Symplectic non-squeezing for the discrete nonlinear Schrödinger equation

Alexander Tumanov

University of Illinois at Urbana-Champaign

“Quasilinear equations, inverse problems and their applications”
dedicated to the memory of Gennadi Henkin
Dolgoprudny, Russia, September 12–15, 2016.
Joint work with Alexandre Sukhov
Let \mathbb{B}^n be the unit ball in \mathbb{C}^n; then $\mathbb{D} = \mathbb{B}^1 \subset \mathbb{C}$ is the unit disc. $\mathbb{B}^n(r)$ is the ball of radius r.

Gromov’s proof is based on complex analysis, namely on J-complex (pseudoholomorphic) curves.

Alexander Tumanov Non-Squeezing for the discrete Schrödinger equation
Let \mathbb{B}^n be the unit ball in \mathbb{C}^n; then $\mathbb{D} = \mathbb{B}^1 \subset \mathbb{C}$ is the unit disc. $\mathbb{B}^n(r)$ is the ball of radius r.

Let $\omega = \sum_{j=1}^{n} dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^{n} dz_j \wedge d\bar{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.
Gromov’s Non-Squeezing Theorem

- Let \mathbb{B}^n be the unit ball in \mathbb{C}^n; then $\mathbb{D} = \mathbb{B}^1 \subset \mathbb{C}$ is the unit disc. $\mathbb{B}^n(r)$ is the ball of radius r.
- Let $\omega = \sum_{j=1}^{n} dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^{n} dz_j \wedge d\bar{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.
- A smooth map $F : \Omega \subset \mathbb{C}^n \to \mathbb{C}^n$ is called symplectic if it preserves the symplectic form ω, that is, $F^* \omega = \omega$.
Gromov’s Non-Squeezing Theorem

Let B^n be the unit ball in \mathbb{C}^n; then $D = B^1 \subset \mathbb{C}$ is the unit disc. $B^n(r)$ is the ball of radius r.

Let $\omega = \sum_{j=1}^n dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^n dz_j \wedge d\bar{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.

A smooth map $F : \Omega \subset \mathbb{C}^n \to \mathbb{C}^n$ is called symplectic if it preserves the symplectic form ω, that is, $F^*\omega = \omega$.

Theorem (Gromov, 1985)

Let $r, R > 0$. Suppose there is a symplectic embedding $F : B^n(r) \to D(R) \times \mathbb{C}^{n-1}$. Then $r \leq R$.

Alexander Tumanov

Non-Squeezing for the discrete Schrödinger equation
Gromov’s Non-Squeezing Theorem

- Let B^n be the unit ball in \mathbb{C}^n; then $D = B^1 \subset \mathbb{C}$ is the unit disc. $B^n(r)$ is the ball of radius r.
- Let $\omega = \sum_{j=1}^n dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^n dz_j \wedge d\bar{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.
- A smooth map $F : \Omega \subset \mathbb{C}^n \to \mathbb{C}^n$ is called symplectic if it preserves the symplectic form ω, that is, $F^* \omega = \omega$.

Theorem (Gromov, 1985)

*Let $r, R > 0$. Suppose there is a symplectic embedding $F : B^n(r) \to D(R) \times \mathbb{C}^{n-1}$. Then $r \leq R$.***

- What is complex here? …
Let \mathbb{B}^n be the unit ball in \mathbb{C}^n; then $\mathbb{D} = \mathbb{B}^1 \subset \mathbb{C}$ is the unit disc. $\mathbb{B}^n(r)$ is the ball of radius r.

Let $\omega = \sum_{j=1}^n dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^n dz_j \wedge d\overline{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.

A smooth map $F : \Omega \subset \mathbb{C}^n \to \mathbb{C}^n$ is called symplectic if it preserves the symplectic form ω, that is, $F^* \omega = \omega$.

Theorem (Gromov, 1985)

Let $r, R > 0$. Suppose there is a symplectic embedding $F : \mathbb{B}^n(r) \to \mathbb{D}(R) \times \mathbb{C}^{n-1}$. Then $r \leq R$.

- What is complex here? ... Only notation.
Gromov’s Non-Squeezing Theorem

- Let \mathbb{B}^n be the unit ball in \mathbb{C}^n; then $\mathbb{D} = \mathbb{B}^1 \subset \mathbb{C}$ is the unit disc. $\mathbb{B}^n(r)$ is the ball of radius r.
- Let $\omega = \sum_{j=1}^n dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^n dz_j \wedge d\bar{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.
- A smooth map $F : \Omega \subset \mathbb{C}^n \to \mathbb{C}^n$ is called symplectic if it preserves the symplectic form ω, that is, $F^* \omega = \omega$.

Theorem (Gromov, 1985)

Let $r, R > 0$. Suppose there is a symplectic embedding $F : \mathbb{B}^n(r) \to \mathbb{D}(R) \times \mathbb{C}^{n-1}$. Then $r \leq R$.

- What is complex here? ... Only notation.
- Gromov’s proof is based on complex analysis, namely on J-complex (pseudoholomorophic) curves.
Flows of Hamiltonian PDEs are symplectic transformations. Non-squeezing property is of great interest. There are many results for specific PDEs.

- Kuksin (1994-95) proved a general non-squeezing result for symplectomorphisms of the form $F = I + \text{compact}$.
Flows of Hamiltonian PDEs are symplectic transformations. Non-squeezing property is of great interest. There are many results for specific PDEs.

- Kuksin (1994-95) proved a general non-squeezing result for symplectomorphisms of the form $F = I + \text{compact}$.
- Bourgain (1994-95) proved the result for cubic NLS.

Consider time t flow $F : u(0) \mapsto u(t)$ of the equation

$$iu_t + u_{xx} + |u|^p u = 0, \quad x \in \mathbb{R}/\mathbb{Z}, \quad t > 0.$$

Then F is a symplectic transformation of $L^2(0, 1)$, $0 < p \leq 2$. Bourgain proved the non-squeezing property for $p = 2$. For other values of p the question is open.
Colliander, Keel, Staffilani, Takaoka, and Tao (2005) proved the result for the KdV.
Infinite-dimensional versions

- Colliander, Keel, Staffilani, Takaoka, and Tao (2005) proved the result for the KdV.

Finally, Fabert (2015) proposes a proof of the general result using non-standard analysis.

We prove a non-squeezing result for a symplectic transformation F of the Hilbert space assuming that the derivative F' is bounded in Hilbert scales. We apply our result to discrete nonlinear Schrödinger equations.
Infinite-dimensional versions

- Colliander, Keel, Staffilani, Takaoka, and Tao (2005) proved the result for the KdV.
- Abbondandolo and Majer (2014) - in case $F(\mathbb{B})$ is convex.

Non-Squeezing for the discrete Schrödinger equation
Colliander, Keel, Staffilani, Takaoka, and Tao (2005) proved the result for the KdV.

Roumégoux (2010) - BBM equation.

Abbondandolo and Majer (2014) - in case $F(\mathcal{B})$ is convex.

Finally, Fabert (2015) proposes a proof of the general result using non-standard analysis.
Colliander, Keel, Staffilani, Takaoka, and Tao (2005) proved the result for the KdV.

Roumégoux (2010) - BBM equation.

Abbondandolo and Majer (2014) - in case $F(\mathbb{B})$ is convex.

Finally, Fabert (2015) proposes a proof of the general result using non-standard analysis.

We prove a non-squeezing result for a symplectic transformation F of the Hilbert space assuming that the derivative F' is bounded in Hilbert scales. We apply our result to discrete nonlinear Schrödinger equations.
Let H be a complex Hilbert space with fixed orthonormal basis $(e_n)_{n=1}^\infty$. Let $(\theta_n)_{n=1}^\infty$ be a sequence of positive numbers such that $\theta_n \to \infty$ as $n \to \infty$, for example, $\theta_n = n$. For $s \in \mathbb{R}$ we define H_s as a Hilbert space with the following norm:

$$\|x\|_2^s = \sum |x_n|^2 \theta_{2s,n},$$

$x = \sum x_n e_n$.
Let \mathbb{H} be a complex Hilbert space with fixed orthonormal basis $(e_n)_{n=1}^{\infty}$. Let $(\theta_n)_{n=1}^{\infty}$ be a sequence of positive numbers such that $\theta_n \to \infty$ as $n \to \infty$, for example, $\theta_n = n$. For $s \in \mathbb{R}$ we define \mathbb{H}_s as a Hilbert space with the following norm:

$$\|x\|_s^2 = \sum |x_n|^2 \theta_n^{2s}, \quad x = \sum x_n e_n.$$
Let \mathbb{H} be a complex Hilbert space with fixed orthonormal basis $(e_n)_{n=1}^{\infty}$. Let $(\theta_n)_{n=1}^{\infty}$ be a sequence of positive numbers such that $\theta_n \to \infty$ as $n \to \infty$, for example, $\theta_n = n$. For $s \in \mathbb{R}$ we define \mathbb{H}_s as a Hilbert space with the following norm:

$$\|x\|_s^2 = \sum |x_n|^2 \theta_n^{2s}, \quad x = \sum x_n e_n.$$

The family (\mathbb{H}_s) is called the Hilbert scale corresponding to the basis (e_n) and sequence (θ_n). We have $\mathbb{H}_0 = \mathbb{H}$. For $s > r$, the space \mathbb{H}_s is dense in \mathbb{H}_r, and the inclusion $\mathbb{H}_s \subset \mathbb{H}_r$ is compact.
Let \mathbb{H} be a complex Hilbert space with fixed orthonormal basis $(e_n)_{n=1}^\infty$. Let $(\theta_n)_{n=1}^\infty$ be a sequence of positive numbers such that $\theta_n \to \infty$ as $n \to \infty$, for example, $\theta_n = n$. For $s \in \mathbb{R}$ we define \mathbb{H}_s as a Hilbert space with the following norm:

$$\|x\|_s^2 = \sum |x_n|^2 \theta_n^{2s}, \quad x = \sum x_n e_n.$$

The family (\mathbb{H}_s) is called the Hilbert scale corresponding to the basis (e_n) and sequence (θ_n). We have $\mathbb{H}_0 = \mathbb{H}$. For $s > r$, the space \mathbb{H}_s is dense in \mathbb{H}_r, and the inclusion $\mathbb{H}_s \subset \mathbb{H}_r$ is compact.

Example. $\mathbb{H} = L^2(0, 1)$ with the standard Fourier basis, $\theta_n = (1 + n^2)^{1/2}$, $n \in \mathbb{Z}$. Then \mathbb{H}_s is the standard Sobolev space.
Let $\mathbb{B}(r) = \mathbb{B}^\infty(r)$ be the ball of radius r in \mathbb{H}.

Theorem

Let $r, R > 0$. Let $F : \mathbb{B}(r) \to \mathbb{D}(R) \times \mathbb{H}$ be a symplectic embedding of class C^1. Suppose there is $s_0 > 0$ such that for every $|s| < s_0$ the derivative $F'(z)$ is bounded in \mathbb{H}_s uniformly in $z \in \mathbb{B}(r)$. Then $r \leq R$.
Consider the following system of equations

\[iu'_n + f(|u_n|^2)u_n + \sum_k a_{nk}u_k = 0. \]

\((1) \)

Here \(u(t) = (u_n(t))_{n \in \mathbb{Z}}, u_n(t) \in \mathbb{C}, t \geq 0. \)
Consider the following system of equations

\[iu'_n + f(|u_n|^2)u_n + \sum_k a_{nk}u_k = 0. \] (1)

Here \(u(t) = (u_n(t))_{n \in \mathbb{Z}}, u_n(t) \in \mathbb{C}, t \geq 0. \)

We assume that \(f : \mathbb{R}_+ \to \mathbb{R} \) and its derivative are continuous on the positive reals, furthermore,

\[\lim_{x \to 0} f(x) = \lim_{x \to 0} \lfloor xf'(x) \rfloor = 0. \]

For example, one can take \(f(x) = x^p \) with real \(p > 0. \) The hypotheses on the function \(f \) are imposed in order for the flow of (1) to be \(C^1 \) smooth.
Consider the following system of equations

\[iu'_n + f(|u_n|^2)u_n + \sum_{k} a_{nk}u_k = 0. \tag{1} \]

Here \(u(t) = (u_n(t))_{n \in \mathbb{Z}}, u_n(t) \in \mathbb{C}, t \geq 0. \)

We assume that \(f : \mathbb{R}_+ \to \mathbb{R} \) and its derivative are continuous on the positive reals, furthermore,
\[
\lim_{x \to 0} f(x) = \lim_{x \to 0} [xf'(x)] = 0. \]
For example, one can take \(f(x) = x^p \) with real \(p > 0. \) The hypotheses on the function \(f \) are imposed in order for the flow of (1) to be \(C^1 \) smooth.

Here \(A = (a_{nk}) \) is an infinite matrix independent of \(t. \)
Furthermore, \(A \) is a hermitian matrix, that is, \(a_{nk} = \overline{a_{kn}}. \) For simplicity we also assume that the entries \(a_{nk} \) are uniformly bounded and there exists \(m > 0 \) such that \(a_{nk} = 0 \) if \(|n - k| > m. \)
The equation (1) with \(f(x) = x \) is called the discrete self-trapping equation. The special case with \(a_{nk} = 1 \) if \(|n - k| = 1 \) and \(a_{nk} = 0 \) otherwise, is the discrete nonlinear (cubic) Schrödinger equation:

\[
iu'_n + |u_n|^2 u_n + u_{n-1} + u_{n+1} = 0.
\]

There are other discretizations of the Schrödinger equation, in particular, the Ablowitz-Ladik model that can be treated in a similar way.
Discrete non-linear Schrödinger equation

The equation (1) can be written in the Hamiltonian form:

\[u'_n = i \frac{\partial H}{\partial u_n}. \]

The Hamiltonian \(H \) is given by

\[H = \sum_n F(|u_n|^2) + \sum_{n,k} a_{nk} \overline{u_n} u_k, \]

here \(F' = f \) and \(F(0) = 0. \)
The equation (1) can be written in the Hamiltonian form:

$$u'_n = i \frac{\partial H}{\partial u_n}.$$

The Hamiltonian H is given by

$$H = \sum_n F(|u_n|^2) + \sum_{n,k} a_{nk} \overline{u_n} u_k,$$

here $F' = f$ and $F(0) = 0$.

The equation (1) preserves the $l^2(\mathbb{Z})$ norm

$$\|u\|_{l^2} = (\sum_n |u_n|^2)^{1/2}.$$

Hence, the flow $u(0) \mapsto u(t)$ of (1) is globally defined on $l^2(\mathbb{Z})$ and preserves the standard symplectic form $\omega = (i/2) \sum_n du_n \wedge d\overline{u_n}$.
The equation (1) can be written in the Hamiltonian form:

\[u_n' = i \frac{\partial H}{\partial u_n}. \]

The Hamiltonian \(H \) is given by

\[H = \sum_n F(|u_n|^2) + \sum_{n,k} a_{nk} \overline{u_n} u_k, \]

here \(F' = f \) and \(F(0) = 0. \)

The equation (1) preserves the \(l^2(\mathbb{Z}) \) norm

\[\| u \|_{l^2} = (\sum_n |u_n|^2)^{1/2}. \]

Hence, the flow \(u(0) \mapsto u(t) \) of (1) is globally defined on \(l^2(\mathbb{Z}) \) and preserves the standard symplectic form \(\omega = (i/2) \sum_n du_n \wedge d\overline{u_n}. \)

We verify that our main result applies to (1), hence, the non-squeezing property holds for the flow of (1).
The proof is based on (pseudo) holomorphic discs. A holomorphic disc $z : \mathbb{D} \rightarrow \mathbb{H}, \zeta \mapsto z(\zeta)$ satisfies the Cauchy-Riemann equation

$$z_\zeta = 0.$$
The proof is based on (pseudo) holomorphic discs. A holomorphic disc $z : \mathbb{D} \to \mathbb{H}$, $\zeta \mapsto z(\zeta)$ satisfies the Cauchy-Riemann equation

$$z_{\bar{\zeta}} = 0.$$

Change coordinates by a non-holomorphic diffeomorphism $w = F(z)$.

Alexander Tumanov
Non-Squeezing for the discrete Schrödinger equation
The proof is based on (pseudo) holomorphic discs. A holomorphic disc $z : \mathbb{D} \to \mathbb{H}, \zeta \mapsto z(\zeta)$ satisfies the Cauchy-Riemann equation

$$z_{\zeta} = 0.$$

Change coordinates by a non-holomorphic diffeomorphism $w = F(z)$. Then the equation for a holomorphic disc will turn into

$$w_{\zeta} = A(w)\overline{w}_{\zeta}.$$

Here

$$A = QP^{-1}, \quad P = F_z, \quad Q = F_{\overline{z}}.$$
Let F be a diffeomorphism. Then F is symplectic iff

\[PP^* - QQ^* = I, \quad PQ^t - QP^t = 0. \]
Let F be a diffeomorphism. Then F is symplectic iff

$$PP^* - QQ^* = I, \quad PQ^t - QP^t = 0.$$

Then it follows that for $A = QP^{-1}$ we have

$$\|A\| < 1, \quad A^t = A.$$
Let F be a diffeomorphism. Then F is \textit{symplectic} iff
\[
PP^* - QQ^* = I, \quad PQ^t - QP^t = 0.
\]

Then it follows that for $A = QP^{-1}$ we have
\[
\|A\| < 1, \quad A^t = A.
\]

Furthermore, if F satisfies the hypotheses of the main theorem, then there is $0 < a < 1$ and $s_1 > 0$ such that for all $z \in \mathbb{B}(r)$ and $0 \leq s \leq s_1$ we have $\|A(F(z))\|_s < a$.

Let A be an operator valued function on H. We now don't assume that A is obtained as above, but we do assume that $\|A\| < 1$. We call maps $z : D \rightarrow H$ satisfying the equation $z \zeta = A(z)z \zeta$ \textit{pseudo-holomorphic} or \textit{A-complex discs}.

Alexander Tumanov
Non-Squeezing for the discrete Schrödinger equation
Let F be a diffeomorphism. Then F is symplectic iff

$$PP^* - QQ^* = I, \quad PQ^t - QP^t = 0.$$

Then it follows that for $A = QP^{-1}$ we have

$$\|A\| < 1, \quad A^t = A.$$

Furthermore, if F satisfies the hypotheses of the main theorem, then there is $0 < a < 1$ and $s_1 > 0$ such that for all $z \in B(r)$ and $0 \leq s \leq s_1$ we have $\|A(F(z))\|_s < a$.

Let A be an operator valued function on H. We now don’t assume that A is obtained as above, but we do assume that $\|A\| < 1$. We call maps $z : D \to H$ satisfying the equation $z\zeta = A(z)\bar{z}\zeta$ pseudo-holomorphic or A-complex discs.
Theorem (A)

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that $A(z) = 0$ for $z \notin \Sigma$. Then for some $p > 2$, for every point $z_0 \in \Sigma$ there exists an A-complex disc $f \in W^{1,p}(\mathbb{D}, \mathbb{H})$ such that $f(\mathbb{D}) \subset \Sigma$, $f(\partial \mathbb{D}) \subset \partial \Sigma$, $f(0) = z_0$, and $\text{Area}(f) = \pi$. Here $\text{Area}(f) = \int_{\mathbb{D}} f^* \omega$.

Alexander Tumanov
Non-Squeezing for the discrete Schrödinger equation
Theorem (A)

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that $A(z) = 0$ for $z \notin \Sigma$. Suppose there is a $\alpha < 1$ and $s_1 > 0$ such that for every $z \in \Sigma$ and $0 \leq s \leq s_1$, we have $\|A\|_s < \alpha$. Then for some $p > 2$, for every point $z_0 \in \Sigma$ there exists an A-complex disc $f \in W^{1,p}(\mathbb{D}, \mathbb{H})$ such that $f(\mathbb{D}) \subset \Sigma$, $f(b\mathbb{D}) \subset b\Sigma$, $f(0) = z_0$, and $\text{Area}(f) = \pi$. Here $\text{Area}(f) = \int_{\mathbb{D}} f^* \omega$.

Alexander Tumanov

Non-Squeezing for the discrete Schrödinger equation
Theorem (A)

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that $A(z) = 0$ for $z \notin \Sigma$. Suppose there is $a < 1$ and $s_1 > 0$ such that for every $z \in \Sigma$ and $0 \leq s \leq s_1$, we have $\|A\|_s < a$. Then for some $p > 2$, for every point $z_0 \in \Sigma$ there exists an A-complex disc $f \in W^{1,p}(\mathbb{D}, \mathbb{H})$ such that $f(\mathbb{D}) \subset \overline{\Sigma}$.
Theorem (A)

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that $A(z) = 0$ for $z \notin \Sigma$.

Suppose there is $a < 1$ and $s_1 > 0$ such that for every $z \in \Sigma$ and $0 \leq s \leq s_1$, we have $\|A\|_s < a$.

Then for some $p > 2$, for every point $z_0 \in \Sigma$ there exists an A-complex disc $f \in W^{1,p}(\mathbb{D}, \mathbb{H})$ such that

$f(\overline{\mathbb{D}}) \subset \overline{\Sigma}$,

$f(b\mathbb{D}) \subset b\Sigma$,
Theorem (A)

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that $A(z) = 0$ for $z \notin \Sigma$.

Suppose there is $a < 1$ and $s_1 > 0$ such that for every $z \in \Sigma$ and $0 \leq s \leq s_1$, we have $\|A\|_s < a$.

Then for some $p > 2$, for every point $z_0 \in \Sigma$ there exists an A-complex disc $f \in W^{1,p}(\mathbb{D}, \mathbb{H})$ such that

$f(\mathbb{D}) \subset \Sigma$,

$f(b\mathbb{D}) \subset b\Sigma$,

$f(0) = z_0$,
Theorem (A)

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that $A(z) = 0$ for $z \notin \Sigma$.

Suppose there is $a < 1$ and $s_1 > 0$ such that for every $z \in \Sigma$ and $0 \leq s \leq s_1$, we have $\|A\|_s < a$.

Then for some $p > 2$, for every point $z_0 \in \Sigma$ there exists an A-complex disc $f \in W^{1,p}(\mathbb{D}, \mathbb{H})$ such that

- $f(\mathbb{D}) \subset \Sigma$,
- $f(b\mathbb{D}) \subset b\Sigma$,
- $f(0) = z_0$,

and $\text{Area}(f) = \pi$.

Here $\text{Area}(f) = \int_{\mathbb{D}} f^* \omega$.
We first prove our main non-squeezing theorem assuming Theorem (A).
We first prove our main non-squeezing theorem assuming Theorem (A).

WLOG $R = 1$. Suppose $r > 1$.

Let $F: B(r) \to \Sigma$ be a symplectic embedding, $F^* \omega = \omega$.

WLOG, shrinking r if necessary, assume F extends to a neighborhood of $B(r)$.

Let $A = QP - 1$, $P = Fz$, $Q = Fz$.

Then $\|A\|_s < a_0$, $0 < s < s_1$. Extend A to H satisfying the hypotheses of Theorem (A).
Proof of Non-Squeezing

We first prove our main non-squeezing theorem assuming Theorem (A).

WLOG $R = 1$. Suppose $r > 1$.

Let $F : \mathbb{B}(r) \to \Sigma$ be a symplectic embedding, $F^*\omega = \omega$.
We first prove our main non-squeezing theorem assuming Theorem (A).

WLOG $R = 1$. Suppose $r > 1$.

Let $F : \mathbb{B}(r) \to \Sigma$ be a symplectic embedding, $F^* \omega = \omega$.

WLOG, shrinking r if necessary, assume F extends to a neighborhood of $\mathbb{B}(r)$.
We first prove our main non-squeezing theorem assuming Theorem (A).

WLOG $R = 1$. Suppose $r > 1$.

Let $F : \mathbb{B}(r) \to \Sigma$ be a symplectic embedding, $F^*\omega = \omega$.

WLOG, shrinking r if necessary, assume F extends to a neighborhood of $\mathbb{B}(r)$.

Let $A = Q \overline{P}^{-1}$, $P = F_z$, $Q = F_{\bar{z}}$.

Then $\|A\|_s < a$, $0 < s < s_1$. Extend A to \mathbb{H} satisfying the hypotheses of Theorem (A).
Proof of Non-Squeezing

Then there exist an A-complex disc satisfying the conclusions of Theorem (A), in particular $f(0) = F(0)$ and $\text{Area}(f) = \pi$.

Note that the area of an A-complex disc as well as the area of any part of it is positive. Since $\text{Area}(f) = \pi$, we have $\text{Area}(X) \leq \pi$. On the other hand by Lelong's result of 1950, $\text{Area}(X) \geq \pi r^2$. Hence $r \leq 1$ contrary to the assumption. The proof is complete.
Then there exist an A-complex disc satisfying the conclusions of Theorem (A), in particular $f(0) = F(0)$ and $\text{Area}(f) = \pi$. Then $X = F^{-1}(f(D))$ is a usual analytic set in $B(r)$. Note that the area of an A-complex disc as well as the area of any part of it is positive. Since $\text{Area}(f) = \pi$, we have $\text{Area}(X) \leq \pi$. On the other hand by Lelong's result of 1950, $\text{Area}(X) \geq \pi r^2$. Hence $r \leq 1$ contrary to the assumption. The proof is complete.
Then there exist an A-complex disc satisfying the conclusions of Theorem (A), in particular $f(0) = F(0)$ and $\text{Area}(f) = \pi$.

Then $X = F^{-1}(f(D))$ is a usual analytic set in $B(r)$.

Note that the area of an A-complex disc as well as the area of any part of it is positive.
Then there exist an A-complex disc satisfying the conclusions of Theorem (A), in particular $f(0) = F(0)$ and $\text{Area}(f) = \pi$.

Then $X = F^{-1}(f(\mathbb{D}))$ is a usual analytic set in $\mathbb{B}(r)$.

Note that the area of an A-complex disc as well as the area of any part of it is positive.

Since $\text{Area}(f) = \pi$, we have $\text{Area}(X) \leq \pi$. On the other hand by Lelong’s result of 1950, $\text{Area}(X) \geq \pi r^2$.
Then there exist an A-complex disc satisfying the conclusions of Theorem (A), in particular $f(0) = F(0)$ and $\text{Area}(f) = \pi$.

Then $X = F^{-1}(f(\mathbb{D}))$ is a usual analytic set in $\mathbb{B}(r)$.

Note that the area of an A-complex disc as well as the area of any part of it is positive.

Since $\text{Area}(f) = \pi$, we have $\text{Area}(X) \leq \pi$. On the other hand by Lelong’s result of 1950, $\text{Area}(X) \geq \pi r^2$.

Hence $r \leq 1$ contrary to the assumption. The proof is complete.
Attempting to prove Theorem (A)

Notation:
\[\zeta \in \mathbb{D}, \ (z, w) \in \mathbb{C} \times \mathbb{H} = \mathbb{H}, \]
\[f(\zeta) = (z(\zeta), w(\zeta)). \]
Attempting to prove Theorem (A)

Notation:
\(\zeta \in \overline{D}, (z, w) \in \mathbb{C} \times \mathbb{H} = \mathbb{H}, \)
\(f(\zeta) = (z(\zeta), w(\zeta)). \)

Cauchy-Riemann equations \(f_\zeta = A \overline{f}_\zeta, \) that is:

\[
\begin{pmatrix}
 z \\
 w
\end{pmatrix}
_{\zeta} = A(z, w) \begin{pmatrix}
 \overline{z} \\
 \overline{w}
\end{pmatrix}_{\zeta}.
\]

Initial conditions:
\(z(0) = z_0, \)
\(w(0) = w_0. \)

Boundary condition:
\(|\zeta| = 1 \Rightarrow |z(\zeta)| = 1. \)

The boundary condition is non-linear. Most if not all general results assume linear boundary conditions.
Notation:
ζ ∈ \overline{D}, (z, w) ∈ \mathbb{C} × \mathbb{H} = \mathbb{H},
f(ζ) = (z(ζ), w(ζ)).

Cauchy-Riemann equations \(f_\zeta = A\overline{f}_\zeta \), that is:
\[
\begin{pmatrix}
 z \\
 w
\end{pmatrix}
_\zeta = A(z, w)
\begin{pmatrix}
 \overline{z} \\
 \overline{w}
\end{pmatrix}
_\zeta.
\]

Initial conditions:
z(0) = z_0, w(0) = w_0.
Notation:
$\zeta \in \overline{D}$, $(z, w) \in \mathbb{C} \times \mathbb{H} = \mathbb{H}$,
$f(\zeta) = (z(\zeta), w(\zeta))$.

Cauchy-Riemann equations $f_{\zeta} = A f_{\bar{\zeta}}$, that is:

$$
\begin{pmatrix}
 z \\
 w
\end{pmatrix}_{\zeta} = A(z, w)
\begin{pmatrix}
 \bar{z} \\
 \bar{w}
\end{pmatrix}_{\bar{\zeta}}.
$$

Initial conditions:
$z(0) = z_0$, $w(0) = w_0$.

Boundary condition:
$|\zeta| = 1 \Rightarrow |z(\zeta)| = 1$.
Attempting to prove Theorem (A)

Notation:
\(\zeta \in \overline{D}, \ (z, w) \in \mathbb{C} \times \mathbb{H} = \mathbb{H}, \)
\(f(\zeta) = (z(\zeta), w(\zeta)). \)

Cauchy-Riemann equations \(f_{\bar{\zeta}} = A f_{\zeta}, \) that is:
\[
\begin{pmatrix}
 z \\
 w
\end{pmatrix}
= A(z, w)
\begin{pmatrix}
 \bar{z} \\
 \bar{w}
\end{pmatrix}.
\]

Initial conditions:
\(z(0) = z_0, \ w(0) = w_0. \)

Boundary condition:
\(|\zeta| = 1 \ \Rightarrow |z(\zeta)| = 1. \)

The boundary condition is non-linear. Most if not all general results assume linear boundary conditions.
Let Δ be a triangle.
Let $D \to \Delta$ be an area preserving map.
Then it gives rise to a sympectomorphism $D \times H \to \Delta \times H$.
Let Δ be a triangle. Let $\mathbb{D} \to \Delta$ be an area preserving map. Then it gives rise to a sympectomorphism $\mathbb{D} \times \mathbb{H} \to \Delta \times \mathbb{H}$.

The non-linear condition $z(\zeta) \in b\mathbb{D}$ reduces to the linear condition $z(\zeta) \in b\Delta$, although with discontinuous coefficients. The latter can be handled by a modified Cauchy-Green operator.
Let Δ be a triangle. Let $\mathbb{D} \to \Delta$ be an area preserving map. Then it gives rise to a symplectomorphism $\mathbb{D} \times \mathbb{H} \to \Delta \times \mathbb{H}$.

The non-linear condition $z(\zeta) \in b\mathbb{D}$ reduces to the linear condition $z(\zeta) \in b\Delta$, although with discontinuous coefficients. The latter can be handled by a modified Cauchy-Green operator.

Introduce the triangle

$$\Delta = \{ z \in \mathbb{C} : 0 < \text{Im } z < 1 - |\text{Re } z| \}.$$

Note $\text{Area}(\Delta) = 1$, so we will be looking for a disc of area 1.
Recall the Cauchy-Green operator

$$Tf(\zeta) = \frac{1}{2\pi i} \int_{\mathbb{D}} \frac{f(t) \, dt \wedge d\overline{t}}{t - \zeta}.$$

$T : L^p(\mathbb{D}) \to W^{1,p}(\mathbb{D})$ is bounded for $p > 1$.

$\partial T u = u$, that is, T solves the ∂-problem in \mathbb{D}.

Let $\Phi : \mathbb{D} \to \Delta$ be the conformal map, $\Phi(\pm 1) = \pm 1$, $\Phi(i) = i$. We look for a solution of Cauchy-Riemann equations in the form

$$z = T_2 u + \Phi w = T_1 v + \text{const}.$$

The operators T_1 and T_2 are modified Cauchy-Green operators. They differ from T by holomorphic functions.
Reduction to modified Cauchy-Green operators

Recall the Cauchy-Green operator

$$Tf(\zeta) = \frac{1}{2\pi i} \int_{\mathbb{D}} \frac{f(t) dt \wedge d\bar{t}}{t - \zeta}.$$

$T : L^p(\mathbb{D}) \to W^{1,p}(\mathbb{D})$ is bounded for $p > 1$.\n
$\partial \bar{\partial} Tu = u$, that is, T solves the $\partial \bar{\partial}$-problem in \mathbb{D}.

Let $\Phi : \mathbb{D} \to \Delta$ be the \textit{conformal} map, $\Phi(\pm 1) = \pm 1$, $\Phi(i) = i$.\n
Recall the Cauchy-Green operator

\[Tf(\zeta) = \frac{1}{2\pi i} \int_{\mathbb{D}} \frac{f(t) dt \wedge d\bar{t}}{t - \zeta}. \]

\(T : L^p(\mathbb{D}) \to W^{1,p}(\mathbb{D}) \) is bounded for \(p > 1 \).

\(\overline{\partial} Tu = u \), that is, \(T \) solves the \(\overline{\partial} \)-problem in \(\mathbb{D} \).

Let \(\Phi : \mathbb{D} \to \Delta \) be the conformal map, \(\Phi(\pm 1) = \pm 1, \Phi(i) = i \).

We look for a solution of Cauchy-Riemann equations in the form

\[z = T_2 u + \Phi \]
\[w = T_1 v + \text{const} \]

The operators \(T_1 \) and \(T_2 \) are modified Cauchy-Green operators. They differ from \(T \) by holomorphic functions.
Recall the Cauchy-Green operator

\[Tf(\zeta) = \frac{1}{2\pi i} \int_{D} \frac{f(t) \, dt \wedge d\overline{t}}{t - \zeta}. \]

\(T : L^p(D) \to W^{1,p}(D) \) is bounded for \(p > 1 \).

\(\overline{\partial} Tu = u \), that is, \(T \) solves the \(\overline{\partial} \)-problem in \(D \).

Let \(\Phi : D \to \Delta \) be the conformal map, \(\Phi(\pm 1) = \pm 1, \Phi(i) = i \).

We look for a solution of Cauchy-Riemann equations in the form

\[z = T_2 u + \Phi \]

\[w = T_1 v + \text{const} \]

The operators \(T_1 \) and \(T_2 \) are modified Cauchy-Green operators. They differ from \(T \) by holomorphic functions.

\(T_1 \) satisfies \(\text{Re} \left(T_1 u \right) \big|_{\partial D} = 0 \).

\(T_2 u \big|_{\partial D} \) takes values in the lines \(L_j \) parallel to the sides of \(\Delta \).
Let Q be a non-vanishing holomorphic function in \mathbb{D}. We define

$$T_Q u(\zeta) = Q(\zeta) \left(T(u/Q)(\zeta) + \zeta^{-1} \overline{T(u/Q)(1/\zeta)} \right)$$

$$= Q(\zeta) \int_{\mathbb{D}} \left(\frac{u(t)}{Q(t)(t - \zeta)} + \frac{\overline{u(t)}}{Q(t)(\overline{t}\zeta - 1)} \right) \frac{dt \wedge d\overline{t}}{2\pi i}.$$
Let Q be a non-vanishing holomorphic function in \mathbb{D}. We define

$$T_Q u(\zeta) = Q(\zeta) \left(T(u/Q)(\zeta) + \zeta^{-1} \overline{T(u/Q)(1/\zeta)} \right)$$

$$= Q(\zeta) \int_{\mathbb{D}} \left(\frac{u(t)}{Q(t)(t - \zeta)} + \frac{\overline{u(t)}}{Q(t)(\overline{t}\zeta - 1)} \right) \frac{dt \wedge d\overline{t}}{2\pi i}.$$

$$T_1 f = T_Q f + 2i \text{Im} \ T f(1) \text{ with } Q(\zeta) = \zeta - 1. \text{ Then } \Re (T_1 u)|_{b\mathbb{D}} = 0 \text{ (Vekua).}$$
Let Q be a non-vanishing holomorphic function in \mathbb{D}. We define

$$T_Q u(\zeta) = Q(\zeta) \left(T(u/Q)(\zeta) + \zeta^{-1} \overline{T(u/Q)(1/\zeta)} \right)$$

$$= Q(\zeta) \int_{\mathbb{D}} \left(\frac{u(t)}{Q(t)(t - \zeta)} + \frac{\overline{u(t)}}{Q(t)(\overline{t}\zeta - 1)} \right) \frac{dt \wedge d\overline{t}}{2\pi i}.$$

$T_1 f = T_Q f + 2i \text{Im } Tf(1)$ with $Q(\zeta) = \zeta - 1$. Then $\text{Re } (T_1 u)|_{\partial \mathbb{D}} = 0$ (Vekua).

$T_2 = T_Q$ with $Q(\zeta) = \sigma(\zeta - 1)^{1/4}(\zeta + 1)^{1/4}(\zeta - i)^{1/2}$, $\sigma = \text{const}$. Then $T_2 u(\gamma_j) \subset L_j$. Here γ_j, $j = 0, 1, 2$, denote the arcs $[-1, 1]$, $[1, i]$, $[i, -1]$ respectively.
Let Q be a non-vanishing holomorphic function in \mathbb{D}. We define

$$T_Q u(\zeta) = Q(\zeta) \left(T(u/Q)(\zeta) + \zeta^{-1} T(u/Q)(1/\zeta) \right)$$

$$= Q(\zeta) \int_{\mathbb{D}} \left(\frac{u(t)}{Q(t)(t - \zeta)} + \frac{\overline{u(t)}}{Q(t)(\overline{t}\zeta - 1)} \right) \frac{dt \wedge d\overline{t}}{2\pi i}.$$

$$T_1 f = T_Q f + 2i \text{Im } T f(1)$$ with $Q(\zeta) = \zeta - 1$. Then

$$\text{Re } (T_1 u)|_{\partial \mathbb{D}} = 0$$ (Vekua).

$$T_2 = T_Q$$ with $Q(\zeta) = \sigma(\zeta - 1)^{1/4}(\zeta + 1)^{1/4}(\zeta - i)^{1/2}$, $\sigma = \text{const}$. Then $T_2 u(\gamma_j) \subset L_j$. Here γ_j, $j = 0, 1, 2$, denote the arcs $[-1, 1]$, $[1, i]$, $[i, -1]$ respectively.

Operators similar to T_2 were introduced by Antoncev and Monakhov for application to problems of gas dynamics.
Recall that the operator $S = \partial T$ for the whole plane is an isometry of $L^2(\mathbb{C})$. It turns out the operators $S_j = \partial T_j$, $j = 1, 2$, have similar properties.
 Operators S_j

Recall that the operator $S = \partial T$ for the whole plane is an isometry of $L^2(\mathbb{C})$. It turns out the operators $S_j = \partial T_j, j = 1, 2,$ have similar properties.

Lemma

$S_j : L^p(\mathbb{D}) \rightarrow L^p(\mathbb{D})$ is bounded for p close to 2.

$\|S_j\|_{L^2(\mathbb{D})} = 1.$
Recall that the operator $S = \partial T$ for the whole plane is an isometry of $L^2(\mathbb{C})$. It turns out the operators $S_j = \partial T_j$, $j = 1, 2$, have similar properties.

Lemma

$$S_j : L^p(D) \rightarrow L^p(D) \text{ is bounded for } p \text{ close to } 2.$$
$$\|S_j\|_{L^2(D)} = 1.$$

The first assertion follows by the corresponding property the operator S because the difference is a smoothing operator.
Operators S_j

Recall that the operator $S = \partial T$ for the whole plane is an isometry of $L^2(\mathbb{C})$. It turns out the operators $S_j = \partial T_j, j = 1, 2$, have similar properties.

Lemma

$S_j : L^p(\mathbb{D}) \to L^p(\mathbb{D})$ is bounded for p close to 2.

$\| S_j \|_{L^2(\mathbb{D})} = 1$.

The first assertion follows by the corresponding property the operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the boundary values of $T_j u$ do not bound a positive area.
Recall that the operator $S = \partial T$ for the whole plane is an isometry of $L^2(\mathbb{C})$. It turns out the operators $S_j = \partial T_j$, $j = 1, 2$, have similar properties.

Lemma

$S_j : L^p(\mathbb{D}) \to L^p(\mathbb{D})$ is bounded for p close to 2.
$\|S_j\|_{L^2(\mathbb{D})} = 1$.

The first assertion follows by the corresponding property the operator S because the difference is a smoothing operator.
The second assertion looks like a fluke. It follows because the boundary values of $T_j u$ do not bound a positive area.
The operators S_j extend as bounded operators on $L^p(\mathbb{D}, \mathbb{H})$ for all p close to 2 and have the corresponding properties.
To have a little more freedom, we take the initial conditions in the form $z(\tau) = z_0$, $w(\tau) = w_0$. Here $\tau \in \mathbb{D}$ will be an unknown parameter.
To have a little more freedom, we take the initial conditions in the form $z(\tau) = z_0$, $w(\tau) = w_0$. Here $\tau \in \mathbb{D}$ will be an unknown parameter.

We look for a solution of the form

$$z = T_2 u + \Phi$$
$$w = T_1 v - T_1 v(\tau) + w_0.$$

Then $w(\tau) = w_0$ is automatically satisfied.
To have a little more freedom, we take the initial conditions in the form \(z(\tau) = z_0, \ w(\tau) = w_0 \). Here \(\tau \in \mathbb{D} \) will be an unknown parameter.

We look for a solution of the form

\[
\begin{align*}
z &= T_2 u + \Phi \\
w &= T_1 v - T_1 v(\tau) + w_0.
\end{align*}
\]

Then \(w(\tau) = w_0 \) is automatically satisfied.

The Cauchy-Riemann equation \(f_{\bar{z}} = A f_{\bar{z}} \) turns into the integral equation

\[
\begin{pmatrix}
 u \\
 v
\end{pmatrix} = A(z, w) \left(\frac{S_2 u + \Phi'}{S_1 v} \right).
\]
Using the equation

\[z = T_2 u + \Phi, \]

we now rewrite the condition \(z(\tau) = z_0 \) in the form

\[\tau = \Psi(z_0 - T_2 u(\tau)). \]
How to satisfy $z(\tau) = z_0$

Using the equation

$$z = T_2u + \Phi,$$

we now rewrite the condition $z(\tau) = z_0$ in the form

$$\tau = \Psi(z_0 - T_2u(\tau)).$$

Here $\Psi : \mathbb{C} \rightarrow \overline{D}$ is a continuous map defined as follows.

$$\Psi(z) = \begin{cases}
\Phi^{-1}(z) & \text{if } z \in \overline{\Delta}, \\
\Phi^{-1}(b\Delta \cap [z_0, z]) & \text{if } z \notin \overline{\Delta}.
\end{cases}$$
Existence of solution

We now have the system

\[z = T_2 u + \Phi \]
\[w = T_1 v - T_1 v(\tau) + w_0 \]
\[\begin{pmatrix} u \\ v \end{pmatrix} = A(z, w) \begin{pmatrix} S_2 u + \Phi' \\ S_1 v \end{pmatrix} \]
\[\tau = \psi(z_0 - T_2 u(\tau)) \]
Existence of solution

We now have the system

\[
\begin{align*}
 z &= T_2 u + \Phi \\
 w &= T_1 v - T_1 v(\tau) + w_0 \\
 \begin{pmatrix} u \\ v \end{pmatrix} &= A(z, w) \left(\frac{S_2 u + \Phi'}{S_1 v} \right) \\
 \tau &= \Psi(z_0 - T_2 u(\tau))
\end{align*}
\]

By a priori estimates in \(L^p(\mathbb{D}, \mathbb{H}_s)\) for some \(p > 2\), we show that the system defines a compact operator. By Schauder principle the system has a solution.
Properties of the solution

Now that all the quantities \((z, w, u, v, \tau)\) are defined, we claim they have all the desired properties.

1. \(\tau \in \mathbb{D}\) (not on the boundary). It follows by the boundary conditions of \(T_2\).
Properties of the solution

Now that all the quantities \((z, w, u, v, \tau)\) are defined, we claim they have all the desired properties.

- \(\tau \in \mathbb{D}\) (not on the boundary). It follows by the boundary conditions of \(T_2\).
- \(z(\overline{\mathbb{D}}) \subset \overline{\mathbb{D}}\) by maximum principle because \(z\) is holomorphic at \(\zeta\) if \(z(\zeta) \notin \overline{\mathbb{D}}\).
Now that all the quantities \((z, w, u, v, \tau)\) are defined, we claim they have all the desired properties.

- \(\tau \in \mathbb{D}\) (not on the boundary). It follows by the boundary conditions of \(T_2\).
- \(z(\overline{\mathbb{D}}) \subset \overline{\mathbb{D}}\) by maximum principle because \(z\) is holomorphic at \(\zeta\) if \(z(\zeta) \notin \partial \mathbb{D}\).
- \(z(b\mathbb{D}) \subset b\Delta\) and \(\text{deg}(z|_{b\mathbb{D}} : b\mathbb{D} \to b\Delta) = 1\) by the boundary conditions of \(T_2\).
Properties of the solution

Now that all the quantities \((z, w, u, v, \tau)\) are defined, we claim they have all the desired properties.

- \(\tau \in \mathbb{D}\) (not on the boundary). It follows by the boundary conditions of \(T_2\).
- \(z(\overline{\mathbb{D}}) \subset \overline{\mathbb{D}}\) by maximum principle because \(z\) is holomorphic at \(\zeta\) if \(z(\zeta) \notin \overline{\mathbb{D}}\).
- \(z(b\mathbb{D}) \subset b\Delta\) and \(\deg(z|_{b\mathbb{D}} : b\mathbb{D} \to b\Delta) = 1\) by the boundary conditions of \(T_2\).
- \(\text{Area}(f) = 1\) by the boundary conditions of \(T_1\) and \(T_2\). Indeed, \(\text{Area}(f) = \text{Area}(z) + \text{Area}(w)\). \(\text{Area}(z) = 1\) by the previous item. \(\text{Area}(w) = 0\) because every component of \(w\) takes values on a real line.
Properties of the solution

Now that all the quantities \((z, w, u, v, \tau)\) are defined, we claim they have all the desired properties.

- \(\tau \in \mathbb{D}\) (not on the boundary). It follows by the boundary conditions of \(T_2\).
- \(z(\overline{\mathbb{D}}) \subset \overline{\mathbb{D}}\) by maximum principle because \(z\) is holomorphic at \(\zeta\) if \(z(\zeta) \notin \overline{\mathbb{D}}\).
- \(z(b\mathbb{D}) \subset b\Delta\) and \(\text{deg}(z|_{b\mathbb{D}} : b\mathbb{D} \to b\Delta) = 1\) by the boundary conditions of \(T_2\).
- \(\text{Area}(f) = 1\) by the boundary conditions of \(T_1\) and \(T_2\). Indeed, \(\text{Area}(f) = \text{Area}(z) + \text{Area}(w)\). \(\text{Area}(z) = 1\) by the previous item. \(\text{Area}(w) = 0\) because every component of \(w\) takes values on a real line.

The proof is complete.
That's All Folks!