Exercise I. Variational Formulation

Let Ω be a regular bounded and connected open set of \mathbb{R}^n. Let Γ_N and Γ_D such that $\partial\Omega = \Gamma_N \cup \Gamma_D$ of negligible intersection, each of them being of non zero surface measure. Let $g \in L^2(\Gamma_N)$ and $f \in L^2(\Omega)$. We consider the Partial Differential Equation

$$
\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u = 0 & \text{on } \Gamma_D, \\
\frac{\partial u}{\partial n} = g & \text{on } \Gamma_N.
\end{cases}
$$

1. Give the variational formulation associated to (1).
2. Prove that there exists a unique solution u to the variational problem obtained. To this end, we could admit the following Lemma.

Lemma 1. Let Ω be a connected open set of \mathbb{R}^N. Let $u \in H^1(\Omega)$ such that $\nabla u = 0$ then u is constant over Ω.

3. If g is the trace of a $H^1(\Omega)$ map (that is if g belongs to $H^{1/2}(\Omega)$), the solution u of the variational formulation belongs to $H^2(\Omega)$. In this case, prove that it is also a solution of the initial PDE (1).

Exercise II. Non local limit conditions

Let Ω_0, Ω_1, be open bounded sets of \mathbb{R}^2 such that $\overline{\Omega_1}$ is included in Ω_0 assumed to be connected. We denote by Ω the open set $\Omega_0 - \overline{\Omega_1}$.

Let f be a map in $L^2(\Omega)$ and $q \in L^\infty(\Omega)$. We would like to establish the existence of a solution u of the following problem

$$
\begin{cases}
-\Delta u + q(x)u = f & \text{in } \Omega \\
\frac{\partial u}{\partial n} = -\alpha \int_{\Gamma_1} u ds & \text{on } \Gamma_1 \\
u(x) = 0 & \text{on } \Gamma_0
\end{cases}
$$

where α is a non negative real, $\Gamma_0 = \partial\Omega_0$ and $\Gamma_1 = \partial\Omega_1$.

1
1. **Variational Formulation.** Prove that all regular solutions of the PDE are solutions of a variational problem to determine. Conversely, prove that all regular solutions of the variational problem are solutions of the PDE.

2. **Existence.** We assume that there exists a positive real \(q_0 \) such that for almost all \(x \in \Omega \),

\[
q(x) \geq q_0.
\]

Prove that there exists a unique solution \(u \) to the variational problem and that it depends continuously on the data.

3. **Poincaré like inequality.** Prove by contradiction (reductio ad absurdum), that there exists a constant \(C \) such that for all \(u \) such that \(u(x) = 0 \) on \(\Gamma_0 \),

\[
\|u\|_{H^1(\Omega)} \leq C\|
abla u\|_{L^2(\Omega)}.
\]

Can the conditions imposed to \(\alpha \) and \(q \) be relaxed and still preserve the existence result?

Exercise III. Eigenvalues of the Laplacian.

Let \(\Omega \) be a regular bounded and connected open set of \(\mathbb{R}^n \). A real \(\lambda \) is said to be an eigenvalue of the Laplacian with Dirichlet boundary conditions if there exists a non zero \(u \in H^1_0(\Omega) \) such that

\[
-\Delta u = \lambda u.
\]

The map \(u \) is called the eigenfunction associated to \(\lambda \).

1. **Positivity of the eigenvalues.** Prove that all the eigenvalues of the Laplacian with Dirichlet BC is non negative (and even positive).

2. **Regularity of the eigenfunctions.** We recall the remarkable regularization property:

Theorem 1. Let \(\Omega \) be a regular open set of \(\mathbb{R}^n \) and \(f \) a map of \(H^m(\Omega) \), then the solution \(u \in H^1_0(\Omega) \) of the PDE

\[
\begin{cases}
-\Delta u = f & \text{ in } \Omega \\
 u = 0 & \text{ on } \partial \Omega
\end{cases}
\]

belongs to \(H^{m+2}(\Omega) \).

Moreover, we ”recall” that all function that belongs to \(H^m(\Omega) \) is continuous provided that \(m > N/2 \). Prove that the eigenfunctions of the Laplacian with Dirichlet boundary conditions belong to \(C^\infty(\Omega) \).

3. **First eigenvalue.** Let \(\beta \) defined by

\[
\beta = \inf_{u \in H^1_0(\Omega)} \frac{\int_\Omega |\nabla u|^2 dx}{\int_\Omega |u|^2 dx}
\]

Prove that \(\beta \) is positive and that there exists \(u \in H^1_0(\Omega) \) such that

\[
\beta = \frac{\int_\Omega |\nabla u|^2 dx}{\int_\Omega |u|^2 dx}.
\]

2
What is the relationship between β and the Poincaré inequality?

4. First eigenfunction. Prove that the functional

$$J(u) = \int_{\Omega} |u|^2 \, dx$$

is Gâteaux differentiable, that is there exists a continuous linear form L on $H^1_0(\Omega)$ such that for all $w \in H^1_0(\Omega)$,

$$\lim_{\delta \to 0} \frac{J(u + \delta w) - J(u)}{\delta} = L(w)$$

Prove that the functional

$$F(u) = \int_{\Omega} |\nabla u|^2 \, dx$$

is also Gâteaux differentiable. Deduce that the function u maximizing J on the set

$$K = \{ v \in H^1_0(\Omega) : F(v) \leq 1 \}$$

is an eigenfunction of the Laplacian with Dirichlet boundary conditions.

5. Weak maximum principle. Let $f \in L^2(\Omega)$ and $u \in H^1_0(\Omega)$ such that $f \geq 0$ and

$$-\Delta u = f.$$

Prove that $u(x) \geq 0$ almost everywhere. To this end, the following Lemma could be used.

Lemma 2. Let Ω be an open set of \mathbb{R}^n and $u \in H^1(\Omega)$. We set $u^- = \min(0, u)$. Then $u^- \in H^1(\Omega)$ and

$$\nabla u^- = \mathbb{1}_{u<0} \nabla u.$$

There exists another maximum principle (called strong)

Theorem 2. Let Ω be a connected regular bounded open set of \mathbb{R}^N. Let w be a map of class C^2 on $\overline{\Omega}$ such that

$$\begin{cases}
-\Delta w \geq 0 & \text{in } \Omega, \\
w = 0 & \text{on } \partial \Omega
\end{cases}$$

then either w is equal to zero, or $w(x) > 0$ for all $x \in \Omega$.

6. Uniqueness and positivity. By using the strong maximum principle, prove that u is of constant sign on Ω. Conclude that β is a simple eigenvalue.

Exercise IV. Periodical problem in dimension 1

Let $\Omega =]0, 1[$. We seek for the solution $u \in H^1(\Omega)$ of the following PDE

$$\begin{cases}
-u'' + u = f & \text{in } \Omega \\
u(1) = u(0) \\
u'(1) = u'(0) + r
\end{cases}$$
with \(f \in L^2(\Omega) \) and \(r \in \mathbb{R} \).

1. Prove that there exists a constant \(C \) such that for all \(u \in H^1(\Omega) \)
 \[
 \sup_{x \in \Omega} |u(x)| \leq C\|u\|_{H^1(\Omega)}.
 \]

2. Find the variational formulation associated to the PDE considered. Let us
denote by \(a \) the bilinear form \(\ell \) the linear form and \(V \) the Hilbert space thus
introduced. Prove the equivalence between both formulations.

3. Prove that the variational problem admits a unique solution.

4. We would like to compute numerically an approximation of the solution
of this problem. Let \(n \) be a positive integer. We set \(h = 1/n \), and for all
\(i \in \{0, \cdots, n\} \), \(x_i = ih \). Let \(V_h \) be the space defined by
 \[
 V_h = \{ u \in V : u_{[x_i, x_{i+1}]} \in \Pi_1 \},
 \]
where \(\Pi_1 \) is the set of polynomials of degree lower or equal to one. Prove that
there exists a unique \(u_h \in V_h \) such that
\[
a(u_h, v_h) = \ell(v_h) \text{ for all } v_h \in V_h.
\]
Prove that this problem is equivalent to find \(U_h \in \mathbb{R}^n \) such that
 \[
 A_h U_h = F_h,
 \]
where \(A_h \) is a \(n \times n \) matrix and \(F_h \in \mathbb{R}^n \). Compute explicitly the matrix \(A_h \)
and express explicitly the vector \(F_h \) with respect to \(f \) and \(r \).

5. Prove that there exists a positive constant \(C \) such that
 \[
 \|u - u_h\|_{H^1} \leq C \inf_{v_h \in V_h} \|u - v_h\|_{H^1},
 \]
where \(u \) is the solution of the initial variational problem and \(u_h \) is the solution
of the discrete system.

6. We define the interpolation operator \(r_h : V \to V_h \) that maps each \(v \in V \) to
the element \(r_h v \in V_h \) defined by
 \[
r_h v(x_i) = v(x_i) \text{ for all } i \in \{0, \cdots, n-1\}.
 \]
Verify that \(r_h \) is uniquely defined. Prove that for all \(v \in V \cap H^2(\Omega) \),
 \[
 \|v - r_h v\|_{H^1(\Omega)} \leq C \|v\|_{H^2(\Omega)}.
 \]
Deduce that \(u_h \) converges toward \(u \).