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Introduction

Inverse problems

The mathematical modeling of many applied problems of science
and engineering leads to the need for the numerical solution of
inverse problems. The inverse problems for partial di�erential
equations are particularly noteworthy.
Inverse problems are formulated as non-classical problems for
partial di�erential equations. They are often classi�ed as ill-posed
(conditionally well-posed) problems. In the theoretical study, the
fundamental questions of uniqueness of the solution and its stability
are primarily considered.

Alifanov OM. Inverse Heat Transfer Problems. Springer; 2011.

Lavrent'ev MM, Romanov VG, Shishatskii SP. Ill-posed Problems of

Mathematical Physics and Analysis. American Mathematical Society; 1986.
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Introduction

Coe�cient inverse problems

Coe�cient inverse problems related to identifying coe�cient and/or
the right-hand side of an equation with use of some additional
information is of interest among inverse problems for partial
di�erential equations. When considering non-stationary problems,
tasks of recovering the dependence of the right-hand side on time or
spatial variables can be usually treated as independent. These tasks
relate to a class of linear inverse problems, which su�ciently
simpli�es their study. Only in some cases we have linear inverse
problems � identi�cation of the right-hand side of equation, Other
coe�cient inverse problems are nonlinear, that signi�cantly
complicated their study.

Isakov V. Inverse Problems for Partial Di�erential Equations. Springer; 206.

Prilepko AI, Orlovsky DG, Vasin IA. Methods for Solving Inverse Problems in

Mathematical Physics. Marcel Dekker, Inc; 2000.
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Introduction

Additional conditions

The task of identifying the dependence of the right-hand side on
spatial variables is one of the most important problems. Additional
conditions are often formulated using the solution at the �nal
moment of time � �nal overdetermination. In more general case
the overdetermination condition is stated as some time integral
average � integral overdetermination.
The existence and uniqueness of the solution to such an inverse
problem and well-posedness of this problem in various functional
classes are examined in the many works.

Rundell W. Applicable Analysis. 1980;10(3):231�242.

Prilepko AI, Solov'ev VV. Di�erential Equations. 1987;23(11):1971�1980.

Isakov V. Communications on Pure and Applied Mathematics. 1991;
44(2):185�209.

Prilepko AI, Kostin AB. Sbornik: Mathematics. 1993;75(2):473�490.

Kamynin VL. Mathematical Notes. 2005;77(4):482�493.
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Introduction

Computational algorithms

In the numerical solution of inverse problem the main focus is on
the development of stable computational algorithms that take into
account the peculiar properties of inverse problems. Inverse
problems for partial di�erential equations can be formulated as
optimal control problems. Computational algorithms are based on
using gradient iterative methods for corresponding residual
functional. The implementation of such approaches relates to the
solution of initial-boundary problems for the original parabolic
equation and its conjugate.

Vogel CR. Computational Methods for Inverse Problems. Society for Industrial
and Applied Mathematics; 2002.

Samarskii AA, Vabishchevich PN. Numerical Methods for Solving Inverse
Problems of Mathematical Physics. De Gruyter; 2007.

Lions JL. Optimal Control of Systems Governed by Partial Di�erential
Equations. Springer; 1971.

Maksimov VI. Dynamical Inverse Problems of Distributed Systems. VSP; 2002.
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Introduction

Inverse problem with �nal overdetermination

For the required right-hand side of a parabolic equation, which does
not depend on time, an inverse problem with �nal
overdetermination can be formulated as a boundary problem for
evolution equation of the second order. In this case, we can use
standard computational algorithms for the solution of stationary
boundary value problems. Such direct computational algorithms
based on �nite-di�erence approximation is described in the SV
book (section 6.4). In the XYJ work the identi�cation problem is
numerically solved on the basis of transition to a evolutionary
problem for the derivative of the solution with respect to time,
peculiarity of which is the non-local boundary condition.

Samarskii AA, Vabishchevich PN. Numerical Methods for Solving Inverse
Problems of Mathematical Physics. De Gruyter; 2007.

Xiangtuan X, Yaomei Y, Junxia W. In: Journal of Physics: Conference Series;

Vol. 290. IOP Publishing; 2011. p. 012017.
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Introduction

This work

We construct special iterative methods for approximate solution of
identi�cation problem of a spacewise dependence of the source in a
parabolic equations. They fully take into account considered inverse
problems features, which relate to their evolutionary character.
These methods are based on the numerical solution of the standard
Cauchy problems on each iteration. The �rst method is based on
the iterative re�nement of initial condition for time derivative of the
solution. The second method relates to the iterative re�nement of
the dependence of the right-hand side on the spatial variables. Such
approach have been used before.

Prilepko AI, Kostin AB. On certain inverse problems for parabolic equations
with �nal and integral observation. Sbornik: Mathematics. 1993;75(2):473�490.

Prilepko AI, Kostin AB. Mathematical Notes. 1993;53(1):63�66.

Kostin AB. Sbornik: Mathematics. 2013;204(10):1391�1434.
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Problem formulation

2D problem

Let x = (x1, x2) and Ω be a bounded polygon. The direct problem
is formulated as follows. We search u(x, t), 0 ≤ t ≤ T, T > 0 such
that it is the solution of the parabolic equation of second order:

∂u

∂t
− div(k(x)gradu) + c(x)u = f(x), x ∈ Ω, 0 < t ≤ T,

with coe�cients 0 < k1 ≤ k(x) ≤ k2, c(x) ≥ 0. The boundary
conditions are also speci�ed:

k(x)
∂u

∂n
+ µ(x)u = 0, x ∈ ∂Ω, 0 < t ≤ T,

where µ(x) ≥ µ1 > 0, x ∈ ∂Ω and n is the normal to Ω. The initial
conditions are

u(x, 0) = u0(x), x ∈ Ω.

The formulation presents the direct problem, where the right-hand
side, coe�cients of the equation as well as the boundary and initial
conditions are speci�ed.
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Problem formulation

Inverse problem

Let us consider the inverse problem, where in equation, the
right-hand side f(x) is unknown. An additional condition is often
formulated as

u(x, T ) = uT (x), x ∈ Ω.

In this case, we speak about the �nal overdetermination.
We assume that the above inverse problem of �nding a pair of
u(x, t), f(x) from equations and additional conditions is well-posed.
The corresponding conditions for existence and uniqueness of the
solution are available in the above-mentioned works.
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Problem formulation

Bilinear form

In the Hilbert space H = L2(Ω), we de�ne the scalar product and
norm in the standard way:

(u, v) =

∫
Ω
u(x)v(x)dx, ‖u‖ = (u, u)1/2.

To solve numerically the problem, we employ �nite-element
approximations in space. We de�ne the bilinear form

a(u, v) =

∫
Ω

(k gradu grad v + c uv) dx +

∫
∂Ω
µuvdx.

We have
a(u, u) ≥ δ‖u‖2, δ > 0.

Brenner SC, Scott LR. The mathematical theory of �nite element methods.
Springer; 2008.

Thom�ee V. Galerkin Finite Element Methods for Parabolic Problems. Berlin:

Springer Verlag; 2006.
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Problem formulation

Finite elements

De�ne a subspace of �nite elements V h ⊂ H1(Ω). Let
xi, i = 1, 2, ...,Mh be triangulation points for the domain Ω. For
example, when using Lagrange �nite elements of the �rst order
(piece-wise linear approximation) we can de�ne pyramid function
χi(x) ⊂ V h, i = 1, 2, ...,Mh, where

χi(xj) =

{
1, if i = j,
0, if i 6= j.

For v ∈ Vh, we have

v(x) =

Mh∑
i=i

viχi(x),

where vi = v(xi), i = 1, 2, ...,Mh.
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Problem formulation

Discrete elliptic operator

We de�ne the discrete elliptic operator A as

(Ay, v) = a(y, v), ∀ y, v ∈ V h.

The operator A acts on a �nite dimensional space V h and

A = A∗ ≥ δI, δ > 0, (1)

where I is the identity operator in V h.
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Problem formulation

Semidiscrete inverse problem

For the problem, we put into the correspondence the operator
equation for w(t) ∈ V h:

dw

dt
+Aw = ϕ, 0 < t ≤ T,

w(0) = φ,

where ϕ = Pf , φ = Pu0 with P denoting L2-projection onto V h.
When considering the inverse problem assume

w(T ) = ψ,

where ψ = PuT .
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Iterative solution of time derivative problem

Equation of the second order

For the numerical solution of the inverse problem with �nding
w(t), ϕ the simplest approach is to eliminate variable ϕ [0, 0].
Di�erentiating equation on time, we obtain

d2w

dt2
+A

dw

dt
= 0, 0 < t ≤ T.

Further, we consider the boundary value problem. The correctness
of such problem, the computational algorithm and examples of the
numerical solution are presented in SV. The weakness of such
approach is caused by the computational complexity of the
numerical solution of the boundary problem. We practically lose
the evolutionary character of original problem and must store data
in each time step.

Samarskii AA, Vabishchevich PN. Numerical Methods for Solving Inverse

Problems of Mathematical Physics. De Gruyter; 2007.
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Iterative solution of time derivative problem

Non-local boundary conditions

The second approach (see, for example, XYJ) is based on

considering the time derivative. Let v =
dw

dt
, then equation can be

written as
dv

dt
+Av = 0, 0 < t ≤ T.

We formulate non-local boundary conditions. We have

v(0) +Aw(0) = ϕ,

v(T ) +Aw(T ) = ϕ.

Taking into account boundary conditions yields

v(T )− v(0) = χ, χ = A(φ− ψ).

Xiangtuan X, Yaomei Y, Junxia W. In: Journal of Physics: Conference Series;

Vol. 290. IOP Publishing; 2011. p. 012017.
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Iterative solution of time derivative problem

Iterative process

For numerical solution of the problem we use the simplest iterative
re�nement of the initial condition for equation. The iterative
process is organized as follows. The new approximation k + 1 is
found by solving the Cauchy problem:

vk+1(0) = vk(T )− χ,

dvk+1

dt
+Avk+1 = 0, 0 < t ≤ T, k = 0, 1, ...,

with some given v0(0). The desired right-hand side of equation is
determined using vk+1(0), for example, from the equality

ϕk+1 = φ+ vk+1(0).

17/39 c© Petr N. Vabishchevich



Iterative solution of time derivative problem

Convergence of iterative process - 1/2

We consider the problem for error zk+1(t) = vk+1(t)− v(t):

zk+1(0) = zk(T ),

dzk+1

dt
+Azk+1 = 0, 0 < t ≤ T, k = 0, 1, ...,

with given z0(0). Multiplying equation for zk in V h by zk, we
obtain (

dzk

dt
, zk
)

+ (Azk, zk) = 0.

Taking into account (
dzk

dt
, zk
)

= ‖zk‖ d
dt
‖zk‖,

yields
d

dt
‖zk‖+ δ‖zk‖ ≤ 0.
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Iterative solution of time derivative problem

Convergence of iterative process - 2/2

Thus,
‖zk(t)‖ ≤ exp(−δt)‖zk(0)‖.

We have
‖zk+1(0)‖ = ‖zk(T )‖ ≤ exp(−δT )‖zk(0)‖.

This gives the desired estimate

‖vk+1(0)− v(0)‖ ≤ % ‖vk(0)− v(0)‖, % = exp(−δT ),

for the convergence of the iterative process with linear speed % < 1.
For the right-hand side we have

‖ϕk+1 − ϕ‖ ≤ % ‖vk(0)− v(0)‖.
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Iterative solution of time derivative problem

Two-level scheme

For computational implementation of proposed algorithm the time
approximation deserves special attention. Let us de�ne a uniform
grid in time

tn = nτ, n = 0, 1, ..., N, τN = T

and denote yn = y(tn), tn = nτ .
For the numerical solution of the problem we used fully implicit
two-level scheme, when

vn+1 − vn
τ

+Avn+1 = 0, n = 0, 1, ..., N − 1,

vN − v0 = χ.

Samarskii AA. The theory of di�erence schemes. New York: Marcel Dekker;

2001.
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Iterative solution of time derivative problem

Iterative process

The grid problem is solved using the following iterative process:

vk+1
0 = vkN − χ,

vk+1
n+1 − vk+1

n

τ
+Avk+1

n+1 = 0, n = 0, 1, ..., N − 1, k = 0, 1, ...,

where
ϕk+1 = φ+ vk+1

0 .
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Iterative solution of time derivative problem

Study of the iterative process - 1/3

The study of the iterative process is conducted using the same
approach as for the iterative process for the semidiscrete inverse
problem. Let now zk+1

n+1 = vk+1
n+1 − vn+1, then

zk+1
0 = zkN ,

zk+1
n+1 − zk+1

n

τ
+Azk+1

n+1 = 0, n = 0, 1, ..., N − 1, k = 0, 1, ... .

The key moment of our consideration consists in �nding an
estimate norm of the solution over time.
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Iterative solution of time derivative problem

Study of the iterative process - 2/3

We multiply equation for zkn+1 in V h by τzkn+1 and obtain

‖zkn+1‖2 + τ(Azkn+1, z
k
n+1) = (zkn, z

k
n+1).

We have

(1 + τδ)‖zkn+1‖ ≤ ‖zkn‖, n = 0, 1, ..., N − 1,

‖zkn‖ ≤ (1 + τδ)−n‖zk0‖, n = 1, 2, ..., N.

A priori estimate allows us to obtain

‖zk+1
0 ‖ = ‖zkN‖ ≤ (1 + τδ)−N‖zk0‖.

Thereby

‖vk+1
0 − v0‖ ≤ %̄ ‖vk0 − v0‖, %̄ = (1 + τδ)−N ,

which provides the convergence of the iterative process (%̄ < 1).
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Iterative solution of time derivative problem

Study of the iterative process - 3/3

The convergence of the right-hand side is ensured by the estimate

‖ϕk+1 − ϕ‖ ≤ %̄ ‖vk0 − v0‖.

This allow us to formulate the following main assertion.

Theorem

The iterative process for the numerical solution of the problem

converges linearly with speed %̄ < 1.

24/39 c© Petr N. Vabishchevich



Iterative process for identifying the right-hand side

Iterative re�nement of the right-hand side

When studying the correctness of the inverse problem the
constructive method of iterative re�nement of the right-hand side is
often used.
We consider the possibility of using this approach for the
approximate solution of the problem.

Prilepko AI, Kostin AB. On certain inverse problems for parabolic equations
with �nal and integral observation. Sbornik: Mathematics. 1993;75(2):473�490.

Prilepko AI, Kostin AB. Mathematical Notes. 1993;53(1):63�66.

Kostin AB. Sbornik: Mathematics. 2013;204(10):1391�1434.
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Iterative process for identifying the right-hand side

Iterative process

In the new iterative step the right-hand side is determined for t = T :

ϕk+1 =
dwk

dt
(T ) +Aψ, k = 0, 1, ...,

with some given initial assumption ϕ0. Then, the Cauchy problem
is solved:

dwk+1

dt
+Awk+1 = ϕk+1, 0 < t ≤ T,

wk+1(0) = φ.
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Iterative process for identifying the right-hand side

Time discretization

The time discretization is again formulated in the basis of implicit
approximation. Formally, we de�ne the solution of the problem on
expanded grid:

tn = nτ, n = −1, 0, ..., N, τN = T.

We come to the problem

wn+1 − wn

τ
+Awn+1 = ϕ, n = −1, 0, ..., N − 1

w0 = φ,

wN = ψ.
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Iterative process for identifying the right-hand side

Iterative process

For the numerical solution of the problem the grid analogue of the
iterative process for the semidiscrete inverse problem is applied:

ϕk+1 =
wk
N − wk

N−1

τ
+Aψ, k = 0, 1, ....

To approximate equation the implicit di�erence scheme is used

wk+1
n+1 − wk+1

n

τ
+Awk+1

n+1 = ϕk+1, n = −1, 0, ..., N − 1,

under condition
wk+1

0 = φ.
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Iterative process for identifying the right-hand side

Main result

Theorem

The iterative process for the numerical solution of the problem

converges linearly with speed

%̄ = (1 + τδ)−N ,

and the estimate

‖ϕk+1 − ϕ‖ ≤ %̄ ‖ϕk − ϕ‖.

is valid.
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Generalizations

Integral overdetermination

When considering inverse problem of identifying the right-hand side
of parabolic equation, the integral overdetermination is often used
instead of the �nal overdetermination. In this case, the following
condition is involved∫ T

0
ω(t)u(x, t)dt = uT (x), x ∈ Ω,

where ω(t) � given function and

ω(t) ≥ 0,

∫ T

0
ω(t)dt = 1.

For the numerical solution of the inverse problem iterative process
considered above can be used.
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Generalizations

Iterative re�nement

Integrating equation with weight ω(t) over t from 0 to T , we obtain∫ T

0
ω(t)

dw

dt
(t)dt+Aψ = ϕ.

The iterative re�nement of the right-hand side:

ϕk+1 =

∫ T

0
ω(t)

dwk

dt
(t)dt+Aψ, k = 0, 1, ... .

We have
‖ϕk+1 − ϕ‖ ≤ % ‖ϕk − ϕ‖, k = 0, 1, ...,

at that

% =

∫ T

0
ω(t) exp(−δt)dt.
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Generalizations

More general problems

We have investigated the iterative methods for the numerical
solution of the inverse problem, when the right-hand side does not
depend on time. In more general case, the problem of identifying
multiplicative right-hand side, when the dependence of the
right-hand side on time is known and the dependence on spatial
variables is unknown, is stated.
We consider the following equation

∂u

∂t
− div(k(x)gradu) + c(x)u = β(t)f(x), x ∈ Ω, 0 < t ≤ T,

where β(t) � some given function. The inverse problem of �nding
the pair u(x, t), f(x).
We assume that

β(t) > 0,
dβ

dt
≥ 0, 0 ≤ t ≤ T, β(T ) = 1.
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Numerical experiments

2D model problem

We consider model problem, when

∂u

∂t
− div gradu+ cu = f(x), x ∈ Ω, 0 < t ≤ T,

∂u

∂n
= 0, x ∈ ∂Ω, 0 < t ≤ T,

u(x, 0) = 0, x ∈ Ω.

The forward problem is solved in the unit square

Ω = {x = (x1, x2) | 0 < x1 < 1, 0 < x2 < 1}

with given right-hand side f(x) and

uT (x) = u(x, T ).

The inverse problem is solved when uT (x) is known, but we need to
�nd f(x).
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Numerical experiments

Right-hand side

The right-hand side is taken as

f(x) =
1

1 + exp(γ(x1 − x2))
.

Function g(s) = (1 + exp(γs))−1 at di�erent values γ
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Numerical experiments

Quasi-real computational experiment

The forward problem is solved within the �rst quasi-real
computational experiment. The solution of this problem at the
�nite time (the function u(x, T )) is used as input data for the
inverse problem.
We perform the evaluation of the e�ect of computational errors on
the basis of calculations on di�erent time grids, when using the
input data derived from the solution of the forward problem on
more detailed time grid and with a more accurate approximations
in time.
For the base case we set c = 10, T = 0.1, γ = 10. When solving the
forward problem we use the Crank-Nicolson scheme for time
discretization, the time step is τ = 1 · 10−4. The uniform mesh with
the division into 50 intervals in each direction is used, the
Lagrangian �nite elements of the second degree are applied.
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Numerical experiments

The solution at the �nite time

The solution of the forward problem uT (x) = u(x, T )
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Numerical experiments

Error of the approximate solution

The inverse problem is solved using fully implicit scheme. The error
of the approximate solution of the problem of identi�cation on a
single iteration is evaluated as follows

ε∞(k) = max
x∈Ω
|ϕk(x)− f(x)|,

ε2(k) = ‖ϕk(x)− f(x)‖,

where ϕ(x) � the approximate solution, and f(x) � the exact
solution of the inverse problem.
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Numerical experiments

Convergence of iterations - 1/2

The iterative process for non-local problem
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Numerical experiments

Convergence of iterations - 2/2

Iterative process for identifying the right-hand side
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