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Gromov’s Non-Squeezing Theorem

Let Bn be the unit ball in Cn; then D = B1 ⊂ C is the unit
disc. Bn(r) is the ball of radius r .

Let ω =
∑n

j=1 dxj ∧ dyj = i
2
∑n

j=1 dzj ∧ dz j be the standard
symplectic form in Cn = R2n.
A smooth map F : Ω ⊂ Cn → Cn is called symplectic if it
preserves the symplectic form ω, that is, F ∗ω = ω.

Theorem (Gromov, 1985)
Let r ,R > 0. Suppose there is a symplectic embedding
F : Bn(r)→ D(R)× Cn−1. Then r ≤ R.

What is complex here? . . . Only notation.
Gromov’s proof is based on complex analysis, namely on
J-complex (pseudoholomorphic) curves.
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Infinite-dimensional versions

Flows of Hamiltonian PDEs are symplectic transformations.
Non-squeezing property is of great interest. There are many
results for specific PDEs.

Kuksin (1994-95) proved a general non-squeezing result
for symplectomorphisms of the form F = I + compact.

Bourgain (1994-95) proved the result for cubic NLS.
Consider time t flow F : u(0) 7→ u(t) of the equation

iut + uxx + |u|pu = 0, x ∈ R/Z, t > 0.

Then F is a symplectic transformation of L2(0,1),
0 < p ≤ 2. Bourgain proved the non-squeezing property
for p = 2. For other values of p the question is open.
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Infinite-dimensional versions

Colliander, Keel, Staffilani, Takaoka, and Tao (2005)
proved the result for the KdV.

Roumégoux (2010) - BBM equation.
Abbondandolo and Majer (2014) - in case F (B) is convex.
Finally, Fabert (2015) proposes a proof of the general
result using non-standard analysis.

We prove a non-squeezing result for a symplectic
transformation F of the Hilbert space assuming that the
derivative F ′ is bounded in Hilbert scales. We apply our result
to discrete nonlinear Schrödinger equations.
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Hilbert scales

Let H be a complex Hilbert space with fixed orthonormal basis
(en)∞n=1. Let (θn)∞n=1 be a sequence of positive numbers such
that θn →∞ as n→∞, for example, θn = n.

For s ∈ R we define Hs as a Hilbert space with the following
norm:

‖x‖2s =
∑
|xn|2θ2s

n , x =
∑

xnen.

The family (Hs) is called the Hilbert scale corresponding to the
basis (en) and sequence (θn). We have H0 = H. For s > r , the
space Hs is dense in Hr , and the inclusion Hs ⊂ Hr is compact.

Example. H = L2(0,1) with the standard Fourier basis,
θn = (1 + n2)1/2, n ∈ Z. Then Hs is the standard Sobolev
space.
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Main Result

Let B(r) = B∞(r) be the ball of radius r in H.

Theorem
Let r ,R > 0. Let F : B(r)→ D(R)×H be a symplectic
embedding of class C1. Suppose there is s0 > 0 such that for
every |s| < s0 the derivative F ′(z) is bounded in Hs uniformly in
z ∈ B(r). Then r ≤ R.
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Discrete non-linear Schrödinger equation

Consider the following system of equations

iu′n + f (|un|2)un +
∑

k

ankuk = 0. (1)

Here u(t) = (un(t))n∈Z, un(t) ∈ C, t ≥ 0.

We assume that f : R+ → R and its derivative are continuous
on the positive reals, furthermore,
limx→0 f (x) = limx→0[xf ′(x)] = 0. For example, one can take
f (x) = xp with real p > 0. The hypotheses on the function f are
imposed in order for the flow of (1) to be C1 smooth.

Here A = (ank ) is an infinite matrix independent of t .
Furthermore, A is a hermitian matrix, that is, ank = akn. For
simplicity we also assume that the entries ank are uniformly
bounded and there exists m > 0 such that ank = 0 if
|n − k | > m.
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Discrete non-linear Schrödinger equation

The equation (1) with f (x) = x is called the discrete
self-trapping equation. The special case with ank = 1 if
|n − k | = 1 and ank = 0 otherwise, is the discrete nonlinear
(cubic) Schrödinger equation:

iu′n + |un|2un + un−1 + un+1 = 0.

There are other discretizations of the Schrödinger equation, in
particular, the Ablowitz-Ladik model that can be treated in a
similar way.
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Discrete non-linear Schrödinger equation

The equation (1) can be written in the Hamiltonian form:

u′n = i
∂H
∂un

.

The Hamiltonian H is given by

H =
∑

n

F (|un|2) +
∑
n,k

ankunuk ,

here F ′ = f and F (0) = 0.

The equation (1) preserves the l2(Z) norm
‖u‖l2 = (

∑
n |un|2)1/2. Hence, the flow u(0) 7→ u(t) of (1) is

globally defined on l2(Z) and preserves the standard
symplectic form ω = (i/2)

∑
n dun ∧ dun.

We verify that our main result applies to (1), hence, the
non-squeezing property holds for the flow of (1).
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Holomorphic discs

The proof is based on (pseudo) holomorphic discs.
A holomorphic disc z : D→ H, ζ 7→ z(ζ) satisfies the
Cauchy-Riemann equation

zζ = 0.

Change coordinates by a non-holomorphic diffeomorphism
w = F (z). Then the equation for a holomorphic disc will turn
into

wζ = A(w)wζ .

Here
A = QP

−1
, P = Fz , Q = Fz .
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Pseudo-holomorphic discs

Let F be a diffeomorphism. Then F is symplectic iff

PP∗ −QQ∗ = I, PQt −QP t = 0.

Then it follows that for A = QP
−1

we have

‖A‖ < 1, At = A.

Furthermore, if F satisfies the hypotheses of the main theorem,
then there is 0 < a < 1 and s1 > 0 such that for all z ∈ B(r) and
0 ≤ s ≤ s1 we have ‖A(F (z))‖s < a.

Let A be an operator valued function on H. We now don’t
assume that A is obtained as above, but we do assume that
‖A‖ < 1. We call maps z : D→ H satisfying the equation
zζ = A(z)zζ pseudo-holomorphic or A-complex discs.
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Pseudo-holomorphic discs in a cylinder

Theorem (A)
Let Σ = D×H. Let A be a continuous operator-valued function
on H such that A(z) = 0 for z /∈ Σ.

Suppose there is a < 1 and s1 > 0 such that for every z ∈ Σ
and 0 ≤ s ≤ s1, we have ‖A‖s < a.
Then for some p > 2, for every point z0 ∈ Σ there exists an
A-complex disc f ∈W 1,p(D,H) such that
f (D) ⊂ Σ,
f (bD) ⊂ bΣ,
f (0) = z0,
and Area(f ) = π.

Here Area(f ) =
∫
D f ∗ω.
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Proof of Non-Squeezing

We first prove our main non-squeezing theorem assuming
Theorem (A).

WLOG R = 1. Suppose r > 1.

Let F : B(r)→ Σ be a symplectic embedding, F ∗ω = ω.

WLOG, shrinking r if necessary, assume F extends to a
neighborhood of B(r).

Let A = QP
−1

, P = Fz , Q = Fz .
Then ‖A‖s < a, 0 < s < s1. Extend A to H satisfying the
hypotheses of Theorem (A).
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Proof of Non-Squeezing

Then there exist an A-complex disc satisfying the conclusions
of Theorem (A), in particular f (0) = F (0) and Area(f ) = π.

Then X = F−1(f (D)) is a usual analytic set in B(r).

Note that the area of an A-complex disc as well as the area of
any part of it is positive.

Since Area(f ) = π, we have Area(X ) ≤ π. On the other hand by
Lelong’s result of 1950, Area(X ) ≥ πr2.

Hence r ≤ 1 contrary to the assumption. The proof is complete.
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Attempting to prove Theorem (A)

Notation:
ζ ∈ D, (z,w) ∈ C×H = H,
f (ζ) = (z(ζ),w(ζ)).

Cauchy-Riemann equations fζ = Af ζ , that is:(
z
w

)
ζ

= A(z,w)

(
z
w

)
ζ

.

Initial conditions:
z(0) = z0, w(0) = w0.

Boundary condition:
|ζ| = 1 ⇒ |z(ζ)| = 1.

The boundary condition is non-linear. Most if not all general
results assume linear boundary conditions.
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Reduction to linear boundary condition
Rough idea

Let ∆ be a triangle.
Let D→ ∆ be an area preserving map.
Then it gives rise to a sympectomorphism D×H→ ∆×H.

The non-linear condition z(ζ) ∈ bD reduces to the linear
condition z(ζ) ∈ b∆, although with discontinuous coefficients.
The latter can be handled by a modified Cauchy-Green
operator.

Introduce the triangle

∆ = {z ∈ C : 0 < Im z < 1− |Re z|}.

Note Area(∆) = 1, so we will be looking for a disc of area 1.
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Reduction to modified Cauchy-Green operators

Recall the Cauchy-Green operator

Tf (ζ) =
1

2πi

∫
D

f (t) dt ∧ dt
t − ζ

.

T : Lp(D)→W 1,p(D) is bounded for p > 1.
∂Tu = u, that is, T solves the ∂-problem in D.

Let Φ : D→ ∆ be the conformal map, Φ(±1) = ±1, Φ(i) = i .
We look for a solution of Cauchy-Riemann equations in the form

z = T2u + Φ

w = T1v + const

The operators T1 and T2 are modified Cauchy-Green operators.
They differ from T by holomorphic functions.

T1 satisfies Re (T1u)|bD = 0.
T2u|bD takes values in the lines Lj parallel to the sides of ∆.
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Modified Cauchy-Green operators

Let Q be a non-vanishing holomorphic function in D. We define

TQu(ζ) = Q(ζ)
(

T (u/Q)(ζ) + ζ−1T (u/Q)(1/ζ)
)

= Q(ζ)

∫
D

(
u(t)

Q(t)(t − ζ)
+

u(t)
Q(t)(tζ − 1)

)
dt ∧ dt

2πi
.

T1f = TQf + 2iIm Tf (1) with Q(ζ) = ζ − 1. Then
Re (T1u)|bD = 0 (Vekua).

T2 = TQ with Q(ζ) = σ(ζ − 1)1/4(ζ + 1)1/4(ζ − i)1/2, σ = const.
Then T2u(γj) ⊂ Lj . Here γj , j = 0,1,2, denote the arcs [−1,1],
[1, i], [i ,−1] respectively.

Operators similar to T2 were introduced by Antoncev and
Monakhov for application to problems of gas dynamics.
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Operators Sj

Recall that the operator S = ∂T for the whole plane is an
isometry of L2(C). It turns out the operators Sj = ∂Tj , j = 1,2,
have similar properties.

Lemma
Sj : Lp(D)→ Lp(D) is bounded for p close to 2.
‖Sj‖L2(D) = 1.

The first assertion follows by the corresponding property the
operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the
boundary values of Tju do not bound a positive area.

The operators Sj extend as bounded operators on Lp(D,H) for
all p close to 2 and have the corresponding properties.

Alexander Tumanov Non-Squeezing for the discrete Schrödinger equation



Operators Sj

Recall that the operator S = ∂T for the whole plane is an
isometry of L2(C). It turns out the operators Sj = ∂Tj , j = 1,2,
have similar properties.

Lemma
Sj : Lp(D)→ Lp(D) is bounded for p close to 2.
‖Sj‖L2(D) = 1.

The first assertion follows by the corresponding property the
operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the
boundary values of Tju do not bound a positive area.

The operators Sj extend as bounded operators on Lp(D,H) for
all p close to 2 and have the corresponding properties.

Alexander Tumanov Non-Squeezing for the discrete Schrödinger equation



Operators Sj

Recall that the operator S = ∂T for the whole plane is an
isometry of L2(C). It turns out the operators Sj = ∂Tj , j = 1,2,
have similar properties.

Lemma
Sj : Lp(D)→ Lp(D) is bounded for p close to 2.
‖Sj‖L2(D) = 1.

The first assertion follows by the corresponding property the
operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the
boundary values of Tju do not bound a positive area.

The operators Sj extend as bounded operators on Lp(D,H) for
all p close to 2 and have the corresponding properties.

Alexander Tumanov Non-Squeezing for the discrete Schrödinger equation



Operators Sj

Recall that the operator S = ∂T for the whole plane is an
isometry of L2(C). It turns out the operators Sj = ∂Tj , j = 1,2,
have similar properties.

Lemma
Sj : Lp(D)→ Lp(D) is bounded for p close to 2.
‖Sj‖L2(D) = 1.

The first assertion follows by the corresponding property the
operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the
boundary values of Tju do not bound a positive area.

The operators Sj extend as bounded operators on Lp(D,H) for
all p close to 2 and have the corresponding properties.

Alexander Tumanov Non-Squeezing for the discrete Schrödinger equation



Operators Sj

Recall that the operator S = ∂T for the whole plane is an
isometry of L2(C). It turns out the operators Sj = ∂Tj , j = 1,2,
have similar properties.

Lemma
Sj : Lp(D)→ Lp(D) is bounded for p close to 2.
‖Sj‖L2(D) = 1.

The first assertion follows by the corresponding property the
operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the
boundary values of Tju do not bound a positive area.

The operators Sj extend as bounded operators on Lp(D,H) for
all p close to 2 and have the corresponding properties.

Alexander Tumanov Non-Squeezing for the discrete Schrödinger equation



Integral equation
Reduction

To have a little more freedom, we take the initial conditions in
the form z(τ) = z0, w(τ) = w0. Here τ ∈ D will be an unknown
parameter.

We look for a solution of the form

z = T2u + Φ

w = T1v − T1v(τ) + w0.

Then w(τ) = w0 is automatically satisfied.

The Cauchy-Riemann equation fζ = Af ζ turns into the integral
equation (

u
v

)
= A(z,w)

(
S2u + Φ′

S1v

)
.
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How to satisfy z(τ) = z0

Using the equation
z = T2u + Φ,

we now rewrite the condition z(τ) = z0 in the form

τ = Ψ(z0 − T2u(τ)).

Here Ψ : C→ D is a continuous map defined as follows.

Ψ(z) =

{
Φ−1(z) if z ∈ ∆,

Φ−1(b∆ ∩ [z0, z]) if z /∈ ∆.
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Existence of solution

We now have the system

z = T2u + Φ

w = T1v − T1v(τ) + w0(
u
v

)
= A(z,w)

(
S2u + Φ′

S1v

)
τ = Ψ(z0 − T2u(τ))

By a priori estimates in Lp(D,Hs) for some p > 2, we show that
the system defines a compact operator. By Schauder principle
the system has a solution.
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Properties of the solution

Now that all the quantities (z,w ,u, v , τ) are defined, we claim
they have all the desired properties.

τ ∈ D (not on the boundary). It follows by the boundary
conditions of T2.

z(D) ⊂ D by maximum principle because z is holomorphic
at ζ if z(ζ) /∈ D.
z(bD) ⊂ b∆ and deg(z|bD : bD→ b∆) = 1 by the
boundary conditions of T2.
Area(f ) = 1 by the boundary conditions of T1 and T2.
Indeed, Area(f ) = Area(z) + Area(w). Area(z) = 1 by the
previous item. Area(w) = 0 because every component of
w takes values on a real line.
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That’s All Folks!
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