High-order schemes in numeriical problems of seismic exploration in the Arctic

D. I Petrov, P.V. Stognii, N. I. Khokhlov Laboratory of Applied Computational Geophysics, Moscow Institute of Physics and Technologies

> Dolgoprudny, 2016

Contents

- The aim of study
- Mathematical model of medium
- Numerical method
- Obtained results 2D and 3D
- Conclusion
- Further research

Aims of Study

- Modeling of wave propagation in elastic media by grid-charactersitic method.
- Correct definition and calculation of boundary and interface conditions

Mathematical model Elastic medium

Components of vector of velocity and components of stress tension describing the state of linear-elastic medium are the solutions of the following system of equations:

$$\rho \partial_t \vec{v} = \left(\nabla \cdot \boldsymbol{\sigma} \right)^{\mathrm{T}}$$
$$\partial_t \boldsymbol{\sigma} = \lambda \left(\nabla \cdot \vec{v} \right) \mathbf{I} + \mu \left(\nabla \otimes \vec{v} + \left(\nabla \otimes \vec{v} \right)^{\mathrm{T}} \right)$$

Mathematical model Acoustic medium

For numerical modeling of sea water we use the prefect fluid approximation, solve acoustic wave equation and find components of vector of velocity and pressure.

$$\rho \frac{\partial}{\partial t} \vec{v} = -\nabla p$$
$$\frac{\partial}{\partial t} p = -c^2 \rho (\nabla \cdot \vec{v})$$

Method for solving hypergolic systems of equations. We use it for solving both acoustic and elastic wave equations. In 2D-case these systems could be written in the following form

$$\frac{\partial \bar{q}^{2e}}{\partial t} + \mathbf{A}_{1}^{2e} \frac{\partial \bar{q}^{2e}}{\partial x_{1}} + \mathbf{A}_{2}^{2e} \frac{\partial \bar{q}^{2e}}{\partial x_{2}} = 0$$

 $ar{q}^{2e}$ - vector of unknown fields

We use splitting on spatial directions and obtain 2 systems of equations

 $2e \frac{OQ}{2}$

Both of these systems:

- is hyperbolic
- obtains 5 real eigenvalues
- So we can write it in the following form

Change of unknown fields:

$$\vec{p}^{2e} = \mathbf{\Omega}^{2e} \vec{q}^{2e}$$

All of obtained systems becomes the system of 5 independant transport equations:

$$\frac{\partial \vec{p}^{2e}}{\partial t} + \Lambda^{2e} \frac{\partial \vec{p}^{2e}}{\partial x} = 0$$

Then one can find the solution of the given system of equations:

$$\bar{q}^{2e}(x_1, x_2, t+\tau) = \left(\mathbf{\Omega}^{2e}\right)^{-1} \bar{p}^{2e}(x_1, x_2, t+\tau)$$

$$t \uparrow \xi_{2} \qquad \frac{\partial \vec{u}}{\partial t} + \mathbf{A}_{1} \frac{\partial \vec{u}}{\partial \xi_{1}} = 0$$
$$\vec{u}' = \vec{u}^{n} - \tau \mathbf{A}_{1} \Delta_{1} \vec{u}^{n}$$

2D Model

- Spatial step 0.2 м
- Time step $3 \cdot 10^{-5} c$
- 15 000 time steps.
- Region for integration 1200 х 600 м
- System "ice-water-ground-carbon reservoirground
- Absorbing conditions at the sides and at the bottom of the region
- Free boundary condition on the top side of the region

1. Sources in the water and at the seabed, the case without ice

Source at the seabed

Wave patterns

Source in the water

Source in the water, without carbon reservoir

Source at the seabed

Seismograms, receivers in the water, V

Source in the water

Source in the water, without carbon reservoir

Source at the seabed

Seismograms, receivers in the water, Vy

Source in the water

Source in the water, without carbon reservoir

Source at the seabed

Seismograms, receivers at the seabed, V

Source in the water

Source in the water, without carbon reservoir

Source at the seabed

Seismograms, receivers at the seabed, Vx

Source in the water

Source in the water, without carbon reservoir

Source at the seabed

Seismograms, receivers at the seabed, Vy

Source in the water

Source in the water, without carbon reservoir

Source at the seabed

2. Sources in the ice and at the seabed, the case with ice

Р	roblem definitio	ns		
Sourc	e in the ice	Source in the	e ice, without	carbon reservoir
				-

Source at the seabed

Wave patterns

Source in the ice, without carbon reservoir

Source at the seabed

Seismograms, receivers in the ice, V

Source in the ice

Source in the ice, without carbon reservoir

Source at the seabed

Seismograms, receivers in the ice, Vx

Source in the ice

Source in the ice, without carbon reservoir

Source at the seabed

Seismograms, receivers in the ice, Vy

Source in the ice

Source in the ice, without carbon reservoir

Source at the seabed

Seismograms, receivers at the seabed, V

Source in the ice

Source in the ice, without carbon reservoir

Source at the seabed

Seismograms, receivers at the seabed, Vx

Source in the ice, without carbon reservoir

Source at the seabed

Seismograms, receivers at the seabed, Vy

Source in the ice, without carbon reservoir

Source at the seabed

Source in the ice

3. Influence of ice. Sources in the ice and in the water.

P	roblem definitions

Source in the ice

Source in the water

Wave patterns

Source in the ice, without carbon reservoir

Source in the water

Seismograms, receivers in the water/ice, V

Source in the ice

Source in the ice, without carbon reservoir

Source in the water

Seismograms, receivers in the water/ice, Vx

Source in the ice

Source in the ice, without carbon reservoir

Source in the water

Seismograms, receivers in the water/ice, Vy

Source in the ice

Source in the ice, without carbon reservoir

Source in the water

Seismograms, receivers at the seabed, V

Source in the ice

Source in the ice, without carbon reservoir

Source in the water

Seismograms, receivers at the seabed, Vx

Source in the ice

Source in the ice, without carbon reservoir

Source in the water

Seismograms, receivers at the seabed, Vy

Source in the ice

Source in the ice, without carbon reservoir

Source in the water

4. Influence of ice. Sources at the seabed.

Problem definitions

With ice

With ice, without carbon reservoir

Wave patterns

With ice

With ice, without carbon reservoir

Wave patterns

With ice

With ice, without carbon reservoir

Without ice, without carbon reservoir

Without ice

Seismograms, receivers in the water/ice, V

Without ice

Seismograms, receivers in the water/ice, Vx

Without ice

Seismograms, receivers in the water/ice, Vy

Without ice

Seismograms, receivers at the seabed, V

With ice

With ice, without carbon reservoir

Without ice

Seismograms, receivers at the seabed, Vx

With ice, without carbon reservoir

A.2

0.4

0.5

0.1

Without ice, without carbon reservoir

Without ice

Seismograms, receivers at the seabed, Vy

With ice

With ice, without carbon reservoir

Without ice

Iceberg under explosion

3D Model

Wave propagation in the ice

Wave propagation in the water

Wave propagation in the reservoir

Wave propagation in the ground

Conclusions

- Numerical modeling of wave processes in the elastic and acoustic media was done
- We solve problems of seismic exploration in the Arctic shelf.
- We made synthetic seismograms.
- We study wave propagation in the icebergs under explosion.

Further research: immerse interface method

Problem: loss of precision at the boundaries

Possible solution (Chaoming Zhang, Randall J. LeVeque, Charles S. Peskin, Xin Wen, Shi Jin, and others):

- "crop" the boundary and the nearest nodes
- apply local scheme in the "cropped" area, taking into consideration its features
- smooth the results obtained in the inner and outer grids.

Thank you for your attention!

Petrov Dmitry Igorevich <u>diapetr@gmail.com</u>

Stognii Polina Vladimirovna Khokhlov Nikolay Igorevich

Laboratory of Applied Computational Geophysics

