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e (M, o) is a 2-dimensionnal conductivity structure when M is an
abstract 2 dimensional manifold with boundary (M N bM = @) and
c: T*M — T*M is a tensor such that

Va,be T*M, o (a) Ab=0(b) A a,
Wp e M, TN, €RY, Ya€ T;iM, 0p(a) Aa> Ay llal, .

where ||.|, is a norm on T;M and p is a volume form for M.
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Va,be T*M, o (a) Ab=0(b) A a,
Wp e M, TN, €RY, Ya€ T;iM, 0p(a) Aa> Ay llal, .

where |||, is a norm on T»M and j is a volume form for M.
o Dirichlet operator D,. For u € C° (bM,R), Dyu € C° (M) is
defined by
do (dDyu) =0 & (Dyu)|pm =u
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e (M, o) is a 2-dimensionnal conductivity structure when M is an
abstract 2 dimensional manifold with boundary (M N bM = @) and
c: T*M — T*M is a tensor such that

Va,be T*M, o (a) Ab=0(b) A a,
Wp e M, TN, €RY, Ya€ T;iM, 0p(a) Aa> Ay llal, .

where |||, is a norm on T»M and j is a volume form for M.

o Dirichlet operator D,. For u € C° (bM,R), Dyu € C° (M) is
defined by
do (dDyu) =0 & (Dyu)|pm =u

o Neumann-Dirichlet operator N,. For u: bM — IR sufficiently
smooth, N u is defined by

d
Nyu = —Dsu: bM — R
ov

where v € Ty M is the outer unit normal vector field of bM.
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@ Using isothermal coordinates, one find out that
o = (deto) - %,

where *, is the Hodge star operator associated to a complex
structure C, on M.
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@ Using isothermal coordinates, one find out that
o = (deto) - %,

where *, is the Hodge star operator associated to a complex
structure C, on M.

o If M is a submanifold of IR3, ¢ is isotropic when C, is induced by the
standard euclidean metric of R3. Likewise, ¢ is said isotropic relatively
to a complex structure C on M if %, is the Hodge operator of (M, C).
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@ Using isothermal coordinates, one find out that
o = (deto) - %,

where *, is the Hodge star operator associated to a complex
structure C, on M.

o If M is a submanifold of IR3, ¢ is isotropic when C, is induced by the
standard euclidean metric of IR3. Likewise, ¢ is said isotropic relatively
to a complex structure C on M if %, is the Hodge operator of (M, C).

@ Dirichlet problem for (W (T). For u e CO° (bl\/l), seek U such that
dsd’U =0 & Ulpm =u

where s = deto, d7 = (50 — 8‘7), 9" is the standard
Cauchy-Riemann operator associated to the Riemann surface (M, C,)
and 9" =d—29 .
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Inverse conductivity problem

Data: bM, v € TbMW, U’bM and N,

Problem : reconstruct M as a Riemann surface equipped with the
conductivity tensor ¢.

Remark : Let ¢ : M — M be a C!-diffeomorphism such that
@ |pm = ldpp and 7 = @ 0. Then Nz = N, and ¢ # o but (M, Cy) and
(M, Cy) represent the same (abstract) Riemann surface.

Consequence : non uniqueness up to a diffeomorphism gives different
representations of the same Riemann surface.
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@ non exhaustive list for uniqueness results,and for a domain in IR?,
reconstructions process by Kohn-Vogelius (1984), Novikov (1988),
Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001),
Belishev (2003), Nachman (1996),

@ Henkin-Michel (2007) : About reconstruction when G, is known and
deto =1

@ Henkin-Santecesaria (2010) : Construction of (M, ) where M is a
bordered nodal Riemann surface of CIP, which represents (, except
perhaps at a finite set of points and such that the pushforward ¢ of o
to M is isotropic.

@ Henkin-Novikov (2011) : Reconstruction, isotropic case (Cy is known)

o Plan for solving the reconstruction problem :
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to M is isotropic.
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o Plan for solving the reconstruction problem :

@ use of improved results of H-M to complete H-S and produce a
Riemann surface S representing (M, C;) and where the conductivity is
isotropic.
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@ non exhaustive list for uniqueness results,and for a domain in IR?,
reconstructions process by Kohn-Vogelius (1984), Novikov (1988),
Lee-Uhlman (1989), Sylvester (1990), Lassas-Uhlman (2001),
Belishev (2003), Nachman (1996),

@ Henkin-Michel (2007) : About reconstruction when G, is known and
deto =1

@ Henkin-Santecesaria (2010) : Construction of (M, ) where M is a
bordered nodal Riemann surface of CIP, which represents (, except
perhaps at a finite set of points and such that the pushforward ¢ of o
to M is isotropic.

@ Henkin-Novikov (2011) : Reconstruction, isotropic case (Cy is known)

o Plan for solving the reconstruction problem :

@ use of improved results of H-M to complete H-S and produce a
Riemann surface S representing (M, C;) and where the conductivity is
isotropic.

@ use of H-N to produce the functions: S — IRi such that s- x is the
pushforward of o.

@ (S,s- ) is a solution to our inverse conductivity problem.
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Tools for step 1

@ Based on Henkin-Michel (2014) : explicit formulas for a Green
function of the bordered nodal Riemann surface M. This enable to

compute for a given u: bM — IR the C,-harmonic extension U
(dd”u = 0) of u from N,

@ Based on Henkin-Michel (2012) : embedding S of M in CIP4 by a
generic canonical map (dug : duy : dip : 0u3) ; S is given as the
solution of boundary problem. Then we seek an atlas for S. For
generic data, S is covered by preimages of regular parts of the images
Qand Q of S\ {(0:0:0:1)} and S\ {(0:0:1:0)} under the
projections CIP; — CIPP3, (wp : wy @ wp : w3) — (wp : wy @ wp) and
(wo :wr:wy :w3) — (wp:wy:ws). This reduces the problem by
one dimension.
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Let Q be the (possibly singular) nodal complex curve which is the image
of S by the projection CIPs — CIP3, (wp : wy :wy :w3) — (wp @ wy @ wy).
Some generic assumptions are made on Q such like (0:1:0) ¢ Q and
bQ C {wowiwy # 0}. Let for z = (x,y) € C?, L, be the line of equation
A (w) “ xw + ywr + wy = 0. Then from Dolbeault-Henkin (1997), for
Z near a generic zy,

k g Az(w)
def 1 wi\" T (K
Gou () 575 [ (i) mlor = 2 mia +Pi(2) (swo)
wo =

where P, € C(Y), [X] and hy, ..., hi are holomorphic solutions of the

shock wave equation
oh hah

dy  ox
such that

QML ={(1:h(2): —x—yh; (2)): 1<j<p}
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o Difficulty : If K is algebraic and
KNL, = {(1:(pj(z):—x—y(pj(z)); 1<j<q},

Y ¢;(2)" €C(Y),[X]. How distinguish Q from KU Q ?

1<j<q
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o Difficulty : If K is algebraic and
KNL, = {(1:(pj(z):—x—y(pj(z)); 1<j<q},

L o9 (z ke C (Y), [X]. How distinguish Q from KU Q ?
1<ysq
e For deg P; < 2, Agaltsov-Henkin (2015) gives an algorithm to get P;
and (h;j). For deg Py > 3, we propose a different method based on

the plan :
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o Difficulty : If K is algebraic and
KNL, = {(1:(pj(z):—x—y(pj(z)); 1<j<q},
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1<<q
e For deg P; < 2, Agaltsov-Henkin (2015) gives an algorithm to get P;
and (h;j). For deg Py > 3, we propose a different method based on
the plan :

@ Find a decomposition Gyp.1 = Y gj+ P of type (SWD).
1<j<d
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o Difficulty : If K is algebraic and
KNL, = {(1:(pj(z):—x—y(pj(z)); 1<j<q},

L o9 (z ke C (Y), [X]. How distinguish Q from KU Q ?
1<<q
e For deg P; < 2, Agaltsov-Henkin (2015) gives an algorithm to get P;
and (h;j). For deg Py > 3, we propose a different method based on
the plan :

@ Find a decomposition Gyp.1 = Y gj+ P of type (SWD).
1<j<d
Q@ If ¥ g €C(Y)[X] then from e.g Wood (1984), Q is a domain

1<j<d
in an algebraic curve and requires a special process.
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o Difficulty : If K is algebraic and
KNL, = {(1:(pj(z):—x—y(pj(z)); 1<j<q},

L o9 (z )k e C (Y), [X]. How distinguish Q from KU Q ?
1sq
e For deg P; < 2, Agaltsov-Henkin (2015) gives an algorithm to get P;

and (h;j). For deg Py > 3, we propose a different method based on
the plan :
@ Find a decomposition Gyp.1 = Y gj+ P of type (SWD).
1<j<d

Q@ If ¥ g €C(Y)[X] then from e.g Wood (1984), Q is a domain

1<j<d
in an algebraic curve and requires a special process.
QIf Z gJ ¢ C(Y); [X], let J be the maximal subset of {1, ..., d}
\J\
such that ) gj € C(Y); [X] and write Gag1 = L gj + P where
B jeJd j¢J
PeC(Y),[X].
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o Difficulty : If K is algebraic and
KNL, = {(1:(pj(z):—x—y(pj(z)); 1<j<q},

L o9 (z ke C (Y), [X]. How distinguish Q from KU Q ?
1<<q
e For deg P; < 2, Agaltsov-Henkin (2015) gives an algorithm to get P;
and (h;j). For deg Py > 3, we propose a different method based on
the plan :

@ Find a decomposition Gyp.1 = Y gj+ P of type (SWD).
1<j<d
Q@ If ¥ g €C(Y)[X] then from e.g Wood (1984), Q is a domain

1<j<d
in an algebraic curve and requires a special process.
QIf Z gJ ¢ C(Y); [X], let J be the maximal subset of {1, ..., d}
\J\
such that ) gj € C(Y); [X] and write Gag1 = L gj + P where
B jeJd j¢J
PeC(Y),[X].

© With Henkin (1995) and Collion (1996), one can prove that
(g) = (hj) and P = P.
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Building a SWD Gy = Y g +P
1<j<d

1. A function N is the sum of d different shock wave functions iff there

exists si, ..., Sg such that s = — /N, and
oN  dsy ON  Osx  OSky1

_ DA —5— + K = 1<k<d-1, (1
I ox T 3y 0. = sk, Ty T ax (1)

and the discriminant of T¢ + 5 T4 "1 ... + s, € O (D) [T] is not
0.

2. Let N = G; — P where P is of the form %X—{— g with A, B € C[Y],
B(0) =1 and deg A < deg B. (s1, ..., 54) is a solution of (1) iff there
exists one variable holomorphic functions My, --s gy such that

eH
s=1og (EWe T+ o) @

where H is such that aH = aail E=E"1ofand &= ["e a eH
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o For a given = (py,.... fty), ((—l)j Sj>1<'<d defined by (2) are the
X
symmetric functions of a d-uple of shock wave functions iff s; = — N
which turns out to be equivalent to a linear differential system

vnez, Y, O™ =k!(BA) (3)

J
0<m<j<d

where ((:Jor’;) depends only on G; and K? (B, A, .) vanishes for
n > d, is linear with respect to (A, B) and has coefficients depending
only on Gy .

Dedicated to Gennadi, Vincent MICHEL (IM. Université Pierre et Marie Curie September 12, 2016 10 / 17



o For a given = (py,.... fty), ((—l)j Sj>1<'<d defined by (2) are the
\/\
symmetric functions of a d-uple of shock wave functions iff s; = — N
which turns out to be equivalent to a linear differential system

vnez, Y, O™ =k!(BA) (3)

J
0<m<j<d

where ((:Jor’;) depends only on G; and K? (B, A, .) vanishes for
n > d, is linear with respect to (A, B) and has coefficients depending
only on Gy .

@ The compatibility system has at least a solution. This solution gives
birth to a solution p for (3) and thus to a SWD.
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Process

e If G; is affine in x, solving the compatibility system on (A, B) and
then (3) gives, after reduction, a parametrization of @ by its
intersection with the lines L,.
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Process

e If G; is affine in x, solving the compatibility system on (A, B) and
then (3) gives, after reduction, a parametrization of @ by its
intersection with the lines L,.

o If Gy is affine in x, Q is a "special" domain in an algebraic curve K.
This reverts to the 1st case by choosing coordinates such that at least
one line L, hits @ and K\ Q.
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Green formula for singular complex curves

Smooth case symmetric dunction g : (M x M) \ Ay —' R such that for
all g € M,
e g, =g (q,.) is harmonic on M\ {q} and continuous on M\ {q}

® gy = — 5 In|z| extends harmonically around g (z holomorphic
coordinate z centered at q)

Singular case A Green function for a curve ) in C? is a symmetric
function g : (Reg) X Reg)) \ARegy — R s.t. for all g € Reg),
gq = g (q, .) satisfies

i00g, = 64dV
in the sense of currents on ), 4 being the Dirac measure supported by
{q} and dV = i9d |.|* - this implies in particular that dg is a weakly
holomorphic (1,0)-form on Y\ {q} in the sense of Rosenlicht
Nodal case
We demands that ) extends as a usual continuous function along any
branch except for one branch passing trough g where it has an isolated
logarithmic singularity.
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Let us now detail a formula of Henkin-Michel (2014) establishing the
existence of Green functions for a 1-paramter family of complex curves
whose possible singularities are arbitrary. Let us consider a complex curve
Y in an open subset of C?, ) a Stein neighborhood of ) in C?, ® a
holomorphic function on Q) such that ) = {® = 0} and d® |y # 0 then
a strictly pseudoconvex domain O)* of C? verifying

Vo=YnNnO*CQ,

and lastly a symmetric function ¥ € O (Q x ), C?) such that for all
(z,7)) € C?,

O(Z)-@(z)=(¥Y (. 2). 2 —2)
where (v, w) = viws + vaw, when v, w € C2. We define on RegY a
(1,0)-form w by setting

_ _—dn 1_

w-a Jom on Y =YN{oP/dz # 0}
_ tdz 2

w—ia Tom on Y =YN{0d/dz; # 0}
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and we consider

k(7. 2) = det [Z_Z|2T (z',z)] |

|z — z
When g. € Reg )y, H-M (2014) proves that the formula

g0 (@) = g [ K(d0) k(0. d) i@ (@) AT(d). @)

defines for Jy a Green function in the above sense and that if g. € Reg )y
agq* = 7(/‘7*(0

where k,, = k(. qs).
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Proposition

Suppose Y has only nodal singularities. In this case, when q. € Reg ),
gq. extends as usual harmonic function along the branches of Yo\ {q.} ;
in other words, dg,, extends as a standard holomorphic (1,0)-form along
the branches of Yo\ {g:}.

| A

Corollary

Suppose that ) is an open nodal Riemann surface of C?> and g is defined
by (4). Then g is a simple Green function for ).

N

Dedicated to Gennadi, Vincent MICHEL (IM. Université Pierre et Marie Curie September 12, 2016 15 / 17



Corollary

Let (I\/l , (7) be a two dimensional conductivity structure. We select, which
is always possible, a two dimensional conductivity structure (I\~ﬂ ,0)
extending plainly (M, o), which means that M CC M, & |m =0 and
oy — IdT;ﬁ for all p € bM. On denote then by F : M — C2 the map

obtained by applying H-S theorem to (M, ), we set ) = F (I\7I> and fix

a Stein neighborhood Q) of ) in C2. Lastly, M = F (M) being relatively
compact in Y, we can pick up in C? a strictly pseudoconvex domain Q*
st. M CC Yo =YNQ* C Q. We note g the function defined by (4).

Then, F*g MM\ Ay is a Green function for (M, c;).
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M admits a principal Green function and if g is such a function, for all
u € C®(bM), F*0Mf,u is given by the formula

sgMe _ (EraF £ - Reo M 5 Jap (Fiu) 0gq si q €
F*0Mf.u (Faf*u>|bM,ﬂu.Reg./\/l9q»—> £.u(q) siq e bM
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