
This study has been carried out with financial support from the French State, managed by the French National
Research Agency (ANR) in the frame of the "Investments for the future" Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02)

Unconstrained and Constrained
Optimal Control of Piecewise
Deterministic Markov Processes

Oswaldo Costa, François Dufour, Alexey Piunovskiy

Universidade de Sao Paulo

Institut de Mathématiques de Bordeaux
INRIA Bordeaux Sud-Ouest

University of Liverpool



Outline

1. Piecewise deterministic Markov processes
I Introduction
I Parameters of the model
I Construction of the controlled process
I Admissible strategies

2. Optimization problems
I Unconstrained and constrained problems
I Assumptions

3. Non explosion
4. The unconstrained problem and the dynamic programming

approach
5. The constrained problem and the linear programming

approach

Workshop on switching dynamics & verification - IHP - January 28-29, 2016 2/42



Controlled piecewise deterministic Markov processes

Introduction

Davis (80’s)
General class of non-diffusion stochastic hybrid models:
deterministic trajectory punctuated by random jumps.

Applications
Engineering systems, biology, operations research, management
science, economics, dependability and safety, . . .
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Controlled piecewise deterministic Markov processes

Parameters of the model

I the state space: X open subset of Rd (boundary ∂X).
I the flow: φ(x , t) : Rd × R→ Rd satisfying
φ(x , t + s) = φ(φ(x , s), t) for all x ∈ Rd and (t, s) ∈ R2.
→ active boundary:
∆ = {z ∈ ∂X : z = φ(x , t) for some x ∈ X and t ∈ R∗+} .
For x ∈ X .= X ∪∆,

t∗(x) = inf{t ∈ R+ : φ(x , t) ∈ ∆}.

I A is the action space, assumed to be a Borel space.
Ag ∈ B(A) (respectively Ai ∈ B(A) ) is the set of gradual or
continuous (respectively impulsive) actions satisfying
A = Ai + Ag .
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Controlled piecewise deterministic Markov processes

Parameters of the model

I The set of feasible actions in state x ∈ X is A(x) ⊂ A. Let us
introduce the following sets K = Ki ∪Kg with

Kg = {(x , a) ∈ X× Ag : a ∈ A(x)}

Ki = {(x , a) ∈ ∆× Ai : a ∈ A(x)}
I The jumps intensity λ which is a R+-valued measurable

function defined on Kg .
I The stochastic kernel Q on X given K satisfying

Q(X \ {x}|x , a) = 1 for any (x , a) ∈ Kg . It describes the state
of the process after any jump.
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Controlled piecewise deterministic Markov processes

Uncontrolled process
Definition of a PDMP
Parameters: flow φ, intensity of the jumps λ, transition kernel Q

x0

E E

(Oct 7-9 2008)Application of piecewise deterministic Markov Processes Oct 7-9 2008 1 / 5

Workshop on switching dynamics & verification - IHP - January 28-29, 2016 6/42



Controlled piecewise deterministic Markov processes

Uncontrolled process
Definition of a PDMP
Parameters: flow φ, intensity of the jumps λ, transition kernel Q

E

x0

E

T1

(Oct 7-9 2008)Application of piecewise deterministic Markov Processes Oct 7-9 2008 2 / 5

Workshop on switching dynamics & verification - IHP - January 28-29, 2016 6/42



Controlled piecewise deterministic Markov processes

Uncontrolled process
Definition of a PDMP
Parameters: flow φ, intensity of the jumps λ, transition kernel Q

E

x0

E

x1

T1 Q

(Oct 7-9 2008)Application of piecewise deterministic Markov Processes Oct 7-9 2008 3 / 5

Workshop on switching dynamics & verification - IHP - January 28-29, 2016 6/42



Controlled piecewise deterministic Markov processes

Uncontrolled process
Definition of a PDMP
Parameters: flow φ, intensity of the jumps λ, transition kernel Q

E

x0

E

x1

T1

T2

Q

(Oct 7-9 2008)Application of piecewise deterministic Markov Processes Oct 7-9 2008 4 / 5

Workshop on switching dynamics & verification - IHP - January 28-29, 2016 6/42



Controlled piecewise deterministic Markov processes

Uncontrolled process
Definition of a PDMP
Parameters: flow φ, intensity of the jumps λ, transition kernel Q

E

x0

E

x1

T1

T2

Q

(Oct 7-9 2008)Application of piecewise deterministic Markov Processes Oct 7-9 2008 5 / 5

Workshop on switching dynamics & verification - IHP - January 28-29, 2016 6/42



Controlled piecewise deterministic Markov processes

Construction of the controlled process

The canonical space Ω =
(⋃∞

n=1 Ωn
)⋃ (

X× (R∗+ × X)∞
)
with

Ωn = X× (R∗+ × X)n × ({∞} × {x∞})∞.

Introduce the mappings Xn : Ω→ X∞ = X∪ {x∞} by Xn(ω) = xn
and Θn : Ω→ R∗+ by Θn(ω) = θn; Θ0(ω) = 0 where

ω = (x0, θ1, x1, θ2, x2, . . .) ∈ Ω.

In addition Tn(ω) =
n∑

i=1
Θi (ω) =

n∑
i=1

θi with T∞(ω) = lim
n→∞

Tn(ω).

Hn is the set of path up to n.
Hn = (X0,Θ1,X1, . . . ,Θn,Xn) is the history of the process up to n.
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Controlled piecewise deterministic Markov processes

Construction of the process

The controlled process
{
ξt
}

t∈R+
:

ξt(ω) =
{
φ(Xn, t − Tn) if Tn ≤ t < Tn+1 for n ∈ N;
x∞, if T∞ ≤ t.

The flow is not controlled.
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution

An admissible control strategy is a sequence u = (πn, γn)n∈N such
that, for any n ∈ N,

I πn is a stochastic kernel on Ag given Hn × R∗+:
πn(da|hn, t) = 1 for t ∈]0, t∗(xn)[,

I γn is a stochastic kernel on Ai given Hn:
γn(da|hn) = 1

where hn = (x0, θ1, x1, . . . θn, xn) ∈ Hn.

The set of admissible control strategies is denoted by U .
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution

For an admissible control strategy u = (πn, γn)n∈N, we can
equivalently consider the random processes with values in P(Ag )
and P(Ai ) respectively as

π(da|t) =
∑
n∈N

I{Tn<t≤Tn+1}πn(da|Hn, t − Tn)

and
γ(da|t) =

∑
n∈N

I{Tn<t≤Tn+1}γn(da|Hn),

for t ∈ R∗+.
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution
Interaction of u =

(
πn, γn

)
n∈N and the parameters of the model:

I the intensity of jumps

λu
n(hn, t) =

∫
Ag
λ(φ(xn, t), a)πn(da|hn, t),

and the corresponding rate of jumps

Λu
n(hn, t) =

∫
]0,t]

λu
n(hn, s)ds,

I the distribution of the state after a (stochastic) jump

Qg ,u
n (dx |hn, t) = 1

λu
n(hn, t)

∫
Ag

Q(dx |φ(xn, t), a)λ(φ(xn, t), a)πn(da|hn, t)

I the distribution of the state after a (boundary) jump

Qi ,u
n (dx |hn) =

∫
Ai
Q(dx |φ(xn, t∗(xn)), a)γn(da|hn).
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution

We want the joint distribution of the next sojourn time and state
be given by Gn

Gn(Γ1 × Γ2|hn)

=
[
I{xn=x∞} + e−Λu

n(hn,+∞)I{xn∈X}I{t∗(xn)=∞}
]
δ(+∞,x∞)(Γ1 × Γ2)

+ I{xn∈X}

[
δt∗(xn)(Γ1)Qi ,u

n (Γ2|hn)e−Λu
n(hn,t∗(xn))I{t∗(xn)<∞}

+
∫

]0,t∗(xn)[∩Γ1
Qg ,u

n (Γ2|hn, t)λu
n(hn, t)e−Λu

n(hn,t)dt
]
,

where Γ1 ∈ B(R∗+), Γ2 ∈ B(X∞) and
hn = (x0, θ1, x1, . . . , θn, xn) ∈ Hn.
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution

Consider an admissible strategy u ∈ U and an initial state x0 ∈ X

Pu
x0

(
(Θn+1,Xn+1) ∈ Γ1 × Γ2

∣∣FTn

) ?=Gn
(
Γ1 × Γ2

∣∣Hn
)

=⇒ the conditional distribution of (Θn+1,Xn+1) given FTn under
Pu

x0 is Gn(·|Hn) ({Ft} is the natural filtration of the process).
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Controlled piecewise deterministic Markov processes

Admissible strategies and conditional distribution
Consider an admissible strategy u ∈ U and an initial state x0 ∈ X.
There exists a probability Pu

x0 on (Ω,F) such that

Pu
x0
(
{X0 = x0}

)
= 1

and the positive random measure ν defined on R∗+ × X by

ν(dt, dx) =
∑
n∈N

Gn(dt − Tn, dx |Hn)
Gn([t − Tn,+∞]× X∞|Hn) I{Tn<t≤Tn+1}

is the compensator of

µ(dt, dx) =
∑
n≥1

I{Tn(ω)<∞}δ(Tn(ω),Xn(ω))(dt, dx).

with respect to Pu
x0 (Jacod, Multivariate point processes, 1975).
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Optimization problems

Unconstrained and constrained problems
Cost functions

I
(
Cg

j
)

j∈{0,1,...,p} associated with a continuous action.
Real-valued mapping defined on Kg .

I
(
C i

j
)

j∈{0,1,...,p} associated with an impulsive action on the
boundary. Real-valued mapping defined on Ki .

The associated infinite-horizon discounted criteria corresponding to
an admissible control strategy u ∈ U are given by

Vj(u, x0) = Eu
x0

[ ∫
]0,+∞[

e−αs
∫

A(ξs )
Cg

j (ξs , a)π(da|s)ds
]

+ Eu
x0

[ ∫
]0,+∞[

e−αs I{ξs−∈∆}

∫
A(ξs−)

C i
j (ξs−, a)γ(da|s)µ(ds,X)

]

for any j ∈ {0, 1, . . . , p}.
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Optimization problems

Unconstrained and constrained problems
I The optimization problem without constraint consists in

minimizing the performance criterion

inf
u∈U
V0(u, x0).

I The optimization problem with p constraints consists in
minimizing the performance criterion

inf
u∈U
V0(u, x0)

such that the constraint criteria

Vj(u, x0) ≤ Bj

are satisfied for any j ∈ N∗p, where (Bj)j∈N∗p are real numbers
representing the constraint bounds.
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Optimization problems

Different classes of strategies

I feasible, if u ∈ U and Vj(u, x0) ≤ Bj , for j ≥ 1.

I stationary, if for some (π, γ) ∈ Pg × P i the control strategy
u = (πn, γn)n∈N is given by πn(da|hn, t) = π(da|φ(xn, t)) and
γn(db|hn) = γ(db|φ(xn, t∗(xn))).

I non-randomized stationary, if πn(·|hn, t) = δϕs (φ(xn,t))(·) and
γn(·|hn) = δϕs (φ(xn,t))(·), where ϕs : X→ A is a measurable
mapping satisfying ϕs(y) ∈ A(y) for any y ∈ X.
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Optimization problems

Hypotheses

Assumption A. There are constants K ≥ 0, ε1 > 0 and ε2 ∈ [0, 1[
such that
(A1) For any (x , a) ∈ Kg , λ(x , a) ≤ K
(A2) inf

(z,b)∈Ki
Q(Aε1 |z , b) ≥ 1− ε2, with

Aε1 = {x ∈ X : t∗(x) > ε1}.

Assumption B.
(B1) The set A(y) is compact for every y ∈ X.
(B2) The kernel Q is weakly continuous.
(B3) The function λ is continuous on Kg .
(B4) The flow φ is continuous on R+ × Rp.
(B5) The function t∗ is continuous on X.
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Optimization problems

Assumption C.
(C1) The multifunction Ψg from X to A defined by Ψ(x) = A(x)

is upper semicontinous. The multifunction Ψ from ∆ to A
defined by Ψi (z) = A(z) is upper semicontinous.

(C2) The cost function Cg
0 (respectively, C i

0) is bounded and
lower semicontinuous on Kg (respectively, Ki).
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Non-explosion

Lemma
Suppose Assumption A is satisfied. Then there exists M <∞ such
that, for any control strategy u ∈ U and for any x0 ∈ X

Eu
x0

[ ∑
n∈N∗

e−αTn
]
≤ M and Pu

x0(T∞ < +∞) = 0.
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Non-explosion

Elements of proof:
I For any control strategy u, x0 ∈ X we have for any j ∈ N

Pu
x0(Θj+2 + Θj+1 > ε1|Hj) ≥ e−2Kε1(1− ε2).

I Now,

Eu
x0

[
e−α(Θj+1+Θj+2)|Hj

]
≤ Pu

x0(Θj+1 + Θj+2 ≤ ε1|Hj)
+ e−αε1Pu

x0(Θj+1 + Θj+2 > ε1|Hj)
= 1 + [e−αε1 − 1]Pu

x0(Θj+1 + Θj+2 > ε1|Hj)
≤ 1 + [e−αε1 − 1][1− ε2]e−2Kε1 = κ < 1.
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Non-explosion

Elements of proof:
I For any j ∈ N∗,

Eu
x0

[
e−αT2j+1

]
= Eu

x0

[
e−αT2j−1Eu

x0

[
e−α(Θ2j +Θ2j+1)|H2j−1

]]
≤ κEu

x0

[
e−αT2j−1

]
,

and so

Eu
x0

[
e−αT2j+1

]
≤ κjEu

x0

[
e−αT1

]
≤ κj .

Similarly,

Eu
x0

[
e−αT2j+2

]
≤ κjEu

x0

[
e−αT2

]
≤ κj .

for any j ∈ N.
I Therefore,

Eu
x0

[ ∑
n∈N∗

e−αTn
]
≤ 2

1− κ.
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The unconstrained problem and the DP approach

There are two approaches to deal with such problems:
• the associated discrete-stage Markov decision model:

I A. Almudevar. A dynamic programming algorithm for the
optimal control of piecewise deterministic Markov processes,
2001.

I N. Bauerle and U. Rieder. Optimal control of piecewise
deterministic Markov processes with finite time horizon, 2010.

I O.L.V Costa and F. Dufour. Continuous average control of
piecewise deterministic Markov processes, 2013.

I M.H.A. Davis. Control of piecewise-deterministic processes via
discrete-time dynamic programming, 1986.

I L. Forwick, M. Schal, and M. Schmitz. Piecewise deterministic
Markov control processes with feedback controls and
unbounded costs, 2004.

I M. Schal. On piecewise deterministic Markov control
processes: control of jumps and of risk processes in insurance,
1998.

I A.A. Yushkevich. On reducing a jump controllable Markov
model to a model with discrete time, 1980.
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The unconstrained problem and the DP approach

There are two approaches to deal with such problems:
• the the infinitesimal approach (HJB equation):

I M.H.A. Davis. Markov models and optimization, volume 49 of
Monographs on Statistics and Applied Probability, 1993.

I M.A.H. Dempster and J.J. Ye. Necessary and sufficient
optimality conditions for control of piecewise deterministic
processes, 1992.

I M.A.H. Dempster and J.J. Ye. Generalized
Bellman-Hamilton-Jacob optimality conditions for a control
problem with boundary conditions, 1996.

I A.A. Yushkevich. Bellman inequalities in Markov decision
deterministic drift processes. Stochastics, 1987
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The unconstrained problem and the DP approach

Notation and preliminary results:
I A(X) is the set of functions g ∈ B(X) such that for any

x ∈ X, the function g(φ(x , ·)) is absolutely continuous on
[0, t∗(x)]∩R+.

I Let g ∈ A(X), there exists a real-valued measurable function
Xg defined on X satisfying for any t ∈ [0, t∗(x)[

g(φ(x , t)) = g(x) +
∫

[0,t]
Xg(φ(x , s))ds.

I Let R ∈ P(X |Y ). Then Rf (y) .=
∫

X
f (x)R(dx |y) for any

y ∈ Y and measurable function f . For any measure η on
(Y ,B(Y )), ηR(·) .=

∫
Y
R(·|y)η(dy).

I q(dy |x , a) .= λ(x , a)
[
Q(dy |x , a)− δx (dy)

]
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The unconstrained problem and the DP approach

Sufficient conditions for the existence of a solution for the HJB
equation associated with the optimization problem.

Theorem
Suppose assumptions A, B and C hold. Then there exist
W ∈ A(X) and XW ∈ B(X) satisfying

−αW (x) + XW (x) + inf
a∈Ag (x)

{
Cg
0 (x , a) + qW (x , a)

}
= 0,

for any x ∈ X, and

W (z) = inf
b∈Ai (z)

{
C i
0(z , b) + QW (z , b)

}
,

for any z ∈ ∆. Moreover, for any x ∈ X

W (x) = inf
u∈U
V0(u, x).
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The unconstrained problem and the DP approach

Sufficient conditions for the existence of an optimal strategy.

Theorem
Suppose assumptions A, B and C hold. There exists a measurable
mapping ϕ̂ : X→ A such that ϕ̂(y) ∈ A(y) for any y ∈ X and
satisfying

Cg
0 (x , ϕ̂(x)) + qW (x , ϕ̂(x)) = inf

a∈A(x)

{
Cg
0 (x , a) + qW (x , a)

}
for any x ∈ X, and

C i
0(z , ϕ̂(z)) + QW (z , ϕ̂(z)) = inf

b∈A(z)

{
C i
0(z , b) + QW (z , b)

}
.

for any z ∈ ∆. Moreover, the stationary non-randomized strategy
ϕ̂ is optimal.
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The unconstrained problem and the DP approach

Elements of proof:
I Define recursively

{
Wi
}

i∈N as

Wi+1(y) = BWi (y),

with W0(y) = −KAIAε1
(y)− (KA + KB)IAc

ε1
(y) and

BV (y) =
∫

[0,t∗(y)[
e−(K+α)tRV (φ(y , t))dt

+ e−(K+α)t∗(y)TV (φ(y , t∗(y))),

where

RV (x) = inf
a∈A(x)

{
Cg
0 (x , a) + qV (x , a) + KV (x)

}
,

and

TV (z) = inf
b∈A(z)

{
C i
0(z , b) + QV (z , b)

}
.
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The unconstrained problem and the DP approach

I Wi is lower semicontinuous and∣∣Wi (y)
∣∣ ≤ KAIAε1

(y) + (KA + KB)IAc
ε1

(y).

I B is monotone (V1 ≤ V2 ⇒ BV1 ≤ BV2),
{
Wi
}

i∈N is
increasing and Wi →W and W is bounded and lower
semicontinuous.

I lim
i→∞

RWi (x) = RW (x), for any x ∈ X
lim

i→∞
TWi (z) = TW (z) for any z ∈ ∆.

Workshop on switching dynamics & verification - IHP - January 28-29, 2016 32/42



The unconstrained problem and the DP approach

I By using the bounded convergence Theorem,

W (y) = BW (y)

=
∫

[0,t∗(y)[
e−(K+α)tRW (φ(y , t))dt

+ e−(K+α)t∗(y)TW (φ(y , t∗(y))),

where y ∈ X.
I Then W ∈ A(X) and there exists XW ∈ B(X)

−αW (x) + XW (x) + inf
a∈Ag (x)

{
Cg
0 (x , a) + qW (x , a)

}
= 0,

for any x ∈ X, and

W (z) = inf
b∈Ai (z)

{
C i
0(z , b) + QW (z , b)

}
,

for any z ∈ ∆.
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The linear programming approach
The method has been extensively studied in the literature
• Continuous and discrete time MDP:

I Eitan Altman. Constrained Markov decision processes, 1999.
I Vivek S. Borkar. A Convex Analytic Approach to Markov

Decision Processes, 1988.
I Vivek S. Borkar. Convex analytic methods in Markov decision

processes, 2002.
I Alexey B. Piunovskiy. Optimal control of random sequences in

problems with constraints, 1997.
• Controlled martingale problems:

I Abhay G. Bhatt and Vivek S. Borkar. Occupation measures for
controlled Markov processes: characterization and optimality,
1996.

I K. Helmes and R. H. Stockbridge. Linear programming
approach to the optimal stopping of singular stochastic
processes, 2007.

I Richard H. Stockbridge. Time-average control of martingale
problems: a linear programming formulation, 1990.
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Occupation measure

For any admissible control strategy u ∈ U , the occupation measure
ηu ∈M(K) associated with u is defined as follows

ηu(Γ) =Eu
x0

[ ∫
Γ∩Kg

∫
]0,∞[

e−αsδξs (dx)π(da|s)ds
]

+ Eu
x0

[ ∫
Γ∩Ki

∑
n∈N∗

e−αTnδξTn−
(dz)γ(db|Tn−)

]
.

for any Γ ∈ B(K).
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Linear programming approach

The infinite-horizon discounted criteria can be rewritten as

Vj(u, x0) = Eu
x0

[ ∫
]0,+∞[

e−αs
∫

A(ξs )
Cg

j (ξs , a)π(da|s)ds
]

+ Eu
x0

[ ∫
]0,+∞[

e−αs I{ξs−∈∆}

∫
A(ξs−)

C i
j (ξs−, a)γ(da|s)µ(ds,X)

]
= ηg

u (Cg
j ) + ηi

u(C i
j )

where ηg
u (resp. ηi

u) denotes the restriction of ηu to Kg (resp. Ki).
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Admissible measure

A finite measure η ∈M(K) is called admissible if, for any
(W ,XW ) ∈ A(X)× B(X), the following equality holds∫

X

[
αW (x)−XW (x)

]
η̂g (dx) +

∫
∆
W (z)η̂i (dz)

= W (x0) +
∫

Kg
qW (x , a)ηg (dx , da) +

∫
Ki

QW (z , b)ηi (dz , db).

with η̂g (resp. η̂i) denotes the marginal of ηg (resp. ηi) w.r.t. to
X.
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Occupation and admissible measures

The next important result shows the link between the set of
admissible measures and the set of occupation measures.

Theorem
Suppose Assumption A is satisfied. Then the following assertions
hold.
i) For any control strategy u ∈ U , the occupation measure ηu is

admissible.
ii) Suppose that the measure η is admissible. Then there exist

stochastic kernels π ∈ Pg and γ ∈ P i for which the stationary
control strategy u = (π, γ) ∈ Us satisfies η = ηu.
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Linear programming approach

The constrained linear program, labeled LP, is defined as

inf
(ηg ,ηi )∈M

ηg (Cg
0 ) + ηi (C i

0)

where M is the set of measures (ηg , ηi ) inM(Ki )×M(Kg ) such
that ηg + ηi is admissible and satisfies

ηg (Cg
j ) + ηi (C i

j ) ≤ Bj .
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Linear programming approach

Theorem
Suppose Assumption A holds and the cost functions Cg

j and C i
j are

bounded from below for any j ∈ Np. Then the values of the
constrained control problem and the linear program LP are
equivalent:

inf
(ηg ,ηi )∈M

ηg (Cg
0 ) + ηi (C i

0) = inf
u∈U f

V0(u, x0).
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Linear programming approach

Theorem
Suppose Assumptions A, B and (C1) are satisfied. Assume the
cost functions Cg

j (resp. C i
j ) are bounded from below and lower

semicontinuous on Kg (resp. Ki) for any j ∈ Np.

If the set of feasible strategies is non empty then the LP is solvable
and there exists a stationary feasible strategy u∗ satisfying

ηg
u∗(C

g
0 ) + ηi

u∗(C i
0) = inf

(ηg ,ηi )∈M
ηg (Cg

0 ) + ηi (C i
0)

= inf
u∈U f

V0(u, x0) = V0(u∗, x0).
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