Fibration of the periodical eigenfunctions manifold into hypersurfaces

Ya. Dymarskii

Moscow, MIPT, 2016 September 15

The space of of self-adjoint periodic eigenvalue and eigenfunction boundary-value problems

$$-y'' + p(x)y = \lambda y, \quad y(0) - y(2\pi) = y'(0) - y'(2\pi) = 0, \quad (1)$$

$$P := \left\{ p \in C^0(2\pi) \mid \int_0^{2\pi} p(x) dx = 0 \right\}$$

The spectrum consists of real eigenvalues, which have multiplicity at most 2:

$$\lambda_0(p) < \lambda_1^-(p) \le \lambda_1^+(p) < \ldots < \lambda_k^-(p) \le \lambda_k^+(p) < \ldots$$

Eigenfunctions corresponding to eigenvalues with subscript k have precisely 2k nondegenerate zeros on the half-open interval $[0, 2\pi)$.

The manifold of eigenfunctions with exactly 2k zeros

$$Y_k := \{ y \in C^2(2\pi) : \int_0^{2\pi} y^2 dx = 1, (1) \text{ with } \lambda = \lambda_k^{\pm}(p), y \cong -y \}$$

The set Y_k (k = 0, 1, ...) consists of all functions y such that:

1. there exist 2k points $x_i \in [0, 2\pi)$ at which

$$y(x_i) = y''(x_i) = 0, y'(x_i) \neq 0;$$

- 2. the function y has no other zeros;
- 3. there exist derivatives $y^{(3)}(x_i) < \infty$
- 4. Y_k is a manifold which locally C^{∞} -diffeomorphic to space P.
- 5. There are mappings which recover the eigenvalue and potential:

$$\Lambda_k: Y_k \to \mathbb{R}, \ \Lambda_k(y) = \lambda := -\frac{1}{2\pi} \int_0^{2\pi} \frac{y''}{y} dx;$$

$$f_k: Y_k \to P, \ f_k(y) = p := \frac{y''}{y} + \Lambda_k(y).$$

The degenerate and nondegenerate eigenfunctions

For $k \in \mathbb{N}$ a pair $(y, z) \in Y_k \times Y_k$ is said to be **conjugated** if these functions are generated by the same potential p and $\int_0^{2\pi} yzdx = 0$. Any eigenfunction $y \in Y_k$ has a unique conjugated function z = I(y) and $I^2(y) = y$. If $\lambda^-(p) < \lambda^+(p)$ then $I(y^{\pm}(p)) = y^{\mp}(p)$.

Lacuna(y) is
$$\Delta \Lambda_k(y) := \Lambda_k(y) - \Lambda_k(I(y)),$$

 $Y_k(\Delta \Lambda_k = C) := \{ y \in Y_k : \Delta \Lambda_k(y) = C \}.$
 $Y_k = \bigcup_{C \in \mathbb{R}} Y_k(\Delta \Lambda_k = C).$

The set $Y_k(\Delta \Lambda_k = 0)$ is called degenerate; if $C \neq 0$, $Y_k(\Delta \Lambda_k = C)$ is nondegenerate.

1. For any fixed C, the subset $Y_k(\Delta \Lambda_k = C) \subset Y_k$ is a C^{∞} -submanifold of codimension 1; for any $C_1 \neq C_2$, $Y_k(\Delta \Lambda_k = C_1) \cong Y_k(\Delta \Lambda_k = C_2)$. 2. $Y_k \cong Y_k(\Delta \Lambda_k = C) \times \mathbb{R} \sim \mathbb{R}P^1$.

The degenerate and nondegenerate potentials

$$\begin{aligned} |\Delta \lambda_k(p)| &:= \lambda_k^+(p) - \lambda_k^-(p) \ge 0, \\ P(|\Delta \lambda_k| = C) &:= \{ p \in P : |\Delta \lambda_k(p)| = C \ge 0 \}. \\ P &= \cup_{C \ge 0} P(|\Delta \lambda_k| = C). \end{aligned}$$

- 1. For any fixed C > 0, the nondegenerate subset
- $P(|\Delta \lambda_k| = C) \subset P$ is a C^{∞} -submanifold of codimension 1;

$$P(|\Delta \Lambda_k| = C) \times \mathbb{R}^+ \cong P \setminus P(|\Delta \lambda_k| = 0) \sim \mathbb{R}P^1.$$

- 2. The degenerate subset $P(|\Delta \lambda_k| = 0) \subset P$ is a C^{∞} -submanifold of codimension 2; $P(|\Delta \lambda_k| = 0) \sim *$.
- 3. For $C \neq 0$, $f_k|_{\pm C} : Y_k(\Delta \Lambda_k = \pm C) \rightarrow P(|\Delta \lambda_k| = |C|)$ is C^{∞} -diffeomorphism.
- 4. For C=0, $f_k|_0: Y_k(\Delta\Lambda_k=0) \to P(|\Delta\lambda_k|=0)$ is C^{∞} -bundle with $\mathbb{R}P^1$ as fiber;
- 5. For any C, $Y_k(\Delta \Lambda_k = C) \cong P(|\Delta \lambda_k| = 0) \times \mathbb{R}P^1$.

The analytic description of bundle of Y_k

For $y \in Y_k(\Delta \Lambda_k = 0)$ Wronskian $W(y) := W(y, I(y)) = y \cdot (I(y))' - y' \cdot I(y) = const.$ The mapping

$$F: Y_k(\Delta \Lambda_k = 0) \times \mathbb{R} \to Y, \ F(y, \Delta \lambda) := \frac{exp\left(\frac{\Delta \lambda}{2W(y)} \int_0^x y I(y) dx\right) y}{||...||_{L_2}}$$

is C^{∞} -diffeomorphism and $F(y, \Delta \lambda) \in Y_k(\Delta \Lambda_k = \Delta \lambda)$. The inverse mapping is

$$F^{-1}: Y \to Y_k(\Delta \Lambda_k = 0) \times \mathbb{R},$$

$$F^{-1}(y) = \left(\frac{\left(1 + \frac{\Delta \lambda(y)}{W(y(0))} \int_0^x y \cdot I(y) dx\right)^{-1/2} y}{||...||_{L_2}}, \Delta \lambda(y)\right).$$

Levels of functional Λ

1. For any fixed C, the subset $Y_k(\Lambda_k = C) \subset Y_k$ is a C^{∞} -submanifold of codimension 1; for any $C_1 \neq C_2$, $Y_k(\Lambda_k = C_1) \cong Y_k(\Lambda_k = C_2)$.

2. $Y_k \cong Y_k(\Lambda_k = C) \times \mathbb{R} \sim \mathbb{R}P^1$.

On Y_k consider the vector field

$$\dot{y} = v(y) := \frac{\int_0^{2\pi} y^4 dx - y^2}{4 \int_0^{2\pi} (y')^2 dx} y \ \Rightarrow \ \dot{\lambda}(v(y)) = 1 \ \Rightarrow$$

there exists the vector flow $F^t: Y_k \to Y_k \ (-\infty < t < \infty)$

$$F^{t}(Y_{k}(\Lambda_{k}=C))=Y_{k}(\Lambda_{k}=C+t).$$

The parametrization of manifolds Y_k and P

 $H_k \subset C^2(2\pi)$ is the set of functions η that satisfy the conditions

1.
$$\eta(x) \in C^{2}(2\pi)$$
,

2.
$$\eta(x) > 0$$
,

3.
$$\int_0^{2\pi} \eta(x) dx = 2\pi k$$
,

4.

$$\int_0^{2\pi} \frac{\sin 2 \int_0^x \eta(t) \ dt}{\eta(x)} \ dx = 0, \quad \int_0^{2\pi} \frac{\cos 2 \int_0^x \eta(t) \ dt}{\eta(x)} \ dx = 0.$$

The set H_k is homotopy trivial C^{∞} -manifold.

By definition $\theta(x; \varphi, \eta) := \varphi + \int_0^x \eta(t) dt$, where $\varphi \in \mathbb{R}P^1$

The parametrization of manifold Y_k

$$\Upsilon: H_k \times \mathbb{R} \times \mathbb{R} P^1 \to Y_k,$$

$$\Upsilon(\eta, \Delta \lambda, \varphi) :=$$

$$y^{sign(\Delta \lambda)} = \frac{const}{\eta^{1/2}(x)} \exp\left(\frac{\Delta \lambda}{4} \int_0^x \frac{\sin 2\theta(t; \varphi, \eta)}{\eta(t)} dt\right) \cdot \cos(\theta(x; \varphi, \eta)).$$

$$\Upsilon \text{ is } C^{\infty}\text{-diffeomorphism.}$$

The parametrization of manifold P

$$\begin{split} r(x) &:= \frac{(y_k)''}{y_k} = -\frac{\eta''}{2\eta} + \frac{3(\eta')^2}{4\eta^2} - \eta^2 + \\ &\frac{\Delta \lambda \eta' \sin 2\theta(x; \varphi, \eta)}{2\eta^2} + \frac{\Delta \lambda^2 \sin^2 2\theta(...)}{16\eta^2} - \Delta \lambda \cos 2\theta(...) + \frac{\Delta \lambda}{2}, \\ &\lambda_k = -\frac{1}{2\pi} \int_0^{2\pi} r(x) dx, \\ &\Phi: H_k \times \mathbb{R}^+ \times \mathbb{R} P^1 \to P, \ \Phi(\eta, \Delta \lambda, \varphi) = p(x) := r(x) + \lambda_k. \end{split}$$

 Φ is C^{∞} -diffeomorphism.

Literature

- Ya.M. Dymarskii Manifold Method in the Eigenvector Theory of Nonlinear Operators // Jornal of Mathematical Sciences – 2008.
- Ya. M. Dymarskii, Yu. A. Evtushenko Foliation of the space of periodic boundary-value problems by hypersurfaces to fixed lengths of the nth spectral lacuna // Sbornik: Mathematics 207:5, 2016, P. 678-701