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Controlled piecewise deterministic Markov processes

Introduction

Davis (80's)
General class of non-diffusion stochastic hybrid models:
deterministic trajectory punctuated by random jumps.

Applications
Engineering systems, biology, operations research, management
science, economics, dependability and safety, ...
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Controlled piecewise deterministic Markov processes

Parameters of the model

> the state space: X open subset of R (boundary 9X).

» the flow: ¢(x,t): RY x R — RY satisfying
d(x, t +5) = d(d(x, ), t) for all x € R and (t,s) € R?.
— active boundary:

A={zc0X:z=¢(x,t)forsomex c Xand t c R} } .
For x € X = XUA,

t*(x) =inf{t e Ry : ¢(x,t) € A}

» A is the action space, assumed to be a Borel space.
Ag c B(A) (respectively A’ € B(A) ) is the set of gradual or
continuous (respectively impulsive) actions satisfying
A=A +As.
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Controlled piecewise deterministic Markov processes

Parameters of the model

» The set of feasible actions in state x € X is A(x) C A. Let us
introduce the following sets K = K’ U K& with

K& = {(x,a) e X x A8 :ac A(x)}

K' ={(x,a) € A x A":a € A(x)}
» The jumps intensity A which is a R -valued measurable
function defined on K&.

» The stochastic kernel @ on X given K satisfying
Q(X\ {x}|x,a) =1 for any (x, a) € K&. It describes the state
of the process after any jump.
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Controlled piecewise deterministic Markov processes

Uncontrolled process

Definition of a PDMP
Parameters: flow ¢, intensity of the jumps A, transition kernel @

E E
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Controlled piecewise deterministic Markov processes

Construction of the controlled process
The canonical space Q = (Up2; Q24) U (X x (R x X)) with
Qn =X x (RE x X)" x ({oo} X {x0})>.

Introduce the mappings X, : Q — Xoo = XU {xs0} by Xn(w) = xn
and ©,: Q — R} by ©,(w) = 0,; Og(w) = 0 where

w = (Xo,(gl,Xl,eQ,Xg, .. ) e Q.

In addition T,(w) = Z@;(w) = Zei with To(w) = lim T,(w).
i—1 i—1

n—o0

H,, is the set of path up to n.
H, = (Xo0,©1, X1,...,0,,X,) is the history of the process up to n.
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Controlled piecewise deterministic Markov processes

Construction of the process

The controlled process {gt}t€R+:

) p(Xn,t=Tp) if T <t < TppiforneN;
§e(w) = Xoos if Too <'t.

The flow is not controlled.
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution

An admissible control strategy is a sequence u = (7, Yn)nen such
that, for any n € N,

» 7, is a stochastic kernel on A& given H, x R :
mn(dalhn, t) =1 for t €]0, t*(x,)],
> 7, is a stochastic kernel on A’ given H,:
vn(dalh,) =1
where h, = (x0,01,x1,...0n,%7) € Hy,.

The set of admissible control strategies is denoted by /.
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution

For an admissible control strategy u = (7, Yn)nen, We can
equivalently consider the random processes with values in P(A#)
and P(A’) respectively as

m(dalt) =Y Ii1,<t<T,.0y"n(dalHn t — Tp)
neN

and

v(da|t) = Z I{T,,<t§T,,+1}'Yn(d3|Hn)a
neN

for t € R"jr.
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution

Interaction of u = (ﬂn,fyn)neN and the parameters of the model:
» the intensity of jumps

(B, t) = / ANS(x, £), a)T(dal b, ),

As

and the corresponding rate of jumps

Ap(hp, t) = An(hn, s)ds,
10,]

» the distribution of the state after a (stochastic) jump
1
Q3 “(dx|h,, t) = 7/ Q(dx|d(xn, t), a)A(¢(xn, t), a)7n(dalhy, t)
)\g(hn,t) Ag
» the distribution of the state after a (boundary) jump

Qj(dxlhn) = [ QUax|6(xn " (30)). 2)7(dal ).
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution

We want the joint distribution of the next sojourn time and state
be given by G,
G,,(Fl X Fg\h,,)

:[I{Xn:XOO} + e—/\z(hn7

+OO)I{XneX}I{t*(Xn)ZOO}]5 (400, Xc0 (rl x I2)

+ I{XnGX} |:6t*(Xn)(r1)Qri17u(r2’hn)eAﬁ(h"’t*(xn))l{t*(xn)<oo}

+/ Q& Y(M2lhy, t))\g(hn,t)e"‘ﬁ(”"vt)dt},
10,t*(xn)[NI1

where I'1 € B(R},), 'z € B(Xw) and
hn = (X07017X17 A ,Hn,x,,) (S Hn.
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution

Consider an admissible strategy u € U and an initial state xp € X

P2 (@41, Xns1) € T1 X 2| F7,) = Go(1 x T Hy)

— the conditional distribution of (©,11, Xs+1) given Fr, under
P% is Gn(-|Hn) ({F¢} is the natural filtration of the process).
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution

Consider an admissible strategy u € U and an initial state xg € X.
There exists a probability P on (2, F) such that

Po{Xo=x}) = 1
and the positive random measure v defined on R%} x X by

— Th, dx|Hp)
E /
v(dt, dx) G ([t T,,,+oo] X Xoo|Hn) {To<t<Tni1}

is the compensator of

u(dt, dx) = 3 1(7,(0)<00)O(To(w) Xa () (lE ).
n>1

with respect to Py (Jacod, Multivariate point processes, 1975).
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Optimization problems

Unconstrained and constrained problems

Cost functions

g . . . .
> (Cj )j6{071,-.-,p} assoaate.d with a continuous action.
Real-valued mapping defined on K&.

I' . . . . .
> (q)j6{0,17---7p} associated with an impulsive action on the

boundary. Real-valued mapping defined on K'.

The associated infinite-horizon discounted criteria corresponding to
an admissible control strategy u € U are given by

Vi(u,x0) = Eg / e as/ C8(&s, a)m(dals)ds
J( 0) 0[ ]07 [ (gs) ' (é. ) ( ‘ ) ‘|
EY / e | Cl(&_, a)y(da|s)u(ds, X
o[ 10,00 {&—en} ) J(f )’Y( | ) ( )]

for any j € {0,1,...,p}.
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Optimization problems

Unconstrained and constrained problems

» The optimization problem without constraint consists in
minimizing the performance criterion

inf .
Jgu VO(U, XU)

» The optimization problem with p constraints consists in
minimizing the performance criterion

inf Vo(u, x

el 0( ) 0)

such that the constraint criteria
Vj(u,Xo) < Bj

are satisfied for any j € N}, where (B;);en; are real numbers
representing the constraint bounds.
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Optimization problems

Different classes of strategies

» feasible, if u € U and Vj(u,x0) < B;, for j > 1.

» stationary, if for some (7,v) € P8 x P’ the control strategy
u = (Tn,Vn)neN is given by my(dalh,, t) = w(da|p(xs, t)) and
Vn(dblhn) = v(db|d(xn, t*(xn)))-

> non-randomized stationary, if Tn(-|hn, t) = 0ys(p(xm,e))(+) and

Yn(+1hn) = s (p(xnyt)) (*), Where ©* : X — A is a measurable
mapping satisfying ©°(y) € A(y) for any y € X.
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Optimization problems

Hypotheses

Assumption A. There are constants K > 0,e; > 0 and & € [0, 1]
such that

(A1) For any (x,a) € K&, \(x,a) < K

(A2) ,inf  QAalz,b) = 1 = &5, with

Ac, = {x € X: t*(x) > e1}.
Assumption B.
(B1) The set A(y) is compact for every y € X.
(B2) The kernel Q is weakly continuous.
(B3) The function X is continuous on K&,
(B4) The flow ¢ is continuous on Ry x RP.

(B5) The function t* is continuous on X.
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Optimization problems

Assumption C.

(C1) The multifunction W& from X to A defined by W(x) = A(x)
is upper semicontinous. The multifunction W from A to A
defined by W(z) = A(z) is upper semicontinous.

(C2) The cost function C§ (respectively, C}) is bounded and
lower semicontinuous on K& (respectively, K').
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Non-explosion

Lemma
Suppose Assumption A is satisfied. Then there exists M < oo such
that, for any control strategy u € U and for any xp € X

By [ 3 e < M and Pé (T < +00) = 0.
neN*
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Non-explosion

Elements of proof:

» For any control strategy u, xog € X we have for any j € N
Py (Q12 + Oji1 > e1|H)) > e K1 (1 — &),
» Now,
Ex {e_a(@fﬂ‘*‘ejﬁ)“_/j}

< PY (021 + B2 < £1]Hy)

+e P (041 + Oji2 > e1|H))
=14 [e " — 1P (©j11 + Ojy2 > e1|H))
S14[e o 11— eple K =k < 1.
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Non-explosion
Elements of proof:
» For any j € N*,

Eio [e—asz-H} — E;o [e—aT2j_1EgO |:e—04(92j+@2j+1)‘H2j_1:|:|

< KEY [e*aszA} :

and so
By, [eoTom| < WEY [e70T] < #.
Similarly,
Y, [eeTon] < WY, [eoT] <
for any j € N.
» Therefore,
B[ Y e < o

neN*
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The unconstrained problem and the DP approach

There are two approaches to deal with such problems:

e the associated discrete-stage Markov decision model:

» A. Almudevar. A dynamic programming algorithm for the
optimal control of piecewise deterministic Markov processes,
2001.

» N. Bauerle and U. Rieder. Optimal control of piecewise
deterministic Markov processes with finite time horizon, 2010.

» O.L.V Costa and F. Dufour. Continuous average control of
piecewise deterministic Markov processes, 2013.

» M.H.A. Davis. Control of piecewise-deterministic processes via
discrete-time dynamic programming, 1986.

» L. Forwick, M. Schal, and M. Schmitz. Piecewise deterministic
Markov control processes with feedback controls and
unbounded costs, 2004.

» M. Schal. On piecewise deterministic Markov control
processes: control of jumps and of risk processes in insurance,
1998.

» A.A. Yushkevich. On reducing a jump controllable Markov
model to a model with discrete time, 1980.
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The unconstrained problem and the DP approach

There are two approaches to deal with such problems:

e the the infinitesimal approach (HJB equation):

» M.H.A. Davis. Markov models and optimization, volume 49 of
Monographs on Statistics and Applied Probability, 1993.

» M.A.H. Dempster and J.J. Ye. Necessary and sufficient
optimality conditions for control of piecewise deterministic
processes, 1992.

» M.AH. Dempster and J.J. Ye. Generalized
Bellman-Hamilton-Jacob optimality conditions for a control
problem with boundary conditions, 1996.

» A.A. Yushkevich. Bellman inequalities in Markov decision
deterministic drift processes. Stochastics, 1987
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The unconstrained problem and the DP approach

Notation and preliminary results:

» A(X) is the set of functions g € B(X) such that for any

x € X, the function g(¢(x,-)) is absolutely continuous on
[0, t*(x)| "R

» Let g € A(X), there exists a real-valued measurable function
X g defined on X satisfying for any t € [0, t*(x)[

g(o(x, 1)) = g(x) + - Xg(o(x,s))ds.

» Let R € P(X]Y). Then Rf(y) i/ f(x)R(dx|y) for any
X
y € Y and measurable function f. For any measure 7 on
(Y. B 1R() = [ RCIy)n(dy)
> q(dylx, a) = A(x,a)[Q(dy|x, a) — dx(dy)]
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The unconstrained problem and the DP approach

Sufficient conditions for the existence of a solution for the HJB
equation associated with the optimization problem.

Theorem
Suppose assumptions A, B and C hold. Then there exist

W e A(X) and XYW € B(X) satisfying

_ : g _
W)+ XW() + inf {CE(x.a)+aW(x.2)} =0,

for any x € X, and

W(z) =, inf{Cilz.b) + QW(z,b)},

for any z € A. Moreover, for any x € X

W(x) = JELVO(U,X).
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The unconstrained problem and the DP approach

Sufficient conditions for the existence of an optimal strategy.

Theorem

Suppose assumptions A, B and C hold. There exists a measurable
mapping @ : X — A such that $(y) € A(y) for any y € X and
satisfying

CE (. 200)) + aW(x,5(0) = inf {CE(x,2) + qW(x.2)}

for any x € X, and
Ci(z,2(2)) + QW(2,3(2)) = , inf_ {C}(,b) + QW(z.b) .

for any z € A. Moreover, the stationary non-randomized strategy
@ is optimal.
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The unconstrained problem and the DP approach

Elements of proof:

> Define recursively {W;},_ as
Wii(y) = BWil(y),

with Wo(y) = —Kala., (v) — (Ka + Kg)la (y) and

BU(y) = [ e IRy, 1)t
(0,2 (I
+ e KHIDITV(6(y, ¢ ()
where

RV(x) = inf {C8(x,a) +qV(x,a) + KV(x)},

and

V() = inf {Ciz,0) + QV(z,b)}.
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The unconstrained problem and the DP approach

» W, is lower semicontinuous and
(Wi(y)| < Kala., (v) + (Ka + Kg)lag (v)-

» B is monotone (V4 < Vo = BV <BV,), {VI/,-}I.GN is
increasing and W; — W and W is bounded and lower
semicontinuous.

> lim RW(x) = RW(x), for any x € X
1—00

lim TW;(z) = TW(z) for any z € A.
1—00
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The unconstrained problem and the DP approach
» By using the bounded convergence Theorem,
W(y) = BW(y)

= e FTIRW(p(y, 1)) dt
[0.64()]

+ e FHITITW (g(y, t(v))),

where y € X.
» Then W € A(X) and there exists XY W € B(X)

_ : g _
aW(x) + X W(x)+ aeg\gf(x) {CO (x,a) + qW(x, a)} =0,

for any x € X, and

W(z) =, inf {Ci(z,b)+ QW(z b},

for any z € A.
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The linear programming approach

The method has been extensively studied in the literature
e Continuous and discrete time MDP:
» Eitan Altman. Constrained Markov decision processes, 1999.
» Vivek S. Borkar. A Convex Analytic Approach to Markov
Decision Processes, 1988.
» Vivek S. Borkar. Convex analytic methods in Markov decision
processes, 2002.
» Alexey B. Piunovskiy. Optimal control of random sequences in
problems with constraints, 1997.
e Controlled martingale problems:
» Abhay G. Bhatt and Vivek S. Borkar. Occupation measures for
controlled Markov processes: characterization and optimality,
1996.
» K. Helmes and R. H. Stockbridge. Linear programming

approach to the optimal stopping of singular stochastic
processes, 2007.

» Richard H. Stockbridge. Time-average control of martingale
problems: a linear programming formulation, 1990.
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Occupation measure

For any admissible control strategy u € U, the occupation measure
Ny € M(K) associated with u is defined as follows

nu(T) =E¢ l/ng /OOO[ &8¢ (dx)m(dals)d ]

LB [ [0 3 e T, (d2)(abl T, )]

neN*

for any I' € B(K).
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Linear programming approach

The infinite-horizon discounted criteria can be rewritten as
Vi(u,xp) = EY / e_as/ C%(&s, a)m(dals)ds
j(0:0) [ I RGO CD

+ K

X0

/]o o Moo f Gj (& 2)y(dals)u(ds, X)l
=8 (CF) +m,(C))

where 7% (resp. 7/,) denotes the restriction of 1, to K& (resp. K').
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Admissible measure

A finite measure € M(K) is called admissible if, for any
(W, XW) e A(X) x B(X), the following equality holds

/ [aW(x) — X W(x)]7(dx) + / W(2)7 (dz)
X A
_ W(xo)—l—/Kqu(x,a)ng(dx, da) + [ QW(zb)r(dz.db).

with 78 (resp. 7j') denotes the marginal of & (resp. ') w.r.t. to
X.
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Occupation and admissible measures

The next important result shows the link between the set of
admissible measures and the set of occupation measures.

Theorem
Suppose Assumption A is satisfied. Then the following assertions

hold.
i) For any control strategy u € U, the occupation measure 1, is
admissible.
ii) Suppose that the measure 1 is admissible. Then there exist
stochastic kernels T € P& and v € P’ for which the stationary
control strategy u = (m,v) € Us satisfies n = n,.
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Linear programming approach

The constrained linear program, labeled LIP, is defined as

o () ()

where M is the set of measures (78,7) in M(K') x M(K&) such
that 78 + 7' is admissible and satisfies

ne(CF) +1'(G) < B;.
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Linear programming approach

Theorem

Suppose Assumption A holds and the cost functions ng and Cj" are
bounded from below for any j € N,. Then the values of the
constrained control problem and the linear program LLIP are
equivalent:

R R AT
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Linear programming approach

Theorem

Suppose Assumptions A, B and (C1) are satisfied. Assume the
cost functions ng (resp. CJ’ ) are bounded from below and lower
semicontinuous on K& (resp. K') for any j € N,.

If the set of feasible strategies is non empty then the ILIP is solvable
and there exists a stationary feasible strategy u* satisfying

E(CE)+mi-(Ch) = inf nB(C§)+n'(C§
Mo (C) 4 (Go) = inf | nE(G5) +n'(Co)

= inf Vo(u, x0) = Vo(u", x0)-
Jnf Vo(u, x0) = Vo(u", x0)
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