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A preface

It was noted about 50 years ago that some inverse problems for
hyperbolic equations are closely related to the problems of the integral
geometry that consist in recovering a function from its integrals along a
family of given curves or given surfaces. The geometric objects connected
to the latter problems are the rays or fronts of the hyperbolic equations.
They are sufficiently complicated if coefficients in the leading terms of
the differential operators are not constants. But in the simplest case,
when the leading part is the wave operator and an incident source is
located at a fixed point, the rays are segments of strait lines and the
fronts are spheres. Then the problem of recovering a variable spatial
coefficient in the lower term of the equation is often reduced to the
tomography problem. The problem of recovering a variable speed of
sound in the wave equation is also reduced to the similar problem, if one
considers this inverse problem in a linear setting and the linearization is
given for a constant speed.



Hyperbolic equations

Consider the Cauchy problem

∂2u

∂t2
− Lu = δ(x − y , t), x ∈ R3; u|t<0 = 0, (1)

where y ∈ R3 is a fixed point (parameter of the problem), L is the linear
elliptic operator

Lu =
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+ q(x)u,

in which (aij(x)) = A(x) is an uniformly positive matrix. Assume that all
coefficients of the operator L are uniformly bounded and, for simplicity,
they belong C∞(R3).



Let aij(x) be elements of the matrix A−1(x) inverse to A(x) = (aij(x)
and the length element dτ of the Riemannian metric be determine by the
formula

dτ =

 3∑
i,j=1

aij(x)dxidxj

1/2

.

It is well known that the Riemannian distance τ(x , y) between points x
and y is the solution to the Cauchy problem

3∑
i,j=1

aij(x)τxi τxj = 1, τ(x , y) = O(|x − y |) as x → y . (2)

Assumption. We assume that geodesic lines of the Riemannian metric
satisfy the regularity condition, i.e. for each two points x , y ∈ R3 there
exists a single geodesic line Γ(x , y) connecting these points.



The integral geometry problem

Suppose that the coefficients aij(x) are given for all x ∈ R3. Let Ω be the
ball of radius R centered at the origin, Ω = {x ∈ R3| |x | < R}, and S is
its boundary, S = {x ∈ R3| |x | = R}, and the ball Ω is convex with
respect to geodesics Γ(x , y), (x , y) ∈ (S × S).
Consider the inverse problem of recovering q(x) inside the ball Ω
assuming that the following information is known

u(x , t; y) = f (x , t; y), (x , y) ∈ (S × S), t ∈ [0,T ], (3)

where T is a positive number such that

T > max
(x,y)∈(S×S)

τ(x , y). (4)



Introduce the following functions:

θ0(t) :=

 1, t ≥ 0,

0, t < 0,

θk(t) :=
tk

k!
θ0(t), k = 1, 2, . . . .

(5)

Then the following lemma holds
(Lemma 2.2.1 in the book Romanov V. G., Investigation Methods for
Inverse Problems. VSP, Utrecht, 2002.)



Lemma

Let aij and q be C∞(R3) functions and the Assumption holds. Then the
solution to problem (1) can be represented in the form of the asymptotic
series

u(x , t; y) = θ0(t)
[
α−1(x , y)δ(t

2 − τ 2(x , y))

+
∞∑
k=0

αk(x , y)θk(t
2 − τ 2(x , y))

]
, (6)

where τ 2(x , y), αk(x , y), k = −1, 0, 1, . . ., are infinitely smooth functions
of x , y and, moreover, α−1(x , y) > 0.



Let ζ = (ζ1, ζ2, ζ3) be the Riemannian coordinates of a point x with
respect to a fixed point y . They can be calculated through function
τ 2(x , y) by the formula

ζ = −1

2

(
∇yτ

2(x , y)
)
A(y). (7)

Denote by J(x , y) the Jacobian of the transformation of the Riemannian
coordinates into Cartesian ones, i.e., J = det

(
∂ζ
∂x

)
. Then coefficients of

the expansion (6) are defined by the formulae

a−1(x , y) =

√
J(x , y)

2π
√

detA(y)
, (8)

ak(x , y) =
a−1(x , y)

4τ k+1(x , y)

∫
Γ(x,y)

τ k(ξ, y)
Lξak−1(ξ, y)

a−1(ξ, y)
dτ, (9)

where Γ(x , y) is the geodesic line connecting x and y and dτ is the
element of the Riemannian length and ξ ∈ Γ(x , y) is a variable point.



Since the coefficients aij(x) are given the function τ(x , y), ζ(x , y),
J(x , y) and geodesic lines Γ(x , y) are known for all x ∈ Ω and y ∈ Ω.
Therefore the coefficient a−1(x , y) in the expansion (6) is also known for
all (x , y) ∈ (Ω× Ω).
Then putting k = 0 in formulae (9), we find∫

Γ(x,y)

q(ξ)dτ = g(x , y), (x , y) ∈ (S × S), (10)

where

g(x , y) =
4τ(x , y)a0(x , y)

a−1(x , y)
−

∫
Γ(x,y)

L′ξa−1(ξ, y)

a−1(ξ, y)
dτ (11)

and

L′ =
n∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi

)
. (12)

Because a0(x , y) is defined by the given information,

a0(x , y) = lim
t→τ(x,y)+0

f (x , t; y), (x , y) ∈ (S × S), (13)

the function g(x , y) is known.



Hence, we come to integral geometry problem: find q(x) inside Ω from
given its integrals along the geodesic lines joining points x , y belonging
to S .
This problem arise in vary inverse problems. It was intensively studied in
70-th of the last century. The stability estimate for this problem has the
form

∥q∥L2(Ω) ≤ C∥g∥H2(S×S).



The inverse kinematic problem

Assume here that aij = n−2(x)δij . Consider the problem: find n(x) in Ω
given the function f (x , t, ; y) in (3). Fix x ∈ S and y ∈ S . Using the
representation (6) we easily find

τ(x , y) = sup
τ≥0

{τ | f (x , t; y) ≡ 0 for t < τ}, ∀(x , y) ∈ (S × S). (14)

Hence, the function τ(x , y) is uniquely determined for all
(x , y) ∈ (S × S) by the given information. Then we come to the following
problem: find n(x) in Ω given τ(x , y) for all (x , y) ∈ (S × S). This
problem is called the inverse kinematic problem. It is widely used in the
seismology, the electromagnetic prospecting. The function τ(x , y) solves
the Cauchy problem for the eikonal equation

|∇xτ(x , y)|2 = n2(x), x ∈ Ω, τ(x , y) = O(|x − y |) as x → y . (15)



Moreover, the following formula holds

τ(x , y) =

∫
Γ(x,y)

n(ξ)ds, (16)

where s is arc length. In means that τ(x , y) is the Riemannian length of
the geodesic Γ(x , y). The inverse kinematic problem is nonlinear one. If
n(x) = n0(x) + β(x), where n0(x) is a positive known function and
∥β(x)∥C 1(Ω) << ∥n0(x)∥C 1(Ω) one can linearize the problem. Assume that
τ(x , y) = τ0(x , y) + τ1(x , y). where τ0(x , y) corresponds to the function
n0(x), i.e., τ0(x , y) is the solution to problem (15) with n = n0(x). Let
Γ0(x , y) be the geodesic line corresponding n0(x). Then

τ1(x , y) =

∫
Γ0(x,y)

β(ξ)ds. (17)



For the first time.the latter formula was obtained in
Lavrentiev M. M., Romanov V. G., On three linearized inverse problems
for hyperbolic equations, Soviet Math. Dokl., Vol. 7, No. 6, 1966, p.
1650-1652.
The formula (17) defines the Frechet derivative of nonlinear operator
τ(n) on the element n0(x) and it lies in a base of obtaining the stability
estimate for the inverse kinematic problem. For two-dimensional case the
stability estimate was found by Mukhometov R. G. and has the form

∥n1 − n2∥L2(Ω) ≤
1

2
√
π
∥τ1 − τ2∥H1(S×S), (18)

where n1 and n2 two different positive functions n(x) and τ1 and τ2 are
corresponding them solutions to the problem (15) with n(x) = nk(x),
k = 1, 2.
For 3-D case (Mukhometov-Romanov, Bernstein-Gerver, Beylkin):

∥n1 − n2∥L2(Ω) ≤ C∥τ1 − τ2∥H2(S×S), (19)

where the positive constant C depends on the lower bond of n1 and n2 in
Ω.



The parabolic equations

It was opened for a long time that some inverse problems for linear
parabolic equations can be reduced to analogical problems for associating
hyperbolic equations. It turns out that a solution of a parabolic equation
can be expressed via the solution of a hyperbolic equation and vice versa.
Particularly, some inverse problems for parabolic equations generate the
problem of the integral geometry. But to make it effectively, one needs to
express a solution of the hyperbolic equation via a solution of the
parabolic one. It is possible produce on the base of an analytical
continuation of the solution to the parabolic equation with respect to the
time variable t into the complex plane. The latter problem is strongly
unstable. Therefore this way is practically impossible. Recently it was
suggested an other way of using the relation between solutions to the
both equations hyperbolic and parabolic. The new approach uses a
special expansion of the fundamental solution for the parabolic equation
with respect to t as t → 0.
Romanov V. G., An asymptotic expansion of the fundamental solution for
a parabolic equation and inverse problems, Doklady Mathematics, Vol.
92, No. 2, 2015, p. 541-544.



Consider the Cauchy problem for the parabolic equation

∂v

∂t
− Lv = δ(x − y , t), x ∈ R3; v |t<0 = 0, (20)

where L is the uniformly elliptic operator defined by the formula (33) and
x ∈ R3. Suppose that the solutions of problems (1) and (20) do not
increase as t → ∞. Then the Laplace transforms of the functions
u(x , t; y) and v(x , t; y) with respect to t exist and the Laplace images of
these functions are related by the equality ṽ(x , p; y) = ũ(x ,

√
p; y) for all

complex p with positive real part. Therefore, we have

v(x , t, y) =
1

2
√
πt3

∞∫
0

e−
z2

4t u(x , z , y)zdz , t > 0. (21)



Let us apply (21) to obtain an asymptotic expansion of v(x , t; y) as
t → +0. Substituting representation (6) into (21), we obtain

v(x , t; y) =
e−

τ2(x,y)
4t

4
√
πt3

∞∫
0

e−
s
4t

[
α−1(x , y)δ(s) +

∞∑
n=0

αn(x , y)θn(s)

]
ds, t > 0. (22)

Elementary calculations yield the relation

v(x , t; y) =
e−

τ2(x,y)
4t

4
√
πt3

∞∑
n=−1

αn(x , y)(4t)
n+1, t > 0. (23)



The obtained above relations make it possible to bridge the gap between
a number of settings of inverse problems for parabolic equations and
similar settings of inverse problems for hyperbolic equations, which have
been studied earlier. To demonstrate this, we first obtain relations
between the solutions of problem (20) and the coefficients in the
expansion (23).
Let Ω be the same domain as above with boundary S . Suppose that, for
some T > 0, the solution v(x , t; y) of problem (20) is known for all
(x , t, y) ∈ G (Ω,T ), where
G (Ω,T ) = {(x , t, y)|(x , y) ∈ (S × S), t ∈ [0,T ]}.



Let us find expressions for τ(x , y) and α−1(x , y), α0(x , y) for
(x , y) ∈ (S × S) in terms of the given function. It follows from (23) that
we have

τ(x , y) =
(

lim
t→+0

(−4t ln v(x , t, y)
)1/2

, (x , y) ∈ (S × S). (24)

Given the function τ(x , y), the coefficients α−1(x , y) and α0(x , y) are
determined by

α−1(x , y) = lim
t→+0

(
4v(x , t, y)e

τ2(x,y)
4t

√
πt3

)
, (x , y) ∈ (S × S),(25)

α0(x , y) = lim
t→+0

[(
4v(x , t, y)e

τ2(x,y)
4t

√
πt3 − α−1(x , y)

)
/(4t)

]
.(26)

Relations (24)-(26) can be used in problems of determining the
coefficients of the operator L inside Ω from the solution of problem (20)
given for (x , t, y) ∈ G (Ω,T ).



Suppose that aij = n−2(x)δij , where n(x) > 0 and δij is the Kronecker
delta, and it is required to determine n(x) in Ω. Calculating the function
τ(x , y) by formula (24), we arrive at the inverse kinematic problem of
finding n(x) in Ω from the given function τ(x , y) for (x , y) ∈ (S × S).
This problem was considered earlier.
Suppose now that the coefficients aij(x) are given and it is required to
find q(x) from the given function α0(x , y) for (x , y) ∈ (S × S). Since the
coefficients aij(x) are given the function τ(x , y), α−1(x , y) and geodesic
lines Γ(x , y) are known for all (x , y) ∈ (Ω× Ω). Then we obtain the
relations (10), (11). Hence, we again arrive at the same integral
geometry problem as earlier. Thus, expansions (23) obtained above for
the solution of problem (20) directly imply a whole series of new results
about the uniqueness and stability of solutions for of inverse problems for
parabolic equations. In this way, numerical methods for solving such
inverse problems can also be developed.



The elliptic equations

Here we consider a three-dimensional inverse scattering problem for the
Schrödinger equation with a compactly supported unknown potential in
the frequency domain. This problem was subject of studying in many
papers (see, e.g., the books by Chadan and Sabatier, Newton R., papers
by Faddeev L., Henkin and Novikov R., Novikov R. and others. We
consider here a phaseless inverse problem when only the modulus of a
scattering field is given for large frequencies. We demonstrate that the
problem of the potential recovering is reduced to the tomography
problem. For the case when leading part of the equation is a linear elliptic
operator with unknown refraction coefficient, the phaseless inverse
problem is reduced to the inverse kinematic problem.

Klibanov M. V. and Romanov V. G., J. Inverse and Ill-Posed Problems,
Vol. 23, 2015, p. 415-426.
Klibanov M.V., Romanov V.G. Inverse Problems, 2016. Vol 32 (2),
015005 (16pp) doi:10.1088/0266-5611/32/1/015005



Let w(x , y , k) be solution of the Schrödinger equation

−∆w − k2w + q(x)w = δ(x − y), x ∈ R3, (27)

satisfying the Sömmerfeld conditions

w(x , y , k) = O(r−1),
∂w

∂r
− ikw = o(r−1) as r → ∞, (28)

where r = |x |. Here the frequency k > 0 and conditions (28) are valid for
every fixed source position y . We assume here that potential q(x) is
C 4(R3) smooth function satisfying the conditions

q(x) ≥ 0, q(x) ≡ 0 ∀x ∈ (R3 \ Ω) (29)

and Ω is the same ball as earlier with boundary S .



The solution of the problem (27), (28) can be represented in the form

w(x , y , k) = w0(x , y , k) + wsc(x , y , k), (30)

where w0(x , y , k) given by the formula

w0(x , y , k) =
e ik|x−y |

4π|x − y |
(31)

is the fundamental solution for the Helmholtz operator −∆− k2 with the
conditions (28) and wsc(x , y , k) is the scattering field on the potential
q(x). Let k0 be a positive number. Consider the following phaseless
inverse scattering problem: the function |wsc(x , y , k)| is given for
(x , y) ∈ (S × S) and k ≥ k0, i.e.,

|wsc(x , y , k)| = f (x , y , k), (x , y) ∈ (S × S), k ≥ k0, (32)

it is required to find the potential q(x) in Ω.
It turned out that this problem is closely related to the asymptotic
expansion of the solution to (27), (28) with respect to k as k → ∞. The
such expansion can be found if we compare the solutions of the problem
(27), (28) with the solution u(x , t; y) of the Cauchy problem (1) with
L = ∆+ q(x). It was stated by Vainberg B., that the function u(x , t; y)
exponentially decay with respect to t → ∞ together with the second
partial derivatives if x belongs any bounded domain.



Moreover, the following lemma was proved in Klibanov M. V. and
Romanov V. G., J. Inverse and Ill-Posed Problems, Vol. 23, 2015, p.
415-426.

Lemma
Let T > 0 be an arbitrary fixed number,
D(T , y) = {(x , t)| |x − y | ≤ t ≤ T − |x − y |}, L = ∆+ q(x), and
q(x) ∈ C 4(R3) and satisfies conditions (29). Then the solution to the
problem (1) has the form

u(x , t; y) =
1

4π|x − y |
δ(t − |x − y |) + û(x , t; y)θ0(t − |x − y |), (33)

where the function û(x , t; y) is continuous in D(T , y) together with
∂k û(x , t; y)/∂tk , k = 1, 2, for any T and y and

lim
t→|x−y |+0

û(x , t; y) =
1

8π|x − y |

∫
L(x,y)

q(ξ)ds, (34)

in which L(x , y) is the segment of the strait line passing through points
x , y , and ξ is a variable point on this line and s is the arc length.



Using this Lemma and Vainberg’s results, we state that

wsc(x , y , k) =

∞∫
−∞

e ikt û(x , t; y)dt. (35)

Integrating by parts we get

wsc(x , y , k) =

∞∫
|x−y |

e ikt û(x , t; y)dt

= −e ik|x−y |û(x , |x − y |+ 0; y)

ik
+

e ik|x−y |ût(x , |x − y |+ 0; y)

(ik)2

+
1

(ik)2

∞∫
|x−y |

e ikt ûtt(x , t; y)dt.

From here, using formula (34), we obtain

wsc(x , y , k) = −e ik|x−y |

 1

8ikπ|x − y |

∫
L(x,y)

q(ξ)ds + O

(
1

k2

) , as k → ∞.



Thus, the given function f (x , y , k) has the asymptotic

f (x , y , k) =
1

8kπ|x − y |

∫
L(x,y)

q(ξ)ds + O

(
1

k2

)
, as k → ∞. (36)

From the latter formula we find∫
L(x,y)

q(ξ)ds = g(x , y), (x , y) ∈ (S × S), (37)

where

g(x , y) = 8π|x − y | lim
k→∞

[kf (x , y , k)]. (38)

is a known function.
Hence, to obtain q(x) we should solve the tomography problem. Note
that the similar problem occurs, if instead of the point sources, one uses
incident plane waves going from infinity.



Consider now the more general equation

− Lw − k2w = δ(x − y), x ∈ R3, (39)

where L = div(n−2∇) + q(x) and the functions n(x), q(x) are C∞(R3)
smooth functions and n(x) can be represented in the form

n(x) = 1 + β(x), β(x) ≥ 0, β(x) ≡ 0 for x ∈ (R3 \ Ω). (40)

We assume that the potential q(x) satisfies the previous conditions (29).
Let function w(x , y , k) solves the problem (39), (28). Assume that y is
an arbitrary point of S , represent the function w(x , y , k) in the form (30)
and consider the inverse problem of recovering β(x) inside Ω from given
function f (x , y , k) defined by (32).



Consider again the auxiliary problem (1). Then the function u(x , t; y) can
be represented in the form

u(x , t; y) =
α−1(x , y)

2τ(x , y)
δ(t − τ(x , y)) + û(x , t; y)θ0(t − τ(x , y)), (41)

where û(x , t; y) is C∞(R3) smooth function and

û(x , τ(x , y) + 0; y) = a0(x , y). (42)

Again, using the Vainberg’s results, we get

w(x , y , k) =

∞∫
−∞

e iktu(x , t; y)dt.

Taking into account the representation (41), we find

w(x , y , k) = e ikτ(x,y)

[
α−1(x , y)

2τ(x , y)
− û(x , τ(x , y) + 0; y)

ik
+

ût(x , τ(x , y) + 0; y)

(ik)2

]

+
1

(ik)2

∞∫
τ(x,y)

e ikt ûtt(x , t; y)dt.



From here, using formula (42), we obtain

w(x , y , k) = e ikτ(x,y)
[
α−1(x , y)

2τ(x , y)
− α0(x , y)

ik
+ O

(
1

k2

)]
, as k → ∞. (43)

Hence,

wsc(x , y , k) = e ikτ(x,y)
α−1(x , y)

2τ(x , y)
− e ik|x−y |

4π|x − y |
+ O

(
1

k

)
, as k → ∞. (44)

Then the function f 2(x , y) is represented in the form

f 2(x , y , k) =

(
α−1(x , y)

2τ(x , y)
− 1

4π|x − y |

)2

+
α−1(x , y)

2π|x − y |τ(x , y)
sin2

[
k

2
(τ(x , y)− |x − y |)

]
+ O

(
1

k

)
, (45)

as k → ∞.

Fix here x ∈ S and y ∈ S . Then the latter formula allows determine
τ(x , y) for (x , y) ∈ (S × S). So, we arrive to the inverse kinematic
problem. Solving it, we recover n(x) inside Ω.
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