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A class of switched linear dynamical systems
For a given finite (or compact) set of k × k matrices

C = {Ci}i∈I (I set of indeces)

and u : (0,+∞) → I, u ∈ U (set of measurable switching functions),
consider the linear dynamical system (for x ∈ C

k)

(S)

{
ẋ(t) = C (u(t)) x(t), C (i) = Ci for i ∈ I,
x(0) = x0 ∈ C

k

The switching function u(t) jumps among the values of I.
We mostly consider here the finite illustrative case I = {0, 1}, that is
C = {C0,C1}.
Example of u(t):

0 1 2 3 4 50

1
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Lyapunov exponents, stability and stabilizability
The upper Lyapunov exponent σ(C) is the infimum of the numbers α
such that, for some constant L > 0,

‖x(t)‖ ≤ Le αt ∀t ≥ 0

for any u ∈ U and initial value x0 in (S).

If σ(C) < 0, then the system is uniformly asymptotically stable

The lower Lyapunov exponent σ̃(C) is the infimum of the numbers β
for which there exists a switching function ũ ∈ U such that, for some
constant M > 0, the corresponding trajectory of (S) satisfies, ∀ x0,

‖x(t)‖ ≤ M e βt ∀t ≥ 0

If σ̃(C) < 0, then the system is stabilizable.
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Extremal norms and their approximations
Definition. A norm ‖ · ‖ is called extremal if for every trajectory of (S)
it holds ‖x(t)‖≤ e σ(C) t‖x(0)‖ , t ≥ 0. If equality holds for all t and
for all x(0), ‖ · ‖ is called a Barabanov norm.

Theorem (Opoitsev ’77, Barabanov ’88)

An irreducible set of operators possesses an extremal Barabanov norm.

Polytope approximate extremal norms.

Advantages: (i) can reach arbitrary accuracy; (ii) very efficient for
sets of matrices whose exponential has an invariant cone (e.g.
Metzler matrices and the non-negative orthant).

Drawbacks: computationally expensive in the general case.

Common Quadratic Lyapunov Functions alias ellipsoid norms.

Advantages: computationally efficient till dimension k ≈ 25.

Drawbacks: (i) not arbitrarily accurate; (ii) costly if k > 25.
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Discretization

Assumption: C = {Ci}i∈I , I = {0, . . . ,m} is finite.

(1) Restrict the switching function u(t) to U∆t , the space of
piecewise constant functions on {tj}j≥0, tj = j∆t (that is
u|(tj−1,tj ] = ij ∈ I).

(2) Let A∆t = {Ai}i∈I , with Ai = e∆t Ci .

We have the discrete switched system (with xn := x(tn))

xn+1 = Ain xn with in ∈ I, n ≥ 0.

(3) Lower bound to σ(C). Compute the Lyapunov exponent of the
discretized problem, which is obtained restricting the set of
switching functions as in (1). This is related to the computation
of the joint spectral radius 1 of the matrix family A∆t .

1e.g. R. Jungers: The joint spectral radius. Theory and applications, 2009.
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Discrete time switched linear systems
We are lead to consider discrete switched systems of the form

xn+1 = Ain xn = Ain · . . . · Ai1 · Ai0 x0, n = 0, 1, 2, . . . (DSS)

where x0 ∈ C
k and Aij ∈ C

k,k is an element of

A = {Ai}i∈I (I set of indices)

Product semigroup: Σ(A) =
⋃

n≥1 Σn(A), where

Σn(A) =

{
Ajn · . . . · Aj1

∣∣∣∣ (j1, . . . , jn) ∈ I × I × . . .× I
}

Goal. Computing the highest rate of growth of trajectories of (DSS)
(or equivalently of sequences in Σ(A)). The problem is not trivial...
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Generalizations of the spectral radius of a matrix

(1) Joint spectral radius (Rota & Strang ’60): for A bounded

ρ̂(A) = lim sup
n→∞

ρ̂n(A)1/n with ρ̂n(A) = sup
P∈Σn(A)

‖P‖

(2) Generalized spectral radius (Daubechies & Lagarias ’92):

ρ̄(A) = lim sup
n→∞

ρ̄n(A)1/n with ρ̄n(A) = sup
P∈Σn(A)

ρ(P)

General result (Berger & Wang ’92):

ρ̂(A) = ρ̄(A) =: ρ(A).

ρ(·) is a positively homogeneous function (ρ(cA) = cρ(A)). Note
that for a single matrix (1) and (2) reduce to the spectral radius.
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A third generalization: extremal norms

(3) Common spectral radius (Elsner ’95):

ρ(A) = inf
‖·‖∈N

‖A‖, ‖A‖ = sup
A∈A

‖A‖

with N set of operator norms. If the inf is a min A is non-defective,

‖ · ‖⋆ −→ min
‖·‖∈N

‖A‖ is said extremal norm for A.

Useful estimate (Daubechies & Lagarias ’92).

ρ(P)1/n ≤ ρ(A) ≤ ‖A‖ for any P ∈ Σn(A)

This suggests the natural scaling A∗ = A/ρ(P)1/n s.t. ρ(A∗) ≥ 1.

If ρ(P)1/n = ρ(A), P is called spectrum maximizing product (s.m.p.).
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Illustrative example: a discrete switched system
Consider xn+1 = Ain xn, in ∈ {0, 1}, n ≥ 0, with

A0 = β




−1 1 −1
−1 −1 1
0 1 1


 , A1 = β




−1 1 −1
−1 −1 0
1 1 1




with β = 0.559. Note: ρ(A0) < 1, ρ(A1) < 1.

Question. Is the solution stable (bounded) for any sequence?

Answer. Yes. Maximal growth is obtained for the periodic sequence

{001001011010010010100100101}k .
This corresponds to the iterated application of the s.m.p. of degree 27

P = (A2
0A1)

2A0A
2
1A0A1 ((A

2
0A1)

2A0A1)
2

s.t. ρ(P) = 1.
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Illustrative example: a switched system (ctd.)
Daubechies and Lagarias estimate provides

1 = ρ(P)1/27 ≤ ρ(A) ≤ ‖A‖

We prove stability determining an optimal norm s.t. ‖A‖opt = 1

The norm ‖ · ‖opt is s.t.
‖A0‖opt=‖A1‖opt=1.

This implies ‖Q‖opt ≤ 1

for any product Q of A0,A1

A goal of next slides is to

explain how to get ‖ · ‖opt
Unit ball of ‖ · ‖opt
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Difficulties

The computation of the j.s.r. is a challenging problem.

It is known (Blondel & Tsitsiklis, Math. Contr. ’97) that there is no
algorithm able to approximate (with an a priori accuracy) the joint
spectral radius in polynomial time.

Finiteness conjecture (Lagarias & Wang ’95).
It stated that every finite family has an s.m.p. (i.e. a product P of
degree n such that ρ(P)1/n = ρ(A)). Alas it has been disproved by
Bousch & Mairesse, J. AMS ’02 and Blondel et al.,SIMAX ’03).
Therefore it may not be possible to find a finite product P which
gives the highest rate of growth in the product semigroup.

Our goal.
For families with the finiteness property we aim to compute (in a
finite way) the j.s.r. by means of an extremal norm. How to proceed?
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Extremal norms and trajectories
The set of trajectories. Let A∗ s.t. ρ(A∗) ≥ 1 (natural scaling).
Given an initial vector x 6= 0 we consider the set

T [A∗, x ] := {x} ∪
{
P x

∣∣∣ P ∈ Σ(A∗)
}

Theorem (e.g. G., Wirth & Zennaro ’05)

Assume that for a given x ∈ C
k , the set T [A∗, x ] satisfies

1 span
(
T [A∗, x ]

)
= C

k ;

2 T [A∗, x ] is bounded.

Then ρ(A∗) = 1 and the set

S = absco
(
T [A∗, x ]

)
(absolutely convex hull)

is the unit ball of an extremal norm for A∗, ‖A∗‖S = 1.
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Illustration of the theorem: a special case

Trajectory and extremal norm. Often S is a polytope...

−1 0 1

−1

1

S

Assume ρ(A∗) ≥ 1.

The theorem suggests how

to check if ρ (A∗) = 1.

Compute recursively T [A∗, x ]

T (0) = {x}

T (ℓ+1) = A∗T (ℓ), ℓ ≥ 0

until absco
(
T (ℓ)

)
invariant.
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Example 1

Consider the family A = {A0,A1}

A0 =

(
1 1
0 1

)
, A1 =

(
9/10 0
9/10 9/10

)

After sampling the semigroup (e.g by branch-and-bound Gripenberg

algorithm) guess P = A0 A1 ∈ Σ2(A) is an s.m.p.

Lower bound: ϑ := ρ(P)1/2 ≤ ρ(A) . Then define the scaled family

A∗ = {A∗
0,A

∗
1} = {A0/ϑ,A1/ϑ} ; ρ(A∗) ≥ 1.

Starting vector: choose the unique leading eigenvector of P ,

x =
(
(1 +

√
5)/2 1

)T

.
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Computing the trajectory: step 1

0 1 20

1

2
v2 = A∗

1v1 v3 = A∗
0v1

v2

v1 = x

v3
P (2)

New vertices are drawn in red, old vertices as black points.
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Computing the trajectory: step 2

0 1 20

1

2
v5 = A∗

1v2 v6 = A∗
0v3

v7

v5
v2

v1 = v4

v3

v6
P (3)

New vertices are drawn in red, old vertices as black points.
Internal points of the trajectory are in white.
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Computing the trajectory: step 3

0 1 20

1

2

v8

v9

v10

v11

v5
v2

v1

v3

v6
P (3)

Since span
(
P (3)

)
= R

2, P = P (3) is a real invariant polytope
giving an extremal norm.
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The polytope extremal norm

−2 −1 0 1 2

−2

−1

0

1

2

The success of the algorithm implies

ρ(A∗) = 1 and thus ρ(A) = ϑ.

Definition: A bounded set P ⊂ C
k is a balanced complex polytope

(b.c.p.) if there exists a finite set V such that

P = absco(V) and span(V) = C
k .

Complex polytope norm: is a norm whose unit ball is a b.c.p.
Nicola Guglielmi (Università dell’Aquila) Lyapunov exponents of switched ODEs January 29, 2016 18 / 34



Some general finiteness results

Definition

Let ρ(A∗) = 1. A spectrum maximizing product P∗ is said dominant
for the family A∗ if exists q < 1 such that ρ(Q∗) ≤ q for any product
Q∗ that is not a power of P∗ nor a power of its cyclic permutations.

Theorem (G. & Protasov ’13, see also G., Wirth & Zennaro ’05)

Let A∗ be finite and irreducible. Assume ρ(A∗) = 1 and

x is the unique leading eigenvector of a dominant s.m.p.

then A∗ has a complex polytope extremal norm with unit ball

absco
(
{x ,P∗

1x , . . . ,P
∗
s x}

)
with P∗

1 , . . . ,P
∗
s ∈ Σ(A∗).

Algorithms by G., Wirth & Zennaro ’05 and G. & Protasov ’13.
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Usefulness of Example 1

Let C = {C0,C1} related to the considered A0,A1 by

C0 = log(A0) = log

(
1 1
0 1

)
, C1 = log(A1) = log

(
9/10 0
9/10 9/10

)
.

As seen the s.m.p. is P = A0A1 corresponding to the function

u⋆
∆t ∈ U∆t (∆t = 1):

0 1 2 3 4 50

1

Lower bound for σ(C): Since ρ(A) = ρ(A0A1)
1
2 ≈ 1.53, we get

σ(C) ≥ log(1.53..) = 0.428.., the exponent associated to computed
extremal discrete trajectory with constant switching time ∆t = 1.
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Back to ODEs. Lower bound computation
1 Fix ∆t and compute A∆t = {eCi∆t}i∈I .

2 Compute the j.s.r. ρ (A∆t) by detecting an s.m.p. P of length n
and computing a polytope extremal norm for A∆t

3 Lower bound for the upper exponent of (S).
The discrete trajectory growing faster is given by Pk , (k ≥ 1).
Thus the associated exponent provides the lower bound

β :=
1

∆t
log (ρ(A∆t)) ≤ σ(C)

Shifting property: let C∗ = C − β I then σ(C∗) = σ(C)− β.

This means that σ(C ) ≥ β ⇐⇒ σ(C∗) ≥ 0.
Discretizing C we get A∆t while discretizing C∗ we get A∗

∆t .
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Example 2
Let C = {C0,C1} with

C0 =

(
0.346 . . . 0.785 . . .

−0.785 . . . 0.346 . . .

)
C1 =

(
0.604 . . . 1.209 . . .

−1.209 . . . −0.604 . . .

)

For ∆t = 1 we set A∆t = {A0,A1} = {eC0 , eC1} with

A0 =

(
1 1

−1 1

)
, A1 =

(
1 1

−1 0

)
.

The product P = A2
0 A1 A

3
0 A1 is an s.m.p. (ρ(A) = ρ(P)1/7) and

determines the lower bound σ(C) ≥ β = 0.3734 . . .

Equivalently the family A∗
∆t = A∆t/ρ(P)

1/7 has spectral radius 1 and

σ(C∗) = σ(C − βI) ≥ 0.
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The extremal norm, i.e. an invariant set for A∗
∆t

−1.5 .0 1.5

−1.5

.0

1.5

Figure: In red the vectors A∗

0v and in blue A
∗

1v , for all vertices v of P∆t .
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To recap...

Setting C∗ = C − β I and

then discretizing we get A∗
∆t .

We interpret the computation as:

A∗
∆t = eC

∗∆t has spectral radius 1 and invariant polytope P∆t .

Consequently σ(C∗) ≥ 0 (either marginally stable or unstable).
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Computing an upper bound for the Lyapunov exponent

(S∗)

{
ẋ(t) = C ∗(u(t)) x(t), C ∗(u(t)) ∈ C∗ = {C ∗

i }i∈I ,
x(0) = x0

Observation. Given a polytope P , if all vectorfields C ∗
i v , for any

vertex v of P are oriented inside P , then P is positively invariant
for (S∗) and all solutions of (S∗) are bounded. Hence σ(C∗) ≤ 0.

Remark. If this is not true, we can always find γ > 0 such that ∀i
the modified vectorfield (C ∗

i − γI)v is oriented inside P for any v .

Main idea.

Starting from C∗ which is such that σ(C∗) ≥ 0 and using the
computed extremal polytope P∆t , we obtain the bilateral estimate

0 ≤ σ(C∗) ≤ γ
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Example 2: the optimal shift

−1.5 .0 1.5

−1.5

.0

1.5

Figure: In red (C∗

0 − γI )v , in blue (C∗

1 − γI )v for all vertices v of P∆t (γ ≈ 0.4).
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Summary of the approximations and main result
(LB) For a given ∆t we compute the lower bound β by the joint
spectral radius of the discretized system.

(UB) By means of the obtained polytope P∆t we compute the
optimal shift γ. This provides the bilateral estimate

β ≤ σ(C) ≤ α, α = β + γ.

Theorem (convergence, G., Laglia & Protasov ’16)

For every compact irreducible family A of matrices, there exists a
constant K > 0 such that

α − β ≤ K ∆t , ∆t > 0 ,

with α, β (depending on ∆t) the computed upper and lower bounds.

An interpretation of the Theorem is that the polytope P∆t converges
to an extremal norm of the system (that usually is not a polytope).
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Example 3 (derived from Teichner and Margaliot)
Let C = {C0,C1} with C0,C1 ∈ R

3,3:

C0 =




−2 0 0
10 −2 0
0 0 −11


 and C1 =




−11 0 10
0 −11 0
0 10 −2


 .

∆t β α γ s.m.p. P #V

1/32 −0.0442 0.2548 0.299 A16
0 A9

1 34

1/128 −0.0427 0.0425 0.085 A62
0 A37

1 165

1/256 −0.0426 −0.0006 0.042 A125
0 A75

1 587

1/512 −0.0426 −0.0175 0.025 A249
0 A149

1 2228

As ∆t decreases, the computations are longer and longer and it is
necessary to use ∆t = 1/256 to prove uniform stability. On the other
hand no semidefinite matrix M can be found s.t. CT

i M +MCi � 0 for
i = 0, 1. Hence the CQLF approach is not effective.
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Example 4 (structured, high dimension)

Let C = {C0,C1} with C0,C1 ∈ R
100,100 with elements in {−1, 0, 1}

with non-negative exponentials (Metzler matrices).

Table: Approximation of the upper Lyapunov exponent

∆t β α γ s.m.p. P #V

1/32 48.556 49.244 0.688 A2
0A

2
1 5

1/64 48.669 49.058 0.389 A0A1A0A
2
1 10

1/128 48.727 48.973 0.246 A0A1 38

1/256 48.737 48.881 0.144 A0A1 434

The number of vertices to obtain an accuracy ≈ 10−1 is quite small.
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Duality
Given a b.c.p. P = absco(V), V = {v1, . . . , vn}, we define

Pad = adj(X ) =
{
y ∈ C

k
∣∣∣ |〈y , vi〉| ≤ 1, i = 1, . . . , n

}
.

Theorem (G. & Zennaro ’15, also Plischke & Wirth ’08)

Let P be a balanced complex polytope defining an extremal norm
‖ · ‖P for A and assume that every vertex vℓ, ℓ = 1, . . . , n, of the
polytope P has been generated in such a way that

vℓ = A∗
iℓ
vjℓ for some jℓ ∈ {1, . . . , n} and iℓ ∈ {1, . . . ,m}.

Then the norm ‖ · ‖Pad is a Barabanov norm for the adjoint set Aad.

Note: In R
k the geometry of symmetric and adjoint symmetric

polytopes is the same; this fact is not inherited by b.c.p’s in C
k .
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The general methodology

Given a family A = {A0, . . . ,Am} we apply the polytope algorithm to
the adjoint family Aad = {Aad

0 , . . . ,Aad
m } and, if the algorithm ends

successfully, we get an extremal polytope norm ‖ · ‖P .
The norm ‖ · ‖P satisfies the hypothesis of the previous Theorem.
Thus, since (Aad)ad = A, the dual norm is a Barabanov norm for A.

Most unstable switching law for the discrete system

Starting from x(0) on the boundary of the unit ball of ‖ · ‖Pad , we
can find a switching law σ (MUSL) such that the whole trajectory
{x(n)}n≥0 lies on the boundary ∂Pad, i.e. a most unstable trajectory.
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Example
Let A = {A0,A1} where

A0 =

(
1 1

−1 0

)
, A1 =

(
0 −1
1 0

)
.

−1.5 .0 1.5

−1.5

.0

1.5

−1.5 .0 1.5

−1.5

.0

1.5

Figure: Extremal norm (left) for the family Aad and Barabanov norm for A (right)
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Approximate most unstable trajectories of the ODE
By previous theory, for small ∆t a most unstable trajectory of
A = {e∆t C0 , . . . , e∆t Cm} is “close” to a most unstable trajectory of
the time-continuous switched system (with matrices C0, . . . ,Cm).

Pad
∆t
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A glance to the lower Lyapunov exponent

In order to compute the lower Lyapunov exponent, again we discretize
using piecewise constant switching functions and proceed similarly.

Bounds to the lower Lyapunov exponent are obtained now by
computing the lower spectral radius (l.s.r.) of the family A∆t .

Definition (Gurvits, 1995)

The lower spectral radius (l.s.r.) of a matrix family A is the minimal
rate of growth in the product semigroup and is given by

ρ̃(A) = inf
n≥1

ρ̃n, where ρ̃n = inf
P∈Σn(A)

ρ(P)1/n.

In general, the function ρ̃(A) is not continuous. But is continuous on
set of families A with an invariant cone K (for example the set of non
negative matrix families). Here norms are replaced by antinorms...
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Summary and outlook

A framework for the approximation of Lyapunov exponents of
switched systems.

Linear convergence in the dwell time (discretization stepsize).

Application to control theory, uniform stability and stabilizability
of switched control systems.

Software (Matlab) developed by the author.

Robustness analysis, effect of perturbations and varying
parameters.

Acceleration issues, exploiting the structure.

No constraints included, extension to Markovian switched
dynamical systems, where switching is not arbitrary.
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