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Introduction

Controller synthesis for a class of continuous-time switched systems

Incrementally stable systems: the influence of initial condition
asymptotically vanishes.
Safety specification: controlled invariance.

Approach based on the use of symbolic models

Discrete (time and space) approximation of the switched system.
Approach based on uniform discretization of time and space.
[Girard, Pola and Tabuada, 2010]

Distance between trajectories of incrementally stable switched system
and of symbolic model is uniformly bounded, and can be made
arbitrarily small.
Safety controller synthesis using symbolic models via algorithmic
discrete controller synthesis.
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Motivation

Limitations of the symbolic control approach

Spatial and time resolution must be chosen carefully to achieve a given
precision: fast switching requires fine spatial resolution;
Uniform spatial discretization: excessive computation time and memory
consumption.

Overcome this problem with multiscale symbolic models

Use of multiscale discretizations of time and space
Incremental exploration of symbolic models during controller synthesis:
The finer scales explored only if safety cannot be ensured at coarser
level.
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Switched systems

Definition

A switched system is a tuple Σ = (Rn,P,P,F ), where

Rn is the state space;

P = {1, . . . ,m} is the finite set of modes;

P is a subset of S(R+
0 ,P), the set of functions from R+

0 to P with a
finite number of discontinuities on every bounded interval of R+

0 ;

F = {f1, . . . , fm} is a collection of smooth vector fields indexed by P.

For a switching signal p ∈ P, initial state x ∈ Rn, x(., x ,p) is the
trajectory of Σ, solution of:

ẋ(t) = fp(t)(x(t)), x(0) = x .

Sτd
(R+

0 ,P) is the set of switching signals p with minimum dwell-time
τd ∈ R+: discontinuities of p are separated by at least τd .
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Incremental stability

Definition

Σ is incrementally globally uniformly asymptotically stable (δ-GUAS) if
there exists a KL function β such that for all x1, x2 ∈ Rn, p ∈ P, t ∈ R+

0 :

‖x(t, x1,p)− x(t, x2,p)‖ ≤ β(‖x1 − x2‖, t).

t

x(t, x1, p)

x(t, x2, p)
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Lyapunov characterization

Definition

Vp : Rn × Rn → R+
0 , p ∈ P are multiple δ-GUAS Lyapunov functions for

Σ if there exist κ, µ ∈ R+ with µ ≥ 1, K∞ functions α, α, such that
for all x1, x2 ∈ Rn, p, p′ ∈ P:

α(‖x1 − x2‖) ≤ Vp(x1, x2) ≤ α(‖x1 − x2‖);
∂Vp

∂x1
(x1, x2)fp(x1) +

∂Vp

∂x2
(x1, x2)fp(x2) ≤ −κVp(x1, x2);

Vp(x1, x2) ≤ µVp′(x1, x2).

Theorem

Let τd ∈ R+, Σ = (Rn,P,P,F ) with P ⊆ Sτd
(R+

0 ,P) admitting multiple

δ-GUAS Lyapunov functions. If τd >
log µ
κ , then Σ is δ-GUAS.
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Additional assumption

In the following, we will assume that there exists a K∞ function γ such
that for all x1, x2, x3 ∈ Rn

|Vp(x1, x2)− Vp(x1, x3)| ≤ γ(‖x2 − x3‖), ∀p ∈ P;

This is not restrictive if Vp are smooth and we work on a bounded subset
of Rn.
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Transition systems

Definition

A transition system is a tuple T = (X ,U,Y ,∆,X 0) where

X , U, Y , X 0 are the sets of states, inputs, outputs and initial states;

∆ ⊆ X × U × X × Y is a transition relation.

T is metric if Y is equipped with a metric d , symbolic if X and U are
finite or countable sets.

(x , u, x ′, y) ∈ ∆ is denoted (x ′, y) ∈ ∆(x , u);

u ∈ U is enabled at x ∈ X , denoted u ∈ enab(x), if ∆(x , u) 6= ∅;
If enab(x) = ∅, then x is blocking, otherwise it is non-blocking;

T is deterministic if for all x ∈ X and u ∈ enab(x), |∆(x , u)| = 1.
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Trajectories

A trajectory of T is a finite or infinite sequence of transitions

σ = (x0, u0, y0)(x1, u1, y1)(x2, u2, y2) . . .

where (x i+1, y i ) ∈ ∆(x i , ui ), for all i ≥ 0. It is:

initialized if x0 ∈ X 0;
maximal if it is infinite or it is finite and ends in a blocking state.

x ∈ X is reachable if there exists an initialized trajectory reaching x .

T is non-blocking if all initialized maximal trajectories are infinite or
equivalently if all reachable states are non-blocking.
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Approximate bisimulation

Definition

Let Ti = (Xi ,U,Y ,∆i ,X
0
i ), with i = 1, 2 be metric transition systems

with the same sets of inputs U and outputs Y equipped with the metric d .
Let ε ∈ R+

0 , R ⊆ X1 × X2 is an ε-approximate bisimulation relation
between T1 and T2 if for all (x1, x2) ∈ R, u ∈ U:

∀(x ′1, y1) ∈ ∆1(x1, u),∃(x ′2, y2) ∈ ∆2(x2, u),

d(y1, y2) ≤ ε and (x ′1, x
′
2) ∈ R;

∀(x ′2, y2) ∈ ∆2(x2, u),∃(x ′1, y1) ∈ ∆1(x1, u),

d(y1, y2) ≤ ε and (x ′1, x
′
2) ∈ R.

T1 and T2 are ε-approximately bisimilar, denoted T1 ∼ε T2, if
X 0

1 ⊆ R−1(X 0
2 ) and X 0

2 ⊆ R(X 0
1 ).
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Switched systems as transition systems

Let Στd
= (Rn,P,P,F ) be a switched system with P = Sτd

(R+
0 ,P).

We consider controllers that can select:
1 a mode p ∈ P;
2 a duration θ ∈ ΘN

τ during which the mode remains active where

ΘN
τ = {θs = 2−sτ | s = 0, . . . ,N}.

where τ ∈ R+, N ∈ N are time sampling and scale parameters.

We assume τd = θNd
for some Nd ∈ {0, . . . ,N}, then

ΘNd
τ = {θs ∈ ΘN

τ | θs ≥ τd}.

Let C(I ,Rn) denote the set of continuous functions from I to Rn.
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Switched systems as transition systems

Let TN
τ (Στd

) = (X ,U,Y ,∆,X 0) where:

X = Rn × P,
z = (x , p) ∈ X consists of a continuous state x and an active mode p.

U = P ×ΘN
τ ,

u = (p, θs) ∈ U consists of a mode p and a duration θs .

Y =
⋃s=N

s=0 C([0, θs ],Rn) is a set of continuous functions,
equipped with the metric:

d(y , y ′) =

{
‖y − y ′‖∞ if θs = θs′

+∞ if θs 6= θs′

X 0 = Rn × P.
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Switched systems as transition systems

For z = (x , p) ∈ X , z ′ = (x ′, p′) ∈ X , u = (p̄, θs) ∈ U, y ∈ Y ,

(z , u, z ′, y) ∈ ∆ ⇐⇒


(p̄, θs) ∈ {p} ×ΘN

τ ∪ (P \ {p})×ΘNd
τ

x ′ = x(θs , x , p̄) and p′ = p̄.
y = x|θs (., x , p̄)

x

x′ = x(θs, x, p̄)
y = x|θs(., x, p̄)

TN
τ (Στd

) is deterministic and metric.
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Computation of the symbolic model

We approximate Rn by a sequence of embedded multiscale lattices

[Rn]2−sη =

{
q ∈ Rn

∣∣∣∣ q[i ] = ki
2−s+1η√

n
, ki ∈ Z, i = 1, ..., n

}
where η ∈ R+ is a state space sampling parameter.

We associate a multiscale quantizer Qs
η : Rn → [Rn]2−sη such that

Qs
η(x) = q ⇐⇒ q[i ]− 2−sη√

n
≤ x [i ] < q[i ] +

2−sη√
n
, i = 1, . . . , n.

Let X s
η = [Rn]2−sη × P, then X 0

η ⊆ X 1
η ⊆ · · · ⊆ XN

η .

We define the symbolic model as TN
τ,η(Στd

) = (XN
η ,U,Y ,∆η,X

0
η ).
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Computation of the symbolic model

For r = (q, p) ∈ X , r ′ = (q′, p′) ∈ X , u = (p̄, θs) ∈ U, y ∈ Y ,

(r , u, r ′, y) ∈ ∆ ⇐⇒


(p̄, θs) ∈ {p} ×ΘN

τ ∪ (P \ {p})×ΘNd
τ

q′ = Qs
η(x(θs , q, p̄)) and p′ = p̄.

y = x|θs (., q, p̄)

q

q′ = Q1
η(x(θ1, q, p̄))

y = x|θ1(., q, p̄))
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Approximation result

TN
τ (Στd

) is symbolic, deterministic and metric.

Theorem

Let Στd
admit multiple δ-GUAS Lyapunov functions Vp, p ∈ P.

Consider parameters τ, η ∈ R+, N ∈ N, and a precision ε ∈ R+.
If τd >

log µ
κ and

η ≤ min

{
s=Nd

min
s=0

[
2sγ−1

((
1

µ
− e−κθs

)
α(ε)

)]
,

s=N
min
s=0

[
2sγ−1

(
1− e−κθs

µ
α(ε)

)]
, α−1

(
1

µ
α(ε)

)}
then TN

τ (Στd
) ∼ε TN

τ,η(Στd
).
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Safety specification

Let T = (X ,U,Y ,∆,X 0) be a symbolic, deterministic transition
system where

Y ⊆
⋃

θy∈R+

C([0, θy ],Rn).

Let S ⊆ Rn be a subset of safe states.

We define the transition system TS = (X ,U,Y ,∆S ,X
0) where

for x , x ′ ∈ X , u ∈ U, y ∈ Y ,

(x ′, y) ∈ ∆S (x , u) ⇐⇒


u ∈ enab(x);
(x ′, y) = ∆(x , u);
∀t ∈ [0, θy ], y(t) ∈ S .

TS is symbolic and deterministic.

Remark: safety is defined on continuous-time outputs.
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Safety controller

Definition

A safety controller for TS = (X ,U,Y ,∆S ,X
0) is a relation C ⊆ X × U

such that for all x ∈ X :

C (x) ⊆ enab(x);

if C (x) 6= ∅, then ∀u ∈ C (x), C (x ′) 6= ∅ with ∆S (x , u) = (x ′, y).

We denote the domain of C as dom(C ) = {x ∈ X | C (x) 6= ∅}.

The controlled transition system is TS/C = (X ,U,Y ,∆S/C ,X
0
C )

where X 0
C = X 0 ∩ dom(C ) and for x , x ′ ∈ X , u ∈ U, y ∈ Y ,

(x ′, y) ∈ ∆S/C (x , u) ⇐⇒
{

u ∈ C (x);
(x ′, y) = ∆S (x , u).

TS/C is symbolic, deterministic and non-blocking.
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Maximal safety controller

Lemma

There exists a unique maximal safety controller C ∗ ⊆ X × U such that for
all safety controllers C , C ⊆ C ∗.

Definition

A state x ∈ X is safety controllable if and only if x ∈ dom(C ∗). The set of
safety controllable states is denoted cont(TS ).

Computation of C ∗ requires complete exploration of TS .

A. Girard (L2S-CNRS) Synthesis using multiscale symbolic models 22 / 33



Lazy safety synthesis

Lazy safety synthesis: trade-off between maximality and efficiency.

Give priority to inputs with longer duration, which lead to states on
coarser grids.
Compute the symbolic model on the fly.
Finer scales are explored (computed) only if safety cannot be ensured
at the coarser scales.

Let us define a priority relation on inputs: total preorder �⊆ U × U

The associated equivalence and strict weak order relations are

u ' u′ ⇐⇒ u � u′ and u′ � u;

u ≺ u′ ⇐⇒ u � u′ and u 6' u′.

For multiscale symbolic models where U = P ×ΘN
τ :

(p, θs) � (p′, θ′s) ⇐⇒ θs ≤ θ′s ;

(p, θs) ' (p′, θ′s) ⇐⇒ θs = θ′s ;

(p, θs) ≺ (p′, θ′s) ⇐⇒ θs < θ′s .
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Maximal lazy safety controller

Definition

A maximal lazy safety (MLS) controller for TS = (X ,U,Y ,∆S ,X
0) is a

safety controller C ⊆ X × U such that:

all safety controllable initial states are in dom(C ):

X 0 ∩ cont(TS ) ⊆ dom(C );

all states x ∈ dom(C ) are reachable in TS/C ;

for all states x ∈ dom(C ):
1 if u ∈ C (x), then ∀u′ ∈ enab(x) with u ' u′, (x ′, y) = ∆S (x , u′),

u′ ∈ C (z) ⇐⇒ x ′ ∈ cont(TS );

2 if u ∈ C (x), then ∀u′ ∈ enab(x) with u ≺ u′, (x ′, y) = ∆S (x , u′),

x ′ /∈ cont(TS ).
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Maximal lazy safety controller

Theorem

There exists a unique MLS controller for TS .

MLS controller synthesis: X0 = {x1, x2, x3}, b ≺ a.

x1 x2 x3

x′3x′2x′1 x′4

a

a

a
a

ab

b

b

b
b

b
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Switched system with dwell-time

We consider the switched system:

ẋ(t) = Ap(t)x(t) + bp(t), p(t) ∈ {1, 2}, with

A1 =
[−0.25 1
−2 −0.25

]
, A2 =

[−0.25 2
−1 −0.25

]
, b1 =

[−0.25
−2

]
, b2 = [ 0.25

1 ] .

The switched system admits multiple δ-GUAS Lyapunov functions
and is incrementally stable for switching signals with minimum
dwell-time τd = 2.

Multiscale abstraction with parameters τ = 4, η = 8
100
√

2
, N = 3

Uniform abstraction with parameters τ = 1
2 , η = 1

100
√

2
=⇒ precision ε = 0.4.

Safe set: S = [−6, 6]× [−4, 4] \ [−1.5, 1.5]× [−1, 1].
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Switched system with dwell-time

Controller synthesis:

Uniform symbolic model Multiscale symbolic model

Time 160s 7.3s

Size (103) 5228 33

Durations 0.5 (100%) 4 (26%)
2 (54%)
1 (11%

0.5 (9%)
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Switched system with dwell-time

MLS Controller:

Mode 1 is active Mode 2 is active
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Switched system with dwell-time

Controlled switched system:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4
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Circular n-room building

We consider the system:

Ṫi (t) = α(Ti+1(t) + Ti−1(t)− 2Ti (t))

+β(te − Ti (t)) + γ(th − Ti (t))ui (t)

where:

Ti (t) is the temperature of room i, 1 ≤ i ≤ n, T0(t) = Tn(t) and
Tn+1(t) = T1(t).
ui (t) = 1 if room i is heated, ui (t) = 0 otherwise and

∑n
i=1 ui (t) ≤ 1.

n-dimensional switched system with n + 1 modes admits a common
Lyapunov function and is incrementally stable.

Multiscale abstraction with parameters τ = 80, η = 0.28, N = 4
=⇒ Precision ε = 0.4.

Safe set: S = [19, 21.5]n.
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Circular n-room building

Controller synthesis:

Multiscale symbolic models
n = 3 n = 4 n = 5

Time 0.2s 6s 312s

Size (103) 2 45 1 077

Durations 40 (1%) 20 (25%) 20 (6%)
20 (37%) 10 (73%) 10 (92%)
10 (62%) 5 (2%) 5 (2%)

Computational complexity increases with dimension:

State and input space are larger.

The control problem is also intrinsically more complex in higher
dimension because of the constraint:

n∑
i=1

ui (t) ≤ 1.
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Conclusions

Multiscale approximately bisimilar symbolic models for incrementally
stable switched systems:

Based on multiscale sampling of time and space;
Allow significant complexity reduction for controller synthesis.

Multiscale safety controller synthesis:

Based on the notion of maximal lazy safety controller;
Partial exploration of the symbolic abstractions;
Can be extended to more general safety properties, e.g. specified by a
hybrid automaton.

Future work:

MLS controller synthesis algorithm for non-deterministic systems;
Consider other types of specifications, e.g. reachability:
maximal lazy reachability controller may not be unique.

Girard, Gössler and Mouelhi, Safety controller synthesis for incrementally stable switched

systems using multiscale symbolic models. IEEE TAC, 2016.

A. Girard (L2S-CNRS) Synthesis using multiscale symbolic models 33 / 33


