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I. Introduction: Innovation and 
Imitation

• Josef Schumpeter (1939) divided the 
mechanism of technological changes into 
two components: creation of new 
technologies by a firm (innovation process) 
and adoption of technologies created by 
other firms (imitation process).

• The process of productivity growth of 
production units due to both technology 
innovations and imitation of technologies 
from more advanced agents is called 
Schumpeterian dynamics.
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Imitation: two technologies

Transition process between two technologies- 
logistic curve -   Griliches(1957), Davies (1979)
         dF1/dt = - β(1-F1)F1,  F1(- ∞) =1, β>0.

F1 -  the fraction of firms (or capacities) that use 
an old technology; the speed of the transition is 
proportional to F1 and the proportionality 

coefficient increases with expansion of the fraction 
of the firms that have adopted the new 
technology. 
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Logistic curve



5

Innovation and Imitation: many technologies 
with different efficiencies

• Even in industries producing a homogeneous good, 
technologies of different efficiencies coexist, so that one 
may observe a distribution of firms on efficiency levels. 

• Efficiency may be defined as profit or added value per 
unit of capacity, or total factor productivity. 

• Cobb-Douglas production function:
Y = AKα L1- α ,  Y –output, K-capital, L-labor, A –TFP

• Considering an industry with many firms, one can 
describe its development  as  evolution of  efficiency 
distribution. This fact is emphasized in the production 
function theory of Houthakker (1956) and Johansen 
(1972).



6

What is this presentation  about

• Different mechanisms of innovation and imitation 
generate various patterns of Schumpeterian dynamics 
described by a wide range of non-linear equations, 
including

•  Burgers - type equations, 

• Kolmogorov-Petrovskii-Piskunov-type equations,

•  Boltzmann equation, etc. 

An explosion of researches, Lucas, Acemoglu.

• I discuss the economic essence of these mechanisms in the 
context of economic growth theory and recent results of 
their investigations. 

• Some related unsolved problems will be also formulated.
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II. Distribution of firms by TFP : stylized facts-1
 König et al. (2015b) 

• A large data set containing information about the 
productivity of western European firms in the period 
between 1995 and 2003. Main empirical findings:

1. The distribution of high-productivity firms is well 
described by a power law.

2. The distribution of low-productivity firms is also well 
approximated by a power law, although this 
approximation is less accurate, arguably due to noisy 
data at low productivity levels for small firms.

3. The distribution is characterized by a constant growth rate 
over time, where both the right and the left power law are 
fairly stable (see Table).

• This implies that the evolution over time of the empirical 
productivity distribution can be described as a 'traveling 
wave‘ (see also Sato (1975)).
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Distribution of firms by TFP : stylized facts-2
  König et al. (2015b)

•  Estimated power law exponents for the right (λ) and left (ρ) tail 
of the probability density function for the total factor 
productivity (TFP) distribution of (17,404) French firms, 1995 - 
2003

• The percentage of firms on which the regression is computed is shown 
as well as the corresponding coefficient of determination R2.
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Efficiency distribution: stylized facts-2

• While entry, exit and reallocation are important 
determinants of firm dynamics, they altogether 
account for only 25% of total productivity growth

      So, we must explain the determinants of the 
accumulation of technical knowledge among 
incumbent firms  (Konig et al, 2015a)

• Established firms are the main source of innovations 
that improve existing products, while new firms 
invest in more radical and “original” innovations 
(Acemoglu, Cao, 2014).
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Size distribution of firms: stylized facts-3

• «As many have noted, the size distribution of firms exhibits a 
striking pattern.” Using 1997 data from the U.S. Census, Axtell 
[2001] finds that the  right tail probabilities of this distribution, 
with firm size measured by  employment S, is well approximated

by a Pareto distribution:

            1/Sζ , with a tail index ζ around 1.06.

(Luttmer, 2006, p. 2).   This is close to Zipf’s law.  

   “… firms closer to the technology frontier engage in more research 
and development investments (Griffith et al. 2003), and that large 
firms spend more on research and development than smaller ones. 
For example, Mandel (2011) finds that US firms with 5,000 or 
more employees spend more than twice as much per worker on 
research and development as those with 100-500 employees.” 
(Lorentz et al, 2015)
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II. Modeling Schumpeterian 
dynamics: movement mechanisms

• Speeds of innovation and imitation depend on 
labor and capital expenditures. 

• Imitation speed may arise from observation 

of more advanced firms or from meetings with them 
to get technologies. 

• If the most advanced firm exists then “the distance 
to frontier” might be important.

• New firms may imitate incumbents stochastically 
or choose the best technology.



Modeling Schumpeterian dynamics: notations

• Fn (t) -    a fraction of firms that have efficiency 
level n or less at the moment t[0, ∞); n-integer. 

   ={Fn(t)} - distribution function.
• {fn(t)} – density function 
• Standard initial conditions:

Fn(0) = 0, n ≤ 0;         0≤ Fn (0) ≤1
                                             ∞

                           ∑  (1-Fn(0))< ∞.
                                                   n=1 

• F(x,t), f(x,t)- continuous case, x- efficiency level 
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Modeling Schumpeterian dynamics: 
straightforward assumptions-Burgers type eq

dfn /dt= ∑n-1 φ (Fk, fn, t)fk  - ∑∞    φ (Fn, fk, t)fn , n=1,2...
                       k=1                                         k=n+1

φ (Fk, fn, t)- fraction of firms fk at a level k jumping on the level n in the 
moment t per unite time. This equation includes the most important 
particular cases.

Assume that each firm from fk can observe 1- Fk  but can jump on the 
next level only:

φ (Fk, fn, t)=0, k≠ n-1

φ (Fn-1, fn, t)= φ (Fn-1) , 

Then        dfn /dt= φ (Fn-1) fn-1  - φ (Fn)fn , f0=0.

dFn/dt = φ ( Fn) (Fn-1 - Fn ).
This is a difference-differential analogue of the Burgers eq.
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Modeling Schumpeterian dynamics: 
straightforward assumptions-KPP type eq.

dfn /dt= ∑n-1 φ (Fk, fn, t)fk  - ∑∞        φ (Fn, fk, t)fn , n=1,2...
                         k=1                                            k=n+1

Assume that per unit time, the fraction βfn of  fk , k< n jumps on 
the level n due to meetings with fn and imitation; besides the 
fraction α of fn-1  jumps on the level n due to innovation.

φ (Fk, fn, t)= β fn,  k< n-1,    φ (Fk, fn, t)=0 , k≥ n,
φ (Fn-1, fn, t)= α + β fn, 
Then
dfn /dt= -αfn +αfn-1  - β(1-Fn)fn +βFn-1fn ,

dFn/dt = -α (Fn- Fn-1) - β(1- Fn) Fn .
This is a difference- differential analogue of the Kolmogorov – 

Petrovsky – Piskunov’s Equation.
14



Modeling Schumpeterian dynamics: straightforward 
assumptions-Boltzmann type eq.

dfn /dt= ∑n-1 φ (Fk, fn, t)fk  - ∑∞      φ (Fn, fk, t)fn , n=1,2… 
                         k=1                                           k=n+1

Assume that per unit time, the fraction ψk (t)fn  of fk  jumps on 
the level n due to meetings with fn and 
imitation-innovation:

  φ (Fk, fn, t)= ψk (t)fn , k<n, φ (Fk, fn, t)=0 , k≥ n,   

dfn /dt= fn∑n-1 ψk (t)fk  - ψn(t)fn ∑∞       fk , 
                             k=1                                               k=n+1

dFn/dt = -(1-Fn) ∑n   ψk (t)fk . 
                                              k=1

This is a difference- differential analogue of the Boltzmann’s Equation.
15



III. Modeling Schumpeterian dynamics: a stochastic 
differential equation and KPP eq.

• Suppose that the log productivity xt of a particular producer evolves 
according to

dxt = αdt +σdWt +ΔtdNt ,
where α  represents deterministic innovation by this producer, Wt is a standard 

Brownian motion (stochastic innovation),  Nt is a Poisson process with arrival 

rate β that counts opportunities to imitate. When an imitation opportunity 
arrives, the producer randomly selects another producer from the population 
and copy his technology  if it is more productive. The resulting increase in 

productivity is represented by Δt ≥ 0.  In a large population, any initial 
discreteness in the initial productivity distribution is smoothed out 
instantaneously, and we get Kolmogorov – Petrovsky – Piskunov’s Equation:

 F/t  = - αF/x +0.5σ2(2F/x2) – βF (1- F)
where F  is the distribution of log productivity x at time t (F/x can be excluded 

by a substitution). (Luttmer (2012), Konig (2015))
16



Modeling Schumpeterian dynamics: a stochastic 
differential equation and Burgers eq.

• A collection of N groups of interacting agents Ak

with productivity Xk(t), k = 1, 2,… K, Xk+1(0) >Xk(0). The speed of 
Xk(t) is a sum of three components:

1. deterministic innovation (α); 

2. stochastic innovation (Brownian motion, with parameter σ);

3. a term proportional (γ) to the fraction of more productive 
firms.

Then for K →∞ we get Burgers equation

F/t = -(α + γ(1-F))( F/x) + 0.5σ2(2F/x2), 

F(x, t) – distribution of firms by productivity x.

 (Hongler et al, 2016). 17



Modeling Schumpeterian dynamics: Boltzmann eq.

• f (x, t) –density of  agents distributions by productivity x. The 
f (x, t) agents devotes a fraction s(x,t) of his time to meet  
random persons and to imitate higher productivity . The rate 
of meetings is μ(s(x,t))f (x, t) where μ is a given function. The 
outflow from the position x  is the first term of the right side 
of the equation

                                                      ∞
f/t = - μ(s(x,t)) f (x, t) x 

 f(y,t)dy + 

                         +f (x, t)  0
x μ(s(y,t))f(y,t)dy ,

The second term is the inflow to the position x. Integrating this 
equation  one gets Boltzmann equation for distribution 
function F (x, t):

F/t = - (1- F (x, t))0
x μ(s(y,t))f(y,t)dy .

 (Lucas Jr., Moll, 2014). 18



Schumpeterian dynamics and 
economic growth-1

   
Dynamic optimal planning problem:
  
            ∞         ∞
• max 0 e –rt  (0  [1- s(x,t)]x f (x, t)dx)dt   

   s(x,t)
                                     ∞
f/ t = - μ(s(x,t)) f (x, t) x 

 f(y,t)dy + 

                                       +f (x, t) 0
x μ(s(y,t))f(y,t)dy ,

f (x, 0) is given.
    

(Lucas Jr., Moll, 2014). 19



Schumpeterian dynamics and 
economic growth-2

There are no stability results. However , authors (Lucas 
Jr., Moll, 2014) prove that  there exist a balanced 
growth  path (BGP) where 

 1)production grows at  a constant rate γ
                             ∞
          Y (t)  =   e γt 0  [1- s(x,0)]xf(x,0)dx  ,          

2) cumulative distribution of lnx and efforts as a 
function of lnx behave as wave trains with speed γ,

3) if we start with BGP distribution then BGP turns out 
to be an optimal trajectory.

The authors also consider independent optimal 
behavior of each agents and compare results.              20



Schumpeterian dynamics and 
economic growth-3

A number of authors (Acemoglu, Cao (2015),  

Konig et. Al. (2015), Luttmer (2012), etc.) 

construct general equilibrium models where 

productivity follows   Shumpeterian dynamics 

mechanisms and prove that productivity or firm 

size distributions generated by their models 

converge to wave trains with  Pareto tails.
21



For future investigations
1. General theory of Schumpeterian growth (conservation law). 

Different sizes of observations and jumps (see Tashlitskaya, 
Shananin, 2000; Hongler et al., 2016).

2. How to choose among different models.
3. Modeling economic growth with Burgers  type dynamics (see., 

Polterovich, Henkin 1989, in Russian).

4. Multidimensional Schumpeterian dynamics: innovation and 
imitation of technologies (physical capital) and skills (human 
capital) (see Henkin, Polterovich, 1991).

5.Depreciation: firm size (capital) decreases,  the distribution 
moves back (see Gelman, Levin, Polterovich, Spivak, 1993).

6.  Empirics for developing countries. 
7. Multiwave behavior (for developing countries): slow exit due to 

support of the weak firms by the state,  imitation of more 
advanced firms from abroad, more local imitation at the tail. 

8. Schumpeterian dynamics for countries: growth modeling (see 
Polterovich, Tonis,  2004).

22
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Аpendix:

Some earlier results
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Iwai model (1984)

• Iwai undertook the first attempt to show that the 
``logistic'' character of diffusion curves and stability of 
the form of the efficiency distribution both are 
consequences of a ``dynamic equilibrium'' between 
innovation and imitation processes. 

• The Iwai model is based on two main assumptions.            
1. The probability of transition to an efficiency level is the 
same for all less efficient firms. Therefore the rate of 
change of the cumulative distribution function at every 
point is defined by its value at that point. 

• 2. The exponential speed of the emergence of new, the 
most effective technologies is postulated directly, and thus 
the speed of the efficiency distribution is established a 
priori. (It is not a result of interactions.)

• Both assumptions seem to be artificial.
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The simplest model -1
Polterovich, Henkin (1988, 1989)

• Fn-    a fraction of firms that have efficiency 
level n or less.         

       ={Fn} -  a distribution function.
• To describe the evolution of the distribution curve 

{Fn} in time, we introduce four hypothesis.
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The simplest model -1a
Four hypothesis

1.  Firms can not jump over levels: if a firm has a level 
n then it may transit to the level n+1 only.

2. The speed of the transition is the sum of two 
components: an innovation component and an 
imitation component. 

3. The speed of the transition from a level n to the next 
level per unit of time as a result of the imitation is 
proportional to the fraction of more efficient firms.

4. The speed of the transition as a result of the 
innovation is constant. 

Innovation processes are spontaneous whereas propensity to imitation 
depends on the position of the firm among other firms.
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The simplest model -2

dFn/dt = α (Fn-1- Fn) +β(1- Fn) (Fn-1- Fn),
n –integer. Or

dFn /dt = (α +β(1- Fn)) (Fn-1- Fn) .           (1)

Fn(0) = 0, n<0;         0≤ Fn (0) ≤1;          (2)

                                             ∞       

                              ∑ (1-Fn(0))< ∞.
                                                      n=1 

• α >0 – speed of innovation process,
•  β(1- Fn)- fraction of firms moving from the level n
to the level n+1 per unit of time due to imitation.
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The simplest model -3

φ(Fn) = α + β(1- Fn)                    (3)

 - speed of transition from the level n  to the 
level n+1 = a sum of innovation and imitation 
components.

• Eq. (1) may be linearized by substitution 
        Fn =(1/β)(μ – zn-1/zn), 1≤ n <∞, (4)
  z0=exp(μt), μ = α + β (and solved in an explicit form.)

Levi, Ragnisco, Brushi (1983) described a class of equations that admit 
linearizing substitutons, it includes (1). 
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The simplest model -3a

A family of wave solutions:

Fn*(t, d) = F*(n-ct, d)   = 1/[1+exp(β(n-ct+d))], (3)

where d – parameter of a shift,

c= β/ln(μ/α) - speed of waves,

μ = α + β. 
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Wave train
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The simplest model -4
Stability

• Theorem 1. (H-P, 1988). Let  ={Fn}  be a 
solution of (1), (2). Then

a) There exists a shift d:
       supnlFn(t) -F*n(t, d)l→0,  t→∞.
b) If Fn(0) = 1 for all n ≥N-positive integer,  

then
  lFn(t) -F*n(t, d)l ≤ λexp(γt), 0≤n<∞, t≥ T0,
where γ= γ(α,β); λ, T0 depend on α,β, N and 

on initial conditions (the value of the first 
integral).
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Evolution of an efficiency distribution
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Two observations are explained 

•  The curve of transition from a level n to 
n+1 is logistic.

• Distributions are stable.

Logistic curve is not always observed in 

reality.  

Generalization?
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The simplest model -5
Similarity to Burgers Equation

• The linearizing substitution (4) is similar to the 
well-known Florin--Cole--Hopf substitution for 
the Burgers equation,

 F/t + (F)( F/x) =   (2F/x2),   0, x   
 , (with linear ), and the Theorem 1 is quite 
similar to the corresponding Hopf theorem 
about Burgers equation (Hopf (1950)). Due to 
these facts we consider (1) as a 
difference-differential analogue of  the Burgers 
equation. 
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General equation-1:  nonlinear speed of 
transition φ(Fn)  

dFn/dt = φ(Fn) (Fn-1- Fn),   (5)
n –integer,  -∞ <n < ∞.

 Initial conditions:

a ≤ Fn(0) ≤ b;                                  (6)

∑0 (Fn(0)-a) < ∞,   ∑∞(b - Fn(0)) < ∞,         (7)
 - ∞                                             0

a, b- constants, a < b, φ: [a,b]→R1.

A1. φ is positive, bounded on [a,b], and 1/ φ is 
integrable.
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General equation-2:  nonlinear speed of 
transition φ(Fn)  

Define: 

(b-a)(z) = z
b dy/(y), z[a,b], (8)

  ={Fn(t), - ∞ < n < ∞} 

B (t)= ∑∞ (Fn(t)) - ∑0  [(a) - (Fn(t)] - t, (9)
                     n=1                          n=- ∞

a, b- constants, a < b, φ: [a,b]→R1.
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General equation-3: existence, uniqueness, 
conservation law

Theorem 2. Under A1, there exists a unique 
solution 

 = {Fn(t), n( -, )} of the problem (5)- 
(7). 

• For all t   0:
• Fn(t)  a, as n  -;
• Fn(t)  b, as n  +;
• B(t)  B(0)- conservation law;
• Fn(t)  Fn-1(t) n, if Fn(0)  Fn-1(0) n – 

monotonicity preservation.
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Wave trains: definition

Wave trains are solutions of (5) such 
that

Fn(t) = F(x),  x = n – ct,

a ≤ F(x) ≤ b, 
where c is a constant.
 
• Wave train equation:
c(dF/dx) = (F)(F(x)-F(x-1)).    (10)
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Wave trains: existence

• A2.  does not increase, (0) > (1),  
satisfies the Lipshitz condition.

Theorem 3. Let A1, A2. Then a wave train F* 
(x) exists iff 

        c = (b-a)/(a), (a) = ab dy/(y).
• Every wave train has the form F* (x- d), 

where d is a constant.
• There exist positive numbers                       

0,  1,  2, h >o such that
    exp (0x)   F* (x) – a   exp (1x), x   -h.
    exp(-2x)  b –F* (x),  x  h.
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Wave train density   

   Theorem 4. Let A1, A2; let   be 
twice differentiable and 1/  be 
convex. Then the wave train 
density dF/dx has a unique local 
maximum point. 
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Stability-1

• Theorem 5. Let A1, A2, and F* be a 
wave train. Then for every solution   = 
{Fn} of the problem (5)- (7) one can find 
a constant d such that

  supn Fn(t) – F*(n-ct-d)   0  as t    .

(Simlar to Iljin, Oleinik (1960) for 
Burgers equation.)
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Stability-1a

The constant d is the solution of the 
equation

B(0) = ∑0  (F*(n-d)) - (0)) + ∑∞  (F*(n-d))
                        n= - ∞                                                   n=1 

                  

         This means equality of the first 
integral expressions

             B(0) = BF*(n-d)(0).
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A Model of  Economic Growth-1

dMn/dt = (1- 0(Fn))nMn + 0(Fn-1))n-1Mn-1    (11)

• Mn – capacities of the level n;

n  - profit (in real term) per unit of 
capacities per unit of time.

• The fraction 0(Fn) of the profit nMn 
creates new capacities of the level n+1, 
and the rest is spent on the expansion of 
the level n.
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A Model of  Economic Growth-2

 Let  k > 0, k    ,   > 0, 

                           ∑∞  k (  - k) < ;
                                            k=1

 
                 Fn  = (∑n Mk)/(∑∞ Mk), n = 0,1,…            (12)
                                              0                    0

• Equation (11), (12) is equivalent to

dFn/dt = (Fn)(Fn-1 – Fn ) + rn,    =  0 ,      (11a)

rn is a residual term, unessential for asymptotic behavior.
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The case of increasing :
 diffusion.

Theorem 7. Let   be a positive function with 
a positive derivative . Then    
 1) every solution Fn(t) can be represented as

             Fn(t) =  (-1)(n/t) + o(1/t1/2),

 (-1)  is the inverse function to  ,  
o(1/t1/2) t1/2 0 as t  .
2)  If (y)   >0   y [0,1]
then   Fn(t) - Fn-1(t)   1/(t +1).



54

Nonmonotonic : An analogue of a I.M. 
Gelfand problem (1959)

•  Initial conditions 

                       0, if x < x-                        

• F (x, o) =   1, if x > x+                               (13)

                      g(x),  otherwise ,

where a< b, g(x) is an L∞ function, 

 

• What is the asymptotic behavior of the 
solutions F(x,t), t →∞ ? 


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Nonmonotonic : wave trains-1

• Wave trains:

• a   F*(x)  b,  F*(x)   a, x -   ,

•  F*(x)   b, x +  , F*(x) – 
nondecreases.

• c(dF*(x)/dx) = (F*(x)) (F*(x)-F*(x-1)) ,

• c = 1/(b),
(z) = 1/(z-a) az dy/(y). 
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Nonmonotonic : wave trains-2

• Theorem 3’ (H-P (1990), Belenky 
(1990)). Let   be positive and 
integable. If (z) < (b)  z   [a,b], 
then there exists a wave train F*(x) 
and every wave train can be 
represented as F*(x-d) for some d. If a 
wave train exists then (z)   (b)  z 
  [a,b].
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Non-monotonic :

• Let 0(z) be “the concave hull” of the 
function

 (z) = 0 z dx/(x) = (0) - (z),
• E = {z: (z) < 0(z), 0   z   1} =  I, 
  I is an (open) interval in [0,1].
• Proposition. For every   = (a, b)   E there 

exists a wave train with overfall b-a. If        
    (0,1) then the speed of the wave train 
is equal to 

•           c = (a) = (b) = (b-a) / abdx/(x).
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(o,a1), (a1, a2)   E 
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Asymptotic structure of solutions-1

Let E = [0,1]\E , E  does not contain 
interior 

isolated points. Let   = (a, b)   E  
Define diffusion functions

                  a                for n < (a)t - At1/2,

(n/t) =   (-1)(n/t)    for (a)t + At1/2   n   (b)t - At1/2,

                  b                for n > (b)t+ At1/2.

• Let F be the wave train for the interval  .


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Asymptotic structure of solutions-2
Henkin, Polterovich (1999) - hypothesis 

For a set {(n,t): Fn(t)   },  solutions look like F if            
                   

    E,  and like diffusion    if     E .   
 Let 

F*n(t, d,     E ) = ∑     E F (n-ct+ d) +  

∑     E (n/t) - ∑     [0,1]a,

where a- left endpoint of  .

Hypothesis. There exists d(t) : d(t) /t→o as t→∞, and

supnl Fn(t) - F*n(t, d(t),     E )l →0 as t→∞.
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At first, it was proved for the following φ:
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Asymptotic structure of solutions-2

• Henkin, Shananin (2004)

• Henkin, Shananin, Tumanov (2005)

• Henkin (2006)

• d(t)= q lnt + o(lnt).
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Asymptotic structure of solutions-3

Theorem 8 (Henkin, 2006).
Let   (.) be a positive twice continuously 
differentiable function on [0,1];  may have only isolated 
zeros that are not coincide with endpoints of intervals  . If 
F(n,t) is a solution of a Cauchy problem (1), (13), and t→ ∞. 
Then for arbitrary  A>0

F(n,t)→ F (n-ct - d(t)),  if     - At1/2 <n-ct < At1/2,     E
F(n,t)→ (n/t), otherwise,
uniformly with respect to n. 

Henkin proved a similar theorem for Burgers equation as 
well. 
(Maximum and comparison principles + localized conservations laws).
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          Asymptotic structure of solutions-4 
                                   ( d(t) =0)
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Comparison with Burgers Equation

Our equation with an arbitrary “step of discretization”:

F(x,t)/t + (F(x,t))[F(x,t)/x- F(x-  ,t)/x)]/   = 0 (*) 
Burgers Equation

F/t + (F)( F/x) =   ( 2F/x2),   0,  x       (**)
At first sight (*) looks like a discretization of (**) under 

  = +0.  But solutions of (*) do not reveal shock wave

behavior as (**) do.

Using second-order Tailor expansion, one gets from (*) :

F/t + (F)( F/x) = (  /2)(F) ( 2F/x2) (***). 
Solutions of (*) and (***) behave quite similarly; speeds

of wave trains are equal (Rykova, 2004).  



66



67

Two-dimensional case

• m, n are levels of two efficiency 
parameters, 

• m, n = 0,1,…
• fmn – the proportion of firms at a level 

(m,n).
• Fmn = k=1m r=1nfkr – distribution 

function;
• Fm(1) =  k=1m r=1  fkr ; 
•  Fn(2) = k=1 r=1nfkr .
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Two-dimensional case: assumptions

• A firm can transit from the state (m,n) into 
one of two neighboring higher levels: 
(m+1,n) and (m,n+1).

• The proportion of firms per unit of time 
moving from the state (m,n) to the state 
(m+1,n) is proportional to the fraction of 
firms being in the state (m,n), and the 
proportion coefficient is positive and 
non-decreasing in the fraction of firms 
which are more advanced according to 
the first indicator. A similar hypothesis is 
admitted for the transition from (m,n) to 
(m,n+1).
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Two-dimensional case-2

dFmn/dt = 1(F(1)m)(F(m-1)n –Fmn) + 
              + 2(F(2)n)(Fm(n-1) – Fmn),
where F(1)m = supnFmn, F(2)n = supmFmn 

–marginal distributions.
• Boundary and initial conditions:
Fon(t)   0,  Fm0(t)    0,
Fmn(0) =  jm, k  n  fjk(0), fjk(0)   0,
Fmn(0) = 1,  m   m0,  n   n0,
where m0, n0 – given integer numbers. 
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Two-dimensional case-3

• A wave train is a product of two wave 
trains for 1 and 2. Any solution 
converges to a wave train appropriately 
shifted.
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Unsolved Problems

Jumps over one level are possible:

dFn/dt = (φ1(Fn) + φ2(Fn)) (Fn-1- Fn) +      

             φ2(Fn-1) (Fn-2- Fn-1), 
where φ1(Fn), φ2(Fn) are speeds of 

transition from level n to the level n+1 

and the level n+2 correspondingly.
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Kolmogorov – Petrovsky – Piskunov 

• Firms jump from a level on any other 
level with larger efficiency, and the 
probabilities of all transitions due to 
imitation are proportional to the 
fractions of more advanced firms.  

• dFn/dt = -α (Fn- Fn-1) – βFn(1-Fn).
• This is a semidiscrete variant of 

Kolmogorov – Petrovsky – Piskunov’s 
Equation:

F/t -   (2F/x2) = V(F)
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Local Imitation
Tashlitskaya, Shananin (2001)

Firms are able to imitate only technologies of 

the firms from the next higher efficiency level. 

Then the imitation component becomes 

β(Fn+1 – Fn )(Fn – Fn-1), and we have:

dFn/dt = - (α + β(Fn+1 – Fn ))(Fn – Fn-1).

Finite initial conditions: Fn (0) =1, n   N.
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The case α =0: Langmuir’s Chain-1

A  change of variables 
Τ = βt,  cn(t) = FN+1- n – FN- n 

leads to the following system

dc1/dt = c1c2,    

dcn/dt = cn(cn+1 – cn-1), n = 2,…,N-1,

dcN/dt = -cNcN-1,

cn(0) = γn > 0, n = 1,…,N

known as finite Langmuir’s chain.
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The case α =0: Langmuir’s Chain-2

The stable stationary solutions of the chain have the 
following structure

(y1, 0, y2, 0, …, yk,0) if N = 2k,

(y1, 0, y2, 0, …, yk,0, yk+1) if N = 2k +1

THEOREM. (Tashlitskaya, Shananin). 

Solutions to the Cauchy problem for the 

Langmuir finite chain converges, as t →∞, to 

a stationary solution, which is determined uniquely by 

initial data.
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The case α =0: Langmuir’s Chain-2a

mm

Initial 

distribution

H-P model

Modified Model
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The case of small α >0 : A perturbation of 
the Langmuir’s Chain-3

Computations show three stages of 

evolution:

1. The stage of formation of technology 
structures ( the regime of Langmuir’s – 
Volterr’s chain,     Fβ >> α; 

2. The stage of imitation – innovation 
interaction (Fβ ~ α);

3. The stage of diffusion (F β << α).
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Imitation from several more advanced 
levels

dFn /dt = α (Fn-1- Fn) + β (Fk - Fn)) (Fn-1- Fn),

k > n 

Computations (Savenkov, 2003):

If k=2, then every solution converges to a wave 
train that depends on initial conditions
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Belenky’ model-1

Speed of transition ψ from efficiency level 

n to level n+1 depends on a proportion of 

more advanced firms among all firms that 

are not worse than the firms of level n. This 

assumption entails the following equation

          dθn/dt = ψ(θn/θn-1)(θn-1 – θn),

where θn=1-Fn. 
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Belenky’ model-2

• This equation

                dθn/dt = ψ(θn/θn-1)(θn-1 – θn),
where θn=1-Fn,,

may be reduced to our main equation

dFn/dt = φ(Fn) (Fn-1- Fn)
 by a substitution.

The theory is applicable.
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Unsolved Problems-2

Depreciation of capacities:

dFn/dt = φ(Fn) (Fn-1- Fn) + μ(Fn+1- Fn), 

 μ is a depreciation rate.
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Ferrous Metallurgy in USSR
Levin, Spivak, Polterovich (1993)

t =1976

t =1982
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Ferrous Metallurgy in USSR
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Ferrous Metallurgy in USSR

A reform occurred in 1982
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Unsolved Economic Problem: 
Evolution of distribution of countries by GDP 

(gross domestic product) per capita

•  Per capita GDP for Latin America and 
Caribbean countries decreased by an average 
0.8 percent per year in the 1980s, and grew by 
mere 1.5 percent per year in the 1990s. In the 
Middle East and North Africa we observed the 
average fall of 1.0 percent per year in the 1980s 
and the average growth of 1.0 percent per year 
in the1990s.  For 28 countries of East Europe 
and former USSR, the total loss of GDP 
amounted to 30% in the 1990s.  In Sub-Sahara 
Africa there was a reduction if the GDP per 
capita. 
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Distribution of countries by ln(GDP per 
capita/GDPper capita of USA), 1980

Tree peaks: ”Europe”, 

“Latin America” and 

“Africa”
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Distribution of countries by Ln(GDP per 
capita/GDPper capita of USA), 1999
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Distribution of countries by 
Ln(GDP per capita/GDPper capita of USA), 

1980 and1999
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Distribution of countries by 
GDP per capita/GDPper capita of USA 

• Advanced industrial countries are growing at the 
same rate (Mankew, Romer, Weil (1992), Evans 
(1996)). Others?

• Aghion, Howitt (1998): imitation of the most 
advanced technology (not realistic).

• Guilmi, Gaffeo, Gallegati (2003): Countries with 
per capita income between 30% and 85% of the 
world average: Pareto distribution (data of 
1960-2001).

• The problem remains open.
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