On Piecewise Deterministic Markov Processes

Michel Benaïm (Neuchâtel)

IHP, January 28, 2016

Talk based on recent works with

 Stephane Le Borgne (Rennes), Florent Malrieu (Tours) & Pierre-André Zitt (Marne la Vallée)

(Annales de l'IHP, 2015).

- Fritz Colonius & Ralph Lettau (Augsburg)

(Work in Progress).

- Claude Lobry (Nice)

(Arxiv preprint Oct. 2015).

Introduction, Goals and Examples

Michel Benaïm (Neuchâtel) On Piecewise Deterministic Markov Processes

• **PDMP**s are Markov Processes given by *deterministic dynamics* between *random switching*

• **PDMP**s are Markov Processes given by *deterministic dynamics* between *random switching*

 $\bullet \exists$ large literature on the subject & numerous types of PDMPs

Introduction

• **PDMP**s are Markov Processes given by *deterministic dynamics* between *random switching*

 $\bullet \exists$ large literature on the subject & numerous types of PDMPs

• used in a variety of fields (molecular biology, communication networks, ...)

Introduction

• **PDMP**s are Markov Processes given by *deterministic dynamics* between *random switching*

 $\bullet \exists$ large literature on the subject & numerous types of PDMPs

• used in a variety of fields (molecular biology, communication networks, ...)

Here we restrict attention to the following specific class:

$$\bullet E = \{1, \ldots, m\},\$$

 $\bullet F^1, \ldots, F^m$ smooth bounded vector fields on \mathbb{R}^d ,

- $(\Phi^1_t), \ldots, (\Phi^m_t)$ induced flows
- $M \subset \mathbb{R}^d$ = compact positively invariant set under each $\Phi^i,$
- For $x \in M$, $(Q_{ij}(x)) =$ Markov transition matrix over E (irreducible aperiodic and continuous in x)

$$\bullet E = \{1,\ldots,m\},\$$

• F^1, \ldots, F^m smooth bounded vector fields on \mathbb{R}^d ,

- $(\Phi_t^1), \ldots, (\Phi_t^m)$ induced flows :deterministic components
- $M \subset \mathbb{R}^d$ = compact positively invariant set under each $\Phi^i,$
- For $x \in M$, $(Q_{ij}(x)) =$ Markov transition matrix over E (irreducible aperiodic and continuous in x) :switching mechanism.

PDMPs (Z_t) and (\tilde{Z}_n)

The PDMP $Z_t = (X_t, Y_t) \in M \times E$ is constructed as follows:

∃ **)** ∃

PDMPs (Z_t) and (\tilde{Z}_n)

The PDMP $Z_t = (X_t, Y_t) \in M \times E$ is constructed as follows:

• Suppose
$$Z_0 = (X_0, Y_0) = (x, i)$$
.

∃ **)** ∃

PDMPs (Z_t) and (\tilde{Z}_n)

The PDMP $Z_t = (X_t, Y_t) \in M \times E$ is constructed as follows:

• Suppose
$$Z_0 = (X_0, Y_0) = (x, i)$$
.
Begin :

- Draw a random variable U_1 with exponential distribution

$$\mathsf{P}(\mathit{U}_1 > t) = e^{-\lambda t}$$

• • = • • = •

PDMPs (Z_t) and (\tilde{Z}_n)

The PDMP $Z_t = (X_t, Y_t) \in M \times E$ is constructed as follows:

• Suppose
$$Z_0 = (X_0, Y_0) = (x, i)$$
.
Begin :

- Draw a random variable U_1 with exponential distribution

$$\mathsf{P}(\mathit{U}_1 > t) = e^{-\lambda t}$$

- Follow Φ^i during time U_1 :

$$X_t = \Phi^i_t(x)$$
 for $t \leq U_1$; $Y_t = Y_0 = i$, for $t < U_1$.

PDMPs (Z_t) and (\tilde{Z}_n)

The PDMP $Z_t = (X_t, Y_t) \in M \times E$ is constructed as follows:

• Suppose
$$Z_0 = (X_0, Y_0) = (x, i)$$
.
Begin :

- Draw a random variable U_1 with exponential distribution

$$\mathsf{P}(\mathit{U}_1 > t) = e^{-\lambda t}$$

- Follow Φ^i during time U_1 :

$$X_t = \Phi_t^i(x)$$
 for $t \leq U_1$; $Y_t = Y_0 = i$, for $t < U_1$.

- Pick $j \in E$ with probability $Q_{ij}(X_{U_1})$ and set $Y_{U_1} = j$.

▶ < Ξ ▶</p>

PDMPs (Z_t) and (\tilde{Z}_n)

The PDMP $Z_t = (X_t, Y_t) \in M \times E$ is constructed as follows:

• Suppose
$$Z_0 = (X_0, Y_0) = (x, i)$$
.
Begin :

- Draw a random variable U_1 with exponential distribution

$$\mathsf{P}(U_1 > t) = e^{-\lambda t}$$

- Follow Φ^i during time U_1 :

$$X_t = \Phi_t^i(x)$$
 for $t \leq U_1$; $Y_t = Y_0 = i$, for $t < U_1$.

- Pick $j \in E$ with probability $Q_{ij}(X_{U_1})$ and set $Y_{U_1} = j$. - Repeat End

伺 ト イヨト イヨト

PDMPs (Z_t) and (\tilde{Z}_n)

This makes

 (Z_t) a continuous time Markov process, and $(\tilde{Z}_n) = (Z_{T_n})$ a discrete time Markov chain,

$$T_n = U_1 + \ldots + U_n$$

are the jump times.

PDMPs (Z_t) and (\tilde{Z}_n)

This makes

 (Z_t) a continuous time Feller Markov process, and $(\tilde{Z}_n) = (Z_{T_n})$ a discrete time Feller Markov chain,

$$T_n = U_1 + \ldots + U_n$$

are the jump times. Feller :

$$P_t f(z) = \mathbb{E}_z(f(Z_t)), \ \tilde{P}f(z) = \mathbb{E}_z(f(\tilde{Z}_1))$$

map $C_b(M)$ into itself.

Main Goals

Our main goal is to

Investigate the long term behavior of $(Z_t), (Z_n)$

э

-

Main Goals

Our main goal is to

Investigate the long term behavior of $(Z_t), (Z_n)$

Describe the

• support of their laws,

Main Goals

Our main goal is to

Investigate the long term behavior of $(Z_t), (Z_n)$

Describe the

- support of their laws,
- their invariant measures and,

Main Goals

Our main goal is to

Investigate the long term behavior of $(Z_t), (Z_n)$

Describe the

- support of their laws,
- their invariant measures and,
- their supports

Main Goals

Our main goal is to

Investigate the long term behavior of $(Z_t), (Z_n)$

Describe the

- support of their laws,
- their invariant measures and,
- their supports

Give conditions ensuring

• Uniqueness (of invariant measure),

Main Goals

Our main goal is to

Investigate the long term behavior of $(Z_t), (Z_n)$

Describe the

- support of their laws,
- their invariant measures and,
- their supports

Give conditions ensuring

- Uniqueness (of invariant measure),
- Ergodicity,

Main Goals

Our main goal is to

Investigate the long term behavior of $(Z_t), (Z_n)$

Describe the

- support of their laws,
- their invariant measures and,
- their supports

Give conditions ensuring

- Uniqueness (of invariant measure),
- Ergodicity,
- Exponential convergence, ...

A trivial (but instructive) example A trivial (but instructive) example Another (less trivial) example A non trivial example

A trivial (but instructive) example

$$E = \{1\}, M = S^1 = \mathbb{R}/\mathbb{Z},$$

$$\Phi_t(x) = (x + t) \mod 1.$$

< A

A trivial (but instructive) example A trivial (but instructive) example Another (less trivial) example A non trivial example

A trivial (but instructive) example

$$E = \{1\}, M = S^1 = \mathbb{R}/\mathbb{Z},$$

$$\Phi_t(x) = (x + t) \mod 1.$$

Figure: designed by freepick

A trivial (but instructive) example A trivial (but instructive) example Another (less trivial) example A non trivial example

A trivial (but instructive) example

$$E = \{1\}, M = S^1 = \mathbb{R}/\mathbb{Z},$$

 $\Phi_t(x) = (x + t) \mod 1.$
 $X_0 = x \Rightarrow$
 $X_t = \Phi_t(x), \ \tilde{X}_n = (x + T_n) \mod 1$
with

$$T_n = U_1 + \ldots + U_n \sim \Gamma(n).$$

....

< /□ > <

A trivial (but instructive) example A trivial (but instructive) example Another (less trivial) example A non trivial example

A trivial (but instructive) example

$$E = \{1\}, M = S^1 = \mathbb{R}/\mathbb{Z},$$

 $\Phi_t(x) = (x + t) \mod 1.$

 $egin{aligned} X_0 = x \Rightarrow \ X_t = \Phi_t(x), \ ilde{X}_n = (x + T_n) \mod 1 \end{aligned}$

with

$$T_n = U_1 + \ldots + U_n \sim \Gamma(n).$$

Both Z and (\tilde{Z}) are uniquely ergodic (unique invariant measure is the uniform distribution μ on S^1)

$${\sf Law}(Z_t)=\delta_{\Phi_t(x)},\;{\sf Law}(ilde Z_n)=(x+{\sf \Gamma}(n))\mod 1 o \mu.$$

(日) (同) (三) (

A trivial (but instructive) example A trivial (but instructive) example Another (less trivial) example A non trivial example

Another (less trivial) example

$$E = \{1, 2\}, M \subset \mathbb{R}^2$$
$$F^1(x) = Ax, F^2(x) = A(x - e)$$
$$A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, e = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Introduction Goals Some Examples A nother (less trivial) example

A non trivial example (from Benaim and Lobry, 15)

$$E = \{1, 2\}, M \subset \mathbb{R}_+ \times \mathbb{R}_+.$$

 F^1 , F^2 two Lotka-Volterra vector fields

$$F^{i}(x,y) = \begin{cases} \alpha_{i}x(1-a_{i}x-b_{i}y) \\ \beta_{i}y(1-c_{i}x-d_{i}y) \end{cases}$$

3 N

Introduction Goals Some Examples A rivial (but instructive) exam A rivial (but instructive) exam Another (less trivial) example

A non trivial example (from Benaim and Lobry, 15)

 $E = \{1, 2\}, M \subset \mathbb{R}_+ \times \mathbb{R}_+.$

 F^1 , F^2 two Lotka-Volterra vector fields

$$F^{i}(x,y) = \begin{cases} \alpha_{i}x(1-a_{i}x-b_{i}y)\\ \beta_{i}y(1-c_{i}x-d_{i}y) \end{cases}$$

favorable to the same species x

$$lpha_i, eta_i, a_i, b_i > 0,$$

 $a_i < c_i ext{ and } b_i < d_i.$

Figure: Phase portraits of F^1 and F^2

< 17 > <

Figure: Phase portraits of F^1 and F^2

$$Q(x) = \left(\begin{array}{cc} 1-p & p \\ 1-p & p \end{array}
ight).$$

Different values of p, λ lead to different behaviors \hookrightarrow

-

	A trivial (but instructive) example
Goole	A trivial (but instructive) example
Some Examples	Another (less trivial) example
Johne Examples	A non trivial example

Figure: extinction of 2

Introduction	A trivial (but instructive) example
Goals	A trivial (but instructive) example Another (less trivial) example
Some Examples	A non trivial example

Figure: Persistence

	A trivial (but instructive) example
Goole	A trivial (but instructive) example
Some Examples	Another (less trivial) example
	A non trivial example

Figure: Persistence

	A trivial (but instructive) example
Introduction	A trivial (but instructive) example
Goals	Another (less trivial) example
Some Examples	A non trivial example

Figure: Extinction of 1

э

	A trivial (but instructive) example
Goals	A trivial (but instructive) example
Some Examples	Another (less trivial) example
	A non trivial example

Figure: Extinction of 1 or 2

SOME MATHS

Some Maths

Michel Benaïm (Neuchâtel) On Piecewise Deterministic Markov Processes

э

・ 同 ト ・ ヨ ト ・ ヨ

A support Theorem

$$co(F)(x) := conv(F^1(x), \ldots, F^m(x)),$$

• S^x the set of (absolutely continuous) maps $\eta:\mathbb{R}_+\mapsto\mathbb{R}^d$ solutions to

$$\dot{\eta} \in co(F)(\eta), \eta(0) = x$$

A support Theorem

$$co(F)(x) := conv(F^1(x), \ldots, F^m(x)),$$

• S^x the set of (absolutely continuous) maps $\eta: \mathbb{R}_+ \mapsto \mathbb{R}^d$ solutions to

$$\dot{\eta} \in co(F)(\eta), \eta(0) = x$$

Clearly

$$X_0 = x \Rightarrow (X_t) \in S^x$$

but more can be said

A support Theorem

$$co(F)(x) := conv(F^1(x), \ldots, F^m(x)),$$

• S^{\times} the set of (absolutely continuous) maps $\eta: \mathbb{R}_+ \mapsto \mathbb{R}^d$ solutions to

$$\dot{\eta} \in co(F)(\eta), \eta(0) = x$$

Clearly

$$X_0 = x \Rightarrow (X_t) \in S^x$$

but more can be said

Theorem (Benaim, Leborgne, Malrieu, Zitt, 15) If $X_0 = x$ then, the support of the law of (X_t) equals S^x .

Invariant Measures Accessible Set

Invariant Measures

A probability measure on $M \times E$ is called *invariant* for (Z_t) whenever

$$Law(Z_0) = \mu \Rightarrow Law(Z_t) = \mu$$
$$\Leftrightarrow \int \mathsf{P}_z(Z_t \in \cdot)\mu(dz) = \mu(\cdot)$$
$$\Leftrightarrow \int \mathsf{P}_t f(z)\mu(dz) = \int f\mu(dz).$$

・ 同 ト ・ 三 ト ・

Invariant Measures Accessible Set

Invariant Measures

A probability measure on $M \times E$ is called *invariant* for (Z_t) whenever

$$Law(Z_0) = \mu \Rightarrow Law(Z_t) = \mu$$
$$\Leftrightarrow \int \mathsf{P}_z(Z_t \in \cdot)\mu(dz) = \mu(\cdot)$$
$$\Leftrightarrow \int \mathsf{P}_t f(z)\mu(dz) = \int f\mu(dz).$$

Similar definition for (\tilde{Z}_n)

3.5

Invariant Measures Accessible Set

Invariant Measures

A probability measure on $M \times E$ is called *invariant* for (Z_t) whenever

$$Law(Z_0) = \mu \Rightarrow Law(Z_t) = \mu$$
$$\Leftrightarrow \int \mathsf{P}_z(Z_t \in \cdot)\mu(dz) = \mu(\cdot)$$
$$\Leftrightarrow \int \mathsf{P}_t f(z)\mu(dz) = \int f\mu(dz).$$

Similar definition for (\tilde{Z}_n) Ergodic measure = extremal invariant

• • • • •

Invariant Measures Accessible Set

- $\mathcal{P}_{inv}, (\mathcal{P}_{erg}) := invariant (ergodic) measures for <math>(Z_t)$
- $\tilde{\mathbb{P}}_{inv}, (\tilde{\mathbb{P}}_{erg}) := invariant (ergodic) measures for <math>(Z_t)$

Compactness and Feller Continuity $\Rightarrow \mathcal{P}_{inv}, \tilde{\mathcal{P}}_{inv}$ are non empty.

Invariant Measures Accessible Set

- $\mathcal{P}_{inv}, (\mathcal{P}_{erg}) := invariant (ergodic) measures for <math>(Z_t)$
- $\tilde{\mathbb{P}}_{inv}, (\tilde{\mathbb{P}}_{erg}) := invariant (ergodic) measures for <math>(Z_t)$

Compactness and Feller Continuity $\Rightarrow \mathcal{P}_{inv}, \tilde{\mathcal{P}}_{inv}$ are non empty.

Proposition (Correspondence for invariant measures, BLMZ, 15) (i) $\tilde{\mathcal{P}}_{inv}$, $(\tilde{\mathcal{P}}_{erg})$ and $\tilde{\mathcal{P}}_{inv}$, $(\tilde{\mathcal{P}}_{erg})$ are homeomorphic (ii) This homeomorphism preserves the support (iii) If μ is ergodic it is either absolutely continuous or singular

Invariant Measures Accessible Set

- $\mathcal{P}_{inv}, (\mathcal{P}_{erg}) := invariant (ergodic) measures for (Z_t)$
- $\tilde{\mathbb{P}}_{inv}, (\tilde{\mathbb{P}}_{erg}) := invariant (ergodic) measures for <math>(Z_t)$

Compactness and Feller Continuity $\Rightarrow \mathcal{P}_{inv}, \tilde{\mathcal{P}}_{inv}$ are non empty.

Proposition (Correspondence for invariant measures, BLMZ, 15) (i) $\tilde{\mathcal{P}}_{inv}, (\tilde{\mathcal{P}}_{erg})$ and $\tilde{\mathcal{P}}_{inv}, (\tilde{\mathcal{P}}_{erg})$ are homeomorphic (ii) This homeomorphism preserves the support (iii) If u is ergodic it is either absolutely continuous or

(iii) If μ is ergodic it is either absolutely continuous or singular

Open problem Nothing is known in general (in the a-c case) on the regularity of the density **except in dimension** 1 : (Y. Bakhtin, T. Hurt and J- Mattingly, Nonlinearity, 2015)

Invariant Measures Accessible Set

Accessible Set

• (Ψ_t) the set valued semi flow induced by $\dot{\eta} \in co(F)(\eta)$:

$$\Psi_t(x) = \{\eta(t): \eta \in S^x\}.$$

Omega limit set:

$$\omega_{\Psi}(x) = \bigcap_{t \ge 0} \overline{\{\Psi_s(x), s \ge t\}}$$

Accessible Set :

$$\mathsf{\Gamma} = \bigcap_{x \in M} \omega_{\Psi}(x)$$

A - E - A - E

-

Invariant Measures Accessible Set

Accessible Set

• (Ψ_t) the set valued semi flow induced by $\dot{\eta} \in co(F)(\eta)$:

$$\Psi_t(x) = \{\eta(t): \eta \in S^x\}.$$

Omega limit set:

$$\omega_{\Psi}(x) = \bigcap_{t \geq 0} \overline{\{\Psi_s(x), s \geq t\}}$$

Accessible Set :

$$\Gamma = \bigcap_{x \in M} \omega_{\Psi}(x)$$

 Γ is a compact possibly empty set

Invariant Measures Accessible Set

Proposition (Properties of the accessible set, BLMZ, 15)

(i)
$$\Gamma = \omega_{\Psi}(p)$$
 for all $p \in \Gamma$

(ii) Γ is compact connected invariant ($\forall t \ge 0 \Psi_t(\Gamma) = \Gamma$).

(iii) Either Γ has empty interior or its interior is dense in Γ .

Figure: Example of accessible set

Michel Benaïm (Neuchâtel) On Piecewise Deterministic Markov Processes

Proposition (Accessible set and invariant measures, BLMZ, 15)

- (i) If $\Gamma \neq \emptyset$ then $\Gamma \times E \subset \text{supp}(\mu)$ for all $\mu \in \mathcal{P}_{inv}$ and there exists $\mu \in \mathcal{P}_{inv}$ such that $\text{supp}(\mu) = \Gamma \times E$.
- (ii) If Γ has non empty interior, then $\Gamma \times E = \operatorname{supp}(\mu)$ for all $\mu \in \mathcal{P}_{inv}$.
- (iii) Suppose that there is a unique invariant measure for Z (or \tilde{Z}) π , then supp $(\pi) = \Gamma \times E$.

Proposition (Accessible set and invariant measures, BLMZ, 15)

- (i) If $\Gamma \neq \emptyset$ then $\Gamma \times E \subset \operatorname{supp}(\mu)$ for all $\mu \in \mathcal{P}_{inv}$ and there exists $\mu \in \mathcal{P}_{inv}$ such that $\operatorname{supp}(\mu) = \Gamma \times E$.
- (ii) If Γ has non empty interior, then $\Gamma \times E = \operatorname{supp}(\mu)$ for all $\mu \in \mathcal{P}_{inv}$.
- (iii) Suppose that there is a unique invariant measure for Z (or \tilde{Z}) π , then supp $(\pi) = \Gamma \times E$.

When Γ has empty interior, inclusion $\Gamma \times E \subset \operatorname{supp}(\mu)$ can be strict !

Invariant Measures Accessible Set

Figure: $\Gamma \subset \mathbb{R}_+ \times \{0\} \ \Gamma \times E \neq \operatorname{supp}(\mu)$

Proposition (Accessible set and invariant measures, BLMZ, 15)

- (i) If $\Gamma \neq \emptyset$ then $\Gamma \times E \subset \operatorname{supp}(\mu)$ for all $\mu \in \mathcal{P}_{inv}$ and there exists $\mu \in \mathcal{P}_{inv}$ such that $\operatorname{supp}(\mu) = \Gamma \times E$.
- (ii) If Γ has non empty interior, then $\Gamma \times E = \operatorname{supp}(\mu)$ for all $\mu \in \mathcal{P}_{inv}$.
- (iii) Suppose that there is a unique invariant measure for Z (or \tilde{Z}) π , then supp $(\pi) = \Gamma \times E$.

Proposition (Accessible set and invariant measures, BLMZ, 15)

- (i) If $\Gamma \neq \emptyset$ then $\Gamma \times E \subset \operatorname{supp}(\mu)$ for all $\mu \in \mathcal{P}_{inv}$ and there exists $\mu \in \mathcal{P}_{inv}$ such that $\operatorname{supp}(\mu) = \Gamma \times E$.
- (ii) If Γ has non empty interior, then $\Gamma \times E = \operatorname{supp}(\mu)$ for all $\mu \in \mathcal{P}_{inv}$.
- (iii) Suppose that there is a unique invariant measure for Z (or \tilde{Z}) π , then supp $(\pi) = \Gamma \times E$.

When Γ has non empty interior, there may be several invariant measures ! (Furstenberg's type example)

Invariant Measure Accessible Set

What if $\Gamma = \emptyset$?

If $\Gamma=\emptyset$ some of the previous result still hold by considering Invariant Control Sets

A (1) < A (1) < A (1) < A (1) </p>

Invariant Measures Accessible Set

What if $\Gamma = \emptyset$?

If $\Gamma=\emptyset$ some of the previous result still hold by considering Invariant Control Sets

•{ F^1, \ldots, F^m } is said *locally accessible* in M if for all $x \in M$ and T > 0

$$O_T^+(x) = \{ \Psi_t(x) : 0 \le t \le T \}$$

and

$$O^-_T(x) = \{y \in M : x \in \Psi_t(y) \text{ for some } 0 \le t \le T\}$$

have non empty interior

• • • • •

Proposition (Benaim, Colonius & Lettau, 16)

Suppose $\{F^1, \ldots, F^m\}$ locally accessible in M.

- (i) There are finitely many invariant control sets $\Gamma_1, \ldots, \Gamma_J$
- (ii) They coincide with minimal compact invariant sets for Ψ and have non empty interiors
- (iii) For every $\mu \in \mathcal{P}_{inv} \operatorname{supp}(\mu) \subset \bigcup_{i=1}^{l} \Gamma_i \times E$.
- (iv) For every $\mu \in \mathcal{P}_{erg}$ there is some *i* for which $supp(\mu) = \Gamma_i \times E$.

Bracket conditions Convergence in discrete time Convergence in continuous time

Uniqueness and Convergence

The Bracket conditions

Weak Bracket at $x \in M$:

The Lie algebra generated by $\{F^i, i = 1, \dots, m\}$ has full rank at x

Strong Bracket at $x \in M$:

$$G_0 = \{F^i - F^j : i, j = 1, \dots, m\} \ G_{k+1} = G_k \cup \{[F^i, V] : V \in G_k\}$$

has full rank at x for some k.

Bracket conditions Convergence in discrete time Convergence in continuous time

Convergence in discrete time

Theorem (BLMZ, 15)

Suppose $\exists x \in \Gamma$ at which the **weak bracket** condition holds. Then \tilde{Z} admits a unique invariant probability $\tilde{\pi}$, absolutely continuous with respect to the Lebesgue measure $\lambda_{M \times E}$ on $M \times E$; and

$$\|\mathbf{P}(\tilde{Z}_n \in \cdot) - \tilde{\pi}\| \leq c \rho^n$$

for some c > 1 and $\rho \in (0, 1)$. Here $\|\cdot\| = total variation norm.$

Bracket conditions Convergence in discrete time Convergence in continuous time

Corollary

Suppose $\exists x \in \Gamma$ at which the weak bracket condition holds. Then Z admits a unique invariant probability π , absolutely continuous with respect to the Lebesgue measure $\lambda_{M \times E}$ on $M \times E$;

A (1) > (1) > (1)

Bracket conditions Convergence in discrete time Convergence in continuous time

Corollary

Suppose $\exists x \in \Gamma$ at which the weak bracket condition holds. Then Z admits a unique invariant probability π , absolutely continuous with respect to the Lebesgue measure $\lambda_{M \times E}$ on $M \times E$;

• Follows also from results by (Bakthin & Hurth, 2012) when Q(x) = Q

Bracket conditions Convergence in discrete time Convergence in continuous time

Corollary

Suppose $\exists x \in \Gamma$ at which the weak bracket condition holds. Then Z admits a unique invariant probability π , absolutely continuous with respect to the Lebesgue measure $\lambda_{M \times E}$ on $M \times E$;

• Follows also from results by (Bakthin & Hurth, 2012) when Q(x) = Q

• Weak Bracket \Rightarrow convergence in law of (Z_t) !

Bracket conditions Convergence in discrete time Convergence in continuous time

$$M = S^1 = \mathbb{R}/\mathbb{Z}, \Phi_t(x) = (x+t) \mod 1.$$

Figure: designed by freepick

 $Z_t = \Phi_t(x), \ ilde{Z}_n \sim x + \Gamma(n)) \mod 1$ converges in distribution

Bracket conditions Convergence in discrete time Convergence in continuous time

Convergence in continuous time

Theorem (BLMZ, 15)

Suppose $\exists p \in \Gamma$ at which the strong bracket condition holds. Let π be the invariant probability of Z. Then

$$\|\mathbf{P}(Z_t\in\cdot)-\pi\|\leq Ce^{-\kappa t}$$

for some C > 1 and $\kappa > 0$

Bracket conditions Convergence in discrete time Convergence in continuous time

What if $\Gamma = \emptyset$?

Proposition (Benaim, Colonius & Lettau, 16)

Suppose the weak bracket condition holds for all $x \in M$.

Bracket conditions Convergence in discrete time Convergence in continuous time

Similarly

Michel Benaïm (Neuchâtel) On Piecewise Deterministic Markov Processes

イロト イポト イヨト イヨト

э

Bracket conditions Convergence in discrete time Convergence in continuous time

Similarly

Proposition (Benaim, Colonius & Lettau, 16)

Suppose the strong bracket condition holds for all $x \in M$.

▲ 同 ▶ ▲ 国 ▶ ▲

Bracket conditions Convergence in discrete time Convergence in continuous time

Time to Switch to Lunch...