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Main Subject of the Talk. Multivalued Analytic Functions

Let f be a multivalued analytic function on C with a finite set
Yf=X ={ay,...,ap} of branch points, i.e. f € &/(C\ X) but f is
not a (single valued) meromophic function in C\X.

Notation &7°(C \ ) := &/(C\ X)\.Z(C\ X).

Let fix a point zp ¢ ¥, and let f = (f, zp) be a germ of f at the point
2, i.e., power series (p.s.) at z = zg

(o)

f(z) = ch(z—zo)k. (1)
k=0
In other words
(f, 20) = (20, {Ck}r—p)- @)
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Analytic Continuation. General Concepts

Let we are given a germ f = (2o, {ck}};_,) of the multivalued
analytic function f € «7°(C \ T).

All the global properties of f can be recovered from these local
data, i.e. from a given germ f.

Problem of “recovering” some of global data from the local ones.
An example.

Cauchy—Hadamard Formulae

for the radius of convergence R = R(f) of given p.s. f. Let

T
— = 1im |cq|Vk.
R k—>00| kl

Then p.s. f converges for |z — zp| < R.

\
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Analytic Continuation. General Concepts

Fabry Ratio Theorem (1896)
Letf e e%p(Zo),

f(2) = > a(z - 20)~.
k=0
Let
Ck "
—— —>8, k—ooo, seC':=C\{0}
Ck+1

Then R = |s| and s is a singular point of f(z), |z — zo| < R on the
circle |z — zg| = R.
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Analytic Continuation. Padé Approximants

Let zo = 0, f € 77(0).

For fixed n, m € Ny := N U {0} we seek for two polynomials
Pn.m, Qn,m, deg Pnm < n, deg Qn,m < m, Qn,m # 0, and such

(Qnf = Pam)(2) = O(2""™"), z>o0.

In generic case

Pn,m

f(z) - 0

(z)=0(z"™"). z>0, 3)

From (3) it follows

Pn,m
C?n,m

(2)=co+ciz+ -+ Crmz™™ + O (2™, z 0.

Rational function [n/mls(z) := Pnm(2)/Qn.m(2) is called the Padé
approximant of type (n, m) to p.s. f at the point z = 0.
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Analytic Continuation. Padé Approximants. Row Sequences

Padé Table for f: -
i)

n,m=0

When m € Ny is fixed we have the m-th row of Padé Table.
When n = m we have the n-th diagonal PA sequence [n/n]s.

Let m = 1 then Qn1(2) = z — {n1, where {n1 = Cn/Cp11.

Fabry Theorem Interpretation
Letm =1 and

{n1—>SeC’, n—o oo

Then f € ¢ (|z| < |s|) and s is a singular point of f(z), |z| < |s|.
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Padé Approximants (PA). Row Sequences

Theorem (Suetin, 1981)

Letf e s#(0) and m € N s fixed.
Suppose that for each n > ny PA [n/m]s has exactly m finite poles
{n"] g e ey {n,m SUCh that

{nj— 8 €C\{0}, n—ooo, j=1,...,m,
where
O<layl < --<lag-1l <la, =---=laml = R.
Then
1) (z) has meromorphic continuation into |z| < R, all the points
ai,...,a, 1 are the only poles off in|z| < R;

2) all the points a,,, .. .,am are singular points of f on the |z| = R.

v
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Pélya Theorem

Let f € (o), f(2) = i,fisagermoffe;z{"@\z.
£ 2
=i

Denote
Co Cq ...Cn-1
Cq Co ...Cp
An(f) =
Cn-1 Cn Cop-2

For a compact set K c C denote by Q(K) 5 oo the infinite
component of C \ K. Let d(K) be the transfinite diameter of K.

Pélya Theorem (1929)
Letf e 7 (Q2(K)) where K c C is a compact set. Then

m |An(f)|1/n2

n—oo

< d(K) = cap(K).
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Analytic Continuation. Some Conclusions

In each case we should know the infinite vector

¢ =(cop,...,Ck,...) of all Taylor coefficients of the given germ f.
Any finite set cy = (co, - . ., cn) is not enough for the conclusions
about any global property of f € sz%"(@\ Y).

To be more precise, we should know an infinite tail

cN = (cng1.Cngos.. ) OF €.

Main Question: In what way can we use the local data

(¢

f2) =2, i

k=0

to discover some of the global properties of f € &7°(C \ X) ?
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Stahl Theory (1985-1986) for Diagonal PA. Stahl Compact Set S
Let f € # () be a germ of f € &7°(C \ X).

Theorem 1

Denote by 7 := {G : G is a domain, G > oo,f € 5(G)}. Then
1) there exists a unique “maximal” domain D = D(f) € 2, i.e.,

cap(dD) = inf{cap(dG) : G € 7};
2) there exists a finite set e = e(f), such that the compact set

q
S:=0D\e= U S;j, and possesses the following S-property
=1

dgs(z,00)  dgs(z, ) o 1 ao
P Frem— zeS —HS-,

S; Is the open arc of S, gs(z, ) is Green’s function for D(f).
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Stahl Theory (1985-1986) for Diagonal PA. Convergence of PA

Theorem 2

For the diagonal PA [n/n]t = Pn/Q, of f we have as n — oo

[n/n)i(z) =5 #(z), zeD = D(f); (4)
the rate of convergence in (4) is given by

Ca|
1/n 228 g-2gs(z.) o 1, zeD, n-— co;

[f(2) = [n/nls(2)]

the following representation holds true in D(f):

f(2) 2 [No/No(z z € D(f).

ZN QnQn+1)(z)
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Stahl Theory (1985-1986) for Diagonal PA. Structure of S

Theorem 3

Compact set S consists of the trajectories of a quadratic differential

S:{zeC:Ref 1/E(g)ofgzo},
a Ap

Ap(z) = ']‘[1(2— a]?*), {a;‘,...,a;’;,} cX={ay,....,ap), P <P,
j:

p'-2

Vp-2(z) = T1 (z-vj), v; are the Chebotarév points of S.

=

—_

In general >\ {a], ..., a;,} # @. Thus these points are “invisible”
for PA. Stahl terminology: points of {aj,.. ., a;,} are “active” branch
points of f, the other points are “inactive” branch points of f.
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Classical PA. Stahl’s Theory: Numerical Examples
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Figure 1: Zeros and poles of the PA [130/130]; for
f(z) = (z - (-12+0.80)) (2 - (0.9 + 1.5)) °(z - (0.5 - 1.20)) ",
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Classical PA. Stahl’s Theory: Numerical Examples

4

Figure 2: Zeros and }:_;E)Ies of _FZ’A [267/0267]f fo?
f(z) = {(z + (4.3 +1.0i))(z - (2.0 + 0.5i))(z + (2.0 4+ 2.0i))(z + (1.0 —
3.0i))(z — (4.0 + 2.0))(z — (3.0 + 5.0i))}""/®.
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Classical PA. Stahl’s Theory: Numerical Examples
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Figure 3: Zeros and poles of PA [300/300]; for
f(2) = z-(-1.0+i-8)\"? (z-(-1.0+i-15)\"2
- \z-(1.0+i-1.2) z-(-1.0-i-1.5)
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Classical PA. Stahl’s Theory: Numerical Examples
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Figure 4: Zeros and poles of PA [300/300]; for
z—(-1.0+i-.8) z—(-1.0+i-15
f(z) = log : [ 3 .
z—-(1.0+1i-1.2) z—(-1.0-i-1.5)
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PA for Hyperelliptic Functions. Nuttall’s Approach (1975-1977)

2g+2
Let f € C(z,w), w2 = [] (z - €;). Then all the branch points
j=1
e1,...,Ezg40 are active.
Let 7: Mo — C be the two-sheeted Riemann surface (RS) of
function w, z = (z, w) € R3 be a point on Ry, 71(z) = z. Let
oo, 0@} = 77 (c0)

Z g
G(z)::—f ci
e

’ w

be the canonical Abelian integral of 3-rd kind, which periods are all
pure imaginary, i.e.,

G(z) = —log z + regular part, z — co(!),

G(z) =log z + regular part, z — co(®,
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PA for Hyperelliptic Functions. Nuttall’s Approach (1975-1977)

The inequality
G(zM) < G(21?) (5)

define the global partition of R, onto two open sheets R(1) 5 z(1)
and % 5 z(3) sych that:

1) both of sheets are domains, 7(R()) = 7(%®) = D = D(f) is
Stahl domain for each f € C(z, w),

2) for the boundary set I = a%(") = 3% we have 7(I') = S.

gs(z,) = —Re G(z“)), z¢S.

The partition (5) is called Nuttall’s partition of a two-sheeted RS Ro.
When f € 77 () is a germ of a hyperelliptic function, all Stahl’s
theorems follows from Nuttall’s partition (5) (Nuttall, 1975-1977).
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Stahl’'s Theory. Active and Inactive Points. Model Class

Let o(z) :==z+ Vz2-1,z€ C\ [-1,1], is the inverse of
Zhukowsky function; here Vz2 —1/z — 1 as z — oo. Thus
lo(z)l > 1whenz ¢ A :=[-1,1].

Let
f(z) = [ [z Ae) =] | (A,- - é) B (6)

=1 =1

m
where m> 2, Aj € C, |Aj > 1,a;€C\Z, Y, o =0.
=1

Then fe &7°(C\ X), X = {£1,a1,...,am}, & := (Aj+ 1/A))/2.
Let 2 be the class of all functions f of type (6).

For each germ f € (o) of f € 2 we have Stahl compact set

S =[-1,1] and D = D(f) = C \ [-1, 1]. From Stahl Theory it
follows that the points +1 are the only active points. All the points
{ai,...,am} are inactive singular points.

Question: Is it possible to recover {ay, ..., an} from the germ £ ?
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Active and Inactive Points. Hermite—Padé Polynomials

For a germ f € 77 (o) of f ¢ C(z) let define Padé polynomials

1
Zn+1

Then [n/n]s = —=Pno/Pn1.-
If fis not a hyperelliptic function, let define Hermite—Padé
polynomials Qnj, j = 0, 1,2, of degree n for f,f? as

1

(Qn,O + Qnaf+ Qn,zfz)(z) =0 (W

), Z — oo, (8)
The construction (8) of HP polynomials is based just on the same
germ f as the construction (7) but involves f, f* instead of f.

Does the construction of HP has any advantages before the
construction (7)as n — o0 ?
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Hermite—Padé Polynomials. Cubic Functions

Let w be given by the equation

w3 + r(2)W? + r(2)w + rg(z) =0, ro. 11,12 € C(2).
Let 7: R3 — C be the three-sheeted RS of the w, z = (z, w),
n(z) = z. Suppose © ¢ ¥y, 171 (c0) = {00(1), 00(2) c0(3)},
Let % (z) be a unique Abelian integral of 3-rd kind on %3 which

periods are pure imaginary and such that

U (z) = —2log z + regular part, z — co("),
% (z) =log z + regular part, z— ool j=23.

Let define the open subsets R, %@ and RE) of R3 by

Re % (z)) < Re % (2®) < Re % (z®), zU) exW).  (9)

The (9) is similar to G(z(1)) < G(z(?)) for a Ro.
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Hermite—Padé Polynomials. Cubic Functions

Nuttall’s Partition of R3

When 1-st sheet R() is a domain the partition
Re % (z)) < Re % (z2®)) < Re % (21), zU) e RV,

is called Nuttall's Partition of Ra (with respect to z = co(1)),

Nuttall’'s Conjecture (1984)
Nuttall’s Partition exists for every Rs.

In general the Conjecture is still open problem (up to some trivial
cases).
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Hermite—Padé Polynomials. Cubic Functions

Theorem (Komlov, Kruzhilin, Palvelev, Suetin, 2016)

There exists a natural subclass & of cubic functions such that:
1) for each w € ¥ Nuttall's Conjecture holds true,
2) letf € C(z,w) \ C(z) and f € (o)), then as n — o

Q
1 (2) B —{i(20) + 120, ze,
Qno cap

(z2) = H(zE(z?), zeD,

Qn,2

where domain © = R(1) U R andf is a (single valued)
meromorphic function in D.

Forw e %, f € C(z,w), f € 5 (c0(1) Stahl's domain
D(f) = n(%(M)
02y 28 —f(zM), z() e jM,
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Padé PonnomiaIs P100’0, P100’1
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Figure 5: Numerical distribution of zeros and poles of PA [100/100]¢(z).
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Hermite—Padé Polynomials Q100.0, Q100.1, Q1002
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Figure 6: Distribution of zeros of HP polynomials Qyqg;, j = 0, 1,2.
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Numerical example

4 5 0 2 4
Figure 7: Numerical distribution of poles and zeros of PA [60/60];.
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Numerical example
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Figure 8: Numerical distribution of zeros Qsgoj and Rsgo.
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Nuttall’s partition of a three-sheeted Riemann surface

Thank you for your attention !
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