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Abstract

F. Bracci, M.D. Contreras, S. Dı́az Madrigal proved that any evaluation
family of order d is described by a generalized Loewner chain. G. Ivanov
and A. Vasil’ev considered randomized version of the chain and found a
substitution which transforms it to an Itô diffusion.We generalize their result
to vector randomized Loewner chain and prove there are no other possibilities
to transform such Loewner chains to Itô diffusions.
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1. Introduction

The Schramm-Loewner evolution (SLE), also known as a stochastic Loewner
evolution [8, 12] is a conformaly invariant stochastic process which attracts
many researchers during last 16 years. First contributions to this growing
theory was discovery by O. Schramm [13] in 2000. This process is a stochas-
tic generalization of the Loewner-Kufarev differential equations. SLE has
the domain Markov property which is closely related to the fact that the
equations can be represented as time homogeneous diffusion equations.
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The classical Loewner equation was introduced by K. Loewner in 1923.
The idea was represent domains by means of family (known as Loewner
chains) of univalent functions defined on the unit disk D := {ζ ∈ C : |ζ| < 1}
and satisfying a suitable differential equation.

The classical Loewner equation in the unit disk is the following differential
equation {

dφt(z)
dt

= G(φt(z), t)
φ0(z) = z

(1)

for almost every t ∈ [0,∞) where G(w, t) = −wp(w, t) with the function
p : D× [0,∞) → C measurable in t, holomorphic in z, p(0, t) = 1 and
<(p(z, t)) ≥ 0 for all z ∈ D and t ≥ 0 (such functions p are called Herglötz
functions).

Generalization of the Loewner- Kufarev approach was improved by F.
Bracci, M.D. Contreras, S. Dı́az Madrigal [2]. Section two includes one of
the main results of generalized Loewner theory that is an essentially one
to one correspondence between evolution families, Hergltz vector fields and
functions.

Recently G. Ivanov and A. Vasil’ev [5] considered random version of this

Loewner differential equation with G(w, t) = (τ(t)−w)2p(w,t)
τ(t)

for

τ(t) = τ(t, w) = exp(ikBt(w)). (2)

They found a substitution which transforms the randomized Loewner equa-

tion with p(w, t) = p̃
(

w
τ(t)

)
to an Itô diffusion and obtained the infinitesimal

generator of the Itô diffusion in this form:

A =
(
−z

2
k2 + (1− z)2p̃(z)

) d

dz
− 1

2
k2z2

d2

dz2
. (3)

The main result is an inverse statement. Namely we prove that under
rather general suppositions on τ(t) = τ(t, Bt), it is possible to find a substi-
tution which transforms (1) to an Itô diffusion if and only if τ is given by (2).
We generalize this necessary and sufficient condition for higher dimensions
when τ depends on some independent Brownian motions

τ(t) = τ(Bt)

where Bt = (B1
t , B

2
t , . . . , B

n
t ).
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We denote by Č the set of functions f(z,x) from Cn(D× Rn) such that
these functions have continuous derivatives up to order n, ∂f

∂xj
don’t vanish

and H(D) is the set of analytic functions in D.

2. Loewner Evolution

The most prominent contribution for semi groups of conformal maps was
given by Loewner in 1923. He introduced the nowadays well known Loewner
parametric method and so called Loewner differential equations. We are
mainly interested on generalization of the Loewner-Kufarev approach by F.
Bracci, M.D. Contreras, S. Dı́az Madrigal [2]. We briefly describe the basic
notations of the theory.

2.1. Semigroups and Infinitesimal Generator

By the Schwarz-Pick lemma, every holomorphic self map ϕ of the unit
disk D may have at most one fixed point τ in D. If such a point τ exists,
then the point τ is called the Denjoy-Wolf point of ϕ. Otherwise there exist
a point τ on the unit circle T := {ζ ∈ C : |ζ| = 1} such that angular limit
∠ limz→τ ϕ(z) = τ . The point τ is called again Denjoy-Wolf point of ϕ. This
case is also known as the Denjoy-Wolf theorem.

Definition 1. A family {φt}t≥0 of holomorphic self maps of the unit disk D
is called an one parameter continuous semi group if

1. φ0 = idD,

2. For s, t ≥ 0 φt+s = φt ◦ φs,
3. For all s ≥ 0 and z ∈ D limt→s φt(z) = φs(z) ,

4. limt→+∞ φt(z) = z locally uniformly in D.

A very important contribution to the theory of semi groups of holomor-
phic self maps of unit disk D is due to E. Berkson and H. Porta [1]. They
proved that a semi group of holomorphic self maps of unit disk {φt}t≥0 is in
fact real analytic in the variable t and is the solution of the Cauchy problem{

dφt(z)
dt

= G(φt(z))
φ0(z) = z

(4)

where the map G the infinitesimal generator of the semi groups has the form

G(z) = (z − τ)(τ̄ z − 1)p(z), z ∈ D. (5)
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for some τ ∈ D̄ and a holomorphic function p : D→ C with <p ≥ 0. We will
use the term Hergltz function for the function p(z). Representation of (5) is
unique (if G(z) 6= 0) and is known Berksan-Porta representation of G. The
point τ turns out to be Denjoy-Wolf point of all functions in {φt}t≥0.

2.2. Evolution Families

We continue with the definition of evolution family.

Definition 2. A two parameter family {φs,t}0≤s≤t<+∞ of holomorphic self-
maps of the unit disk D is called an evolution family of order d ∈ [1,∞]
if

1. φs,s = idD,

2. φs,t = φu,t ◦ φs,u for all 0 ≤ s ≤ t < +∞,

3. for any z ∈ D and T > 0 there is a non negative function kz,t ∈
Ld([0, T ],R), such that

|φs,u(z)− φs,t(z)| ≤
∫ t

u

kz,T (ξ)dξ, z ∈ D

for all 0 ≤ s ≤ u ≤ t ≤ T .

The problem of differentiability of an evolution family is much more diffi-
cult than the case of one parameter semi group. Firstly K. Loewner consid-
ered these types of problems for the semi group L of functions f holomorphic
and univalent in D such that f(0) = 0, f ′(0) ≥ 0 and |f(z)| ≤ 1 for z ∈ D.
The infinitesimal generator of L are described by the formula G(z) = −zp(z)
where p is holomorphic function in D with negative real part. For general
case an infinitesimal generator of an evolution family is given in terms of
Herglötz vector field [2].

Definition 3. A function G : D× [0,∞) is called a weak holomorphic vector
field of order d (d ∈ [1,+∞]) on the unit disk D, if

1. The function [0,∞) 3 t 7→ G(z, t) is measurable for all z ∈ D ,

2. The function z 7→ G(z, t) is holomorphic for all t ∈ [0,∞), ,

3. For any compact set K ⊂ D and for every T > 0 there exist a non
negative function kz,T ∈ Ld([0, T ],R) such that

|G(z, t)| ≤ kz,T (t)

for all z ∈ K and for almost every t ∈ [0, T ].
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Herglötz vector fields in D can be decomposed by means of Herglötz
function.

Definition 4. (Herglötz function) Let p : D × [0,∞) → C. p is called a
Herglötz function if it satisfies the following conditions:

1. p(0, ·) ≡ 1,

2. p(·, t) is holomorphic for all t ≥ 0,

3. p(z, ·) is measurable for all z ∈ D,

4. <(p(z, t)) ≥ 0 for all z ∈ D and t ≥ 0.

Later F. Bracci, M.D. Contreras, S. Dı́az Madrigal [2] established that
the evolution families in unit disk D can be put one to one correspondence
with the Herglötz vector fields.

Theorem 5 ([2], Theorem 5.2 and 6.2). For any evolution family of or-
der d ≥ 1 in the unit disc there exists a (essentially) unique Herglötz vector
field G(z, t) of order d such that for all z ∈ D

∂ϕs,t(z)

∂t
= G(ϕs,t(z), t) a.e. t ∈ [0,∞). (6)

Conversely for any Herglötz vector field of order d ≥ 1 in D there exists a
unique evolution family (ϕs,t) of order d such that (6) is satisfied.

Theorem 6. Let G(z, t) be a Herglötz field of order d ≥ 1 in D. Then
there exists a (essentially) unique measurable function τ : [0,∞)→ D and a
Herglötz function p(z, t) of order d such that for all z ∈ D

G(z, t) = (z − τ(t))(τ̄(t)z − 1)p(z, t) a.e. t ∈ [0,∞). (7)

Conversely given a measurable function τ : [0,∞)→ D and a Herglötz func-
tion p(z, t) of order d ≥ 1, the equation (7) defines a Herglötz vector field of
order d.

3. Stochastic Case of Loewner Evolution

We consider the generalized Loewner evolution by a Brownian particle on
the unit circle and study the following initial value problem{

dφt(z,ω)
dt

= (τ(t,ω)−φt(z,ω))2
τ(t,ω)

p(φt (z, ω) , t, ω)

φ0 (z, ω) = z
(8)
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since t ≥ 0, z ∈ D and ω ∈ Ω. τ(t, ω) = exp(ikBt(ω)) where k ∈ R,
Bt(ω) is the 1-dimensional Brownian motion with respect to the standard
Brownian filtration {Ft}t≥0 in the probability space (Ω,F , P ) and p(z, t, ω)
is a Herglotz function for each fixed ω ∈ Ω. The equation of (8) is called
random differential equation.

Next part of work, we connect with the randomized Loewner equation
(8) with an Itô diffusion. Firstly we start with notions of Itô diffusion and
infinitesimal generator together with higher dimension.

Definition 7. Let Xt(ω) be a stochastic process and Xt(ω) : [0,∞) × Ω →
Rn. If this process is called a (time homogeneous) Itô diffusion, then it sat-
isfies a stochastic differential equation of the form

dXt(ω) = b(Xt)dt+ σ(Xt)dBt, t ≥ s; Xs = x

where Bt is m dimensional Brownian motion and b : Rn → Rn, σ : Rn →
Rn×m satisfy the condition satisfy the existence and uniqueness theorem [10]
for the stochastic differential equations which in this case

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|

x, y ∈ Rn i.e. b(.) and σ(.) are Lipschitz continuous.

A second order partial differential operator A can be associated to an
Itô diffusion Xt. The basic connection between A and Xt is that A is the
generator of the process Xt.

Definition 8. Let {Xt} be a (time homogeneous) Itô diffusion in Rn and
X0 = x. The infinitesimal generator A of Xt is defined by

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t

x ∈ Rn. DA(x) denotes the set of functions f : Rn → R such that the limit
exist at x, while the set of functions for which the limit exists for all x ∈ Rn

is denoted by DA.

Theorem 9. Let {Xt} be an Itô diffusion

dXt(ω) = b(Xt)dt+ σ(Xt)dBt.
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If f ∈ C2
0(Rn) (compact support in Rn with continuous derivatives up to

order 2) then f ∈ DA and

Af(x) =
∑
i

bi(x)
∂f

∂xi
+

1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj
.

Recently G. Ivanov and A. Vaislev [5] considered (8) for (2). They
found a substitution which transforms the randomized Loewner equation

with p(w, t) = p̃
(

w
τ(t)

)
to an Itô diffusion and obtained the infinitesimal

generator of the Itô diffusion in the form (3).
We obtain an inverse statement. Namely we prove that under rather

general suppositions on τ(t) = τ(t, Bt) it is possible to find that a substitution
which transforms the classical Loewner equation in D to an Itô diffusion if
and only if τ is given by (2).

Theorem 10. Let us consider Loewner random differential equation{
dφt(z,w)

dt
= (τ1(t,w)−φt(z,w))2

τ1(t,w)
p̃(φt(z,w)

τ1(t,w)
)

φ0 (z, w) = z
(9)

where |τ1 (t, ω)| = 1 and p̃ is an arbitrary Herglötz function.Let C̆ is the
set of functions m(x, y) ∈ C2(D × R) such that ∂m

∂y
doesn’t vanish. Suppose

ψt = m(φt, Bt), m ∈ C̆ and τ1 (t, ω) = τ(Bt) then ψt is an Itô diffusion for
an arbitrary Herglötz function p̃ if and only if τ(Bt) = e−ikBt.

In the next theorem, we generalize necessary and sufficient condition of
(10) for higher dimensions when τ depends on some independent Brownian
motions

τ(t) = τ(Bt)

where Bt = (B1
t , B

2
t , . . . , B

n
t ).The theorem contains new random version of

Loewner differential equation which can be called Loewner equation driven
by a Brownian vector particle on the unit circle.

Theorem 11. Consider Loewner random differential equation{
dφt(z,w)

dt
= (τ1(t,w)−φt(z,w))2

τ1(t,w)
p̃(φt(z,w)

τ1(t,w)
)

φ0 (z, w) = z
(10)
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where |τ1 (t, ω)| = 1 for each fixed w ∈ Ω (Ω is a sample space) and p̃ is an

arbitrary Herglötz function. Suppose ψt = m(φt, B
(1)
t , B

(2)
t , . . . , B

(n)
t ) where

B
(i)
t are independent Brownian motions, m ∈ C̆ and τ1 (t, ω) = τ(Bt) then,

ψt is an n×1 dimensional Itô diffusion with coefficients from H(D) for an ar-
bitrary Herglötz function p̃ if and only if τ(Bt) = ek·Bt where k = (k1, . . . , kn)
and k ∈ Cn.

Furthermore the infinitesimal generator of ψt (when it is an Itô diffusion)
is given by this form

A =
(
−z

2
|k|2 + (1− z)2p̃(z)

) d

dz
− 1

2
|k|2 z2 d

2

dz2
. (11)

Proof. For n = 1 sufficiency part was proved by G. Ivanov and A. Vasilev.
We use similar argument to prove sufficiency for arbitrary n. By the complex
Itô formula, the process

1

τ(Bt)
= e−ik1B

(1)
t −ik2B

(2)
t −...−iknB

(n)
t

satisfies the stochastic differential equation (SDE)

d(e−ik1B
(1)
t −...−iknB

(n)
t ) = −

n∑
j=1

ikje
−ik1B(1)

t −...−iknB
(n)
t dB

(j)
t

−1
2

n∑
j=1

k2j e
−ik1B(1)

t −...−iknB
(n)
t dt.

(12)

Let us denote ψt(z, w) = φt(z,w)
τ(Bt)

. Applying the integration by parts for-
mula for ψt, we obtain

d(ψt) = φtd(e−ik1B
(1)
t −...−iknB

(n)
t ) + (e−ik1B

(1)
t −...−iknB

(n)
t )dφt

= e−ik1B
(1)
t −...−iknB

(n)
t

(
eik1B

(1)
t +...+iknB

(n)
t −φt(z,w)

)2

eik1B
(1)
t +...+iknB

(n)
t

p̃(ψt)dt

−iψt
n∑
j=1

kjdB
(j)
t − ψt

2

n∑
j=1

k2jdt

= −iψtk · dBt + (− |k|
2

2
ψt + (ψt − 1)2p̃(ψt))dt

(13)
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So ψt is an Itô diffusion in Rn.
Now for the necessity part, from our supposition ψt = m(φt, B

(1)
t , . . . , B

(n)
t ).

Apply Itô formula;

d(ψt) =
∂m

∂x
dφt +

n∑
i=1

∂m

∂yi
dB

(i)
t +

1

2

n∑
i=1

∂2m

∂y2i
dt. (14)

and if (14) is an n × 1 dimensional Itô diffusion with analytic coefficients
then there are functions fi ∈ H(D) such that

∂m

∂yi
= fi(m(x,y)). (15)

Taking derivative of (15) with respect to yj we obtain

f ′i(m(x,y))

fi(m(x,y))
=
f ′j(m(x,y))

fj(m(x,y))
.

Hence
(ln fi(z))′ = (ln fj(z))′

and
fi(z) = cijfj(z). (16)

Let us denote
fi(z) = cif(z) (17)

and let F (z) be an antiderivative of 1
f(z)

, hence

F (m(x,y)) = c · y + q(x)

where c = (c1, . . . , cn).
Since by supposition F ′ doesn’t vanish, there exists an inverse function

F−1 and
m(x,y) = F−1(c · y + q(x)). (18)

Let us denote
F−1(z) = G(z). (19)

Now for coefficients in dt, we have

∂m

∂x
dφt +

1

2

n∑
i=1

∂2m

∂y2i
dt = g(G(c · y + q(x))dt.
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where g is an analytic function in D. If we substitute (15, 17, 19) then we
get,

G′(c · y + q(x))q′(x)dφt
dt

+ f ′(G(c · y + q(x)))f(G(c · y + q(x)))1
2

n∑
i=1

c2i

= g(G(c · y + q(x))).
(20)

G′(c · y + q(x))q′(x)
(τ(y)− x)2

τ(y)
p̃(

x

τ(y)
) = g1(c · y + q(x)) (21)

where we denote
g1(z) = g(z)− f ′(z)f(z)1

2

n∑
i=1

c2i .

Definition of (18) shows that G′(c · y + q(x)) doesn’t vanish. Hence
g1(c · y + q(x)) is not identically zero. So equation (21) can be written as

q′(x)
(τ(y)− x)2

τ(y)
p̃(

x

τ(y)
) = H1(c · y + q(x)) (22)

where H1(z) = g1(z)
G′(z)

.

Let us differentiate (22) with respect to x and yi. Then we obtain two
equalities:

q′′(x) (τ(y)−x)
2

τ(y)
p̃( x

τ(y)
)− 2q′(x) (τ(y)−x)

τ(y)
p̃( x

τ(y)
) + q′(x) (τ(y)−x)

2

τ2(y)
p̃′( x

τ(y)
)

= q′(x)H ′1(c · y + q(x))

(23)

and

q′(x)
(τ(y)−x) ∂τ(y)

∂yi
(τ(y)+x)

τ2(y)
p̃( x

τ(y)
)− q′(x)

(τ(y)−x)2 ∂τ(y)
∂yi

x

τ2(y)
p̃′( x

τ(y)
)

= ciH
′
1(c · y + q(x)); i = 1, 2, . . . , n.

(24)

Now (23) and (24) imply,
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q′′(x) (τ(y)−x)
2

τ(y)
p̃
(

x
τ(y)

)
− 2q′(x) (τ(y)−x)

τ(y)
p̃
(

x
τ(y)

)
+ q′(x) (τ(y)−x)

2

τ2(y)
p̃′
(

x
τ(y)

)
= q′(x)

ci

[
q′(x)

(τ(y)−x) ∂τ(y)
∂yi

(τ(y)+x)

τ2(y)
p̃
(

x
τ(y)

)
− q′(x)

(τ(y)−x)2 ∂τ(y)
∂yi

x

τ2(y)
p̃′
(

x
τ(y)

)]
;

i = 1, 2, . . . , n.
(25)

Take derivative of (25) with respect to yi again ;[
p̃′
(

x
τ(y)

)
x
∂τ(y)
∂yi

τ2(y)
(−q′′(x)(τ(y)− x) + 3q′(x))−

q′(x)x ∂τ(y)
∂yi

(τ(y)−x)
τ3(y)

p̃′′
(

x
τ(y)

)

+q′′(x)∂τ(y)
∂yi

p̃
(

x
τ(y)

)]
·
[
q′(x)

∂τ(y)
∂yi

(τ(y)+x)

τ(y)
p̃
(

x
τ(y)

)
− q′(x)

(τ(y)−x) ∂τ(y)
∂yi

x

τ2(y)
p̃′
(

x
τ(y)

)]

=

[
q′(x)

∂2τ(y)
∂y
i2

τ(y)(τ(y)+x)−( ∂τ(y)
∂yi

)2x

τ2(y)
p̃
(

x
τ(y)

)
− q′(x)

τ3(y)
(x∂

2τ(y)
∂yi2

τ(y)(τ(y)− x)

+3x2(∂τ(y)
∂yi

)2)p̃′
(

x
τ(y)

)
+ q′(x)

(τ(y)−x))x2( ∂τ(y)
∂yi

)2

τ4(y)
p̃′′
(

x
τ(y)

)]
·
[
q′′(x)(τ(y)− x)p̃

(
x

τ(y)

)
−2q′(x)p̃

(
x

τ(y)

)
+ q′(x)(τ(y)− x)p̃′

(
x

τ(y)

)]
; i = 1, 2, . . . , n.

(26)
Observe that the functions (p̃′ (z))2, p̃′ (z) p̃ (z), (p̃ (z))2, p̃′′ (z) p̃ (z), p̃′′ (z) p̃′ (z)

and (p̃′′ (z))2,where p̃ are arbitrary Herglötz functions, are independent. In
fact they are independent even for p̃(w) = 1

1−w+a, a > 0, what can be checked
by straightforward calculations. Hence coefficients in (p̃′ (z))2, p̃′ (z) p̃ (z),
(p̃ (z))2, p̃′′ (z) p̃ (z), p̃′′ (z) p̃′ (z)and (p̃′′ (z))2 in the left and right hand part
of (26)coincide.

In particular,

x

(
∂τ(y)

∂yi

)2

q′′(x) = −τ(y)
∂2τ(y)

∂y2i
q′(x) (27)

and
q′(x) = −xq′′(x). (28)
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Then
q(x) = α lnx, (29)

where α is a constant. If we substitute this in (27) then we obtain(
∂τ(y)

∂yi

)2

= τ(y)
∂2τ(y)

∂y2i
, 1 ≤ i ≤ n. (30)

It is easy to see that any solution of system (30) can be written as

τ(y) = h1(y2, . . . , yn)ey1g1(y2,...,yn) = h2(y1, y3, . . . , yn)ey2g2(y1,y3,...,yn) =

· · · = hn(y1, . . . , yn−1)e
yngn(y1,...,yn−1),

where h1, . . . , hn are sufficiently smooth functions.Then

∂n ln τ(y)

∂y1 . . . ∂yn
=
∂n−1g1(y2, . . . , yn)

∂y2 . . . ∂yn
= · · · = ∂n−1∂gn(y1, . . . , yn−1)

∂y1 . . . ∂yn−1
= c. (31)

It gives the general solution of (30)

ln τ(y) = cyn . . . y1 + g̃1(y2, . . . , yn) + . . .+ g̃n(y1, . . . , yn−1), (32)

where g̃1, . . . , g̃n are arbitrary sufficiently smooth functions.If we put this
τ(y) in (25) and take coefficient of p̃′ (z), then we obtain

ci
ti

=
n∏
k=1

yk +
n∑

k=1,k 6=i

∂g̃k(y1, ..., ỹi, ..., yn)

∂yi
(33)

Taking derivative ∂n−1

∂y2...∂yn
of (33) with i = 1, we obtain c = 0.

Moreover we claim that (32) and (33) imply τ(y) = exp(K · y). Indeed
for n = 1 it follows immediately from (30). For n > 1 we take derivative of
(33) with respect to y2, . . . , yn−1 we obtain

∂n−1g̃n(y1, . . . , yn−1)

∂y1 . . . ∂yn−1
= 0.

Hence g̃n can be written as sum of functions of n − 2 variables. By

induction it implies τ(y) = exp(
n∑
i=1

Kiyi), and application of (30) finishes the

proof of the necessity part.
Now Theorem (9) says that the generator A of the process ψt from (11)

is given by (12).
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