How to find a copy of the Hamiltonian from the scattering map
Leonid Pestov
Immanuel Kant Baltic Federal University

1 Statement of the problem

Let (M, g) be a n-dimensional smooth compact Riemannian manifold with boundary ∂M and $g^{t}(x, \xi)=\left(\gamma_{(x, \xi)}(t), \dot{\gamma}_{(x, \xi)}(t)\right)$ is the geodesic flow on $T M_{0}=$ $\left\{(x, \xi) \in T M \mid \xi \in T_{x}, \xi \neq 0\right\}$, where $\gamma_{(x, \xi)}(t)$ is the geodesic, defined by initial data $\gamma_{(x, \xi)}(0)=x, \dot{\gamma}_{(x, \xi)}(0)=\xi$, and $\dot{\gamma}$ is the velocity vector. We assume that (M, g) is non-trapping, that is each maximal geodesic is finite. Formulate the following problem:

> To find an isometric copy $\varphi^{*} g$, where $\varphi: M \rightarrow$ M is a dif feomorphism such that $\left.\varphi\right|_{\partial M}=i d$.

More simple problem we address here is formulated as follows. Let (M, H) be a smooth n-dimensional Hamiltonian manifold with hamiltonian $H(x, \xi)=$ $g^{i j}(x) \xi_{i} \xi_{j} / 2$, and $\varphi^{t}(x, \xi)=\left(\gamma_{(x, \xi)}(t), \dot{\gamma}_{(x, \xi)}(t)\right)$ is the hamiltonian flow on $T^{*} M_{0}=\left\{(x, \xi) \in T^{*} M \mid \xi \in T_{x}^{*} \neq 0\right\}$, where $\left(\dot{\gamma}_{(x, \xi)}(t)\right)_{i}=g_{i j}\left(\gamma_{(x, \xi)}(t)\right) \dot{\gamma}_{(x, \xi)}^{j}(t)$. In this talk we consider the following problem:

To find a hamiltonian H up to a symlectomorphism

f such that $\left.f\right|_{\partial T^{*} M_{0}}=i d$.

2 Hamiltonian flow

Hamiltonian vector field \mathcal{H} is defined by the equality

$$
\mathcal{H}=\left.\frac{d \varphi^{t}}{d t}\right|_{t=0}
$$

It is identified with Poisson's bracket $[., H]$:

$$
\begin{equation*}
\mathcal{H} u=\left.\frac{d}{d t}\left(u \circ \varphi^{t}\right)\right|_{t=0}=[u, H]=\sum_{i=1}^{n}\left(u_{x^{i}} H_{\xi_{i}}-u_{\xi_{i}} H_{x^{i}}\right) . \tag{1}
\end{equation*}
$$

Hamiltonian flow satisfies nonlinear Hamilton equation

$$
\frac{d \varphi^{t}}{d t}=\mathcal{H}\left(\varphi^{t}\right)
$$

or in coordinates

$$
\begin{aligned}
\frac{d \gamma_{(x, \xi)}^{i}(t)}{d t} & =H_{\xi_{i}}\left(\gamma_{(x, \xi)}(t), \dot{\gamma}_{(x, \xi)}(t)\right) \\
\frac{d\left(\gamma_{(x, \xi)}\right)_{i}(t)}{d t} & =-H_{x^{i}}\left(\gamma_{(x, \xi)}(t), \dot{\gamma}_{(x, \xi)}(t)\right)
\end{aligned}
$$

and Cauchy data

$$
\varphi^{0}(x, \xi)=(x, \xi)
$$

The following simple statement is very important.
Lemma 1 Hamiltonian flow satisfies the linear kinetic equation

$$
L \varphi^{t}:=\left(\partial_{t}-\mathcal{H}\right) \varphi^{t}=0
$$

Proof. The hamiltonian flow is one-parameter group, $\varphi^{t+s}=\varphi^{t} \circ \varphi^{s}=\varphi^{s} \circ \varphi^{t}$. Then due to (1) one has

$$
\frac{d}{d s} \varphi^{s}=\left.\frac{d}{d t}\left(\varphi^{t+s}\right)\right|_{t=0}=\left.\frac{d}{d t}\left(\varphi^{s} \circ \varphi^{t}\right)\right|_{t=0}=\left[\varphi^{s}, H\right]=\mathcal{H} \varphi^{s}
$$

So, the hamiltonian flow satisfies two equations: nonlinear $\mathrm{ODE} d \varphi^{t} / d t=\mathcal{H}\left(\varphi^{t}\right)$ and linear $\operatorname{PDE} L \varphi^{t}=0$, and the Cauchy data $\varphi^{0}(x, \xi)=(x, \xi)$.

Remark 2 If

$$
\begin{equation*}
L \psi=0, \quad \psi(x, \xi, 0)=(x, \xi) \tag{2}
\end{equation*}
$$

then by the argument of uniqueness of the solution to the Cauchy problem (2) $\psi(., t)=\varphi^{t}$.

3 Scattering map

Let M be a compact manifold with smooth boundary ∂M. The boundary of tangent space $\partial T^{*} M_{0}$ may be decomposed into the sets of outer (+) and inner (-) covectors:

$$
\partial T^{*} M_{0}=\partial_{+} T^{*} M_{0} \cup \partial_{-} T^{*} M_{0}
$$

where

$$
\begin{aligned}
\partial_{ \pm} T^{*} M_{0} & =\left\{(x, \xi) \in T^{*} M_{0} \mid x \in \partial M, \pm(\nu(x), \xi) \geq 0\right\} \\
\partial_{0} T^{*} M_{0} & =\left\{(x, \xi) \in T^{*} M_{0} \mid x \in \partial M,(\nu(x), \xi)=0\right\}
\end{aligned}
$$

ν is the outer unit normal to the boundary ∂M. Denote by $\tau(x, \xi)$ the length of geodesic ray $\gamma_{(x, \xi)}(t), t \geq 0$. Note, that τ satisfies equation

$$
\mathcal{H} \tau=\left.\frac{d}{d t}\left(\tau \circ \varphi^{t}\right)\right|_{t=0}=\left.\frac{d}{d t}(\tau-t)\right|_{t=0}=-1
$$

We put $\tau(x, \xi)=0$ for $(x, \xi) \in \partial_{+} T^{*} M_{0}$. Denote by X the extended phase space

$$
X=\left\{(x, \xi, t) \mid(x, \xi) \in T^{*} M_{0},-\tau(x,-\xi) \leq t \leq \tau(x, \xi)\right\}
$$

Introduce notations:

$$
\begin{aligned}
\partial_{-} X & =\left\{(x, \xi, t) \mid(x, \xi) \in \partial_{-} T^{*} M_{0}, 0 \leq t \leq \tau(x, \xi)\right\} \\
\partial_{+} X & =\left\{(x, \xi, t) \mid(x, \xi) \in \partial_{+} T^{*} M_{0},-\tau(x,-\xi) \leq t \leq 0\right\} \\
\partial_{0} X & =\partial_{0} T^{*} M_{0}
\end{aligned}
$$

Introduce the scattering map $\alpha_{H}: \partial_{\mp} X \rightarrow \partial_{ \pm} X$. It is defined by the formulas

$$
\begin{aligned}
\alpha_{H}(x, \xi, t) & =\left(\gamma_{(x, \xi)}(\tau(x, \xi)), \dot{\gamma}_{(x, \xi)}(\tau(x, \xi)), t-\tau(x, \xi)\right), \quad(x, \xi, t) \in \partial_{-} X \\
\alpha_{H}(x, \xi, t) & =\left(\gamma_{(x,-\xi)}(\tau(x,-\xi)), \dot{\gamma}_{(x,-\xi)}(-\tau(x,-\xi)), \tau(x,-\xi)+t\right), \quad(x, \xi, t) \in \partial_{+} X .
\end{aligned}
$$

Clearly, $\alpha_{H} \mid \partial_{0} X=i d$, and α_{H} is involution, that is $\alpha_{H}^{2}=i d$.
The solution to the Cauchy problem

$$
\begin{aligned}
L u & =0, \quad \text { in } X \\
\left.u\right|_{t=0} & =u_{0}, \quad \text { in } T^{*} M_{0}
\end{aligned}
$$

is given by the formula

$$
u(x, \xi, t)=u_{0}\left(\varphi^{t}(x, \xi)\right),-\tau(x,-\xi) \leq t \leq \tau(x, \xi)
$$

and its trace $u^{\prime}=\left.u\right|_{Y}$ is even function w.r.t. involution α_{H} :

$$
u^{\prime}=u^{\prime} \circ \alpha_{H}
$$

where $Y=\partial_{-} X \cup \partial_{+} X$. And other way around, any even function (w.r.t. α_{H}) u^{\prime} on Y may be extended onto X as a solution u of the kinetic equation:

$$
L u=0,\left.\quad u\right|_{Y}=u^{\prime} .
$$

For such extension we use notation $u=\tilde{u}^{\prime}$. We use also notation

$$
u_{0}=\left.u\right|_{t=0} .
$$

4 Copy

The map $\phi: T^{*} M_{0} \rightarrow X, \phi(x, \xi, t)=\varphi^{t}(x, \xi)$ satisfies kinetic equation

$$
L \phi=0, \quad \phi(x, \xi, 0)=(x, \xi)
$$

For any t the map $\varphi^{t}=\left(\gamma_{(.)}(t), \dot{\gamma}_{(.)}(t)\right)$ is symplectomorphism, that is, for any local coordinates on $T^{*} M_{0}$

$$
\left[\gamma^{i}, \gamma^{j}\right]=0,\left[\gamma^{i}, \dot{\gamma}_{j}\right]=\delta_{j}^{i}, \quad\left[\dot{\gamma}_{i}, \dot{\gamma}_{j}\right]=0, \quad i, j=1, \ldots, n
$$

Further, it easy to check that the equality

$$
\begin{equation*}
L[u, v]=[L u, v]+[u, L v] \tag{3}
\end{equation*}
$$

holds.
This motivates the following way to get a copy of hamiltonian H. Take arbitrary smooth map $\sigma: Y \rightarrow T^{*} M_{0}$ such that

$$
\sigma \circ \alpha_{H}=\sigma,\left.\quad \sigma\right|_{\partial_{0} X}=i d
$$

and locally σ is determined by functions $u^{i}, v_{i}, i=1, \ldots, n$ on Y which satisfy symplectic conditions

$$
\left[u^{i}, u^{j}\right]=0,\left[u^{i}, v_{j}\right]=\delta_{j}^{i},\left[v_{i}, v_{j}\right]=0
$$

and initial data

$$
u(x, \xi, 0)=x, v(x, \xi, 0)=\xi, \quad(x, \xi) \in \partial_{0} X
$$

Then functions $\tilde{u}^{i}, \tilde{v}^{i}$ (extensions) due to 3 also satisfy (for any t)

$$
\left[\tilde{u}^{i}, \tilde{u}^{j}\right]=0,\left[\tilde{u}^{i}, \tilde{v}_{j}\right]=\delta_{j}^{i},\left[\tilde{v}_{i}, \tilde{v}_{j}\right]=0
$$

So, by construction, the map $\tilde{\psi}: X \rightarrow T^{*} M_{0}, \tilde{\psi}=(\tilde{u}, \tilde{v})$ satisfies kinetic equation $L \tilde{\psi}=0$. At $t=0$ according to our notation $\left.\tilde{\psi}\right|_{t=0}=\left(\tilde{u}_{0}, \tilde{v}_{0}\right)$. The map

$$
\begin{aligned}
f: & T^{*} M_{0} \rightarrow T^{*} M_{0} \\
& (x, \xi) \xrightarrow{f}\left(\tilde{u}_{0}(x, \xi), \tilde{v}_{0}(x, \xi)\right)
\end{aligned}
$$

is symplectomorphism by construction. Then for $\psi: X \rightarrow T^{*} M_{0}$, defined by the equality

$$
\tilde{\psi}(x, \xi, t)=\psi(f(x, \xi), t)
$$

we have

$$
\psi_{t}-[\psi, \tilde{H}]=0,\left.\quad \psi\right|_{t=0}=i d
$$

where $\tilde{H}=H \circ f$ is a copy of H. By construction this copy has the same scattering map, $\alpha_{H}=\alpha_{\tilde{H}}$. One can find this copy by the following way. Due to

Remark after Lemma 1 we have $\psi(x, \xi, t)=\tilde{\varphi}^{t}(x, \xi)$, where $\tilde{\varphi}^{t}$ is the Hamiltonian flow on $\left(T^{*} M_{0}, \tilde{H}\right)$, and therefore for any $(x, \xi, t) \in X \psi$ satifies the Hamiltonian system on the whole extended phase spase X :

$$
\begin{aligned}
\frac{d}{d t} \psi(x, \xi, t) & =\tilde{\mathcal{H}}(\psi(x, \xi, t)) \\
\psi(x, \xi, 0) & =(x, \xi)
\end{aligned}
$$

In partiqular we have on the set Y equalities

$$
\begin{aligned}
\frac{d \psi}{d t}(x, \xi, t) & =\tilde{\mathcal{H}}(\psi(x, \xi, t)), \quad(x, \xi, t) \in Y \\
\psi(x, \xi, 0) & =(x, \xi) \in \partial_{0} X
\end{aligned}
$$

Since $\left.\psi\right|_{Y}=(u, v)$ is given one can obtain the function $\tilde{H}(u, v)$ (up to a constant) from these equalities.

Thus, a copy \tilde{H} may be obtained by the following way.
1). Take any even w.r.t. α_{H} functions $u^{i}, v_{i}, i=1, \ldots, n$ on Y which satisfy a) symplectic conditions

$$
\left[u^{i}, u^{j}\right]=0,\left[u^{i}, v_{j}\right]=\delta_{j}^{i},\left[v_{i}, v_{j}\right]=0
$$

b) the map $\sigma:(x, \xi, t) \rightarrow(u(x, \xi, t), v(x, \xi, t))$ is the diffeomorhism from Y onto $T^{*} M_{0}$.
2) The copy \tilde{H} of hamiltonian H is determined by choosing (u, v) and may be found out from the hamiltonian system

$$
\begin{aligned}
\frac{d u^{i}}{d t}(x, \xi, t) & =\tilde{H}_{v_{i}}(u(x, \xi, t), v(x, \xi, t)) \\
\frac{d v^{i}}{d t}(x, \xi, t) & =-\tilde{H}_{u_{i}}(u(x, \xi, t), v(x, \xi, t)), \quad(x, \xi, t) \in Y \\
\left.(u, v)\right|_{t=0} & =(x, \xi)
\end{aligned}
$$

Notice, that we nowhere used the spesial form of hamiltonian $H(x, \xi)=$ $g^{i j}(x) \xi_{i} \xi_{j} / 2$. And by construction all copies of unknown hamiltonian H generate the same scattering $\operatorname{map} \alpha_{H}$.

