On a model of Josephson effect, dynamical systems on two-torus and double confluent Heun equations

V.M.Buchstaber,
A.A.Glutsyuk, S.I.Tertychnyi

International Conference dedicated to G.M. Henkin, Quasilinear equations, inverse problems and their applications Moscow Institute of Physics and Technology

Dolgoprudny,

$$
\text { 12-15 Sept. } 2016
$$

Authors

V.M.Buchstaber - Steklov Mathematical Institute (Moscow), All-Russian Scientific Research Institute for Physical and Radio-Technical Measurements (VNIIFTRI, Mendeleevo), Russia.
Supported by part by RFBR grant 14-01-00506.
A.A.Glutsyuk - CNRS, France (UMR 5669 (UMPA, ENS de Lyon) and UMI 2615 (Lab. J.-V.Poncelet)), National Research University Higher School of Economics (HSE, Moscow, Russia).
Supported by part by RFBR grants 13-01-00969-a, 16-01-00748, 16-01-00766 and ANR grant ANR-13-JS01-0010.
S.I.Tertychnyi - All-Russian Scientific Research Institute for Physical and Radio-Technical Measurements (VNIIFTRI, Mendeleevo), Russia.
Supported by part by RFBR grant 14-01-00506.

Superconductivity

Occurs in some metals at temperature $\mathbb{T}<\mathbb{T}_{\text {crit }}$.
The critical temperature $\mathbb{T}_{\text {crit }}$ depends on the metal.
Carried by coherent Cooper pairs of electrons.
Josephson effect (B.Josephson, 1962)
Let two superconductors S_{1}, S_{2} be separated by a very narrow dielectric, thickness $\leq 10^{-5} \mathrm{~cm}(\ll$ distance in Cooper pair).
There exists a supercurrent I_{S} through the dielectric.

Quantum mechanics. State of S_{j} : wave function $\Psi_{j}=\left|\Psi_{j}\right| e^{i \chi_{j}}$;

$$
\chi_{j} \text { is the phase, } \phi:=\chi_{1}-\chi_{2} .
$$

Josephson relation: $I_{S}=I_{c} \sin \phi, I_{c} \equiv$ const.

Josephson effect

Let two superconductors S_{1}, S_{2} be separated by a very narrow dielectric, thickness $\leq 10^{-5} \mathrm{~cm}(\ll$ distance in Cooper pair).
There exists a supercurrent I_{S} through the dielectric.

Quantum mechanics. State of S_{j} : wave function $\Psi_{j}=\left|\Psi_{j}\right| e^{i \chi_{j}}$;

$$
\chi_{j} \text { is the phase, } \quad \phi:=\chi_{1}-\chi_{2}
$$

Josephson relation

$I_{S}=I_{c} \sin \phi, I_{c} \equiv$ const.

RSJ model

$\mathbb{T}<\mathbb{T}_{\text {crit }}$, but $\frac{\mathbb{T}_{\text {crit }}-\mathbb{T}}{\mathbb{T}} \ll 1$.

Equivalent circuit of real Josephson junction

See Barone, A. Paterno G. Physics and applications of the Josephson effect 1982, Figure 6.2.
This scheme is described by the equation

$$
\frac{\hbar}{2 e} C \frac{d^{2} \varphi}{d t^{2}}+\frac{\hbar}{2 e} \frac{1}{R} \frac{d \varphi}{d t}+I_{c} \sin \varphi=I_{d c}
$$

Overdamped case

This scheme is described by the equation

$$
\begin{gathered}
\frac{\hbar}{2 e} C \frac{d^{2} \varphi}{d t^{2}}+\frac{\hbar}{2 e} \frac{1}{R} \frac{d \varphi}{d t}+I_{c} \sin \varphi=I_{d c} \\
\text { Set } \tau_{1}=\Omega t=\frac{2 e}{\hbar} R I_{c} t \\
\epsilon=\frac{\hbar}{2 e} \frac{C}{I_{c}}\left(\frac{2 e}{\hbar} R I_{c}\right)^{2}=\frac{2 e}{\hbar}(C R)\left(R I_{c}\right) \\
\epsilon \frac{d^{2} \varphi}{d \tau_{1}^{2}}+\frac{d \varphi}{d \tau_{1}}+\sin \varphi=I_{c}^{-1} I_{d c}
\end{gathered}
$$

Overdamped case: $|\varepsilon| \ll 1$.
In the case, when $I_{c}^{-1} I_{d c}=B+A \cos \omega \tau_{1}$, we obtain

$$
\begin{equation*}
\frac{d \phi}{d \tau_{1}}=-\sin \phi+B+A \cos \omega \tau_{1} \tag{1}
\end{equation*}
$$

Equation (1) in other domains of mathematics

In the case, when $I_{c}^{-1} I_{d c}=B+A \cos \omega \tau_{1}$, we obtain

$$
\begin{equation*}
\frac{d \phi}{d \tau_{1}}=-\sin \phi+B+A \cos \omega \tau_{1} . \tag{1}
\end{equation*}
$$

Equation (1) occurs in other domains of mathematics.
It occurs, e.g.,
in the investigation of some systems with non-holonomic connections by geometric methods.

It describes a model of the so-called Prytz planimeter.

Analogous equation describes the observed direction to a given point at infinity while moving along a geodesic in the hyperbolic plane.

Reduction to a dynamical system on 2-torus

Set $\tau=\omega \tau_{1}, f(\tau)=\cos \tau$.

$$
\left\{\begin{array}{l}
\dot{\phi}=-\sin \phi+B+A f(\tau), \quad(\phi, \tau) \in \mathbb{T}^{2}=\mathbb{R}^{2} / 2 \pi \mathbb{Z}^{2} \tag{2}\\
\dot{\tau}=\omega
\end{array}\right.
$$

System (2) also occurred in the work by Yu.S.llyashenko and J.Guckenheimer from the slow-fast system point of view.
They have obtained results on its limit cycles, as $\omega \rightarrow 0$.
Consider $\phi=\phi(\tau)$. The rotation number of flow:

$$
\begin{equation*}
\rho(B, A ; \omega)=\lim _{n \rightarrow+\infty} \frac{\phi(2 \pi n)}{n} \tag{3}
\end{equation*}
$$

Problem

Describe the rotation number of flow $\rho(B, A ; \omega)$ as a function of the parameters (B, A, ω).

Rotation number of circle diffeomorphism

V. I. Arnold introduced rotation number for circle diffeomorphisms $g: S^{1} \rightarrow S^{1}$. Consider the universal covering $p: \mathbb{R} \rightarrow S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$. Every circle diffeomorphism $g: S^{1} \rightarrow S^{1}$ lifts to a line diffeomorphism $G: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
g \circ p=p \circ G
$$

G is uniquely defined up to translations by the group $2 \pi \mathbb{Z}$.
The rotation number of the diffeomorphism g :

$$
\begin{equation*}
\rho:=\frac{1}{2 \pi} \lim _{n \rightarrow+\infty} \frac{G^{n}(x)}{n} \tag{4}
\end{equation*}
$$

It is well-defined, independent on x, and $\rho \in S^{1}=\mathbb{R} / \mathbb{Z}$.

Example

Let $g(x)=x+2 \pi \theta$. Then $\rho \equiv \theta(\bmod \mathbb{Z})$.

Arnold Tongues

Properties in general case:

$$
\begin{aligned}
& \rho=0<==>g \text { has at least one fixed point. } \\
& \rho=\frac{p}{q}<==>g \text { has at least one } q \text { - periodic orbit }
\end{aligned}
$$

ordered similarly to an orbit of the rotation $x \mapsto x+2 \pi \frac{p}{q}$.
Arnold family of circle diffeomorphisms:
$g_{a, \varepsilon}(x)=x+2 \pi a+\varepsilon \sin x, 0<\varepsilon<1$.
V.I.Arnold had discovered Tongues Effect for given family $g_{a, \varepsilon}$:
for small ε the level set $\{\rho=r\} \subset \mathbb{R}_{\boldsymbol{a}, \varepsilon}^{2}$ has non-empty interior, if and only if $r \in \mathbb{Q}$.

He called these level sets with non-empty interiors phase-lock areas. Later they have been named Arnold tongues.

Arnold family of circle diffeomorphisms: $g_{a, \varepsilon}(x)=x+2 \pi a+\varepsilon \sin x, 0<\varepsilon<1$. Arnold Tongues Effect for given family of diffeomorphisms $g_{a, \varepsilon}$: for small ε the level set $\{\rho=r\} \subset \mathbb{R}_{\mathrm{a}, \varepsilon}^{2}$ has non-empty interior, if and only if $r \in \mathbb{Q}$.
Arnold called these level sets with non-empty interiors phase-lock areas. Later they have been named Arnold tongues.
The tongues are connected and start from ($\left.\frac{p}{q}, 0\right)$.

See V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations. Grundlehren der mathematischen Wissenschaften, Vol. 250, 1988, page 110, Fig. 80.

Arnold family and dynamical system (2)

$$
\left\{\begin{array}{l}
\dot{\phi}=-\sin \phi+B+A f(\tau) \tag{2}\\
\dot{\tau}=\omega
\end{array}, \quad(\phi, \tau) \in \mathbb{T}^{2}=\mathbb{R}^{2} / 2 \pi \mathbb{Z}^{2}\right.
$$

Consider $\phi=\phi(\tau)$. The rotation number of flow:

$$
\rho(B, A ; \omega)=\frac{1}{2 \pi} \lim _{n \rightarrow+\infty} \frac{\phi(2 \pi n)}{n}
$$

It is equivalent $(\bmod 1)$ to the rotation number of the flow map for the period 2π.

Problem

How the rotation number of flow depends on (B, A) with fixed ω ?
The ε from Arnold diffeomorphisms family corresponds to the parameter A in (2).
Arnold family is a family of diffeomorphisms arbitrarily close to rotations.
The time 2π flow diffeomorphisms of the system (2) for $A=0$ are not rotations and even not simultaneously conjugated to rotations: for $A=B=0$ we obtain $\dot{\phi}=-\sin \phi$: the flow map has attractive fixed point 0 .

Phase-lock areas for dynamical system (2)

Phase-lock areas: level sets $\{\rho(B, A)=r\} \subset \mathbb{R}_{B, A}^{2}$ with non-empty interiors. Here $\rho(B, A)=\rho(B, A, \omega)$ with fixed ω.

Their picture is completely different from Arnold tongues picture.

New effects (V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi)

1) quantization: phase-lock areas exist only for $r \in \mathbb{Z}$.
2) In the initial Josephson case, $f(\tau)=\cos \tau$:

- infinitely many adjacencies in every phase-lock area;
- a big phase-lock area for $r=0$ based on the segment $[-1,1] \times\{0\}$.

The Shapiro step notion is important in the theory and applications of Josephson effect.

The Shapiro steps can be estimated by the intersections of the phase-lock areas for dynamical system (2) with horizontal lines $A=$ const.

Phase-lock areas for $\omega=2$

Phase-lock areas: level sets $\{\rho(B, A)=r\} \subset \mathbb{R}_{B, A}^{2}$ with non-empty interiors.

- quantization: phase-lock areas exist only for $r \in \mathbb{Z}$.
- for $f(\tau)=\cos \tau$: infinitely many adjacencies in each phase-lock area.

Phase-lock areas for $\omega=1$

Phase-lock areas: level sets $\{\rho(B, A)=r\} \subset \mathbb{R}_{B, A}^{2}$ with non-empty interiors.

- quantization: phase-lock areas exist only for $r \in \mathbb{Z}$.
- for $f(\tau)=\cos \tau$: infinitely many adjacencies in every phase-lock area.

Phase-lock areas for $\omega=0.7$

Phase-lock areas: level sets $\{\rho(B, A)=r\} \subset \mathbb{R}_{B, A}^{2}$ with non-empty interiors.

- quantization: phase-lock areas exist only for $r \in \mathbb{Z}$.
- for $f(\tau)=\cos \tau$: infinitely many adjacencies in every phase-lock areas.

Phase-lock areas for $\omega=0.5$

- quantization: phase-lock areas exist only for $r \in \mathbb{Z}$.
- for $f(\tau)=\cos \tau$: infinitely many adjacencies in every phase-lock areas.

Phase-lock areas for $\omega=0.3$

- quantization: phase-lock areas exist only for $r \in \mathbb{Z}$.
- for $f(\tau)=\cos \tau$: infinitely many adjacencies in every phase-lock areas.

Quantization effect

Effect

Phase-lock areas exist only for $r \in \mathbb{Z}$.
Proof by Riccati equation method. Set

$$
\begin{gather*}
\Phi=e^{i \phi} \\
\frac{d \Phi}{d \tau}=\frac{1-\Phi^{2}}{2 \omega}+\frac{i}{\omega}(B+A f(\tau)) \Phi . \tag{5}
\end{gather*}
$$

It is quadratic in Φ. This is a projectivization of a rank 2 linear differential equation on vector function $(u(\tau), v(\tau)), \Phi=\frac{v}{u}$. Monodromy mapping of Riccati equation (5):

$$
\overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}} ; \Phi(0) \mapsto \Phi(2 \pi)
$$

It is a fractional-linear (Möbius) transformation $\overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$. The unit circle $S^{1}=\{|\Phi|=1\}$ is invariant.

Poincaré mapping $S^{1} \rightarrow S^{1}$ of dynamical system on torus $=$ the monodromy mapping of Riccati equation (5) restricted to S^{1}.

Main alternative for Möbius circle transformation g with a periodic orbit:

- either it is periodic: $g^{n}=I d$;
- or it has a fixed point.

Main alternative implies quantization:
Indeed, consider the rotation number $\rho(B, A)$ of the dynamical system

$$
\left\{\begin{array}{l}
\dot{\phi}=-\sin \phi+B+A f(\tau), \quad(\phi, \tau) \in \mathbb{T}^{2}=\mathbb{R}^{2} / 2 \pi \mathbb{Z}^{2} . \tag{2}\\
\dot{\tau}=\omega
\end{array}\right.
$$

If $B_{2}>B_{1}$, then $\rho\left(B_{2}, A\right) \geq \rho\left(B_{1}, A\right)$;
strict inequality, if either $\rho\left(B_{1}, A\right) \notin \mathbb{Q}$, or the time 2π flow map g is periodic.
Therefore, a level set $\{\rho(B, A)=r\}$ has non-empty interior $==>$
$r=\frac{p}{q}$, the time 2π flow map g has a q-periodic orbit and is not q-periodic: $g^{q} \neq I d$. Main alternative $=>$ the flow map g has fixed point: $r \in \mathbb{Z} .=>$ Quantization.

Facts on phase-lock areas

Phase-lock areas

level sets $L_{r}=\{\rho(B, A)=r\} \subset \mathbb{R}_{B, A}^{2}$ with non-empty interiors: $r \in \mathbb{Z}$.
Known facts on phase-lock areas for $f(\tau)=\cos \tau$.

- boundary of phase-lock area $L_{r}=\{\rho=r\}$: two graphs of functions $B=\psi_{r, \pm}(A)$,
- $\psi_{r, \pm}(A)$ have Bessel asymptotics, as $A \rightarrow \infty$.

Observed by Shapiro, Janus, Holly. Proved by A.V.Klimenko and O.L.Romaskevich.

- each L_{r} is an infinite chain (garland) of domains going to infinity, separated by points.

The separation points with $A \neq 0$ are called adjacency points (adjacencies). They are ordered by their A-coordinates:

$$
\mathcal{A}_{r, 1}, \mathcal{A}_{r, 2}, \mathcal{A}_{r, 3}, \ldots
$$

- quantization of adjacencies: all the adjacencies $\mathcal{A}_{r, k}$ lie in the line $\{B=r \omega\}$.

Now it is conjecture based on numberical simulations (Tertychnyi, Filimonov, Kleptsyn, Schurov). At the moment it is proved that each adjacency $\mathcal{A}_{r, k}$ lies in a line $\{B=\| \omega\}$, where $0 \leq I \leq r$ and $I \equiv r(\bmod 2)$ (Filimonov, Glutsyuk, Kleptsyn, Schurov).

- zero phase-lock area L_{0} : for every ω its intersection with the B-axis is the segment $[-1,1] \times\{0\}$;
- the picture of phase-lock areas is symmetric up-down and left-right.

Main open questions based on numerical simulations

Conjecture 1

Phase-lock area $L_{r}, r \in \mathbb{N}$ lies to the right from the line $\{B=\omega(r-1)\}$.

Conjecture 1 implies:

Conjecture 2

All adjacencies $\mathcal{A}_{r, k}$ lie in the line $\{B=r \omega\}$.

Question

What happens with the phase-lock area picture, as $\omega \rightarrow 0$?

Conjectures (Buchstaber-Tertychnyi) based on numerical simulations

- The phase-lock area L_{r} is a garland of infinitely many connected components separated by adjacencies $\mathcal{A}_{r, 1}, \mathcal{A}_{r, 2} \ldots$. lying in the line $\{B=r \omega\}$ and ordered by their A-coordinates.
- For every $k \geq 2$ the k-th component in L_{r} contains the interval $\left(A_{r, k-1}, A_{r, k}\right)$.
- As $\omega \rightarrow 0$, for every r the set $L_{r+}:=L_{r} \cap\left\{A \geq \mathcal{A}_{r, 1}\right\}$ accumulates to the A-axis.
- The first adjacencies $\mathcal{A}_{r, 1}, r=1,2, \ldots$ of all the phase-lock areas L_{r} lie on the same line with azimuth $\frac{\pi}{4}$.
- For every $k \in \mathbb{N}$ all the adjacencies $A_{r, k}, r=1,2, \ldots$, lie on the same line; its azimuth depends on k.
- The first component of the zero phase-lock area lies in the square with vertices $(0, \pm 1),(\pm 1,0)$.

Conjectures based on numerical simulations

- For every $k \geq 2$ the k-th component in L_{r} contains the interval $\left(A_{r, k-1}, A_{r, k}\right)$.
- All the first adjacencies $\mathcal{A}_{r, 1}$ lie on the same line with azimuth $\frac{\pi}{4}$.
- For every $k \in \mathbb{N}$ all the adjacencies $A_{r, k}$ lie on the same line; its azimuth $=\alpha(k)$.
- The first component of the zero phase-lock area lies in the square with vertices $(0, \pm 1),(\pm 1,0)$.

Double confluent Heun equation

Reduction to double confluent Heun equation.

$$
\begin{gather*}
\frac{d \phi}{d \tau}=\frac{1}{\omega}(-\sin \phi+B+A \cos \tau), \tag{6}\\
z=e^{\tau}, \quad \Phi=e^{i \phi}, I=\frac{B}{\omega}, \mu=\frac{A}{2 \omega}, \lambda=\frac{1}{4 \omega^{2}}-\mu^{2}, \\
\frac{d \Phi}{d z}=z^{-2}\left(\left(\mid z+\mu\left(z^{2}+1\right)\right) \Phi-\frac{z}{2 i \omega}\left(\Phi^{2}-1\right)\right) .
\end{gather*}
$$

This is the projectivization of system of linear equations in vector function $(u(z), v(z))$ with $\Phi=\frac{v}{u}$:

$$
\left\{\begin{array}{l}
v^{\prime}=\frac{1}{2 i \omega z} u \tag{7}\\
u^{\prime}=z^{-2}\left(-\left(\mid z+\mu\left(1+z^{2}\right)\right) u+\frac{z}{2 i \omega} v\right)
\end{array}\right.
$$

Reduction to double confluent Heun equation

Set

$$
E(z)=e^{\mu z} v(z)
$$

The system

$$
\left\{\begin{array}{l}
v^{\prime}=\frac{1}{2 i \omega z} u \\
u^{\prime}=z^{-2}\left(-\left(\mid z+\mu\left(1+z^{2}\right)\right) u+\frac{z}{2 i \omega} v\right)
\end{array}\right.
$$

is equivalent to double confluent Heun equation:

$$
\begin{equation*}
z^{2} E^{\prime \prime}+\left((I+1) z+\mu\left(1-z^{2}\right)\right) E^{\prime}+(\lambda-\mu(I+1) z) E=0, \tag{8}
\end{equation*}
$$

There exist explicit formulas expressing the solution of the non-linear equation

$$
\frac{d \phi}{d t}=-\sin \phi+B+A \cos \omega t
$$

via solution of equation (8) (Buchstaber - Tertychnyi).

Familes of Heun equations

General 6-parametric family of Heun equations

$$
\begin{array}{r}
z(z-1)(z-t) E^{\prime \prime}+ \\
(c(z-1)(z-t)+d z(z-t)+(a+b+1-c-d) z(z-1)) E^{\prime}+ \\
+(a b z-\nu) E=0 . \tag{9}
\end{array}
$$

Four Fuchsian singularities: $0,1, t, \infty$.
Parameters: $a, b, c, d ; t, \nu$.

Double confluent Heun equation

$$
z^{2} E^{\prime \prime}+\left((I+1) z+\mu\left(1-z^{2}\right)\right) E^{\prime}+(\lambda-\mu(I+1) z) E=0
$$

is a limit of appropriate subfamily with pairs of confluenting singularities $(0,1),(t, \infty)$.

Problems and results on double confluent Heun equations

$$
z^{2} E^{\prime \prime}+\left((I+1) z+\mu\left(1-z^{2}\right)\right) E^{\prime}+(\lambda-\mu(I+1) z) E=0,
$$

This equation has two irregular non-resonant singularities at 0 and ∞ of Poincaré rank 1.

Well-known problems on double confluent Heun equations.
Find polynomial solutions.

Find entire solutions.

Results on double confluent Heun equations.

adjacency $<=>$ this equation has entire solution (Buchstaber, Tertychnyi). There is explicit transcendental equation on parameters for entire solution (Buchstaber-Tertychnyi, Buchstaber-Glutsyuk).

Equation on parameters

Let $I \geq 0$ (reduction by symmetry).
V.M.Buchstaber, S.I.Tertychnyi: adjacency $<=>$ (8) has entire solution

$$
E(z)=\sum_{k \geq 0} a_{k} z^{k} .
$$

$<=>$ Explicit transcendental equation $\xi_{l}(\lambda, \mu)=0$ on parameters
(Buchstaber-Tertychnyi, Buchstaber-Glutsyuk),
ξ_{l} is a holomorphic function on \mathbb{C}^{2} constructed via an infinite product of explicit linear non-homogeneous matrix functions in $\left(\lambda, \mu^{2}\right)$.

Its construction comes from studying recurrent relations on the coefficients a_{k} equivalent to differential equation (8): $f_{k} a_{k}+g_{k} a_{k-1}+h_{k} a_{k+1}=0, \quad g_{k}=k+l$.

Results (Buchstaber-Tertychnyi)

Equation

$$
\begin{equation*}
z^{2} E^{\prime \prime}+\left((I+1) z+\mu\left(1-z^{2}\right)\right) E^{\prime}+(\lambda-\mu(I+1) z) E=0, \tag{8}
\end{equation*}
$$

with $I \geq 0$ cannot have polynomial solution.
Indeed, $I \geq 0=>g_{k}>0$ for all $k=>a_{k-1}$ is uniquely determined by a_{k} and a_{k+1} $=>$ if E is polynomial, then $E \equiv 0$.
This equation with $I \geq 0$ replaced by $-/$:

$$
\begin{equation*}
z^{2} \hat{E}^{\prime \prime}+\left((-I+1) z+\mu\left(1-z^{2}\right)\right) \hat{E}^{\prime}+(\lambda+\mu(I-1) z) \hat{E}=0, \quad I \geq 0 . \tag{10}
\end{equation*}
$$

Obtained from (8) via the transformation $\hat{E}(z)=e^{\mu\left(z+z^{-1}\right)} E\left(-z^{-1}\right)$.
Equation (10) has polynomial solution $<=>$ polynomial equation $\Delta_{l}(\lambda, \mu)=0$, where $\Delta_{l}(\lambda, \mu)$ is the determinant of three-diagonal Jacobi $(I \times I)$-matrix of three-term recurrent relations equivalent to (10) on coefficients of solutions

$$
\hat{E}(z)=\sum_{k \geq 0} a_{k} z^{k}, k<1 .
$$

Entire and polynomial solutions

Theorem

Main alternative on entire and polynomial solutions.
(Some its version conjectured and partially studied by Buchstaber-Tertychnyi.
Proved by Buchstaber-Glutsyuk).
Equation (8) has a solution holomorphic on $\mathbb{C}^{*}<=>$ so does (10) $<=>$ one of the two following incompatible statements holds:

1) either equation (8) has an entire solution: $\xi_{l}(\lambda, \mu)=0$ ($<=>$ adjacency);
2) or equation (10) has a polynomial solution: $\Delta_{l}(\lambda, \mu)=0$.
3) $<=>$ non-adjacency intersection of the line $\{B=I \omega\}$ with boundary of phaselock area $L_{r}, 0 \leq r \leq I$, parity effect: $r \equiv I(\bmod 2)$. (Buchstaber-Glutsyuk).
$z^{2} E^{\prime \prime}+\left((I+1) z+\mu\left(1-z^{2}\right)\right) E^{\prime}+(\lambda-\mu(I+1) z) E=0, \quad I \geq 0$.
$z^{2} \hat{E}^{\prime \prime}+\left((-I+1) z+\mu\left(1-z^{2}\right)\right) \hat{E}^{\prime}+(\lambda+\mu(I-1) z) \hat{E}=0, \quad I \geq 0$.
Main alternative (Buchstaber-Tertychnyi, Buchstaber-Glutsyuk). Equation (8) has solution holomorphic on $\mathbb{C}^{*}<=>$ some of two incompatible statements holds:
4) either equation (8) has an entire solution $<=>$ adjacency;
5) or equation (10) has a polynomial solution $<=>$ non-adjacency point of intersection $\{B=I \omega\} \cap \partial L_{r}, 0 \leq r \leq I$, parity effect: $r \equiv I(\bmod 2)$.

Main part of proof. (10) has polynomial solution $=>(8)$ has no entire solution. Uses determinants of modified Bessel functions $l_{j}(x)$ of 1 st kind:

$$
e^{\frac{x}{2}\left(z+\frac{1}{2}\right)}=\sum_{j=-\infty}^{+\infty} \iota_{j}(x) z^{j}
$$

Follows from Buchtaber-Tertychnyi results + new result on Bessel determinants.

Two-sided Young diagrams: $Y\left(\mathbb{Z}^{\prime}\right)=\left\{k=\left(k_{1}, \ldots, k_{l}\right) \mid k_{1}>\cdots>k_{l}\right\} \subset \mathbb{Z}^{\prime}$.
Let k and n be two two-sided Young diagrams, and

$$
\begin{gathered}
a=\left(\ldots, a_{-1}, a_{0}, a_{1}, \ldots\right), \\
A_{k, n}=\left(a_{k_{j}-n_{i}}\right)_{i, j=1, \ldots, I}=\left(\begin{array}{cccc}
a_{k_{1}-n_{1}} & a_{k_{2}-n_{1}} & \ldots & a_{k_{l}-n_{1}} \\
a_{k_{1}-n_{2}} & a_{k_{2}-n_{2}} & \ldots & a_{k_{l}-n_{2}} \\
\ldots & \ldots & \ldots & \ldots \\
a_{k_{1}-n_{l}} & a_{k_{2}-n_{l}} & \ldots & a_{k_{l}-n_{l}}
\end{array}\right) .
\end{gathered}
$$

The determinants $\operatorname{det} A_{k, n}$ form Plücker coordinates on the Grassmanian of I subspaces in the Hilbert space I_{2} of sequences a.

$$
e^{\frac{x}{2}\left(z+\frac{1}{2}\right)}=\sum_{j=-\infty}^{+\infty} I_{j}(x) z^{j} .
$$

Bessel determinant: determinant $\operatorname{det} A_{k, n}$, where a_{j} is the modified Bessel functions $I_{j}(x)$ of 1 st kind.

$$
a=\left(\ldots, a_{-1}, a_{0}, a_{1}, \ldots\right), \quad A_{k, n}=\left(a_{k_{j}-n_{i}}\right)_{i, j=1, \ldots, l}
$$

Theorem (Buchstaber-Glutsyuk)

Let det $A_{k, n}$ be the Bessel determinant.
Then $\operatorname{det} A_{k, n}(x)>0$ for every $x>0$ and for every $I \geq 1, k, n \in Y\left(\mathbb{Z}^{\prime}\right)$.
Sketch of proof. For the Bessel determinant the sequence function $f(x)=$ $(f)_{k}(x)=\left(\operatorname{det} A_{k, n}\right)_{k}(x)$ with fixed n and discrete variable k satisfies a differentialdirrefence equation with right-hand side containing the discrete laplacian:

$$
\frac{\partial f}{\partial x}=\Delta_{\text {discr }} f+2 / f
$$

where $\Delta_{\text {discr }}$ acts on the space of functions $f=f(k)$ in $k \in \mathbb{Z}^{\prime}$ as follows. Let T_{j} be the shift operator:

$$
\begin{gather*}
\left(T_{j} f\right)(k)=f\left(k_{1}, \ldots, k_{j-1}, k_{j}-1, k_{j+1}, \ldots, k_{l}\right), j=1, \ldots, l, \\
\Delta_{\text {discr }}:=\sum_{j=1}^{\prime}\left(T_{j}+T_{j}^{-1}-2\right) . \tag{11}
\end{gather*}
$$

The positivity of the Bessel determinants is somewhat analogous to positivity of solution of heat equation with positive initial condition.

A scheme of points corresponding to eq. (10) with polynomial solutions.

Simulation of points corresp. to eq. (10) with polynomial solutions
For $I \in \mathbb{N}$ set $\mathcal{P}_{I} \in\{B=I \omega\}=$ the point corr. to polyn. solution with maximal A.

Conjecture (Buchstaber-Tertychnyi) based on simulation.

All \mathcal{P}, lie on the same line.

