Exercise I. Optimization of the smallest eigenvalue of a membrane. A real λ is said to be an eigenvalue of a membrane Ω of thickness h if there exists $u \neq 0$ such that
\[
\begin{cases}
-\text{div}(h\nabla u) = \lambda u & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega.
\end{cases}
\]
We seek to maximize the first eigenvalue of the membrane on the set of elements h belonging to
\[
U_{ad} = \left\{ h \in L^\infty(\Omega) : h_{\text{min}} \leq h \leq h_{\text{max}}, \int_{\Omega} h dx \leq V \right\},
\]
where $h_{\text{min}} > 0$ and h_{max} denote respectively the minimal and maximal thickness of the membrane whereas V stands for the maximal admissible volume (or weight).

We recall that the smallest eigenvalue can be defined by
\[
\lambda(h) = \min_{u \in H^1_0(\Omega) \atop \|u\|_{L^2}=1} \int_{\Omega} h|\nabla u|^2.
\]

1. We recall that the smallest eigenvalue of the Laplacian is simple.

Thus, for all h, there exists a unique $u(h) \in H^1_0(\Omega)$, solution of (1) such that $u(h) \geq 0$ almost everywhere and $\|u(h)\|_{L^2(\Omega)} = 1$. We assume in this question that the functions $\lambda(h)$ and $u(h)$ are both differentiable with respect to h.

a. Deriving the variational formulation satisfied by the couple (u, λ), prove that
\[
\lambda'(h) = |\nabla u|^2.
\]
b. Suggest a algorithm of maximization of $\lambda(h)$.

2. (More tricky) The aim of the following questions consists in proving that the functions $\lambda(h)$ and $u(h)$ are indeed differentiable with respect to h.

We “recall” the following compactness result: If u_n is a bounded sequence in $H^1_0(\Omega)$, there exists a subsequence u_{n_k} of u_n, and an element $u \in H^1_0(\Omega)$ such that u_{n_k} converges toward u in $L^2(\Omega)$. Moreover, for all $v \in L^2(\Omega)^N$,
\[
(\nabla u_{n_k}, v)_{L^2} \to (\nabla u, v)_{L^2}.
\]

Continuity. We consider a sequence h_n of elements of U_{ad}, converging toward an element h in $L^\infty(\Omega)$. We set $\lambda_n = \lambda(h_n)$ and $u_n = u(h_n)$.

a. Prove that λ_n is a bounded sequence.
b. Prove that a subsequence u_{n_k} can be extract from u_n such that if converges in $L^2(\Omega)$ toward an element $u \in H^1_0(\Omega)$.
c. Prove that
\[
\int_{\Omega} h|\nabla u|^2 dx \leq \liminf_{n} \int_{\Omega} h_{n_k}|\nabla u_{n_k}|^2 dx.
\]
d. Prove that \(\lambda(h) = \lim \inf \lambda_n \) and that \(u(h) = u \).

e. Conclude.

Derivability.

a. Using the variational formulation satisfied by \(u(h) \), prove (formally) that \(u_k = u'(h), k > \) is such that for all \(\phi \in H^1_0(\Omega) \),

\[
a(u_k, \phi) = L(\phi)
\]

where

\[
a(w, \phi) = \int_{\Omega} h\nabla w \cdot \nabla \phi - \lambda w \phi dx
\]

and

\[
L(\phi) = \left(\int_{\Omega} k |\nabla u(h)|^2 dx \right) \int_{\Omega} u(h) \phi dx - \int_{\Omega} k \nabla u(h) \cdot \nabla \phi dx.
\]

Prove that there exists a unique solution \(w \in H^1_0(\Omega) \) to this variational problem such that

\[
\int_{\Omega} w u dx = 0.
\]

To this end, the quotient space \(V \) of \(H^1_0(\Omega) \) by \(u(h) \) endowed with the norm

\[
\|\phi\|_V^2 = \inf_{\alpha \in \mathbb{R}} \int_{\Omega} k |\nabla (\phi - \alpha u(h))|^2 dx
\]

could be introduced.

b. Using the variational formulations satisfied by \(u(h + k) \) and \(w \), prove that there exists a constant \(C_0 \) such that for all \(\phi \in H^1_0(\Omega) \),

\[
a(u(h + k) - w, \phi) \leq C_0 \left(\lambda(h + k) - \lambda(h) - \int_{\Omega} k |\nabla u(h)|^2 dx \right) \|\phi\|_{L^2(\Omega)} + o(k) \|\phi\|_{H^1(\Omega)}
\]

where

\[
\lim_{\|k\|_{L^\infty} \to 0} o(k)/\|k\|_{L^\infty(\Omega)} = 0.
\]

Deduce that there exists a constant \(C_1 \) such that

\[
\|u(h + k) - u\|_V \leq C_1 \left(\lambda(h + k) - \lambda(h) - \int_{\Omega} k |\nabla u(h)|^2 dx + o(k) \right).
\]

c. Prove that

\[
\lambda(h + k) - \lambda(h) - \int_{\Omega} k |\nabla u(h)|^2 dx = a(u(h + k) - w, u(h + k) - w) + o(k).
\]

d. Deduce from the questions b. and c. that

\[
\|u(h + k) - u\|_V = o(k).
\]
Exercise II. Tomography.

The tomography consists in determining the internal structure of an object by the application of a tension to its surface and the measure of the induced current. Let Ω be a body made of two material A and B of respective conductivity a_{min} and a_{max}. We apply a potential u_0 at the boundary of Ω and measure the induced surface current $g(u_0)$. We want to determine the respective repartition of material A and B within Ω, that is the domain ω_A occupied by A.

We denote u_1 the potential, solution of the PDE

$$\begin{cases} -\nabla \cdot (a \nabla u_1) = 0 & \text{in } \Omega \\ u_1(x) = u_0 & \text{on } \partial \Omega \end{cases} \quad (2)$$

where $a = \chi_{\omega_A} a_{\text{min}} + (1 - \chi_{\omega_A}) a_{\text{max}}$ and χ_{ω_A} is the characteristic function of ω_A and $u_0 \in H^1(\Omega)$. Moreover, we denote u_2 the solution of the PDE with Neumann conditions given by $g(u_0)$

$$\begin{cases} -\nabla \cdot (a \nabla u_2) = 0 & \text{in } \Omega \\ \frac{\partial u_2}{\partial n}(x) = g(u_0) & \text{on } \partial \Omega \end{cases} \quad (3)$$

Finally, we introduce the functional

$$J(a) = \int_\Omega a \nabla (u_1(a) - u_2(a)) \cdot \nabla (u_1(a) - u_2(a)) \, dx.$$

In order to determine a conductivity compatible with the measure, we look for a minimizer of J with respect to a.

1. Determine the variational formulations associated with PDE (2) and (3).
2. Determine (formally) the differentials of $u_1(a)$ and $u_2(a)$ with respect to the conductivity a.
3. Justify the previous computations by proving first that u_1 and u_2 are bounded and do continuously depend on a, than by proving that they are differentiable with respect to a for all $a \in \mathcal{U}_{\text{ad}}$, where

$$\mathcal{U}_{\text{ad}} = \{a \in L^\infty(\Omega) : a_{\text{min}} \leq a \leq a_{\text{max}}\}.$$

4. Prove that J is differentiable with respect to a for all $a \in \mathcal{U}_{\text{ad}}$, express the differential of the function in terms of the differentials of u_0 and u_1. Is the obtained expression of any use from the practical viewpoint ?
5. Define the Lagrangian associated to the minimization problem of

$$j(a, u_1, u_2) = \int_\Omega a \nabla (u_1 - u_2) \cdot \nabla (u_1 - u_2) \, dx,$$

with respect to (a, u_1, u_2) under the constraints u_1 solution of (2) and u_2 solution solution of (3). Deduce a new expression of the differential of J in terms of two adjoint states p_1 and p_2 to precise.

3