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In the problem of traffic demand matrix estimation the goal is 

to recover traffic demand matrix represented as a vector 0x   

from known route matrix A (the element  
,i j

A  is equal 1 iff the 

demand with number j  goes through link with number i  and 

equals 0 otherwise) and link loads  b (amount of traffic which 

goes through every link). This leads to the problem of finding the 

solution of linear system Ax b .  Also we assume that we have 

some 0gx   which reflects our prior assumption about x.  Thus 

we consider x to be a projection of gx  on a simplex-type set 

 0 :x Ax b   
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    
2

2

2

2 0
0 0

min : min .g
Ax b Ax b
x x

g x x x g x
  
 

    

Slater’s relaxation of this problem leads to the problem (denote *x  

the solution of this problem) 

2 2

2

2

2

0

ming
Ax b

x

x x
 



  . 

This problem can be reduced to the problem (unfortunately 

without explicit dependence    ) 

 
2 2

22 0
ming

x
f x x x Ax b


     ,  
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where   – dual multiplier to the convex inequality 
2 2

2
Ax b   . 

One might expect that 
2

2

* 2gx x  , but in reality   can be 

chosen much smaller ( 1 2    ) if we restrict ourselves only 

by approximate solution. Let’s reformulate the problem 

 
22

2 2 0
ming

x
f x Ax b x x


     ,  

where 1   . The last two problem statements can be 

considered as problems of Bayesian parameter estimation: One 

measure the vector b with some random error  20,N I   and 

tries to find such vector 0x   that satisfies the linear system 
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Ax b  assuming that this vector is also random with prior 

distribution  2,gx N x I . So the model of the data is the 

following.  

b Ax   ,  20,N I  , prior on  2,gx N x I  . 

So the functions  f x  and  f x  introduced above now within 

multipliers are minus log likelihood for this model (with 
2 2   , 2 2   ) . Hence one can consider e.g. the second 

minimization problem as a Bayesian estimation problem or as a 

Penalized Maximum Likelihood Estimation (V. Spokoiny, 2012).   
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 In this talk we consider not only Euclidian projection. The 

second natural choice is Kullback–Leibler "projection". We also 

consider a problem of finding a sparse solution of the system 

Ax b  which leads to LASSO-type problem. 

 

The main result of the work is overview of modern 

approaches for the numerical solution of the mentioned above 

problems. The main practical motivation for us IP-traffic 

analysis.  We also slightly generalize some known results.  
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Consider the following problem (instead of   x  we can 

considered many other sum-type function of scalar product of 

rows some sparse matrix and x – most of the results below can be 

generalized in this direction) 

 

 

 
2

2

1
min

2 x Q

x

f x Ax b g x




    ,                    (1) 

where A – is a matrix of size m n  with elements equal 0 or 1.  
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We assume that the matrix A is sparse with number of non-zero 

elements  nnz A . Set  s nnz A n m , s sn m . By the 

solution of the problem (1) we will mean such vector (generally 

speaking a random vector if the method is randomized) Nx , that 

  2

*

NE f x f    
 

.                                (2) 

Where the expectation is taken with respect to all randomness in 

the method.  
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Since all the situation we considered below can be treated in a 

strongly convex environment we assume that the high probability 

deviations bounds can be obtained from the Markov inequality  

 

 2

2 *
2

* 2

N

N
E f x f

P f x f

 

 
   

  

                
  

, 

   2lnN L LR   . 

So we just have to make  1ln   -times additional iterations to 

have 1    probability guarantee. 
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Possible cases for choice of  g x  are: 

1. (Ridge Regression  / Tomogravity model) 

 
2

2

gg x x x  , nQ  ; 

2. (Mimimal mutual information model) 

   
1

ln
n

g

k k k

k

g x x x x


  ,  
1

0 :
n

g

k n k

k

x Q S R x x R


 
     

 
 . 

3.  (LASSO) 

 
1

g x x , nQ  ; 
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We use the following notations: 

 max A  – maximal eigenvalue of the matrix 
TA A, note that 

       
2

max max
2

1

tr
n

kT T

k

A A A A A A nnz A sn sm 


      , 

where 
k

A   – k -th column of matrix A; 
2

1,..., 2
max

k

k n
A m


 ; 

2
2 0

2 * 2

1

2
R x x  , where 0x  – starting point, *x  – solution of (1); 

       up to a logarithmic factor. 
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In the table below one can find complexity estimates 

(mathematical expectation of the total number of flops operations 

needed for finding solution of the problem (1) in sense (2)) for 

different algorithms applied to the problem (1) with different 

choice of  g x . We marked by *star the situations which are new 

in some extent.  
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algorithm/ 

model 

Ridge Regression / 

Tomogravity model 

Mimimal mutual  

information model 

LASSO 

Conjugate  

Gradients 

Method and 

different 

modifications  

 

 

max

1

2

max 2

2

min

A
sn

A R
sn









  
  

    
 

  
   

   

 

Not applicable Not applicable 

Composite 

FGM 

(Nesterov, 

2007) 

 

 

max

1

2

max 2

2

min

A
sn

A R
sn









  
  

    
 

  
   

   

 

2

1,..., 2

2

2
2

1,..., 2

2

max

min

max

k

k n

k

k n

A R
sn

A R
sn









  
  
  

  
   
 

  
  

  
  
  

* 

  2

max 2

2

A R
sn





 
 
 
 
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RCD 

APPROX / 

ALPHA 

(Richtarick, 

2013) 

1

2

2

2

*

min

s
sn

sR
sn





  
  
  
 

  
   
  

 

Not applicable 2

2

2

sR
sn



 
 
 
 

 

Dual RCA  

1

2

2

2

min

s
sm

sR
sm





  
  

  
 

  
   
  

* 
2

2

2

min

R
mn

R
mn





  
  
  
 

  
   
  

* 

Not applicable 
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Remark 1 (FGM for composite problems). Minimal mutual 

information model in strongly convex case (case 2) fits well to 

the framework of composite optimization since one can consider 

   
1

ln
n

g

k k k

k

g x x x x


   as the composite term. It is sufficient 

that  g x  is  -strongly convex in 1-norm. Smoothness of  g x  is 

not required. We use composite FGM method with 1-norm in 

primal x-space and prox-function  
1

ln ln
n

k k

k

d x n x x


   in not 

strongly convex case and 
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 
 

21

2 1 a
d x x

a



  with 

2log

2log 1

n
a

n



 

in strongly convex case. In not strongly convex case we can 

calculate the new point according to explicit formulas 

(exponential weighting), because prox-term and composite one 

both are entropy-type in strongly convex case this also can be 

done effective. Note that in not strongly convex case we have to 

use 2 lnR n instead of 
2R . In strongly convex case we also have to 

replace R  by lnR n. Here we have an example when non-

Euclidian prox-structure in strongly convex cases gave more 

benefits than Euclidian one. 
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Remark 3 (Estimates for FGM-type methods). Now we try 

to explain how these estimates were obtained. First two rows of 

the table have the following form 

 

 

  2

costs of one iteration, the main
the number of iterations,part is calculation of full gradient,
according to the FGM in 

that is calculation of strongly convex case

min ,

T

p p p p

A Ax

sn L L R




   


 

the number of iterations,
according to the FGM in 
non strongly convex case






, 

where   – precision we’d like to have. We use 2   (see (2)); 
2

pR  – Bregman divergence between the starting point and the 

solution of problem (1) in case when we choose p-norm in 

primal x-space  (for example in 2p   we have 2

2R , introduced 
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above); p  – constant of strongly convexity  f x  in p-norm (in 

case 1 2p  , 
2   and in case 2 1p  , 

1 R  );
pL  – Lipschitz 

constant of the gradient of  x : 

2
2

21 1 1
max max , max , max

p p p

T

p
x Q h h h

i j

L h h h A Ah Ah
x x



   


  

 
 

In cases 1, 3 2p  ,    2 max max

def
TL A A A    and in case 2 

1p  , 
2

1
1,..., 2

max
k

k n
L A


 . 
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Remark 3 (Estimates for Random Coordinate Descent 

(RCD) methods). Let’s compare FGM-type estimates to its RCD 

counterparts (see rows 2, 3 of the table) 

   
payment for 

costs of one iteration, calculation only random the number of iterations,the main part is recalculation component of gradient according to the FGM iof component of gradient

min p ps n L 


   


 2

the number of iterations,
according to the FGM in n 
non strongly convex casestrongly convex case

, p pL R 


 


 

where pL  is, roughly speaking, the average Lipschitz constant of 

gradient of  x :  
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1 2
2

1 2

2
1 1

1 1
max ,

n n
k

p k k
x Q

k ki j

L e e A s
n x x n




 


  

 
  . 

Here we considered only the case 2p   and non strongly convex 

situations with separable composite and set Q . Generalization to 

non Euclidian set up or(and) non separable structure of composite 

term and set Q  to the best of our knowledge hasn't been made 

until now.  

If we assume that Q  is formed by a few r  affine restrictions 

(or some others separable convex inequalities), we can insert 

them with Lagrange multipliers in the goal function. Then we can 
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solve new problem with fixed multipliers with the same 

complexity. At the same time we can consider the dual problem 

which has small dimension. To calculate (super-)subgradient of  

the goal function in the dual problem we have to solve primal 

problem (  solution in terms of function value of the primal 

problem gives us  -subgradient of the dual problem). If we use 

ellipsoids method, we can find in a fast manner (since the 

dimension is small) solution of the dual problem with accuracy 

     (in terms of dual function value). With appropriate 

choice of the method for the dual problem (ellipsoids method is 

proper) one can obtain the solution of the primal problem with 

the same accuracy in terms of primal function value  .  
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 So the main advantage of RCD methods consists in change of 

worth-case Lipschitz constant of gradient in complexity estimates 

to its average counterpart. This average Lipschitz constant can be 

much smaller, since (case 1) typically  maxs A  since 

   max
1,...,

max T

k
k n

A A A 


 ,    
1

tr
n

T T

k

k

A A A A sn


  . 
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Remark 4 (Estimates for Dual Random Coordinate Ascend 

(RCA) methods). First of all let’s form the dual problem. Denote 

by kA  – k -th row of matrix A,    
21

2
k kz z b   . Then we have 

(see Sion–Kakutani minimax theorem) 

     
2

2
1

1
min min

2

m

k k
x Q x Q

k

Ax b g x A x g x
 



  
       

   
  

   
1

min
m

k k
x Q

kf Ax

f g x




 
   

 
  
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   
1,

min max ,
m

k k
x Q y

kf Ax f

f f y f g x




 
      

 
  

    
1

max max , max ,
m

m

k k
x Q fy

kf Ax

f y g x f y f




   
        

   
  

     
1

max max , max
m

k

m
T

k k k k
x Q fy

k

A y x g x f y f




 
        

 
  

       * * * *

1 1

max min
mm

m m
T T

k k k k
yy

k k

g A y y g A y y 


 

   
          

   
 
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where we have explicit expressions for *g , *

k   and its gradients. 

Moreover we have explicit dependence of feasible  x y Q . If 

*y  is an optimal solution of this dual problem, then  * *x x y . 

Due to duality properties we also have that  *

1

m

k k

k

y


  is 1-

strongly convex in 2-norm in dual y -space and  * Tg A y  has 

Lipschitz constant of gradient in 2-norm equal to 

 max

TA sm sn      in case 1 and 
2

1,..., 2
max

k

k n
A R 


 in case 

2. We can use RCD for the dual problem multiplies by "-1" and 

use the approach briefly described in the previous remark. It is 
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worth noting that one has a possibility in case 1 to use 

recalculation at each iteration to obtain complexity of one 

iteration  s . Unfortunately, in case 2 we can only obtain 

complexity of one iteration  m . In this case we also have 

average Lipschitz constant (  0,1ijA   –  ,i j  element of matrix 

A) 

 

1 2

1 2 2

1
1 1

1
2 max 2

n

m n

ij j
p S

i j

L A p
m

 

 
  

 
  . 

Note that the dual problem is unconstrained. So this is one of the 

ways to work with not separable constraints in primal problem 



27 
 

(but we have payment for that – dual functional isn’t still 

separable, so in sparse case we have lack of possibility to use 

sparsity for accelerated methods).   

 We are interested in traffic applications in which typically 

m n (in the machine learning applications the situation is 

typically inverse m n). So we should use primal RCD. 

Remark 5 (Accuracy). In cases 1, 2 we expect to have such a 

situation for projection problem when estimates in strongly 

convex case seems to be close enough to estimates in not strongly 

convex (arguments at each min in the table above are close to 

each other). That is in some situations it doesn’t matter to use 
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strongly convexity or not – the rates of convergence up to a 

logarithmic factor are the same. But even in this situation there is 

a difference. The difference is the following: in the strongly 

convex case we have guarantee for convergence in argument, but 

in not strongly convex case we are able to use widely variety of 

prox-structures. One should also say that in real application we 

have to choose   according to initial discrepancy. So we have to 

work with relative precision. This fact allows us to fix some level 

of the relative precision (we choose 0.01, i.e. 1%) and tie the 

stopping rule of the method to the performance of this criterion. 
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