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Introduction

@ Controller synthesis for a class of continuous-time switched systems

o Incrementally stable systems: the influence of initial condition
asymptotically vanishes.
o Safety specification: controlled invariance.

@ Approach based on the use of symbolic models

o Discrete (time and space) approximation of the switched system.

e Approach based on uniform discretization of time and space.
[Girard, Pola and Tabuada, 2010]

o Distance between trajectories of incrementally stable switched system
and of symbolic model is uniformly bounded, and can be made
arbitrarily small.

e Safety controller synthesis using symbolic models via algorithmic
discrete controller synthesis.

A. Girard (L2S-CNRS) Synthesis using multiscale symbolic models 2/33



@ Limitations of the symbolic control approach
e Spatial and time resolution must be chosen carefully to achieve a given
precision: fast switching requires fine spatial resolution;

o Uniform spatial discretization: excessive computation time and memory
consumption.

@ Overcome this problem with multiscale symbolic models

e Use of multiscale discretizations of time and space
e Incremental exploration of symbolic models during controller synthesis:

The finer scales explored only if safety cannot be ensured at coarser
level.
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Switched systems

A switched system is a tuple ¥ = (R", P, P, F), where
@ R" is the state space;
e P={1,...,m} is the finite set of modes;

o P is a subset of S(R{, P), the set of functions from Ry to P with a
finite number of discontinuities on every bounded interval of R :

F={f,...,fn} is a collection of smooth vector fields indexed by P.

v

For a switching signal p € P, initial state x € R", x(., x, p) is the
trajectory of ¥, solution of:

x(t) = foe)(x(t)), x(0) = x.

o S, (Rd, P) is the set of switching signals p with minimum dwell-time
74 € RT: discontinuities of p are separated by at least 7.
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Incremental stability

Definition

Y is incrementally globally uniformly asymptotically stable (6-GUAS) if
there exists a KL function 3 such that for all x;,x0 € R”, p€ P, t € Rar:

1x(t, x1, p) — x(t, x2, p) || < B(llxa — ], t).

X(t, X1, p)
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Lyapunov characterization

Vo iR X R" — Rg, p € P are multiple §-GUAS Lyapunov functions for
Y if there exist s, u € Rt with p > 1, Ko functions a, @, such that
for all x1,x € R", p,p’ € P:

o[l = xl) < Vp(x, %) <a((x — xa));
%—Zf(xl,xz)f (x1) + 52 P(Xl,XQ)f (x2) < —kVp(x1,x2);
Vp(x1, x2) < pVpy (x1, x2).

Theorem

Let 7y € RT, ¥ = (R", P, P, F) with P C S,,(R], P) admitting multiple
d-GUAS Lyapunov functions. If T4 > I°i“, then ¥ is 5-GUAS.
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Additional assumption

In the following, we will assume that there exists a K function « such
that for all x1,x0,x3 € R”

[Vo(x1,22) = Vo(x, x3)| < v([Px2 = xall), Vp e P

This is not restrictive if V,, are smooth and we work on a bounded subset
of R".
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Transition systems

A transition system is a tuple T = (X, U, Y, A, X°) where

e X, U, Y, XV are the sets of states, inputs, outputs and initial states;
e AC X x UxX xY is a transition relation.

T is metric if Y is equipped with a metric d, symbolic if X and U are
finite or countable sets.

(x,u,x',y) € A'is denoted (X', y) € A(x, u);
u € U is enabled at x € X, denoted u € enab(x), if A(x,u) # 0;
If enab(x) = 0, then x is blocking, otherwise it is non-blocking;

T is deterministic if for all x € X and u € enab(x), |A(x, u)| = 1.
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@ A trajectory of T is a finite or infinite sequence of transitions

0

o= (x2, 0 y)(xt, ut, yh) (X3 uR yP)

where (x'1 y') € A(x', u'), for all i > 0. It is:
e initialized if x° € X9;
e maximal if it is infinite or it is finite and ends in a blocking state.
@ x € X is reachable if there exists an initialized trajectory reaching x.

@ T is non-blocking if all initialized maximal trajectories are infinite or
equivalently if all reachable states are non-blocking.
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Approximate bisimulation

Definition

Let T; = (X, U, Y, A;, X?), with i = 1,2 be metric transition systems
with the same sets of inputs U and outputs Y equipped with the metric d.
Let e € R, R C X1 X Xp is an e-approximate bisimulation relation
between T; and T, if for all (x1,x) € R, u € U:

v()(17.)/1) € A1

d(}/b}/z
v(X27.y2) € AZ

d(ylay2

—

x1, ), (x5, y2) € Do(xz, u),
e and (x{,x}) € R;

X2, ) El(Xi?yl) € Al(xh u),
e and (x],x5) € R.

v/\\/

T1 and T, are e-approximately bisimilar, denoted T1 ~. T, if
X{) - R‘l(XQO) and X20 - R(X{)).
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Switched systems as transition systems

o Let ¥, = (R",P, P, F) be a switched system with P = S, (R{, P).

@ We consider controllers that can select:

@ amodepe P,
@ a duration 0 € @ﬁ’ during which the mode remains active where

e_’r\’:{0522757|520,...,N}.
where 7 € R*, N € N are time sampling and scale parameters.

o We assume 74 = Oy, for some Ny € {0, ..., N}, then
oNs — {9, c ON| 5 > 74}.

@ Let C(/,R") denote the set of continuous functions from / to R".
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Switched systems as transition systems

Let TN(Z,,) = (X, U, Y, A, X°) where:

e X =R"xP,
z = (x, p) € X consists of a continuous state x and an active mode p.
o U=Px0ON,

u=(p,0s) € U consists of a mode p and a duration 6.

oY = UziQIC([O, 0s],R") is a set of continuous functions,
equipped with the metric:

N _ ly = ¥'lloc if Os = O
d(yay)_{ —|—OO ifﬁs#ﬁs/

e XO=R"x P.
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Switched systems as transition systems

e Forz=(x,p)e X, zZ=(,p)eX, u=(p,b;)e U, yeY,

(p,0s) € {p} x OY U(P\ {p}) x O
(Z,U,Z/,y)EA — X/:X(HS,X7[_J) and p/:[_).

y = X|95(.,X,ﬁ)

' =x(0s,x,p)

Yy=xXx 93('7$aﬁ)

T

o TN(Z,,) is deterministic and metric.
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Computation of the symbolic model

@ We approximate R" by a sequence of embedded multiscale lattices

2fs+177
qlil = ki——=—, ki€ Z, i=1,...n
Vn

where 7 € R™ is a state space sampling parameter.

Ry oy = {q cR"

o We associate a multiscale quantizer @ : R” — [R"],-s, such that

2% 2%
ﬁ” <x[i]<q[i]+ 2, i=1,...,n.

Vn

o Let X7 = [R"]z_sn x P, then X,? - an cC...C X,gv.

@Q(x)=q <= qli] -

@ We define the symbolic model as TT’\”??(ZTd) = (X,;V, u,Y, An,X,g’).
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Computation of the symbolic model

e Forr=(q,p)e X, r=(d,p)eX, u=(p,bs)c U yecY,
(B.0s) € {p} x O U(P\ {p}) x O
q' = Q;(x(bs,g,p)) and p’ = p.

(ryu,r,y)e A <
y = X\os(.,q,f))

Synthesis using multiscale symbolic models
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Computation of the symbolic model

o Forr=(q,p)eX, r'=(q.p)eX u=(p,0s)c U, yeY,
(B,0s) € {p} x OF U(P\ {p}) x O}
(ra u, rlay) €EA q/ = Q;(x(Hs,q,fJ)) and p/ = p.
y:x|95('aq7l_3)
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Approximation result

TN(Z,,) is symbolic, deterministic and metric.

Theorem

Let ¥ ;, admit multiple 5-GUAS Lyapunov functions V,, p € P.
Consider parameters 7,n € RT, N € N, and a precision ¢ € RT.
If Tq > &2 and

n < min {siiléd [257_1 ((i - e—n&) Q(*?))],

i [ (%g))] at(La

s=0

then TN(E,,) ~e TN (Z.,).
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Safety specification

o Let T =(X,U,Y,A, X% be a symbolic, deterministic transition
system where
yc UJ co,6,]RrR).

6, R+
@ Let S C IR" be a subset of safe states.

o We define the transition system Ts = (X, U, Y, As, X°) where
forx,x e X, uelU,yeY,

u € enab(x);
(XI,}/) GAS(Xa U) — (ley):A(X7 U);
vVt e [0,60,], y(t) €S.

@ Ts is symbolic and deterministic.

@ Remark: safety is defined on continuous-time outputs.
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Safety controller

Definition

A safety controller for Ts = (X, U, Y, As, X%) is a relation C C X x U
such that for all x € X:

e C(x) C enab(x);
o if C(x) # 0, then Vu € C(x), C(x") # 0 with As(x,u) = (¥, y).
We denote the domain of C as dom(C) = {x € X| C(x) # 0}.

@ The controlled transition system is Ts/c = (X, U, Y,AS/C,Xg)
where Xg = X%Ndom(C) and for x,x' € X, uc U,y €Y,

u € C(x);
(¥, y) = As(x, v).

@ Ts/c is symbolic, deterministic and non-blocking.

(X.y) € Bsjclx.u) <= {
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Maximal safety controller

There exists a unique maximal safety controller C* C X x U such that for
all safety controllers C, C C C*.

Definition

A state x € X is safety controllable if and only if x € dom(C*). The set of
safety controllable states is denoted cont( Ts).

Computation of C* requires complete exploration of Tgs.
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Lazy safety synthesis

@ Lazy safety synthesis: trade-off between maximality and efficiency.

e Give priority to inputs with longer duration, which lead to states on
coarser grids.

o Compute the symbolic model on the fly.

o Finer scales are explored (computed) only if safety cannot be ensured
at the coarser scales.

@ Let us define a priority relation on inputs: total preorder <C U x U
o The associated equivalence and strict weak order relations are

u~d = u=uvandd <u;

u<u <<= u=xuvandugd.

o For multiscale symbolic models where U = P x ©N:

(p,0s) < (p',0.) <= 0,<0.;
(p,0s) = (p',0.) = 0s=0.
(p,0s) < (p/,0)) = 6s<6..

1R
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Maximal lazy safety controller

A maximal lazy safety (MLS) controller for Ts = (X, U, Y, As, X°) is a
safety controller C C X x U such that:

o all safety controllable initial states are in dom(C):
X% N cont(Ts) € dom(C);

e all states x € dom(C) are reachable in Ts)¢;
o for all states x € dom(C):
Q if u e C(x), then Vu' € enab(x) with u ~ u/, (x',y) = As(x, '),

u € C(z) < x' € cont(Ts);

Q if u € C(x), then Vu' € enab(x) with u < v/, (x',y) = As(x, ),

x' ¢ cont(Ts).
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Maximal lazy safety controller

There exists a unique MLS controller for Ts.

MLS controller synthesis: Xo = {x1, x2, x3}, b < a.
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Switched system with dwell-time

@ We consider the switched system:
X(£) = Ap(eyX(£) + Byey, P(£) € {1,2}, with

Ar=[70° gas] s Ae= [0 gas ], = [T22°], bo = [O°].

@ The switched system admits multiple 6-GUAS Lyapunov functions
and is incrementally stable for switching signals with minimum
dwell-time 74 = 2.

@ Multiscale abstraction with parameters 7 =4, n = ﬁ, N=3
1

1002

Uniform abstraction with parameters 7 = % n=
—> precision € = 0.4.

o Safe set: S =[—6,6] x [-4,4] \ [-1.5,1.5] x [-1,1].

A. Girard (L2S-CNRS) Synthesis using multiscale symbolic models 27 /33



Switched system with dwell-time

Controller synthesis:

] H Uniform symbolic model \ Multiscale symbolic model

Time 160s 7.3s

Size (10%) 5228 33

Durations 0.5 (100%) 4 (26%)
2 (54%)
1(11%
0.5 (9%)
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Switched system with dwell-time

MLS Controller:

4 4
3 3
2 2
1 1
0 0
1 1
2 2
3 3
4 -4
4 3 2 1 0 1 2 3 4 5 6 6 -5 -4 3 -2 1 o0 1 2 3 1 5 6

Mode 1 is active Mode 2 is active
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Switched system with dwell-time

Controlled switched system:

4

3
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Circular n-room building

@ We consider the system:

Ti(t) = o(Tipa(t) + Tio1(t) — 2Ti(t)
+B(te — Ti(t)) +y(tn — Ti(t))ui(t)
where:

o T;(t) is the temperature of room i, 1 <7 < n, To(t) = T,(t) and
Tn+1(t) = Tl(t).
o u;(t) = 1if room i is heated, u;(t) = 0 otherwise and Y7 u;(t) < 1.

@ n-dimensional switched system with n 4+ 1 modes admits a common
Lyapunov function and is incrementally stable.

@ Multiscale abstraction with parameters 7 =80, n =0.28, N =4
—> Precision ¢ = 0.4.

e Safe set: S =[19,21.5]".

A. Girard (L2S-CNRS) Synthesis using multiscale symbolic models 31/33



Circular n-room building

Controller synthesis:

Multiscale symbolic models

n=3 n==4 n=5
Time 0.2s 6s 312s
Size (10%) 2 45 1077

Durations || 40 (1%) | 20 (25%) | 20 (6%)
20 (37%) | 10 (73%) | 10 (92%)
10 (62%) | 5 (2%) 5 (2%)

Computational complexity increases with dimension:
@ State and input space are larger.

@ The control problem is also intrinsically more complex in higher
dimension because of the constraint:

n

D ui(t) < 1.

i=1
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Conclusions

@ Multiscale approximately bisimilar symbolic models for incrementally
stable switched systems:

o Based on multiscale sampling of time and space;
o Allow significant complexity reduction for controller synthesis.

@ Multiscale safety controller synthesis:

o Based on the notion of maximal lazy safety controller;

o Partial exploration of the symbolic abstractions;

o Can be extended to more general safety properties, e.g. specified by a
hybrid automaton.

@ Future work:

e MLS controller synthesis algorithm for non-deterministic systems;
o Consider other types of specifications, e.g. reachability:
maximal lazy reachability controller may not be unique.

Girard, Gossler and Mouelhi, Safety controller synthesis for incrementally stable switched

systems using multiscale symbolic models. |IEEE TAC, 2016.
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