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PHASELESS INVERSE SCATTERING PROBLEM:

Let u (x, k) be the complex valued wave field, where k is the
wave number, x ∈ R3.
Determine the scatterer, given |u (x, k)| outside of this scatterer.

APPLICATIONS:

Imaging of nanostructures and biological cells
Sizes: 0.1 micron range
The wavelength λ ≤ 1 micron

OUR FOCUS:

Reconstruction of coefficients of Schrödinger and generalized
Helmholtz equations from phaseless data
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In parallel R.G. Novikov has developed methods for phase
reconstruction, including uniqueness theorems. His statements
of problems are different from ours

I The phaseless inverse scattering problem for the
Schrödinger equation was posed in the book of K. Chadan
and P.C. Sabatier, Inverse Problems in Quantum
Scattering Theory, Springer-Verlag, New York, 1977

I It was also implicitly posed in the book of R.G. Newton,
Inverse Schrödinger Scattering in Three Dimensions,
Springer, New York, 1989

I Works of M.V. Klibanov, V.G. Romanov and R.G. Novikov
(2014-2016) provided the first full solution of this problem
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QUESTIONS TO ADDRESS

1. Uniqueness

2. Reconstruction procedure

3. Numerical procedure
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UNIQUENESS FOR THE CASE OF THE
SCHRODINGER EQUATION

∆xu+ k2u− q (x)u = −δ (x− x0) , x ∈ R3, (1)

∂ru (x, x0, k)− iku (x, x0, k) = o

(
1

r

)
, r = |x− x0| → ∞. (2)

Let Ω, G ⊂ R3 be two bounded domains, Ω ⊂ G,

S = ∂G, dist (S, ∂Ω) ≥ 2ε = const. > 0.

For an arbitrary point y ∈ R3 and for an arbitrary number
ρ > 0 denote Bρ (y) = {x : |x− y| < ρ} .

The potential q (x) is a real valued function satisfying the
following conditions

q (x) ∈ C2
(
R3
)
, q (x) = 0 for x ∈ R3�Ω, (3)

q (x) ≥ 0. (4)
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Phaseless Inverse Scattering Problem 1 (PISP1).
Suppose that the function q (x) is unknown. Also, assume that
the following function f1 (x, x0, k) is known

f1 (x, x0, k) = |u (x, x0, k)| , ∀x0 ∈ S,∀x ∈ Bε (x0) , x 6= x0, ∀k ∈ (a, b) ,

where (a, b) ⊂ R is an arbitrary interval. Determine the
function q (x) for x ∈ Ω.

Theorem 1. Let u1 (x, x0, k) and u2 (x, x0, k) be solutions of
the problem (1), (2) with corresponding potentials q1 (x) and
q2 (x) satisfying conditions (3), (4). Assume that

|u1 (x, x0, k)| = |u2 (x, x0, k)| = f1 (x, x0, k) , ∀x0 ∈ S,
∀x ∈ Bε (x0) , x 6= x0,∀k ∈ (a, b) .

(5)

Then q1 (x) ≡ q2 (x) .
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u (x, x0, k) = u0 (x, x0, k) + usc (x, x0, k) ,

u0 =
exp (ik |x− x0|)

4π |x− x0|
.

u0 (x, x0, k) is the incident spherical wave and usc (x, x0, k) is
the scattered wave.

Phaseless Inverse Scattering Problem 2 (PISP2)
Suppose that the function q (x) is unknown. Also, assume that
the following function f2 (x, x0, k) is known

f2 (x, x0, k) = |usc (x, x0, k)| ,∀x0 ∈ S, ∀x ∈ Bε (x0) , x 6= x0,∀k ∈ (a, b) .

Determine the function q (x) for x ∈ Ω.

Let G1 ⊂ R3 be another bounded domain,
G ⊂ G1, S ∩ ∂G1 = ∅.
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Theorem 2. Assume that all conditions of Theorem 1 hold,
except that (5) is replaced with

|usc,1 (x, x0, k)| = |usc,2 (x, x0, k)| = f2 (x, x0, k) , ∀x0 ∈ S,
∀x ∈ Bε (x0) , x 6= x0, ∀k ∈ (a, b) ,

where usc,j = uj − u0, j = 1, 2. In addition, assume that
q (x) 6= 0, ∀x ∈ S and q (x) = 0 for x ∈ R3�G1. Then
q1 (x) ≡ q2 (x) .
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UNIQUENESS FOR THE CASE OF THE
GENERALIZED HELMHOLTZ EQUATION

c ∈ C15(R3), c(x) ≥ c0 = const. > 0, (6)

c(x) = 1 for x ∈ R3 \ Ω. (7)

The conformal Riemannian metric generated by the function
c(x) is

dτ =
√
c (x) |dx| , |dx| =

√
(dx1)2 + (dx2)2 + (dx3)2. (8)

Let Γ (x, y) be the geodesic line connecting points x and y.

Assumption 1. We assume that geodesic lines of the metric
(8) satisfy the regularity condition, i.e. for each two points
x, y ∈ R3 there exists a single geodesic line Γ (x, y) connecting
these points.
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A sufficient condition for the validity of Assumption is (V.G.
Romanov, 2014):

3∑
i,j=1

∂2 ln c(x)

∂xi∂xj
ξiξj ≥ 0, ∀ξ ∈ R3,∀x ∈ Ω.

The function τ(x, y) is the travel time from y to x and is the solution
of the eikonal equation,

|∇xτ(x, y)|2 = c(x),

τ(x, y) = O (|x− y|) as x→ y,

τ (x, y) =

∫
Γ(x,y)

√
c (ξ)dσ.
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GENERALIZED HELMHOLTZ EQUATION:

∆u+ k2c(x)u = −δ(x− y), x ∈ R3, (9)

∂u

∂r
− iku = o(r−1) as r = |x− y| → ∞. (10)

Phaseless Inverse Scattering Problem 3 (PISP3). Let
u(x, y, k) be the solution of the problem (9), (10). Assume that
the following function f3 (x, y, k) is known

f3 (x, y, k) = |u (x, y, k)| , ∀y ∈ S, ∀x ∈ Bε (y) , x 6= y,∀k ∈ (a, b) ,

where (a, b) ⊂ {z > 0} is a certain interval. Determine the
function c (x) .

Theorem 3. Consider an arbitrary pair of points
y ∈ S, x ∈ Bε (y) , x 6= y. And consider the function
gx,y (k) = f3 (x, y, k) as the function of the variable k. Then the
function ϕx,y (k) = u (x, y, k) of the variable k is reconstructed
uniquely, as soon as the function gx,y (k) is given for all
k ∈ (a, b) . The PISP3 has at most one solution.
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RECONSTRUCTION PROCEDURE FOR PISP4
M.V. Klibanov and V.G. Romanov (2016)

Consider the case when the modulus of the scattered wave is
measured.
Incident spherical wave u0(x, y, k),

u0(x, y, k) =
exp (ik |x− y|)

4π |x− y|
.

Scattered wave usc(x, y, k),

usc(x, y, k) = u(x, y, k)−u0(x, y, k) = u(x, y, k)− exp (ik |x− y|)
4π |x− y|

.

Phaseless Inverse Scattering Problem 4 (PISP4).
Suppose that the following function f4 (x, y, k) is known

f4 (x, k, y) = |usc(x, y, k)|2 , ∀ (x, y) ∈ S × S, ∀k ≥ k0,

where k0 = const. > 0. Determine the function c (x).
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Associated Cauchy problem

c(x)vtt = ∆v + δ(x− y, t), (x, t) ∈ R4,

v|t<0 ≡ 0.

Fourier transform (results of B.R. Vainberg: 1980 and earlier):

u (x, y, k) =

∞∫
0

v (x, y, t) eiktdt.

The function v can be represented as

v(x, y, t) = A(x, y)δ(t− τ(x, y)) + v̂(x, y, t)H(t− τ(x, y)),

H (t) =

{
1, t > 0,
0, t < 0,

A(x, y) > 0,

v̂(x, y, t) is sufficiently smooth.

Hence, the following asymptotic behavior takes place in any
bounded domain of R3
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u (x, y, k) = A (x, y) eikτ(x,y) +O (1/k) , k →∞.

Hence,

f4 (x, y, k) =A2(x, y) +
1

16π2 |x− y|2
−

− A(x, y)

2π |x− y|
cos [k (τ(x, y)− |x− y|)] +O

(
1

k

)
, k →∞,

Ignore O (1/k) ,

f4 (x, y, k) = A2(x, y) +
1

16π2 |x− y|2
−

− A(x, y)

2π |x− y|
cos [k (τ(x, y)− |x− y|)] , k →∞.

Consider k ≥ k1

f∗4 (x, y) = f4 (x, y, k2) = max
k≥k1

f4 (x, k, y) =

(
A(x, y) +

1

4π|x− y|

)2



15/49

Hence, we find the number A(x, y) as

A(x, y) =
√
f∗4 (x, y)− 1

4π|x− y|
.

Assume that τ(x, y) 6= |x− y|. Hence, since β (x) ≥ 0, then
τ(x, y) > |x− y| .
There exists the number k3 > k2 such that

k3 = min {k : k > k2, f4 (x, y, k) = f∗4 (x, y)} .

Hence,

k3 (τ(x, y)− |x− y|) = k2 (τ(x, y)− |x− y|) + 2π.

Thus,

τ(x, y) = |x− y|+ 2π

k3 − k2
.
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Inverse Kinematic Problem (IKP, 1960-ies-1980ies: V.G.
Romanov, R. Mukhometov and then many others)=Travel
Time Tomography Problem. Given the function
τ(x, y), ∀x, y ∈ S, find the function c (x) .
Uniqueness of IKP is well known: Romanov, Mukhometov.
Numerical method is still unclear.
The most recent numerical result: U. Schröder and T. Schuster,
Inverse Problems, 32, 085009, 2016.

LINEARIZATION

c (x) = β (x) + 1,

β (x) ≥ 0, β (x) = 0 for x /∈ Ω.

Assume that
||β||C1(Ω) << 1.
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Then the linearization of the function τ (x, y) with respect to
the function β leads to

τ (x, y) = |x− y|+
∫

L(x,y)

β (ξ) dσ,

L (x, y) is the straight line connecting points x and y.
We got the problem of the inversion of the 2-D Radon
transform.
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NUMERICAL STUDY
M.V. Klibanov, L.H. Nguyen, K. Pan, 2015.

Above formulae work only for a sufficiently large k−interval
Also, they work only for sufficiently large values of k.
QUESTION: Does this method work for realistic values of k?

ANSWER: Yes. Imaging of nanostructures. The range of our
wavelengths is λ ∈ [0.078, 0.126]µm. Dimensionless k = 2π/λ :

k ∈ [50, 80] = [k1, k2] .
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Figure 1: Noisy data f4 (x, y, k) , k ∈ [50, 80] . The k−interval is too short to
apply the above procedure.

I The above procedure was essentially modified to work with
smaller k−intervals.
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(a) (b) (c)

(d) (e) (f)

Figure 2: A sample of the image obtained by our modified reconstruction
procedure. a) True image. b) The 2-D Radon transform of the central
z−cross-section. c) The reconstructed function τ (x, y)− |x− y| in the central
z−cross-section. d) The reconstructed (solid) and true functions τ (x, y) for a
fixed source position y when x runs over the opposite side of the square. e) The
same for A (x, y) . f) The reconstructed image.
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CONCLUSIONS

1. Shapes and locations of targets are reconstructed well.

2. However, values of the unknown coefficient c (x) inside the
targets are reconstructed poorly.

3. Therefore, the two-stage imaging procedure should take
place.

4. Stage 1: The same as above.

5. Stage 2: A globally convergent numerical method for a
Coefficient Inverse Problem should be applied. The result
of stage 1 should be taken as the first guess for the
so-called “tail function”.

6. By our experience, that globally convergent method should
provide accurate values of c (x) inside the targets.
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A GLOBALLY CONVERGENT NUMERICAL
METHOD FOR A COEFFICIENT INVERSE

PROBLEM

DEFINITION 1. We call a numerical method for a CIP
globally convergent if a theorem is proved, which claims that
this method delivers at least one point in a sufficiently small
neighborhood of the exact solution without any advanced
knowledge of this neighborhood. In addition, this theorem must
be confirmed computationally.

DEFINITION 2. We call a numerical method for a CIP
locally convergent if its convergence to the exact solution cannot
be guaranteed unless its starting point is located in a
sufficiently small neighborhood of this solution.
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A. CIPs with single measurement data.

I Two types of globally convergent numerical methods:
Klibanov and his group, 1997-2016.

I We focus on one of them, since it is verified on
experimental data.

B. CIPs with many measurements: either many sources
or many directions of the incident plane wave.

I Methods of M.I. Belishev and S.I. Kabanikhin.
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ALTERNATIVES TO GLOBALLY CONVERGENT
METHODS:

I Various versions of the least squares minimization method.
Locally convergent. No interest: local minima and ravines.

I Small perturbation methods, e.g. Born-like series. Local
convergence.
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THE METHOD
M.V. Klibanov, L.H. Nguyen, H. Liu

∆u+ k2c(x)u = 0, x ∈ R3.

The incident plane wave:

u0 (x, k) = exp (ikx3) .

The total wave field:

u (x, k) = u0 (x, k) + usc (x, k) ,

∂usc

∂r
− ikusc = o(r−1), r = |x| → ∞.

Ω = {|x| < R} ⊂ R3.



26/49

Geodesic Lines: {
(∇τ(x))2 = c(x),

τ(x) = x3 for x3 ≤ −R.

τ(x) =

∫
Γ(x)

√
c (ξ)dσ.

The line Γ (x) intersects the plane P = {x3 = −R} orthogonally.
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Assumption 2. We assume that geodesic lines satisfy the
regularity condition in R3. In other words, for each point
x ∈ R3 there exists a single geodesic line Γ (x) connecting x with
the plane P such that Γ (x) intersects P = {x3 = −R}
orthogonally.

Coefficient Inverse Problem (CIP). Let k > 0 and k > 0 be
two sufficiently large numbers and 0 < k < k. Assume that the
function g (x, k) is known, where

g (x, k) = u (x, k) , x ∈ ∂Ω, k ∈
[
k, k
]
.

Determine the function c (x) for x ∈ Ω.
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ASYMPTOTIC BEHAVIOR

u (x, k) = A(x)e−ikτ(x) (1 +O (1/k)) , k →∞, x ∈ Ω, (11)

|O (1/k)| ≤ B/k,∀x ∈ Ω,

A(x) > 0.

Using the asymptotic behavior (11), one can prove that there
exists unique function v (x, k) , k ≥ k such that

u (x, k) = ev(x,k), x ∈ Ω, k ≥ k.

Hence,

∇v =
∇u
u
, ∂kv =

∂ku

u
.

∆v(x, k) + (∇v(x, k))2 = −k2c(x). (12)
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Let

q(x, k) = ∂kv(x, k) =
∂ku(x, k)

u(x, k)
, x ∈ Ω, k ∈

(
k, k
)
.

v(x, k) = −
∫ k

k
q(x, κ)dκ+ V (x), x ∈ Ω, k ∈ (k, k). (13)

V (x) = v
(
x, k
)

= log u
(
x, k
)
. (14)

We call V (x) the “tail function”.
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The differentiation of (12) with respect to k leads to

∆q(x, k) + 2∇q(x, k)∇v(x, k) = −2kc(x) = 2(∆v + (∇v)2)/k.

This and (13) imply that for all k ∈
[
k, k
]

k∆q(x, k) + 2k∇q(x, k)∇

(
−
∫ k

k
q(x, κ)dκ+ V (x)

)

= 2∆

(
−
∫ k

k
q(x, κ)dκ+ V (x)

)
+

+2

(
∇

(
−
∫ k

k
q(x, κ)dκ+ V (x)

))2

.

Boundary condition:

q(x, k) =
∂kg(x, k)

g(x, k)
=: ψ(x, k) on ∂Ω,∀k ∈

[
k, k
]
.
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Let h > 0 be the partition step size of a uniform partition of the
frequency interval

[
k, k
]
,

k = kN < kN−1 < ... < k1 < k0 = k, kj−1 − kj = h.

Approximate the function q (x, k) as a piecewise constant
function with respect to k ∈

[
k, k
]
.

Let

q (x, k) = qn (x) , ψ (x, k) = ψn (x) , k ∈ [kn, kn−1) , n = 1, ..., N.

We set q0 (x) ≡ 0. Denote

qn−1 =

n−1∑
j=0

qj (x) .

We obtain

∆qn −Anh∇qn−1∇qn =

−An∇qn−1∇Vn−1 + 2
(

∆Vn−1 + (∇Vn−1)2
)
/kn−1

−4∇Vn−1h∇qn−1/kn−1 − 2h∆qn−1/kn−1, x ∈ Ω,
qn |∂Ω= ψn (x) ,

(15)



32/49

I Solve Dirichlet boundary value problems (15) sequentially.
I Similar to the Predictor-Corrector scheme: Vn−1 is

Predictor and qn is Corrector.
I For each n we also update the tail function Vn.
I The discrete analog of the integral (13) is:

∇vn (x) = − (h∇qn (x) + h∇qn−1 (x)) +∇Vn (x) , x ∈ Ω.

Using ∆vn = div (∇vn) , calculate the approximation
cn (x) ∈ Cα

(
Ω
)

for the target coefficient c (x) as

cn(x) = max

(
1,− 1

k2
n

Re(∆vn(x) + (∇vn(x))2)

)
, x ∈ Ω.

I Solve the forward problem with c (x) := cn (x) .
I Update the gradient of the tail function as

∇Vn (x) =
∇un(x, k)

un(x, k)
.

The stopping criterion is developed computationally.



33/49

IMPORTANT QUESTION: HOW TO OBTAIN THE
FIRST APPROXIMATION V0 (x) FOR THE TAIL

FUNCTION?

Let c∗ (x) be the EXACT solution of CIP with idealized
noiseless data.
k is sufficiently large.
For all k ≥ k drop the term O (1/k) in the asymptotics
expansion (11).
Hence,

u∗ (x, k) ≈ A∗ (x) e−ikτ
∗(x), k ≥ k.

Set
log u∗ (x, k) = lnA∗ (x)− ikτ∗ (x) for k ≥ k.

Hence,

log u∗ (x, k) = −ikτ∗ (x)

(
1 +O

(
1

k

))
, k →∞. (16)
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Drop again the term O (1/k) in (16). Next, set k = k.
Exact tail function

V ∗ (x) = log u∗
(
x, k
)

Hence, we approximate the exact tail function V ∗ (x) for k = k
as

V ∗ (x) = −ikτ∗ (x) . (17)

Since q (x, k) = ∂kV (x, k) , then

q∗
(
x, k
)

= −iτ∗ (x) . (18)

Set in equation (15) k := k, q
(
x, k
)

:= q∗
(
x, k
)
, V (x) := V ∗(x).

Next, substitute in the resulting equation formulae (17) and
(18),

∆τ∗ = 0 in Ω,

τ∗ |∂Ω= iψ∗
(
x, k
)
.

(19)
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THE FIRST APPROXIMATION FOR THE TAIL
FUNCTION

V0 (x) :
V0 (x) = −ikτ (x) , (20)

τ (x) is the C2+α
(
Ω
)
−solution of the following analog of:

∆τ = 0 in Ω,

τ |∂Ω= iψ
(
x, k
)
.

(21)

c0 (x) = − 1

k
2Re

(
∆V0 + k

2
(∇V0)2

)
(22)

By (19), (21) and the Schauder theorem

‖V0 − V ∗‖C2+α(Ω) ≤ C
∥∥ψ (x, k)− ψ∗ (x, k)∥∥

C2+α(∂Ω)
. (23)

By (22) and (23)

‖c0 − c∗‖Cα(Ω) ≤ C
∥∥ψ (x, k)− ψ∗ (x, k)∥∥

C2+α(∂Ω)
. (24)
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CONCLUSIONS:

I By (24) we obtain a good approximation for the target
coefficient c∗ already on the zero iteration of our method.

I This is the global convergence.

I Still, numerical experience tells us that we need to do more
iterations.

I The stopping criterion is selected computationally.
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GLOBAL CONVERGENCE THEOREM

σ is the level of the error in the boundary data,

‖ψn − ψ∗‖C2+α(∂Ω) ≤ σ,

h is the step size in k, h = kn−1 − kn
The error parameter:

η = h+ σ.
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Theorem 4 (global convergence). Assume that the first
approximation V0 (x) for the tail function is constructed as
above. subsection 5.3. Let numbers k > k > 1. Then there exist
sufficiently small numbers

a = k − k, θ > 0

and a sufficiently large number M ,

M > 1,

all numbers depend only on some parameters of the problem,
such that if the error parameter η = h+ σ is so small that

η ∈ (0, η0) , η0 =
θ

M20N−12
, (25)

then for n ∈ [1, N ]

‖cn − c∗‖Cα(Ω) ≤M
10n−6η, (26)

or, by (25)
‖cn − c∗‖Cα(Ω) ≤

√
η. (27)
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I Thus, the optimal number of iterations is N = 1. However,
our numerical experience tells us that we need N = 7− 8.

I This is the GLOBAL CONVERGENCE, since
(25)-(27) guarantee that for n ∈ [1, N ] all functions cn are
located in a sufficiently small neighborhood of the exact
solution c∗.
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PERFORMANCE OF THE GLOBALLY
CONVERGENT NUMERICAL METHOD ON

EXPERIMENTAL DATA
D.-L. Nguyen, M.V. Klibanov, A.E. Kolesov, M.A. Fiddy and

H. Liu

I The data were collected by Professor M.A. Fiddy
(Optoelectronic Center of our university)

I Device: Virtual Network Analyzer.

I Frequency range: 1GHz-10GHz.

I Target application: Imaging of spatially distributed
dielectric constants of explosives, including improvised
explosive devices and antipersonnel land mines

I Because of this application, only the
BACKSCATTERING data were collected using the
SINGLE location of the source.
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COMPETING EXPERIMENTAL DATA OF
FRESNEL INSTITUTE (FRANCE)

I Anechoic chamber was used

I Their data are not corrupted by unwanted reflections from
objects in the room

I Thus, their data match simulated data very well.

I Inclusions/background contrasts do not exceed 2.3

I Over-determined data: many sources

OUR DATA FIT THE DESIRED APPLICATION

I No anechoic chamber

I Regular room: unwanted reflections are in place

I Our data have a large discrepancy with simulated data

I Pre-processing of the data is necessary

I Non-overdetermined
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(a)
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Antenna Target

x

y
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z = 0
Propagated plane

Measurement plane

Ω

(c)

Figure 3: a) A photograph of the experimental arrangement. b) Schematic
diagram of measurements. c) Schematic diagram of data propagation
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DATA PROPAGATION

I This is a very important step of the pre-processing
procedure

I The measurement plane is too far from targets to be
imaged: ≈1 meter

I We need to move the data closer to the targets
I Angular spectrum representation method
I g(x, k) is the experimental data on the measurement plane

Pm = {x : −5 < x < 5,−5 < y < 5, z = b}.
I f(x, k) is the propagated data on the propagated plane

Pp = {x : −5 < x < 5,−5 < y < 5, z = a}.
I Then

ĝ(kx, ky, k) =

∫∫
R2

g(x, y, b, k)e−i(kxx+kyy)dxdy,

f(x, y, a, k) =

∫∫
k2
x+k2

y<k
2

ĝ(kx, ky, k)ei[kxx+kyy−kz(a−b)]dkxdky.
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Figure 4: a) Modulus of measured data at a certain frequency k. b) Modulus of
propagated data
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CENTRAL FREQUENCY: 2.6 GHz

Figure 5: Central frequency of the signal
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TABLES OF MEASURED AND COMPUTED
DIELECTRIC CONSTANTS

Table 1: Targets

Object ID Name of the target

1 A piece of yellow pine

2 A piece of wet wood

3 A geode

4 A tennis ball

5 A baseball

Table 2: Measured and computed dielectric constant of the targets

Obj. ID Measured εr (error) Computed εr Relative error

1 5.30 (1.6%) 5.44 2.6%

2 8.48 (4.9%) 7.60 10.3%

3 5.44 (1.1%) 5.55 2.0%

4 3.80 (13%) 4.00 5.2%

5 not available 4.76 n/a
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IMAGES

(a) Target 1 (b) Reconstructed target 1

(c) Top view of (a) (d) Top view of (b)
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(a) Target 2 (b) Reconstructed target 2

(c) Target 3 (d) Reconstructed target 3
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(a) Target 4 (b) Reconstructed target 4

(c) Target 5 (d) Reconstructed target 5


