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Motivation

Schrödinger N→∞−→ Hartree

↓ ↓

~→ 0 ↘ ~→ 0

↓ ↓

Liouville N→∞−→ Vlasov

Problem: To derive Vlasov equation from quantum N-body problem
by a joint semiclassical (~→ 0) + mean field (N →∞) limit

[Graffi-Martinez-Pulvirenti M3AS 2003]
[Pezzotti-Pulvirenti Ann IHP 2009]
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DISTANCE BETWEEN CLASSICAL AND QUANTUM STATES
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Quantum vs classical densities

Quantum density operator

ρ = ρ∗ ≥ 0 , trH ρ = 1⇔ ρ ∈ D(H) with H := L2(Rd)

Classical density=probability density on Rd × Rd

Wigner transform of ρ ∈ D(H)

W~[ρ](x , ξ) := 1
(2π)d

∫
Rd

e−iξ·yρ(x + 1
2~y , x −

1
2~y)dy

not nonnegative in general

Husimi transform

W̃~[ρ] := e~∆x,ξ/4W~[ρ] ≥ 0
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Coupling quantum and classical densities

Following Dobrushin’s 1979 derivation of Vlasov’s equation, seek to
measure the difference between the quantum and the classical dy-
namics by a Monge-Kantorovich (or Vasershtein) type distance

Couplings of ρ ∈ D(H) and p probability density on Rd × Rd

(x , ξ) 7→ Q(x , ξ) = Q(x , ξ)∗ ∈ L(H) s.t.Q(x , ξ) ≥ 0

tr(Q(x , ξ)) = p(x , ξ) ,

∫∫
Rd×Rd

Q(x , ξ)dxdξ = ρ

The set of all couplings of the densities ρ and p is denoted C(p, ρ)
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Pseudo-distance between quantum and classical densities

Cost function comparing classical and quantum “coordinates” (i.e.
position and momentum)

c~(x , ξ) := |x − y |2 + |ξ + i~∇y |2

Pseudo-distance “à la” Monge-Kantorovich (with exponent 2)

E~(p, ρ) :=

(
inf

Q∈C(p,ρ)

∫∫
Rd×Rd

tr(c~(x , ξ)Q(x , ξ))dxdξ

)1/2
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Töplitz quantization

•Coherent state with q, p ∈ Rd :

|q + ip, ~〉 : x 7→ (π~)−d/4e−|x−q|
2/2~e ip·x/~

•With the identification z = q + ip ∈ Cd

OPT (µ) := 1
(2π~)d

∫
Cd

|z , ~〉〈z , ~|µ(dz) , OPT (1) = I

•Fundamental properties:

µ ≥ 0⇒ OPT (µ) ≥ 0 , tr(OPT (µ)) = 1
(2π~)d

∫
Cd

µ(dz)

•Important formulas:

W~[OPT(µ)]= 1
(2π~)d

e~∆q,p/4µ , W̃~[OPT(µ)]= 1
(2π~)d

e~∆q,p/2µ
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Basic properties of the pseudo-distance E~

Thm A Let p = probability density on Rd × Rd s.t.∫∫
Rd×Rd

(|x |2 + |ξ|2)p(x , ξ)dxdξ <∞

(1) For each ρ ∈ D(H) one has E~(p, ρ) ≥ 1
2d~

(2) For each µ ∈ P(Rd × Rd) one has

E~(p,OPT
~ ((2π~)dµ))2 ≤ distMK,2(p, µ)2 + 1

2d~

(3) For each ρ ∈ D(H), one has

E~(p, ρ)2 ≥ distMK,2(p, W̃~[ρ])2 − 1
2d~

(4) If ρ~ ∈ D(H) and W~[ρ~]→ µ in S ′, then µ ∈ P(Rd ×Rd) and

lim
~→0

E~(p, ρ) ≥ distMK,2(p, µ)
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PSEUDO-DISTANCE AND DYNAMICS
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Vlasov and N-body von Neumann equations

Vlasov equation for f ≡ f (t, x , ξ) probability density

∂t f = −{Hf , f } = −ξ · ∇x f +∇xVf · ∇ξf

with

Vf (t, x) :=

∫
Rd

V (x − z)ρ[f ](t, z)dz , ρ[f ] :=

∫
Rd

fdξ

N-body von Neumann equation

∂tρN,~ = − i

~
[HN , ρN,~]

where ρN,~ ∈ D(HN), with HN = H⊗N = L2((Rd)N) and

HN :=
N∑
j=1

−1
2~

2∆yj +
1
N

∑
1≤j<k≤N

V (yj − yk)
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Indistinguishable particles, symmetries and marginals

Notation for σ ∈ SN

XN := (x1, . . . , xN) , σ · XN := (xσ(1), . . . , xσ(N))

Quantum symmetric N-body density for all σ ∈ SN

UσρNU
∗
σ = ρN , where Uσψ(XN) = ψ(σ · XN)

Notation ρN ∈ Ds(HN)

k-particle marginal of ρN ∈ Ds(HN) is ρk
N ∈ Ds(Hk) such that

trHk
(Aρk

N) = trHN
((A⊗ IHN−k

)ρN) for all A ∈ L(Hk)
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From N-body von Neumann to Vlasov

Thm B Let f in ≡ f in(x , ξ) ∈ L1((|x |2 + |ξ|2)dxdξ) be a probability
density on Rd × Rd , an ρinN,~ ∈ Ds(HN). Let f and ρN,~ be the
solutions of the Vlasov equation and the von Neumann equation
resp. with initial data f in and ρinN,~.

E~(f (t), ρ1
~,N(t)) ≤ 1

N
E~((f in)⊗n, ρin~,N)eΓt +

(2‖∇V ‖L∞)2

N − 1
eΓt − 1

Γ

with Γ = 2 + 4max(1, Lip(∇(V ))2

If moreover ρin~,N = OPT
~ [(2π~)dN(f in)⊗N ]

distMK,2(f (t), W̃~[ρ1
~,N(t)])2 ≤ 1

2d~(1+eΓt)+
(2‖∇V ‖L∞)2

N − 1
eΓt − 1

Γ
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From N-body von Neumann to Vlasov 2

Amplification In fact, one has a quantitative statement on propa-
gation of chaos for this problem: for each fixed n ≥ 1 and all N > n

1
n
distMK,2(f (t)⊗n, W̃~[ρn

~,N(t)])2 ≤ 1
nE~(f (t)⊗n, ρn

~,N(t))

≤ 1
N
E~((f in)⊗n, ρin~,N)eΓt +

(2‖∇V ‖L∞)2

N − 1
eΓt − 1

Γ

This follows from
(1) the symmetry of the classical and quantum densitie is, and
(2) the structure of the cost which is the sum of costs in each
variable
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SOME IDEAS FOR THE PROOF
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Dynamics of couplings

Let Q in
N,~ ∈ Cs((f in)⊗N , ρinN,~); solve

∂tQN,~ +


N∑
j=1

Hf (xj , ξj),QN,~

+
i

~
[HN ,QN,~] = 0

with QN,~
∣∣
t=0 = Q in

N,~ and

HN :=
N∑
j=1

−1
2~

2∆yj +
1
N

∑
1≤j<k≤N

V (yj − yk)

Hf (x , ξ) := 1
2 |ξ|

2 +

∫∫
Rd×Rd

V (x − z)f (t, z , ζ)dzdζ
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The functional D(t)

Lemma For each t ≥ 0, one has

QN,~(t) ∈ Cs(f (t)⊗N , ρN,~(t))

where f is the solution of the Vlasov equation and ρN,~ is the solution
of the N-body von Neumann equation

•Define

D(t) :=
1
N

∫∫
(Rd×Rd )N

N∑
k=1

trHN
(c~(xj , ξj , yj ,∇yj )QN,~(t))dXNdΞN

≥ 1
N
E~(f (t)⊗N , ρN,~(t))
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The evolution of D

Multiply both sides of the equation for QN,~ and “integrate by parts”:

Ḋ =

∫∫
trH({Hf (x1, ξ1), c~(x1, ξ1, y1,∇y1)}Q1

N,~)dx1dξ1

−1
2 i~
∫∫

trH([∆y1 , c~(x1, ξ1, y1,∇y1)]Q1
N,~)dx1dξ1

+
i

~

∫∫
trH2([N−1N V (y1 − y2), c~(x1, ξ1, y1,∇y1)])Q2

N,~)dX2dΞ2

provided that QN,~ is a symmetric coupling (propagated by the
dynamics of couplings).
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Summarizing...

•The stability part of the analysis (leading to the exponential am-
plification by Gronwall’s inequality) is seen at the level of the 1st
equation in the BBGKY hierarchy
•The consistency part of the analysis requires distributing the inter-
action term V on all the particles, and because the V term depends
on the XN variables only, and the XN marginal of QN,~ is the N-fold
tensor power of the Vlasov solution, one concludes by LLN
•Because the cost function in D is a sum of quantities depending on
xj , yj , ξj , there is a “ localization in degree” effect in the BBGKY
hierarchy: no Cauchy-Kovalevska effect when estimating D
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Other approaches

•Same methods gives (1) a quantitative convergence rate for the
semiclassical limit Hartree→ Vlasov, and (2) a uniform in N quanti-
tative convergence rate for the semiclassical limit of the N-body von
Neumann equation to the N-body Liouville equation

•Uniform in ~ → 0 convergence rate for the Hartree (mean-field)
limit of the quantum N-body problem
[F.G., C. Mouhot, T. Paul, CMP, to appear]

•Work in preparation with T. Paul and M. Pulvirenti
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Final remarks/open questions

Advantage/Shortcoming of the pseudo-distance E~ between clas-
sical and quantum densities (or of the pseudo-distance between quan-
tum densities considered in FG-Mouhot-Paul) is not a distance, but
is a distance mod. O(~)

Can one use instead a real distance between quantum objects (in the
style of Connes’ distance in NC geometry, or Biane-Voiculescu (free
probabilities), or Carlen-Maas) to obtain a uniform in ~ convergence
rate for the quantum mean field limit?

Is there a Benamou-Brenier variational formulation for the pseudo-
distance E~?
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