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Introduction
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@ We describe the derivation of Vlasov-Maxwell equation from
classical Lagrangian and a similar derivation of the
Vlasov-Poisson-Poisson charged gravitating particles.

The last term we use for combination of electrostatic
and gravitational forces.

@ By using an exact substitution we derive some versions of the
equations of the electromagnetic hydrodynamics from
Vlasov-Maxwell equations and present them to the Godunov's
double-divergence form.

@ For them we get generalized Lagrange identity. The Lagrange
identity is convenient here as a test to compare different forms of
equations.

@ We analyzes the steady-state solutions of the
Vlasov-Poisson-Poisson equation: their types
changes at a certain critical mass m? = €2 /G having a clear physical
meaning with different behavior of particles - recession or collapse
trajectories.
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Under Vlasov equation simply imply the following equation for an
arbitrary K(x, y) pair interaction potential of particles

OF oF oF
a + <U7 8:5) - (vm ./K(l',y)F(t,U,y)d’Udy, av> = 0.

Let us consider the substitution

F(t,v,z) Zpl v—=V;(£)d(x — X;(1)).

Substitution takes place if X;(t) and V;(t) satisfy N-body equations of
motion .
Xi=Vi
N
=Y ViK(X:, X;)p;
j=1
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Generally, the Vlasov type equations are used with some prefix:
@ Vlasov-Poisson Equation (for gravity, electrons, and plasma)
o Vlasov-Maxwell Equation (plasma, the galaxy)

@ Vlasov-Einstein Equation

Simplest derivation of the Vlasov-Maxwell equation from classical
Lagrangian is highly desirable, it is provides us a firm basis:

@ For the classification of equations with the same name;

@ To assess their validity;

@ The nature of the approximations made by various authors.
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Derivation of equations of the Vlasov-Maxwell and

Vlasov-Poisson-Poisson:

We start with the usual action of the electromagnetic field, the action of
Lorentz-Shwartzchield

T
S =Suai =Y macy / Vo Xe@nXs@nd + (1)

T
+ Ze?aZ/A#(XQ(Q7t)7t)Xg(q,t)dt —+
o a

n 1
167c

Sp — is a particle action, St — is a field action,
Sp-f — is a particles-fields action.

/ E F"d*s = Sy + Sps+ Se
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We have to seek a variation in a special way:
o first we obtain ¢ (Sp + Sp¢) =0
@ than evolution of fields ¢ (Sp.¢ + Sf) = 0.
However, for particles, we proceed to distribution functions.

L0,

9 1
0S, =mc ;g/m _mz/dt<\/7/c2>6$ dt.

8A0 _n Al o (d i
5Sp = Z / { 50 i'6x < th7,> 0w } dt.
and from 6(Sp + Sp.f) = 0 we have:

dpai - 1814 8A0 1 Y
dt a( c Ot o1t cF”lo‘ ’ 2)

B 04, 04,

i = f = ————, Fij = 5 —
p oxl,  \J1—a2/c2 Y 0xd  Oxi

aLp mai‘(”‘ o




Derivation
[e]e] le]ele]

@ The equation for the distribution function is obtained as the
equation of translation along the trajectories of the resulting
dynamic system of charges in the field.

@ It is seen that is convenient to take the distribution function of the
momentum (instead of velocity). It should express velocity through

momentums:
o mu; 2 = m2v?
b= V1—v?/c? b C1—w2/c?
2 2
v - p Di
1l— ——~, 2=-1 —, U = .
d=y2 T T e T )

Hence we can find the equation for the distribution function f,(x,p,t) :

afoz afa (Y aAz a140 i afa -
ot <”°“ m)* ¢ ( ot~ “ou F””@) a0 G
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Fields equations.

@ We use the distribution function instead of density:
0Spf = Z - /M vl fox, p)dpd'z,
65 = L2/5F Pty = i2/5A O Frd*x
167c m 8mc Hes '
o If (5(Sp_f + Sf) = 0 then:
0, F" = 74£Zea /v“f (z,p)d>p. (4)
H c ' ad e\

@ System of equations (3),(4) is Vlasov-Maxwell with some small
adjustments: we have explicite expression of velocities over
momentum.

@ Similarly, we can derive the system of equations of the
Vlasov-Poisson with gravitation in the nonrelativistic case.
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The Lagrangian of electrostatics derived from the general
Lagrangian, and gravitation part is derived by analogy with
electrostatics.

So, in the nonrelativistic case:

.2 .2
1 mo& ~ 'Toc
T2 T 92
C 2c

Particles action: S, = -3 [mac® + Saa S w

Particle-fields action (electrostatic):
See=—20Ca [ o(z,t) fo(z,p, t)dxdpdt.

Particle-fields action (gravity):
Sge= =20 Ma JU(x,t) fo(z, p, t)dzdpdt.

Fields action (electrostatic): S¢ = && [ (V)? dadt.

Fields action (gravity): S¢ = —gi [ (VU)? dadt
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o Lagrangian S = S, + S5 ¢+ Sy + S¢ + 57

S = Z /max 2.1 Zea/ x,t) folz, p, t)dxdpdt—

1
—Zma/ x,t) fo(z,p, )dmdpdt—i-gf/( ©)° d:rdt——/ (VU)? dadt.
T

@ Varying this expression as before we obtain a system of
Vlasov-Poisson-Poisson plasma with gravitation:

Ofa p Ofa ou dp Ofa) _
ot +<ma’8x) (maaz—i_ea@z’@p,;)_o’

AU = 47TGZma/fa(x7pat)dpv

p= —47r26a/fa(z,p, t)dp



Lagrange's identity
[ JeJele]

@ As shown, a complete system of Vlasov-Maxwell equations is
obtained by varying the action of electro-magnetism with the
transition to the distribution function:

afoz afa 1 8AZ aAO 1 g afa B
825 + <7)0¢7 a.f(,’ ) + €a ( c 8t 85(7 CFZ‘]UO‘) apt = 07 (5)
oOF™ A1 9A A

= T K = B v .
al’u c gea/ﬂafa(zaf% t)dpv F}U/ al‘y 896“ y ( , UV 17...,4)7

2

104, 0A )
0 [’Ua7H]:_Fij’Uéu Vo = P s Yoo = 1+
MaYa

m2c?’

o Lagrange's Identity is defined as the second time derivative of the
moment of inertia through the kinetic and potential energy.

e Following to V. V. Kozlov, "The generalized Vlasov kinetic
equation", Russian Math. Surveys, 63:4 (2008) we show that the
Lagrange Identity can be extended to the case of Vlasov-Maxwell

equations.
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@ Let us introduce the moment of inertia of the particles respect to
origin of coordinates:

10) =Y [ falt.n.pia’dpd’a,

;2;/mmamﬁ#m%,
H:E:/W;@(LE+ihmm>ﬁfm%—

—Z / %mg 5 (0, 2)(p, B) fad’pd’z.

Lagrange Identity is valid as:

I=4T —2II. (6)
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@ Prove: From (5) we have

. Of.
I= —22 / (3{;’”“) (Va, 2)dPpd> 2 —

_2%: /(Uml")ea (E+ i[va,HO g—ﬁd%d%.

@ The first integral in this expression with integrating by parts can be
transformed to :

2 Z / (Uaa Ua) fad3pd3x =A4T.
a

@ The second integral can be transformed, if we count :

2
i Di p
where, v; = , 1+ ,
Ip; T e @ m2c2
dv; Oij pi v,
I Yama T yEmde? “ Op

@ Then we can get:

" OV 104, 0A, 1 ' o
—QZ/ pi] Tj€q <C ot o oxt - CEJU(]1> faddpddl’:
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_9 J o J o | == . 0 ; ()/ds dd
za:/<vama v3mi’;02)$]6 ( <ot am  tut ) Jad'p

[0

€a 1
- —QZ / <x E+ C[UQ,HD fadpd3z+

fY()t ma

piP; 3 3

o We use: p; Fj;vi, = 0.

@ So finaly, the second term is transformed into:

+2Z/

@ Lagrange’s Identity can be useful in studies of stability.

"Y m3 2 p?‘r) (p,E)fadspd?).T

@ Derivation shows that the second term in the functional II is
associated with relativism.
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© Derivation and classificaition of magnetohydrodynamic equations

@ First we consider the case of zero temperature, to obtain the
corresponding equations of the exact consequences of
Vlasov-Maxwell equations by using the following substitution:

falt,z,p) = na(z,t)0(p — Pa(z,1)) (7)
@ This is the ultimate form of Maxwell distribution when temperature
T, — 0
a at _—Pa)®
faltya,p) = —2eB0 S (0,000 - Pa(e ).
(2kmTymey)?2 Tam0

@ We obtain the equations of the electromagnetic form of multifluid
hydrodynamics. These equations have the form

Ong | o

rr + div(vy (Py)ng) = 0; (8)
oP, . . 0P, 1 N
5 + v (Py) oz, I (E+ c[va(lDa),lEf]) =0;
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@ These equations are supplemented by Maxwell's equations

B
Vfoaa—t:O;V-H:O; (9)

V-E:47TZ eala;

[e3

VxH--"—=_"" Ganava(Poz);

@ We should notice that these equations are exact consequences of
Vlasov-Maxwell equations, so the Lagrange ldentity obtained for the
system (8) - (9) by substituting (7) in the Lagrange Identity (6):

Iy = AT, — 210,, where I(t) = / ne(z, t)2?d>z, (10)

«

Ty(t) = %Z/na(x,t)vi(Pa(x,t))d?’x,

M, = Z/ 1) (xE + % [va(Pa),HO P

Yo

o 5
3 [ e @ (P (P B
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@ In the nonrelativistic case for Vlasov-Maxwell equation we have

Me, . p
Sp = ZTZ/xi(q,t)dt, va(p) = oo
@ q

(03

o Lagrange Identity in this case:
Iy = ATy — 2115, where I5(t Z/fa (t,z,p)x?d*pd®e, (11)

1
Ts(t) = §Z/fa(t,x,p)v§d3pd3x,

I; = Z / ( [va, }) fad’pd®z.

@ And for the system (8)-(9):
Iy = 4Ty — 2114, where [I4(t) = Z/na(x,t)xzd?’x, (12)

Z/natx Py (z,t))d%z,
M = Z/%e (xE + % [U(X(Pa),H]) .
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Generalization of Lagrange's Identity

@ There is a generalization of Lagrange's Identity when, instead of an
function of x2 is taken arbitrary function o(z)

:Z/facp(x)d3pd3x,

@ For this functional from the Vlasov-Maxwell system (5) we have:

. 37@ - e
= /&ciax.vawuafad pd°r+
E 0 1 .
+ /’Yama < ® S E 4+ - [UQ,H}> fadjpd‘sxf
=S /7‘1(]9 %)(p E) fadpde.
o ’yg"/rn§62 " Oz ’ o

Two-fluid and regular MHD (or EMHD) with non-zero temperature

@ We obtained the EMHD equations of hydrodynamic type from
system of kinetic equations, by introducing the following
momentums and integrating the Vlasov-Maxwell system:




. 1 .
to= [ fatap)@p Pu= = [fatopds (3)
1
D(x = ni/(p_F)(x)2 fa (t,l‘,p) d3p7

@ ny(x,t) — density numbers of particles of a-sorts,

o P,;(x,t)— mathematical expectation of momentum,

@ D, — variance of the momentums of all particles of each kind, which
is proportional to the energy of random motion.

ong, 0 B

o+ 5 (Mava) =0, (14)
9( P)+a( PoiPuj + Oij) — B+ Lo, H ) =0
at n(X « 8:1:1 na ot ) UO(Z_] nO(eO( c Ucw - b)

Oaij = /(pi — Po;) (pj — Paj) fa (t,2,p) d®p — stress tensor,

0 0
e (naDq) + 8713% =0,

¢ = /& (p— Pa)2 fa (t,z,p) d*p — heat flow vector.
m
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@ This is a presise system of equations (14), but it is not closed. To
close it, we must add the collision integral, or (from interaction with
the environment) add a linear collision integral. This means that
higher-order momentums are determined through the lower with the
Maxwell distribution.

falt,z,p) = L’t)ge* (p=Fa)® ’

(2kmTyme)2

o It turns out that: 0ni; = 0ijknaTa, Do = 3kT,.
@ More briefly those equations can be written in the Godunov's form,
for this we introduce Godunov's function:

G () = / PEEp, = (0,....4), (15)

F(B7) = explB§ + Bip1 + Bspa + Byps + 557,

Compare
2 2 2 2
Fo(Bg) = exp | By — P exp {@1 (r+ ) } , B= (B, B2, )
with fo(t, 2, P) = ta(zl) 3 XP {_ é];c;f;zj}
(2kmTame) 2
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We obtain 3, in terms of thermodynamic variables:
P2 Py
) /81 - )
2kT, kT,
. P 1
=G, 5= kT T
If we define the vector
Kﬁ‘ = (O,Ff‘na,F;anfnm 72Fi"‘Ggi) ,
FY=¢ey(E+[va,H]), i=(1,2,3),
the system (14) can be written in the form of Godunov:

0G$§ 0G$% G
B 1B o
+ +K,; =0, here Gﬁ o,

B8 =1lnng — gln 27kTome) —

ot ox; (16)

A generalization of Lagrange's Identity in this case has the following
remarkable representation:

/ﬂ&* )dpdz,

99
_ a g3, oo g3
I= g /83: oz, G5,Gs,d° /8xiG Frd x.
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© Steady-state solutions and critical mass value
@ As shown, a complete system of Vlasov-Poisson-Poisson can be

obtained from Lagrangian of the electrostatic plus gravitation (in
nonrelativistic case) with the transition to the distribution function.

5‘fa+<p 8fa>_(m3U+ dp 3fa)_0 )

ot oz 0 Ox’ Op;
AU:47TGZma/fa(vaat)dpv

Ap = —47r2:ea/fa(:v,p7 t)dp

o Now we investigate the possible stationary solutions for (17).
@ Assume that the distribution functions f,, are different functions of

energy and are as follows:

p2

foc :ga(2

+ maU + ea).

(03

@ g, — are arbitrary nonnegative function
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@ In this case we obtain a system of nonlinear elliptic equations for
potentials

N 2
p 3
AU = =4 5 « « d s
U= V0, V0 =476 S ma [ a4 mall + o)
Ap =T(U,¢), U(U,¢) —47rzea/ga +maU + eap)d’p

@ We investigate this system of equations. Let's start with the
simplest case of one type of particles, when N =1 and

2
AU = 4me/g(§—m +mU + ep)d®p, (18)

2
Ap = —47re/g(2p—m +mU + ep)d®p
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@ Therefore the system can be rewritten as:

2
A (mU + ep) = (Gm? — ¢?) /g(% +mU + ep)d’p, (19)

A (eU 4+ Gmyp) = 0.

@ It turns out that the conditions for the solvability of the first

equation, depends on the sign of expression Gm? — 2.

o If this value is positive, the boundary problem is correct, otherwise
there are global solutions. Thus, the value of the mass

m =/ —is critical
=1/5 )

e When m > \/% , the gravitational force stronger than the

electrostatic forces. If ¢ — is an electron charge, then this mass is
m ~ 102 grams.
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Conclusion:

@ We considered the derivation of the Vlasov-Maxwell from classical
Lagrangian of electrodynamics and the Lagrange Identity.

@ This derivation is a convenient alternative to the methods of the
BBGKY hierarchy [3] and the microscopic solutions methods [4-9],
because it is simplier, can be used for important case of Vlasov
Maxwell where other methods does not work, and give us
classification of different types of equations of Vlasov type.

@ We propose a derivation of MHD- and EMHD-type equations, for
which variety only increases, and it allows us to monitor for the
nature of the approximations made. We present this equations to
the remarkable Godunov’s double divergence form.

@ We also examined the derivation of the Vlasov-Poisson-Poisson
plasma with gravitation. Study of stationary solutions of these
equations in the cases, where the distribution function is an arbitrary
function of the energy integral show us that in this case the problem
reduces to the elliptic system of nonlinear equations with different
behavior.
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For the equations of ideal incompressible fluid, V.l.Arnold proved a
theorem about the structure of stationary solutions, based on the
existence of two commuting vector fields.

V. I. Arnol’'d, “On the topology of three-dimensional steady flows of an
ideal fluid”, J. Appl. Math. Mech., 30 (1966), PP 223-226 )

This construction was generalized by V.V.Kozlov for the case of
compressible fluid.

V.V. Kozlov, “Notes on steady vortex motions of continuous medium”, J.
Appl. Math. Mech., 47:2 (1983), 288-289

We explore the possibility of such structures for the case of the
Vlasov-Poisson and Vlasov-Maxwell equations.
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Consider more general case: Vlasov-Poisson-Poisson equations with
electrostatics and with gravity:

Ofa p Ofa ou dp Ofa _
ot +(ma7 8m>+< Magr T oy 8p) =0

AU:47TGZm(x/fa(tvxap)dp7 (11)

A()D:—47T'Zea/f(x(t7$7p)dp'

The first equation is the equation of collective motion of the particles
(Liouville equation) for the ordinary Newton equations of motion:

b=
Ma

U 9y

.:7m — € .
p Oz * Ox
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“hydrodynamic” substitution gives us the exact solutions

falt,z,p) = no(z,)0(p — Pa(x,t)) (1.2)
for the system (1.1), if n, and P, is determined by the system of
equations

agt“ + miadiv(napu) —0,
0P, 1 OP, ou Do
ot + o aiaixi = _maﬁix - ea%’

AU = 4nG Z mana(xv t)’

Ap = —4r Z eaNa(z,t).

If we rewrite the second equation in the Gromeka form:

aPa 1 aPa 8Pai o 1 2

one can see a gradient from the "Bernoulli's integral" in the right side.
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Let R™ be the matrix RS

OPai 0P

al'j (95171

Taking curl of momentum from the equation (1.4), give us the equation

o _

curl of momentum P,.

OR,
ot

In the steady-state case we have

+ rot[R* x P,] =0.

rot[R“ x P*] =0. (1.5)

V.I.Arnold and V.V.Kozlov: If the continuity equation div(n,P,) =0 is
satisfied then vector fields % and P“ commute. Then a surface formed
by those two vector fields is either plane, or cilinder or torus.

{RQ,P"‘] 0. (1.6)

Ney
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For the Vlasov-Maxwell system of equations we have two difficulties
@ The Lorentz force does not have the form of the gradient.

@ Momentum and velocity of the particle are of relativistic
dependence. Nevertheless those difficulties could be overcome.

The system of Vlasov-Maxwell equations has the following form:

%+ (1) f‘*) e (E+ ont) x 1.9 =0,
ot — - - = Zea/va )fa(t,z,p)d’p, (2.1)

OH
. _ 3 o . .
divE = 47 Ea €q /fa(t,:v,p)d p,rotE = 5 ,divA = 0.

P 1

Mo 2
145
‘mu(‘.

Here v, (p) =

Electro-Magnetic-Hydro-Dynamic (EMHD) equations obtained from the
system (2.1) by substituting

foz(ta Z‘,p) = na(xvt)(;(p - Qa(zvt))
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has the form

One | .
gt +div(nava(Py)) =0,
e (@) G2 = o (B4 loalr) x ])

0H . (2.2)
rotF = T divk = 471'Zeana.
10F 4

divH = 0,rotH — 78— -7 €aNaVa(Pa),

c ot c

We transform the second equation of system (2.2) to Gromeka form
a i
vh(Qu) 2t = VK (Qu),

here K(@0) = Y- [ @@ =3 L [ % -

7mc/ mac?"‘limc /
mo,
21+ e

In the relativistic case this term will have a gradient form — so we have
overcome the second of difficulties.
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However, the Lorentz force do not have a gradient form, so we convert it by
combining with a similar member [v®x rot Q.] and moving to the left side
[v¥x (rot Qo — = H)].
If we take the curl of both sides then we get
rot[va x (rotQu — - H)] = 0. (2.3)
c

But we have the equation of continuity - the first of equations (2.2)

div(nava(p)) = 0.

Hence by the theorem of Arnold Kozlov follows that the vector fields

rotQ. — “>H
Ua, ni
«
commute: Q e H
rotQ, — %>
Ve (Qa), e | =0,
«

Here Qo — %> A — generalized momentum of the electromagnetic field.

We have the same result but for other fields.
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In N-layered case, we have:

N
fa(t,:b,p) = Z naﬂé(p - Qg(fﬂ,t))

In the continuum-layer version we have:

falt,z,p) = /na(u;x,t)é(p — Qalp;z,t))dp. (31)
The equations obtained here

8na (H? z, t)
ot

0Qa(p) | i 0Qa(p) _ 1
ot Ve gy, = CalBt lvax H]),

dIVE = 47rzeu/not M5 T, t dl,l,, (32)

rotH — la—E = Zea /navad,u7

+ diV(Tla’Ua (,U/; €T, t)) =0,

rotF — oH =0,divH = 0.
ot

For each p , we have equation of the form (2.2) and its equation of continuity
with the same conclusions for each layer u .



Hamilton-Jacobi Equations
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We use the analogy between the Vlasov and Liouville equations.
What does the hydrodynamic substitution give for the Liouville equation?
Consider an arbitrary system of nonlinear equations

x = G(x),x € R",G(x) € R". (4.1)
And its Lioville or continuity equation
af(x,t) 0

We can arbitrarily divide the variables x to "coordinates" and "impulses"
or momenta x = {q,p},q € R¥.pc R" % herek: 1<k<n-—1.
"Hydrodynamic" substitution:

So for p and Q we have



Hamilton-Jacobi Equations
000000000

dp(q,t 0
ot 8(]7; (4 3)
0Q(q, 1) V@Q _F '
ot Zaqi o
Here we determinate V and F by rewriting the system of the equations
(4.1)
a= v(q,p), (4.4)
p=g(a,p).
Then
V(a,t) =v(q,Q(t,a)), F(a,t)=g(a,Q(t a)).
To prove this we rewrite the Liouville equation (4.2) as
of 0
o " ag, ( i.f)"'@(gjf)_o' (4.5)

The easiest way to obtain equation (4.3) - using "moments method"
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We integrate (4.5) over the :

/a v f)dp™* + /8 (g;f)dp" " = 0. (4.6)

The third term is equal to zero for f decreasing at infinity, while the
second takes the form of divergence

az,- /(“i(% p)r(a,t)d(p — Q(a,1))) dp = 8%(‘/;-;)).

So we got the first equation (4.3). To get the second, we multiply (4.5)
by p and integrate using the fact that: [ pd(p — Q)dp = Q:

p) 0 a(gjf) .
+/p8ql_ (vif)dp+/p o, dp = 0.

The second term is transformed by putting differentiation over the q
before integral:

0 ) _ n—k __ 0 .
aqi/ppvﬁ(p Q)dp" " = 2 (pvi(@)Q) -
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The third term is transformed by integrating by parts:

/pa;(gjf)dp - —/pg(x, P)é(p—Q)dp = —pg(a,Q(a,t)) = —pF(a, ).

So we get the system of equations, which differs from (4.3)

op 0 B

En + ?(ij) =0,
(Qp) (4.7)
oy a%( pViQ) = pF.

However, taking into account the continuity equation, the second
equation in (4.7) is equivalent to the second equation in (4.3).
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Suppose now that system (4.1) is Hamiltonian, and in (4.4)

v= %—Ig,g = —%—I;. The system (4.4) takes the usual Hamiltonian form:
. OH
q= -
dp
om (4.8)
p= dq
If k=n—k):
oQ oQ 0Q; Qi
- tVi - Vi =F-V .
ot " Viow, T Viow >

This equation is identical to that V.V.Kozlov get by another method, for
wich it was not clear where from continuity equations comes. At the
right we have gradient

Qi _ —8H(a:,p) - ?TH(I,Z?) o

Oz dq p=Q(z,t) p p=Q(=,t) Oz

F -V,
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V.V.Kozlov: substitution g—i give us the following

g (0S8 aS

For S(z,t) obtained the Hamilton-Jacobi equation after "calibration"

S + g(t) — S on a function of time. So we have generalized Kozlov
conclusions for nonhamiltonian case. It seems that Hamilton-Jacobi
method could be applied in nonhamiltonian situation. Our following goal
— apply this to the Vlasov-Poisson and to Vlasov-Maxwell equations. For
Vlasov-Poisson-Poisson one gets.

Let for(1.3) Py = 93. We get:

Ong 1 a( asa>
— + — n =0

ot me 02; * Oz,
1
%j +— (VSQ,VS )= —maU(z) — eqp(x)
(4.9)

AU = 47G Z MaNg

Ap =—4r Z eaNg
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Vlassov-Maxwell case does not pass due to the fact that the Lorentz
force do not have a gradient form. But for Vlasov-Poisson or
Vlasov-Poisson—Poisson equation we can make it even for the case of a
chain of hydrodynamic equation or continuum, that one can get by the
substitution:

faltiz.p) = [ nali, 030~ QulO)dp. (410

One (ps; ,t) L. i o ) —
ot + e div (na(ﬂvxat)Pa(ﬂv ‘Lat)) =0

OPa(pia,t) 1, OPa U _
ot Mg o 3% = " Ma ox Ca ox

(4.11)
Au = 47TGZm@/na(/L;a:,t)du

Ap = —4m Z €a /na(u; x,t)du
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This is the analogue of the chain of Benny, "Benny continuum" for (1.1).
Substitution

05,
Pa(M;IL',t) = ax (/~L7$at)

passes, and using the Gromeka form we obtain an analogue of the
Hamilton-Jacobi equations similar to (4.1)

One(p; x,t) 1. . as , B
— 5 + P div (na(,u,x,t)ax(u,x,t)> =0

08 (p; z,t) 1 B
o + ST, (VSa,VS,) = —myU(x) — eqp(x)

Au = 4nG Zma /na(,u; x,t)dp

(4.12)

Ay = 747‘(260( /na(u;m7t)du
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@ We have considered the analogy between the equations of Liouville
and Vlasov equation with the mutual enrichment.

@ For the Liouville equation, we have a short path to the Hamilton —
Jacobi equation using hydrodynamic substitution with generalization
to non-Hamiltonian case.

@ For the Vlasov equation, we obtain an equation of Hamilton-Jacobi
equation for the Vlasov-Poisson equation. (not for the
Vlasov-Maxwell ).

@ In both cases, one can get two commuting Arnold- Kozlov fields.

@ It is advisable, to verify (even in the examples of three-dimensional
Hamiltonian systems, one, two, three or more Newtonian (Coulomb)
attractive centers ) the effectiveness of this method.



