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Holmgren’s uniqueness theorem (1901):

Unique continuation across a non-characteristic hypersurface for
(distribution) solutions of general linear PDE:s with analytic
coefficients.



Hörmander’s proof of Holmgren’s theorem

Part 1. Microlocal regularity theorem for solutions of PDE:s with
analytic coefficients:

WFA(f) ⊂WFA(Pf) ∪ char(P ),

where char(P ) = {(x, ξ); ppr(x, ξ) = 0}.

In particular, if P (x,D)f = 0, then

WFA(f) ⊂ char(P ).
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Hörmander’s proof of Holmgren’s theorem, cont.

Part 2. Unique continuation theorem for distributions satisfying an
analytic wave front condition (microlocally real analytic
distributions):

Let S be a C2 hypersurface in Rn. Assume that f = 0 on one side of
S near x0 ∈ S, and that

(x0, ξ0) /∈WFA(f),

where ξ0 is conormal to S at x0.
S

ξ0

x0
f = 0

Then f = 0 in some neighborhood of x0.
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The wave front set

ξ0x0 Γ

(x0, ξ0) /∈WF (f) if and only if

∃ψ ∈ C∞c with ψ(x0) 6= 0 and open cone Γ 3 ξ0 such that

|ψ̂f(ξ)| ≤ Cm(1 + |ξ|)−m, m = 1, 2, . . . , ξ ∈ Γ.



The analytic wave front set

ξ0x0 Γ

U

(x0, ξ0) /∈WFA(f)⇐⇒
∃ψm ∈ C∞c (U), ψm = 1 in U0 3 x0 and open cone Γ 3 ξ0 such that

|ψ̂mf(ξ)| ≤ (Cm)k

(1 + |ξ|)k
, k ≤ m, m = 1, 2, . . . , ξ ∈ Γ.

Equivalent concept was defined for hyperfunctions with completely
different methods (Sato, Kawai, Kashiwara, etc.)



The analytic wave front set

ξ0x0 Γ

U

(x0, ξ0) /∈WFA(f)⇐⇒
∃ψm ∈ C∞c (U), ψm = 1 in U0 3 x0 and open cone Γ 3 ξ0 such that

|ψ̂mf(ξ)| ≤ (Cm)k

(1 + |ξ|)k
, k ≤ m, m = 1, 2, . . . , ξ ∈ Γ.

Equivalent concept was defined for hyperfunctions with completely
different methods (Sato, Kawai, Kashiwara, etc.)



Properties of the wave front set

If ϕ ∈ C∞, then WF (ϕf) ⊂WF (f) .

Similarly

If ϕ is real analytic, then WFA(ϕf) ⊂WFA(f) .

If x′ 7→ f(x′, xn) is compactly supported and

(x,±en) /∈WF (f) for all x then xn 7→
∫
Rn−1

f(x′, xn)dx′ is C∞.

supp f

x′

xn
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Another unique continuation theorem for microlocally real
analytic distributions

Theorem 1 (B. 1992). Let S be a real analytic submanifold of Rn

and let f be a continuous function such that

(x, ξ) /∈WFA(f) for every x ∈ S and ξ conormal to S at x.

S
ξ

Assume moreover that f is flat along S in the sense that

f(x) = O
(

dist(x, S)m
)

for every m as dist(x, S)→ 0.

Then f = 0 in some neighborhood of S.

Notation: N∗(S) = {(x, ξ); x ∈ S and ξ conormal to S at x}.
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Theorem (B. 1992). Let S be a real analytic submanifold of Rn and
let f be a continuous function such that

(x, ξ) /∈WFA(f) for every (x, ξ) ∈ N∗(S).

Here N∗(S) = {(x, ξ); x ∈ S and ξ conormal to S at x}. Assume
moreover that f is flat along S in the sense that

f(x) = O
(

dist(x, L0)
m
)

for every m as dist(x, L0)→ 0.

Then f = 0 in some neighborhood of S.

Remark 1. If S is a hypersurface, then the flatness assumption is
weaker than in Hörmander’s theorem, but the wave front assumption
is stronger.

Remark 2. The submanifold S can have arbitrary dimension.
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We don’t need to assume that f is continuous, because we can
formulate the flatness condition for an arbitrary distribution satisfying
the wave front condition.

Theorem (B. 1992). Let S be a real analytic submanifold of Rn and
let f be a distribution, defined in some neighborhood of S, such that

(x, ξ) /∈WFA(f) for every (x, ξ) ∈ N∗(S).

Assume moreover that f is flat along S in the sense that

the restriction ∂αf
∣∣
S

vanishes on S for every derivative of f.

Then f = 0 in some neighborhood of S.

Note that the restrictions are well defined because of the wave front
condition.

Remark 3. The theorem is not true for hyperfunctions (M. Sato).
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A non-standard initial value problem for the wave equation.

Assume a wave motion is known with infinite precision at one point
for all times. Is the wave motion uniquely determined?

More precisely, assume a solution u(x, t) of the wave equation is
known together with all its x-derivatives at one point x0 for all values
of t. Is u(x, t) uniquely determined?

The answer is YES. To prove this, let S be the line in space-time

S = {(x0, t); t ∈ R}.

The assumption is that

∂αxu(x0, t) = 0 for all α and t,

so the flatness condition is fulfilled.

What about the wave front condition?
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The conormals (x0, ξ) of S have the form ξ = (ξ1, ξ2, ξ3, 0), if n = 3.

But none of those is characteristic for the wave equation. Because the
characteristic directions for the wave equation with wave speed 1 are
(ξ1, ξ2, ξ3,±|ξ|). By the microlocal regularity theorem

WFA(u) ⊂ char(P ), where P is the wave operator.

Hence (x, ξ) /∈WFA(f) for every (x, ξ) ∈ N∗(S). Thus the
assumptions of Theorem 1 are fulfilled, so we can conclude

u = 0 in some neighborhood of S.

But then we can fill the space-time with a family on non-characteristic
surfaces, starting from a cylindrical surface around (finite parts of) S.
Hence u(x, t) = 0 for all (x, t).

This argument can be applied to wave equations with variable analytic
coefficients. This was done by Lebeau 1999.
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The Radon transform

For continuous f , decaying sufficiently fast at infinity, define

Rf(L) =

∫
L
f ds, L hyperplane in Rn,

where ds is area measure on L.

Weighted Radon transform:

Define

Rρf(L) =

∫
L
f(x)ρ(L, x)ds, L hyperplane in Rn,

where ρ(L, x) is a smooth, positive function defined for all pairs
(L, x) where x ∈ L.
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Helgason’s support theorem
Theorem (1965). Let K ⊂ Rn be compact and convex. Assume that
f is continuous and that

Rf(L) = 0 for all hyperplanes L that do not intersect K.

K

L

Assume moreover that

f(x) = O(|x|−m) as |x| → ∞ for all m.

Then f = 0 in the complement of K.
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Microlocal regularity theorem for R
If Rf(L) = 0 for all L in some neighborhood of L0, then

(x, ξ) /∈WFA(f) for all x ∈ L0 and ξ conormal to L0.

In other words

N∗(L0) ∩WFA(f) = ∅.

L0

ξ

More generally

WFA(f) ⊂ Λ−1
(
WFA(Rf)

)
,

where Λ is a 1− 1 map (x, ξ) 7→ (L, η) from T ∗(Rn) to T ∗(Hn).
(Hn is the manifold of hyperplanes in Rn. )

Combined with Hörmander’s theorem this proves the support theorem
for the special case when f is assumed to have compact support.

These assertions are also true for Rρ, if (L, x) 7→ ρ(L, x) is real
analytic an positive. (B. and Quinto 1987.)
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Factorable mappings

L

x x̃
L̃

−→
φ

↓f ↓ f̃

Consider imbedding Rn ⊂ Pn, and let x 7→ φ(x) = x̃ be a projective
transformation.

Then

Rf̃(L̃) =

∫
L̃
f̃(x̃)d̃s =

∫
L
f(x)J(L, x)ds = J0(L)

∫
L
f(x)J1(x)ds,

because the Jacobian J(L, x) factors

J(L, x) = J0(L)J1(x),

where J0(L) and J1(L) are positive and real analytic.

See Reconstructive integral geometry by V. Palamodov, Section 3.1:
Factorable mappings.



Factorable mappings

L

x x̃
L̃

−→
φ

↓f ↓ f̃

Consider imbedding Rn ⊂ Pn, and let x 7→ φ(x) = x̃ be a projective
transformation. Then

Rf̃(L̃) =

∫
L̃
f̃(x̃)d̃s =

∫
L
f(x)J(L, x)ds = J0(L)

∫
L
f(x)J1(x)ds,

because the Jacobian J(L, x) factors

J(L, x) = J0(L)J1(x),

where J0(L) and J1(L) are positive and real analytic.

See Reconstructive integral geometry by V. Palamodov, Section 3.1:
Factorable mappings.



Factorable mappings

L

x x̃
L̃

−→
φ

↓f ↓ f̃

Consider imbedding Rn ⊂ Pn, and let x 7→ φ(x) = x̃ be a projective
transformation. Then

Rf̃(L̃) =

∫
L̃
f̃(x̃)d̃s =

∫
L
f(x)J(L, x)ds = J0(L)

∫
L
f(x)J1(x)ds,

because the Jacobian J(L, x) factors

J(L, x) = J0(L)J1(x),

where J0(L) and J1(L) are positive and real analytic.

See Reconstructive integral geometry by V. Palamodov, Section 3.1:
Factorable mappings.



An extension of Helgason’s theorem
Assume again that f is rapidly decaying and that Rf(L) = 0 for all L
that do not intersect K.

Make a projective transformation that takes the hyperplane at infinity
to a hyperplane L0.

Since R(J1f̃) = 0 for all L in a neighborhood of L0, we know that

(x, ξ) /∈WFA(J1f̃) for all x ∈ L0 and ξ conormal to L0,

and hence

(x, ξ) /∈WFA(f̃) for all x ∈ L0 and ξ conormal to L0.
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An extension of Helgason’s theorem, cont.

(x, ξ) /∈WFA(f̃) for all x ∈ L0 and ξ conormal to L0.

By the decay assumption we know also that f̃ decays fast as x
approaches L0:

f̃(x) = O
(

dist(x, L0)
m
)

for every m as dist(x, L0)→ 0,

Hence Theorem 1 implies that f̃ must vanish in some neighborhood of
L0. So our original function f must vanish in some neighborhood of
the plane at infinity, which menas that it must have compact support.

And then we know that it must vanish in the complement of K.
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All of those arguments are valid for weighted Radon transforms Rρ
with real analytic weight functions ρ(L, x), provided that the
extension of ρ(L, x) to Pn∗ ×Pn is real analytic and positive
everywhere, that is, also at the hyperplane at infinity.



In this argument I did not use the fact that my unique continuation
theorem is local . In fact it implies more.

Now let L0 be the plane at infinity and S a subset of the plane at
infinity. That f is flat at S then means that f decays in certain
directions.

Proposition. Assume Rf(L) = 0 for all L that do not intersect K
and that there is an open cone C ⊂ Rn and

f(x) = O(|x|−m) for all m as |x| → ∞ for x ∈ C.

Then f = 0 in the set ⋂
x∈K

(
x+ C ∪ (−C)

)
.
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I denote this set by shK(C), the shadow of C (if identified with the
corresponding subset of the plane at infinity) with respect to K.

K shK(C)shK(C)

C



Assume Rf(L) = 0 for all L that do not intersect K and that f(x) is
rapidly decaying as x approaches a subset S of the hyperplane L0:

f(x) = O
(

dist(x, S)m
)

for every m as dist(x, S)→ 0.

K

L0

S

By Theorem 1 it follows that f = 0 in some neighborhood of S.



And then we can continue by means of a family of
“non-characteristic” surfaces:

S

L0

K



Also on the other side of S:

S

L0

K



Note that the points of shK(S) are the points that cannot be seen from
K, if S serves as a screen and light rays are allowed to go in just one
of the directions along the geodesics in Pn.

S

L0

K shK(S)

shK(S)



Let me repeat:

All of those arguments are valid for weighted Radon transforms Rρ
with real analytic weight functions ρ(L, x), provided that the
extension of ρ(L, x) to Pn∗ ×Pn is real analytic and positive
everywhere, that is, also at the hyperplane at infinity.



Unique continuation of CR functions

Let M be a real analytic submanifold of Cn.

A function on M is called a CR function if for every x ∈M it
satisfies the Cauchy-Riemann equations with respect to all complex
directions in Tx(M).

Let S ⊂M be a real analytic submanifold of M .

For x ∈M we have two subspaces of the tangent space Tx(M):

Tx(S), the tangent space to S, and

Ax(M), the maximal complex-analytic subspace of Tx(M)

Theorem (Baouendi and Trèves 1988). Let f be a CR function on M
and assume that f vanishes together with all its derivatives on the real
analytic submanifold S ⊂M . Assume moreover that for every point
x ∈ S

the subspaces Ax(M) and Tx(S) span Tx(M).

Then f must vanish in some neighborhood of S.
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Proof.

For a subspace N of Tx(M) we denote by N⊥ the set of its
conormals in T ∗x (M). Then

the subspaces Ax(M) and Tx(S) span Tx(M)

is equivalent to Ax(M)⊥ ∩ Tx(S)⊥ = ∅.

But Tx(S)⊥ is equal to N∗x(S) by definition.

And the fact that f is a CR function on M implies that

WFA(f) ⊂ Ax(M)⊥.

Hence
WFA(f) ∩N∗(S) = ∅,

so the assumptions of Theorem 1 are fulfilled and the assertion
follows.
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Proof of Theorem 1

Let us consider the case when f is continuous and S is a
hypersurface, which we may assume to be {(x′, 0); |x′| < γ} for
some γ > 0.

The assumptions are (write en = (0, . . . , 0, 1))

(x,±en) /∈WFA(f) for every x = (x′, 0) ∈ S, and

f(x′, xn) = O(xmn ) as xn → 0 for (x′, 0) ∈ S and every m.

We have to prove that f = 0 in some neighborhood of the origin.

Since (0,±en) /∈WFA(f) we can choose ψm ∈ C∞ such that
suppψm is contained in a neighborhood U of the origin, ψm = 1 in a
smaller neighborhood U0 of the origin, and ε > 0, such that

|ψ̂mf(ξ)| ≤ (Cm)k(1 + |ξ|)−k, k ≤ m, |ξ′| < ε|ξn|,

for all m.
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It turns out that it is better to choose ψm so that ψm tends to and
arbitrary test function ϕ ∈ C∞c (U0) with convergence in the topology
of C∞c . One can show that this is possible.

Consider

hm(xn) =

∫
Rn−1

ψm(x′, xn)f(x′, xn)dx′,

which now depends on ϕ.

The Fourier transforms of hm satisfies

ĥm(ξn) = ψ̂mf(0, ξn).

There are good bounds for derivatives of hm, because

sup |∂khm| ≤
∫
|ξkn ĥm(ξn)|dξn =

∫
|ξkn ψ̂mf(0, ξn)|dξn

≤
∫
|ξn|k

(Cm)k+2

(1 + |ξn|)k+2
dξn ≤ 4(Cm)k+2 for k + 2 ≤ m.

(1)

One can show that the constant C can be chosen independent of ϕ.
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ĥm(ξn) = ψ̂mf(0, ξn).

There are good bounds for derivatives of hm, because

sup |∂khm| ≤
∫
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Since hm is flat at xn = 0 and its derivatives satisfy (1), Taylor’s
formula gives

|hm(xn)| ≤ δm−2

(m− 2)!
sup |∂m−2hm|

≤ δm−2

(m− 2)!
4(Cm)m ≤ 4C2e2m2(Ceδ)m−2, |xn| < δ.

Hence
lim
m→∞

hm(xn) = 0, if |xn| < δ < 1/Ce.

But hm(xn) tends to

h(xn) =

∫
Rn−1

ϕ(x′, xn)f(x′, xn)dx′, as m→∞,

hence
h(xn) = 0, if |xn| < δ < 1/Ce.

Since this is true for all ϕ, we can conclude that f(x′, xn) = 0 for
(x′, xn) ∈ U0 and |xn| < δ, which completes the proof.
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Construction of ψm

Lemma. For every m there exists φm ∈ C∞c (R), even, with
suppφm ⊂ [−1, 1],

∫
φm(x)dx = 1, and

(2)
∫
|∂kφm(x)|dx ≤ (2m)k, k ≤ m.

Proof. Take θ(x) in C∞, even, with supp θ ⊂ [−1, 1], θ(x) ≥ 0, and∫
θ(x)dx = 1. We can find θ(x) so that

∫
|θ′(x)|dx ≤ 2. Choose

φm(x) = mθ(mx) ∗mθ(mx) ∗ . . . ∗mθ(mx) (m factors).

Then suppφm ⊂ [−1, 1] and
∫
φm(x)dx = 1. Moreover, if k ≤ m

∂kφm(x) = m2θ′(mx) ∗ . . . ∗m2θ′(mx)︸ ︷︷ ︸
k factors

∗ . . . ∗mθ(mx).

This proves (2).
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Construction of ψm, cont.

Lemma. The functions φm satisfy
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(
1− c ξ

2

m2
+ . . .

)m → 1 as |ξ| → ∞

uniformly on bounded sets. Since φ̂m is uniformly bounded (in fact
|φ̂m| ≤ 1) this proves (3).
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G. Lebeau, Une problème d’unicité forte pour l’equation des ondes, Comm.
Partial Diff. Equations, 24 (1999), 777-783.

A. Kaneko, Introduction to hyperfunctions, Note 3.3.


