The two dimensional inverse conductivity problem

Dedicated to Gennadi

Vincent MICHEL

IMJ

September 12, 2016

- (M, σ) is a 2-dimensionnal conductivity structure when M is an abstract 2 dimensional manifold with boundary $(M \cap b M=\varnothing)$ and $\sigma: T^{*} M \rightarrow T^{*} M$ is a tensor such that

$$
\begin{gathered}
\forall a, b \in T^{*} \bar{M}, \sigma(a) \wedge b=\sigma(b) \wedge a \\
\forall p \in \bar{M}, \exists \lambda_{p} \in \mathbb{R}_{+}^{*}, \forall a \in T_{p}^{*} \bar{M}, \sigma_{p}(a) \wedge a \geqslant \lambda_{p}\|a\|_{p} \mu_{p}
\end{gathered}
$$

where $\|\cdot\|_{p}$ is a norm on $T_{p}^{*} \bar{M}$ and μ is a volume form for \bar{M}.

- (M, σ) is a 2-dimensionnal conductivity structure when M is an abstract 2 dimensional manifold with boundary $(M \cap b M=\varnothing)$ and $\sigma: T^{*} M \rightarrow T^{*} M$ is a tensor such that

$$
\begin{gathered}
\forall a, b \in T^{*} \bar{M}, \sigma(a) \wedge b=\sigma(b) \wedge a \\
\forall p \in \bar{M}, \exists \lambda_{p} \in \mathbb{R}_{+}^{*}, \forall a \in T_{p}^{*} \bar{M}, \sigma_{p}(a) \wedge a \geqslant \lambda_{p}\|a\|_{p} \mu_{p}
\end{gathered}
$$

where $\|\cdot\|_{p}$ is a norm on $T_{p}^{*} \bar{M}$ and μ is a volume form for \bar{M}.

- Dirichlet operator D_{σ}. For $u \in C^{0}(b M, \mathbb{R}), D_{\sigma} u \in C^{0}(\bar{M})$ is defined by

$$
d \sigma\left(d D_{\sigma} u\right)=\left.0 \quad \& \quad\left(D_{\sigma} u\right)\right|_{b M}=u
$$

- (M, σ) is a 2-dimensionnal conductivity structure when M is an abstract 2 dimensional manifold with boundary $(M \cap b M=\varnothing)$ and $\sigma: T^{*} M \rightarrow T^{*} M$ is a tensor such that

$$
\begin{gathered}
\forall a, b \in T^{*} \bar{M}, \sigma(a) \wedge b=\sigma(b) \wedge a \\
\forall p \in \bar{M}, \exists \lambda_{p} \in \mathbb{R}_{+}^{*}, \forall a \in T_{p}^{*} \bar{M}, \sigma_{p}(a) \wedge a \geqslant \lambda_{p}\|a\|_{p} \mu_{p}
\end{gathered}
$$

where $\|\cdot\|_{p}$ is a norm on $T_{p}^{*} \bar{M}$ and μ is a volume form for \bar{M}.

- Dirichlet operator D_{σ}. For $u \in C^{0}(b M, \mathbb{R}), D_{\sigma} u \in C^{0}(\bar{M})$ is defined by

$$
d \sigma\left(d D_{\sigma} u\right)=\left.0 \quad \& \quad\left(D_{\sigma} u\right)\right|_{b M}=u
$$

- Neumann-Dirichlet operator N_{σ}. For $u: b M \rightarrow \mathbb{R}$ sufficiently smooth, $N_{\sigma} u$ is defined by

$$
N_{\sigma} u=\frac{\partial}{\partial v} D_{\sigma} u: b M \rightarrow \mathbb{R}
$$

where $v \in T_{b M} \bar{M}$ is the outer unit normal vector field of $b M$.

- Using isothermal coordinates, one find out that

$$
\sigma=(\operatorname{det} \sigma) \cdot *_{\sigma}
$$

where $*_{\sigma}$ is the Hodge star operator associated to a complex structure \mathcal{C}_{σ} on M.

- Using isothermal coordinates, one find out that

$$
\sigma=(\operatorname{det} \sigma) \cdot *_{\sigma}
$$

where $*_{\sigma}$ is the Hodge star operator associated to a complex structure \mathcal{C}_{σ} on M.

- If M is a submanifold of \mathbb{R}^{3}, σ is isotropic when \mathcal{C}_{σ} is induced by the standard euclidean metric of \mathbb{R}^{3}. Likewise, σ is said isotropic relatively to a complex structure \mathcal{C} on M if $*_{\sigma}$ is the Hodge operator of (M, \mathcal{C}).
- Using isothermal coordinates, one find out that

$$
\sigma=(\operatorname{det} \sigma) \cdot *_{\sigma}
$$

where $*_{\sigma}$ is the Hodge star operator associated to a complex structure \mathcal{C}_{σ} on M.

- If M is a submanifold of \mathbb{R}^{3}, σ is isotropic when \mathcal{C}_{σ} is induced by the standard euclidean metric of \mathbb{R}^{3}. Likewise, σ is said isotropic relatively to a complex structure \mathcal{C} on M if $*_{\sigma}$ is the Hodge operator of (M, \mathcal{C}).
- Dirichlet problem for (\bar{M}, σ). For $u \in C^{0}(b M)$, seek U such that

$$
d s d^{\sigma} U=\left.0 \quad \& \quad U\right|_{b M}=u
$$

where $s=\operatorname{det} \sigma, d^{\sigma}=i\left(\bar{\partial}^{\sigma}-\partial^{\sigma}\right), \bar{\partial}^{\sigma}$ is the standard
Cauchy-Riemann operator associated to the Riemann surface (M, \mathcal{C}_{σ}) and $\partial^{\sigma}=d-\bar{\partial}^{\sigma}$.

Inverse conductivity problem

Data : $b M, v \in T_{b M} \bar{M},\left.\sigma\right|_{b M}$ and N_{σ}
Problem : reconstruct M as a Riemann surface equipped with the conductivity tensor σ.
Remark : Let $\varphi: \bar{M} \rightarrow \bar{M}$ be a C^{1}-diffeomorphism such that $\left.\varphi\right|_{b M}=I d_{b M}$ and $\widetilde{\sigma}=\varphi_{*} \sigma$. Then $N_{\tilde{\sigma}}=N_{\sigma}$ and $\widetilde{\sigma} \neq \sigma$ but $\left(M, \mathcal{C}_{\widetilde{\sigma}}\right)$ and $\left(M, \mathcal{C}_{\sigma}\right)$ represent the same (abstract) Riemann surface.

Consequence : non uniqueness up to a diffeomorphism gives different representations of the same Riemann surface.

- non exhaustive list for uniqueness results, and for a domain in \mathbb{R}^{2}, reconstructions process by Kohn-Vogelius (1984), Novikov (1988), Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001), Belishev (2003), Nachman (1996),
- Henkin-Michel (2007) : About reconstruction when C_{σ} is known and $\operatorname{det} \sigma=1$
- Henkin-Santecesaria (2010) : Construction of $(\mathcal{M}, \widetilde{\sigma})$ where \mathcal{M} is a bordered nodal Riemann surface of $\mathbb{C P}_{2}$ which represents C_{σ} except perhaps at a finite set of points and such that the pushforward $\widetilde{\sigma}$ of σ to \mathcal{M} is isotropic.
- Henkin-Novikov (2011) : Reconstruction, isotropic case (C_{σ} is known)
- Plan for solving the reconstruction problem :
- non exhaustive list for uniqueness results, and for a domain in \mathbb{R}^{2}, reconstructions process by Kohn-Vogelius (1984), Novikov (1988), Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001), Belishev (2003), Nachman (1996),
- Henkin-Michel (2007) : About reconstruction when C_{σ} is known and $\operatorname{det} \sigma=1$
- Henkin-Santecesaria (2010) : Construction of $(\mathcal{M}, \widetilde{\sigma})$ where \mathcal{M} is a bordered nodal Riemann surface of $\mathbb{C P}_{2}$ which represents C_{σ} except perhaps at a finite set of points and such that the pushforward $\widetilde{\sigma}$ of σ to \mathcal{M} is isotropic.
- Henkin-Novikov (2011) : Reconstruction, isotropic case (C_{σ} is known)
- Plan for solving the reconstruction problem :
(1) use of improved results of $\mathrm{H}-\mathrm{M}$ to complete $\mathrm{H}-\mathrm{S}$ and produce a Riemann surface S representing (M, C_{σ}) and where the conductivity is isotropic.
- non exhaustive list for uniqueness results, and for a domain in \mathbb{R}^{2}, reconstructions process by Kohn-Vogelius (1984), Novikov (1988), Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001), Belishev (2003), Nachman (1996),
- Henkin-Michel (2007) : About reconstruction when C_{σ} is known and $\operatorname{det} \sigma=1$
- Henkin-Santecesaria (2010) : Construction of $(\mathcal{M}, \widetilde{\sigma})$ where \mathcal{M} is a bordered nodal Riemann surface of $\mathbb{C P}_{2}$ which represents C_{σ} except perhaps at a finite set of points and such that the pushforward $\widetilde{\sigma}$ of σ to \mathcal{M} is isotropic.
- Henkin-Novikov (2011) : Reconstruction, isotropic case (C_{σ} is known)
- Plan for solving the reconstruction problem :
(1) use of improved results of $\mathrm{H}-\mathrm{M}$ to complete $\mathrm{H}-\mathrm{S}$ and produce a Riemann surface S representing (M, C_{σ}) and where the conductivity is isotropic.
(2) use of $\mathrm{H}-\mathrm{N}$ to produce the function $s: S \rightarrow \mathbb{R}_{+}^{*}$ such that $s \cdot *$ is the pushforward of σ.
- non exhaustive list for uniqueness results, and for a domain in \mathbb{R}^{2}, reconstructions process by Kohn-Vogelius (1984), Novikov (1988), Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001), Belishev (2003), Nachman (1996),
- Henkin-Michel (2007) : About reconstruction when C_{σ} is known and $\operatorname{det} \sigma=1$
- Henkin-Santecesaria (2010) : Construction of $(\mathcal{M}, \widetilde{\sigma})$ where \mathcal{M} is a bordered nodal Riemann surface of $\mathbb{C P}_{2}$ which represents C_{σ} except perhaps at a finite set of points and such that the pushforward $\widetilde{\sigma}$ of σ to \mathcal{M} is isotropic.
- Henkin-Novikov (2011) : Reconstruction, isotropic case (C_{σ} is known)
- Plan for solving the reconstruction problem :
(1) use of improved results of $\mathrm{H}-\mathrm{M}$ to complete $\mathrm{H}-\mathrm{S}$ and produce a Riemann surface S representing (M, C_{σ}) and where the conductivity is isotropic.
(2) use of $\mathrm{H}-\mathrm{N}$ to produce the function $s: S \rightarrow \mathbb{R}_{+}^{*}$ such that $s \cdot *$ is the pushforward of σ.
(3) $(S, s \cdot *)$ is a solution to our inverse conductivity problem.

Tools for step 1

(1) Based on Henkin-Michel (2014) : explicit formulas for a Green function of the bordered nodal Riemann surface \mathcal{M}. This enable to compute for a given $u: b M \rightarrow \mathbb{R}$ the C_{σ}-harmonic extension \widetilde{u} $\left(d d^{\sigma} \widetilde{u}=0\right)$ of u from N_{σ}
(2) Based on Henkin-Michel (2012) : embedding S of M in $\mathbb{C P}_{4}$ by a generic canonical map ($\left.\partial \widetilde{u}_{0}: \partial \widetilde{u}_{1}: \partial \widetilde{u}_{2}: \partial \widetilde{u_{3}}\right) ; S$ is given as the solution of boundary problem. Then we seek an atlas for S. For generic data, S is covered by preimages of regular parts of the images Q and Q^{\prime} of $S \backslash\{(0: 0: 0: 1)\}$ and $S \backslash\{(0: 0: 1: 0)\}$ under the projections $\mathbb{C P}_{4} \rightarrow \mathbb{C P}_{3},\left(w_{0}: w_{1}: w_{2}: w_{3}\right) \mapsto\left(w_{0}: w_{1}: w_{2}\right)$ and $\left(w_{0}: w_{1}: w_{2}: w_{3}\right) \mapsto\left(w_{0}: w_{1}: w_{3}\right)$. This reduces the problem by one dimension.

Let Q be the (possibly singular) nodal complex curve which is the image of S by the projection $\mathbb{C P}_{4} \rightarrow \mathbb{C P}_{3},\left(w_{0}: w_{1}: w_{2}: w_{3}\right) \mapsto\left(w_{0}: w_{1}: w_{2}\right)$. Some generic assumptions are made on \bar{Q} such like $(0: 1: 0) \notin \bar{Q}$ and $b Q \subset\left\{w_{0} w_{1} w_{2} \neq 0\right\}$. Let for $z=(x, y) \in \mathbb{C}^{2}, L_{z}$ be the line of equation $\Lambda_{z}(w) \stackrel{\text { def }}{=} x w_{0}+y w_{1}+w_{2}=0$. Then from Dolbeault-Henkin (1997), for z near a generic z_{*},

$$
G_{\partial Q, k}(z) \stackrel{\text { def }}{=} \frac{1}{2 \pi i} \int_{\partial Q}\left(\frac{w_{1}}{w_{0}}\right)^{k} \frac{d \frac{\Lambda_{z}(w)}{w_{0}}}{\frac{\Lambda_{z}(w)}{w_{0}}}=\sum_{1 \leqslant j \leqslant p} h_{j}(z)^{k}+P_{k}(z) \quad(\mathrm{SWD})
$$

where $P_{k} \in \mathbb{C}(Y)_{k}[X]$ and h_{1}, \ldots, h_{k} are holomorphic solutions of the shock wave equation

$$
\frac{\partial h}{\partial y}=h \frac{\partial h}{\partial x}
$$

such that

$$
Q \cap L_{z}=\left\{\left(1: h_{j}(z):-x-y h_{j}(z)\right) ; 1 \leqslant j \leqslant p\right\}
$$

- Difficulty : If K is algebraic and

$$
\begin{array}{r}
K \cap L_{z}=\left\{\left(1: \varphi_{j}(z):-x-y \varphi_{j}(z)\right) ; 1 \leqslant j \leqslant q\right\}, \\
\sum_{1 \leqslant j \leqslant q} \varphi_{j}(z)^{k} \in \mathbb{C}(Y)_{k}[X] . \text { How distinguish } Q \text { from } K \cup Q ?
\end{array}
$$

- Difficulty : If K is algebraic and

$$
K \cap L_{z}=\left\{\left(1: \varphi_{j}(z):-x-y \varphi_{j}(z)\right) ; 1 \leqslant j \leqslant q\right\},
$$

$\sum_{1 \leqslant j \leqslant q} \varphi_{j}(z)^{k} \in \mathbb{C}(Y)_{k}[X]$. How distinguish Q from $K \cup Q$?

- For deg $P_{1} \leqslant 2$, Agaltsov-Henkin (2015) gives an algorithm to get P_{1} and $\left(h_{j}\right)$. For $\operatorname{deg} P_{1} \geqslant 3$, we propose a different method based on the plan :
- Difficulty : If K is algebraic and

$$
K \cap L_{z}=\left\{\left(1: \varphi_{j}(z):-x-y \varphi_{j}(z)\right) ; 1 \leqslant j \leqslant q\right\}
$$

$\sum_{1 \leqslant j \leqslant q} \varphi_{j}(z)^{k} \in \mathbb{C}(Y)_{k}[X]$. How distinguish Q from $K \cup Q$?

- For deg $P_{1} \leqslant 2$, Agaltsov-Henkin (2015) gives an algorithm to get P_{1} and $\left(h_{j}\right)$. For $\operatorname{deg} P_{1} \geqslant 3$, we propose a different method based on the plan :
(1) Find a decomposition $G_{\partial Q, 1}=\sum_{1 \leqslant j \leqslant d} g_{j}+P$ of type (SWD).
- Difficulty : If K is algebraic and

$$
K \cap L_{z}=\left\{\left(1: \varphi_{j}(z):-x-y \varphi_{j}(z)\right) ; 1 \leqslant j \leqslant q\right\}
$$

$\sum_{1 \leqslant j \leqslant q} \varphi_{j}(z)^{k} \in \mathbb{C}(Y)_{k}[X]$. How distinguish Q from $K \cup Q$?

- For deg $P_{1} \leqslant 2$, Agaltsov-Henkin (2015) gives an algorithm to get P_{1} and $\left(h_{j}\right)$. For $\operatorname{deg} P_{1} \geqslant 3$, we propose a different method based on the plan :
(1) Find a decomposition $G_{\partial Q, 1}=\sum_{1 \leqslant j \leqslant d} g_{j}+P$ of type (SWD).
(2) If $\sum_{1 \leqslant j \leqslant d} g_{j} \in \mathbb{C}(Y)_{1}[X]$, then from e.g Wood (1984), Q is a domain in an algebraic curve and requires a special process.
- Difficulty : If K is algebraic and

$$
K \cap L_{z}=\left\{\left(1: \varphi_{j}(z):-x-y \varphi_{j}(z)\right) ; 1 \leqslant j \leqslant q\right\}
$$

$\sum_{1 \leqslant j \leqslant q} \varphi_{j}(z)^{k} \in \mathbb{C}(Y)_{k}[X]$. How distinguish Q from $K \cup Q$?

- For deg $P_{1} \leqslant 2$, Agaltsov-Henkin (2015) gives an algorithm to get P_{1} and $\left(h_{j}\right)$. For $\operatorname{deg} P_{1} \geqslant 3$, we propose a different method based on the plan :
(1) Find a decomposition $G_{\partial Q, 1}=\sum_{1 \leqslant j \leqslant d} g_{j}+P$ of type (SWD).
(2. If $\sum_{1 \leqslant j \leqslant d} g_{j} \in \mathbb{C}(Y)_{1}[X]$, then from e.g Wood (1984), Q is a domain in an algebraic curve and requires a special process.
(3) If $\sum_{1 \leqslant j \leqslant d} g_{j} \notin \mathbb{C}(Y)_{1}[X]$, let J be the maximal subset of $\{1, \ldots, d\}$
such that $\sum_{j \in J} g_{j} \in \mathbb{C}(Y)_{1}[X]$ and write $G_{\partial Q, 1}=\sum_{j \notin J} g_{j}+\widetilde{P}$ where $\widetilde{P} \in \mathbb{C}(Y)_{1}[X]$.
- Difficulty : If K is algebraic and

$$
K \cap L_{z}=\left\{\left(1: \varphi_{j}(z):-x-y \varphi_{j}(z)\right) ; 1 \leqslant j \leqslant q\right\}
$$

$\sum_{1 \leqslant j \leqslant q} \varphi_{j}(z)^{k} \in \mathbb{C}(Y)_{k}[X]$. How distinguish Q from $K \cup Q$?

- For deg $P_{1} \leqslant 2$, Agaltsov-Henkin (2015) gives an algorithm to get P_{1} and $\left(h_{j}\right)$. For $\operatorname{deg} P_{1} \geqslant 3$, we propose a different method based on the plan :
(1) Find a decomposition $G_{\partial Q, 1}=\sum_{1 \leqslant j \leqslant d} g_{j}+P$ of type (SWD).
(2) If $\sum_{1 \leqslant j \leqslant d} g_{j} \in \mathbb{C}(Y)_{1}[X]$, then from e.g Wood (1984), Q is a domain in an algebraic curve and requires a special process.
(3) If $\sum_{1 \leqslant j \leqslant d} g_{j} \notin \mathbb{C}(Y)_{1}[X]$, let J be the maximal subset of $\{1, \ldots, d\}$
such that $\sum_{j \in J} g_{j} \in \mathbb{C}(Y)_{1}[X]$ and write $G_{\partial Q, 1}=\sum_{j \notin J} g_{j}+\widetilde{P}$ where $\widetilde{P} \in \mathbb{C}(Y)_{1}[X]$.
(1) With Henkin (1995) and Collion (1996), one can prove that $\left(g_{j}\right)=\left(h_{j}\right)$ and $\widetilde{P}=P$.

Building a SWD $G_{\partial Q, 1}=\sum_{1 \leqslant j \leqslant d} g_{j}+P$

1. A function N is the sum of d different shock wave functions iff there exists s_{1}, \ldots, s_{d} such that $s_{1}=-N$, and

$$
\begin{equation*}
-s_{d} \frac{\partial N}{\partial x}+\frac{\partial s_{d}}{\partial y}=0,-s_{k} \frac{\partial N}{\partial x}+\frac{\partial s_{k}}{\partial y}=\frac{\partial s_{k+1}}{\partial x}, 1 \leqslant k \leqslant d-1 \tag{1}
\end{equation*}
$$

and the discriminant of $T^{d}+s_{1} T^{d-1}+\cdots+s_{d} \in \mathcal{O}(D)[T]$ is not 0 .
2. Let $N=G_{1}-P$ where P is of the form $\frac{B^{\prime}}{B} X+\frac{A}{B}$ with $A, B \in \mathbb{C}[Y]$, $B(0)=1$ and $\operatorname{deg} A<\operatorname{deg} B .\left(s_{1}, \ldots, s_{d}\right)$ is a solution of (1) iff there exists one variable holomorphic functions μ_{1}, \ldots, μ_{d} such that

$$
\begin{equation*}
s_{k}=\frac{e^{H}}{1 \otimes B}\left(\mathcal{E}^{0}\left(\mu_{k} \otimes 1\right)+\cdots+\mathcal{E}^{d-k}\left(\mu_{d} \otimes 1\right)\right) \tag{2}
\end{equation*}
$$

where H is such that $\frac{\partial H}{\partial y}=\frac{\partial G_{1}}{\partial x}, \mathcal{E}^{j}=\mathcal{E}^{j-1} \circ \mathcal{E}$ and $\mathcal{E}=\int^{y} e^{-H} \frac{\partial}{\partial x} e^{H}$.

- For a given $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right),\left((-1)^{j} s_{j}\right)_{1 \leqslant j \leqslant d}$ defined by (2) are the symmetric functions of a d-uple of shock wave functions iff $s_{1}=-N$ which turns out to be equivalent to a linear differential system

$$
\begin{equation*}
\forall n \in \mathbb{Z}, \quad \sum_{0 \leqslant m<j \leqslant d} c_{j, m}^{0, n} \mu_{j}^{(m)}=K_{n}^{0}(B, A, .) \tag{3}
\end{equation*}
$$

where $\left(c_{j, m}^{0, n}\right)$ depends only on G_{1} and $K_{n}^{0}(B, A,$.$) vanishes for$ $n \geqslant d$, is linear with respect to (A, B) and has coefficients depending only on G_{1}.

- For a given $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right),\left((-1)^{j} s_{j}\right)_{1 \leqslant j \leqslant d}$ defined by (2) are the symmetric functions of a d-uple of shock wave functions iff $s_{1}=-N$ which turns out to be equivalent to a linear differential system

$$
\begin{equation*}
\forall n \in \mathbb{Z}, \quad \sum_{0 \leqslant m<j \leqslant d} c_{j, m}^{0, n} \mu_{j}^{(m)}=K_{n}^{0}(B, A, .) \tag{3}
\end{equation*}
$$

where $\left(c_{j, m}^{0, n}\right)$ depends only on G_{1} and $K_{n}^{0}(B, A,$.$) vanishes for$ $n \geqslant d$, is linear with respect to (A, B) and has coefficients depending only on G_{1}.

- The compatibility system has at least a solution. This solution gives birth to a solution μ for (3) and thus to a SWD.

Process

- If G_{1} is affine in x, solving the compatibility system on (A, B) and then (3) gives, after reduction, a parametrization of Q by its intersection with the lines L_{z}.

Process

- If G_{1} is affine in x, solving the compatibility system on (A, B) and then (3) gives, after reduction, a parametrization of Q by its intersection with the lines L_{z}.
- If G_{1} is affine in x, Q is a "special" domain in an algebraic curve K. This reverts to the 1st case by choosing coordinates such that at least one line L_{z} hits Q and $K \backslash Q$.

Green formula for singular complex curves

Smooth case symmetric dunction $g:(\bar{M} \times \bar{M}) \backslash \Delta_{\bar{M}} \rightarrow^{\prime} \mathbb{R}$ such that for all $q \in M$,

- $g_{q}=g(q,$.$) is harmonic on M \backslash\{q\}$ and continuous on $\bar{M} \backslash\{q\}$
- $g_{q}=-\frac{1}{2 \pi} \ln |z|$ extends harmonically around q (z holomorphic coordinate z centered at q)
Singular case A Green function for a curve \mathcal{Y} in \mathbb{C}^{2} is a symmetric function $g:(\operatorname{Reg} \overline{\mathcal{Y}} \times \operatorname{Reg} \overline{\mathcal{Y}}) \backslash \Delta_{\operatorname{Reg}} \overline{\mathcal{Y}} \rightarrow \mathbb{R}$ s.t. for all $q \in \operatorname{Reg} \overline{\mathcal{Y}}$, $g_{q}=g(q,$.$) satisfies$

$$
i \partial \bar{\partial} g_{q}=\delta_{q} d V
$$

in the sense of currents on \mathcal{Y}, δ_{q} being the Dirac measure supported by $\{q\}$ and $d V=i \partial \bar{\partial}|.|^{2}$ - this implies in particular that ∂g_{q} is a weakly holomorphic (1,0)-form on $\mathcal{Y} \backslash\{q\}$ in the sense of Rosenlicht Nodal case
We demands that \mathcal{Y} extends as a usual continuous function along any branch except for one branch passing trough q where it has an isolated logarithmic singularity.

Let us now detail a formula of Henkin-Michel (2014) establishing the existence of Green functions for a 1-paramter family of complex curves whose possible singularities are arbitrary. Let us consider a complex curve \mathcal{Y} in an open subset of \mathbb{C}^{2}, Ω a Stein neighborhood of \mathcal{Y} in \mathbb{C}^{2}, Φ a holomorphic function on Ω such that $\mathcal{Y}=\{\Phi=0\}$ and $d \Phi \mid \mathcal{Y} \neq 0$ then a strictly pseudoconvex domain Ω^{*} of \mathbb{C}^{2} verifying

$$
\mathcal{Y}_{0}=\mathcal{Y} \cap \Omega^{*} \subset \Omega
$$

and lastly a symmetric function $\Psi \in \mathcal{O}\left(\Omega \times \Omega, \mathbb{C}^{2}\right)$ such that for all $\left(z, z^{\prime}\right) \in \mathbb{C}^{2}$,

$$
\Phi\left(z^{\prime}\right)-\Phi(z)=\left\langle\Psi\left(z^{\prime}, z\right), z^{\prime}-z\right\rangle
$$

where $\langle v, w\rangle=v_{1} w_{1}+v_{2} w_{2}$ when $v, w \in \mathbb{C}^{2}$. We define on Reg Y a $(1,0)$-form ω by setting

$$
\begin{aligned}
& \omega=\frac{-d z_{1}}{\partial \Phi / \partial z_{2}} \text { on } \mathcal{Y}^{1}=\mathcal{Y} \cap\left\{\partial \Phi / \partial z_{2} \neq 0\right\} \\
& \omega=\frac{+d z_{2}}{\partial \Phi / \partial z_{1}} \text { on } \mathcal{Y}^{2}=\mathcal{Y} \cap\left\{\partial \Phi / \partial z_{1} \neq 0\right\}
\end{aligned}
$$

and we consider

$$
k\left(z^{\prime}, z\right)=\operatorname{det}\left[\frac{\overline{z^{\prime}}-\bar{z}}{\left|z^{\prime}-z\right|^{2}}, \Psi\left(z^{\prime}, z\right)\right]
$$

When $q_{*} \in \operatorname{Reg} \mathcal{Y}_{0}, \mathrm{H}-\mathrm{M}$ (2014) proves that the formula

$$
\begin{equation*}
g_{q_{*}}(q)=\frac{1}{4 \pi^{2}} \int_{q^{\prime} \in \mathcal{Y}_{0}} k\left(q^{\prime}, q\right) k\left(q_{*}, q^{\prime}\right) i \omega\left(q^{\prime}\right) \wedge \bar{\omega}\left(q^{\prime}\right) . \tag{4}
\end{equation*}
$$

defines for \mathcal{Y}_{0} a Green function in the above sense and that if $q_{*} \in \operatorname{Reg} \mathcal{Y}_{0}$

$$
\partial g_{q_{*}}=\widetilde{k}_{q_{*}} \omega
$$

where $\widetilde{k}_{q_{*}}=\frac{1}{2 \pi} k\left(., q_{*}\right)$.

Proposition

Suppose \mathcal{Y} has only nodal singularities. In this case, when $q_{*} \in \operatorname{Reg} \mathcal{Y}_{0}$, $g_{q_{*}}$ extends as usual harmonic function along the branches of $\mathcal{Y}_{0} \backslash\left\{q_{*}\right\}$; in other words, $\partial g_{q_{*}}$ extends as a standard holomorphic $(1,0)$-form along the branches of $\mathcal{Y}_{0} \backslash\left\{q_{*}\right\}$.

Corollary

Suppose that \mathcal{Y} is an open nodal Riemann surface of \mathbb{C}^{2} and g is defined by (4). Then g is a simple Green function for \mathcal{Y}.

Corollary

Let (M, σ) be a two dimensional conductivity structure. We select, which is always possible, a two dimensional conductivity structure $(\widetilde{M}, \widetilde{\sigma})$ extending plainly (M, σ), which means that $M \subset \subset \widetilde{M},\left.\widetilde{\sigma}\right|_{M}=\sigma$ and $\left.\widetilde{\sigma}\right|_{p}=I d_{T_{p}^{*}} \overline{\bar{M}}$ for all $p \in b \widetilde{M}$. On denote then by $F: \widetilde{M} \rightarrow \mathbb{C}^{2}$ the map obtained by applying H-S theorem to $(\widetilde{M}, \widetilde{\sigma})$, we set $\mathcal{Y}=F(\widetilde{M})$ and fix a Stein neighborhood Ω of \mathcal{Y} in \mathbb{C}^{2}. Lastly, $\mathcal{M}=F(M)$ being relatively compact in \mathcal{Y}, we can pick up in \mathbb{C}^{2} a strictly pseudoconvex domain Ω^{*} s.t. $\mathcal{M} \subset \subset \mathcal{Y}_{0}=\mathcal{Y} \cap \Omega^{*} \subset \Omega$. We note g the function defined by (4). Then, $\left.F^{*} g\right|_{\bar{M} \times \bar{M} \backslash \Delta_{M}}$ is a Green function for $\left(M, c_{\sigma}\right)$.

Corollary

\mathcal{M} admits a principal Green function and if g is such a function, for all $u \in C^{\infty}(b M), F^{*} \theta^{\mathcal{M}} f_{*} u$ is given by the formula

$$
F^{*} \theta^{\mathcal{M}} f_{*} u=\left.\left(F^{*} \partial \widehat{f_{*} u}\right)\right|_{b \mathcal{M}}, \widehat{f_{*} u}: \operatorname{Reg} \overline{\mathcal{M}} \ni q \mapsto\left|\begin{array}{l}
\frac{i}{2} \int_{\partial \mathcal{M}}\left(f_{*} u\right) \bar{\partial} g_{q} \text { si } q \in \mathcal{\Lambda} \\
f_{*} u(q) \text { si } q \in b \mathcal{M}
\end{array}\right|
$$

