A flat approximation of inverse MEG-problems

Authors: Galchenkova Marina,
Demidov Alexander, Kochurov Alexander
-What is magnetoencephalography (MEG)?

- Inverse problem
-The reason of our interest in this problem
- Steps of solution
- Subsequent goals

SQUID* sensor array aligned to cortical surface of the brain

Axons in the cortical surface of the brain

Direction of electric current in active axon

SQUID sensor detects magnetic field of current -

Magnetoencephalography is a noninvasive technique for investigating neuronal activity in the living human brain.

What is MEG?

Inverse problem

- a problem of finding electrical impulses' distribution in some area Y (associated with cortex), that based on data of its induced magnetic field in another place X that we obtain by MEG system.

The reason of our interest in this problem

 Forward computation

 Forward computation}

According to Biot-Savart law

$$
\begin{gathered}
B(x)=\int_{Y} K(x, y) Q(y) d y, \quad x=\left(x_{1}, x_{2}, x_{3}\right) \in X \\
K(x, y)=\frac{\mu}{4 \pi}\left(\begin{array}{ccc}
0 & K_{12}(x, y) & -K_{31}(x, y) \\
-K_{12}(x, y) & 0 & K_{23}(x, y) \\
K_{31}(x, y) & -K_{23}(x, y) & 0
\end{array}\right)
\end{gathered}
$$

$$
K_{12}(x, y)=\frac{x_{3}-y_{3}}{|x-y|^{3}}, \quad K_{31}(x, y)=\frac{x_{2}-y_{2}}{|x-y|^{3}}, \quad K_{23}(x, y)=\frac{x_{1}-y_{1}}{|x-y|^{3}}
$$

At first we observe a following model:

$$
\begin{gathered}
X=\mathbb{R}_{2} \ni x=\left(x_{1}, x_{2}\right),\left|x_{k}\right|<\infty \\
\left(\mathbb{R}_{3} \supset Y\right) \ni y=\left(y_{1}, y_{2},-\varepsilon\right):\left|y_{k}\right|<\infty \\
\varepsilon=1
\end{gathered}
$$

The equation assumes the following form:

$$
\sum_{m=1}^{3} \int_{Y} K_{l m}(x-y) Q_{m}(y) d y=B_{l}(x), \quad l=1,2,3
$$

Lemma 1

$$
\begin{aligned}
\widetilde{K}_{12}(\xi)= & E(\xi), \text { where } E(\xi)=2 \pi e^{-2 \pi|\xi|}: \\
\xi= & \left(\xi_{1}, \xi_{2}\right),|\xi|=\sqrt{\xi_{1}^{2}+\xi_{2}^{2}} \text {, and } \\
\widetilde{K}_{23}(\xi)= & -i \frac{\xi_{1}}{|\xi|} E(\xi), \widetilde{K}_{31}(\xi)=-i \frac{\xi_{2}}{|\xi|} E(\xi), \\
& \text { where } \widetilde{K}(\xi)=\mathcal{F}_{s \rightarrow \xi} K(s)
\end{aligned}
$$

A consequence of Lemma 1

$$
\begin{gathered}
\text { (1) } O p(\widetilde{K}(\xi)) Q(z)=B(x), \text { where } \\
\operatorname{Op}(\widetilde{K}(\xi))=\mathcal{F}_{\xi \rightarrow x}^{-1} \widetilde{K}(\xi) \mathcal{F}_{z \rightarrow \xi}, \\
\widetilde{K}(\xi)=\mathcal{F}_{s \rightarrow \xi} K(s)
\end{gathered}
$$

$\widetilde{K}(\xi)$ - is a symbol of pseudodifferential operator

$$
\text { (2) } \widetilde{K}(\xi) \widetilde{Q}(\xi)=\widetilde{B}(\xi), \xi=\left(\xi_{1}, \xi_{2}\right)
$$

Lemma 2

Equation form

$\widetilde{\boldsymbol{K}}(\xi) \widetilde{\boldsymbol{Q}}(\xi)=\widetilde{\boldsymbol{B}}(\xi)$

Basis

$$
\begin{aligned}
& e_{1}=(1,0,0) \\
& e_{2}=(0,1,0) \\
& e_{3}=(0,0,1)
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{Q}(\xi)=\left(\tilde{Q}_{1}, \tilde{Q}_{2}, \tilde{Q}_{3}\right) \\
& \tilde{B}(\xi)=\left(\tilde{B}_{1}, \widetilde{B}_{2}, \widetilde{B}_{3}\right)
\end{aligned}
$$

$\boldsymbol{\sigma}(\xi) \widetilde{\boldsymbol{u}}(\xi)=\widetilde{\boldsymbol{g}}(\xi) \quad e_{1}^{\prime}=\left(-\frac{i \xi_{1}}{|\xi|},-\frac{i \xi_{2}}{|\xi|}, 1\right)$

Details

$$
e_{2}^{\prime}=\left(\frac{i \xi_{2}}{|\xi|},-\frac{i \xi_{1}}{|\xi|}, 0\right)
$$

$$
e_{3}^{\prime}=\left(\frac{i \xi_{1}}{|\xi|}, \frac{i \xi_{2}}{|\xi|}, 0\right)
$$

$$
\begin{gathered}
\tilde{u}=\left(\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}\right) \\
\tilde{g}=\left(\tilde{g}_{1}, \tilde{g}_{2}, 0\right) \\
\sigma=\left(S^{t}\right)^{-1} \widetilde{K}(\xi) S^{t} \\
\text { where } S \text {-amplication } \\
\text { matrix }
\end{gathered}
$$

Lemma 3

The algorithm of obtaining u_{1}

$$
1^{\text {st }} \text { step }
$$

Transition from the basis \boldsymbol{e}^{\prime} to $\boldsymbol{e} \quad e^{\prime}=S e ; \beta_{e}=S^{t} \alpha_{e^{\prime}} ; \tilde{u}(\xi) \rightarrow \tilde{Q}(\xi)$

$2^{\text {nd }}$ step

Making the inverse Fourier transform

The algorithm of obtaining u_{1}

$3^{\text {rd }}$ step

According to Biot-Savart law, calculate all components of the magnetic
 $$
\sum_{m=1}^{3} \int K_{l m}(x-y) Q_{m}(y) d y=B_{l}(x), l=1,2,3
$$ field

The algorithm of obtaining u_{1}

$4^{\text {th }}$ step

Finding the magnitude of the vector B

$$
\|B\|^{2}=B_{1}^{2}+B_{2}^{2}+B_{3}^{2}
$$

The algorithm of obtaining \boldsymbol{u}_{1}

$5^{\text {th }}$ step

Getting the final integral
equation for \boldsymbol{u}_{1}

$$
\|B\|^{2}=\sum_{l=1}^{3}\left(\sum_{m=1}^{3} \int_{Y} K_{l m}(x-y)\left(G_{m}(y)+O p\left(-i \frac{\xi_{m}}{|\xi|}\right) u_{1}(y)\right) d y\right)^{2}
$$

Lemma 4

Suppose that $y_{1}=r \cos 2 \pi \Theta, y_{2}=r \sin 2 \pi \Theta$.
$G(r, \Theta)=g\left(y_{1}, y_{2}\right)=\sum_{m \in \mathbb{Z}} G_{m}(r) e^{i 2 \pi m \Theta}$, where $G_{m}(r) \in \mathbb{C}$. Then

$$
\tilde{G}(|\xi|, \omega)=\sum_{n \in \mathbb{Z}} e^{i 2 \pi\left(\omega-\frac{1}{4}\right) n} \int_{0}^{\infty} r G_{n}(r) J_{n}(2 \pi|\xi| r) d r,
$$

$$
\text { where } \tilde{G}(|\xi|, \omega)=\mathcal{F}_{y \rightarrow \xi} g(y) \text {, }
$$

$$
\xi_{1}=|\xi| \cos 2 \pi \omega, \xi_{2}=|\xi| \sin 2 \pi \omega
$$

Subsequent goals

1. To get the computational solution of our equation for $\boldsymbol{u}_{\boldsymbol{1}}$
2. To make the model suitable for the human brain topology
3. To true up our calculations corresponding to MEG data

Thank You for Your attention!

