Asymptotics of wave propagation and run-up in the framework of shallow water equations.

S. Dobrokhotov, V. Nazaikinskii
A. Isshinsky Institute for Problems in Mechanics RAS and Moscow Institute of Physics and Technology
joint work with
D. Minenkov, B. Tirozzi

Supported by projects RITMARE (CINFAI) and RFBR

QUASILINEAR EQUATIONS, INVERSE PROBLEMS AND THEIR APPLICATIONS

Moscow Institute of Physics and Technology, 12 - 15 September 2016
PISTON MODEL for TSUNAMI PROBLEM

2-D SHALLOW WATER EQUATION

\[
\frac{\partial \eta}{\partial t} + \text{div}((\eta + D(x))u) = 0, \quad \frac{\partial u}{\partial t} + (u, \nabla)u + g\nabla \eta = 0.
\]

\[u|_{t=0} = u^0\left(\frac{x}{\mu}\right) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \eta|_{t=0} = \eta^0\left(\frac{x}{\mu}\right)\]

LINEARIZATION in the OPEN OCEAN:
\[\eta \ll D(x), \quad |u| \ll \sqrt{gD(x)} \implies\]
\[\frac{\partial \eta}{\partial t} + \text{div}(D(x)u) = 0, \quad \frac{\partial u}{\partial t} + g\nabla \eta = 0.
\]

The main mathematical problems: focal points and profile metamorphosis
Linearization of free-boundary problem for the water waves \[\rightarrow \]

Wave equation with localized source \((\text{tsunami waves}) \)

\[\Omega \subset \mathbb{R}^2 \text{ a domain}; \]

\(\partial \Omega \text{ smooth} \)

wave propagation in \(\Omega \)
from a source localized near \(x_0 \in \Omega \):

\[\eta_{tt} - \langle \nabla, c^2(x) \nabla \rangle \eta = 0 \]

\[\eta|_{t=0} = V(\mu^{-1}(x - x_0)), \quad \eta_t|_{t=0} = 0 \]

\(V(y) \in C^\infty \text{ decays at } \infty; \mu \to 0 \)

\(c^2(x) \in C^\infty; c^2(x)|_{\partial \Omega} = 0; \)

\(\nabla c^2(x)|_{\partial \Omega} \text{ vanishes nowhere} \)

\(\mu = \frac{\text{characteristic size of the source}}{\text{characteristic size of the basin}} \)

\(c(x) = \sqrt{gD(x)} \)

\(-D(x) \)

\textbf{Task:} find asymptotic solution as \(\mu \to 0 \)
“Missing” boundary conditions

No “classical” boundary conditions needed on $\partial \Omega$ owing to degeneration.

Oleinik & Radkevich 1969

Instead: Friedrichs extension of $-\langle \nabla, c^2(x) \nabla \rangle$

Energy integral

$$J^2(t) = \frac{1}{2} \left(\| \eta_t \|^2_{L^2} + \| c(x) \nabla \eta \|^2_{L^2} \right)$$

well-posedness (standard theorem)
General

Global asymptotics without run-up

Run-up

S. Yu. Dobrokhotov, V. E. Nazaiikinskii, B. Tirozzi, Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data, Russian Journal of Mathematical Physics, Vol. 20, No. 4. 2013, pp. 389-401
The solution is localized near a front: moving boundary layer

Wave front at time t is the projection onto \mathbb{R}_x^2 of the set of endpoints of trajectories of the Hamiltonian system

$$\dot{x} = H_p, \quad \dot{p} = -H_x, \quad H(x, p) = c(x) \sqrt{p_1^2 + p_2^2}$$

with the initial conditions

$$x|_{t=0} = x_0, \quad p|_{t=0} = \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix}$$

$$\psi \in [0, 2\pi)$$

Solution: $p = P(\psi, t), x = X(\psi, t), \quad$ For fix t the set $x = X(\psi, t)$ is the front in Ω
“Stoker ?? bottom”
The objects playing role in the description of the propagated wave:

i1) Fronts (bottom topography),
i2) the Green law $\sqrt[4]{\frac{D(x_0)}{D(x)}}$,
i3) the ray divergence $\sqrt{\frac{1}{|X_\psi|}}$,
i4) the form of the initial source $V \iff$ the wave profile for caustics 1, 2)
i5) characteristic index of caustic for caustics 3)
i6) angle of the beach $\frac{\partial c}{\partial n}$
The wave field outside the focal points

\[\eta \approx \sqrt{\frac{\mu}{|X_\psi(\psi, t)|}} \sqrt[4]{\frac{D(x_0)}{D(x)}} \text{Re} \left[e^{-i\pi m(\psi, t)/2} F \left(\frac{\gamma(x, t)}{\mu} \sqrt[4]{\frac{D(x_0)}{D(x)}}, \psi \right) \bigg|_{\psi = \psi(x, t)} \right] \]

Here

- \(y(x, t) \) is the alternative distance between the point \(x \) and the closest point \(X(\psi(x, t), t) \) on the front,
- \(\psi(x, t) \) is the correspondence angle (coordinate) on the front,
- \(m((\psi, t)) \) is the Morse (Maslov) index of this point.

\[F(s, \psi) = \frac{e^{-i\pi/4}}{\sqrt{2\pi}} \int_0^\infty \tilde{\eta}^0(\rho \mathbf{n}(\psi)) \sqrt{\rho} e^{is\rho} \, d\rho, \quad \tilde{\eta}^0(k) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \eta^0(z) e^{i(k, z)} \, dz \]

Asymmetric Dotsenko-Sergievskii-Cherkasov-Wang type source

\[\eta^0(z) = \frac{A}{(1 + (z_1/B_1)^2 + (z_2/B_2)^2)^{3/2}}, \quad F(s, \psi) = \frac{Ae^{-i\pi/4}}{2\sqrt{2} \left(\sqrt{B_1^2 \cos^2 \psi + B_2^2 \sin^2 \psi} - is \right)^{3/2}}. \]
WAVE MODE: DIFFERENT TYPES OF FOCAL POINTS AND CREATION OF TRAPPED MODES BY UNDERWATER BANKS AND RIDGES

3-types of focal points:

1) For \(t = 0 \) the front is the point \(x = x_0 \) (“non general position”)

2) For some \(\tilde{t} \) and \(\tilde{\psi} \) the vector \(\frac{\partial X}{\partial \psi} (\tilde{\psi}, \tilde{t}) = 0 \), the focal point \(x = X(\tilde{\psi}, \tilde{t}) \) belong to 2-D space-time caustic

3) The boundary \(c(x) = \) is a special type caustic

\[\eta \approx \int_{0}^{\infty} K^{\mu/\rho}_{\lambda} A(t, \alpha, \psi, \rho) \, d\rho \]

+ simplification near front using boundary layer expansion
3) The **boundary** $c(x) = \text{is a special type caustic}$

Change of variables: $x = \text{coordinate along the normal}$

Question:
How to extend the trajectory after it hits the shore?
Answer (Vukasinić-Zhevandrov 2002; 1D case, fast oscillating solutions)

- Make the change of variables $q = 1/p$ in the Hamiltonian system
- After that, smooth continuation of the trajectories is possible

A wave before and after reflection

- derived from energy finiteness requirement

In the asymptotics, this leads to known effects such as the reflection of an N-wave (Pelinovskii-Mazova, 1996)
The general case

- Make a canonical transformation:

 \(x_1 \) is the coordinate along the normal
 \(x_2 \) is the coordinate along the boundary

 \[
 (x_1, p_1) \mapsto (E, q), \quad q = \frac{1}{p_1}, \quad E = x_1 p_1^2
 \]

 \((x_2, p_2) \) remain the same

 Then

 \[
 dE \wedge dq + dp_2 \wedge dx_2 = dp_1 \wedge dx_1 + dp_2 \wedge dx_2
 \]

 (canonical transformation)

- Add points with \(q = 0 \)

 \(\implies \) new phase space \(\Phi = T^*\Omega \sqcup \{q = 0\} \)
• The Hamiltonian $H(x,p)$ proves to be a smooth function on Φ
• The trajectories of the Hamiltonian are infinitely extendible in time, both as $t \to \infty$ and $t \to -\infty$.

Reflection from the boundary \equiv passage through $q = 0$

The Hamiltonian system on Φ can be effectively used to construct characteristics, wave fronts, and eventually asymptotic solutions.
- The Hamiltonian $H(x, p)$ proves to be a smooth function on Φ
- The trajectories of the Hamiltonian are infinitely extendible in time, both as $t \to \infty$ and $t \to -\infty$.

Reflection from the boundary \equiv passage through $q = 0$

Infinite half-plane (continued): waves trapped by the shore

The wave front shortly after reflection from the shore $x_1 = 0$

The reflected part is shown in darker color

Time evolution of the wave front. Shore is shown by the horizontal axis
Canonical transformations

(Fock-Maslov-Egorov ideas)

<table>
<thead>
<tr>
<th>G</th>
<th>\hat{G}^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x_1, p_1) \rightarrow (p_1, -x_1)$</td>
<td>Inverse Fourier transform</td>
</tr>
<tr>
<td>$(p_1, -x_1) \rightarrow (q, E)$</td>
<td>Change of variables $q = p^{-1}$ and multiplication by $1/q$</td>
</tr>
<tr>
<td>$(q, E) \rightarrow (E, -q)$</td>
<td>Inverse Fourier transform</td>
</tr>
<tr>
<td>$(x_1, p_1) \rightarrow (E, -q)$</td>
<td>Inverse Hankel transform</td>
</tr>
</tbody>
</table>
Let \(a = \frac{l_2}{l_1} \) (eccentricity). Then on the coast we have

\[
\eta_{\text{max}} = \begin{cases}
\frac{\sqrt{2D_0A}}{\sqrt{\tan \theta |X_\psi|^{1/2}}} \frac{a}{\cos^2(\psi - \beta) + a^2 \sin^2(\psi - \beta)} & \text{for } m = 4k, \\
\frac{1}{8} \frac{\sqrt{2D_0A}}{\sqrt{\tan \theta |X_\psi|^{1/2}}} \frac{a}{\cos^2(\psi - \beta) + a^2 \sin^2(\psi - \beta)} & \text{for } m = 4k + 2, \\
\frac{9}{8\sqrt{3}} \frac{\sqrt{2D_0A}}{\sqrt{\tan \theta |X_\psi|^{1/2}}} \frac{a}{\cos^2(\psi - \beta) + a^2 \sin^2(\psi - \beta)} & \text{for odd } m.
\end{cases}
\]
CARRIER-GREENSPAN TRANSFORM
THE LINEAR WAVE EQUATION for \(N(\tau, y), U(\tau, y) \):

\[
N\tau + \frac{\partial}{\partial y}(\gamma^2 yU) = 0, \quad U\tau + gNy = 0,
\]

CONSIDER the SYSTEM

\[
x = y + N - \frac{1}{2}U^2, \quad t = \tau - U
\]

Let it defines one-to-one map from \(\{ y \geq 0, \tau \in \mathbb{R} \} \) to the value area of the right hand side

THEN

\[
\eta = N - \frac{1}{2}U^2, \quad v = U
\]

are the solution to the ORIGINAL NONLINEAR SYSTEM in a PARAMETRIC FORM
x_1 is the coordinate along the normal to the coast

x_2 is the coordinate along the coast

We fix x_2 and make the Carrier–Greenspan transform

$$\tilde{\eta} = \eta(x_1, x_2) - \frac{1}{2} u^2(x_1, x_2, t), \quad \tilde{x}_1 = x_1 + \tilde{\eta}, \quad \tilde{t} = t - u^2(x_1, x_2, t),$$

whence we find $\tilde{\eta} = \tilde{\eta}(x_1, x_2, t)$ and determine the uprush by solving the equation

$$\tilde{\eta}(\tilde{x}_1, x_2, t) + D(\tilde{x}_1, x_2) = 0.$$

$$D \approx \gamma x_1$$

$$\tilde{x}_1 \approx -\frac{1}{\gamma} \tilde{\eta}(\tilde{x}_1, x_2, t)$$
The splash

Water

SOURCE

trajectory $X(\psi, t)$

Beach: $x_i = f(x)$

η_{max} = $\tan \theta$

θ
Filtration of the front for Algerian tsunami
21 May 2003 Boumerdès–Zemmouri tsunami (Algeria)

<table>
<thead>
<tr>
<th>Place</th>
<th>Height actual</th>
<th>Height computed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carloforte</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Imperia</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>Monaco</td>
<td>0.19</td>
<td>0.17</td>
</tr>
<tr>
<td>Nice</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Toulon</td>
<td>0.1</td>
<td>0.09</td>
</tr>
</tbody>
</table>

(The strike and eccentricity of the tsunami source have been taken from [A. Sahal et al., Nat. Hazards Earth Syst. Sci. 9, 823–1834, 2009]. The tsunami wave height at Carloforte was used to compute the only remaining source parameter, the amplitude A. The actual heights have been taken from the same paper.)
SOME IDEAS

1-D case: localized solutions and short-wave oscillating solutions

\[u_{tt} = \frac{\partial}{\partial x} c^2(x) \frac{\partial}{\partial x} u, \quad u \big|_{t=0} = \eta^0 \left(\frac{x}{\mu} \right), \quad u_t \big|_{t=0} = 0. \]

Whitham type asymptotics

\[u = f^+ \left(\frac{S^+(x,t)}{\mu}, x, t, \mu \right) + f^- \left(\frac{S^-(x,t)}{\mu}, x, t, \mu \right), \]

\[f^+ \left(z, x, t, \mu \right) = f^+_0 \left(z, x, t \right) + O(\mu) \]

\[\downarrow \]
DEFECT:
these formulas cannot be generalized for two-$(n-1)$ D case
in the situations when one has “the gradient catastrophe” \iff
THE FOCAL POINTS and CAUSTICS exist

IDEA:
to pass to shortwave (semiclassical) asymptotics
where the situation with focal points and caustics is well studied
ELEMENARY IDEA N 1

The relationship with oscillating WKB-solutions and semiclassical asymptotics

\[A^\pm(x, t) e^{i S^\pm(x, t) / \hbar} \tilde{V}(\rho) d\rho = \]

\[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \text{WKB} \bigg|_{h=\mathcal{R}} \tilde{V}(\rho) d\rho = \frac{1}{\sqrt{2\pi}} \text{Re} \int_{0}^{\infty} A^\pm(x, t) e^{i S^\pm(x, t) / \hbar} \bigg|_{h=\mathcal{R}} \tilde{V}(\rho) d\rho. \]

semiclassical parameter: \[h = \frac{\mu}{\rho} \]

\[\tilde{V}(\rho) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} V(y) e^{i\rho y} dy \]

THE INTEGRAL OVER $d\rho$ COMMUTES WITH THE ORIGINAL HYPERBOLIC OPERATOR
ELEMENTARY IDEA N 2:

The “boundary layer” simplification

The solutions are localized near the fronts $x = X^\pm(t)$:

$$S^\pm(x, t)|_{x = X^\pm(t)} = 0$$

\[\downarrow\]

The Taylor expansion:

$$S^\pm \rightarrow \frac{\partial S^\pm}{\partial x}(X^\pm(t))(x - X^\pm(t)) \quad \text{and} \quad A^\pm(x, t) \rightarrow A^\pm(X^\pm(t), t)$$

The corrections and Petrovskii estimates

h is not small when ρ is small \implies one has to eliminate “VERY LONG” waves corresponding to small ρ \implies the constructive asymptotic solution exists but the constructive asymptotic expansion DOES NOT: VERY LONG waves are out of geometrical optics and WKB.
THE CANONICAL MASLOV OPERATOR:

ONE HAS TO CHANGE
1) PHASES S^σ BY LAGRANGIAN MANIFOLDS Λ^σ_t IN THE PHASE SPACE $\mathbb{R}^{4}_{p,x}$, LOCALLY $\Lambda^\sigma_t = \{p = \nabla S^\sigma\}$

2) THE AMPLITUDES SHOULD BE DEFINED ON Λ^σ_t

3) GENERALIZATION: THE "SEMICLASSICAL PARAMETER" \hbar SHOULD BE CHANGED BY μ/ρ and ONE HAS TO MAKE ADDITION INTEGRATION BY $d\rho$

THUS WE HAVE

$$\eta = \int_0^\infty (\text{WKB-solution})d\rho \quad \implies \eta = \sum_\sigma \int_0^\infty \{K^h_\Lambda^\sigma f_\sigma(\rho, \psi)|_{\hbar=\frac{\mu}{\rho}}\}d\rho$$

SINGULARITIES OF WAVEFIELDS \iff SINGULARITIES OF THE PROJECTION OF THE MANIFOLD INTO THE CONFIGURATION SPACE
Local definition of the canonical operator

Canonical coordinates \((E, -q)\):

\[
K\varphi = \frac{e^{i\pi/2}}{\hbar} \int J_0 \left(\frac{2}{\hbar} \sqrt{Ex_1} \right) e^{i\hbar S(E, x_2)} \frac{\varphi}{\sqrt{J_E}} dE
\]

\(J_0(z)\) is the Bessel function of order zero

Canonical coordinates \((q, E)\):

\[
K\varphi = \frac{e^{i\pi/4}}{\hbar^{3/2} \sqrt{2\pi}} \int J_0 \left(\frac{2}{\hbar} \sqrt{Ex_1} \right) e^{i\hbar (S(q, x_2) - qE)} \frac{\varphi}{\sqrt{J_q}} dq dE
\]
The wave amplitude on the shore $x_1 = f(x_2)$ for the special source

The free surface elevation at the shore $x_1 = f(x_2)$ is given by

$$\eta(f(x_2), x_2, t) \propto \frac{\sqrt{2D_0A}}{\sqrt{\tan \theta |X_\psi(T(x_2), \psi(0, x_2))|^{1/2}}} \text{re} \frac{e^{-i\pi m/2}l_1 l_2}{(l - ic_0(T(x_2) - t))}.$$

- $l_j (= b_j \mu)$ are the semi-axes of the source
- $l = \sqrt{l_1^2 \cos^2(\psi - \beta) + l_2^2 \sin^2(\psi - \beta)}$
- D_0 is the source depth, $c_0 = \sqrt{gD_0}$
- A is the amplitude at the source
- m is the Maslov index (the number of focal points on the trajectory arriving at the point $(f(x_2), x_2)$)
- $\tan \theta$ is the bottom slope near the considered point of the beach

Let $a = l_2/l_1$ (eccentricity). The tsunami amplitude on the shore is

$$\eta_{max} = \begin{cases}
\frac{\sqrt{2D_0A}}{\sqrt{\tan \theta |X_\psi|^{1/2}} \cos^2(\psi - \beta) + a^2 \sin^2(\psi - \beta) a} & \text{for even } m, \\
\frac{9}{8\sqrt{3}} \frac{\sqrt{2D_0A}}{\sqrt{\tan \theta |X_\psi|^{1/2}} \cos^2(\psi - \beta) + a^2 \sin^2(\psi - \beta)} a & \text{for odd } m.
\end{cases}$$

THANK YOU FOR YOUR ATTENTION!