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Uniformly bounded linear switched systems

I Finite collection B1,B2, . . . ,Bp of d × d matrices.

I They share a weak quadratic Lyapunov function P, i.e.
BT
i P + PBi ≤ 0 for i = 1, . . . , p.

I We can assume P = Id , so that:

BT
i + Bi ≤ 0 for i = 1, . . . , p

The linear switched system

d

dt
X = Bu(t)X X ∈ Rd , u(t) ∈ {1, 2, . . . , p}

is stable.
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Switching laws

I A switching law, or input, is a piecewise constant and
right-continuous function from [0,+∞) to {1, . . . , p}.

I For such a switching law u, the trajectory from X is denoted
by Φu(t)X .

I The ω-limit set, for a given initial point X , is:

Ωu(X ) =
⋂
T≥0

{Φu(t)X ; t ≥ T}
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Two loci

I Ki = {X ∈ Rd ; XT (BT
i + Bi )X = 0}

I Vi = {X ∈ Rd ;
∥∥etBiX

∥∥ = ‖X‖ ∀t ≥ 0}
It is the largest Bi -invariant subspace of Ki .

These loci were previously defined (See Serres, Vivalda, Riedinger,
IEEE 2011)

Let u be a switching law:

I For any X ∈ Rd the ω-limit set Ωu(X ) is contained
⋃p

i=1Ki .

I For certain classes of inputs (non-chaotic inputs) Ωu(X ) is
contained

⋃p
i=1 Vi .
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Pairs of Hurwitz matrices

The linear switched system

Ẋ = Bu(t)X X ∈ Rd

is defined by a pair of Hurwitz matrices B0,B1 ∈M(d ;R)
assumed to satisfy

BT
i + Bi ≤ 0 i = 0, 1.

Problem
Find (necessary and) sufficient conditions for the switched system
to be GUAS.
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Asymptotic stability

The switched system being linear is GUAS (Globally Uniformly
Asymptotically Stable) if and only if for every switching law u the
system is globally asymptotically stable, that is

∀X ∈ Rd Φu(t)X −→t→+∞ 0.

It was proved in [B.J. SIAM 2011] that the switched system is
GUAS as soon as

K = K0
⋂
K1 = {0}

But this condition is not necessary. It is possible to build GUAS
systems for which dimK = d − 1 regardless of d .
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Hurwitz matrices and observability

Theorem (Characterization of Hurwitz matrices)

B is a d × d-matrix s.t. BT + B ≤ 0 and K = ker(BT + B).
According to the orthogonal decomposition Rd = K ⊕K⊥, B
writes

B =

(
A −CT

C D

)
(1)

with AT + A = 0 and DT + D < 0.
Then B is Hurwitz if and only if the pair (C ,A) is observable.

Example

Assume B in the previous form, A =

(
0 1
−1 0

)
and C nonzero.

Then B is Hurwitz for any D (that satisfies DT + D < 0).
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Sketch of the proof

Consider the linear system:

(Σ) =

{
ẋ = Ax x ∈ K
y = Cx y ∈ K⊥

If (Σ) is not observable, then there exists x ∈ K, x 6= 0, such that
CetAx = 0 for all t ∈ R.

Since B =

(
A −CT

C D

)
we get etB

(
x
0

)
=

(
etAx

0

)
This does not tend to 0 and B is not Hurwitz.
Conversely if B is not Hurwitz, its limit trajectories lie in K and
verifie CetAx = 0.
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Convexification

For λ ∈ [0, 1] we consider the matrix Bλ = (1− λ)B0 + λB1.

Fundamental space K = K0 ∩ K1.

Lemma
For all λ ∈ (0, 1), Kλ = ker(BT

λ + Bλ) = K.
According to the orthogonal decomposition Rd = K ⊕K⊥,
Bλ writes

Bλ =

(
Aλ −CT

λ

Cλ Dλ

)
,

with AT
λ + Aλ = 0 for λ ∈ [0, 1],

and DT
λ + Dλ < 0 for λ ∈ (0, 1).
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The associated bilinear system
We consider the bilinear controlled and observed system:

(Σ) =

{
ẋ = Aλx
y = Cλx

where λ ∈ [0, 1], x ∈ K, and y ∈ K⊥.

Definition
The system (Σ) is said to be uniformly observable on [0,+∞[ if
for any measurable input t 7−→ λ(t) from [0,+∞[ into [0, 1], the
output distinguish any two different initial states, that is

∀x1 6= x2 ∈ K m{t ≥ 0; Cλ(t)x1(t) 6= Cλ(t)x2(t)} > 0,

where m stands for the Lebesgue measure on R, and xi (t) for the
solution of ẋ = Aλ(t)x starting from xi , for i = 1, 2.
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Main result

Theorem
The linear switched system

Ẋ = Bu(t)X where Bi =

(
Ai −CT

i

Ci Di

)
is GUAS if and only if the bilinear system

(Σ) =

{
ẋ = Aλx
y = Cλx

is uniformly observable on [0,+∞[.
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Sketch of the proof

If the system is not GUAS, we obtain a limit trajectory ψ

ψ(t) = `+

∫ t

0
Bλ(s)ψ(s) ds

where t 7−→ λ(t) is a measurable function from [0,+∞ into [0, 1].
It is obtained using a weak-∗ limit of t 7−→ Bu(t) on some sequence
of intervals [tk ,+∞[.
We show that ψ(t) is in K and writes ψ(t) = (φ(t), 0) according
to the decomposition Rd = K ⊕K⊥.

Its derivative d
dtψ(t) = B(t)ψ(t) =

(
Aλ(t)φ(t)
Cλ(t)φ(t)

)
is also in K, so

that
Cλ(t)φ(t) = 0 for almost every t ∈ [0,+∞[.
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Observability of the bilinear system

For λ ∈ [0, 1], x ∈ K, and y ∈ K⊥

(Σ) =

{
ẋ = Aλx = (1− λ)A0 + λA1

y = Cλx = (1− λ)C0 + λC1

I The trajectories are contained in spheres, because the Ai ’s are
skew-symmetric.

I A trajectory x(t) on I = [0,T ] or I = [0,+∞[ that is
contained in Sk−1 = {x ∈ K; ‖x‖ = 1} and satisfies

Cλ(t)x(t) = 0 for almost every t ∈ I

is a NTZO trajectory (Non Trivial Zero Output) or a bad
trajectory.
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GUAS Systems with dim(K) ≤ 2

An obvious necessary condition

(Σ) should be observable for every constant input, that is the pair
(Cλ,Aλ) should be observable for every λ ∈ [0, 1].

Under this condition no bad trajectory can be constant.

Proposition 1

If dimK ≤ 2 then (Σ) is uniformly observable on [0,+∞[ if and
only if the pair (Cλ,Aλ) is observable for every λ ∈ [0, 1].
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Conjecture and counter-example

Conjecture

The switched system is GUAS if and only if the pair (Cλ,Aλ) is
observable for every λ ∈ [0, 1].

Counter-example (Paolo Mason)
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The bad locus

The condition

∃ λ ∈ [0, 1] such that Cλx = (1− λ)C0x + λC1x = 0

holds in the bad locus F characterized by

∃λ ∈ [0, 1] s.t. Cλx = 0⇐⇒ C0x ∧ C1x = 0 and 〈C0x ,C1x〉 ≤ 0

In F0 = F \ (kerC0
⋂

kerC1), the bad input λ is an analytic
function of x :

λ(x) =
〈C0x − C1x ,C0x〉
‖C0x − C1x‖2

.
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Further sufficient conditions

G is the set of points x ∈ Sk−1 ∩ F for which there exists
λ ∈ [0, 1] such that

C0Aλx ∧ C1x + C0x ∧ C1Aλx = 0

Proposition 2

If the pair (Cλ,Aλ) is observable for every λ ∈ [0, 1] and the set G
is discrete then (Σ) is uniformly observable on [0,T ] for all T > 0.
It is in particular true if kerCλ = {0} for λ ∈ [0, 1].
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Summarizing Theorem

Theorem
The switched system is GUAS as soon as the pair (Cλ,Aλ) is
observable for every λ ∈ [0, 1], and one of the following conditions
holds:

1. the set G is discrete;

2. dimK ≤ 2.

In particular the switched system is GUAS if kerCλ = {0} for
λ ∈ [0, 1].
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General examples

1. A is a skew-symmetric k × k matrix, C is k ′ × k matrix, the
pair (C ,A) is observable.
Then for any matrices D0 and D1 such that DT

i + Di < 0 the
system {B0,B1} is GUAS, where:

B0 =

(
A −CT

C D0

)
B1 =

(
A −CT

C D1

)

2. Case where A0 = A1 = 0.

B0 =

(
0 −CT

0

C0 D0

)
B1 =

(
0 −CT

1

C1 D1

)
with DT

i +Di < 0.

It is GUAS if and only if Cλ is one-to-one for all λ ∈ [0, 1].
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dimK = d − 1

The skew-symmetric 2q × 2q matrix A has q blocks(
0 −aj
aj 0

)
on the diagonal and vanishes elsewhere.
Assume (a1, . . . , aq) to be rationally independant. Then the orbit
of ẋ = Ax for any non zero initial state (x0

1 , . . . , x
0
2q) is dense in

the torus

x2
2j−1 + x2

2j = (x0
2j−1)2 + (x0

2j)
2 = T 2

j j = 1, . . . , q

where at least one Tj does not vanish.
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dimK = d − 1, end

Therefore this orbit meets the subset of the orthant
{xi ≥ 0; i = 1, . . . 2q} where x2j−1 > 0 and x2j > 0 for at least
one j .
For C0 =

(
1 0 . . . 1 0

)
and C1 =

(
0 1 . . . 0 1

)
we have (C0x)(C1x) > 0 in this subset.
Every non zero orbit goes out of F .
The bilinear system defined by A0 = A1 = A, C0 and C1 is
uniformly observable on [0,+∞).
The switched system defined by the matrices

B0 =

(
A −CT

0

C0 −d0

)
B1 =

(
A −CT

1

C1 −d1

)
is GUAS for any choice of positive numbers d0 and d1.

Philippe JOUAN, Université de Rouen Switching & Observability



Uniformly bounded linear switched systems
Stability of pairs of Hurwitz matrices

Observability of the bilinear system

A second conjecture

Consider the assertions

1. The switched system is GUAS and has a non strict quadratic
Lyapunov function.

2. The switched system has a strict quadratic Lyapunov function.

It is known that a GUAS linear system has a strict polynomial
Lyapunov function (Mason-Boscain-Chitour 2006), but no
quadratic one in general.

Can we get a better result under the additional condition that the
switched system has a non strict quadratic Lyapunov function?

In other words does 1 =⇒ 2?
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A second Counter-Example

Counter-Example (P. Mason)

B0 =

(
−1 −1
1 −1

)
, B1 =

(
−1 −3− 2

√
2

3− 2
√

2 −1

)
.

The matrix

P =

(
1 0

0 3 + 2
√

2

)
defines a weak quadratic Lyapunov function for {B0,B1}

I The system defined by {B0,B1} is GUAS (BBM, IJC 2009).

I This system admits no strict quadratic Lyapunov function.
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Extension of the results

Let {B1, . . . ,Bp} be a family of Hurwitz matrices
for which the identity is common weak Lyapunov matrix

The switched system they define is GUAS if and only if

(P2) For each pair i 6= j ∈ {1, . . . , p} the observed system on
Ki
⋂
Kj is observable on [0,+∞).

(P3) Property P2 holds and for each 3-uple i , j , k ∈ {1, . . . , p} the
observed system on Ki

⋂
Kj
⋂
Kk is observable on [0,+∞).

(Pk) and so on, up to

(Pp) Properties P2 to Pp−1 hold and the observed system on⋂p
i=1Ki is observable on [0,+∞).
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Thank you for your attention
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