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Abstract� Blind signal separation �BSS� and in�
dependent component analysis �ICA� are emerging
techniques of array processing and data analysis�
aiming at recovering unobserved signals or �sources�
from observed mixtures �typically� the output of an
array of sensors�� exploiting only the assumption
of mutual independence between the signals� The
weakness of the assumptions makes it a powerful
approach but requires to venture beyond familiar
second order statistics� The objective of this paper
is to review some of the approaches that have been
recently developed to address this exciting problem�
to show how they stem from basic principles and
how they relate to each other�

Keywords�Signal separation� blind source separa�
tion� independent component analysis�

I� Introduction

Blind signal separation �BSS� consists in recov�
ering unobserved signals or �sources� from several
observed mixtures� Typically� the observations are
obtained at the output of a set of sensors� each sen�
sor receiving a di�erent combination of the �source
signals�� The adjective �blind� stresses the fact that
i� the source signals are not observed and ii� no
information is available about the mixture� This is
a sound approach when modeling the transfer from
the sources to the sensors is too di	cult
 it is un�
avoidable when no a priori information is available
about the transfer� The lack of a priori knowledge
about the mixture is compensated by a statistically
strong but often physically plausible assumption of
independence between the source signals� The so�
called �blindness� should not be understood neg�
atively� the weakness of the prior information is
precisely the strength of the BSS model� making
it a versatile tool for exploiting the �spatial diver�
sity� provided by an array of sensors� Promising
applications can already be found in the processing
of communications signals e�g� �
��� ����� ����� ����
biomedical signals� like ECG ���� and EEG �����
���� monitoring ����� ����� or as an alternative to
principal component analysis� see e�g� ����� �����
����� ����

The simplest BSS model assumes the existence
of n independent signals s��t�� � � � � sn�t� and the
observation of as many mixtures x��t�� � � � � xn�t��
these mixtures being linear and instantaneous� i�e�
xi�t� �

Pn
j�� aijsj�t� for each i � �� n� This is

�See the ICA page of the CNL group at
http���www�cnl�salk�edu��tewon�ica cnl�html for
��� several biomedical applications�
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when using the separating matrix obtained after adap�
tation based on �� 
�� ���� �
�� ��� samples of a � � �
mixture of constant modulus signals� Each subplot is in
the complex plane� the clustering around circles shows
the restoration of the constant modulus property�

compactly represented by the mixing equation

x�t� � As�t� ���

where s�t� � �s��t�� � � � � sn�t��
y is an n � � column

vector collecting the source signals� vector x�t� sim�
ilarly collects the n observed signals and the square
n� n �mixing matrix� A contains the mixture coef�
�cients� Here as in the following� y denotes trans�
position� The BSS problem consists in recovering
the source vector s�t� using only the observed data
x�t�� the assumption of independence between the
entries of the input vector s�t� and possibly some a
priori information about the probability distribu�
tion of the inputs� It can be formulated as the com�
putation of an n � n �separating matrix� B whose
output y�t�

y�t� � Bx�t� �
�

is an estimate of the vector s�t� of the source sig�
nals�
Figure 
 shows an example of adaptive sepa�

ration of �real� digital communications signals� a
two�sensor array collects complex�valued noisy mix�
tures of two �sources signals� which both have a
constant modulus envelope� Successful separation
upon adaptation is evidenced by the restoration of
the constant modulus at each output� In �gure 
�
the underlying BSS algorithm optimizes a cost func�
tion composed of two penalty terms� one for cor�
relation between outputs and one for deviation of
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the modulus from a constant value� This example
introduces several points to be developed below�
� A penalty term involving only pairwise decorrela�
tion �second order statistics� would not lead to sep�
aration� source separation must go beyond second�
order statistics �see section II�

� Source separation can be obtained by optimizing
a �contrast function� i�e� a scalar measure of some
�distributional property� of the output y� The con�
stant modulus property is very speci�c
 more gen�
eral contrast functions are based on other measures�
entropy� mutual independence� high�order decorre�
lations� divergence between the joint distribution of
y and some model�� � � � Contrast functions are dis�
cussed in sec� III where we show how they relate to
each other and can be derived from the maximum
likelihood principle�
� Fast adaptation is possible� even with simple al�
gorithms �see secs� IV and V� and blind identi�ca�
tion can be accurate even with a small number of
samples �see sec� VI on performance analysis��

The basic BSS model can be extended in sev�
eral directions� Considering� for instance� more sen�
sors than sources� noisy observations� complex sig�
nals and mixtures� one obtains the standard narrow
band array processing�beam�forming model� An�
other extension is to consider convolutive mixtures�
this results in a multichannel blind deconvolution
problem� These extensions are of practical impor�
tance� but this paper is restricted to the simplest
model� real signals� as many sensors as sources�
non�convolutive mixtures� noise free observations
because it captures the essence of the BSS prob�
lem and because our objective is to present the ba�
sic statistical ideas� focusing on principles� Some
pointers are nonetheless provided in the last sec�
tion to papers addressing more general models�
The paper is organized as follows� section II

discusses blind identi�ability
 section III and IV
present contrast functions and estimating func�
tions� starting from information�theoretic ideas and
moving to suboptimal high order approximations

adaptive algorithms are described in section V
 sec�
tion VI addresses some performance issues�

II� Can it be done� Modeling and

identifiability�

When is source separation possible� To which
extent can the source signals be recovered� What
are the properties of the source signals allowing for
partial or complete blind recovery� These issues
are addressed in this section�

A� The BSS model

Source separation exploits primarily �spatial di�
versity�� that is the fact that di�erent sensors re�
ceive di�erent mixtures of the sources� Spectral di�
versity� if it exists� could also be exploited but the

approach of source separation is essentially �spa�
tial�� looking for structure across the sensors� not
across time� The consequence of ignoring any time
structure is that the information contained in the
data is exhaustively represented by the sample dis�
tribution of the observed vector x �as graphically
depicted in �g� � for instance�� Then� BSS becomes
the problem of identifying the probability distribu�
tion of a vector x � As given a sample distribution�
In this perspective� the statistical model has two
components� the mixing matrix A and the proba�
bility distribution of the source vector s�
� Mixing matrix� The mixing matrix A is the pa�
rameter of interest� Its columns are assumed to be
linearly independent �see ���� for the discussion of
a more general case� so that it is invertible�
There is something special about having an invert�
ible matrix as the unknown parameter� because
matrices represent linear transformations� Indeed�
model ��� is a particular instance of a transfor�
mation model� Furthermore� the set of all n � n
invertible matrices forms a multiplicative group�
This simple fact has a profound impact on source
separation because it allows to design algorithms
with uniform performance i�e� whose behavior is
completely independent of the particular mixture
�sec� V�A and sec� VI�C��
� Source distribution� The probability distribution
of each source is a �nuisance parameter�� it means
that we are not primarily interested in it� even
though knowing or estimating these distributions
is necessary to estimate e�ciently the parameter
of interest� Even if we say nothing about the dis�
tribution of each source� we say a lot about their
joint distribution by the key assumption of mu�
tual source independence� If each source i � �� n
is assumed to have a probability density function
�pdf� denoted qi���� the independence assumption
has a simple mathematical expression� the �joint�
pdf q�s� of the source vector s is�

q�s� � q��s��� � � � � qn�sn� �
Y
i���n

qi�si�� ���

i�e� it is the product of the densities for all sources
�the �marginal� densities�� Source separation tech�
niques di�er widely by the �explicit or implicit� as�
sumptions made on the individual distributions of
the sources� There is a whole range of options�
�� The source distributions are known in advance�

� Some features are known �moments� heavy
tails� bounded support�� � � �
�� They belong to a parametric family�
�� No distribution model is available�
A priori� the stronger the assumption� the nar�
rower the applicability� However� well designed
approaches are in fact surprisingly robust even to
gross errors in modeling the source distributions�
as shown below� For ease of exposition� zero mean
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Fig� �� Sample distributions of 	x�� x�
 when x � As for

 di�erent transformation matrices A� and � pairs of
distributions for 	s�� s�
� From left to right� the identity
transform� permutation of the sources� sign change� a
��� rotation� a �generic� linear transform�

sources are assumed throughout�

Es � � i�e� Esi � � � � i � n� ���

B� Blind identi�ability

The issue of blind identi�ability is to understand
to which extent matrix A is determined from the
sole distribution of the observed vector x � As�
The answer depends on the distribution of s and
on what is known about it�
A square matrix is said to be non�mixing if it

has one and only one non�zero entry in each row
and each column� If C is non�mixing then y �
Cs is a copy of s i�e� its entries are identical to
those of s up to permutations and changes of scales
and signs� Source separation is achieved if such
a copy is obtained� When the distribution of s is
unknown� one cannot expect to do any better than
signal copy but the situation is a bit di�erent if
some prior information about the distribution of s is
available� if the sources have distinct distributions�
a possible permutation can be detected
 if the scale
of a given source is known� the amplitude of the
corresponding column of A can be estimated� etc� � �

Some intuition about identi�ability can be gained
by considering simple examples of 
 � 
 mixing�
Each row of �gure � shows �sample� distributions
of a pair �s�� s�� of independent variables after var�
ious linear transforms� The columns successively
show �s�� s��� �s�� s��� ��s���s�� and the e�ect of
a ��� rotation and of a nondescript linear trans�
form� Visual inspection of the transformed distri�
bution compared to the original one gives a feeling
of how well the transform matrix A can be identi�
�ed based on the observation of a mixture� The �rst
row of �g� � shows a case where the second column
of A can be identi�ed only up to sign because s�
is symmetrically distributed about the origin �and
therefore has the same distribution as �s��� The
second row shows a more severe indetermination�

there� s� and s� have the same symmetric distribu�
tion� the transform can be determined only up to
arbitrary changes of sign and a permutation� The
last row shows the most severe case� there s� and
s� are normally distributed with equal variance so
that their joint distribution is invariant under rota�
tion�
These simple examples suggest that A can be

blindly identi�ed indeed �possibly up to some in�
determinations induced by the symmetries in the
distribution of the source vector� in the case of
known source distributions� However� this knowl�
edge is not necessary� the eye certainly can capture
the distortion in the last columns of �gure � even
without reference to the undistorted shapes in �rst
column� This is because the graphical �signature of
independence� �the pdf shape in the �rst column�
clearly appears as distorted in the last colum� This
intuition is supported by the following statement
�adapted from Comon �
�� after a theorem of Dar�
mois� See also ������ For a vector s of independent
entries with at most one Gaussian entry and for any
invertible matrix C� if the entries of y � Cs are in�
dependent� then y is a copy of s �C is non�mixing��
Thus� unless a linear transform is non�mixing� it
turns a vector of independent entries �at most one
being Gaussian� into a vector whose entries are not
independent� This is a key result because it en�
tails that blind signal separation can be achieved
by restoring statistical independence� This is not
only a theoretical result about blind identi�ability�
it also suggests that BSS algorithms could be de�
vised by maximizing the independence between the
outputs of a separating matrix� Section III shows
that the maximum likelihood principle does sup�
port this idea and leads to a speci�c measure of
independence�

Independence and decorrelation� Blind separation
can be based on independence but independence
can not be reduced to the simple decorrelation con�
ditions that Eyiyj � � for all pairs � � i �� j � n�
This is readily seen from the fact that there are� by
symmetry� only n�n����
 such conditions �one for
each pair of sources� while there are n� unknown
parameters�
Second order information �decorrelation�� how�

ever� can be used to reduce the BSS problem to a
simpler form� Assume for simplicity that the source
signals have unit variance so that their covariance
matrix is the identity matrix� Essy � I 
 vector s is
said to be spatially white� Let W be a �whitening
matrix� for x� that is z � Wx is spatially white�
The composite transform WA necessarily is a ro�
tation matrix because it relates two spatially white
vectors s and z � WAs� Therefore� �whitening�
or �sphering� the data reduces the mixture to a ro�
tation matrix� It means that a separating matrix
can be found as a product B � UW where W is a
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Fig� �� Decorrelation leaves an unknown rotation�

whitening matrix and U is a rotation matrix� Note
that any further rotation of z into y � Uz pre�
serves spatial whiteness� so that two equivalent ap�
proaches to exploiting source decorrelation are i�
�nd B as B � UW with W a spatial whitener and
U a rotation or ii� �nd B under the whiteness con�
straint� Eyyy � I � For further reference� we write
the whiteness constraint as

EHw�y� � � where Hw�y� � yyy � I� ���

Spatial whiteness imposes n�n � ���
 constraints�
leaving n�n� ���
 unknown �rotation� parameters
to be determined by other than second order in�
formation� second order information is able to do
�about half the BSS job��
The prewhitening approach is sensible from an

algorithmic point of view but it is not necessarily
statistically e	cient �see sec� VI�B�� Actually� en�
forcing the whiteness constraint amounts to believe
that second order statistics are �in�nitely more re�
liable� than any other kind of statistics� This is� of
course� untrue�

C� Likelihood

This section examines in a simple graphical way
the likelihood of source separation models� The
likelihood� in a given model� is the probability of
a data set as a function of the parameters of the
model� The simple model x � As for vector x
discussed in sec� II�A is parameterized by the pair
�A� q� made of the mixing matrix A and of the den�
sity q for the source vector s� The density of x � As
for a given pair �A� q� is classically given by

p�x
A� q� � j detAj��q�A��x� ���

If T samples X��T � �x���� � � � �x�T �� of x are mod�
eled as independent� then p�X��T � � p�x������ � ��
p�x�T ��� Thus the normalized �i�e� divided by T �
log�likelihood of X��T for the parameter pair �A� q�
is

�

T
log p�X��T 
A� q� �

�

T

TX
t��

log q�A��x�t���log j detAj�
���

Figures � to � show the �likelihood landscape� when
A is varied while q is kept �xed� For each �g�
ure� T � ���� independent realizations of s �
�s�� s��

y are drawn according to some pdf r�s� �
r��s��r��s�� and are mixed with a 
 � 
 matrix A
to produce T samples of x� Therefore� this data set
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Fig� 
� Log�likelihood with a slightly misspeci�ed model for
source distribution� maximum is reached close to the
true value�

X��T follows exactly model ��� with a �true mix�
ing matrix� A and a �true source distribution� r�s��
The �gures show the log�likelihood when A is var�
ied around its true value A while model density q�s�
is kept �xed� These �gures illustrate the impact of
the choice of a particular model density�
In each of these �gures� the matrix parameter A

is varied in two directions in matrix space according
to A � AM�u� v� where M�u� v� is the matrix

M�u� v� �

�
coshu sinhu
sinhu coshu

�
�
�

cos v � sin v
sin v cos v

�
�

���
This is just a convenient way to generate a neigh�
borhood of the identity matrix� For small u and
v�

M�u� v� � I � u

�
� �
� �

�
� v

�
� ��
� �

�
� ���

Therefore u and v are called symmetric and skew�
symmetric parameters respectively� Each one con�
trols a particular deviation of M�u� v� away from
the identity�
In �g� �� the true source distributions r� and r�

are uniform on ������� but the model takes q� and
q� to be each a mixture of two normal distribu�
tions with same variance but di�erent means �as in
second column of �g� ���� True and hypothesized
sample distributions of s � �s�� s�� are displayed
in upper left and right corners of the plot� Even
though an incorrect model is used for the source
distribution� q �� r� the �gure shows that the like�
lihood is maximal around �u� v� � ��� �� i�e� the
most likely mixing matrix given the data and the
model is close to A�
In �g� �� the true sources are �almost binary� �see

upper left corner� but a Gaussian model is used�
q��s� � q��s� � exp�s��
� The �gure shows that
the likelihood of A � AM�u� v� does not depend on
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Fig� �� Log�likelihood with a Gaussian model for source dis�
tribution� no �contrast� in the skew�symmetric direction�
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Fig� �� Log�likelihood with a widely misspeci�ed model for
source distribution� maximum is reached for a mixing
system�

the skew�symmetric parameter v� again evidencing
the insu	ciency of Gaussian modelling�

In �g� �� the source are modeled as in �g� � but
the true �and identical� source distributions r� and
r� now are mixtures of normal distributions with
the same mean but di�erent variances �as in second
column of �g� ���� A disaster happens� the likeli�
hood is no longer maximum for A in the vicinity of
A� Actually� if the value bA of A maximizing the
likelihood is used to estimate the source signals as
y � bs � bAx� one obtains maximally mixed sources�
This is explained in section III�A and �g� ��

The bottom line of this informal study is the
necessity of non�Gaussian modeling ��g� ��
 the
possibility of using only an approximate model of
the sources ��g� ��
 the existence of a limit to the
misspeci�cation of the source model ��g� ��� How
wrong can the source distribution model be� This
is quanti�ed in section VI�A�

III� Contrast functions

This section introduces �contrast functions� which
are objective functions for source separation� The
maximum likelihood principle is used as a starting
point� suggesting several information�theoretic ob�
jective functions �sec� III�A� which are then shown
to be related to another class of objective functions
based on high�order correlations �sec� III�B��

Minimum contrast estimation is a general tech�
nique of statistical inference ���� which encompasses
several techniques like maximum likelihood or least
squares� It is relevant for blind deconvolution �see
the inspiring paper ���� and also ��
�� and has
been introduced in the related BSS problem by
Comon �
��� In both instances� a contrast function
is a real function of a probability distribution� To
deal with such functions� a special notation will be
useful� for x a given random variable� f�x� gener�
ically denotes a function of x while f �x� denotes a
function of the distribution of x� For instance� the
mean value of x is denoted m�x� � Ex�

Contrast functions for source separation �or �con�
trasts�� for short� are generically denoted ��y��
They are real valued functions of the distribution
of the output y � Bx and they serve as objectives�
they must be designed in such a way that source
separation is achieved when they reach their mini�
mum value� In other words� a valid contrast func�
tion should� for any matrix C� satisfy ��Cs� � ��s�
with equality only when y � Cs is a copy of the
source signals� Since the mixture can be reduced to
a rotation matrix by enforcing the whiteness con�
straint Eyyy � I �sect� II�B�� one can also consider
�orthogonal contrast functions�� these are denoted
���y� and must be minimized under the whiteness
constraint Eyyy � I �

A� Information theoretic contrasts

The maximum likelihood �ML� principle leads to
several contrasts which are expressed via the Kull�
back divergence� The Kullback divergence between
two probability density functions f�s� and g�s� on
R
n is de�ned as

K�f jg� �
Z
s

f�s� log

	
f�s�

g�s�



ds ����

whenever the integral exists �
��� The divergence
between the distributions of two random vectors w
and z is concisely denoted K�wjz�� An important
property of K is that K�wjz� � � with equality if
and only if w and z have the same distribution�
Even though K is not a distance �it is not symmet�
ric�� it should be understood as a �statistical way�
of quantifying the closeness of two distributions�
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True distribution Hypothesized distribution Estimated distribution

Fig� �� How the maximum likelihood estimator is misled�

A�� Matching distributions� likelihood and info�
max

The likelihood landscapes displayed in �gures ���
assumes a particular pdf q��� for the source vector�
Denoting s a random vector with distribution q�
simple calculus shows that

�

T
log p�X��T 
A� q�

T���	 �K�A��xjs� � cst� ����

Therefore� �gures ��� approximately display �up to
a constant term� minus the Kullback divergence be�
tween the distribution of y � A��x and the hy�
pothesized distribution of the sources� This shows
that the maximum likelihood principle is associated
with a contrast function

�ML�y� � K�yjs� ��
�

and the normalized log�likelihood can be seen�
via ���� as an estimate of �K�yjs� �up to a con�
stant�� The ML principle thus says something very
simple when applied to the BSS problem� �nd ma�
trix A such that the distribution of A��x is as close
as possible �in the Kullback divergence� to the hy�
pothesized distribution of the sources�
The instability problem illustrated by �g� � may

now be understood as follows� in this �gure� the
likelihood is maximum when M�u� v� is a 
��� ro�
tation because the true source distribution is closer
to the hypothesized source distribution after it is
rotated by 
���� As �gure � shows� after such
a rotation the areas of highest density of y corre�
spond to the points of highest probability of the
hypothesized source model�
A di�erent approach to derive the contrast func�

tion ��
� is very popular among the neural network
community� Denote gi��� the distribution function

gi�s� �

Z s

��

qi�t�dt � ��� �� � � i � n ����

so that g�i � qi and denote g�s� � �g��s��� � � � � gn�sn��
y�

An interpretation of the infomax principle �see����
����� and references therein� suggests the contrast
function

�IM �y� � �H�g�y�� ����

where H��� denotes the Shannon entropy �for a ran�
dom vector u with density p�u�� this is H�u� �
� R p�u� log p�u�du with the convention � log � �

��� This idea can be understood as follows� on one
hand� g�s� is uniformly distributed on ��� ��n if s
has pdf q
 on the other hand� the uniform distribu�
tion has the highest entropy among all distributions
on ��� ��n �
��� Therefore g�Cs� has the highest en�
tropy when C � I � The infomax idea� however�
yields the same contrast as the likelihood i�e� in fact
�IM �y� � �ML�y�� The connection between maxi�
mum likelihood and infomax was noted by several
authors �see ����� ����� ������

A�
 Matching the structure� mutual information

The simple likelihood approach described above
is based on a �xed hypothesis about the distribu�
tion of the sources� This becomes a problem if the
hypothesized source distributions di�er too much
from the true ones� as illustrated by �g� � and ��
This remark suggests that the observed data should
be modeled by adjusting both the unknown system
and the distributions of the sources� In other words�
one should minimize the divergence K�yjs� with re�
spect to A �via the distribution of y � A��x� and
with respect to the model distribution of s� The
last minimization problem has a simple and intu�
itive theoretical solution� Denote �y a random vec�
tor with i� independent entries and ii� each entry
distributed as the corresponding entry of y� A clas�
sic property �see e�g� �
��� of �y is that

K�yjs� � K�yj�y� �K��yjs� ����

for any vector s with independent entries� Since
K�yj�y� does not depend on s� eq� ���� shows that
K�yjs� is minimized in s by minimizing its second
term i�e� K��yjs�
 this is simply achieved by taking
s � �y for which K��yjs� � � so that minsK�yjs� �
K�yj�y�� Having minimized the likelihood contrast
K�yjs� with respect to the source distribution� lead�
ing to K�yj�y�� our program is completed if we mini�
mize the latter with respect to y� i�e� if we minimize
the contrast function

�MI �y� �K�yj�y�� ����

The Kullback divergence K�yj�y� between a distri�
bution and the closest distribution with indepen�
dent entries is traditionally called the mutual in�
formation �between the entries of y�� It satis�es
�MI �y� � � with equality if and only if y is dis�
tributed as �y� By de�nition of �y� this happens when
the entries of y are independent� In other words�
�MI �y� measures the independence between the en�
tries of y� Thus� mutual information apears as the
quantitative measure of independence associated to
the maximum likelihood principle�

Note further that K��yjs� �
Pn

i��K�yijsi� �be�
cause both �y and s have independent entries��
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Therefore�

�ML�y� � �MI �y� �

nX
i��

K�yijsi� ����

so that the decomposition ���� or ���� of the
�global� distribution matching criterion �ML�y� �
K�yjs� should be understood as	

Total
mismatch



�

	
Deviation from
independence



�

	
Marginal
mismatch



�

Therefore� maximizing the likelihood with �xed as�
sumptions about the distributions of the sources
amounts to minimize a sum of two terms� the �rst
term is the true objective �mutual information as
a measure of independence� while the second term
measures how far the �marginal� distributions of
the outputs y�� � � � � yn are from the assumed distri�
butions�

A�� Orthogonal contrasts

If the mixing matrix has been reduced to a rota�
tion matrix by whitening� as explained in sect� II�
B� contrast functions like �ML or �MI can still be
used� The latter takes an interesting alternative
form under the whiteness constraint Eyyy � I � one
can show then that �MI �y� is� up to a constant
term� equal to the sum of the Shannon entropies of
each output� Thus� under the whiteness constraint�
minimizing the mutual information between the en�
tries of y is equivalent to minimizing the sum of the
entropies of the entries of y and we de�ne

��MI �y� �
X
i

H�yi� ����

There is a simple interpretation� mixing the en�
tries of s �tends� to increase their entropies
 it seems
natural to �nd separated source signals as those
with minimum marginal entropies� It is also inter�
esting to notice that �H�yi� is �up to a constant�
the Kullback divergence between the distribution
of yi and the zero�mean unit�variance normal dis�
tribution� Therefore� minimizing the sum of the
marginal entropies is also equivalent to driving the
marginal distributions of y as far away as possible
from normality� Again� the interpretation is that
mixing �tends� to gaussianize the marginal distri�
butions so that a separating technique should go in
the opposite direction� Figure � is a visual illustra�
tion of the tendency to normality by mixing� The
�rst column shows histograms for two independent
variables s� and s� with a bimodal distribution and�
superimposed to it as a solid line� the best Gaus�
sian approximation� The following columns shows
the histograms after rotations by steps of ����� go�
ing from � to ��� where mixing is maximal� The
tendency to normality is very apparent�

k1 = −1.13

k2 = −1.07

k1 = −1.07

k2 = −0.94

k1 = −0.89

k2 = −0.71

k1 = −0.70

k2 = −0.50

k1 = −0.62

k2 = −0.44

Fig� �� Gaussianization by mixing� Histograms of y� 	top
row
 and y� 	bottom row
 when y rotated by ���� for
� � �� ���� ���� ���� �� Each subplot also shows the esti�
mated kurtosis k� and k� 	de�ned at eq� 	��

 decreasing
	in absolute value
 upon mixing�

The entropic form ���� of the mutual information
was used as starting point by Comon �
��
 it re�
mains a valid contrast under the weaker constraint
that B is a volume�preserving transformation �����

A�� Discussion

The �canonical� contrast for source separation is
the mutual information �MI because it expresses
the key property of source independence and noth�
ing else� it does not include any explicit or implicit
assumption about the distributions of the sources�
On the other hand� if the source distributions are
known� �ML is more appropriate because it ex�
presses directly the �t between data and model�
Also� �ML is easier to minimize because its gra�
dient is easily estimated �see eq� ����� while esti�
mating the gradient of �MI is computationally de�
manding ����� Even when the source distributions
are unknown� one may use �ML with hypothesized
source distributions which only need to be �close
enough� to the true distributions� recall sec� II�C
for a qualitative explanation and see sec� VI�A for
a quantitative statement and sec� V�B about adapt�
ing the model distributions�� Another approach is
to approximate the Kullback�based contrasts using
high�order statistics� as examined next�

B� High order approximations

High order statistics can be used to de�ne con�
trast functions which are simple approximations to
those derived from the ML approach� High order
information is most simply expressed by using cu�
mulants� The discussion being limited to cumulants
of order 
 and �� only the following de�nitions are
needed� For zero�mean random variables a� b� c� d�

nd order cumulants are identical to 
nd order mo�
ments Cum�a� b� � Eab and �th order cumulants
are

Cum�a� b� c� d� � Eabcd�EabEcd�EacEbd�EadEbc�
����

Whenever the random variables a� b� c� d can be
split in two groups which are mutually indepen�
dent� their cumulant is zero� Therefore� indepen�
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dence beyond second�order decorrelation can be
easily tested using high order cumulants�
For simplicity� the following notation for the cu�

mulants of the elements of a given vector y is used
throughout�

Cij �y� � Cum�yi� yj �� Cijkl�y� � Cum�yi� yj � yk� yl��

Since the source vector s has independent entries�
all its cross�cumulants vanish�

Cij �s� � ��i �ij Cijkl �s� � ki�ijkl �
��

where � is the Kronecker symbol and we have de�
�ned the variance ��i and the kurtosis ki of the
i�th source as the second and fourth order �auto�
cumulants� of si�

��i � Cii�s� � Es�i ki � Ciiii�s� � Es	i � �E�s�i �
�
��

The likelihood contrast �ML�y� � K�yjs� is �the�
measure of mismatch between output distribution
and a model source distribution� A cruder mea�
sure can be de�ned from the quadratic mismatch
between the cumulants�

���y� �
X
ij

�Cij �y� � Cij �s��� �
X
ij

�Cij �y�� ��i �ij
��

�	�y� �
X
ijkl

�Cijkl �y�� Cijkl�s��� �
X
ijkl

�Cijkl�y��ki�ijkl��

Are �� and �	 contrast functions as introduced in
the beginning of this section� Clearly �� is not
a contrast because ���y� � � expresses only the
decorrelation between the entries of y� On the con�
trary� one can show that �	�y� is a contrast if all
the sources have known non�zero kurtosis� Even
though fourth order information is su	cient by it�
self to solve the BSS problem� it is interesting to use
�� and �	 in conjunction because they jointly pro�
vide an approximation to the likelihood contrast� if
s and y are symmetrically distributed with distri�
butions �close enough� to normal� then

K�yjs� � ��	�y� �
�

��
��
���y� � �	�y�� � �

�

Room is lacking to discuss the validity of this ap�
proximation �which stems from an Edgeworth ex�
pansion� see sec� V�B�� The point however is not to
determine how closely ��	�y� approximates K�yjs�
but rather to follow the suggestion that second and
fourth order information could be used jointly�

Orthogonal contrasts� We consider cumulant�based
orthogonal contrasts� The orthogonal approach�
which enforces whiteness i�e� ���y� � �� thus cor�
responds to replacing the factor �
 in eq� �

� by
an �in�nite weight� �optimal weighting is consid�
ered in �
��
 see also sec� V�B� or equivalently to

minimizing �	�y� under the whiteness constraint
���y� � �� Simple algebra shows that� if ���y� � ��
then �	�y� is equal �up to a constant additive term�
to

��	�y� � �

nX
i��

kiCiiii�y� � Ef	�y� �
��

where we have de�ned f	�y� � �
Pn
i�� ki�y

	
i � ���

This is a pleasant �nding� this contrast function
being the expectation of a function of y� it is par�
ticularly simple to estimate by a sample average�
Recall that the contrast function �ML de�ned at

eq� ��
� depends on a source model i�e� it is de�ned
using an hypothetical density q��� for the source
distribution� Similarly� the fourth�order approxi�
mation ��	 requires an hypothesis about the sources
but it is only a �fourth�order hypothesis� in the sense
that only the kurtosis ki for each source must be
speci�ed in de�nition �
��� In the same manner as
minimizing �ML over the source distribution yields
the mutual information contrast �ML� minimizing
��	�y� �which approximates �ML� over the kurtosis
ki of each source yields an approximation to the
mutual information� One �nds �MI �y� by

��ICA�y� �
X

ijkl��iiii

C�ijkl�y� � �
X
i

C�iiii�y� � cst

�
��
as such an orthogonal fourth�order approxima�
tion� This was obtained �rst by Comon �
��
�along a slightly di�erent route� and by Lacoume et
al� ���� by approximating the likelihood by a Gram�
Charlier expansion� This contrast is similar to �MI

also in that its �rst form involves only terms mea�
suring the ��th order� independence between the
entries of y� Its second form stems from the fact
that

P
ijkl C�ijkl�y� is constant if ���y� � � holds �see

e�g� �
���� It is also similar to �
�� when ki � Ciiii�y�
which is indeed the case close to separation�

One bene�t of considering �th�order orthogonal
contrasts like ��ICA is that they can be optimized
by the Jacobi technique� the �unknown rotation�
�sec� II�B� can be found as sequence of 
 � 
 ro�
tations applied in sequence to all pairs �yi� yj� for
i �� j with the optimal angle at each step being of�
ten available in close form� Comon �
�� has such a
formula for �ICA in the case of real signals�
Independence can also be tested on a smaller sub�

set of cross�cumulants with�

��JADE�y� �
X

ijkl ��ijkk

C�ijkl�y�� �
��

The motivation for using this speci�c subset is that
�JADE also is a �joint diagonalization� criterion� en�
tailing that it can be optimized by Jacobi technique
for which the rotation angles can be found in close
form even in the complex case �
��� A similar tech�
nique is described in ��
��
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Fig� ��� Variation of orthogonal contrast functions 	Solid�
��ICA� dash�dots� �

�
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m� dots� ��
�

 when

two sources with kurtosis k� and k� are rotated be�
tween ���� and ���� Left� 	k�� k�
 � 	�����
� center�
	k�� k�
 � 	��� �
� right� 	k�� k�
 � 	���
� �
�

Simpler contrasts can be used if the kurtosis of
the sources are known� For instance� eq� �
�� sug�
gests� for negative kurtosis �ki � � �i�� a very sim�
ple contrast�

��m�y� �

nX
i��

Ey	i �
��

�see �

�� ����� ����� ����� Actually� the condition that
ki�kj � � for all pairs of sources is su	cient for the
stationary points of this orthogonal contrast func�
tion to be locally stable �see sec VI�A��
Some properties of the fourth�order contrasts dis�

cussed above are illustrated by �g� �� displaying
the variation of some orthogonal contrast functions
in the two�source case� a 
 � � source vector s
with kurtosis �k�� k�� is rotated into y by an an�
gle 	 � ����
� ��
�� On the left panel� the sources
have identical kurtosis k� � k� � ��� all the
four contrasts are minimized at integer multiples
of ��
� On the center panel� one source is Gaus�
sian �k� � ��� the contrasts show smaller variations
except for ��	� Note that �	 �knows� that one source
has zero kurtosis� thus distinguishing between even
and odd multiplies of ��
� On the right panel�
k� � ���� and k� � � so that k� � k� 
 � which
violates the condition for ��m to be a contrast� its
minima become maxima and vice versa� This is the
same phenomenon as illustrated by �gure ��

IV� Estimating functions

By design� all valid contrast functions reach their
minima at a separating point when the model holds

in this sense� no one is better than another� In prac�
tice� however� contrasts are only estimated from a
�nite data set� sample�based contrasts depend not
on the distribution of y but on its sample distribu�
tion� Estimation from a �nite data set introduces
stochastic errors depending on the available sam�
ples and also on the contrast function� Thus a sta�
tistical characterization of the minima of sample�
based contrast functions is needed and will provide
a basis for comparing contrast functions� For this
purpose� the notion of estimating function is intro�
duced
 it is also closely related to gradient algo�
rithms for BSS �sec� V�A��

A� Relative gradient

The variation of a contrast function ��y� under a
linear transform of y is may be expressed by de�n�
ing a �relative gradient�� This speci�c notion builds
on the fact that the parameter of interest is a square
matrix�
De�nition� An in�nitesimal transform of y is y 	
�I � E�y � y � Ey where E is a �small� matrix�

y � I � E � y � Ey

If � is smooth enough� ��y � Ey� can be expanded
as

��y � Ey� � ��y� �

nX
i�j��

GijEij � o�kEk� �
��

with Gij the partial derivative of ��y � Ey� with
respect to Eij at E � �� These coe	cients form
a n � n matrix� denoted r��y�� called the relative
gradient �

� of ��y� at �y�� In matrix form� expan�
sion �
�� reads

��y � Ey� � ��y� � hr��y� j Ei� o�kEk� �
��

where h�j�i is the Euclidean scalar product be�
tween matrices� hM jNi � trace

�
MNy

�
�Pn

i�j��MijNij �
Note that the relative gradient is de�ned without

explicit reference to the possible dependence of y
on B as y � Bx
 thus it actually characterizes the
�rst order variation of the contrast function itself�
It is of course possible to relate r��y� to a �regular�
gradient with respect to B if y � Bx� Elementary
calculus yields

r��Bx� � By ���Bx�

�B
� �
��

The notion of natural gradient was independently
introduced by Amari �
�� It is distinct in general
from the relative gradient� the latter is de�ned in
any continuous group of transformation while the
former is de�ned in any smooth statistical model�
However� for the BSS model which� as a statistical
transformation model combines both features� the
two ideas yield the same class of algorithms �sec� V�
A��

Score functions� The source densities q�� � � � � qn
used in ��� and ��� to de�ne the likelihood of a
BSS model enter in the estimating function via
their log�derivatives� the so�called �score functions�
��� � � � � �n� de�ned as

�i � ��log qi�� or �i��� � �qi����
qi��� � ����
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Fig� ��� Some densities and their associated scores�

Figure �� displays some densities and their associ�
ated score functions� Note that the score for �the
most basic distribution� is �the most basic function��
if s is a zero�mean unit�variance Gaussian variable�
q�s� � �
������ exp� s�

� � then the associated score
is ��s� � s� Actually� Gaussian densities precisely
are these densities associated with linear score func�
tions� Thus� the necessity of non Gaussian model�
ing �recall section II� translates in the necessity of
considering non�linear score functions�

Relative gradient of the likelihood contrast� At the
core of the BSS contrast functions is �ML�y� asso�
ciated with the likelihood given the source densities
q�� � � � � qn� Its relative gradient is found to be ��
�

r�ML�y� � EH��y� ����

where H� � Rn 
	 R
n�n is

H��y� � ��y�yy � I ��
�

with � � Rn 
	 R
n the entry�wise non�linear func�

tion
��y� � ����y��� � � � � �n�yn��

y ����

collecting the score functions related to each source�
This is a remarkably simple result� this relative gra�
dient merely is the expected value of a �xed func�
tion H� of y�

Interpretation� The ML contrast function �ML is
minimum at points where its �relative� gradient
cancels� i�e� by ����� at these points which are solu�
tions of the matrix equation EH��y� � �� This is
interpreted by examining the �i� j��th entry of this
matrix equation� For i � j� we �nd E�i�yi�yi � �
which depends only on yi and determines the scale
of the i�th source estimate� For i �� j� the �i� j��
th entry of EH��y� � � reads E�i�yi�yj � �
meaning that the jth output yj should be uncor�
related to a non�linear version �i�yi� of the ith
output� Because �i and �j are non�linear func�
tions� the conditions for the pairs �i� j� and the
pair �j� i� are �in general� not equivalent� Note
that if the source signals are modeled as zero�mean
unit�variance normal variables� then �i�yi� � yi for
all i and H��y� � yyy � I � Hw�y� �recalling
def� ����� Then �ML�y� is minimum at points where

Eyyy � I � we only obtain the whiteness condition�
Again� this is not su	cient to determine a sepa�
rating solution
 score functions must be non�linear
�the source model must be non Gaussian��

The idea of using non�linear functions to obtain
a su	cient set of independence conditions can be
traced back to the seminal paper of H erault and
Jutten ���� �see ���� for a reference in English� but
the choice of the non�linear functions was some�
what ad hoc
 F ety ���� gave an interpretation of
the non�linear functions as �ampli�ers� for the sig�
nals of interest
 Bar�Ness also produced early work
using non�linear functions ���� However� the ML
principle makes it clear that the non�linear func�
tions are related via ���� to a non�Gaussian model
of the source distributions�

B� Estimating functions

An estimating function for the BSS problem is a
function H � Rn 
	 R

n�n � It is associated to an
estimating equation

�

T

TX
t��

H�y�t�� � � ����

thus called because� H being matrix�valued� equa�
tion ���� speci�es a priori as many constraints as
unknown parameters in the BSS problem� Many
BSS estimates can be characterized via an estimat�
ing function ����� ����

A simple instance of estimating function is
Hw�y�� used in eq� ��� to express that decorrela�
tion between the entries of y� Equation ���� with
H�y� � Hw�y� is equivalent to

�
T

P
t y�t�y�t�

y � I
i�e� it expresses the empirical whiteness of a batch
of T samples of y as opposed to the �actual� white�
ness i�e� EHw�y� � �� The estimating function
Hw�y�� however� is not appropriate for BSS� since
whitening �or decorrelation� is not su	cient to de�
termine a separating matrix�

The simplest example of estimating function for
BSS is obtained in the ML approach� The gradient
of the likelihood ��� may be shown ��
� to cancel
at points AML which are exactly characterized by
eq� ���� with y � A��MLx and H � H� as de�ned
in ��
�� In other words� maximum likelihood esti�
mates correspond exactly to the solution of an esti�
mating equation� This equation is nothing but the
sample counterpart of EH��y� � � which charac�
terizes the stationary points of �ML�y�� Recall that
the latter is obtained �at eqs� ���� and ��
�� as a
limit of the log�likelihood�

Because the value of an estimating function is a
square matrix� it can be decomposed into a sym�
metric part �equal to its transpose� and a skew
symmetric part �opposite to its transpose�� This
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decomposition simply is

H�y� �
H�y� �H�y�y



�
H�y� �H�y�y



� ����

If the optimization of some regular contrast func�
tion corresponds to an estimating function H�y�� it
is found that the optimization of the same contrast
under the whiteness constraint corresponds to an
estimating function H�y� given by

H��y� � Hw�y� �
�




�
H�y��H�y�y

�
� ����

Thus� the symmetric part of H�y� replaced by
Hw�y� � yyy � I � already introduced at eq� ����
whose e�ect is to enforce the whiteness constraint�
In particular� maximum likelihood estimates un�
der the whiteness constraint are �again� solutions
of eq� ���� with the estimating function H � H�

��

H�
��y� � yyy � I � ��y�yy � y��y�y ����

Other orthogonal contrast functions are associ�
ated to similar estimating functions� For instance�
the simple �th�order contrasts ��	�y� and ��m�y�
�eqs� �
�� and �
�� repsectively� yield estimating
equations in the form ���� with non�linear functions
respectively given by

�i�yi� � �kiy�i and �i�yi� � y�i ����

Recall that using the contrast function �
�� sup�
poses sources with negative kurtosis ki� Thus the
two functions in ���� �agree� on the sign to be given
to a cubic distortion �as was to be expected��

Some contrast functions� like ��ICA and ��JADE �
when estimated from T samples are minimized at
points which cannot be represented exactly as the
solution of ���� for a �xed estimating function�
However� one can often �nd� as in ����� an �asymp�
totic� estimating function in the sense that the so�
lution of the associated estimating equation is very
close to the minimizer of the estimated contrast�
For instance� the contrast ��ICA and ��JADE are
asymptotically associated to the same estimating
function as ��	� This implies that minimizing ��ICA�
��JADE or ��	 with cumulants estimated from T
samples yields estimates which are equivalent �they
di�er by a term which is smaller than the estima�
tion error� for large enough T �

Which functions are appropriate as estimating
functions� One could think of using any H such
that EH�s� � � as an estimating function because
the estimating equation ���� would just be the sam�
ple counterpart of EH�y� � � and would a priori
provide as many scalar equations as unknown pa�
rameters� However� the ML principle suggests the
speci�c forms ��
� and ���� with the non�linear
functions in ��y� being �approximations of� the
score functions for the probability densities of the
signals to be separated�

V� Adaptive algorithms

A simple generic technique for optimizing an ob�
jective function is gradient descent� In most op�
timization problems� its simplicity is at the ex�
pense of performance� more sophisticated tech�
niques �such as �Newton�like� algorithms using sec�
ond derivatives in addition to the gradient� can
often signi�cantly speed up convergence� For the
BSS problem� however� it turns out that a simple
gradient descent o�ers �Newton�like� performance
�see below�� This surprising and fortunate result is
obtained by descending along the relative gradient
de�ned in sec� IV�A�

A� Relative gradient techniques

Relative gradient descent� We �rst describe a
�generic� relative gradient descent� Generally� the
steepest descent technique of minimization consists
in moving by a small step in a direction opposite to
the gradient of the objective function� The relative
gradient of a contrast ��y� is de�ned �sec� IV�A�
with respect to a �relative variation� of y by which
y is changed into �I � E�y� The resulting varia�
tion of ��y� is �at �rst order� the scalar product
hr��y� j Ei between the relative variation E and
the relative gradient r��y� as in eq� �
�� or �
���
Aligning the direction of change in the direction op�
posite to the gradient is to take E � �
r��y� for a
�small� positive step 
� Thus� one step of a relative
gradient descent can be formally described as

y � �I � 
r��y��y � y � 
r��y� y� ����

According to �
��� the resulting variation of ��y�
is �� � hr��y�jEi � hr��y�j � 
r��y�i �
�
kr��y�k� which is negative for positive 
�
The formal description ���� can be turned into

o��line and on�line algorithms as described next�

O��line relative gradient descent� Consider the
separation of a batch x���� � � � �x�T � of T sam�
ples based on the minimization of a contrast func�
tion ��y� with relative gradient r��y� � EH�y��
One looks for a linear transform of the data
satisfying the corresponding estimating equation
�
T

PT
t��H�y�t�� � �� The relative gradient descent

to solve it goes as follows� Set y����t� � x�t� for
� � t � T and iterate through the following two
steps

bH � �

T

TX
t��

H�y�t��� ����

y�t� � y�t� � 
 bHy�t� �� � t � T �� ����

The �rst step computes an estimate bH of the rela�
tive gradient for the current values of the data
 the
second step updates the data in the �relative� di�
rection opposite to the relative gradient as in �����
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The algorithm stops when �
T

PT
t��H�y�t�� � � i�e�

when the estimating equation is solved� It is amus�
ing to note that this implementation does not need
to maintain a separating matrix� it directly oper�
ates on the data set itself with the source signals
emerging during the iterations�

On�line relative gradient descent� On�line algo�
rithms update a separating matrix Bt upon recep�
tion of a new sample x�t�� The �relative� linear
transform y � �I � E�y corresponds to changing
B into �I � E�B � B � EB� In the on�line mode�
one uses the stochastic gradient technique where
the gradient r��y� � EH �y� is replaced by its in�
stantaneous value H�y�t��� Hence the stochastic
relative gradient rule

Bt�� � Bt � 
tH�y�t��Bt ��
�

where 
t is a sequence of positive learning steps�

Uniform performance of relative gradient descent�
A striking feature of BSS model is that the �hard�
ness� �in a statistical sense discussed in section VI�
C� of separating mixed sources does not depend on
the particular value of the mixing matrix A� the
problem is �uniformly hard in the mixture�� Very
signi�cantly� the device of relative updating pro�
duces algorithms which also behave uniformly well
in the mixture� Right�multiplying the updating
rule ��
� by matrix A and using y � Bx � BAs�
one readily �nds that the trajectory of the global
system Ct � BtA which combines mixing and un�
mixing matrices is governed by

Ct�� � Ct � 
tH�Cs�t��Ct� ����

This trajectory is expressed here as a sole function
of the global system Ct� the only e�ect of the mix�
ing matrix A itself is to determine �together with
B�� the initial value C� � B�A of the global system�
This is a very desirable property� it means that the
algorithms can be studied and optimized without
reference to the actual mixture to be inverted� This
is true for any estimating function H�y�
 however
uniformly good performance can only be expected if
the H�y� is correctly adjusted to the distribution of
the source signals� for instance by deriving it from
a contrast function� Algorithms based on an esti�
mating function in the form ��
� are described in ���
for the on�line version and in ��
� for an o��line ver�
sion
 those based on form ���� are studied in detail
in �

�� The uniform performance property was also
obtained in �
���

Regular gradient algorithms� It is interesting to
compare the relative gradient algorithm to the al�
gorithm obtained by a �regular� gradient� that is by

applying a gradient rule to the entries of B for the
minimization of f�B� � ��Bx�� This is

Bt�� � Bt � 
tH�y�t��B�y
t � ����

Not only is this form more costly because it requires
�in general� the inversion of Bt at each step� but it
lacks the uniform performance property� the trajec�
tory of the global system depends on the particular
mixture A to be inverted�

B� Adapting to the sources

The iterative and adaptive algorithms described
above require the speci�cation of an estimating
function H � for which two forms H� and H�

�

�eqs� ��
� and ����� are suggested by the the�
ory� These forms� in turn� depend on non�linear
functions ��� � � � � �n which� ideally� should be the
score functions associated to the distributions of the
sources �sec� IV�B�� When the source distributions
are unknown� one may try to estimate them from
the data �for instance using some parametric model
as in ����� or to directly estimate �good� non�linear
functions�
A �rst idea is to use Edgeworth expansions �see

e�g� ��
�� which provide approximations to probabil�
ity densities in the vicinity of a Gaussian density�
The simplest non trivial Edgeworth approximation
of a symmetric pdf q in the vicinity of the standard
normal distribution is

q�s� �
�p

�

exp

	
�s�





	
� �

k


�
�s	 � �s� � �� � � � �




where k is the kurtosis of q� The corresponding
approximate score function then is

��s� � s� k

�
�s� � �s� � � � � � ����

Thus the Edgeworth expansion suggests that in a
linear�cubic approximation to the score function the
coe	cient of the cubic part should be �ki�� for
the ith source� Asymptotic analysis shows that
such a choice at least guarantees the local stability
�sec� VI�A�� There are other possibilities for deriv�
ing score functions by a density expansion� see for
instance ���� for a di�erent proposal involving odd
and even terms in ��
A more direct approach than pdf expansion is

proposed by Pham ��
� who considers approximat�
ing � by a linear combination

���s� �

LX
l��

�lfl�s� ����

of a �xed set ff�� � � � � fLg of arbitrary basis func�
tions� Rather surprisingly� the set f��� � � � � �Lg
of coe	cients minimizing the mean square error
E����s�� ��s��� between the true score � and its
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Fig� ��� Top row� three distributions and the values of �� as
a measure of non�Gaussianity 	see sec� VI�B
� Bottom
row� the score function 	solid
 and its linear�cubic ap�
proximations� based on Edgeworth expansion 	dashes�
dots
 and optimal 	dashes
�

approximation can be found without knowing ��
the best mean�square approximation involves only
the expectation operator� It is�

�	�s� � �EF ��s��
y �

EF �s�F �s�y
���

F �s� ����

where F �s� � �f��s�� � � � � fL�s��
y is the L�� column

vector of basis functions and F ��s� is the column
vector of their derivatives� This is a nice result be�
cause the expression of �	 can be simply estimated
by replacing in ���� expectations by sample aver�
ages and the values of s by the estimated source
signals�
The two approaches of Edgeworth expansion and

mean�square �t� respectively leading to the ap�
proximations ���� and ����� are compared in �g�
ure �
� Three pdf�s are displayed in the top
row
 the bottom row shows the corresponding score
function �solid line�� the linear�cubic approxima�
tion by ���� �dash�dotted line� and the Pham ap�
proximation �dashed line� obtained from ���� with
F �s� � �s� s��� Both approximations are similar in
the �rst example when the pdf is close to Gaus�
sian
 in the second case� the optimal approxima�
tion �ts much better the true score in the area of
highest probability� None of the approximations
seem really good in the third example for the sim�
ple reason that the true score there cannot be well
approximated by a linear�cubic function� However�
the two approximations �t the score well enough to
guarantee the stability of the gradient algorithms
�see sect� VI�A��

VI� Performance issues

This section is concerned with the performance of
BSS algorithms� it presents some asymptotic anal�
ysis results� It has been repeatedly stressed that
it was not necessary to know the source distribu�
tions �or equivalently� the associated score func�
tions� to a great accuracy to obtain consistent BSS

algorithms� There is however a limit to the misspec�
i�cation of the source distributions as illustrated by
�g� �
 this is elucidated at sec� VI�A which gives
explicit stability limits� Even if an hypothesized
distribution is good enough to preserve stability�
one may expect a loss of estimation accuracy due
to misspeci�cation when a �nite number of sam�
ples are available
 this is quanti�ed at sec� VI�B
which also describes the ultimate achievable sep�
aration performance� The concluding section VI�
C discusses the general property of �equivariance�
which governs the performance of BSS algorithms�

A� Local stability

A stationary point �or equilibrium point� B of
the learning rule ��
� is characterized by EH�y� �
EH�Bx� � � i�e� the mean value of the update is
zero� We have seen that separating matrices �with
the proper scale� are equilibrium points
 we are now
interested in �nding when they are locally stable
i�e� when a small deviation from the equilibrium is
pulled back to the separating point� In other words�
we want the separating matrix to a �local� attrac�
tor for the learning rule ��
�� In the limit of small
learning steps� it exists a simple criterion for test�
ing local stability which depends on the derivative
of EH�Bx� with respect to B� For both the sym�
metric form H�

� and for the asymmetric form H�

the stability condition can be worked out exactly�
They are found to depend only the following non�
linear moments

�i � E��i�si� Es
�
i � E�i�si�si ����

where each si is rescaled according to EH�s� � ��
that is E�i�si�si � � for H � H� or Es�i � � for
H � H�

��
Leaving aside the issue of stability with respect

to scale� the stability conditions for the symmetric
form ���� are �

�

�� � �i��� � �j� 
 � for � � i � j � n ����

and for the asymmetric form ��
�� the conditions
are ��� that � � �i 
 � for � � i � n and that

�i � �j 
 � for � � i � j � n� ����

Therefore stability appears to depend on pairwise
conditions� The stability domains for a given pair
of sources are displayed on �g� �� in the ��i� �j�
plane� Note that the stability domain is larger for
the symmetric form ����� this is a consequence of
letting the second order information �the whiteness
constraint� do �half the job� �see sec� II�B��
Some comments are in order� First� it appears

that in both cases� a su�cient stability condition
is �i 
 � for all the sources� Thus� regarding sta�
bility� tuning the non�linear functions �i�s to the
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Fig� ��� Stability domains in the 	�i� �j
 plane�

source distributions should be understood as mak�
ing the �i�s positive� Second� one can show that
if si is Gaussian� then �i � � for any function �i�
Therefore the stability conditions can never be met
if there is more than one Gaussian source� in agree�
ment with the identi�ability statements of sec� II�
Third� it can also be shown that if �i is taken to be
the score function for the true density of si� then
�i � � with equality only if si is Gaussian�

Section II�C illustrated the fact that the hypoth�
esized source distributions should be �close enough�
to the true distributions for the likelihood to still
show a maximum around a separating point� The
de�nition of �i provides a quantitative measure of
how wrong the hypothesis can be� they should not
allow �i to become negative�

We also note that it is not necessary that all the
�i�s are positive� if �i � � for at most one source�
this can be compensated if the moments �j are large
enough for all j �� i� As seen from the stability
domains ��g� ���� one source at most can have an
arbitrarily negative �i if the symmetric form is used
while the stability of the asymmetric form requests
that �i 
 ���
We have considered linear�cubic score functions

in secs� IV and V� If �i�si� � �isi � �is
�
i for two

constants �i and �i� then �i � �i��E
�s�i � Es	i � �

��iki where� as above� ki denotes the kurtosis�
Note that the linear part of �i does not a�ect the
stability and that stability is guaranteed if the co�
e	cient �i of the cubic part has a sign opposite to
the sign of the kurtosis� Quite naturally� the func�
tions in eq� ���� and ���� come up naturally with
the right sign� Therefore� if one wishes to use cubic
non�linearities� it is su	cient to know the sign of
the kurtosis of each source to make separating ma�
trices stable� For other than cubic scores� stability
depends on the sign of �i� not on the sign of the
kurtosis�

B� Accuracy of estimating equations

This section characterizes the accuracy of signal
separation obtained by solving an estimating equa�
tion ���� with T independent realizations of x�
If a matrix B is used for separation� the pth entry

of y � Bx � BAs contains the signal of interest sp
at power �BA��pp�

�
p and the qth interfering signal sq

at power �BA��pq�
�
q � Therefore� for a given matrix

B the quantity

�pq�B� �
�BA��pqEs

�
q

�BA��ppEs
�
p

p �� q ����

measures the interference�to�signal ratio �ISR� pro�
vided by B in rejecting the qth source in the esti�
mate of the pth source� Let bBT be the separating
matrix obtained via a particular algorithm using T
samples� In general� the estimation error in regu�
lar statistical models decreases as ��

p
T so that the

limit
ISRpq � lim

T��
T E �pq� bBT � ��
�

usually exists provides an asymptotic measure of
performance of separation of a given o��line BSS
technique� When H � H� or H � H�

� are used
in the estimating equation� the asymptotic ISR de�
pends on the moments �i in ���� and also on�

�i � E��i �si�Es
�
i � E� ��i�si�si� � �� ����

For simplicity� we consider identically distributed
signals and identical non�linear functions� �i��� �
����� so that �i � � and �i � � for � � i � n� With
a symmetric estimating function H�

�� one �nds

ISR�pq � ISR� �
�




	
�

��
�

�






p �� q� ����

Note that ISR� is lower bounded by ��� regard�
less of the value of �� this is a general property
of orthogonal BSS techniques ���� and is the �price
to pay� for blindly trusting second order statistics
i�e� for whitening� Thus rejection rates obtained
under the whiteness constraint cannot be �asymp�
totically� better that �

	T �
For an asymmetric estimating function H� the

ISR does not take such a simple form unless the
common score � is obtained by Pham�s method
�sec� V�B�� One then �nds ISRpq � ISR and
ISR�pq � ISR� as

ISR �
�




	
�

�
�

�

� � 




� ISR� �

�




	
�

�
�

�






����

where the last equation stems from ���� because
Pham�s method guarantees � � �� These ex�
pressions show that both ISR and ISR� are min�
imized by maximizing �
 not surprisingly� � can
be shown to reach its maximum value �� precisely
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when � � � where � is the score function corre�
sponding to the true density of the sources�

�	 � E���s�Es� � E����s�s�� ����

Note that the solution of ���� with H � H� then
is the ML estimator based on the true model� It
follows that the expression of ISR in ���� also is
the asymptotic Cram er�Rao bound for source sep�
aration i�e� the best achievable ISR rate with T
independent samples �see ����� ����� ��
���

Since the achievable performance depends on the
magnitude of �	� this moment characterizes the
hardness of the BSS problem with respect to source
distribution� Not surprisingly� we can relate it to
the non�Gaussianity of the sources as follows� As
above� denote � the score function for the �true�
distribution of s and denote �n the score function
for the Gaussian distribution with the same vari�
ance as s �this is just �n�s� � s�Es��� A �large�
non�Gaussianity translates into a large di�erence
between � and �n� As we just saw� the measure of
non�Gaussianity from the asymptotic point of view
is measured by ��� Indeed one �nds�

�� �
E���s�� �n�s��

�

E��n�s���
� ����

See �g� �
 for the values of �� in three exam�
ples� For close�to�Gaussian sources� �� is �arbitrar�
ily� small� in this case� according to ���� the best
achievable rejection rates are about �

���T
for both

the symmetric and the asymmetric forms� This
gives an idea of the minimum number of samples
required to achieve a given separation� The other
extreme is for sources which are far away from nor�
mality� the moment �� is not bounded above� In
particular� it tends to � when the source distri�
butions tend to have a discrete or a bounded sup�
port� In the case of discrete sources� deterministic
�error�free� blind identi�cation is possible with a
�nite number of samples� In the case of sources
with bounded support� the MSE of blind identi�ca�
tion decreases at a much faster rate than the ��T
rate obtained for �nite values of � �see in particu�
lar ��
���

C� Equivariance and uniform performance

At �rst thought� the hardness of the BSS problem
seems to depend on the distributions of the source
signals and on the mixing matrix� with harder prob�
lems when sources are nearly Gaussian and when
the mixing matrix is poorly conditioned� This is
not correct however� the BSS problem is �uniformly
hard in the mixing matrix�� Let us summarize the
instances where this property appeared� the ulti�
mate separation performance depends only on ��
�eq� �����
 the asymptotic performance index in

eqs� ���� and ���� depend only on some statisti�
cal moments
 the stability of the adaptive algo�
rithms ��
� also depends only on the values of �i�s

even better� the trajectory ���� of the global system
Ct � BtA does not depend on A whose sole e�ect
is to determine the initial point�
Therefore� not only does the problem appears to

be �uniformly hard in the mixing matrix�� but it
exists estimation techniques with a statistical be�
havior �regarding signal separation� which is inde�
pendent of the particular value of the system to be
inverted� This is a very desirable property� such al�
gorithms can be studied and tuned independently
of the particular mixture to be inverted
 their per�
formance can also be predicted independently of the
mixture ����� This is an instance of �equivariance�� a
property holding more generally in transformation
models�
There is a simple prescription to design algo�

rithms with uniform performance� adjust freely
�i�e� without constraint� the separating matrix ac�
cording to a rule expressed only in terms of the out�
put y� To understand why the �output only� pre�
scription ensures uniform performance� consider for
instance using a particular estimating functionH���
to separate a mixture of T samples �s���� � � � � s�T ���
If the source signals are mixed by a given ma�
trix A� then a solution of ���� is a matrix B such

that BA � bC where matrix bC is a solution of
T��

PT
t��H� bCs�t�� � �� Matrix bC does not de�

pend on A so that the global system BA � bC is
itself independent of A and the estimated signals
are y�t� � bCs�t� regardless of A� In particular� the
recovered signals are exactly identical to those that
would be obtained with A � I i�e� when there is
no mixing at all� This argument� based on estimat�
ing equations� extends to the minimizers of contrast
functions since the latter are de�ned as functions of
the distribution of the output �the argument also
apply to orthogonal contrast functions because the
whiteness constraint is expressed only in terms of
y�� The argument also justi�es the speci�c de�ni�
tion of the �relative gradient�� a device was needed
to express the �rst�order variations of a contrast
function ��y� in terms of a variation of y itself i�e�
without reference to B� Finally� it must be stressed
that the argument does not involve asymptotics�
equivariance is exactly observed for any �nite value
of T �
Not all BSS algorithms are equivariant� For in�

stance� the original algorithm of Jutten and H erault
imposes constraints on the separating matrix re�
sulting in a greatly complicated analysis �and be�
havior� �see ����� ����� ������ Other instances of non
equivariant techniques is to be found in most of the
algebraic approaches �see sec� VII� based on the
structure of the cumulants of the observed vector
x� Precisely because the identi�cation is based on
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x and not on y� such approaches are not equivariant
in general unless they can be shown to be equiva�
lent to the optimization of a contrast function of
y�
A word of caution is necessary before concluding�

equivariance holds exactly in the noise�free model
which we have considered so far� In practice� there
is always some kind of noise which must be taken
into account� Assume that a better model is x �
As� n where n represents an additive noise� This
can be rewritten as x � A�s � A��n�� As long
as A��n can be neglected with respect to s� this
is a noise�free situation� This shows the limit of
equivariance� a poorly conditioned matrix A has a
large inverse which ampli�es the e�ect of the noise�
More precisely� we can expect equivariance in the
high SNR domain i�e� when the covariance matrix
of s remains �larger� than the covariance matrix of
A��n�

VII� Conclusions

Due to limited space� focus was given to prin�
ciples and many interesting issues have been left
out� discussion of the connections between BSS and
blind deconvolution
 convergence rates of adaptive
algorithms
 design of consistent estimators based
on noisy observations� detection of the number of
sources� etc� � � Before concluding� we brie!y men�
tion some other points�

Algebraic approaches� The �th order cumulants of
x have a very regular structure in the BSS model�

Cijkl�x� �
nX

p��

kpAipAjpAkpAlp � � i� j� k� l � n�

����
Given sample estimates of the cumulants� the equa�
tion set ���� �or some subset of them� can be solved
in A in a least square sense� This is a cumulant
matching approach �������� which does not yield
equivariant estimates� Optimal matching� though�
can be shown to correspond to a contrast func�
tion �
��� However� the speci�c form of ���� also
calls for algebraic approaches� Simple algorithms
can be based on the eigen�structure of �cumulant
matrices� built from cumulants ����� ����� An ex�
citing direction of research is to investigate high�
order decompositions that would generalize matrix
factorizations like SVD or EVD to �th order cumu�
lants ����� ����� ����� �
��� �
���

Using temporal correlation� The approaches to BSS
described above exploit only properties of the distri�
bution of x�t�� If the source signals are temporally
correlated� time structures can also be exploited� It
is possible to achieve separation if all the source sig�
nals have distinct spectra even if each source signal
is a Gaussian process ����� Simple algebraic tech�
niques can be devised �see ����� �����
 the Whittle

approximation to the likelihood is investigated in
����� Cyclostationary properties� when they exist�
can also be exploited �����

Deterministic identi�cation� As indicated in
sec� VI�B� sources with discrete support allow for
deterministic identi�cation �in�nite Fisher infor�
mation�� Speci�c contrast functions can be de�
vised ��
� to take advantage of discreteness� There
is a rich domain of application with digital com�
munication signals coding information with dis�
crete symbols by which deterministic identi�cation
is possible� See the review by Van der Veen ����
and the papers on CMA in this issue�

Open problems and perspectives

�� Learning source distributions� In the BSS prob�
lem� source distributions are a nuisance parameter�
For large enough sample size� it is possible to es�
timate the distributions and still obtain the same
asymptotic performance as if the distributions were
known in advance���
 the design of practical algo�
rithms achieving �source adaptivity� still is an open
question�

� Dealing with noise� BSS techniques remaining
consistent in presence of additive noise have not
been described here� For additive Gaussian noise�
such techniques may resort to high�order cumulants
or to noise modeling� It is not clear however that
it is worth combating the noise� As a matter of
fact� one may argue that taking noise e�ects into
account is unnecessary at high SNR and futile at
low SNR �because the BSS problem becomes too
di	cult anyway�� Therefore� we believe it is still
an open question to determine which application
domains would really bene�t from noise modeling�
�� Global convergence� Some cumulant based con�
trast functions can be proved to be free of spurious
local minima in the two�source case �see e�g� �
���
or in a �de!ation approach� �successive extractions
of the source signals� ��������� There is however a
lack of general understanding of the global shape of
contrast functions in the general case�
�� Multidimensional independent components� An
interesting original variation of the basic ICA model
would be to decompose a random vector in a sum
of independent components with the requirement
that the components are linearly independent but
not necessarily one�dimensional� In the BSS model�
this would be equivalent to grouping the source sig�
nals in subsets with independence between the sub�
sets but not within the subsets� This more general
decomposition could be called �multidimensional in�
dependent component analysis� �MICA��
�� Convolutive mixtures� The most challenging
open problem in BSS probably is the extension to
convolutive mixtures� This is a very active area
of research� mainly motivated by applications in
the audio�frequency domain where the BSS is of�
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ten termed the �cocktail�party problem�� The con�
volutive problem is signi�cantly harder than the in�
stantaneous problem� even input�output �i�e� non
blind� identi�cation is a very challenging because of
the large number of parameters usually necessary to
describe audio channels�
�� When the model does not hold� The introduc�
tion mentioned successful applications of BSS to
biomedical signals� When examining these data� it
is very striking to realize that the extracted source
signals seem to be very far to obeying the simple
BSS model� The fact that BSS still yields appar�
ently meaningful �to the experts� results is worth
of consideration� A partial explanation stems from
basing separation on contrast functions� even if
the model does not hold �there are no independent
source signals and no system A to be inverted�� the
algorithms still try to produce output which are �as
independent as possible�� This does not tell the
whole story though because for many data sets a
stochastic description does not seem appropriate�
We believe it will a very interesting challenge to
understand the behavior of BSS algorithms when
applied �outside the model��

We are indebted to the anonymous reviewers
whose constructive comments helped us improving
on a �rst version of this paper�
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