Numerical Modeling of Dynamic 3D Processes

Corresponding member of RAS, Professor, Head of Computer Science and Computational Mathematics Department

Igor B. Petrov

Moscow Institute of Physics and Techology, petrov@mipt.ru

Contents

- Numerical modeling of Arctic problems
- Numerical simulation in geology
- The numerical solution of collision problems
- Numerical modeling of composite materials
- Numerical modeling in Medicine
- Numerical modeling of seismic stability
- Numerical modeling of non-destructive railway control
- Robot-technique
- Grid-characteristic method

Numerical modeling of Arctic problems

Migration of iceberg

Picture of Ship's Damage

R.E. Gagnon, J. Wang Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel // Cold regions. Science and Technology. 2012.

Collision between the ice-breaker and the ice-hummock

Impact of the ice hummock's keel on the seabed and on the underwater pipelines. *M.A. Naumov, D.A. Onishchenko,* Presentaion Gazprom VNIIGAZ LLC

Destruction of the iceberg under intense dynamic impacts

Destruction of the iceberg under intense dynamic impacts

The flow of ice floes towards the rack of fixed oil-extracting platform

Collision between the iceberg and the fixed oil-extracting platform

Structure of Ice-hummocks

A. Marchenko Thermodynamic consolidation and melting of sea ice ridges // Cold regions. Science and Technology, V. 52, N. 3, 2008.

Ice-hummock model

Seismic exploration in the conditions of the Arctic shelf

Strimmer

- 3D
- P-waves
- High performance

Seabed stations

- 3D/4C
- High price
- High comprehension of obtained data

Geophysical prospecting by electric means – seabed stations

The leader of volume of work

6 components of the EM field (important for 3D inversion)

Not smaller than 50 m

Geophysical prospecting by electric means - strimmers

- High performance
- No deeper than 300 m
- One axial component of the field: Ex
- Frequency and time domain

Multilayered geological medium

Complicated interfaces

Complicated interfaces

Complicated interfaces

Seismic prospecting at the Arctic shelf

Wave pattern in the ice

Wave pattern in the water

Wave pattern in the ground

Wave pattern in the carbon reservoir

Problem definitons Source in the ice Source at the seabed

Source in the ice, without reservoir

Source at the seabed, without reservoir

Wave patterns

Seismograms from ice receivers, Vy

Source in the ice

Source in the ice, without reservoir

Source at the seabed

Source at the seabed, without reservoir

Seismograms from seabed receivers, Vy

Source in the ice

Source in the ice, without reservoir

Source at the seabed

Source at the seabed, without reservoir

Source at the bottom

Source at the bottom, without the reservoir

Numerical simulation in geology

Numerical simulation in geology

Cavities of various shape

The array of subvertical fluid filled cracks

The array of subvertical fluid filled cracks

1,5

2,0

Simple fluid filled cavity

Reflected P-wave

Wave from the source

The numerical solution of collision problems

Collision with multilayered barrier

Penetration of striker into curved barrier

Aircraft collision with the pillar

Multilayer barrier

Multilayer barrier

Numerical modeling of composite materials

Composite materials

Microstructure

- Matrix and filler
- Types of fibers and their orientations
- 3D structure of fibers

The impact on the stringer

The destruction of steel body during ricochet impact

Numerical modeling in Medicine

Head damage

Dependence from the angle

 α = -90°

Maximum compression, $3 \cdot 10^4 \Pi a$

Maximum stretching, $3 \cdot 10^4 \Pi a$

Maximum shear stress, 5 $\cdot 10^{3}$ Па

Comparison with clinical results

Knee injury

Body armour and human chest

Numerical modeling of seismic stability

Seismic stability of the building

Absolute velocity (left) and destruction zones (right) in red

Seismic stability of river plant

Seismic stability of the building

Love and Rayleigh waves

Rayleigh waves

Numerical modeling of non-destructive railway control

Dynamic impact on the rail

The influence of karst inclusions in the ground above the railway

Non-destructive railway control

Grid-characteristic method

Grids

- Triangular unstructured grid
- Grids with various average step

Grids

Curvilinear gridsTetrahedral grids

System of equations describing elastic and acoustic waves

$$\begin{array}{ll} \text{Elastic waves:} & \rho \partial_t \overset{\mathbf{V}}{\mathbf{v}} = \left(\nabla \times \boldsymbol{\sigma} \right)^{\mathrm{T}} \\ & \partial_t \boldsymbol{\sigma} = \lambda \left(\nabla \overset{\mathbf{V}}{\mathbf{w}} \right) \mathbf{I} + \mu \left(\nabla \bigotimes^{\mathbf{V}}_{\mathbf{v}} + \left(\nabla \bigotimes^{\mathbf{V}}_{\mathbf{v}} \right)^{\mathrm{T}} \right) \\ & \boldsymbol{\varphi}_{\mathbf{r}} \text{nsity,} \quad \text{velocity in the elastic media,} \quad \text{stress tension,} \\ & \lambda, \mu \quad \text{Lame's parameters,} \\ & c_p = \left(\left(\lambda + 2\mu \right) / \rho \right)^{1/2} \text{speed of P-waves,} \\ & c_s = \left(\mu / \rho \right)^{1/2} \text{speed of S-waves.} \end{array}$$

• Acoustic waves: $\rho \partial_t \mathbf{v} = \nabla p$ $\partial_t p = {}^2 \rho (\nabla \mathbf{v})$

 ρ density, v velocity in the acoustic media, p pressure, c speed of sound.

Boundary and interface conditions

Boundary

■ Given traction , σp = f

Given velocity of boundary

V = VMixed boundary conditions

Absorbing boundary contions

Interface

Continuity of the velocity and traction $v_a = v_b = V, \sigma_a = -\sigma_b$ Free sliding conditions $r + r + r + r + \sigma_b$ $v_a \times p = v_b \times p, \sigma_p^a = \sigma_p^b, \sigma_\tau^a = \sigma_\tau^b = 0$ The interface condition between acoustic and elastic bodies

Thank you for your attention!