Safety Controller Synthesis for Switched Systems using Multiscale Symbolic Models

Antoine Girard

Laboratoire des Signaux et Systèmes Gif sur Yvette, France

Workshop on switching dynamics & verification Paris, January 28-29, 2016

• Controller synthesis for a class of continuous-time switched systems

- Incrementally stable systems: the influence of initial condition asymptotically vanishes.
- Safety specification: controlled invariance.
- Approach based on the use of symbolic models
 - Discrete (time and space) approximation of the switched system.
 - Approach based on uniform discretization of time and space. [Girard, Pola and Tabuada, 2010]
 - Distance between trajectories of incrementally stable switched system and of symbolic model is uniformly bounded, and can be made arbitrarily small.
 - Safety controller synthesis using symbolic models via algorithmic discrete controller synthesis.

★聞▶ ★ 国▶ ★ 国▶

- Limitations of the symbolic control approach
 - Spatial and time resolution must be chosen carefully to achieve a given precision: fast switching requires fine spatial resolution;
 - Uniform spatial discretization: excessive computation time and memory consumption.
- Overcome this problem with multiscale symbolic models
 - Use of multiscale discretizations of time and space
 - Incremental exploration of symbolic models during controller synthesis: The finer scales explored only if safety cannot be ensured at coarser level.

- Incrementally stable switched systems
- 2 Multiscale symbolic models
- Safety controller synthesis using multiscale symbolic models
- Omputational experiments

· · · · · · · · ·

Switched systems

Definition

A switched system is a tuple $\Sigma = (\mathbb{R}^n, P, \mathcal{P}, F)$, where

- \mathbb{R}^n is the state space;
- $P = \{1, \ldots, m\}$ is the finite set of modes;
- *P* is a subset of S(ℝ₀⁺, P), the set of functions from ℝ₀⁺ to P with a finite number of discontinuities on every bounded interval of ℝ₀⁺;
- $F = \{f_1, \ldots, f_m\}$ is a collection of smooth vector fields indexed by P.
- For a switching signal p ∈ P, initial state x ∈ ℝⁿ, x(.,x, p) is the trajectory of Σ, solution of:

$$\dot{\mathbf{x}}(t) = f_{\mathbf{p}(t)}(\mathbf{x}(t)), \ \mathbf{x}(0) = x.$$

• $S_{\tau_d}(\mathbb{R}^+_0, P)$ is the set of switching signals **p** with minimum dwell-time $\tau_d \in \mathbb{R}^+$: discontinuities of **p** are separated by at least τ_d .

Incremental stability

Definition

 Σ is incrementally globally uniformly asymptotically stable (δ -GUAS) if there exists a \mathcal{KL} function β such that for all $x_1, x_2 \in \mathbb{R}^n$, $\mathbf{p} \in \mathcal{P}$, $t \in \mathbb{R}_0^+$:

$$\|\mathbf{x}(t,x_1,\mathbf{p})-\mathbf{x}(t,x_2,\mathbf{p})\|\leq eta(\|x_1-x_2\|,t).$$

Definition

 $V_p: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_0^+$, $p \in P$ are multiple δ -GUAS Lyapunov functions for Σ if there exist $\kappa, \mu \in \mathbb{R}^+$ with $\mu \ge 1$, \mathcal{K}_{∞} functions $\underline{\alpha}, \overline{\alpha}$, such that for all $x_1, x_2 \in \mathbb{R}^n$, $p, p' \in P$:

$$\underline{\alpha}(\|x_1 - x_2\|) \leq V_{\rho}(x_1, x_2) \leq \overline{\alpha}(\|x_1 - x_2\|);$$

$$\frac{\partial V_{\rho}}{\partial x_1}(x_1, x_2)f_{\rho}(x_1) + \frac{\partial V_{\rho}}{\partial x_2}(x_1, x_2)f_{\rho}(x_2) \leq -\kappa V_{\rho}(x_1, x_2);$$

$$V_{\rho}(x_1, x_2) \leq \mu V_{\rho'}(x_1, x_2).$$

Theorem

Let $\tau_d \in \mathbb{R}^+$, $\Sigma = (\mathbb{R}^n, P, \mathcal{P}, F)$ with $\mathcal{P} \subseteq S_{\tau_d}(\mathbb{R}^+_0, P)$ admitting multiple δ -GUAS Lyapunov functions. If $\tau_d > \frac{\log \mu}{\kappa}$, then Σ is δ -GUAS.

< < p>< < p>

In the following, we will assume that there exists a \mathcal{K}_{∞} function γ such that for all $x_1, x_2, x_3 \in \mathbb{R}^n$

$$|V_p(x_1, x_2) - V_p(x_1, x_3)| \le \gamma(||x_2 - x_3||), \quad \forall p \in P;$$

This is not restrictive if V_p are smooth and we work on a bounded subset of \mathbb{R}^n .

- Incrementally stable switched systems
- 2 Multiscale symbolic models
- Safety controller synthesis using multiscale symbolic models
- Omputational experiments

3 K K 3 K

Definition

A transition system is a tuple $T = (X, U, Y, \Delta, X^0)$ where

- X, U, Y, X^0 are the sets of states, inputs, outputs and initial states;
- $\Delta \subseteq X \times U \times X \times Y$ is a transition relation.

T is metric if Y is equipped with a metric d, symbolic if X and U are finite or countable sets.

- $(x, u, x', y) \in \Delta$ is denoted $(x', y) \in \Delta(x, u)$;
- $u \in U$ is enabled at $x \in X$, denoted $u \in enab(x)$, if $\Delta(x, u) \neq \emptyset$;
- If $enab(x) = \emptyset$, then x is blocking, otherwise it is non-blocking;
- T is deterministic if for all $x \in X$ and $u \in enab(x)$, $|\Delta(x, u)| = 1$.

・ 何 ト ・ ヨ ト ・ ヨ ト

• A trajectory of T is a finite or infinite sequence of transitions

$$\sigma = (x^0, u^0, y^0)(x^1, u^1, y^1)(x^2, u^2, y^2) \dots$$

where $(x^{i+1}, y^i) \in \Delta(x^i, u^i)$, for all $i \ge 0$. It is:

- initialized if $x^0 \in X^0$;
- maximal if it is infinite or it is finite and ends in a blocking state.
- $x \in X$ is reachable if there exists an initialized trajectory reaching x.
- *T* is non-blocking if all initialized maximal trajectories are infinite or equivalently if all reachable states are non-blocking.

Definition

Let $T_i = (X_i, U, Y, \Delta_i, X_i^0)$, with i = 1, 2 be metric transition systems with the same sets of inputs U and outputs Y equipped with the metric d. Let $\varepsilon \in \mathbb{R}_0^+$, $R \subseteq X_1 \times X_2$ is an ε -approximate bisimulation relation between T_1 and T_2 if for all $(x_1, x_2) \in R$, $u \in U$:

$$\begin{aligned} \forall (x'_1, y_1) \in \Delta_1(x_1, u), \exists (x'_2, y_2) \in \Delta_2(x_2, u), \\ d(y_1, y_2) \leq \varepsilon \text{ and } (x'_1, x'_2) \in R; \\ \forall (x'_2, y_2) \in \Delta_2(x_2, u), \exists (x'_1, y_1) \in \Delta_1(x_1, u), \\ d(y_1, y_2) \leq \varepsilon \text{ and } (x'_1, x'_2) \in R. \end{aligned}$$

 T_1 and T_2 are ε -approximately bisimilar, denoted $T_1 \sim_{\varepsilon} T_2$, if $X_1^0 \subseteq R^{-1}(X_2^0)$ and $X_2^0 \subseteq R(X_1^0)$.

- Let $\Sigma_{\tau_d} = (\mathbb{R}^n, P, \mathcal{P}, F)$ be a switched system with $\mathcal{P} = \mathcal{S}_{\tau_d}(\mathbb{R}_0^+, P)$.
- We consider controllers that can select:
 - a mode $p \in P$;
 - 2 a duration $\theta \in \Theta_{\tau}^{N}$ during which the mode remains active where

$$\Theta_{\tau}^{\mathsf{N}} = \{\theta_{\mathsf{s}} = 2^{-\mathsf{s}}\tau \mid \mathsf{s} = 0, \dots, \mathsf{N}\}.$$

where $\tau \in \mathbb{R}^+$, $N \in \mathbb{N}$ are time sampling and scale parameters.

• We assume $au_d = heta_{N_d}$ for some $N_d \in \{0, \dots, N\}$, then

$$\Theta_{\tau}^{N_d} = \{ \theta_s \in \Theta_{\tau}^N | \ \theta_s \ge \tau_d \}.$$

• Let $\mathcal{C}(I, \mathbb{R}^n)$ denote the set of continuous functions from I to \mathbb{R}^n .

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

Let
$$T^N_{\tau}(\Sigma_{\tau_d}) = (X, U, Y, \Delta, X^0)$$
 where:

X = ℝⁿ × P, z = (x, p) ∈ X consists of a continuous state x and an active mode p.
U = P × Θ^N_τ, u = (p, θ_s) ∈ U consists of a mode p and a duration θ_s.
Y = ⋃^{s=N}_{s=0} C([0, θ_s], ℝⁿ) is a set of continuous functions, continuous functions,

equipped with the metric:

$$d(y, y') = \begin{cases} \|y - y'\|_{\infty} & \text{if } \theta_s = \theta_{s'} \\ +\infty & \text{if } \theta_s \neq \theta_{s'} \end{cases}$$

• $X^0 = \mathbb{R}^n \times P$.

• For
$$z = (x, p) \in X$$
, $z' = (x', p') \in X$, $u = (\bar{p}, \theta_s) \in U$, $y \in Y$,
 $(z, u, z', y) \in \Delta \iff \begin{cases} (\bar{p}, \theta_s) \in \{p\} \times \Theta_{\tau}^N \cup (P \setminus \{p\}) \times \Theta_{\tau}^{N_d} \\ x' = \mathbf{x}(\theta_s, x, \bar{p}) \text{ and } p' = \bar{p}. \\ y = \mathbf{x}|_{\theta_s}(., x, \bar{p}) \end{cases}$

$$y = \mathbf{x}|_{\theta_s}(., x, \bar{p}) \qquad \qquad \mathbf{x}' = \mathbf{x}(\theta_s, x, \bar{p})$$

• $T_{\tau}^{N}(\Sigma_{\tau_{d}})$ is deterministic and metric.

伺下 イヨト イヨト

Computation of the symbolic model

• We approximate \mathbb{R}^n by a sequence of embedded multiscale lattices

$$[\mathbb{R}^n]_{2^{-s}\eta} = \left\{ q \in \mathbb{R}^n \mid q[i] = k_i \frac{2^{-s+1}\eta}{\sqrt{n}}, \ k_i \in \mathbb{Z}, \ i = 1, ..., n \right\}$$

where $\eta \in \mathbb{R}^+$ is a state space sampling parameter.

• We associate a multiscale quantizer $Q^s_\eta:\mathbb{R}^n o [\mathbb{R}^n]_{2^{-s}\eta}$ such that

$$Q_{\eta}^{s}(x) = q \iff q[i] - \frac{2^{-s}\eta}{\sqrt{n}} \le x[i] < q[i] + \frac{2^{-s}\eta}{\sqrt{n}}, \ i = 1, \dots, n.$$

• Let $X^s_{\eta} = [\mathbb{R}^n]_{2^{-s_{\eta}}} \times P$, then $X^0_{\eta} \subseteq X^1_{\eta} \subseteq \cdots \subseteq X^N_{\eta}$.

• We define the symbolic model as $T^N_{\tau,\eta}(\Sigma_{\tau_d}) = (X^N_\eta, U, Y, \Delta_\eta, X^0_\eta).$

Computation of the symbolic model

A. Girard (L2S-CNRS)

Computation of the symbolic model

• For
$$r = (q, p) \in X$$
, $r' = (q', p') \in X$, $u = (\bar{p}, \theta_s) \in U$, $y \in Y$,
 $(r, u, r', y) \in \Delta \iff \begin{cases} (\bar{p}, \theta_s) \in \{p\} \times \Theta_{\tau}^N \cup (P \setminus \{p\}) \times \Theta_{\tau}^{N_d} \\ q' = Q_{\eta}^s (\mathbf{x}(\theta_s, q, \bar{p})) \text{ and } p' = \bar{p}. \\ y = \mathbf{x}|_{\theta_s} (., q, \bar{p}) \end{cases}$

A. Girard (L2S-CNRS)

3. 3

$T_{\tau}^{N}(\Sigma_{\tau_{d}})$ is symbolic, deterministic and metric.

Theorem

Let Σ_{τ_d} admit multiple δ -GUAS Lyapunov functions V_p , $p \in P$. Consider parameters $\tau, \eta \in \mathbb{R}^+$, $N \in \mathbb{N}$, and a precision $\varepsilon \in \mathbb{R}^+$. If $\tau_d > \frac{\log \mu}{\kappa}$ and

$$\eta \leq \min \left\{ \begin{array}{l} \sum_{s=0}^{s=N_d} \left[2^s \gamma^{-1} \left(\left(\frac{1}{\mu} - e^{-\kappa \theta_s} \right) \underline{\alpha}(\varepsilon) \right) \right], \\ \sum_{s=N \atop s=0}^{s=N} \left[2^s \gamma^{-1} \left(\frac{1 - e^{-\kappa \theta_s}}{\mu} \underline{\alpha}(\varepsilon) \right) \right], \overline{\alpha}^{-1} \left(\frac{1}{\mu} \underline{\alpha}(\varepsilon) \right) \right\} \right\}$$

then $T^N_{\tau}(\Sigma_{\tau_d}) \sim_{\varepsilon} T^N_{\tau,\eta}(\Sigma_{\tau_d}).$

- Incrementally stable switched systems
- 2 Multiscale symbolic models
- Safety controller synthesis using multiscale symbolic models
- Omputational experiments

B ▶ < B ▶

Safety specification

• Let $T = (X, U, Y, \Delta, X^0)$ be a symbolic, deterministic transition system where

$$Y \subseteq \bigcup_{ heta_y \in \mathbb{R}^+} \mathcal{C}([0, heta_y],\mathbb{R}^n).$$

- Let $S \subseteq \mathbb{R}^n$ be a subset of safe states.
- We define the transition system T_S = (X, U, Y, Δ_S, X⁰) where for x, x' ∈ X, u ∈ U, y ∈ Y,

$$(x',y) \in \Delta_{\mathcal{S}}(x,u) \iff \left\{ egin{array}{ll} u \in ext{enab}(x); \ (x',y) = \Delta(x,u); \ orall t \in [0, heta_y], \ y(t) \in \mathcal{S}. \end{array}
ight.$$

- *T_S* is symbolic and deterministic.
- Remark: safety is defined on continuous-time outputs.

Safety controller

Definition

A safety controller for $T_S = (X, U, Y, \Delta_S, X^0)$ is a relation $C \subseteq X \times U$ such that for all $x \in X$:

- $C(x) \subseteq \operatorname{enab}(x);$
- if $C(x) \neq \emptyset$, then $\forall u \in C(x)$, $C(x') \neq \emptyset$ with $\Delta_S(x, u) = (x', y)$.

We denote the domain of C as $dom(C) = \{x \in X | C(x) \neq \emptyset\}.$

• The controlled transition system is $T_{S/C} = (X, U, Y, \Delta_{S/C}, X_C^0)$ where $X_C^0 = X^0 \cap \operatorname{dom}(C)$ and for $x, x' \in X$, $u \in U$, $y \in Y$,

$$(x',y) \in \Delta_{S/C}(x,u) \iff \begin{cases} u \in C(x); \\ (x',y) = \Delta_S(x,u). \end{cases}$$

• $T_{S/C}$ is symbolic, deterministic and non-blocking.

Lemma

There exists a unique maximal safety controller $C^* \subseteq X \times U$ such that for all safety controllers $C, C \subseteq C^*$.

Definition

A state $x \in X$ is safety controllable if and only if $x \in \text{dom}(C^*)$. The set of safety controllable states is denoted $\text{cont}(T_S)$.

Computation of C^* requires complete exploration of T_S .

Lazy safety synthesis

- Lazy safety synthesis: trade-off between maximality and efficiency.
 - Give priority to inputs with longer duration, which lead to states on coarser grids.
 - Compute the symbolic model on the fly.
 - Finer scales are explored (computed) only if safety cannot be ensured at the coarser scales.
- Let us define a priority relation on inputs: total preorder $\preceq \subseteq U \times U$
 - The associated equivalence and strict weak order relations are

$$\begin{array}{lll} u \simeq u' & \Longleftrightarrow & u \preceq u' \text{ and } u' \preceq u; \\ u \prec u' & \Longleftrightarrow & u \preceq u' \text{ and } u \not\simeq u'. \end{array}$$

• For multiscale symbolic models where $U = P \times \Theta_{\tau}^{N}$:

$$\begin{array}{lll} (p,\theta_s) \preceq (p',\theta_s') & \Longleftrightarrow & \theta_s \leq \theta_s'; \\ (p,\theta_s) \simeq (p',\theta_s') & \Longleftrightarrow & \theta_s = \theta_s'; \\ (p,\theta_s) \prec (p',\theta_s') & \Longleftrightarrow & \theta_s < \theta_s'. \end{array}$$

Definition

A maximal lazy safety (MLS) controller for $T_S = (X, U, Y, \Delta_S, X^0)$ is a safety controller $C \subseteq X \times U$ such that:

• all safety controllable initial states are in dom(C):

 $X^0 \cap \operatorname{cont}(T_S) \subseteq \operatorname{dom}(C);$

- all states $x \in dom(C)$ are reachable in $T_{S/C}$;
- for all states x ∈ dom(C):
 if u ∈ C(x), then ∀u' ∈ enab(x) with u ≃ u', (x', y) = Δ₅(x, u'),

$$u' \in C(z) \iff x' \in \operatorname{cont}(T_S);$$

2) if $u \in C(x)$, then $\forall u' \in enab(x)$ with $u \prec u'$, $(x', y) = \Delta_S(x, u')$,

$$x' \notin \operatorname{cont}(T_S).$$

There exists a unique MLS controller for T_S .

There exists a unique MLS controller for T_S .

There exists a unique MLS controller for T_S .

There exists a unique MLS controller for T_S .

Theorem

There exists a unique MLS controller for T_S .

Theorem

There exists a unique MLS controller for T_S .

Theorem

There exists a unique MLS controller for T_S .

Theorem

There exists a unique MLS controller for T_S .

Theorem

There exists a unique MLS controller for T_S .

Theorem

There exists a unique MLS controller for T_S .

- Incrementally stable switched systems
- 2 Multiscale symbolic models
- Safety controller synthesis using multiscale symbolic models
- Omputational experiments

• We consider the switched system:

$$\dot{\mathbf{x}}(t) = A_{\mathbf{p}(t)}\mathbf{x}(t) + b_{\mathbf{p}(t)}, \ \mathbf{p}(t) \in \{1,2\},$$
 with

$$A_{1} = \begin{bmatrix} -0.25 & 1 \\ -2 & -0.25 \end{bmatrix}, \ A_{2} = \begin{bmatrix} -0.25 & 2 \\ -1 & -0.25 \end{bmatrix}, \ b_{1} = \begin{bmatrix} -0.25 \\ -2 \end{bmatrix}, \ b_{2} = \begin{bmatrix} 0.25 \\ 1 \end{bmatrix}$$

- The switched system admits multiple δ -GUAS Lyapunov functions and is incrementally stable for switching signals with minimum dwell-time $\tau_d = 2$.
- Multiscale abstraction with parameters $\tau = 4$, $\eta = \frac{8}{100\sqrt{2}}$, N = 3Uniform abstraction with parameters $\tau = \frac{1}{2}$, $\eta = \frac{1}{100\sqrt{2}}$ \implies precision $\varepsilon = 0.4$.

• Safe set:
$$S = [-6, 6] \times [-4, 4] \setminus [-1.5, 1.5] \times [-1, 1]$$
.

Controller synthesis:

	Uniform symbolic model	Multiscale symbolic model	
Time	160s	7.3s	
Size (10 ³)	5228	33	
Durations	0.5 (100%)	4 (26%)	
		2 (54%)	
		1 (11%	
		0.5 (9%)	

æ

★ 圖 ▶ ★ 国 ▶ ★ 国 ▶

Switched system with dwell-time

MLS Controller:

Switched system with dwell-time

Controlled switched system:

• We consider the system:

$$\dot{\mathbf{T}}_{i}(t) = \alpha(\mathbf{T}_{i+1}(t) + \mathbf{T}_{i-1}(t) - 2\mathbf{T}_{i}(t)) + \beta(t_{e} - \mathbf{T}_{i}(t)) + \gamma(t_{h} - \mathbf{T}_{i}(t))\mathbf{u}_{i}(t)$$

where:

- $\mathbf{T}_i(t)$ is the temperature of room *i*, $1 \le i \le n$, $\mathbf{T}_0(t) = \mathbf{T}_n(t)$ and $\mathbf{T}_{n+1}(t) = \mathbf{T}_1(t)$.
- $\mathbf{u}_i(t) = 1$ if room *i* is heated, $\mathbf{u}_i(t) = 0$ otherwise and $\sum_{i=1}^n \mathbf{u}_i(t) \le 1$.
- n-dimensional switched system with n + 1 modes admits a common Lyapunov function and is incrementally stable.
- Multiscale abstraction with parameters $\tau = 80$, $\eta = 0.28$, N = 4 \implies Precision $\varepsilon = 0.4$.
- Safe set: $S = [19, 21.5]^n$.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Circular n-room building

Controller synthesis:

	Multiscale symbolic models		
	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5
Time	0.2s	6s	312s
Size (10 ³)	2	45	1 077
Durations	40 (1%)	20 (25%)	20 (6%)
	20 (37%)	10 (73%)	10 (92%)
	10 (62%)	5 (2%)	5 (2%)

Computational complexity increases with dimension:

- State and input space are larger.
- The control problem is also intrinsically more complex in higher dimension because of the constraint:

$$\sum_{i=1}^n \mathbf{u}_i(t) \leq 1.$$

Conclusions

- Multiscale approximately bisimilar symbolic models for incrementally stable switched systems:
 - Based on multiscale sampling of time and space;
 - Allow significant complexity reduction for controller synthesis.
- Multiscale safety controller synthesis:
 - Based on the notion of maximal lazy safety controller;
 - Partial exploration of the symbolic abstractions;
 - Can be extended to more general safety properties, e.g. specified by a hybrid automaton.
- Future work:
 - MLS controller synthesis algorithm for non-deterministic systems;
 - Consider other types of specifications, e.g. reachability: maximal lazy reachability controller may not be unique.

Girard, Gössler and Mouelhi, *Safety controller synthesis for incrementally stable switched systems using multiscale symbolic models.* IEEE TAC, 2016.