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Gromov’s Non-Squeezing Theorem

@ Let B” be the unit ball in C"; then D = B'  C is the unit
disc. B"(r) is the ball of radius r.
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@ Let B” be the unit ball in C"; then D = B'  C is the unit
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o Letw=Y1,dxAdy; =4[ dz A dz be the standard
symplectic form in C" = R2".

@ Asmoothmap F : Q c C" — C"is called symplectic if it
preserves the symplectic form w, that is, F*w = w.

Theorem (Gromov, 1985)

Letr,R > 0. Suppose there is a symplectic embedding
F :B"(r) — D(R) x C"='. Thenr < R.
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Gromov’s Non-Squeezing Theorem

@ Let B” be the unit ball in C"; then D = B'  C is the unit
disc. B"(r) is the ball of radius r.

o Letw=Y1,dxAdy; =4[ dz A dz be the standard
symplectic form in C" = R2".

@ Asmoothmap F : Q c C" — C"is called symplectic if it
preserves the symplectic form w, that is, F*w = w.

Theorem (Gromov, 1985)

Letr,R > 0. Suppose there is a symplectic embedding
F :B"(r) — D(R) x C"='. Thenr < R.

@ What is complex here? ...Only notation.

@ Gromov’s proof is based on complex analysis, namely on
J-complex (pseudoholomorphic) curves.
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Infinite-dimensional versions

Flows of Hamiltonian PDEs are symplectic transformations.
Non-squeezing property is of great interest. There are many
results for specific PDEs.

@ Kuksin (1994-95) proved a general non-squeezing result
for symplectomorphisms of the form F = / + compact.
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Infinite-dimensional versions

Flows of Hamiltonian PDEs are symplectic transformations.
Non-squeezing property is of great interest. There are many
results for specific PDEs.

@ Kuksin (1994-95) proved a general non-squeezing result
for symplectomorphisms of the form F = / + compact.

@ Bourgain (1994-95) proved the result for cubic NLS.
Consider time ¢ flow F : u(0) — u(t) of the equation

ius + Uxx + |UPu=0, xeR/Zt>D0.

Then F is a symplectic transformation of L2(0, 1),
0 < p < 2. Bourgain proved the non-squeezing property
for p = 2. For other values of p the question is open.

Alexander Tumanov Non-Squeezing for the discrete Schrodinger equation



Infinite-dimensional versions

@ Colliander, Keel, Staffilani, Takaoka, and Tao (2005)
proved the result for the KdV.
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Infinite-dimensional versions

@ Colliander, Keel, Staffilani, Takaoka, and Tao (2005)
proved the result for the KdV.

@ Roumégoux (2010) - BBM equation.

@ Abbondandolo and Majer (2014) - in case F(B) is convex.

@ Finally, Fabert (2015) proposes a proof of the general
result using non-standard analysis.

We prove a non-squeezing result for a symplectic
transformation F of the Hilbert space assuming that the
derivative F’ is bounded in Hilbert scales. We apply our result
to discrete nonlinear Schrédinger equations.

Alexander Tumanov Non-Squeezing for the discrete Schrodinger equation



Hilbert scales

Let H be a complex Hilbert space with fixed orthonormal basis
(en)p2y. Let (0n)72 4 be a sequence of positive numbers such
that 8, — oo as n — oo, for example, 6, = n.
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Let H be a complex Hilbert space with fixed orthonormal basis
(en)p2y. Let (0n)72 4 be a sequence of positive numbers such
that 8, — oo as n — oo, for example, 6, = n.

For s € R we define H; as a Hilbert space with the following

norm:
”XHE = Z |Xn’29%97 X = anem
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Hilbert scales

Let H be a complex Hilbert space with fixed orthonormal basis
(en)p2y. Let (0n)72 4 be a sequence of positive numbers such
that 8, — oo as n — oo, for example, 6, = n.

For s € R we define H; as a Hilbert space with the following

norm:
”XHE = Z |Xn’29%97 X = anem

The family (Hs) is called the Hilbert scale corresponding to the
basis (en) and sequence (6,). We have Hy = H. For s > r, the
space H; is dense in H,, and the inclusion Hs C H, is compact.
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Hilbert scales

Let H be a complex Hilbert space with fixed orthonormal basis
(en)p2y. Let (0n)72 4 be a sequence of positive numbers such
that 8, — oo as n — oo, for example, 6, = n.

For s € R we define H; as a Hilbert space with the following

norm:
”XHE = Z |Xn’29%.97 X = anem

The family (Hs) is called the Hilbert scale corresponding to the
basis (en) and sequence (6,). We have Hy = H. For s > r, the
space H; is dense in H,, and the inclusion Hs C H, is compact.

Example. H = [2(0, 1) with the standard Fourier basis,
0, = (14 n?)'/2, n € Z. Then Hj is the standard Sobolev
space.
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Main Result

Let B(r) = B°°(r) be the ball of radius r in H.

Letr,R > 0. Let F : B(r) — D(R) x H be a symplectic
embedding of class C'. Suppose there is sy > 0 such that for
every |s| < sy the derivative F'(z) is bounded in Hs uniformly in
zeB(r). Thenr <R.
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Discrete non-linear Schrodinger equation

Consider the following system of equations

ip + F(|Un®)un + > anktix = 0. (1)
P

Here u(t) = (un(t))nez, un(t) € C, t > 0.
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Discrete non-linear Schrodinger equation

Consider the following system of equations

ip + F(|Un®)un + > anktix = 0. (1)
P

Here u(t) = (un(t))nez, un(t) € C, t > 0.

We assume that f : R, — R and its derivative are continuous
on the positive reals, furthermore,

limy_0 f(x) = limy_o[xf'(x)] = 0. For example, one can take
f(x) = xP with real p > 0. The hypotheses on the function f are
imposed in order for the flow of (1) to be C' smooth.
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Discrete non-linear Schrodinger equation

Consider the following system of equations

ip + F(|Un®)un + > anktix = 0. (1)
P

Here u(t) = (un(t))nez, un(t) € C, t > 0.

We assume that f : R, — R and its derivative are continuous
on the positive reals, furthermore,

limy_0 f(x) = limy_o[xf'(x)] = 0. For example, one can take
f(x) = xP with real p > 0. The hypotheses on the function f are
imposed in order for the flow of (1) to be C' smooth.

Here A = (a,x) is an infinite matrix independent of .
Furthermore, A is a hermitian matrix, that is, apx = ax,. For
simplicity we also assume that the entries ap, are uniformly
bounded and there exists m > 0 such that a,, = 0 if

|n— k| > m.
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Discrete non-linear Schrodinger equation

The equation (1) with f(x) = x is called the discrete
self-trapping equation. The special case with ap, = 1 if
|[n— k| =1 and a, = 0 otherwise, is the discrete nonlinear
(cubic) Schraédinger equation:

it 4 |Un|?Un + Up—1 + Upyq = 0.

There are other discretizations of the Schrédinger equation, in
particular, the Ablowitz-Ladik model that can be treated in a
similar way.
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Discrete non-linear Schrodinger equation

The equation (1) can be written in the Hamiltonian form:

. OH
Un — Iaiuin

The Hamiltonian H is given by
H= Z F(’Un’2) + Z ankUnU,
n n,k

here F' = f and F(0) = 0.
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Discrete non-linear Schrodinger equation

The equation (1) can be written in the Hamiltonian form:

. OH
Un — Iaiuin

The Hamiltonian H is given by
H= Z F(’Un’2) + Z ankUnU,
n n,k

here F' = f and F(0) = 0.

The equation (1) preserves the 2(Z) norm

lulle = (32, |un|?)'/2. Hence, the flow u(0) +— u(t) of (1) is
globally defined on /?(Z) and preserves the standard
symplectic form w = (i/2) >, dup A dUp.
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Discrete non-linear Schrodinger equation

The equation (1) can be written in the Hamiltonian form:
u/ — /ﬁ
n — 87n

The Hamiltonian H is given by
H= Z F(’Un’2) + Z ankUnU,
n n,k

here F' = f and F(0) = 0.

The equation (1) preserves the 2(Z) norm

lulle = (32, |un|?)'/2. Hence, the flow u(0) +— u(t) of (1) is
globally defined on /?(Z) and preserves the standard
symplectic form w = (i/2) >, dup A dUp.

We verify that our main result applies to (1), hence, the
non-squeezing property holds for the flow of (1).
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Holomorphic discs

The proof is based on (pseudo) holomorphic discs.
A holomorphic disc z : D — H, ¢ — z(¢) satisfies the
Cauchy-Riemann equation

ZZZO
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Holomorphic discs

The proof is based on (pseudo) holomorphic discs.
A holomorphic disc z : D — H, ¢ — z(¢) satisfies the
Cauchy-Riemann equation

ZZZO

Change coordinates by a non-holomorphic diffeomorphism
w = F(2).
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Holomorphic discs

The proof is based on (pseudo) holomorphic discs.
A holomorphic disc z : D — H, ¢ — z(¢) satisfies the
Cauchy-Riemann equation

ZZZO

Change coordinates by a non-holomorphic diffeomorphism
w = F(z). Then the equation for a holomorphic disc will turn
into

wz = A(w)wg.

Here
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Pseudo-holomorphic discs

Let F be a diffeomorphism. Then F is symplectic iff

PP —QQ* =1, PQ'—QP!'=0.
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Pseudo-holomorphic discs

Let F be a diffeomorphism. Then F is symplectic iff
PP —QQ* =1, PQ' —QP'=0.
Then it follows that for A= QP ' we have

1Al <1, A=A

Alexander Tumanov Non-Squeezing for the discrete Schrodinger equation



Pseudo-holomorphic discs

Let F be a diffeomorphism. Then F is symplectic iff
PP*—QQ* =1, PQ'—QP'=0.
Then it follows that for A= QP ' we have
Al <1, A=A

Furthermore, if F satisfies the hypotheses of the main theorem,
then there is 0 < a < 1 and sy > 0 such that for all z € B(r) and
0 < s < sy we have |A(F(2))|ls < a.
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Pseudo-holomorphic discs

Let F be a diffeomorphism. Then F is symplectic iff
PP*—QQ* =1, PQ'—QP'=0.
Then it follows that for A= QP ' we have
Al <1, A=A

Furthermore, if F satisfies the hypotheses of the main theorem,
then there is 0 < a < 1 and sy > 0 such that for all z € B(r) and
0 < s < sy we have |A(F(2))|ls < a.

Let A be an operator valued function on H. We now don’t
assume that A is obtained as above, but we do assume that
|A|| < 1. We call maps z : D — H satisfying the equation

zz = A(z)z; pseudo-holomorphic or A-complex discs.
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Pseudo-holomorphic discs in a cylinder

Theorem (A)

Lety =D x H. Let A be a continuous operator-valued function
onH such that A(z) =0 forz ¢ ¥.
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Pseudo-holomorphic discs in a cylinder

Theorem (A)
Lety =D x H. Let A be a continuous operator-valued function
onH such that A(z) =0 forz ¢ ¥.

Suppose there is a < 1 and sy > 0 such that for every z € ¥
and0 < s < s{, we have |A||s < a.
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Pseudo-holomorphic discs in a cylinder

Theorem (A)

Lety =D x H. Let A be a continuous operator-valued function
onH such that A(z) =0 forz ¢ ¥.

Suppose there is a < 1 and sy > 0 such that for every z € ¥
and0 < s < s{, we have |A||s < a.

Then for some p > 2, for every point zy € ¥ there exists an
A-complex disc f € W'P(ID, H)) such that

f(D) C &,
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Pseudo-holomorphic discs in a cylinder

Theorem (A)

Lety =D x H. Let A be a continuous operator-valued function
onH such that A(z) =0 forz ¢ ¥.

Suppose there is a < 1 and sy > 0 such that for every z € ¥
and0 < s < s{, we have |A||s < a.

Then for some p > 2, for every point zy € ¥ there exists an
A-complex disc f € W'P(ID, H)) such that

f(D) C &,

f(bD) C b¥,
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Pseudo-holomorphic discs in a cylinder

Theorem (A)

Lety =D x H. Let A be a continuous operator-valued function
onH such that A(z) =0 forz ¢ ¥.

Suppose there is a < 1 and sy > 0 such that for every z € ¥
and0 < s < s{, we have |A||s < a.

Then for some p > 2, for every point zy € ¥ there exists an
A-complex disc f € W'P(ID, H)) such that

f(D) C &,

f(bD) C b¥,

f (0) = 20,

Alexander Tumanov Non-Squeezing for the discrete Schrodinger equation



Pseudo-holomorphic discs in a cylinder

Theorem (A)

Lety =D x H. Let A be a continuous operator-valued function
onH such that A(z) =0 forz ¢ ¥.

Suppose there is a < 1 and sy > 0 such that for every z € ¥
and0 < s < s{, we have |A||s < a.

Then for some p > 2, for every point zy € ¥ there exists an
A-complex disc f € W'P(ID, H)) such that

f(D) C &,

f(bD) C b¥,

f(0) = 2,

and Area(f) = 7.

Here Area(f) = [, fw.
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Proof of Non-Squeezing

We first prove our main non-squeezing theorem assuming
Theorem (A).
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We first prove our main non-squeezing theorem assuming
Theorem (A).

WLOG R = 1. Suppose r > 1.
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Proof of Non-Squeezing

We first prove our main non-squeezing theorem assuming
Theorem (A).

WLOG R = 1. Suppose r > 1.
Let F: B(r) — X be a symplectic embedding, F*w = w.
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Proof of Non-Squeezing

We first prove our main non-squeezing theorem assuming
Theorem (A).

WLOG R = 1. Suppose r > 1.
Let F: B(r) — X be a symplectic embedding, F*w = w.

WLOG, shrinking r if necessary, assume F extends to a

neighborhood of B(r).

Alexander Tumanov Non-Squeezing for the discrete Schrodinger equation



Proof of Non-Squeezing

We first prove our main non-squeezing theorem assuming
Theorem (A).

WLOG R = 1. Suppose r > 1.
Let F: B(r) — X be a symplectic embedding, F*w = w.

WLOG, shrinking r if necessary, assume F extends to a

neighborhood of B(r).

Let A= 0/371, P= FZ! Q= F?-
Then ||A||s < a, 0 < s < s1. Extend A to H satisfying the
hypotheses of Theorem (A).
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Proof of Non-Squeezing

Then there exist an A-complex disc satisfying the conclusions
of Theorem (A), in particular f(0) = F(0) and Area(f) = .
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Proof of Non-Squeezing

Then there exist an A-complex disc satisfying the conclusions
of Theorem (A), in particular f(0) = F(0) and Area(f) = .

Then X = F~1(f(D)) is a usual analytic set in B(r).
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Proof of Non-Squeezing

Then there exist an A-complex disc satisfying the conclusions
of Theorem (A), in particular f(0) = F(0) and Area(f) = .

Then X = F~1(f(D)) is a usual analytic set in B(r).

Note that the area of an A-complex disc as well as the area of
any part of it is positive.
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Proof of Non-Squeezing

Then there exist an A-complex disc satisfying the conclusions
of Theorem (A), in particular f(0) = F(0) and Area(f) = .

Then X = F~1(f(D)) is a usual analytic set in B(r).

Note that the area of an A-complex disc as well as the area of
any part of it is positive.

Since Area(f) = w, we have Area(X) < 7. On the other hand by
Lelong’s result of 1950, Area(X) > wr?.
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Proof of Non-Squeezing

Then there exist an A-complex disc satisfying the conclusions
of Theorem (A), in particular f(0) = F(0) and Area(f) = .

Then X = F~1(f(D)) is a usual analytic set in B(r).

Note that the area of an A-complex disc as well as the area of
any part of it is positive.

Since Area(f) = w, we have Area(X) < 7. On the other hand by
Lelong’s result of 1950, Area(X) > wr?.

Hence r < 1 contrary to the assumption. The proof is complete.
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Attempting to prove Theorem (A)

Notation:
ceDb, (z,w)eCxH=H,
f(¢) = (2(¢), w(¢))-
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Attempting to prove Theorem (A)

Notation:
ceDb, (z,w)eCxH=H,
f(¢) = (2(¢), w(¢))-

Cauchy-Riemann equations f- = A?Z, that is:

(3) 4o (3),
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Attempting to prove Theorem (A)

Notation:
ceDb, (z,w)eCxH=H,
f(¢) = (2(¢), w(¢))-

Cauchy-Riemann equations f- = A?Z, that is:

(), mem(3);

Initial conditions:
z(0) = zp, w(0) = wp.
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Attempting to prove Theorem (A)

Notation:
ceDb, (z,w)eCxH=H,
f(¢) = (2(¢), w(¢))-

Cauchy-Riemann equations f- = A?Z, that is:

(3) 4o (3),

Initial conditions:
z(0) = zp, w(0) = wp.

Boundary condition:

=1 =1z =1.
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Attempting to prove Theorem (A)

Notation:
ceDb, (z,w)eCxH=H,
f(¢) = (2(¢), w(¢))-

Cauchy-Riemann equations f- = A?Z, that is:

(3) 4o (3),

Initial conditions:
z(0) = zp, w(0) = wp.

Boundary condition:
Cl=1 =1zl =1.

The boundary condition is non-linear. Most if not all general
results assume linear boundary conditions.
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Reduction to linear boundary condition
Rough idea

Let A be a triangle.
Let D — A be an area preserving map.
Then it gives rise to a sympectomorphism D x H — A x H.
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Reduction to linear boundary condition
Rough idea

Let A be a triangle.
Let D — A be an area preserving map.
Then it gives rise to a sympectomorphism D x H — A x H.

The non-linear condition z(¢) € bD reduces to the linear
condition z(¢) € bA, although with discontinuous coefficients.
The latter can be handled by a modified Cauchy-Green
operator.
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Reduction to linear boundary condition
Rough idea

Let A be a triangle.
Let D — A be an area preserving map.
Then it gives rise to a sympectomorphism D x H — A x H.

The non-linear condition z(¢) € bD reduces to the linear
condition z(¢) € bA, although with discontinuous coefficients.
The latter can be handled by a modified Cauchy-Green
operator.

Introduce the triangle
A={zeC:0<Imz<1—]|Rez|}.

Note Area(A) = 1, so we will be looking for a disc of area 1.
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Reduction to modified Cauchy-Green operators

Recall the Cauchy-Green operator

_1/f(t)dt/\dt
T 2mify t—(

T : LP(D) — W'P(D) is bounded for p > 1.
0Tu = u, that is, T solves the 9-problem in .

TH(C)
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Reduction to modified Cauchy-Green operators

Recall the Cauchy-Green operator

B 1/ f(t) dt A dt

T 2mify t—C

T : LP(D) — W'P(D) is bounded for p > 1.

0Tu = u, that is, T solves the 9-problem in .

Let ¢ : D — A be the conformal map, ®(£1) = £1, (i) = /.

TH(C)
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Reduction to modified Cauchy-Green operators

Recall the Cauchy-Green operator

A f(t) dt A dt
Tf(o_zwi/ﬂ)tg .

T : LP(D) — W'P(D) is bounded for p > 1.

0Tu = u, that is, T solves the 9-problem in .

Let ¢ : D — A be the conformal map, ®(£1) = £1, (i) = /.
We look for a solution of Cauchy-Riemann equations in the form

zZ = T2U+¢
w = T{V + const

The operators T; and T, are modified Cauchy-Green operators.
They differ from T by holomorphic functions.
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Reduction to modified Cauchy-Green operators

Recall the Cauchy-Green operator

- 1/ (t) dt A di
T 2nify t-C
T : LP(D) — W'P(D) is bounded for p > 1.
0Tu = u, that is, T solves the 9-problem in .

Let ¢ : D — A be the conformal map, ®(£1) = £1, (i) = /.
We look for a solution of Cauchy-Riemann equations in the form

TH(C)

zZ = T2U + ¢

w = T{V + const
The operators T; and T, are modified Cauchy-Green operators.
They differ from T by holomorphic functions.

Ty satisfies Re (T1u)|pp = 0.
Toulpp takes values in the lines L; parallel to the sides of A.
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Modified Cauchy-Green operators

Let Q be a non-vanishing holomorphic function in D. We define

Tau(¢) = Q(0) (T(u/Q)(©) + ¢ T(u/Q)(1/0))

B u(t) u(t) dt A dt
_Q(C)/< Q-0 " ()(tC—1)> o
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Modified Cauchy-Green operators

Let Q be a non-vanishing holomorphic function in D. We define

Tau(¢) = Q(0) (T(u/Q)(©) + ¢ T(u/Q)(1/0))
B u(t) u(t) dt A dt
B Q(C)/D (Q(t (t— q) Q(t)(tc — )) 2ri

Tif = Tof + 2ilm Tf(1) with Q(¢) = ¢ — 1. Then
Re (T1u)|pp = O (Vekua).

Alexander Tumanov Non-Squeezing for the discrete Schrodinger equation



Modified Cauchy-Green operators

Let Q be a non-vanishing holomorphic function in D. We define

Tau(¢) = Q(0) (T(u/Q)(©) + ¢ T(u/Q)(1/0))
B u(t) u(t) dt A dt
-0, (om(t —0 " amc - )> 2ri

T1f = Tof + 2ilm Tf(1) with Q(¢) = ¢ — 1. Then
Re (Tyu)|pp = 0 (Vekua).
T2 = Tg with Q(¢) = (¢ — 1)V4(¢ + 1)V4(¢ — )'/2, o = const.
Then Tou(y;) C L;. Here ;, j=0,1,2, denote the arcs [-1,1],
[1,i], [i, —1] respectively.
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Modified Cauchy-Green operators

Let Q be a non-vanishing holomorphic function in D. We define

Tau(¢) = Q(0) (T(u/Q)(©) + ¢ T(u/Q)(1/0))
B u(t) u(t) dt A dt
-0, (O(t)(t —0 " amc - )> 2ri

Tif = Tof + 2ilm Tf(1) with Q(¢) = ¢ — 1. Then

Re (T1u)|pp = 0 (Vekua).

To = T with Q(¢) = (¢ — 1)V/4(¢ + 1)V4(¢ — i)/?, o = const.
Then Tou(v;) C L;. Here ;, j=0,1,2, denote the arcs [-1, 1],
[1,1], [i, —1] respectively.

Operators similar to T, were introduced by Antoncev and
Monakhov for application to problems of gas dynamics.
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Recall that the operator S = 0T for the whole plane is an
isometry of L2(C). It turns out the operators S; = 9T}, j = 1,2,
have similar properties.
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Recall that the operator S = 0T for the whole plane is an
isometry of L2(C). It turns out the operators S; = 9T}, j = 1,2,
have similar properties.

S; : LP(D) — LP(DD) is bounded for p close to 2.
1Sjll 2y = 1-
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Recall that the operator S = 0T for the whole plane is an
isometry of L2(C). It turns out the operators S; = 9T}, j = 1,2,
have similar properties.

S; : LP(D) — LP(DD) is bounded for p close to 2.
1Sjll 2y = 1-

The first assertion follows by the corresponding property the
operator S because the difference is a smoothing operator.
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Recall that the operator S = 0T for the whole plane is an
isometry of L2(C). It turns out the operators S; = 9T}, j = 1,2,
have similar properties.

S; : LP(D) — LP(DD) is bounded for p close to 2.
1Sjll 2y = 1-

The first assertion follows by the corresponding property the
operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the
boundary values of T;u do not bound a positive area.
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Recall that the operator S = 0T for the whole plane is an
isometry of L2(C). It turns out the operators S; = 9T}, j = 1,2,
have similar properties.

S; : LP(D) — LP(DD) is bounded for p close to 2.
1Sjll 2y = 1-

The first assertion follows by the corresponding property the
operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the
boundary values of T;u do not bound a positive area.

The operators S; extend as bounded operators on LP(ID, H) for
all p close to 2 and have the corresponding properties.
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Integral equation
Reduction

To have a little more freedom, we take the initial conditions in
the form z(7) = 2z, w(7) = wy. Here 7 € D will be an unknown
parameter.

Alexander Tumanov Non-Squeezing for the discrete Schrodinger equation



Integral equation
Reduction

To have a little more freedom, we take the initial conditions in
the form z(7) = 2z, w(7) = wy. Here 7 € D will be an unknown
parameter.

We look for a solution of the form

z=Towu+o
w = T1V—T1V(T)+W0.

Then w(1) = wp is automatically satisfied.
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Integral equation
Reduction

To have a little more freedom, we take the initial conditions in
the form z(7) = 2z, w(7) = wy. Here 7 € D will be an unknown
parameter.

We look for a solution of the form

z=Towu+o
w = T1V—T1V(T)+W0.

Then w(1) = wp is automatically satisfied.

The Cauchy-Riemann equation fE = A7Z turns into the integral

equation
u\ _ Sou+ @
<v)—A(Z,W)< SV )
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How to satisfy z(7) = z

Using the equation
z=Tou+ o,

we now rewrite the condition z(7) = z; in the form

T = \U(Zo — TgU(T)).
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How to satisfy z(7) = z

Using the equation
z=Tou+ o,

we now rewrite the condition z(7) = z; in the form
T = \U(Zo — TgU(T)).

Here ¥ : C — D is a continuous map defined as follows.

Wiz — o~ 1(2) if ze A,
D =\o-1(ban|z.2) i z¢A
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Existence of solution

We now have the system

zZ= T2U+¢
w=Tiv—Tv(r)+w

(1) e (5527 )

T =V(Zy — Tou(T))
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Existence of solution

We now have the system

zZ= T2U+¢
w=Tiv—Tv(r)+w

(1) e (5527 )

T =V(Zy — Tou(T))

By a priori estimates in LP(DD, Hs) for some p > 2, we show that
the system defines a compact operator. By Schauder principle
the system has a solution.
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Properties of the solution

Now that all the quantities (z, w, u, v, 7) are defined, we claim
they have all the desired properties.

@ 7 € D (not on the boundary). It follows by the boundary
conditions of T.
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Properties of the solution

Now that all the quantities (z, w, u, v, 7) are defined, we claim
they have all the desired properties.

@ 7 € D (not on the boundary). It follows by the boundary
conditions of T.

@ z(D) c D by maximum principle because z is holomorphic
at ¢ if z(¢) ¢ D.
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Properties of the solution

Now that all the quantities (z, w, u, v, 7) are defined, we claim
they have all the desired properties.

@ 7 € D (not on the boundary). It follows by the boundary
conditions of T.

@ z(D) c D by maximum principle because z is holomorphic
at ¢ if z(¢) ¢ D.

@ z(bD) C bA and deg(z|pp : bD — bA) = 1 by the
boundary conditions of 7.
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Properties of the solution

Now that all the quantities (z, w, u, v, 7) are defined, we claim
they have all the desired properties.

@ 7 € D (not on the boundary). It follows by the boundary
conditions of T.

@ z(D) c D by maximum principle because z is holomorphic
at ¢ if z(¢) ¢ D.

@ z(bD) C bA and deg(z|pp : bD — bA) = 1 by the
boundary conditions of 7.

@ Area(f) = 1 by the boundary conditions of Ty and T5.
Indeed, Area(f) = Area(z) + Area(w). Area(z) = 1 by the
previous item. Area(w) = 0 because every component of
w takes values on a real line.
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Properties of the solution

Now that all the quantities (z, w, u, v, 7) are defined, we claim
they have all the desired properties.

@ 7 € D (not on the boundary). It follows by the boundary
conditions of T.

@ z(D) c D by maximum principle because z is holomorphic
at ¢ if z(¢) ¢ D.

@ z(bD) C bA and deg(z|pp : bD — bA) = 1 by the
boundary conditions of 7.

@ Area(f) = 1 by the boundary conditions of Ty and T».
Indeed, Area(f) = Area(z) + Area(w). Area(z) = 1 by the
previous item. Area(w) = 0 because every component of
w takes values on a real line.

The proof is complete.
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That's All Folks!
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