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Acoustic tomography is a powerful tool for studying natural 
media that are transparent to acoustic waves; it is employed 
when direct measurement of medium characteristics is difficult 
or impossible. 

Medical diagnostic, ocean tomography, geophysical researches 
are the main areas of application of acoustic tomography. 
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Acoustic Tomograph
developing at Faculty of Physics, 
Acoustics Department, MSU,
for the reconstruction of sound speed, 
absorption and blood flow in the soft 
biological tissues (first of all in the breast) 
for the cancer diagnostic purposes.

The circular rotating 
antenna with the 
uniquely distributed  26 
emitting-receiving 
transducers are 
equivalent to a fixed 
multi-element antenna 
with 256 transducers.

Top view

General view



There are known methods how to solve the problem of acoustic 
tomography. Most of them are approximate. The linear 
approximation is generally applied with iteration procedures 
and regularizations. The general perturbation theory is also 
considered.

There are quite mathematically rigorous (at least, for a rather 
wide class of scatterers) functional-analytical methods for 
solving the inverse problems, which were initially developed in 
quantum mechanics. Since the Schrödinger equation in the 
monochromatic (isoenergetic) case is the same as the 
Helmholtz equation up to notation, it gives the simple idea to 
apply these methods for acoustic applications.

Motivation



The main goal of report is to consider the 
application of functional-analytical [1-3] 
algorithm for the purpose of 2D acoustic 
tomography of both scalar and vector 
inhomogeneities. 

This algorithm takes into account the multiple scattering 
processes and does not require either linearization of the model 
or iterations.
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3.Agaltsov A.D. On the reconstruction of parameters of a moving fluid from the 
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It is assumed that the investigated area 
is surrounded over perimeter by the 
quasi-point transducers emitting and 
receiving acoustic fields          . 
In the tomographic area there are an 
unknown vector inhomogeneity
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and an unknown 
scalar inhomogeneity

)(ru

0c – circular frequency, – background sound speed value.

)(rv – flows, )(rc – sound speed,

),(  r – amplitude absorption coefficient.
)(yu

– point of 
transmission

– point of 
reception

How to reconstruct 
these quantities, if 
we know acoustic 
fields            ?

)(r – density,



Step 1. Calculation of operator

Step 2. Estimation of Faddeev generalized scattering 
amplitude           from                         .  

Step 3. Reconstruction of estimates 
from          , via solving some Riemann–Hilbert problem on 

Faddeev eigenfunctions.

Reconstruction algorithm that uses data 
from a quasi-point transducers

)(h

Steps of this algorithm have been discussed previously :  
R.G. Novikov, Phys. Lett. A 238, 73 (1998). 

R.G. Novikov, M.Santacesaria, International Math. Res. Notices, doi:10.1093/imrn/rns025 (2012).

A.D. Agaltsov, R.G. Novikov, J. Math. Phys., 55, 10 (2014), 
V. A. Burov, N. V. Alekseenko, and O. D. Rumyantseva, Acoustical Physics, 55, 6 (2009),
V. A. Burov, A. S. Shurup, D. I. Zotov and O. D. Rumyantseva, Acoustical Physics, 59, 3 (2013)
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Main relationships
Simultaneous reconstruction of ).(),,(),(),( rrrr vc
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Particular case
Reconstruction of without flows ),,(),(),(  rrrc ).(rv
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V. A. Burov, A.L. Konyushkin and O. D. Rumyantseva, Acoustical Physics, 43, 4 (1997)



General case
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Simultaneous reconstruction of ).(),,(),(),( rrrr vc

Procedure for the reconstruction of sound speed 
and density is the same.

There are some difficulties 
with simultaneous 
reconstruction of

in multi frequency regime.

),(),(),( 0 rrr v



Reconstruction of attenuation
      power index        , if  )(r
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Reconstruction 

of   without

 flows   

)(),(),(),( 0 rrrr c

)(rv



Parameters of the medium
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Reconstruction results obtained by using data 
on 2 frequencies, without noise
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Reconstruction results obtained by using data 
on 2 frequencies, without noise
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Influence of noise on reconstruction results
Normally distributed noise with 

rms amplitude deviation    
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Reconstruction results obtained by using data 
on 11 frequencies, with noise

08 x08 y

08 x08 y

08 y

08 y

)(ˆ r

)(r

)(0 r

)(ˆ 0 r

08 x08 y

Model Reconstruction 
results

Crossections of 
model and result

)(r

Np,
8

)( 0
0


 r

)(ˆ r

Np,
8

)(ˆ),( 0
00


 rr

08 x08 y

Np,
8

)( 0
0


 r



,
)(

)(
2),(QIm 0

0

)(

r

r
r

r

c
j

jj


















0

02
),(QIm

c

water

jj

j 




r

  ,
),(QIm

),(QIm
ln1)(ln 


























k

j

k

j

r

r
r

LSM estimation of ).(r

inarriseiesinstabilit,
),(QIm),(QIm

since)(treconstructoimpossibleisitthen,0)(If 0

k

k

j

j












rr

rr

To exclude such points r, the threshold 

П can be applied:  

Improvements of         reconstruction 
in multi frequency regime
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Improvements of         reconstruction 
in multi frequency regime
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Reconstruction 

of all scatterer’s components
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Procedure for the reconstruction of sound speed 
and density is the same as for 
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Reconstruction results obtained by using data 
on 201 frequencies, with noise
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1. The considered algorithm of the joint reconstruction of different 

scatterer’s components based on the Novikov-Agaltsov algorithm, 

shows a high resolution and good noise stability, that makes it 

perspective for the development of practical schemes of acoustic 

tomography in different applications such as:
• reconstruction of                in medical 

diagnostics, when influence of flows  can be negligible,
• reconstruction of              in ocean 

applications, when

2.    Numerical modeling shows the better noise stability for the 

reconstruction of , while             

requires additional multi frequency scattering data and a priory 

information about reconstructed functions.

Conclusions
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THANK YOU!
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