The two dimensional inverse conductivity problem

Dedicated to Gennadi

Vincent MICHEL

IMJ

September 12, 2016

• (M, σ) is a **2-dimensionnal conductivity structure** when M is an abstract 2 dimensional manifold with boundary $(M \cap bM = \emptyset)$ and $\sigma : T^*M \to T^*M$ is a tensor such that

$$\forall \mathbf{a}, \mathbf{b} \in T^* \overline{M}, \ \sigma(\mathbf{a}) \wedge \mathbf{b} = \sigma(\mathbf{b}) \wedge \mathbf{a},$$
$$\forall \mathbf{p} \in \overline{M}, \ \exists \lambda_p \in \mathbb{R}^*_+, \ \forall \mathbf{a} \in T^*_p \overline{M}, \ \sigma_p(\mathbf{a}) \wedge \mathbf{a} \ge \lambda_p \|\mathbf{a}\|_p \mu_p.$$

where $\|.\|_{p}$ is a norm on $T_{p}^{*}\overline{M}$ and μ is a volume form for \overline{M} .

• (M, σ) is a **2-dimensionnal conductivity structure** when M is an abstract 2 dimensional manifold with boundary $(M \cap bM = \emptyset)$ and $\sigma : T^*M \to T^*M$ is a tensor such that

$$\begin{aligned} \forall \mathbf{a}, \mathbf{b} \in T^* \overline{M}, \ \sigma\left(\mathbf{a}\right) \wedge \mathbf{b} &= \sigma\left(\mathbf{b}\right) \wedge \mathbf{a}, \\ \forall \mathbf{p} \in \overline{M}, \ \exists \lambda_p \in \mathbb{R}^*_+, \ \forall \mathbf{a} \in T^*_p \overline{M}, \ \sigma_p\left(\mathbf{a}\right) \wedge \mathbf{a} \geqslant \lambda_p \left\|\mathbf{a}\right\|_p \mu_p. \end{aligned}$$

where $\|.\|_p$ is a norm on $T_p^*\overline{M}$ and μ is a volume form for \overline{M} .

Dirichlet operator D_σ. For u ∈ C⁰ (bM, ℝ), D_σu ∈ C⁰ (M) is defined by

 $d\sigma (dD_{\sigma}u) = 0 \& (D_{\sigma}u)|_{bM} = u$

• (M, σ) is a **2-dimensionnal conductivity structure** when M is an abstract 2 dimensional manifold with boundary $(M \cap bM = \emptyset)$ and $\sigma : T^*M \to T^*M$ is a tensor such that

$$\begin{array}{l} \forall \mathsf{a}, \mathsf{b} \in T^* \overline{M}, \ \sigma\left(\mathsf{a}\right) \wedge \mathsf{b} = \sigma\left(\mathsf{b}\right) \wedge \mathsf{a}, \\ \forall \mathsf{p} \in \overline{M}, \ \exists \lambda_{\mathsf{p}} \in \mathbb{R}^*_+, \ \forall \mathsf{a} \in T^*_{\mathsf{p}} \overline{M}, \ \sigma_{\mathsf{p}}\left(\mathsf{a}\right) \wedge \mathsf{a} \geqslant \lambda_{\mathsf{p}} \left\|\mathsf{a}\right\|_{\mathsf{p}} \mu_{\mathsf{p}}. \end{array}$$

where $\|.\|_p$ is a norm on $T_p^*\overline{M}$ and μ is a volume form for \overline{M} .

Dirichlet operator D_σ. For u ∈ C⁰ (bM, ℝ), D_σu ∈ C⁰ (M) is defined by

 $d\sigma (dD_{\sigma}u) = 0 \& (D_{\sigma}u)|_{bM} = u$

• Neumann-Dirichlet operator N_{σ} . For $u: bM \to \mathbb{R}$ sufficiently smooth, $N_{\sigma}u$ is defined by

$$N_{\sigma}u = rac{\partial}{\partial v}D_{\sigma}u: bM o \mathbb{R}$$

where $\nu \in T_{bM}\overline{M}$ is the outer unit normal vector field of bM.

• Using isothermal coordinates, one find out that

 $\sigma = (\det \sigma) \cdot *_{\sigma}$

where $*_{\sigma}$ is the *Hodge star* operator associated to a complex structure C_{σ} on *M*.

• Using isothermal coordinates, one find out that

```
\sigma = (\det \sigma) \cdot *_{\sigma}
```

where $*_{\sigma}$ is the *Hodge star* operator associated to a complex structure C_{σ} on *M*.

• If M is a submanifold of \mathbb{R}^3 , σ is isotropic when \mathcal{C}_{σ} is induced by the standard euclidean metric of \mathbb{R}^3 . Likewise, σ is said isotropic relatively to a complex structure \mathcal{C} on M if $*_{\sigma}$ is the Hodge operator of (M, \mathcal{C}) .

• Using isothermal coordinates, one find out that

 $\sigma = (\det \sigma) \cdot *_{\sigma}$

where $*_{\sigma}$ is the *Hodge star* operator associated to a complex structure C_{σ} on *M*.

- If M is a submanifold of \mathbb{R}^3 , σ is isotropic when \mathcal{C}_{σ} is induced by the standard euclidean metric of \mathbb{R}^3 . Likewise, σ is said isotropic relatively to a complex structure \mathcal{C} on M if $*_{\sigma}$ is the Hodge operator of (M, \mathcal{C}) .
- Dirichlet problem for (\overline{M}, σ) . For $u \in C^0(bM)$, seek U such that

 $dsd^{\sigma}U = 0 \& U|_{bM} = u$

where $s = \det \sigma$, $d^{\sigma} = i \left(\overline{\partial}^{\sigma} - \partial^{\sigma}\right)$, $\overline{\partial}^{\sigma}$ is the standard Cauchy-Riemann operator associated to the Riemann surface (M, C_{σ}) and $\partial^{\sigma} = d - \overline{\partial}^{\sigma}$.

Inverse conductivity problem

Data : bM, $\nu \in T_{bM}\overline{M}$, $\sigma|_{bM}$ and N_{σ}

Problem : reconstruct M as a Riemann surface equipped with the conductivity tensor σ .

Remark: Let $\varphi: \overline{M} \to \overline{M}$ be a C^1 -diffeomorphism such that $\varphi|_{bM} = Id_{bM}$ and $\tilde{\sigma} = \varphi_*\sigma$. Then $N_{\tilde{\sigma}} = N_{\sigma}$ and $\tilde{\sigma} \neq \sigma$ but $(M, C_{\tilde{\sigma}})$ and (M, C_{σ}) represent the same (abstract) Riemann surface.

Consequence : non uniqueness up to a diffeomorphism gives different representations of the same Riemann surface.

- non exhaustive list for uniqueness results, and for a domain in R², reconstructions process by Kohn-Vogelius (1984), Novikov (1988), Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001), Belishev (2003), Nachman (1996),
- Henkin-Michel (2007) : About reconstruction when C_σ is known and det $\sigma=1$
- Henkin-Santecesaria (2010) : Construction of (*M*, *σ̃*) where *M* is a bordered nodal Riemann surface of CP₂ which represents C_σ except perhaps at a finite set of points and such that the pushforward *σ̃* of σ to *M* is isotropic.
- Henkin-Novikov (2011) : Reconstruction, isotropic case (C_{σ} is known)
- Plan for solving the reconstruction problem :

- non exhaustive list for uniqueness results, and for a domain in R², reconstructions process by Kohn-Vogelius (1984), Novikov (1988), Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001), Belishev (2003), Nachman (1996),
- Henkin-Michel (2007) : About reconstruction when C_σ is known and det $\sigma=1$
- Henkin-Santecesaria (2010) : Construction of (*M*, *σ̃*) where *M* is a bordered nodal Riemann surface of CP₂ which represents C_σ except perhaps at a finite set of points and such that the pushforward *σ̃* of σ to *M* is isotropic.
- Henkin-Novikov (2011) : Reconstruction, isotropic case (C_{σ} is known)

• Plan for solving the reconstruction problem :

() use of improved results of H-M to complete H-S and produce a Riemann surface S representing (M, C_{σ}) and where the conductivity is isotropic.

- non exhaustive list for uniqueness results, and for a domain in \mathbb{R}^2 , reconstructions process by Kohn-Vogelius (1984), Novikov (1988), Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001), Belishev (2003), Nachman (1996),
- Henkin-Michel (2007) : About reconstruction when C_σ is known and det $\sigma=1$
- Henkin-Santecesaria (2010) : Construction of (*M*, *σ̃*) where *M* is a bordered nodal Riemann surface of CP₂ which represents C_σ except perhaps at a finite set of points and such that the pushforward *σ̃* of σ to *M* is isotropic.
- Henkin-Novikov (2011) : Reconstruction, isotropic case (C_{σ} is known)

• Plan for solving the reconstruction problem :

- use of improved results of H-M to complete H-S and produce a Riemann surface S representing (M, C_{σ}) and where the conductivity is isotropic.
- ② use of H-N to produce the function $s : S \to \mathbb{R}^*_+$ such that $s \cdot *$ is the pushforward of σ .

- non exhaustive list for uniqueness results, and for a domain in \mathbb{R}^2 , reconstructions process by Kohn-Vogelius (1984), Novikov (1988), Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001), Belishev (2003), Nachman (1996),
- Henkin-Michel (2007) : About reconstruction when C_σ is known and det $\sigma=1$
- Henkin-Santecesaria (2010) : Construction of (*M*, *σ̃*) where *M* is a bordered nodal Riemann surface of CP₂ which represents C_σ except perhaps at a finite set of points and such that the pushforward *σ̃* of σ to *M* is isotropic.
- Henkin-Novikov (2011) : Reconstruction, isotropic case (C_{σ} is known)

• Plan for solving the reconstruction problem :

- use of improved results of H-M to complete H-S and produce a Riemann surface S representing (M, C_{σ}) and where the conductivity is isotropic.
- ② use of H-N to produce the function $s : S \to \mathbb{R}^*_+$ such that $s \cdot *$ is the pushforward of σ .
- $(S, s \cdot *)$ is a solution to our inverse conductivity problem.

Tools for step 1

- Based on Henkin-Michel (2014) : explicit formulas for a Green function of the bordered nodal Riemann surface *M*. This enable to compute for a given *u* : *bM* → ℝ the *C*_σ-harmonic extension *ũ* (*dd*^σ*ũ* = 0) of *u* from *N*_σ
- Based on Henkin-Michel (2012) : embedding S of M in CP₄ by a generic canonical map (∂u₀ : ∂u₁ : ∂u₂ : ∂u₃) ; S is given as the solution of boundary problem. Then we seek an atlas for S. For generic data, S is covered by preimages of regular parts of the images Q and Q' of S \ {(0:0:1:1)} and S \ {(0:0:1:0)} under the projections CP₄ → CP₃, (w₀ : w₁ : w₂ : w₃) ↦ (w₀ : w₁ : w₂) and (w₀ : w₁ : w₂ : w₃) ↦ (w₀ : w₁ : w₂) and (w₀ : w₁ : w₂ : w₃) ↦ (w₀ : w₁ : w₃). This reduces the problem by one dimension.

Let Q be the (possibly singular) nodal complex curve which is the image of S by the projection $\mathbb{CP}_4 \to \mathbb{CP}_3$, $(w_0 : w_1 : w_2 : w_3) \mapsto (w_0 : w_1 : w_2)$. Some generic assumptions are made on \overline{Q} such like $(0:1:0) \notin \overline{Q}$ and $bQ \subset \{w_0w_1w_2 \neq 0\}$. Let for $z = (x, y) \in \mathbb{C}^2$, L_z be the line of equation $\Lambda_z(w) \stackrel{def}{=} xw_0 + yw_1 + w_2 = 0$. Then from Dolbeault-Henkin (1997), for z near a generic z_* ,

$$G_{\partial Q,k}\left(z\right) \stackrel{\text{def}}{=} \frac{1}{2\pi i} \int_{\partial Q} \left(\frac{w_{1}}{w_{0}}\right)^{k} \frac{d\frac{\Lambda_{z}(w)}{w_{0}}}{\frac{\Lambda_{z}(w)}{w_{0}}} = \sum_{1 \leqslant j \leqslant p} h_{j}\left(z\right)^{k} + P_{k}\left(z\right) \quad (SWD)$$

where $P_k \in \mathbb{C}(Y)_k[X]$ and $h_1, ..., h_k$ are holomorphic solutions of the **shock wave** equation

$$\frac{\partial h}{\partial y} = h \frac{\partial h}{\partial x}$$

such that

$$Q \cap L_{z} = \left\{ \left(1:h_{j}\left(z\right):-x-yh_{j}\left(z\right)\right); \ 1 \leqslant j \leqslant p \right\}$$

$$K\cap L_{z}=\left\{ \left(1:arphi_{j}\left(z
ight) :-x-yarphi_{j}\left(z
ight)
ight) ;\ 1\leqslant j\leqslant q
ight\}$$
 ,

 $\sum_{1\leqslant j\leqslant q} arphi_{j}\left(z
ight)^{k}\in\mathbb{C}\left(Y
ight)_{k}[X].$ How distinguish Q from $K\cup Q$?

$$\mathcal{K}\cap L_{z}=\left\{ \left(1:arphi_{j}\left(z
ight) :-x-yarphi_{j}\left(z
ight)
ight) ;\ 1\leqslant j\leqslant q
ight\}$$
 ,

 $\sum_{1\leqslant j\leqslant q}\varphi_{j}\left(z\right)^{k}\in\mathbb{C}\left(Y\right)_{k}[X].\text{ How distinguish }Q\text{ from }K\cup Q\text{ ?}$

For deg P₁ ≤ 2, Agaltsov-Henkin (2015) gives an algorithm to get P₁ and (h_j). For deg P₁ ≥ 3, we propose a different method based on the plan :

$$K \cap L_{z} = \left\{ \left(1: \varphi_{j}\left(z\right): -x - y \varphi_{j}\left(z\right)\right); \ 1 \leqslant j \leqslant q \right\},$$

 $\sum_{1\leqslant j\leqslant q} \varphi_{j}\left(z
ight)^{k}\in\mathbb{C}\left(Y
ight)_{k}[X].$ How distinguish Q from $K\cup Q$?

For deg P₁ ≤ 2, Agaltsov-Henkin (2015) gives an algorithm to get P₁ and (h_j). For deg P₁ ≥ 3, we propose a different method based on the plan :

• Find a decomposition
$$G_{\partial Q,1} = \sum_{1 \leq j \leq d} g_j + P$$
 of type (SWD).

$$\mathcal{K}\cap \mathcal{L}_{z}=\left\{ \left(1:arphi_{j}\left(z
ight) :-x-yarphi_{j}\left(z
ight)
ight) ;\ 1\leqslant j\leqslant q
ight\}$$
 ,

 $\sum_{1\leqslant j\leqslant q}\varphi_{j}\left(z\right)^{k}\in\mathbb{C}\left(Y\right)_{k}[X].\text{ How distinguish }Q\text{ from }K\cup Q\text{ ?}$

- For deg $P_1 \leq 2$, Agaltsov-Henkin (2015) gives an algorithm to get P_1 and (h_j) . For deg $P_1 \ge 3$, we propose a different method based on the plan :
 - Find a decomposition $G_{\partial Q,1} = \sum_{1 \le i \le d} g_j + P$ of type (SWD).
 - If $\sum_{1 \leq j \leq d} g_j \in \mathbb{C}(Y)_1[X]$, then from e.g Wood (1984), Q is a domain in a second determined on the second determined of X.

in an algebraic curve and requires a special process.

$$\mathcal{K}\cap L_{z}=\left\{ \left(1:arphi_{j}\left(z
ight) :-x-yarphi_{j}\left(z
ight)
ight) ;\ 1\leqslant j\leqslant q
ight\}$$
 ,

 $\sum_{1 \leq j \leq q} \varphi_j(z)^k \in \mathbb{C}(Y)_k[X]. \text{ How distinguish } Q \text{ from } K \cup Q ?$

- For deg $P_1 \leq 2$, Agaltsov-Henkin (2015) gives an algorithm to get P_1 and (h_j) . For deg $P_1 \geq 3$, we propose a different method based on the plan :
 - Find a decomposition $G_{\partial Q,1} = \sum_{1 \le i \le d} g_j + P$ of type (SWD).
 - ② If $\sum_{1 \leq j \leq d} g_j \in \mathbb{C}(Y)_1[X]$, then from e.g Wood (1984), *Q* is a domain in a substantial metric.

in an algebraic curve and requires a special process.

Solution If ∑_{1≤j≤d} g_j ∉ ℂ(Y)₁ [X], let J be the maximal subset of {1, ..., d} such that ∑_{j∈J} g_j ∈ ℂ(Y)₁ [X] and write G_{∂Q,1} = ∑_{j∉J} g_j + P̃ where P̃ ∈ ℂ(Y)₁ [X].

$$\mathcal{K}\cap L_{z}=\left\{ \left(1:arphi_{j}\left(z
ight) :-x-yarphi_{j}\left(z
ight)
ight) ;\ 1\leqslant j\leqslant q
ight\}$$
 ,

 $\sum_{1\leqslant j\leqslant q} \varphi_{j}\left(z
ight)^{k}\in\mathbb{C}\left(Y
ight)_{k}[X].$ How distinguish Q from $K\cup Q$?

- For deg $P_1 \leq 2$, Agaltsov-Henkin (2015) gives an algorithm to get P_1 and (h_j) . For deg $P_1 \ge 3$, we propose a different method based on the plan :
 - Find a decomposition $G_{\partial Q,1} = \sum_{1 \le i \le d} g_j + P$ of type (SWD).
 - If $\sum_{1 \leq j \leq d} g_j \in \mathbb{C}(Y)_1[X]$, then from e.g Wood (1984), Q is a domain

in an algebraic curve and requires a special process.

If ∑_{1≤j≤d} g_j ∉ C(Y)₁ [X], let J be the maximal subset of {1, ..., d} such that ∑_{j∈J} g_j ∈ C(Y)₁ [X] and write G_{∂Q,1} = ∑_{j∉J} g_j + P̃ where P̃ ∈ C(Y)₁ [X].
With Henkin (1995) and Collion (1996), one can prove that (g_j) = (h_j) and P̃ = P.

Building a SWD
$$\mathit{G}_{\partial Q,1} = \sum\limits_{1\leqslant j\leqslant d} \mathit{g}_j + \mathit{P}$$

1. A function N is the sum of d different shock wave functions iff there exists $s_1, ..., s_d$ such that $s_1 = -N$, and

$$-s_d \frac{\partial N}{\partial x} + \frac{\partial s_d}{\partial y} = 0, \quad -s_k \frac{\partial N}{\partial x} + \frac{\partial s_k}{\partial y} = \frac{\partial s_{k+1}}{\partial x}, \quad 1 \leq k \leq d-1, \quad (1)$$

and the discriminant of $T^{d} + s_1 T^{d-1} + \cdots + s_d \in \mathcal{O}(D)[T]$ is not 0.

2. Let $N = G_1 - P$ where P is of the form $\frac{B'}{B}X + \frac{A}{B}$ with $A, B \in \mathbb{C}[Y]$, B(0) = 1 and deg $A < \deg B$. $(s_1, ..., s_d)$ is a solution of (1) iff there exists one variable holomorphic functions $\mu_1, ..., \mu_d$ such that

$$s_{k} = \frac{e^{H}}{1 \otimes B} \left(\mathcal{E}^{0} \left(\mu_{k} \otimes 1 \right) + \dots + \mathcal{E}^{d-k} \left(\mu_{d} \otimes 1 \right) \right)$$
(2)

where *H* is such that $\frac{\partial H}{\partial y} = \frac{\partial G_1}{\partial x}$, $\mathcal{E}^j = \mathcal{E}^{j-1} \circ \mathcal{E}$ and $\mathcal{E} = \int^y e^{-H} \frac{\partial}{\partial x} e^H$.

• For a given $\mu = (\mu_1, ..., \mu_d)$, $((-1)^j s_j)_{1 \le j \le d}$ defined by (2) are the symmetric functions of a *d*-uple of shock wave functions iff $s_1 = -N$ which turns out to be equivalent to a linear differential system

$$\forall n \in \mathbb{Z}, \quad \sum_{0 \leqslant m < j \leqslant d} c_{j,m}^{0,n} \mu_j^{(m)} = K_n^0(B, A, .) \tag{3}$$

where $(c_{j,m}^{0,n})$ depends only on G_1 and $K_n^0(B, A, .)$ vanishes for $n \ge d$, is linear with respect to (A, B) and has coefficients depending only on G_1 .

• For a given $\mu = (\mu_1, ..., \mu_d)$, $((-1)^j s_j)_{1 \le j \le d}$ defined by (2) are the symmetric functions of a *d*-uple of shock wave functions iff $s_1 = -N$ which turns out to be equivalent to a linear differential system

$$\forall n \in \mathbb{Z}, \quad \sum_{0 \leqslant m < j \leqslant d} c_{j,m}^{0,n} \mu_j^{(m)} = K_n^0(B, A, .) \tag{3}$$

where $(c_{j,m}^{0,n})$ depends only on G_1 and $K_n^0(B, A, .)$ vanishes for $n \ge d$, is linear with respect to (A, B) and has coefficients depending only on G_1 .

• The compatibility system has at least a solution. This solution gives birth to a solution μ for (3) and thus to a SWD.

Process

• If G_1 is affine in x, solving the compatibility system on (A, B) and then (3) gives, after reduction, a parametrization of Q by its intersection with the lines L_z .

Process

- If G_1 is affine in x, solving the compatibility system on (A, B) and then (3) gives, after reduction, a parametrization of Q by its intersection with the lines L_z .
- If G₁ is affine in x, Q is a "special" domain in an algebraic curve K. This reverts to the 1st case by choosing coordinates such that at least one line L_z hits Q and K\Q.

Green formula for singular complex curves

Smooth case symmetric dunction $g : (\overline{M} \times \overline{M}) \setminus \Delta_{\overline{M}} \to' \mathbb{R}$ such that for all $q \in M$,

• $g_q = g(q, .)$ is harmonic on $M \setminus \{q\}$ and continuous on $\overline{M} \setminus \{q\}$ • $g_q = -\frac{1}{2\pi} \ln |z|$ extends harmonically around q(z holomorphic

coordinate z centered at q)

Singular case A Green function for a curve \mathcal{Y} in \mathbb{C}^2 is a symmetric function $g : (\operatorname{Reg} \overline{\mathcal{Y}} \times \operatorname{Reg} \overline{\mathcal{Y}}) \setminus \Delta_{\operatorname{Reg} \overline{\mathcal{Y}}} \to \mathbb{R}$ s.t. for all $q \in \operatorname{Reg} \overline{\mathcal{Y}}$, $g_q = g(q, .)$ satisfies

$$i\partial\overline{\partial}g_q = \delta_q dV$$

in the sense of currents on \mathcal{Y} , δ_q being the Dirac measure supported by $\{q\}$ and $dV = i\partial\overline{\partial} |.|^2$ - this implies in particular that ∂g_q is a weakly holomorphic (1,0)-form on $\mathcal{Y} \setminus \{q\}$ in the sense of Rosenlicht **Nodal case**

We demands that \mathcal{Y} extends as a usual continuous function along any branch except for one branch passing trough q where it has an isolated logarithmic singularity.

Dedicated to Gennadi, Vincent MICHEL (IM. Université

Let us now detail a formula of Henkin-Michel (2014) establishing the existence of Green functions for a 1-paramter family of complex curves whose possible singularities are arbitrary. Let us consider a complex curve \mathcal{Y} in an open subset of \mathbb{C}^2 , Ω a Stein neighborhood of \mathcal{Y} in \mathbb{C}^2 , Φ a holomorphic function on Ω such that $\mathcal{Y} = \{\Phi = 0\}$ and $d\Phi \mid_{\mathcal{Y}} \neq 0$ then a strictly pseudoconvex domain Ω^* of \mathbb{C}^2 verifying

$${\mathcal Y}_{\mathsf 0} = {\mathcal Y} \cap \Omega^* \subset \Omega$$
 ,

and lastly a symmetric function $\Psi \in \mathcal{O}(\Omega \times \Omega, \mathbb{C}^2)$ such that for all $(z, z') \in \mathbb{C}^2$,

$$\Phi\left(z'
ight)-\Phi\left(z
ight)=\left\langle \Psi\left(z',z
ight)$$
 , $z'-z
ight
angle$

where $\langle v, w \rangle = v_1 w_1 + v_2 w_2$ when $v, w \in \mathbb{C}^2$. We define on RegY a (1,0)-form ω by setting

$$\omega = \frac{-dz_1}{\partial \Phi / \partial z_2} \text{ on } \mathcal{Y}^1 = \mathcal{Y} \cap \{\partial \Phi / \partial z_2 \neq 0\}$$
$$\omega = \frac{+dz_2}{\partial \Phi / \partial z_1} \text{ on } \mathcal{Y}^2 = \mathcal{Y} \cap \{\partial \Phi / \partial z_1 \neq 0\}$$

13 / 17

and we consider

$$k\left(z',z
ight)=\det\left[rac{\overline{z'}-\overline{z}}{\left|z'-z
ight|^{2}},\Psi\left(z',z
ight)
ight].$$

When $q_* \in \operatorname{Reg} \mathcal{Y}_0$, H-M (2014) proves that the formula

$$g_{q_*}(q) = \frac{1}{4\pi^2} \int_{q' \in \mathcal{Y}_0} k\left(q', q\right) k\left(q_*, q'\right) \ i\omega\left(q'\right) \wedge \overline{\omega}\left(q'\right). \tag{4}$$

defines for \mathcal{Y}_0 a Green function in the above sense and that if $q_* \in \operatorname{Reg} \mathcal{Y}_0$

$$\partial g_{q_*} = \widetilde{k}_{q_*} \omega$$

where $\widetilde{k}_{q_*} = \frac{1}{2\pi} k(., q_*)$.

Proposition

Suppose \mathcal{Y} has only nodal singularities. In this case, when $q_* \in \operatorname{Reg} \mathcal{Y}_0$, g_{q_*} extends as usual harmonic function along the branches of $\mathcal{Y}_0 \setminus \{q_*\}$; in other words, ∂g_{q_*} extends as a standard holomorphic (1,0)-form along the branches of $\mathcal{Y}_0 \setminus \{q_*\}$.

Corollary

Suppose that \mathcal{Y} is an open nodal Riemann surface of \mathbb{C}^2 and g is defined by (4). Then g is a simple Green function for \mathcal{Y} .

ヨト イヨト

Corollary

Let (M, σ) be a two dimensional conductivity structure. We select, which is always possible, a two dimensional conductivity structure $(M, \tilde{\sigma})$ extending plainly (M, σ) , which means that $M \subset \subset M$, $\tilde{\sigma}|_M = \sigma$ and $\widetilde{\sigma}|_p = Id_{T^*_s \widetilde{M}}$ for all $p \in b\widetilde{M}$. On denote then by $F : \widetilde{M} \to \mathbb{C}^2$ the map obtained by applying H-S theorem to $(\widetilde{M}, \widetilde{\sigma})$, we set $\mathcal{Y} = F(\widetilde{M})$ and fix a Stein neighborhood Ω of \mathcal{Y} in \mathbb{C}^2 . Lastly, $\mathcal{M} = F(M)$ being relatively compact in \mathcal{Y} , we can pick up in \mathbb{C}^2 a strictly pseudoconvex domain Ω^* s.t. $\mathcal{M} \subset \mathcal{Y}_0 = \mathcal{Y} \cap \Omega^* \subset \Omega$. We note g the function defined by (4). Then, $F^*g \mid_{\overline{M} \times \overline{M} \setminus \Delta_M}$ is a Green function for (M, c_{σ}) .

Corollary

 \mathcal{M} admits a principal Green function and if g is such a function, for all $u \in C^{\infty}(bM)$, $F^*\theta^{\mathcal{M}}f_*u$ is given by the formula

$$F^*\theta^{\mathcal{M}}f_*u = \left(F^*\partial\widehat{f_*u}\right)|_{bM}, \ \widehat{f_*u} : \operatorname{Reg}\overline{\mathcal{M}} \ni q \mapsto \left|\begin{array}{c} \frac{i}{2}\int_{\partial\mathcal{M}} (f_*u)\,\partial g_q \ si \ q \in \mathcal{M} \\ f_*u(q) \ si \ q \in b\mathcal{M} \end{array}\right|$$