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(M, σ) is a 2-dimensionnal conductivity structure when M is an
abstract 2 dimensional manifold with boundary (M ∩ bM = ∅) and
σ : T ∗M → T ∗M is a tensor such that

∀a, b ∈ T ∗M, σ (a) ∧ b = σ (b) ∧ a,
∀p ∈ M, ∃λp ∈ R∗+, ∀a ∈ T ∗pM, σp (a) ∧ a > λp ‖a‖p µp .

where ‖.‖p is a norm on T ∗pM and µ is a volume form for M.

Dirichlet operator Dσ. For u ∈ C 0 (bM,R), Dσu ∈ C 0
(
M
)
is

defined by
dσ (dDσu) = 0 & (Dσu) |bM = u

Neumann-Dirichlet operator Nσ. For u : bM → R suffi ciently
smooth, Nσu is defined by

Nσu =
∂

∂ν
Dσu : bM → R

where ν ∈ TbMM is the outer unit normal vector field of bM.
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Using isothermal coordinates, one find out that

σ = (det σ) · ∗σ

where ∗σ is the Hodge star operator associated to a complex
structure Cσ on M.

If M is a submanifold of R3, σ is isotropic when Cσ is induced by the
standard euclidean metric of R3. Likewise, σ is said isotropic relatively
to a complex structure C on M if ∗σ is the Hodge operator of (M, C).
Dirichlet problem for

(
M, σ

)
. For u ∈ C 0 (bM), seek U such that

dsdσU = 0 & U |bM = u

where s = det σ, dσ = i
(

∂
σ − ∂σ

)
, ∂

σ
is the standard

Cauchy-Riemann operator associated to the Riemann surface (M, Cσ)

and ∂σ = d − ∂
σ
.
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Inverse conductivity problem

Data : bM, ν ∈ TbMM, σ |bM and Nσ

Problem : reconstruct M as a Riemann surface equipped with the
conductivity tensor σ.

Remark : Let ϕ : M → M be a C 1-diffeomorphism such that
ϕ |bM = IdbM and σ̃ = ϕ∗σ. Then Nσ̃ = Nσ and σ̃ 6= σ but (M, Cσ̃) and
(M, Cσ) represent the same (abstract) Riemann surface.

Consequence : non uniqueness up to a diffeomorphism gives different
representations of the same Riemann surface.
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non exhaustive list for uniqueness results,and for a domain in R2,
reconstructions process by Kohn-Vogelius (1984), Novikov (1988),
Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001),
Belishev (2003), Nachman (1996),
Henkin-Michel (2007) : About reconstruction when Cσ is known and
det σ = 1
Henkin-Santecesaria (2010) : Construction of (M, σ̃) whereM is a
bordered nodal Riemann surface of CP2 which represents Cσ except
perhaps at a finite set of points and such that the pushforward σ̃ of σ
toM is isotropic.
Henkin-Novikov (2011) : Reconstruction, isotropic case (Cσ is known)

Plan for solving the reconstruction problem :

1 use of improved results of H-M to complete H-S and produce a
Riemann surface S representing (M,Cσ) and where the conductivity is
isotropic.

2 use of H-N to produce the function s : S → R∗+ such that s · ∗ is the
pushforward of σ.

3 (S , s · ∗) is a solution to our inverse conductivity problem.
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Tools for step 1

1 Based on Henkin-Michel (2014) : explicit formulas for a Green
function of the bordered nodal Riemann surfaceM. This enable to
compute for a given u : bM → R the Cσ-harmonic extension ũ
(ddσũ = 0) of u from Nσ

2 Based on Henkin-Michel (2012) : embedding S of M in CP4 by a
generic canonical map (∂ũ0 : ∂ũ1 : ∂ũ2 : ∂ũ3) ; S is given as the
solution of boundary problem. Then we seek an atlas for S . For
generic data, S is covered by preimages of regular parts of the images
Q and Q ′ of S\ {(0 : 0 : 0 : 1)} and S\ {(0 : 0 : 1 : 0)} under the
projections CP4 → CP3, (w0 : w1 : w2 : w3) 7→ (w0 : w1 : w2) and
(w0 : w1 : w2 : w3) 7→ (w0 : w1 : w3). This reduces the problem by
one dimension.
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Let Q be the (possibly singular) nodal complex curve which is the image
of S by the projection CP4 → CP3, (w0 : w1 : w2 : w3) 7→ (w0 : w1 : w2).
Some generic assumptions are made on Q such like (0 : 1 : 0) /∈ Q and
bQ ⊂ {w0w1w2 6= 0}. Let for z = (x , y) ∈ C2, Lz be the line of equation

Λz (w)
def
= xw0 + yw1 + w2 = 0. Then from Dolbeault-Henkin (1997), for

z near a generic z∗,

G∂Q ,k (z)
def
=

1
2πi

∫
∂Q

(
w1
w0

)k d Λz (w )
w0

Λz (w )
w0

= ∑
16j6p

hj (z)
k + Pk (z) (SWD)

where Pk ∈ C (Y )k [X ] and h1, ..., hk are holomorphic solutions of the
shock wave equation

∂h
∂y
= h

∂h
∂x

such that

Q ∩ Lz = {(1 : hj (z) : −x − yhj (z)) ; 1 6 j 6 p}
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Diffi culty : If K is algebraic and

K ∩ Lz =
{(
1 : ϕj (z) : −x − yϕj (z)

)
; 1 6 j 6 q

}
,

∑
16j6q

ϕj (z)
k ∈ C (Y )k [X ]. How distinguish Q from K ∪Q ?

For degP1 6 2, Agaltsov-Henkin (2015) gives an algorithm to get P1
and (hj ). For degP1 > 3, we propose a different method based on
the plan :

1 Find a decomposition G∂Q ,1 = ∑
16j6d

gj + P of type (SWD).

2 If ∑
16j6d

gj ∈ C (Y )1 [X ], then from e.g Wood (1984), Q is a domain

in an algebraic curve and requires a special process.
3 If ∑

16j6d
gj /∈ C (Y )1 [X ], let J be the maximal subset of {1, ..., d}

such that ∑
j∈J
gj ∈ C (Y )1 [X ] and write G∂Q ,1 = ∑

j /∈J
gj + P̃ where

P̃ ∈ C (Y )1 [X ].
4 With Henkin (1995) and Collion (1996), one can prove that
(gj ) = (hj ) and P̃ = P.
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Building a SWD G∂Q ,1 = ∑
16j6d

gj + P

1. A function N is the sum of d different shock wave functions iff there
exists s1, ..., sd such that s1 = −N, and

−sd
∂N
∂x
+

∂sd
∂y

= 0, − sk
∂N
∂x
+

∂sk
∂y

=
∂sk+1

∂x
, 1 6 k 6 d − 1, (1)

and the discriminant of T d + s1T d−1 + · · ·+ sd ∈ O (D) [T ] is not
0.

2. Let N = G1 − P where P is of the form B ′
B X +

A
B with A,B ∈ C [Y ],

B (0) = 1 and degA < degB. (s1, ..., sd ) is a solution of (1) iff there
exists one variable holomorphic functions µ1, ..., µd such that

sk =
eH

1⊗ B
(
E0 (µk ⊗ 1) + · · ·+ Ed−k (µd ⊗ 1)

)
(2)

where H is such that ∂H
∂y =

∂G1
∂x , E j = E j−1 ◦ E and E =

∫ y e−H ∂
∂x e

H .
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For a given µ = (µ1, ..., µd ),
(
(−1)j sj

)
16j6d

defined by (2) are the

symmetric functions of a d-uple of shock wave functions iff s1 = −N
which turns out to be equivalent to a linear differential system

∀n ∈ Z, ∑
06m<j6d

c0,nj ,mµ
(m)
j = K 0n (B,A, .) (3)

where
(
c0,nj ,m

)
depends only on G1 and K 0n (B,A, .) vanishes for

n > d , is linear with respect to (A,B) and has coeffi cients depending
only on G1 .

The compatibility system has at least a solution. This solution gives
birth to a solution µ for (3) and thus to a SWD.
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Process

If G1 is affi ne in x , solving the compatibility system on (A,B) and
then (3) gives, after reduction, a parametrization of Q by its
intersection with the lines Lz .

If G1 is affi ne in x , Q is a "special" domain in an algebraic curve K .
This reverts to the 1st case by choosing coordinates such that at least
one line Lz hits Q and K\Q.
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Green formula for singular complex curves

Smooth case symmetric dunction g :
(
M ×M

)
\ ∆M →′ R such that for

all q ∈ M,
gq = g (q, .) is harmonic on M\ {q} and continuous on M\ {q}
gq = − 1

2π ln |z | extends harmonically around q (z holomorphic
coordinate z centered at q)

Singular case A Green function for a curve Y in C2 is a symmetric
function g :

(
RegY × RegY

)
\∆RegY → R s.t. for all q ∈ RegY ,

gq = g (q, .) satisfies
i∂∂gq = δqdV

in the sense of currents on Y , δq being the Dirac measure supported by
{q} and dV = i∂∂ |.|2 - this implies in particular that ∂gq is a weakly
holomorphic (1, 0)-form on Y\ {q} in the sense of Rosenlicht
Nodal case
We demands that Y extends as a usual continuous function along any
branch except for one branch passing trough q where it has an isolated
logarithmic singularity.
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Let us now detail a formula of Henkin-Michel (2014) establishing the
existence of Green functions for a 1-paramter family of complex curves
whose possible singularities are arbitrary. Let us consider a complex curve
Y in an open subset of C2, Ω a Stein neighborhood of Y in C2, Φ a
holomorphic function on Ω such that Y = {Φ = 0} and dΦ |Y 6= 0 then
a strictly pseudoconvex domain Ω∗ of C2 verifying

Y0 = Y ∩Ω∗ ⊂ Ω,

and lastly a symmetric function Ψ ∈ O
(
Ω×Ω,C2

)
such that for all

(z , z ′) ∈ C2,
Φ
(
z ′
)
−Φ (z) =

〈
Ψ
(
z ′, z

)
, z ′ − z

〉
where 〈v ,w〉 = v1w1 + v2w2 when v ,w ∈ C2. We define on RegY a
(1, 0)-form ω by setting

ω =
−dz1

∂Φ/∂z2
on Y1 = Y ∩ {∂Φ/∂z2 6= 0}

ω =
+dz2

∂Φ/∂z1
on Y2 = Y ∩ {∂Φ/∂z1 6= 0}
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and we consider

k
(
z ′, z

)
= det

[
z ′ − z
|z ′ − z |2

,Ψ
(
z ′, z

)]
.

When q∗ ∈ RegY0, H-M (2014) proves that the formula

gq∗ (q) =
1
4π2

∫
q ′∈Y0

k
(
q′, q

)
k
(
q∗, q′

)
iω
(
q′
)
∧ω

(
q′
)
. (4)

defines for Y0 a Green function in the above sense and that if q∗ ∈ RegY0

∂gq∗ = k̃q∗ω

where k̃q∗ =
1
2πk (., q∗).
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Proposition

Suppose Y has only nodal singularities. In this case, when q∗ ∈ RegY0,
gq∗ extends as usual harmonic function along the branches of Y0\ {q∗} ;
in other words, ∂gq∗ extends as a standard holomorphic (1, 0)-form along
the branches of Y0\ {q∗}.

Corollary

Suppose that Y is an open nodal Riemann surface of C2 and g is defined
by (4). Then g is a simple Green function for Y .
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Corollary

Let (M, σ) be a two dimensional conductivity structure. We select, which
is always possible, a two dimensional conductivity structure (M̃, σ̃)
extending plainly (M, σ), which means that M ⊂⊂ M̃, σ̃ |M = σ and
σ̃ |p = IdT ∗p M̃ for all p ∈ bM̃. On denote then by F : M̃ → C2 the map

obtained by applying H-S theorem to (M̃, σ̃), we set Y = F
(
M̃
)
and fix

a Stein neighborhood Ω of Y in C2. Lastly,M = F (M) being relatively
compact in Y , we can pick up in C2 a strictly pseudoconvex domain Ω∗

s.t. M⊂⊂ Y0 = Y ∩Ω∗ ⊂ Ω. We note g the function defined by (4).
Then, F ∗g

∣∣∣M×M\∆M is a Green function for (M, cσ).
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Corollary
M admits a principal Green function and if g is such a function, for all
u ∈ C∞ (bM), F ∗θMf∗u is given by the formula

F ∗θMf∗u =
(
F ∗∂f̂∗u

)
|bM , f̂∗u : RegM 3 q 7→

∣∣∣∣ i
2

∫
∂M (f∗u) ∂gq si q ∈ M

f∗u (q) si q ∈ bM
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