Migration imaging in elastic media using Born approximation

Voynov O.Ya., Golubev V.I., Zhdanov M.S.
Moscow Institute of Physics and Technology
$13^{\text {th }}$ September 2016

Plan

1. Problem statement
2. Main formulae
3. Comparison of acoustic and elastic Born migration

Seismic migration imaging

- -source \quad-receiver

Formulae

Lame equation:

$$
\widehat{\Lambda} \vec{u}-\frac{\partial^{2} \vec{u}}{\partial t^{2}}=-\vec{f}^{e}, \quad \widehat{\Lambda}=c_{p}^{2} \nabla \nabla \cdot-c_{s}^{2} \nabla \times \nabla \times
$$

Background and anomalous parts:

$$
\begin{array}{ll}
c_{\alpha}^{2}=c_{\alpha, b}^{2}+\Delta c_{\alpha}^{2}, \quad \alpha \in\{p, s\}, \\
\hat{\Lambda}=\hat{\Lambda}_{b}+\Delta \hat{\Lambda}, \quad \vec{u}=\vec{u}^{i}+\vec{u}^{\mathrm{s}}
\end{array}
$$

Equations for incident and scattered fields:

$$
\widehat{\Lambda}_{b} \vec{u}^{i}-\frac{\partial^{2} \vec{u}^{i}}{\partial t^{2}}=-\vec{f}^{e}, \quad \widehat{\Lambda}_{b} \vec{u}^{s}-\frac{\partial^{2} \vec{u}^{s} \quad \text { Born approximation }}{\partial t^{2}}=-\Delta \widehat{\Lambda}\left(\vec{u}^{i}+\vec{u}^{\widehat{s}}\right)
$$

Acoustic wave equation:

$$
\Delta P-s^{2} \partial_{t}^{2} P=-F^{e}
$$

Background and anomalous parts:

$$
\begin{gathered}
s^{2}=s_{b}^{2}+\Delta s^{2}, \\
P=P^{i}+P^{s}
\end{gathered}
$$

Equations for incident and scattered fields:
Born approximation
$\Delta P^{i}-s_{b}^{2} \partial_{t}^{2} P^{i}=-F^{e}, \quad \Delta P^{s}-s_{b}^{2} \partial_{t}^{2} P^{s}=\Delta s^{2} \partial_{t}^{2}\left(P^{i}+P^{s}\right)$

Acoustic vs Elastic Born migration

Media

$x \times z=10 \times 2.5 \mathrm{~km}$,
$c_{p, b}=2.5 \mathrm{~km} / \mathrm{s}$,
$c_{s, b}=1.25 \mathrm{~km} / \mathrm{s}$,
$\Delta c_{\alpha}^{2} / c_{\alpha, b}^{2}=0.01$,

Data

only z-component of scattered field

a

p

S

Lame equation:

$$
\widehat{\Lambda} \vec{u}-\frac{\partial^{2} \vec{u}}{\partial t^{2}}=-\vec{f}^{e}, \quad \widehat{\Lambda}=c_{p}^{2} \nabla \nabla \cdot-c_{s}^{2} \nabla \times \nabla \times
$$

Background and anomalous parts:

$$
\begin{array}{ll}
c_{\alpha}^{2}=c_{\alpha, b}^{2}+\Delta c_{\alpha,}^{2} & \alpha \in\{p, s\}, \\
\hat{\Lambda}=\hat{\Lambda}_{b}+\Delta \hat{\Lambda}, & \vec{u}=\vec{u}^{i}+\vec{u}^{s}
\end{array}
$$

Equations for incident and scattered fields:

$$
\widehat{\Lambda}_{b} \vec{u}^{i}-\frac{\partial^{2} \vec{u}^{i}}{\partial t^{2}}=-\vec{f}^{e}, \quad \widehat{\Lambda}_{b} \vec{u}^{s}-\frac{\partial^{2} \vec{u}^{s}}{\partial t^{2}}=-\Delta \widehat{\Lambda}\left(\vec{u}^{i}+\vec{u}^{s}\right)
$$

Acoustic wave equation:

$$
\Delta P-s^{2} \partial_{t}^{2} P=-F^{e}
$$

Background and anomalous parts:

$$
\begin{gathered}
s^{2}=s_{b}^{2}+\Delta s^{2}, \\
P=P^{i}+P^{s}
\end{gathered}
$$

Equations for incident and scattered fields:
$\Delta P^{i}-s_{b}^{2} \partial_{t}^{2} P^{i}=-F^{e}, \quad \Delta P^{s}-s_{b}^{2} \partial_{t}^{2} P^{s}=\Delta s^{2} \partial_{t}^{2}\left(P^{i}+P^{s}\right)$
a

p

S

S

a

a

Results

- Algorithm of elastic migration based on Born approximation was proposed and developed
- It has been shown to locate steep interfaces better than acoustic algorithm and to have less strongly pronounced false boundaries

Media

$x \times z=10 \times 2.5 \mathrm{~km}$,
$c_{p, b}=2.5 \mathrm{~km} / \mathrm{s}$,
$c_{s, b}=1.25 \mathrm{~km} / \mathrm{s}$,
$\Delta c_{\alpha}^{2} / c_{\alpha, b}^{2}=0.01$,

$\rho=2.5 \mathrm{t} / \mathrm{m}^{3}$

Data

(only z-component of scattered field)
$z=15 \mathrm{~m}$,
$\Delta x=10 \mathrm{~m}$,
$\Delta t=2 \mathrm{~ms}$, $t \in[0,4] \mathrm{s}$,

$$
F(t)=
$$

$$
\left(1-2 \pi^{2} f_{M}^{2} t^{2}\right)
$$

$$
f_{M}=25 \mathrm{~Hz}
$$

$$
\vec{f}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)^{T}
$$

