ is the wave operator.}
\]

Hence \((x, \xi) \notin WF_A(f)\) for every \((x, \xi) \in N^*(S)\). Thus the assumptions of Theorem 1 are fulfilled, so we can conclude

\[
u = 0 \quad \text{in some neighborhood of } S.
\]
The conormals \((x^0, \xi)\) of \(S\) have the form \(\xi = (\xi_1, \xi_2, \xi_3, 0)\), if \(n = 3\). But none of those is characteristic for the wave equation. Because the characteristic directions for the wave equation with wave speed 1 are \((\xi_1, \xi_2, \xi_3, \pm|\xi|)\). By the microlocal regularity theorem

\[WF_A(u) \subset \text{char}(P), \quad \text{where } P \text{ is the wave operator}. \]

Hence \((x, \xi) \notin WF_A(f)\) for every \((x, \xi) \in N^*(S)\). Thus the assumptions of Theorem 1 are fulfilled, so we can conclude

\[u = 0 \quad \text{in some neighborhood of } S. \]

But then we can fill the space-time with a family on non-characteristic surfaces, starting from a cylindrical surface around (finite parts of) \(S\). Hence \(u(x, t) = 0\) for all \((x, t)\).
The conormals \((x^0, \xi)\) of \(S\) have the form \(\xi = (\xi_1, \xi_2, \xi_3, 0)\), if \(n = 3\). But none of those is characteristic for the wave equation. Because the characteristic directions for the wave equation with wave speed 1 are \((\xi_1, \xi_2, \xi_3, \pm|\xi|)\). By the microlocal regularity theorem

\[
WF_A(u) \subset \text{char}(P), \quad \text{where } P \text{ is the wave operator.}
\]

Hence \((x, \xi) \notin WF_A(f)\) for every \((x, \xi) \in N^*(S)\). Thus the assumptions of Theorem 1 are fulfilled, so we can conclude

\[
u = 0 \quad \text{in some neighborhood of } S.
\]

But then we can fill the space-time with a family on non-characteristic surfaces, starting from a cylindrical surface around (finite parts of) \(S\). Hence \(u(x, t) = 0\) for all \((x, t)\).

This argument can be applied to wave equations with variable analytic coefficients. This was done by Lebeau 1999.
The Radon transform

For continuous f, decaying sufficiently fast at infinity, define

$$Rf(L) = \int_L f \, ds,$$

L hyperplane in \mathbb{R}^n,

where ds is area measure on L.

Weighted Radon transform:

Define

$$R\rho f(L) = \int_L f(x) \rho(L,x) \, ds,$$

L hyperplane in \mathbb{R}^n,

where $\rho(L,x)$ is a smooth, positive function defined for all pairs (L,x) where $x \in L$.

The Radon transform

For continuous f, decaying sufficiently fast at infinity, define

$$Rf(L) = \int_L f \, ds,$$

L hyperplane in \mathbb{R}^n,

where ds is area measure on L.

Weighted Radon transform:

Define

$$R_\rho f(L) = \int_L f(x)\rho(L, x) \, ds,$$

L hyperplane in \mathbb{R}^n,

where $\rho(L, x)$ is a smooth, positive function defined for all pairs (L, x) where $x \in L$.
Helgason’s support theorem

Theorem (1965). Let $K \subset \mathbb{R}^n$ be compact and convex. Assume that f is continuous and that

$$Rf(L) = 0 \quad \text{for all hyperplanes } L \text{ that do not intersect } K.$$

Thus $f = 0$ in the complement of K.

[Diagram of K and L]
Helgason’s support theorem

Theorem (1965). Let \(K \subset \mathbb{R}^n \) be compact and convex. Assume that \(f \) is continuous and that

\[
Rf(L) = 0 \quad \text{for all hyperplanes } L \text{ that do not intersect } K.
\]

Assume moreover that

\[
f(x) = \mathcal{O}(|x|^{-m}) \quad \text{as } |x| \to \infty \text{ for all } m.
\]
Helgason’s support theorem

Theorem (1965). Let $K \subset \mathbb{R}^n$ be compact and convex. Assume that f is continuous and that

$$Rf(L) = 0 \quad \text{for all hyperplanes } L \text{ that do not intersect } K.$$

Assume moreover that

$$f(x) = \mathcal{O}(|x|^{-m}) \quad \text{as } |x| \to \infty \text{ for all } m.$$

Then $f = 0$ in the complement of K.

The diagram shows a compact and convex set K and a hyperplane L that does not intersect K. The text describes the conditions under which the function f must be zero in the complement of K. The notation \mathcal{O} represents a Big O notation used in asymptotic analysis.
Microlocal regularity theorem for R

If $Rf(L) = 0$ for all L in some neighborhood of L_0, then

$$(x, \xi) \notin WF_A(f) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0.$$

In other words $N^* (L_0) \cap WF_A(f) = \emptyset$.

More generally $WF_A(f) \subset \Lambda^{-1} (WF_A(Rf))$, where Λ is a 1^{-1} map $(x, \xi) \mapsto (L, \eta)$ from $T^* (\mathbb{R}^n)$ to $T^* (\mathbb{R}^n)$.

(H^1 is the manifold of hyperplanes in \mathbb{R}^n.)

Combined with Hörmander's theorem this proves the support theorem for the special case when f is assumed to have compact support.

These assertions are also true for $R\rho$, if $(L, x) \mapsto \rho(L, x)$ is real analytic and positive. (B. and Quinto 1987.)
Microlocal regularity theorem for R

If $Rf(L) = 0$ for all L in some neighborhood of L_0, then

$$(x, \xi) \notin WF_A(f) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0.$$

In other words

$$N^*(L_0) \cap WF_A(f) = \emptyset.$$

More generally $WF_A(f) \subset \Lambda^{1-1}(WF_A(Rf))$, where Λ is a $1-1$ map $(x, \xi) \mapsto (L, \eta)$ from $T^*(\mathbb{R}^n)$ to $T^*(\mathbb{H}^n)$. (\mathbb{H}^n is the manifold of hyperplanes in \mathbb{R}^n.)

Combined with Hörmander's theorem this proves the support theorem for the special case when f is assumed to have compact support.

These assertions are also true for R^ρ, if $(L, x) \mapsto \rho(L, x)$ is real analytic and positive. (B. and Quinto 1987.)
Microlocal regularity theorem for R

If $Rf(L) = 0$ for all L in some neighborhood of L_0, then

$$(x, \xi) \notin WF_A(f) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0.$$

In other words

$$N^*(L_0) \cap WF_A(f) = \emptyset.$$

More generally

$$WF_A(f) \subset \Lambda^{-1}(WF_A(Rf)),$$

where Λ is a $1-1$ map $(x, \xi) \mapsto (L, \eta)$ from $T^*(\mathbb{R}^n)$ to $T^*(\mathcal{H}_n)$. (\mathcal{H}_n is the manifold of hyperplanes in \mathbb{R}^n.)
Microlocal regularity theorem for \(R \)

If \(Rf(L) = 0 \) for all \(L \) in some neighborhood of \(L_0 \), then

\[
(x, \xi) \notin WF_A(f) \quad \text{for all} \quad x \in L_0 \text{ and } \xi \text{ conormal to } L_0.
\]

In other words

\[N^*(L_0) \cap WF_A(f) = \emptyset. \]

More generally

\[
WF_A(f) \subset \Lambda^{-1}(WF_A(Rf)),
\]

where \(\Lambda \) is a 1 \(-\) 1 map \((x, \xi) \mapsto (L, \eta) \) from \(T^*({\mathbb R}^n) \) to \(T^*({\mathcal H}_n) \).

\(({\mathcal H}_n \text{ is the manifold of hyperplanes in } {\mathbb R}^n.) \)

Combined with Hörmander’s theorem this proves the support theorem for the special case when \(f \) is assumed to have compact support.
Microlocal regularity theorem for R

If $Rf(L) = 0$ for all L in some neighborhood of L_0, then

$$(x, \xi) \notin WF_A(f) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0.$$

In other words

$$N^*(L_0) \cap WF_A(f) = \emptyset.$$

More generally

$$WF_A(f) \subset \Lambda^{-1}(WF_A(Rf)),$$

where Λ is a $1-1$ map $(x, \xi) \mapsto (L, \eta)$ from $T^*(\mathbb{R}^n)$ to $T^*(\mathcal{H}_n)$. (\mathcal{H}_n is the manifold of hyperplanes in \mathbb{R}^n.)

Combined with Hörmander’s theorem this proves the support theorem for the special case when f is assumed to have compact support.

These assertions are also true for $R\rho$, if $(L, x) \mapsto \rho(L, x)$ is real analytic and positive. (B. and Quinto 1987.)
Consider imbedding $\mathbb{R}^n \subset \mathbb{P}^n$, and let $x \mapsto \phi(x) = \tilde{x}$ be a projective transformation.
Factorable mappings

Consider imbedding $\mathbb{R}^n \subset \mathbb{P}^n$, and let $x \mapsto \phi(x) = \tilde{x}$ be a projective transformation. Then

$$R\tilde{f}(\tilde{L}) = \int_{\tilde{L}} \tilde{f}(\tilde{x}) \tilde{d}s = \int_{L} f(x) J(L, x) ds = J_0(L) \int_{L} f(x) J_1(x) ds,$$

because the Jacobian $J(L, x)$ factors

$$J(L, x) = J_0(L) J_1(x),$$

where $J_0(L)$ and $J_1(L)$ are positive and real analytic.
Factorable mappings

Consider imbedding $\mathbb{R}^n \subset \mathbb{P}^n$, and let $x \mapsto \phi(x) = \tilde{x}$ be a projective transformation. Then

$$R\tilde{f}(\tilde{L}) = \int_{\tilde{L}} \tilde{f}(\tilde{x})d\tilde{s} = \int_L f(x)J(L, x)ds = J_0(L)\int_L f(x)J_1(x)ds,$$

because the Jacobian $J(L, x)$ factors

$$J(L, x) = J_0(L)J_1(x),$$

where $J_0(L)$ and $J_1(L)$ are positive and real analytic.

See *Reconstructive integral geometry* by V. Palamodov, Section 3.1: Factorable mappings.
An extension of Helgason’s theorem

Assume again that f is rapidly decaying and that $Rf(L) = 0$ for all L that do not intersect K.
An extension of Helgason’s theorem

Assume again that f is rapidly decaying and that $Rf(L) = 0$ for all L that do not intersect K.

Make a projective transformation that takes the hyperplane at infinity to a hyperplane L_0.
An extension of Helgason’s theorem

Assume again that f is rapidly decaying and that $R_f(L) = 0$ for all L that do not intersect K.

Make a projective transformation that takes the hyperplane at infinity to a hyperplane L_0.

Since $R(J_1\tilde{f}) = 0$ for all L in a neighborhood of L_0, we know that

$$(x, \xi) \notin WF_A(J_1\tilde{f}) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0,$$
An extension of Helgason’s theorem

Assume again that f is rapidly decaying and that $Rf(L) = 0$ for all L that do not intersect K.

Make a projective transformation that takes the hyperplane at infinity to a hyperplane L_0.

Since $R(J_1\tilde{f}) = 0$ for all L in a neighborhood of L_0, we know that

$$(x, \xi) \notin WF_A(J_1\tilde{f}) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0,$$

and hence

$$(x, \xi) \notin WF_A(\tilde{f}) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0.$$
An extension of Helgason’s theorem

Assume again that \(f \) is rapidly decaying and that \(Rf(L) = 0 \) for all \(L \) that do not intersect \(K \).

Make a projective transformation that takes the hyperplane at infinity to a hyperplane \(L_0 \).

Since \(R(J_1\tilde{f}) = 0 \) for all \(L \) in a neighborhood of \(L_0 \), we know that

\[
(x, \xi) \notin WF_A(J_1\tilde{f}) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0,
\]

and hence

\[
(x, \xi) \notin WF_A(\tilde{f}) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0.
\]
An extension of Helgason’s theorem, cont.

\[(x, \xi) \notin WF_A(\tilde{f}) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0.\]
An extension of Helgason’s theorem, cont.

\[(x, \xi) \notin WF_A(\tilde{f}) \text{ for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0.\]

By the decay assumption we know also that \(\tilde{f}\) decays fast as \(x\) approaches \(L_0\):

\[\tilde{f}(x) = \mathcal{O}(\text{dist}(x, L_0)^m) \text{ for every } m \text{ as } \text{dist}(x, L_0) \to 0,\]

Hence Theorem 1 implies that \(\tilde{f}\) must vanish in some neighborhood of \(L_0\).

So our original function \(f\) must vanish in some neighborhood of the plane at infinity, which means that it must have compact support. And then we know that it must vanish in the complement of \(K\).
An extension of Helgason’s theorem, cont.

\[(x, \xi) \notin WF_A(\tilde{f}) \quad \text{for all } x \in L_0 \text{ and } \xi \text{ conormal to } L_0.\]

By the decay assumption we know also that \(\tilde{f}\) decays fast as \(x\) approaches \(L_0\):

\[\tilde{f}(x) = O\left(\text{dist}(x, L_0)^m\right) \quad \text{for every } m \text{ as } \text{dist}(x, L_0) \to 0,\]

Hence Theorem 1 implies that \(\tilde{f}\) must vanish in some neighborhood of \(L_0\). So our original function \(f\) must vanish in some neighborhood of the plane at infinity, which means that it must have compact support.

And then we know that it must vanish in the complement of \(K\).
All of those arguments are valid for weighted Radon transforms R_ρ with real analytic weight functions $\rho(L, x)$, provided that the extension of $\rho(L, x)$ to $\mathbb{P}^{n*} \times \mathbb{P}^n$ is real analytic and positive everywhere, that is, also at the hyperplane at infinity.
In this argument I did not use the fact that my unique continuation theorem is \textit{local}. In fact it implies more.
In this argument I did not use the fact that my unique continuation theorem is *local*. In fact it implies more.

Now let L_0 be the plane at infinity and S a subset of the plane at infinity.
In this argument I did not use the fact that my unique continuation theorem is *local*. In fact it implies more.

Now let L_0 be the plane at infinity and S a subset of the plane at infinity. That f is flat at S then means that f decays in certain directions.
In this argument I did not use the fact that my unique continuation theorem is \textit{local}. In fact it implies more.

Now let \(L_0 \) be the plane at infinity and \(S \) a subset of the plane at infinity. That \(f \) is flat at \(S \) then means that \(f \) decays in certain directions.

\textbf{Proposition.} Assume \(Rf(L) = 0 \) for all \(L \) that do not intersect \(K \) and that there is an open cone \(C \subset \mathbb{R}^n \) and

\[
f(x) = O(|x|^{-m}) \quad \text{for all } m \text{ as } |x| \to \infty \text{ for } x \in C.
\]

Then \(f = 0 \) in the set

\[
\bigcap_{x \in K} (x + C \cup (-C)).
\]
I denote this set by $\text{sh}_K(C)$, the shadow of C (if identified with the corresponding subset of the plane at infinity) with respect to K.
Assume $Rf(L) = 0$ for all L that do not intersect K and that $f(x)$ is rapidly decaying as x approaches a subset S of the hyperplane L_0:

$$f(x) = O\left(\text{dist}(x, S)^m\right) \quad \text{for every } m \text{ as } \text{dist}(x, S) \to 0.$$

By Theorem 1 it follows that $f = 0$ in some neighborhood of S.
And then we can continue by means of a family of “non-characteristic” surfaces:
Also on the other side of S:

K
Note that the points of $\text{sh}_{K}(S')$ are the points that cannot be seen from K, if S serves as a screen and light rays are allowed to go in just one of the directions along the geodesics in P^n.
Let me repeat:

All of those arguments are valid for weighted Radon transforms \(R_\rho \) with real analytic weight functions \(\rho(L, x) \), provided that the extension of \(\rho(L, x) \) to \(\mathbb{P}^{n*} \times \mathbb{P}^n \) is real analytic and positive everywhere, that is, also at the hyperplane at infinity.
Unique continuation of CR functions

Let M be a real analytic submanifold of \mathbb{C}^n.
A function on M is called a CR function if for every $x \in M$ it satisfies the Cauchy-Riemann equations with respect to all complex directions in $T_x(M)$.

Let $S \subset M$ be a real analytic submanifold of M.

Theorem (Baouendi and Trèves 1988). Let f be a CR function on M and assume that f vanishes together with all its derivatives on the real analytic submanifold $S \subset M$. Assume moreover that for every point $x \in S$ the subspaces $A_x(M)$ and $T_x(S)$ span $T_x(M)$.

Then f must vanish in some neighborhood of S.

Unique continuation of CR functions

Let M be a real analytic submanifold of \mathbb{C}^n.

A function on M is called a CR function if for every $x \in M$ it satisfies the Cauchy-Riemann equations with respect to all complex directions in $T_x(M)$.

Let $S \subset M$ be a real analytic submanifold of M.

For $x \in M$ we have two subspaces of the tangent space $T_x(M)$:

- $T_x(S)$, the tangent space to S, and
- $A_x(M)$, the maximal complex-analytic subspace of $T_x(M)$
Unique continuation of CR functions

Let \(M \) be a real analytic submanifold of \(\mathbb{C}^n \).

A function on \(M \) is called a CR function if for every \(x \in M \) it satisfies the Cauchy-Riemann equations with respect to all complex directions in \(T_x(M) \).

Let \(S \subset M \) be a real analytic submanifold of \(M \).

For \(x \in M \) we have two subspaces of the tangent space \(T_x(M) \):

\[T_x(S), \text{ the tangent space to } S, \text{ and} \]
\[A_x(M), \text{ the maximal complex-analytic subspace of } T_x(M) \]

Theorem (Baouendi and Trèves 1988). Let \(f \) be a CR function on \(M \) and assume that \(f \) vanishes together with all its derivatives on the real analytic submanifold \(S \subset M \). Assume moreover that for every point \(x \in S \)

\[\text{the subspaces } A_x(M) \text{ and } T_x(S) \text{ span } T_x(M). \]

Then \(f \) must vanish in some neighborhood of \(S \).
Proof.

For a subspace N of $T_x(M)$ we denote by N^\perp the set of its conormals in $T_x^*(M)$. Then

the subspaces $A_x(M)$ and $T_x(S)$ span $T_x(M)$

is equivalent to $A_x(M)^\perp \cap T_x(S)^\perp = \emptyset$.
Proof.

For a subspace N of $T_x(M)$ we denote by N^\perp the set of its conormals in $T^*_x(M)$. Then

the subspaces $A_x(M)$ and $T_x(S)$ span $T_x(M)$

is equivalent to $A_x(M)^\perp \cap T_x(S)^\perp = \emptyset$.

But $T_x(S)^\perp$ is equal to $N_x^*(S)$ by definition.
Proof.

For a subspace \(N \) of \(T_x(M) \) we denote by \(N^\perp \) the set of its conormals in \(T^*_x(M) \). Then

the subspaces \(A_x(M) \) and \(T_x(S) \) span \(T_x(M) \)

is equivalent to \(A_x(M)^\perp \cap T_x(S)^\perp = \emptyset \).

But \(T_x(S)^\perp \) is equal to \(N^*_x(S) \) by definition.

And the fact that \(f \) is a CR function on \(M \) implies that

\[WF_A(f) \subset A_x(M)^\perp. \]
Proof.

For a subspace N of $T_x(M)$ we denote by N^\perp the set of its conormals in $T_x^*(M)$. Then

the subspaces $A_x(M)$ and $T_x(S)$ span $T_x(M)$ is equivalent to $A_x(M)^\perp \cap T_x(S)^\perp = \emptyset$.

But $T_x(S)^\perp$ is equal to $N_x^*(S)$ by definition.

And the fact that f is a CR function on M implies that

$$WF_A(f) \subset A_x(M)^\perp.$$

Hence

$$WF_A(f) \cap N^*(S) = \emptyset,$$

so the assumptions of Theorem 1 are fulfilled and the assertion follows.
Proof of Theorem 1

Let us consider the case when f is continuous and S is a hypersurface, which we may assume to be $\{(x',0); |x'| < \gamma\}$ for some $\gamma > 0$.
Proof of Theorem 1

Let us consider the case when f is continuous and S is a hypersurface, which we may assume to be $\{(x', 0); |x'| < \gamma\}$ for some $\gamma > 0$. The assumptions are (write $e_n = (0, \ldots, 0, 1)$)

$$
(x, \pm e_n) \notin WF_A(f) \quad \text{for every } x = (x', 0) \in S, \quad \text{and}
$$
$$
f(x', x_n) = O(x_n^m) \quad \text{as } x_n \to 0 \quad \text{for } (x', 0) \in S \text{ and every } m.
$$
Proof of Theorem 1

Let us consider the case when f is continuous and S is a hypersurface, which we may assume to be $\{(x', 0); |x'| < \gamma\}$ for some $\gamma > 0$. The assumptions are (write $e_n = (0, \ldots, 0, 1)$)

$$
(x, \pm e_n) \notin WF_A(f) \quad \text{for every } x = (x', 0) \in S, \quad \text{and}
$$
$$
f(x', x_n) = O(x_n^m) \quad \text{as } x_n \to 0 \quad \text{for } (x', 0) \in S \text{ and every } m.
$$

We have to prove that $f = 0$ in some neighborhood of the origin.
Proof of Theorem 1

Let us consider the case when f is continuous and S is a hypersurface, which we may assume to be $\{(x',0); |x'| < \gamma\}$ for some $\gamma > 0$. The assumptions are (write $e_n = (0, \ldots, 0, 1)$)

$$(x, \pm e_n) \notin WF_A(f) \quad \text{for every } x = (x', 0) \in S, \quad \text{and}$$

$$f(x', x_n) = O(x_n^m) \quad \text{as } x_n \to 0 \quad \text{for } (x', 0) \in S \text{ and every } m.$$

We have to prove that $f = 0$ in some neighborhood of the origin. Since $(0, \pm e_n) \notin WF_A(f)$ we can choose $\psi_m \in C^\infty$ such that $\text{supp } \psi_m$ is contained in a neighborhood U of the origin, $\psi_m = 1$ in a smaller neighborhood U_0 of the origin, and $\varepsilon > 0$, such that

$$|\hat{\psi}_m f(\xi)| \leq (Cm)^k (1 + |\xi|)^{-k}, \quad k \leq m, \quad |\xi'| < \varepsilon |\xi_n|,$$

for all m.
It turns out that it is better to choose ψ_m so that ψ_m tends to and arbitrary test function $\varphi \in C_c^\infty(U_0)$ with convergence in the topology of C_c^∞. One can show that this is possible.
It turns out that it is better to choose ψ_m so that ψ_m tends to and arbitrary test function $\varphi \in C^\infty_c(U_0)$ with convergence in the topology of C^∞_c. One can show that this is possible.

Consider

$$h_m(x_n) = \int_{\mathbb{R}^{n-1}} \psi_m(x', x_n) f(x', x_n) dx',$$

which now depends on φ.

One can show that the constant C can be chosen independent of φ.

(1)
It turns out that it is better to choose ψ_m so that ψ_m tends to and arbitrary test function $\varphi \in C_c^\infty(U_0)$ with convergence in the topology of C_c^∞. One can show that this is possible.

Consider

$$h_m(x_n) = \int_{\mathbb{R}^{n-1}} \psi_m(x', x_n) f(x', x_n) dx',$$

which now depends on φ.

The Fourier transforms of h_m satisfies

$$\hat{h}_m(\xi_n) = \hat{\psi}_m f(0, \xi_n).$$
It turns out that it is better to choose ψ_m so that ψ_m tends to and arbitrary test function $\varphi \in C_c^\infty(U_0)$ with convergence in the topology of C_c^∞. One can show that this is possible.

Consider

$$h_m(x_n) = \int_{\mathbb{R}^{n-1}} \psi_m(x', x_n) f(x', x_n) \, dx',$$

which now depends on φ.

The Fourier transforms of h_m satisfies

$$\hat{h}_m(\xi_n) = \hat{\psi}_m f(0, \xi_n).$$

There are good bounds for derivatives of h_m, because

$$\sup |\partial^k h_m| \leq \int |\xi_n^k \hat{h}_m(\xi_n)| \, d\xi_n = \int |\xi_n^k \hat{\psi}_m f(0, \xi_n)| \, d\xi_n \leq \int |\xi_n^k| \left(\frac{(Cm)^{k+2}}{(1 + |\xi_n|)^{k+2}}\right) \, d\xi_n \leq 4(Cm)^{k+2} \quad \text{for } k + 2 \leq m.$$
It turns out that it is better to choose ψ_m so that ψ_m tends to and arbitrary test function $\varphi \in C^\infty_c(U_0)$ with convergence in the topology of C^∞_c. One can show that this is possible.

Consider

$$h_m(x_n) = \int_{\mathbb{R}^{n-1}} \psi_m(x', x_n) f(x', x_n) dx',$$

which now depends on φ.

The Fourier transforms of h_m satisfies

$$\hat{h}_m(\xi_n) = \hat{\psi}_m f(0, \xi_n).$$

There are good bounds for derivatives of h_m, because

$$\sup |\partial^k h_m| \leq \int |\xi_n^k \hat{h}_m(\xi_n)| d\xi_n = \int |\xi_n^k \hat{\psi}_m f(0, \xi_n)| d\xi_n$$

(1)

$$\leq \int |\xi_n|^k \frac{(Cm)^{k+2}}{(1 + |\xi_n|)^{k+2}} d\xi_n \leq 4(Cm)^{k+2} \text{ for } k + 2 \leq m.$$

One can show that the constant C can be chosen independent of φ.
Since h_m is flat at $x_n = 0$ and its derivatives satisfy (1), Taylor’s formula gives

$$|h_m(x_n)| \leq \frac{\delta^{m-2}}{(m - 2)!} \sup |\partial^{m-2} h_m|$$

$$\leq \frac{\delta^{m-2}}{(m - 2)!} 4(Cm)^m \leq 4C^2 e^2 m^2 (Ce\delta)^{m-2}, \quad |x_n| < \delta.$$

Hence

$$\lim_{m \to \infty} h_m(x_n) = 0, \quad \text{if } |x_n| < \delta < 1/Ce.$$

But $h_m(x_n)$ tends to

$$h(x_n) = \int_{\mathbb R^{n-1}} \varphi(x', x_n) f(x', x_n) dx', \quad \text{as } m \to \infty,$$

hence

$$h(x_n) = 0, \quad \text{if } |x_n| < \delta < 1/Ce.$$
Since h_m is flat at $x_n = 0$ and its derivatives satisfy (1), Taylor’s formula gives

$$|h_m(x_n)| \leq \frac{\delta^{m-2}}{(m-2)!} \sup |\partial^{m-2}h_m|$$

$$\leq \frac{\delta^{m-2}}{(m-2)!} 4(Cm)^m \leq 4C^2 e^2 m^2 (Ce\delta)^{m-2}, \quad |x_n| < \delta.$$

Hence

$$\lim_{m \to \infty} h_m(x_n) = 0, \quad \text{if } |x_n| < \delta < 1/Ce.$$

But $h_m(x_n)$ tends to

$$h(x_n) = \int_{\mathbb{R}^{n-1}} \varphi(x', x_n) f(x', x_n) dx', \quad \text{as } m \to \infty,$$

hence

$$h(x_n) = 0, \quad \text{if } |x_n| < \delta < 1/Ce.$$

Since this is true for all φ, we can conclude that $f(x', x_n) = 0$ for $(x', x_n) \in U_0 \text{ and } |x_n| < \delta$, which completes the proof.
Lemma. For every m there exists $\phi_m \in C_c^\infty(\mathbb{R})$, even, with $\text{supp} \phi_m \subset [-1, 1]$, $\int \phi_m(x) \, dx = 1$, and

\[(2) \quad \int |\partial^k \phi_m(x)| \, dx \leq (2m)^k, \quad k \leq m.\]
Construction of ψ_m

Lemma. For every m there exists $\phi_m \in C_c^\infty(\mathbb{R})$, even, with $\text{supp } \phi_m \subset [-1, 1]$, $\int \phi_m(x)dx = 1$, and

(2) $\int |\partial^k \phi_m(x)|dx \leq (2m)^k$, $k \leq m$.

Proof. Take $\theta(x)$ in C^∞, even, with $\text{supp } \theta \subset [-1, 1]$, $\theta(x) \geq 0$, and $\int \theta(x)dx = 1$. We can find $\theta(x)$ so that $\int |\theta'(x)|dx \leq 2$.
Construction of ψ_m

Lemma. For every m there exists $\phi_m \in C^\infty_c(\mathbb{R})$, even, with $\text{supp} \ \phi_m \subset [-1, 1]$, $\int \phi_m(x)dx = 1$, and

\begin{equation}
\int |\partial^k \phi_m(x)|dx \leq (2m)^k, \quad k \leq m.
\end{equation}

Proof. Take $\theta(x)$ in C^∞, even, with $\text{supp} \ \theta \subset [-1, 1]$, $\theta(x) \geq 0$, and $\int \theta(x)dx = 1$. We can find $\theta(x)$ so that $\int |\theta'(x)|dx \leq 2$. Choose

$$
\phi_m(x) = m\theta(mx) * m\theta(mx) * \ldots * m\theta(mx) \quad (m \text{ factors}).
$$
Construction of ψ_m

Lemma. For every m there exists $\phi_m \in C^\infty_c(\mathbb{R})$, even, with $
abla \phi_m \subset [-1, 1]$, $\int \phi_m(x)dx = 1$, and

\[
(2) \quad \int |\partial^k \phi_m(x)|dx \leq (2m)^k, \quad k \leq m.
\]

Proof. Take $\theta(x)$ in C^∞, even, with supp $\theta \subset [-1, 1]$, $\theta(x) \geq 0$, and $\int \theta(x)dx = 1$. We can find $\theta(x)$ so that $\int |\theta'(x)|dx \leq 2$. Choose

$$
\phi_m(x) = m\theta(mx) \ast m\theta(mx) \ast \ldots \ast m\theta(mx) \quad (m \text{ factors}).
$$

Then supp $\phi_m \subset [-1, 1]$ and $\int \phi_m(x)dx = 1$.
Construction of ψ_m

Lemma. For every m there exists $\phi_m \in C_c^\infty(\mathbb{R})$, even, with $\text{supp } \phi_m \subset [-1, 1]$, $\int \phi_m(x)\,dx = 1$, and

\[(2) \quad \int |\partial^k \phi_m(x)|\,dx \leq (2m)^k, \quad k \leq m.\]

Proof. Take $\theta(x)$ in C_c^∞, even, with $\text{supp } \theta \subset [-1, 1]$, $\theta(x) \geq 0$, and $\int \theta(x)\,dx = 1$. We can find $\theta(x)$ so that $\int |\theta'(x)|\,dx \leq 2$. Choose

$$
\phi_m(x) = m\theta(mx) \ast m\theta(mx) \ast \ldots \ast m\theta(mx) \quad (m \text{ factors}).
$$

Then $\text{supp } \phi_m \subset [-1, 1]$ and $\int \phi_m(x)\,dx = 1$. Moreover, if $k \leq m$

$$
\partial^k \phi_m(x) = \underbrace{m^2 \theta'(mx) \ast \ldots \ast m^2 \theta'(mx)}_{k \text{ factors}} \ast \ldots \ast m\theta(mx).
$$

This proves (2).
Construction of ψ_m, cont.

Lemma. The functions ϕ_m satisfy

\[
\phi_m \to \delta_0 \quad \text{in distribution sense, hence}
\]

\[
\psi_m = \phi_m \ast \varphi \to \varphi \quad \text{in } C^\infty_c.
\]
Construction of ψ_m, cont.

Lemma. The functions ϕ_m satisfy

(3) \[\phi_m \to \delta_0 \quad \text{in distribution sense, hence} \]

\[\psi_m = \phi_m \ast \varphi \to \varphi \quad \text{in } C_c^\infty. \]

Proof sketch. Since \(\int \theta(x)dx = 1 \), \(\theta(x) \geq 0 \), and \(\theta(x) \) is even

\[\hat{\theta}(\xi) = 1 - c \xi^2 + \ldots \quad \text{as} \quad \xi \to 0, \]

for some $c > 0$.
Construction of ψ_m, cont.

Lemma. The functions ϕ_m satisfy

\[(3) \quad \phi_m \to \delta_0 \quad \text{in distribution sense, hence} \]
\[\psi_m = \phi_m \ast \varphi \to \varphi \quad \text{in } C_c^\infty.\]

Proof sketch. Since $\int \theta(x) dx = 1$, $\theta(x) \geq 0$, and $\theta(x)$ is even

\[\hat{\theta}(\xi) = 1 - c \xi^2 + \ldots \quad \text{as} \quad \xi \to 0,\]

for some $c > 0$. Hence

\[\hat{\phi_m}(\xi) = \hat{\theta}(\xi/m)^m = (1 - c \frac{\xi^2}{m^2} + \ldots)^m \to 1 \quad \text{as} \quad |\xi| \to \infty\]

uniformly on bounded sets. Since $\hat{\phi_m}$ is uniformly bounded (in fact $|\hat{\phi_m}| \leq 1$) this proves (3).
References

A. Kaneko, *Introduction to hyperfunctions*, Note 3.3.