Symplectic non-squeezing for the discrete nonlinear Schrödinger equation

Alexander Tumanov

University of Illinois at Urbana-Champaign

"Quasilinear equations, inverse problems and their applications" dedicated to the memory of Gennadi Henkin Dolgoprudny, Russia, September 12–15, 2016.

・ 戸 ・ ・ 三 ・ ・

Joint work with Alexandre Sukhov

イロン イロン イヨン イヨン

ъ

Let Bⁿ be the unit ball in Cⁿ; then D = B¹ ⊂ C is the unit disc. Bⁿ(r) is the ball of radius r.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Let \mathbb{B}^n be the unit ball in \mathbb{C}^n ; then $\mathbb{D} = \mathbb{B}^1 \subset \mathbb{C}$ is the unit disc. $\mathbb{B}^n(r)$ is the ball of radius r.
- Let $\omega = \sum_{j=1}^{n} dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^{n} dz_j \wedge d\overline{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Let \mathbb{B}^n be the unit ball in \mathbb{C}^n ; then $\mathbb{D} = \mathbb{B}^1 \subset \mathbb{C}$ is the unit disc. $\mathbb{B}^n(r)$ is the ball of radius *r*.
- Let $\omega = \sum_{j=1}^{n} dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^{n} dz_j \wedge d\overline{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.
- A smooth map *F* : Ω ⊂ Cⁿ → Cⁿ is called symplectic if it preserves the symplectic form ω, that is, *F*^{*}ω = ω.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Let Bⁿ be the unit ball in Cⁿ; then D = B¹ ⊂ C is the unit disc. Bⁿ(r) is the ball of radius r.
- Let $\omega = \sum_{j=1}^{n} dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^{n} dz_j \wedge d\overline{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.
- A smooth map F : Ω ⊂ Cⁿ → Cⁿ is called symplectic if it preserves the symplectic form ω, that is, F^{*}ω = ω.

Theorem (Gromov, 1985)

Let r, R > 0. Suppose there is a symplectic embedding $F : \mathbb{B}^n(r) \to \mathbb{D}(R) \times \mathbb{C}^{n-1}$. Then $r \leq R$.

ヘロト ヘアト ヘビト ヘビト

- Let \mathbb{B}^n be the unit ball in \mathbb{C}^n ; then $\mathbb{D} = \mathbb{B}^1 \subset \mathbb{C}$ is the unit disc. $\mathbb{B}^n(r)$ is the ball of radius r.
- Let $\omega = \sum_{j=1}^{n} dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^{n} dz_j \wedge d\overline{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.
- A smooth map *F* : Ω ⊂ Cⁿ → Cⁿ is called symplectic if it preserves the symplectic form ω, that is, *F*^{*}ω = ω.

Theorem (Gromov, 1985)

Let r, R > 0. Suppose there is a symplectic embedding $F : \mathbb{B}^n(r) \to \mathbb{D}(R) \times \mathbb{C}^{n-1}$. Then $r \leq R$.

• What is complex here? ...

ヘロト ヘアト ヘビト ヘビト

- Let \mathbb{B}^n be the unit ball in \mathbb{C}^n ; then $\mathbb{D} = \mathbb{B}^1 \subset \mathbb{C}$ is the unit disc. $\mathbb{B}^n(r)$ is the ball of radius *r*.
- Let $\omega = \sum_{j=1}^{n} dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^{n} dz_j \wedge d\overline{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.
- A smooth map *F* : Ω ⊂ Cⁿ → Cⁿ is called symplectic if it preserves the symplectic form ω, that is, *F*^{*}ω = ω.

Theorem (Gromov, 1985)

Let r, R > 0. Suppose there is a symplectic embedding $F : \mathbb{B}^n(r) \to \mathbb{D}(R) \times \mathbb{C}^{n-1}$. Then $r \leq R$.

• What is complex here? ... Only notation.

ヘロト ヘアト ヘビト ヘビト

- Let \mathbb{B}^n be the unit ball in \mathbb{C}^n ; then $\mathbb{D} = \mathbb{B}^1 \subset \mathbb{C}$ is the unit disc. $\mathbb{B}^n(r)$ is the ball of radius *r*.
- Let $\omega = \sum_{j=1}^{n} dx_j \wedge dy_j = \frac{i}{2} \sum_{j=1}^{n} dz_j \wedge d\overline{z}_j$ be the standard symplectic form in $\mathbb{C}^n = \mathbb{R}^{2n}$.
- A smooth map *F* : Ω ⊂ Cⁿ → Cⁿ is called symplectic if it preserves the symplectic form ω, that is, *F*^{*}ω = ω.

Theorem (Gromov, 1985)

Let r, R > 0. Suppose there is a symplectic embedding $F : \mathbb{B}^n(r) \to \mathbb{D}(R) \times \mathbb{C}^{n-1}$. Then $r \leq R$.

- What is complex here? ... Only notation.
- Gromov's proof is based on complex analysis, namely on J-complex (pseudoholomorphic) curves.

イロン 不良 とくほう 不良 とうほ

Flows of Hamiltonian PDEs are symplectic transformations. Non-squeezing property is of great interest. There are many results for specific PDEs.

• Kuksin (1994-95) proved a general non-squeezing result for symplectomorphisms of the form F = I + compact.

Flows of Hamiltonian PDEs are symplectic transformations. Non-squeezing property is of great interest. There are many results for specific PDEs.

- Kuksin (1994-95) proved a general non-squeezing result for symplectomorphisms of the form F = I + compact.
- Bourgain (1994-95) proved the result for cubic NLS. Consider time *t* flow $F : u(0) \mapsto u(t)$ of the equation

$$iu_t + u_{xx} + |u|^{\rho}u = 0, \quad x \in \mathbb{R}/\mathbb{Z}, t > 0.$$

Then *F* is a symplectic transformation of $L^2(0, 1)$, 0 . Bourgain proved the non-squeezing propertyfor <math>p = 2. For other values of *p* the question is open.

 Colliander, Keel, Staffilani, Takaoka, and Tao (2005) proved the result for the KdV.

・ 同 ト ・ 三 ト ・

-∃=->

- Colliander, Keel, Staffilani, Takaoka, and Tao (2005) proved the result for the KdV.
- Roumégoux (2010) BBM equation.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Colliander, Keel, Staffilani, Takaoka, and Tao (2005) proved the result for the KdV.
- Roumégoux (2010) BBM equation.
- Abbondandolo and Majer (2014) in case $F(\mathbb{B})$ is convex.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Colliander, Keel, Staffilani, Takaoka, and Tao (2005) proved the result for the KdV.
- Roumégoux (2010) BBM equation.
- Abbondandolo and Majer (2014) in case $F(\mathbb{B})$ is convex.
- Finally, Fabert (2015) proposes a proof of the general result using non-standard analysis.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Colliander, Keel, Staffilani, Takaoka, and Tao (2005) proved the result for the KdV.
- Roumégoux (2010) BBM equation.
- Abbondandolo and Majer (2014) in case $F(\mathbb{B})$ is convex.
- Finally, Fabert (2015) proposes a proof of the general result using non-standard analysis.

We prove a non-squeezing result for a symplectic transformation F of the Hilbert space assuming that the derivative F' is bounded in Hilbert scales. We apply our result to discrete nonlinear Schrödinger equations.

イロト イポト イヨト イヨト

Let \mathbb{H} be a complex Hilbert space with fixed orthonormal basis $(e_n)_{n=1}^{\infty}$. Let $(\theta_n)_{n=1}^{\infty}$ be a sequence of positive numbers such that $\theta_n \to \infty$ as $n \to \infty$, for example, $\theta_n = n$.

(同) くほり くほう

Let \mathbb{H} be a complex Hilbert space with fixed orthonormal basis $(e_n)_{n=1}^{\infty}$. Let $(\theta_n)_{n=1}^{\infty}$ be a sequence of positive numbers such that $\theta_n \to \infty$ as $n \to \infty$, for example, $\theta_n = n$. For $s \in \mathbb{R}$ we define \mathbb{H}_s as a Hilbert space with the following norm:

$$\|x\|_s^2 = \sum |x_n|^2 \theta_n^{2s}, \qquad x = \sum x_n e_n.$$

Let \mathbb{H} be a complex Hilbert space with fixed orthonormal basis $(e_n)_{n=1}^{\infty}$. Let $(\theta_n)_{n=1}^{\infty}$ be a sequence of positive numbers such that $\theta_n \to \infty$ as $n \to \infty$, for example, $\theta_n = n$. For $s \in \mathbb{R}$ we define \mathbb{H}_s as a Hilbert space with the following norm:

$$\|x\|_s^2 = \sum |x_n|^2 \theta_n^{2s}, \qquad x = \sum x_n e_n$$

The family (\mathbb{H}_s) is called the Hilbert scale corresponding to the basis (e_n) and sequence (θ_n) . We have $\mathbb{H}_0 = \mathbb{H}$. For s > r, the space \mathbb{H}_s is dense in \mathbb{H}_r , and the inclusion $\mathbb{H}_s \subset \mathbb{H}_r$ is compact.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let \mathbb{H} be a complex Hilbert space with fixed orthonormal basis $(e_n)_{n=1}^{\infty}$. Let $(\theta_n)_{n=1}^{\infty}$ be a sequence of positive numbers such that $\theta_n \to \infty$ as $n \to \infty$, for example, $\theta_n = n$. For $s \in \mathbb{R}$ we define \mathbb{H}_s as a Hilbert space with the following norm:

$$\|x\|_s^2 = \sum |x_n|^2 \theta_n^{2s}, \qquad x = \sum x_n e_n$$

The family (\mathbb{H}_s) is called the Hilbert scale corresponding to the basis (e_n) and sequence (θ_n) . We have $\mathbb{H}_0 = \mathbb{H}$. For s > r, the space \mathbb{H}_s is dense in \mathbb{H}_r , and the inclusion $\mathbb{H}_s \subset \mathbb{H}_r$ is compact.

Example. $\mathbb{H} = L^2(0, 1)$ with the standard Fourier basis, $\theta_n = (1 + n^2)^{1/2}, n \in \mathbb{Z}$. Then \mathbb{H}_s is the standard Sobolev space.

・ロ・ ・ 同・ ・ ヨ・

Let $\mathbb{B}(r) = \mathbb{B}^{\infty}(r)$ be the ball of radius r in \mathbb{H} .

Theorem

Let r, R > 0. Let $F : \mathbb{B}(r) \to \mathbb{D}(R) \times \mathbb{H}$ be a symplectic embedding of class C^1 . Suppose there is $s_0 > 0$ such that for every $|s| < s_0$ the derivative F'(z) is bounded in \mathbb{H}_s uniformly in $z \in \mathbb{B}(r)$. Then $r \leq R$.

イロト イポト イヨト イヨト 三日

Consider the following system of equations

$$iu'_n + f(|u_n|^2)u_n + \sum_k a_{nk}u_k = 0.$$
 (1)

Here $u(t) = (u_n(t))_{n \in \mathbb{Z}}$, $u_n(t) \in \mathbb{C}$, $t \ge 0$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Consider the following system of equations

$$iu'_n + f(|u_n|^2)u_n + \sum_k a_{nk}u_k = 0.$$
 (1)

Here $u(t) = (u_n(t))_{n \in \mathbb{Z}}$, $u_n(t) \in \mathbb{C}$, $t \ge 0$.

We assume that $f : \mathbb{R}_+ \to \mathbb{R}$ and its derivative are continuous on the positive reals, furthermore,

 $\lim_{x\to 0} f(x) = \lim_{x\to 0} [xf'(x)] = 0$. For example, one can take $f(x) = x^p$ with real p > 0. The hypotheses on the function *f* are imposed in order for the flow of (1) to be C^1 smooth.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Consider the following system of equations

$$iu'_n + f(|u_n|^2)u_n + \sum_k a_{nk}u_k = 0.$$
 (1)

Here $u(t) = (u_n(t))_{n \in \mathbb{Z}}$, $u_n(t) \in \mathbb{C}$, $t \ge 0$.

We assume that $f : \mathbb{R}_+ \to \mathbb{R}$ and its derivative are continuous on the positive reals, furthermore,

 $\lim_{x\to 0} f(x) = \lim_{x\to 0} [xf'(x)] = 0$. For example, one can take $f(x) = x^p$ with real p > 0. The hypotheses on the function *f* are imposed in order for the flow of (1) to be C^1 smooth.

Here $A = (a_{nk})$ is an infinite matrix independent of *t*. Furthermore, *A* is a hermitian matrix, that is, $a_{nk} = \overline{a_{kn}}$. For simplicity we also assume that the entries a_{nk} are uniformly bounded and there exists m > 0 such that $a_{nk} = 0$ if |n - k| > m. The equation (1) with f(x) = x is called the discrete self-trapping equation. The special case with $a_{nk} = 1$ if |n - k| = 1 and $a_{nk} = 0$ otherwise, is the discrete nonlinear (cubic) Schrödinger equation:

$$iu'_n + |u_n|^2 u_n + u_{n-1} + u_{n+1} = 0.$$

There are other discretizations of the Schrödinger equation, in particular, the Ablowitz-Ladik model that can be treated in a similar way.

・ 同 ト ・ ヨ ト ・ ヨ ト

The equation (1) can be written in the Hamiltonian form:

$$u'_n = i \frac{\partial H}{\partial \overline{u_n}}.$$

The Hamiltonian *H* is given by

$$H = \sum_{n} F(|u_n|^2) + \sum_{n,k} a_{nk} \overline{u_n} u_k,$$

here F' = f and F(0) = 0.

(雪) (ヨ) (ヨ)

The equation (1) can be written in the Hamiltonian form:

$$u'_n = i \frac{\partial H}{\partial \overline{u_n}}.$$

The Hamiltonian H is given by

$$H=\sum_{n}F(|u_{n}|^{2})+\sum_{n,k}a_{nk}\overline{u_{n}}u_{k},$$

here
$$F' = f$$
 and $F(0) = 0$.

The equation (1) preserves the $l^2(\mathbb{Z})$ norm $||u||_{l^2} = (\sum_n |u_n|^2)^{1/2}$. Hence, the flow $u(0) \mapsto u(t)$ of (1) is globally defined on $l^2(\mathbb{Z})$ and preserves the standard symplectic form $\omega = (i/2) \sum_n du_n \wedge d\overline{u_n}$.

▲御♪ ▲臣♪ ▲臣♪ 二臣

The equation (1) can be written in the Hamiltonian form:

$$u'_n = i \frac{\partial H}{\partial \overline{u_n}}.$$

The Hamiltonian H is given by

$$H=\sum_{n}F(|u_{n}|^{2})+\sum_{n,k}a_{nk}\overline{u_{n}}u_{k},$$

here
$$F' = f$$
 and $F(0) = 0$.

The equation (1) preserves the $l^2(\mathbb{Z})$ norm $||u||_{l^2} = (\sum_n |u_n|^2)^{1/2}$. Hence, the flow $u(0) \mapsto u(t)$ of (1) is globally defined on $l^2(\mathbb{Z})$ and preserves the standard symplectic form $\omega = (i/2) \sum_n du_n \wedge d\overline{u_n}$.

We verify that our main result applies to (1), hence, the non-squeezing property holds for the flow of (1).

The proof is based on (pseudo) holomorphic discs. A holomorphic disc $z : \mathbb{D} \to \mathbb{H}, \zeta \mapsto z(\zeta)$ satisfies the Cauchy-Riemann equation

$$z_{\overline{\zeta}} = 0.$$

ヘロト ヘアト ヘビト ヘビト

The proof is based on (pseudo) holomorphic discs. A holomorphic disc $z : \mathbb{D} \to \mathbb{H}, \zeta \mapsto z(\zeta)$ satisfies the Cauchy-Riemann equation

$$z_{\overline{\zeta}} = 0.$$

Change coordinates by a non-holomorphic diffeomorphism w = F(z).

・ロト ・聞 と ・ ヨ と ・ ヨ と …

The proof is based on (pseudo) holomorphic discs. A holomorphic disc $z : \mathbb{D} \to \mathbb{H}, \zeta \mapsto z(\zeta)$ satisfies the Cauchy-Riemann equation

$$Z_{\overline{\zeta}} = 0.$$

Change coordinates by a non-holomorphic diffeomorphism w = F(z). Then the equation for a holomorphic disc will turn into

$$w_{\overline{\zeta}} = A(w)\overline{w}_{\overline{\zeta}}.$$

Here

$$A = Q\overline{P}^{-1}, \quad P = F_z, \quad Q = F_{\overline{z}}.$$

く 同 と く ヨ と く ヨ と

Pseudo-holomorphic discs

Let *F* be a diffeomorphism. Then *F* is symplectic iff

$$PP^* - QQ^* = I$$
, $PQ^t - QP^t = 0$.

イロト イポト イヨト イヨト

э

Pseudo-holomorphic discs

Let *F* be a diffeomorphism. Then *F* is symplectic iff

$$PP^* - QQ^* = I$$
, $PQ^t - QP^t = 0$.

Then it follows that for $A = Q\overline{P}^{-1}$ we have

$$\|A\|<1, \quad A^t=A.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Pseudo-holomorphic discs

Let F be a diffeomorphism. Then F is symplectic iff

$$PP^* - QQ^* = I$$
, $PQ^t - QP^t = 0$.

Then it follows that for $A = Q\overline{P}^{-1}$ we have

$$\|A\|<1,\quad A^t=A.$$

Furthermore, if *F* satisfies the hypotheses of the main theorem, then there is 0 < a < 1 and $s_1 > 0$ such that for all $z \in \mathbb{B}(r)$ and $0 \le s \le s_1$ we have $||A(F(z))||_s < a$.

< 回 > < 回 > < 回 > -

Let F be a diffeomorphism. Then F is symplectic iff

$$PP^* - QQ^* = I$$
, $PQ^t - QP^t = 0$.

Then it follows that for $A = Q\overline{P}^{-1}$ we have

$$\|A\|<1, \quad A^t=A.$$

Furthermore, if *F* satisfies the hypotheses of the main theorem, then there is 0 < a < 1 and $s_1 > 0$ such that for all $z \in \mathbb{B}(r)$ and $0 \le s \le s_1$ we have $||A(F(z))||_s < a$.

Let *A* be an operator valued function on \mathbb{H} . We now don't assume that *A* is obtained as above, but we do assume that ||A|| < 1. We call maps $z : \mathbb{D} \to \mathbb{H}$ satisfying the equation $z_{\overline{\zeta}} = A(z)\overline{z}_{\overline{\zeta}}$ pseudo-holomorphic or *A*-complex discs.

Pseudo-holomorphic discs in a cylinder

Theorem (A)

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that A(z) = 0 for $z \notin \Sigma$.

・ 同 ト ・ ヨ ト ・ ヨ ト
Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that A(z) = 0 for $z \notin \Sigma$. Suppose there is a < 1 and $s_1 > 0$ such that for every $z \in \Sigma$ and $0 \le s \le s_1$, we have $||A||_s < a$.

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that A(z) = 0 for $z \notin \Sigma$. Suppose there is a < 1 and $s_1 > 0$ such that for every $z \in \Sigma$ and $0 \le s \le s_1$, we have $||A||_s < a$. Then for some p > 2, for every point $z_0 \in \Sigma$ there exists an A-complex disc $f \in W^{1,p}(\mathbb{D}, \mathbb{H})$ such that $f(\overline{\mathbb{D}}) \subset \overline{\Sigma}$,

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that A(z) = 0 for $z \notin \Sigma$. Suppose there is a < 1 and $s_1 > 0$ such that for every $z \in \Sigma$ and $0 \le s \le s_1$, we have $||A||_s < a$. Then for some p > 2, for every point $z_0 \in \Sigma$ there exists an A-complex disc $f \in W^{1,p}(\mathbb{D}, \mathbb{H})$ such that $f(\overline{\mathbb{D}}) \subset \overline{\Sigma}$, $f(b\mathbb{D}) \subset b\Sigma$,

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that A(z) = 0 for $z \notin \Sigma$. Suppose there is a < 1 and $s_1 > 0$ such that for every $z \in \Sigma$ and $0 \le s \le s_1$, we have $||A||_s < a$. Then for some p > 2, for every point $z_0 \in \Sigma$ there exists an A-complex disc $f \in W^{1,p}(\mathbb{D}, \mathbb{H})$ such that $f(\overline{\mathbb{D}}) \subset \overline{\Sigma}$, $f(b\mathbb{D}) \subset b\Sigma$, $f(0) = z_0$,

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\Sigma = \mathbb{D} \times \mathbb{H}$. Let A be a continuous operator-valued function on \mathbb{H} such that A(z) = 0 for $z \notin \Sigma$. Suppose there is a < 1 and $s_1 > 0$ such that for every $z \in \Sigma$ and $0 \le s \le s_1$, we have $||A||_s < a$. Then for some p > 2, for every point $z_0 \in \Sigma$ there exists an A-complex disc $f \in W^{1,p}(\mathbb{D}, \mathbb{H})$ such that $f(\overline{\mathbb{D}}) \subset \overline{\Sigma}$, $f(b\mathbb{D}) \subset b\Sigma$, $f(0) = z_0$, and $\operatorname{Area}(f) = \pi$.

Here Area $(f) = \int_{\mathbb{D}} f^* \omega$.

・ロト ・回ト ・ヨト

< 回 > < 回 > < 回 >

```
WLOG R = 1. Suppose r > 1.
```

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

WLOG R = 1. Suppose r > 1.

Let $F : \mathbb{B}(r) \to \Sigma$ be a symplectic embedding, $F^*\omega = \omega$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

WLOG R = 1. Suppose r > 1.

Let $F : \mathbb{B}(r) \to \Sigma$ be a symplectic embedding, $F^* \omega = \omega$.

WLOG, shrinking *r* if necessary, assume *F* extends to a neighborhood of $\overline{\mathbb{B}(r)}$.

ヘロン 人間 とくほとく ほとう

WLOG R = 1. Suppose r > 1.

Let $F : \mathbb{B}(r) \to \Sigma$ be a symplectic embedding, $F^* \omega = \omega$.

WLOG, shrinking *r* if necessary, assume *F* extends to a neighborhood of $\overline{\mathbb{B}(r)}$.

Let $A = Q\overline{P}^{-1}$, $P = F_z$, $Q = F_{\overline{z}}$. Then $||A||_s < a$, $0 < s < s_1$. Extend A to \mathbb{H} satisfying the hypotheses of Theorem (A).

イロト イポト イヨト イヨト 三日

▲□→ ▲ 三→ ▲ 三→

Then $X = F^{-1}(f(\mathbb{D}))$ is a usual analytic set in $\mathbb{B}(r)$.

イロト イポト イヨト イヨト 三日

Then $X = F^{-1}(f(\mathbb{D}))$ is a usual analytic set in $\mathbb{B}(r)$.

Note that the area of an *A*-complex disc as well as the area of any part of it is positive.

ヘロン 人間 とくほ とくほ とう

Then $X = F^{-1}(f(\mathbb{D}))$ is a usual analytic set in $\mathbb{B}(r)$.

Note that the area of an *A*-complex disc as well as the area of any part of it is positive.

Since $\operatorname{Area}(f) = \pi$, we have $\operatorname{Area}(X) \leq \pi$. On the other hand by Lelong's result of 1950, $\operatorname{Area}(X) \geq \pi r^2$.

イロト イポト イヨト イヨト 三日

Then $X = F^{-1}(f(\mathbb{D}))$ is a usual analytic set in $\mathbb{B}(r)$.

Note that the area of an *A*-complex disc as well as the area of any part of it is positive.

Since $\operatorname{Area}(f) = \pi$, we have $\operatorname{Area}(X) \leq \pi$. On the other hand by Lelong's result of 1950, $\operatorname{Area}(X) \geq \pi r^2$.

Hence $r \leq 1$ contrary to the assumption. The proof is complete.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Notation: $\zeta \in \overline{\mathbb{D}}, (z, w) \in \mathbb{C} \times \mathbb{H} = \mathbb{H},$ $f(\zeta) = (z(\zeta), w(\zeta)).$

ヘロン 人間 とくほ とくほ とう

Notation: $\zeta \in \overline{\mathbb{D}}, (z, w) \in \mathbb{C} \times \mathbb{H} = \mathbb{H},$ $f(\zeta) = (z(\zeta), w(\zeta)).$

Cauchy-Riemann equations $f_{\overline{\zeta}} = A\overline{f}_{\overline{\zeta}}$, that is:

$$\left(\begin{array}{c}z\\w\end{array}\right)_{\overline{\zeta}}=A(z,w)\left(\begin{array}{c}\overline{z}\\\overline{w}\end{array}\right)_{\overline{\zeta}}.$$

(雪) (ヨ) (ヨ)

Notation: $\zeta \in \overline{\mathbb{D}}, (z, w) \in \mathbb{C} \times \mathbb{H} = \mathbb{H},$ $f(\zeta) = (z(\zeta), w(\zeta)).$

Cauchy-Riemann equations $f_{\overline{\zeta}} = A\overline{f}_{\overline{\zeta}}$, that is:

$$\left(\begin{array}{c}z\\w\end{array}\right)_{\overline{\zeta}}=A(z,w)\left(\begin{array}{c}\overline{z}\\\overline{w}\end{array}\right)_{\overline{\zeta}}.$$

Initial conditions:

 $z(0) = z_0, w(0) = w_0.$

(雪) (ヨ) (ヨ)

Notation: $\zeta \in \overline{\mathbb{D}}, (z, w) \in \mathbb{C} \times \mathbb{H} = \mathbb{H},$ $f(\zeta) = (z(\zeta), w(\zeta)).$

Cauchy-Riemann equations $f_{\overline{\zeta}} = A\overline{f}_{\overline{\zeta}}$, that is:

$$\left(\begin{array}{c}z\\w\end{array}\right)_{\overline{\zeta}}=A(z,w)\left(\begin{array}{c}\overline{z}\\\overline{w}\end{array}\right)_{\overline{\zeta}}.$$

Initial conditions:

 $z(0) = z_0, w(0) = w_0.$

Boundary condition: $|\zeta| = 1 \implies |z(\zeta)| = 1.$

伺 とくき とくき とう

Notation: $\zeta \in \overline{\mathbb{D}}, (z, w) \in \mathbb{C} \times \mathbb{H} = \mathbb{H},$ $f(\zeta) = (z(\zeta), w(\zeta)).$

Cauchy-Riemann equations $f_{\overline{\zeta}} = A\overline{f}_{\overline{\zeta}}$, that is:

$$\left(\begin{array}{c}z\\w\end{array}\right)_{\overline{\zeta}}=A(z,w)\left(\begin{array}{c}\overline{z}\\\overline{w}\end{array}\right)_{\overline{\zeta}}.$$

Initial conditions:

$$z(0) = z_0, w(0) = w_0.$$

Boundary condition: $|\zeta| = 1 \Rightarrow |z(\zeta)| = 1.$

The boundary condition is non-linear. Most if not all general results assume linear boundary conditions.

(雪) (ヨ) (ヨ)

Reduction to linear boundary condition

Let Δ be a triangle. Let $\mathbb{D} \to \Delta$ be an area preserving map. Then it gives rise to a sympectomorphism $\mathbb{D} \times \mathbb{H} \to \Delta \times \mathbb{H}$.

▲□→ ▲ 三→ ▲ 三→

Let Δ be a triangle. Let $\mathbb{D} \to \Delta$ be an area preserving map. Then it gives rise to a sympectomorphism $\mathbb{D} \times \mathbb{H} \to \Delta \times \mathbb{H}$.

The non-linear condition $z(\zeta) \in b\mathbb{D}$ reduces to the linear condition $z(\zeta) \in b\Delta$, although with discontinuous coefficients. The latter can be handled by a modified Cauchy-Green operator.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let Δ be a triangle. Let $\mathbb{D} \to \Delta$ be an area preserving map. Then it gives rise to a sympectomorphism $\mathbb{D} \times \mathbb{H} \to \Delta \times \mathbb{H}$.

The non-linear condition $z(\zeta) \in b\mathbb{D}$ reduces to the linear condition $z(\zeta) \in b\Delta$, although with discontinuous coefficients. The latter can be handled by a modified Cauchy-Green operator.

Introduce the triangle

$$\Delta = \{ z \in \mathbb{C} : 0 < \operatorname{Im} z < 1 - |\operatorname{Re} z| \}.$$

Note $Area(\Delta) = 1$, so we will be looking for a disc of area 1.

ヘロト 人間 ト ヘヨト ヘヨト

Recall the Cauchy-Green operator

$$Tf(\zeta) = rac{1}{2\pi i} \int_{\mathbb{D}} rac{f(t) \, dt \wedge dar{t}}{t-\zeta}.$$

 $T: L^{p}(\mathbb{D}) \to W^{1,p}(\mathbb{D})$ is bounded for p > 1. $\overline{\partial} T u = u$, that is, *T* solves the $\overline{\partial}$ -problem in \mathbb{D} .

伺 とく ヨ とく ヨ と

Recall the Cauchy-Green operator

$$Tf(\zeta) = rac{1}{2\pi i} \int_{\mathbb{D}} rac{f(t) \, dt \wedge dar{t}}{t-\zeta}.$$

 $\frac{T}{\partial}: L^{p}(\mathbb{D}) \to W^{1,p}(\mathbb{D}) \text{ is bounded for } p > 1.$ $\overline{\partial}Tu = u, \text{ that is, } T \text{ solves the } \overline{\partial}\text{-problem in } \mathbb{D}.$

Let $\Phi : \mathbb{D} \to \Delta$ be the conformal map, $\Phi(\pm 1) = \pm 1$, $\Phi(i) = i$.

< 回 > < 回 > < 回 > … 回

Recall the Cauchy-Green operator

$$Tf(\zeta) = rac{1}{2\pi i} \int_{\mathbb{D}} rac{f(t) \, dt \wedge dar{t}}{t-\zeta}.$$

 $T: L^{p}(\mathbb{D}) \to W^{1,p}(\mathbb{D})$ is bounded for p > 1. $\overline{\partial} T u = u$, that is, *T* solves the $\overline{\partial}$ -problem in \mathbb{D} .

Let $\Phi : \mathbb{D} \to \Delta$ be the conformal map, $\Phi(\pm 1) = \pm 1$, $\Phi(i) = i$. We look for a solution of Cauchy-Riemann equations in the form

$$z = T_2 u + \Phi$$
$$w = T_1 v + \text{const}$$

The operators T_1 and T_2 are modified Cauchy-Green operators. They differ from T by holomorphic functions.

ヘロン 人間 とくほ とくほ とう

Recall the Cauchy-Green operator

$$Tf(\zeta) = rac{1}{2\pi i} \int_{\mathbb{D}} rac{f(t) \, dt \wedge d\overline{t}}{t-\zeta}.$$

 $T: L^{p}(\mathbb{D}) \to W^{1,p}(\mathbb{D})$ is bounded for p > 1. $\overline{\partial} T u = u$, that is, *T* solves the $\overline{\partial}$ -problem in \mathbb{D} .

Let $\Phi : \mathbb{D} \to \Delta$ be the conformal map, $\Phi(\pm 1) = \pm 1$, $\Phi(i) = i$. We look for a solution of Cauchy-Riemann equations in the form

$$z = T_2 u + \Phi$$
$$w = T_1 v + \text{const}$$

The operators T_1 and T_2 are modified Cauchy-Green operators. They differ from T by holomorphic functions.

 T_1 satisfies $\operatorname{Re}(T_1u)|_{b\mathbb{D}} = 0$. $T_2u|_{b\mathbb{D}}$ takes values in the lines L_j parallel to the sides of Δ .

Let *Q* be a non-vanishing holomorphic function in \mathbb{D} . We define

$$T_{Q}u(\zeta) = Q(\zeta) \left(T(u/Q)(\zeta) + \zeta^{-1} \overline{T(u/Q)(1/\overline{\zeta})} \right)$$

= $Q(\zeta) \int_{\mathbb{D}} \left(\frac{u(t)}{Q(t)(t-\zeta)} + \frac{\overline{u(t)}}{\overline{Q(t)}(\overline{t}\zeta-1)} \right) \frac{dt \wedge d\overline{t}}{2\pi i}.$

→ E > < E >

Let Q be a non-vanishing holomorphic function in \mathbb{D} . We define

$$T_{Q}u(\zeta) = Q(\zeta) \left(T(u/Q)(\zeta) + \zeta^{-1} \overline{T(u/Q)(1/\overline{\zeta})} \right)$$

= $Q(\zeta) \int_{\mathbb{D}} \left(\frac{u(t)}{Q(t)(t-\zeta)} + \frac{\overline{u(t)}}{\overline{Q(t)}(\overline{t}\zeta-1)} \right) \frac{dt \wedge d\overline{t}}{2\pi i}.$

 $T_1 f = T_Q f + 2i \text{Im } Tf(1)$ with $Q(\zeta) = \zeta - 1$. Then $\text{Re}(T_1 u)|_{b\mathbb{D}} = 0$ (Vekua).

▲御♪ ▲臣♪ ▲臣♪ 二臣

Let Q be a non-vanishing holomorphic function in \mathbb{D} . We define

$$T_{Q}u(\zeta) = Q(\zeta) \left(T(u/Q)(\zeta) + \zeta^{-1} \overline{T(u/Q)(1/\overline{\zeta})} \right)$$

= $Q(\zeta) \int_{\mathbb{D}} \left(\frac{u(t)}{Q(t)(t-\zeta)} + \frac{\overline{u(t)}}{\overline{Q(t)}(\overline{t}\zeta-1)} \right) \frac{dt \wedge d\overline{t}}{2\pi i}.$

 $T_1 f = T_Q f + 2i \text{Im } Tf(1)$ with $Q(\zeta) = \zeta - 1$. Then Re $(T_1 u)|_{b\mathbb{D}} = 0$ (Vekua).

 $T_2 = T_Q$ with $Q(\zeta) = \sigma(\zeta - 1)^{1/4}(\zeta + 1)^{1/4}(\zeta - i)^{1/2}$, $\sigma = \text{const.}$ Then $T_2u(\gamma_j) \subset L_j$. Here γ_j , j = 0, 1, 2, denote the arcs [-1, 1], [1, i], [i, -1] respectively.

イロト イポト イヨト イヨト 三日

Let Q be a non-vanishing holomorphic function in \mathbb{D} . We define

$$T_{Q}u(\zeta) = Q(\zeta) \left(T(u/Q)(\zeta) + \zeta^{-1} \overline{T(u/Q)(1/\overline{\zeta})} \right)$$

= $Q(\zeta) \int_{\mathbb{D}} \left(\frac{u(t)}{Q(t)(t-\zeta)} + \frac{\overline{u(t)}}{\overline{Q(t)}(\overline{t}\zeta-1)} \right) \frac{dt \wedge d\overline{t}}{2\pi i}.$

 $T_1 f = T_Q f + 2i \text{Im } Tf(1)$ with $Q(\zeta) = \zeta - 1$. Then Re $(T_1 u)|_{b\mathbb{D}} = 0$ (Vekua).

 $T_2 = T_Q$ with $Q(\zeta) = \sigma(\zeta - 1)^{1/4}(\zeta + 1)^{1/4}(\zeta - i)^{1/2}$, $\sigma = \text{const.}$ Then $T_2u(\gamma_j) \subset L_j$. Here γ_j , j = 0, 1, 2, denote the arcs [-1, 1], [1, i], [i, -1] respectively.

Operators similar to T_2 were introduced by Antoncev and Monakhov for application to problems of gas dynamics.

< 回 > < 回 > < 回 > .

Recall that the operator $S = \partial T$ for the whole plane is an isometry of $L^2(\mathbb{C})$. It turns out the operators $S_j = \partial T_j$, j = 1, 2, have similar properties.

ヘロン 人間 とくほ とくほ とう

Recall that the operator $S = \partial T$ for the whole plane is an isometry of $L^2(\mathbb{C})$. It turns out the operators $S_j = \partial T_j$, j = 1, 2, have similar properties.

Lemma $S_j : L^p(\mathbb{D}) \to L^p(\mathbb{D})$ is bounded for p close to 2. $\|S_j\|_{L^2(\mathbb{D})} = 1.$

イロト イポト イヨト イヨト 三日

Recall that the operator $S = \partial T$ for the whole plane is an isometry of $L^2(\mathbb{C})$. It turns out the operators $S_j = \partial T_j$, j = 1, 2, have similar properties.

Lemma $S_j : L^p(\mathbb{D}) \to L^p(\mathbb{D})$ is bounded for p close to 2. $\|S_j\|_{L^2(\mathbb{D})} = 1.$

The first assertion follows by the corresponding property the operator S because the difference is a smoothing operator.

イロト イポト イヨト イヨト

Recall that the operator $S = \partial T$ for the whole plane is an isometry of $L^2(\mathbb{C})$. It turns out the operators $S_j = \partial T_j$, j = 1, 2, have similar properties.

The first assertion follows by the corresponding property the operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the boundary values of $T_i u$ do not bound a positive area.

イロト イポト イヨト イヨト

Recall that the operator $S = \partial T$ for the whole plane is an isometry of $L^2(\mathbb{C})$. It turns out the operators $S_j = \partial T_j$, j = 1, 2, have similar properties.

Lemma $S_j : L^p(\mathbb{D}) \to L^p(\mathbb{D})$ is bounded for p close to 2. $\|S_j\|_{L^2(\mathbb{D})} = 1.$

The first assertion follows by the corresponding property the operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the boundary values of $T_i u$ do not bound a positive area.

The operators S_j extend as bounded operators on $L^p(\mathbb{D}, \mathbb{H})$ for all *p* close to 2 and have the corresponding properties.

ヘロン ヘアン ヘビン ヘビン
Integral equation

To have a little more freedom, we take the initial conditions in the form $z(\tau) = z_0$, $w(\tau) = w_0$. Here $\tau \in \mathbb{D}$ will be an unknown parameter.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Integral equation

To have a little more freedom, we take the initial conditions in the form $z(\tau) = z_0$, $w(\tau) = w_0$. Here $\tau \in \mathbb{D}$ will be an unknown parameter.

We look for a solution of the form

$$z = T_2 u + \Phi$$
$$w = T_1 v - T_1 v(\tau) + w_0.$$

Then $w(\tau) = w_0$ is automatically satisfied.

Integral equation

To have a little more freedom, we take the initial conditions in the form $z(\tau) = z_0$, $w(\tau) = w_0$. Here $\tau \in \mathbb{D}$ will be an unknown parameter.

We look for a solution of the form

$$z = T_2 u + \Phi$$

$$w = T_1 v - T_1 v(\tau) + w_0.$$

Then $w(\tau) = w_0$ is automatically satisfied.

The Cauchy-Riemann equation $f_{\overline{\zeta}} = A\overline{f}_{\overline{\zeta}}$ turns into the integral equation

$$\begin{pmatrix} u \\ v \end{pmatrix} = A(z, w) \left(\begin{array}{c} \overline{S_2 u} + \overline{\Phi'} \\ \overline{S_1 v} \end{array} \right)$$

Using the equation

$$z=T_2u+\Phi,$$

we now rewrite the condition $z(\tau) = z_0$ in the form

$$\tau = \Psi(z_0 - T_2 u(\tau)).$$

イロト イポト イヨト イヨト 一臣

Using the equation

$$z=T_2u+\Phi,$$

we now rewrite the condition $z(\tau) = z_0$ in the form

$$\tau = \Psi(z_0 - T_2 u(\tau)).$$

Here $\Psi : \mathbb{C} \to \overline{\mathbb{D}}$ is a continuous map defined as follows.

$$\Psi(z) = \begin{cases} \Phi^{-1}(z) & \text{if } z \in \overline{\Delta}, \\ \Phi^{-1}(b\Delta \cap [z_0, z]) & \text{if } z \notin \overline{\Delta}. \end{cases}$$

We now have the system

$$z = T_2 u + \Phi$$

$$w = T_1 v - T_1 v(\tau) + w_0$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = A(z, w) \begin{pmatrix} \overline{S_2 u} + \overline{\Phi'} \\ \overline{S_1 v} \end{pmatrix}$$

$$\tau = \Psi(z_0 - T_2 u(\tau))$$

► < Ξ > <</p>

< 一型

3

э

We now have the system

$$z = T_2 u + \Phi$$

$$w = T_1 v - T_1 v(\tau) + w_0$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = A(z, w) \left(\frac{\overline{S_2 u} + \overline{\Phi'}}{\overline{S_1 v}} \right)$$

$$\tau = \Psi(z_0 - T_2 u(\tau))$$

By a priori estimates in $L^{p}(\mathbb{D}, \mathbb{H}_{s})$ for some p > 2, we show that the system defines a compact operator. By Schauder principle the system has a solution.

▲□→ ▲ 三→ ▲ 三→

Properties of the solution

Now that all the quantities (z, w, u, v, τ) are defined, we claim they have all the desired properties.

τ ∈ D (not on the boundary). It follows by the boundary conditions of *T*₂.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Properties of the solution

Now that all the quantities (z, w, u, v, τ) are defined, we claim they have all the desired properties.

- *τ* ∈ D (not on the boundary). It follows by the boundary conditions of *T*₂.
- *z*(D̄) ⊂ D̄ by maximum principle because *z* is holomorphic at *ζ* if *z*(*ζ*) ∉ D̄.

イロト イポト イヨト イヨト 三日

Now that all the quantities (z, w, u, v, τ) are defined, we claim they have all the desired properties.

- *τ* ∈ D (not on the boundary). It follows by the boundary conditions of *T*₂.
- *z*(D̄) ⊂ D̄ by maximum principle because *z* is holomorphic at *ζ* if *z*(*ζ*) ∉ D̄.
- *z*(*b*D) ⊂ *b*∆ and deg(*z*|_{*b*D} : *b*D → *b*∆) = 1 by the boundary conditions of *T*₂.

Now that all the quantities (z, w, u, v, τ) are defined, we claim they have all the desired properties.

- *τ* ∈ D (not on the boundary). It follows by the boundary conditions of *T*₂.
- *z*(D̄) ⊂ D̄ by maximum principle because *z* is holomorphic at *ζ* if *z*(*ζ*) ∉ D̄.
- *z*(*b*D) ⊂ *b*∆ and deg(*z*|_{*b*D} : *b*D → *b*∆) = 1 by the boundary conditions of *T*₂.
- Area(f) = 1 by the boundary conditions of T₁ and T₂.
 Indeed, Area(f) = Area(z) + Area(w). Area(z) = 1 by the previous item. Area(w) = 0 because every component of w takes values on a real line.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Now that all the quantities (z, w, u, v, τ) are defined, we claim they have all the desired properties.

- *τ* ∈ D (not on the boundary). It follows by the boundary conditions of *T*₂.
- *z*(D̄) ⊂ D̄ by maximum principle because *z* is holomorphic at *ζ* if *z*(*ζ*) ∉ D̄.
- *z*(*b*D) ⊂ *b*∆ and deg(*z*|_{*b*D} : *b*D → *b*∆) = 1 by the boundary conditions of *T*₂.
- Area(f) = 1 by the boundary conditions of T₁ and T₂.
 Indeed, Area(f) = Area(z) + Area(w). Area(z) = 1 by the previous item. Area(w) = 0 because every component of w takes values on a real line.

The proof is complete.

That's All Folks!

Alexander Tumanov Non-Squeezing for the discrete Schrödinger equation

イロン イロン イヨン イヨン

æ