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One of several Marine 

Electromagnetic (EM) Acquisition Setups 
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To plan a survey and interpret collected data, we have to solve low-frequency  
Maxwell’s equation repeatedly. 



Electrical Conductivity Model 
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Let’s consider a 3D heterogeneous conductivity 
Earth model composed of layered background 
with conductivity 𝜎𝑏(𝑧) and anomalous 
inclusions (bodies) 𝐷 with conductivity 

 𝜎𝑎 + 𝜎𝑏.  

 

To have some simple measure of control on 
lateral contrast of the model, we assume there 
exist 𝛼 and 𝛽 such that, 

𝛼 𝜎𝑏 𝑧 ≤  𝜎 𝑥, 𝑦, 𝑧  ≤ 𝛽 𝜎𝑏 𝑧  
0 < 𝛼 ≤ 1 ≤ 𝛽 < ∞, 

This inequality insures that the anomalous 
inclusions are neither perfect conductors nor 
insulators. 

 

𝜎𝑏 
𝜎𝑏 + 𝜎𝑎 

𝜎 =  
𝜎𝑎 + 𝜎𝑏     in    𝐷,

𝜎𝑏        in  ℝ
3\𝐷 .  

 

 

𝐷 



Low-frequency Maxwell’s equations 
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Within some finite volume 𝑉, we formulate 

the secondary field low-frequency Maxwell’s 
equations: 

𝑟𝑜𝑡 𝑟𝑜𝑡 𝐸𝑎 − 𝑖ωμ0𝜎𝑏𝐸𝑎 = 𝑖ωμ0𝜎𝑎(𝐸𝑎 + 𝐸𝑏). 

𝐸𝑎 × 𝜈 = 0. 

 

Here 𝐸𝑎 is unknown, while layered Earth 
resposne  𝐸𝑏 can be easily computed quasi-
analytically.  

 

We will discuss efficient solution of the finite-
difference (FD) discretization of the later 
equations. 

𝜎𝑏 

𝜎𝑏 + 𝜎𝑎 𝐷 

𝑉 

𝐸 = 𝐸𝑎 + 𝐸𝑏 



FD System - 1 
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We use edge-based electric fields and edge-sampled conductivities on a 
non-uniform grid, 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 . 

 

The total number of  

unknowns is 𝑛 ≈ 3𝑁𝑥𝑁𝑦𝑁𝑧 .   

 



FD System - 2 
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We will use the following notations for FD operators and unknowns, 

𝐸𝑏 ≈ 𝑒𝑏,  𝐸𝑎 ≈ 𝑒𝑎  

𝜎 𝑥, 𝑦, 𝑧 ≈ Σ, (diagonal matrices) 

𝜎𝑏 𝑧 ≈ Σ𝑏,  𝜎𝑎 𝑥, 𝑦, 𝑧 ≈ Σ𝑎, 

 

 

 

 

𝑟𝑜𝑡 𝑟𝑜𝑡 − 𝑖ωμ0𝜎𝐼 ≈ 𝐴, 
𝑟𝑜𝑡 𝑟𝑜𝑡 − 𝑖ωμ0𝜎𝑏𝐼 ≈ 𝐴𝑏 

 

FD secondary field formulation:  
𝐴𝑒𝑎 = 𝑖𝜔𝜇0 Σ𝑎𝑒𝑏   or   𝐴𝑏𝑒𝑎 = 𝑖𝜔𝜇0Σ𝑎(𝑒𝑎 + 𝑒𝑏). 

 

This problems have typically 1 to 10 million unknowns.  Their efficient 
solution is of major importance. 



Major Preconditioning Approaches 
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Sever major approaches are applicable to this problem.  

Some of them are 

• Geometric and algebraic multigrid, 

• ILU, ILUt, etc, 

• Domain decomposition methods, 

• Discrete separation of variables. 

 

We will base our presentation on discrete separation of variables, since it 
provides decent spectral properties of the preconditioned problem  (will be 
proved later) and very memory economical. 



FD GF Preconditioner – 1 
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Matrix 𝐴𝑏 can be efficiently factorized,  

so that complexity to compute 𝐴𝑏
−1𝑢 is at most 𝑂(𝑁𝑥𝑁𝑦𝑁𝑧 𝑁𝑥 + 𝑁𝑦 ) 

operations and auxiliary memory 𝑂 𝑛 .  

Consequently, we may used as a preconditioner, 

 

𝐴𝑏
−1 𝐴 𝑒𝑎 = 𝑖𝜔𝜇0  𝐴𝑏

−1 Σ𝑎𝑒𝑏  or   𝑒𝑎 = 𝑖𝜔𝜇0  𝐴𝑏
−1 Σ𝑎(𝑒𝑎 + 𝑒𝑏) 

 

This is pretty much an equivalent of the IE formulation  

since 𝐴𝑏
−1  is the FD Green’s function (GF) of the layered media. 

 

How good will be this preconditioner? 

 

 



FD GF Preconditioner – 2 
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We studied the respective eigenvalue problem, 

𝐴𝑏
−1 𝐴 𝑣 = 𝜆 𝑣, 

to understand properties of this preconditioner. 

 

 

𝑐𝑜𝑛𝑑 𝐴𝑏
−1𝐴 ≈

|𝜆max |

|𝜆min |
≤
𝛽

𝛼
 



Contraction Operator – 1 
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Let us try to improve the later result. Our formulation of the Maxwell’s 

equations imply the energy equality, 

 ‍
𝑉

𝜎𝑏 𝐸𝑎
2𝑑𝑉 + 𝑅𝑒 ‍

𝑉

𝐸𝑎
∗ ⋅ 𝐽𝑎𝑑𝑉 = 0. 

It also holds at the discrete level, 

∥ Σ𝑏

1
2𝑒𝑎 ∥

2 +𝑅𝑒(𝑒𝑎
∗ , 𝑗𝑎) = 0. 

 

The equality can be used to transform the FD system. Introduce, 

𝐾1 =
1

2
Σ + Σ𝑏 Σ𝑏

−1/2
, 𝐾2 =

1

2
Σ − Σ𝑏 Σ𝑏

−1/2
, 

𝑒 𝑎 = 𝐾1𝑒𝑎. 



Contraction Operator – 2 
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Then 𝑒𝑎 will satisfy,  
𝐼 − 𝐶 𝑒 𝑎 = 𝑓, 

where, 

𝐶 = 2𝑖ωμ0 Σ𝑏

1
2 𝐴𝑏

−1 Σ𝑏

1
2  + 𝐼 𝐾2𝐾1

−1, 

𝑓 = 𝑖ωμ0Σ𝑏

1
2𝐴𝑏
−1Σ𝑎𝑒𝑏. 

 
Interestingly,  

𝐶 < 1. 
Thus we will refer this transformation as the contraction operator (CO) 
preconditioner.  



Contraction Operator – 3 
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It can be proved, 
𝑐𝑜𝑛𝑑 𝐼 − 𝐶 ≤ max 1 𝛼 , 𝛽 . 

Comparison of the two condition numbers leads us to a conclusion.  
When the bodies are only resistive or conductive, the covergence of 
iterative solvers will be similar is similar. In case of resistive and  
conductive bodies, CO will provide faster convergence.  

𝐼 − 𝐶 𝑢 = 𝜆 𝑢. 
 

𝐶 ≤ 1 − 2 min (𝛼, 1 𝛽) =: 𝛾. 

1 



Marine resistivity model of 
a hydrocarbon deposit 
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Sampled model/  
towed source and receiver array 
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Source 
Receiver array 

Colors indicate Ohm·m 



Performance comparison 

172 x 96 x 83 computational grid, 

4’034’327 unknowns 

BiCGStab, 𝜀=1e-8 

 

Performance of the solver at one of the source positions: 

 

 

 

 

 

 

We observed a speed up of 2.5 times! 

FD GF 
Preconditioner 

Contraction 
operator 

Iterations/ time, s Iterations/ time, s 

78  /   445 31   /   180 



Towed Streamer Data Sensitivity – 1  
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We modeled responses at 32 setup locations for models with and without 
deposit. 

 

     vs. 



Towed Streamer Data Sensitivity – 2 
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Below is the ratio the responses. We good data sensitivity: 48% amplitude 
anomaly,  32° phase anomaly. 

common mid-point 
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Summary 
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• We designed, analyzed, and tested two preconditioners  for 3D 
electromagnetic low-frequency modeling. 

 

• Our analysis and tests showed that convergence of iterative solvers 
applied to CO preconditioned system is faster or same than that applied 
to GF preconditioned system. 

 

• We also demonstrated applicability of the approaches to marine 
geophysical EM modeling. 

 


