Uniformly bounded linear switched systems Stability of pairs of Hurwitz matrices Observability of the bilinear system

Stability of uniformly bounded switched systems and observability

Philippe JOUAN Université de Rouen, LMRS, CNRS UMR 6085

Joint work with Moussa Balde, Université de Dakar

Workshop on switching dynamics & verification IHP, Paris, France, January 28-29, 2016.

Uniformly bounded linear switched systems Stability of pairs of Hurwitz matrices Observability of the bilinear system

Table of contents

Uniformly bounded linear switched systems

Stability of pairs of Hurwitz matrices

Observability of the bilinear system

Uniformly bounded linear switched systems

- Finite collection B_1, B_2, \ldots, B_p of $d \times d$ matrices.
- ► They share a weak quadratic Lyapunov function P, i.e. $B_i^T P + PB_i \leq 0$ for i = 1, ..., p.
- We can assume P = Id, so that:

$$B_i^T + B_i \leq 0$$
 for $i = 1, \dots, p$

The linear switched system

$$rac{d}{dt}X=B_{u(t)}X\qquad X\in\mathbb{R}^d,\qquad u(t)\in\{1,2,\ldots,p\}$$

is stable.

Switching laws

- A switching law, or input, is a piecewise constant and right-continuous function from [0, +∞) to {1,..., p}.
- For such a switching law u, the trajectory from X is denoted by Φ_u(t)X.
- The ω -limit set, for a given initial point X, is:

$$\Omega_u(X) = \bigcap_{T \ge 0} \overline{\{\Phi_u(t)X; t \ge T\}}$$

Two loci

- $\mathcal{K}_i = \{X \in \mathbb{R}^d; X^T(B_i^T + B_i)X = 0\}$
- $\triangleright \ \mathcal{V}_i = \{ X \in \mathbb{R}^d; \ \left\| e^{tB_i} X \right\| = \| X \| \quad \forall t \ge 0 \}$
 - It is the largest B_i -invariant subspace of \mathcal{K}_i .

These loci were previously defined (See Serres, Vivalda, Riedinger, IEEE 2011)

Let u be a switching law:

- For any $X \in \mathbb{R}^d$ the ω -limit set $\Omega_u(X)$ is contained $\bigcup_{i=1}^p \mathcal{K}_i$.
- For certain classes of inputs (non-chaotic inputs) Ω_u(X) is contained ∪^p_{i=1} V_i.

伺 ト イヨト イヨト

Pairs of Hurwitz matrices

The linear switched system

$$\dot{X} = B_{u(t)}X \qquad X \in \mathbb{R}^d$$

is defined by a pair of **Hurwitz** matrices $B_0, B_1 \in \mathcal{M}(d; \mathbb{R})$ assumed to satisfy

$$B_i^T + B_i \leq 0 \qquad i = 0, 1.$$

Problem

Find (necessary and) sufficient conditions for the switched system to be GUAS.

Asymptotic stability

The switched system being linear is **GUAS** (Globally Uniformly **A**symptotically **S**table) if and only if for every switching law u the system is globally asymptotically stable, that is

$$orall X \in \mathbb{R}^d \qquad \Phi_u(t) X \longrightarrow_{t o +\infty} 0.$$

Asymptotic stability

The switched system being linear is **GUAS** (Globally Uniformly **A**symptotically **S**table) if and only if for every switching law u the system is globally asymptotically stable, that is

$$\forall X \in \mathbb{R}^d \qquad \Phi_u(t) X \longrightarrow_{t \to +\infty} 0.$$

It was proved in [B.J. SIAM 2011] that the switched system is GUAS as soon as

$$\mathcal{K} = \mathcal{K}_0 \bigcap \mathcal{K}_1 = \{0\}$$

But this condition is not necessary. It is possible to build GUAS systems for which dim $\mathcal{K} = d - 1$ regardless of d.

Hurwitz matrices and observability

Theorem (Characterization of Hurwitz matrices)

B is a $d \times d$ -matrix s.t. $B^T + B \leq 0$ and $\mathcal{K} = \ker(B^T + B)$. According to the orthogonal decomposition $\mathbb{R}^d = \mathcal{K} \oplus \mathcal{K}^{\perp}$, *B* writes

$$B = \begin{pmatrix} A & -C^{T} \\ C & D \end{pmatrix}$$
(1)

with $A^T + A = 0$ and $D^T + D < 0$. Then B is Hurwitz if and only if the pair (C, A) is observable.

Example

Assume *B* in the previous form, $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and *C* nonzero. Then *B* is Hurwitz for any *D* (that satisfies $D^T + D < 0$).

Sketch of the proof

Consider the linear system:

$$(\Sigma) = \left\{ egin{array}{ll} \dot{x} &= Ax & x \in \mathcal{K} \ y &= Cx & y \in \mathcal{K}^{\perp} \end{array}
ight.$$

If (Σ) is not observable, then there exists $x \in \mathcal{K}$, $x \neq 0$, such that $Ce^{tA}x = 0$ for all $t \in \mathbb{R}$.

Since
$$B = \begin{pmatrix} A & -C^T \\ C & D \end{pmatrix}$$
 we get $e^{tB} \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} e^{tA}x \\ 0 \end{pmatrix}$

This does not tend to 0 and B is not Hurwitz.

Conversely if *B* is not Hurwitz, its limit trajectories lie in \mathcal{K} and verifie $Ce^{tA}x = 0$.

Convexification

For $\lambda \in [0,1]$ we consider the matrix $B_{\lambda} = (1-\lambda)B_0 + \lambda B_1$.

Fundamental space $\mathcal{K} = \mathcal{K}_0 \cap \mathcal{K}_1$.

Lemma

For all $\lambda \in (0, 1)$, $\mathcal{K}_{\lambda} = \ker(B_{\lambda}^{T} + B_{\lambda}) = \mathcal{K}$. According to the orthogonal decomposition $\mathbb{R}^{d} = \mathcal{K} \oplus \mathcal{K}^{\perp}$, B_{λ} writes

$$B_{\lambda} = \begin{pmatrix} A_{\lambda} & -C_{\lambda}^{\ \prime} \\ C_{\lambda} & D_{\lambda} \end{pmatrix},$$

with $A_{\lambda}^{T} + A_{\lambda} = 0$ for $\lambda \in [0, 1]$, and $D_{\lambda}^{T} + D_{\lambda} < 0$ for $\lambda \in (0, 1)$.

The associated bilinear system

We consider the bilinear controlled and observed system:

$$(\Sigma) = \begin{cases} \dot{x} = A_{\lambda}x \\ y = C_{\lambda}x \end{cases}$$

where $\lambda \in [0, 1]$, $x \in \mathcal{K}$, and $y \in \mathcal{K}^{\perp}$.

Definition

The system (Σ) is said to be **uniformly observable on** $[0, +\infty[$ if for any measurable input $t \mapsto \lambda(t)$ from $[0, +\infty[$ into [0, 1], the output distinguish any two different initial states, that is

$$\forall x_1 \neq x_2 \in \mathcal{K} \quad m\{t \geq 0; \ C_{\lambda(t)}x_1(t) \neq C_{\lambda(t)}x_2(t)\} > 0,$$

where m stands for the Lebesgue measure on \mathbb{R} , and $x_i(t)$ for the solution of $\dot{x} = A_{\lambda(t)}x$ starting from x_i , for i = 1, 2.

Main result

Theorem The linear switched system

$$\dot{X} = B_{u(t)}X$$
 where $B_i = \begin{pmatrix} A_i & -C_i^T \\ C_i & D_i \end{pmatrix}$

is GUAS if and only if the bilinear system

$$(\Sigma) = \begin{cases} \dot{x} = A_{\lambda}x \\ y = C_{\lambda}x \end{cases}$$

is uniformly observable on $[0, +\infty[$.

Sketch of the proof

If the system is not GUAS, we obtain a limit trajectory ψ

$$\psi(t) = \ell + \int_0^t B_{\lambda(s)} \psi(s) \, ds$$

where $t \mapsto \lambda(t)$ is a measurable function from $[0, +\infty \text{ into } [0, 1]$. It is obtained using a weak-* limit of $t \mapsto B_{u(t)}$ on some sequence of intervals $[t_k, +\infty[$.

We show that $\psi(t)$ is in \mathcal{K} and writes $\psi(t) = (\phi(t), 0)$ according to the decomposition $\mathbb{R}^d = \mathcal{K} \oplus \mathcal{K}^{\perp}$.

Its derivative
$$\frac{d}{dt}\psi(t) = B(t)\psi(t) = \begin{pmatrix} A_{\lambda(t)}\phi(t) \\ C_{\lambda(t)}\phi(t) \end{pmatrix}$$
 is also in \mathcal{K} , so that

$$\mathcal{C}_{\lambda(t)}\phi(t)=0 \quad ext{ for almost every } t\in [0,+\infty[.$$

Uniformly bounded linear switched systems Stability of pairs of Hurwitz matrices Observability of the bilinear system

Observability of the bilinear system

For
$$\lambda \in [0,1]$$
, $x \in \mathcal{K}$, and $y \in \mathcal{K}^{\perp}$

$$(\Sigma) = \begin{cases} \dot{x} = A_{\lambda}x = (1-\lambda)A_0 + \lambda A_1 \\ y = C_{\lambda}x = (1-\lambda)C_0 + \lambda C_1 \end{cases}$$

The trajectories are contained in spheres, because the A_i's are skew-symmetric.

< ∃ >

Uniformly bounded linear switched systems Stability of pairs of Hurwitz matrices Observability of the bilinear system

Observability of the bilinear system

For
$$\lambda \in [0,1]$$
, $x \in \mathcal{K}$, and $y \in \mathcal{K}^{\perp}$

$$(\Sigma) = \begin{cases} \dot{x} = A_{\lambda}x = (1-\lambda)A_0 + \lambda A_1 \\ y = C_{\lambda}x = (1-\lambda)C_0 + \lambda C_1 \end{cases}$$

- The trajectories are contained in spheres, because the A_i's are skew-symmetric.
- A trajectory x(t) on I = [0, T] or I = [0, +∞[that is contained in S^{k-1} = {x ∈ K; ||x|| = 1} and satisfies

$$C_{\lambda(t)}x(t)=0$$
 for almost every $t\in I$

is a **NTZO trajectory** (Non Trivial Zero Output) or a bad trajectory.

GUAS Systems with $\mathsf{dim}(\mathcal{K}) \leq 2$

An obvious necessary condition

 (Σ) should be observable for every constant input, that is the pair $(C_{\lambda}, A_{\lambda})$ should be observable for every $\lambda \in [0, 1]$.

Under this condition no bad trajectory can be constant.

GUAS Systems with $\mathsf{dim}(\mathcal{K}) \leq 2$

An obvious necessary condition

 (Σ) should be observable for every constant input, that is the pair $(C_{\lambda}, A_{\lambda})$ should be observable for every $\lambda \in [0, 1]$.

Under this condition no bad trajectory can be constant.

Proposition 1

If dim $\mathcal{K} \leq 2$ then (Σ) is uniformly observable on $[0, +\infty[$ if and only if the pair (C_{λ}, A_{λ}) is observable for every $\lambda \in [0, 1]$.

Conjecture and counter-example

Conjecture

The switched system is GUAS if and only if the pair $(C_{\lambda}, A_{\lambda})$ is observable for every $\lambda \in [0, 1]$.

Conjecture and counter-example

Conjecture

The switched system is GUAS if and only if the pair $(C_{\lambda}, A_{\lambda})$ is observable for every $\lambda \in [0, 1]$.

Counter-example (Paolo Mason)

The bad locus

The condition

$$\exists \ \lambda \in [0,1]$$
 such that $C_\lambda x = (1-\lambda)C_0 x + \lambda C_1 x = 0$

holds in the bad locus F characterized by

$$\exists \lambda \in [0,1] \text{ s.t. } C_{\lambda}x = 0 \Longleftrightarrow C_0x \wedge C_1x = 0 \text{ and } \langle C_0x, C_1x \rangle \leq 0$$

э

The bad locus

The condition

$$\exists \ \lambda \in [0,1]$$
 such that $C_{\lambda}x = (1-\lambda)C_0x + \lambda C_1x = 0$

holds in the bad locus F characterized by

$$\exists \lambda \in [0,1] \text{ s.t. } C_{\lambda}x = 0 \Longleftrightarrow C_0x \wedge C_1x = 0 \text{ and } \langle C_0x, C_1x \rangle \leq 0$$

In $F_0 = F \setminus (\ker C_0 \bigcap \ker C_1)$, the bad input λ is an analytic function of x:

$$\lambda(x) = rac{\langle C_0 x - C_1 x, C_0 x \rangle}{\|C_0 x - C_1 x\|^2}.$$

- **→** → **→**

Further sufficient conditions

G is the set of points $x \in S^{k-1} \cap F$ for which there exists $\lambda \in [0, 1]$ such that

$$C_0A_{\lambda}x \wedge C_1x + C_0x \wedge C_1A_{\lambda}x = 0$$

Proposition 2

If the pair $(C_{\lambda}, A_{\lambda})$ is observable for every $\lambda \in [0, 1]$ and the set G is discrete then (Σ) is uniformly observable on [0, T] for all T > 0. It is in particular true if ker $C_{\lambda} = \{0\}$ for $\lambda \in [0, 1]$.

Summarizing Theorem

Theorem

The switched system is GUAS as soon as the pair $(C_{\lambda}, A_{\lambda})$ is observable for every $\lambda \in [0, 1]$, and one of the following conditions holds:

- 1. the set G is discrete;
- 2. dim $\mathcal{K} \leq 2$.

In particular the switched system is GUAS if ker $C_{\lambda} = \{0\}$ for $\lambda \in [0, 1]$.

General examples

1. A is a skew-symmetric $k \times k$ matrix, C is $k' \times k$ matrix, the pair (C, A) is observable.

Then for any matrices D_0 and D_1 such that $D_i^T + D_i < 0$ the system $\{B_0, B_1\}$ is GUAS, where:

$$B_0 = \begin{pmatrix} A & -C^T \\ C & D_0 \end{pmatrix} \qquad B_1 = \begin{pmatrix} A & -C^T \\ C & D_1 \end{pmatrix}$$

General examples

1. A is a skew-symmetric $k \times k$ matrix, C is $k' \times k$ matrix, the pair (C, A) is observable.

Then for any matrices D_0 and D_1 such that $D_i^T + D_i < 0$ the system $\{B_0, B_1\}$ is GUAS, where:

$$B_0 = \begin{pmatrix} A & -C^T \\ C & D_0 \end{pmatrix} \qquad B_1 = \begin{pmatrix} A & -C^T \\ C & D_1 \end{pmatrix}$$

2. Case where $A_0 = A_1 = 0$.

$$B_0 = \begin{pmatrix} 0 & -C_0^T \\ C_0 & D_0 \end{pmatrix} \quad B_1 = \begin{pmatrix} 0 & -C_1^T \\ C_1 & D_1 \end{pmatrix} \quad \text{with} \quad D_i^T + D_i < 0.$$

It is GUAS if and only if C_{λ} is one-to-one for all $\lambda \in [0, 1]$.

$\dim \mathcal{K} = d - 1$

The skew-symmetric $2q \times 2q$ matrix A has q blocks

$$\begin{pmatrix} 0 & -a_j \\ a_j & 0 \end{pmatrix}$$

on the diagonal and vanishes elsewhere. Assume (a_1, \ldots, a_q) to be rationally independant. Then the orbit of $\dot{x} = Ax$ for **any non zero** initial state $(x_1^0, \ldots, x_{2q}^0)$ is dense in the torus

$$x_{2j-1}^2 + x_{2j}^2 = (x_{2j-1}^0)^2 + (x_{2j}^0)^2 = T_j^2$$
 $j = 1, \dots, q$

where at least one T_i does not vanish.

dim $\mathcal{K} = d - 1$, end

Therefore this orbit meets the subset of the orthant

 $\{x_i \ge 0; i = 1, ..., 2q\}$ where $x_{2j-1} > 0$ and $x_{2j} > 0$ for at least one *j*.

For $C_0 = \begin{pmatrix} 1 & 0 & \dots & 1 & 0 \end{pmatrix}$ and $C_1 = \begin{pmatrix} 0 & 1 & \dots & 0 & 1 \end{pmatrix}$ we have $(C_0x)(C_1x) > 0$ in this subset. Every non zero orbit goes out of F. The bilinear system defined by $A_0 = A_1 = A$, C_0 and C_1 is uniformly observable on $[0, +\infty)$. The switched system defined by the matrices

$$B_0 = \begin{pmatrix} A & -C_0^T \\ C_0 & -d_0 \end{pmatrix} \qquad B_1 = \begin{pmatrix} A & -C_1^T \\ C_1 & -d_1 \end{pmatrix}$$

is GUAS for any choice of positive numbers d_0 and d_1 .

A second conjecture

Consider the assertions

- 1. The switched system is GUAS and has a non strict quadratic Lyapunov function.
- 2. The switched system has a strict quadratic Lyapunov function.

It is known that a GUAS linear system has a strict polynomial Lyapunov function (Mason-Boscain-Chitour 2006), but no quadratic one in general.

Can we get a better result under the additional condition that the switched system has a non strict quadratic Lyapunov function?

In other words does $1 \Longrightarrow 2?$

A second Counter-Example

Counter-Example (P. Mason)

$$B_0 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}, \ B_1 = \begin{pmatrix} -1 & -3 - 2\sqrt{2} \\ 3 - 2\sqrt{2} & -1 \end{pmatrix}.$$

The matrix

$$P = egin{pmatrix} 1 & 0 \ 0 & 3+2\sqrt{2} \end{pmatrix}$$

defines a weak quadratic Lyapunov function for $\{B_0, B_1\}$

A second Counter-Example

Counter-Example (P. Mason)

$$B_0 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}, \ B_1 = \begin{pmatrix} -1 & -3 - 2\sqrt{2} \\ 3 - 2\sqrt{2} & -1 \end{pmatrix}.$$

The matrix

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 3 + 2\sqrt{2} \end{pmatrix}$$

defines a weak quadratic Lyapunov function for $\{B_0, B_1\}$

• The system defined by $\{B_0, B_1\}$ is GUAS (BBM, IJC 2009).

A second Counter-Example

Counter-Example (P. Mason)

$$B_0 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}, \ B_1 = \begin{pmatrix} -1 & -3 - 2\sqrt{2} \\ 3 - 2\sqrt{2} & -1 \end{pmatrix}.$$

The matrix

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 3 + 2\sqrt{2} \end{pmatrix}$$

defines a weak quadratic Lyapunov function for $\{B_0, B_1\}$

- The system defined by $\{B_0, B_1\}$ is GUAS (BBM, IJC 2009).
- ► This system admits no strict quadratic Lyapunov function.

Let $\{B_1, \ldots, B_p\}$ be a family of Hurwitz matrices for which the identity is common weak Lyapunov matrix

Let $\{B_1, \ldots, B_p\}$ be a family of Hurwitz matrices for which the identity is common weak Lyapunov matrix The switched system they define is GUAS if and only if

Let $\{B_1, \ldots, B_p\}$ be a family of Hurwitz matrices for which the identity is common weak Lyapunov matrix The switched system they define is GUAS if and only if

(*P*₂) For each pair $i \neq j \in \{1, ..., p\}$ the observed system on $\mathcal{K}_i \bigcap \mathcal{K}_j$ is observable on $[0, +\infty)$.

- Let $\{B_1, \ldots, B_p\}$ be a family of Hurwitz matrices for which the identity is common weak Lyapunov matrix The switched system they define is GUAS if and only if
- (*P*₂) For each pair $i \neq j \in \{1, ..., p\}$ the observed system on $\mathcal{K}_i \bigcap \mathcal{K}_j$ is observable on $[0, +\infty)$.
- (*P*₃) Property *P*₂ holds and for each 3-uple $i, j, k \in \{1, ..., p\}$ the observed system on $\mathcal{K}_i \cap \mathcal{K}_j \cap \mathcal{K}_k$ is observable on $[0, +\infty)$.

- Let $\{B_1, \ldots, B_p\}$ be a family of Hurwitz matrices for which the identity is common weak Lyapunov matrix The switched system they define is GUAS if and only if
- (*P*₂) For each pair $i \neq j \in \{1, ..., p\}$ the observed system on $\mathcal{K}_i \bigcap \mathcal{K}_j$ is observable on $[0, +\infty)$.
- (*P*₃) Property *P*₂ holds and for each 3-uple $i, j, k \in \{1, ..., p\}$ the observed system on $\mathcal{K}_i \bigcap \mathcal{K}_j \bigcap \mathcal{K}_k$ is observable on $[0, +\infty)$.
- (P_k) and so on, up to

A B > A B >

- Let $\{B_1, \ldots, B_p\}$ be a family of Hurwitz matrices for which the identity is common weak Lyapunov matrix The switched system they define is GUAS if and only if
- (*P*₂) For each pair $i \neq j \in \{1, ..., p\}$ the observed system on $\mathcal{K}_i \bigcap \mathcal{K}_j$ is observable on $[0, +\infty)$.
- (*P*₃) Property *P*₂ holds and for each 3-uple $i, j, k \in \{1, ..., p\}$ the observed system on $\mathcal{K}_i \cap \mathcal{K}_j \cap \mathcal{K}_k$ is observable on $[0, +\infty)$.
- (P_k) and so on, up to
- (P_p) Properties P_2 to P_{p-1} hold and the observed system on $\bigcap_{i=1}^{p} \mathcal{K}_i$ is observable on $[0, +\infty)$.

伺 ト く ヨ ト く ヨ ト

Uniformly bounded linear switched systems Stability of pairs of Hurwitz matrices Observability of the bilinear system

Thank you for your attention